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CHAPTER 1-INTRODUCTION 

1.1 Prostate cancer- a 2017 review  

      It is estimated by the Prostate Cancer Foundation that there are 3 million 

American men currently living with prostate cancer (2). For the year 2017 it is 

estimated that over 160,000 individuals will be newly diagnosed with prostate cancer 

and there will be about 27,000 deaths associated with the disease (3). The prevalence 

and risk of prostate cancer, increases with age and the average age of diagnosis is 

about 66 years old (3). Despite decades of intensive efforts from researchers and 

clinicians to combat this disease, it is still the most common type of cancer in men and 

managing it remains a major challenge. Therefore, there is a pressing need for 

identification of novel therapeutic targets and development of new drugs to treat 

prostate cancer.  

1.2 The normal prostate: structure and function 

The human prostate is a glandular organ of the genitourinary system, located 

below the bladder (4, 5). Each one of 30-50 exocrine glands of the prostate comprises 

an epithelial bilayer of basal and luminal cells, supported by a fibromuscular stroma (6).  

The prostate gland is thus made up of gland cells, muscle cells, and fibrous cells. The 

prostate gland is part of both a man’s reproductive system and urinary system. 

Testosterone is a master hormonal regulator of the prostate and plays a vital role in the 

embryonic development of the prostate and male accessory organs (7). Testosterone is 

also responsible for precisely regulating postnatal growth and maintenance of the adult 

prostate (7). The main function of the prostate is to produce and secrete from the 

glandular cells, an alkaline fluid which aids in protection, nourishment, and motility of 



2 

 

sperm (8-10). The prostate surrounds the urethra and also has a role in regulating urine 

flow and ejaculation, both which are controlled by muscle cells (11, 12). The urethra 

runs from the bladder and directly through the prostate, this is the same path urine is 

carried out of the penis (12). The fibrous cells are responsible for supporting the 

structure of the gland (13).   

The prostate gland is surrounded by several other structures that also play key 

roles in the reproductive and urinary systems. They include (i) the seminal vesicles, 

which are glands located on both sides of the prostate and produce semen (14), (ii) the 

vas deferens, which are long muscular tubes that transport sperm to the urethra from 

the testicles (15) and (iii) nerve bundles that aid in bladder control and erectile function 

that surround the prostate (16).  

1.2.1 Prostate zones 

The prostate is made up of four zones: the peripheral zone, the transition zone, 

the central zone, and the anterior zone (17) (Figure 1.1). The peripheral zone makes up 

the majority of the prostate and is the area closest to the rectum that can be felt during a 

digital rectal examination (DRE) (18). Prostate tumors are predominantly found in this 

zone of the prostate(19). The transition zone is the area of the prostate that surrounds 

the urethra as it passes through the gland (20, 21). As a man ages this area of the 

prostate can enlarge and push the peripheral zone of the prostate towards the rectum 

and also cause narrowing of the urethra, leading to a bladder outlet obstruction (22, 23). 

This condition is known as benign prostatic hyperplasia or BPH. The central zone is 

between the peripheral zone and the transition zone of the prostate and is located 

furthest from the rectum. Therefore, tumors in this zone cannot be detected by DRE.  
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Figure 1.1 Zones of the prostate gland. The prostate gland can be divided into 
four zones: the anterior zone, transition zone, central zone, and peripheral zone 
out of which most carcinomas arise. Reprinted from Molecular Aspects of 
Medicine, 34/2-3, M.C.Franz,P. Anderle,M. Bürzle,Y. Suzuki,M.R. 
Freeman,M.A.Hediger,G. Kovacs; Zinc transporters in prostate cancer:pages 735-
741. Copyright (2013) with permission from Elsevier.  
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The anterior portion of the prostate consists of fibromuscular stroma (24). 

1.2.2 Aspects of endocrine action, the androgen receptor and the prostate gland 

 Prostate development, function and maintenance are all regulated by the steroid 

hormone androgen (25). The nuclear androgen receptor (AR) is the principal mediator 

of androgen action. AR is a member of the nuclear receptor transcription factor 

superfamily, categorized as a class I nuclear receptor, together with other steroid 

hormone receptors (26-29). The AR gene is located on the X chromosome and has 

eight exons that encode a 110kDa polypeptide (30, 31). The protein comprises  four 

major domains: the N-terminal (A/B) domain (amino acids 1-538), the DNA binding 

domain (DBD, amino acids 539-628), the ligand binding domain (LBD, amino acids 671-

920) and the hinge region (amino acids 629-670) (32) (Figure 1.2).  

The N-terminal domain is essential for the transactivation function of the receptor 

(33). It is intrinsically disordered and presents a challenge in determining the solution 

structure and for X-ray crystallography of this protein domain (34-36). This region 

contains activation functional domain 1 (AF-1) with two functional entities - TAU-1 

(residues 101 and 370 with a LKDIL core sequence) (37) and TAU-5 (residues 360 and 

485 with a core sequence WHTLF) (38). TAU-1 has a critical role in ligand dependent 

transcriptional activity whereas TAU-5 has constitutive (ligand-independent) activity (39, 

40). Within the N-terminal domain there is also an FxxLP motif (residues 23-27) (39) 

required for co-regulator binding and also for intermolecular interaction between N- and 

C-terminal regions during ligand-induced dimerization (41). There are two zinc finger 

regions within the DBD essential for dimerization and for binding to DNA at canonical 

androgen responsive elements (ARE) within promoter and enhancer regions of target 
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  Figure 1.2 Androgen Receptor Functional domains. Schematic drawn 
roughly to scale indicating the structural organization of AR, including the 
positions of the major functional domains.  
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genes (42). There is a second ligand-dependent activation function domain (AF-2) in the 

LBD (residues 671-920) (43). This region also facilitates ligand-induced dimerization of 

AR (43). Both endogenous androgens and synthetic androgen antagonists bind to the 

LBD. A mutation in this region can result in androgen antagonists becoming agonists; 

an example is the T877A mutation in AR in the hormone-sensitive cell line LNCaP cells 

(44). In these cells the anti-androgen, bicalutamide activates transcription, rather than 

antagonizing it. The hinge region plays a critical role in AR activity (44). It is a flexible 

section on the receptor which contains a bipartite nuclear localization signal, RKLKKL 

between amino acids 629-634 (45). This region also contributes to intranuclear mobility 

of the receptor and is a target site for acetylation, ubiquitination, and methylation, which 

all have contributing roles in transactivation of AR target genes (45).  

AR is the principal mediator of androgen action and regulates genes to support 

diverse physiological functions in various tissues (33, 46, 47). The classical mechanism 

of transcriptional signaling of AR requires the presence of androgen (48). Testosterone 

is the most abundant androgen in circulation and is produced in the testes. 

Testosterone is converted to dihydrotestosterone (DHT) by the enzyme 5α reductase, 

located at the nuclear membrane of the endoplasmic reticulum, and in prostate tissue 

DHT is the primary agonist of AR (49, 50).The majority of testosterone is converted to 

DHT in the stromal cells and then is transported into the epithelial cells (51-53). The 

binding of DHT to AR induces a conformational change which releases the receptor 

from a chaperone protein complex in the cytoplasm and also exposes the nuclear 

localization signal within the receptor (54, 55). Ligand binding causes homodimerization 

and phosphorylation of the receptor. This results in stabilization of AR and translocation 
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of the receptor to the nucleus where it will bind to androgen-response elements (AREs) 

associated with its target genes (56). The AR-homodimer then recruits co-regulator 

proteins resulting in finely regulated transcription of target genes (57). The target genes 

may have a variety of cellular functions in normal and malignant tissues as well as 

expression of the prostate specific antigen (PSA), a well-known serum marker for 

prostate cancer (58-60).  

The androgen signaling axis is critical for prostate development, proliferation, 

function, maintenance and oncogenesis.  AR is expressed in both the stromal and 

epithelial cells of the prostate (61). The reciprocal relationship between these two cell 

types is responsible for ductal morphogenesis and homeostasis of the prostate (13, 62, 

63). The normal development and maintenance of the prostate epithelium depends on 

paracrine signaling from the stromal cells through growth and survival factors known as 

andromedins, in response to androgen signaling through AR (64-66) (Figure 1.3). 

Secretions from the epithelial cells in turn signal to the stroma to maintain a supportive 

environment (67) This allows for a homeostatic balance between paracrine growth 

stimulation versus survival in adult prostate tissue. The development of prostate cancer 

is underpinned by a breakdown of this reciprocal paracrine interaction between the 

stromal and epithelial cells and an emergent autocrine mechanism within the epithelium 

(64, 68, 69). In this situation the epithelial cells are no longer dependent on stromal 

derived growth and survival factors but rather achieve proliferative functions due to self-

stimulation. This mechanism paired with “gain of function” capability can lead to 

oncogenesis of the prostate (64, 70, 71).    



8 

 

 

  Figure 1.3 Androgen receptor signaling in normal and malignant 
prostate cells. (a) In normal prostate, growth and maintenance of prostate 
epithelium depends on andromedins—growth (GF) and survival (SF) factors 
produced by stromal cells (smooth muscle and fibroblasts). Andromedins are 
produced as a result of androgen signaling through androgen receptor (AR). 
Androgen signaling in prostate epithelium is required for production of 
secretory proteins such as PSA and human kallikrein-2 (HK2). Basal 
epithelial cells do not express AR. (b) During transformation to cancer, the 
paracrine mechanism of AR action is replaced by an emergent autocrine 
mechanism, whereby cancer cells are less dependent on stromal cell factors. 
Androgens acting through AR can directly stimulate production of growth and 
survival factors by cancer cells. (c) After hormone ablation therapy, 
progression to hormone-refractory cancer occurs. The study of Chen et al. 
supports a ligand-dependent, mass-action model resulting from elevated AR 
expression. Elevated levels of AR sensitize cells to residual amounts of 
androgen or, paradoxically, antiandrogens; cells become supersensitive to 
androgen rather than independent of it. Reprinted by permission from 
Macmillan Publishers Ltd: Nature Medicine,(Isaacs and Isaacs 2004) 
copyright (2004) 
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1.3 Prostate Disease 

The precise regulation of the AR/androgen signaling axis enables maintenance 

of the normal prostate. However the prostate is prone to entering disease states. There 

are three major diseases that can develop in the prostate, prostatitis, BPH, and prostate 

cancer.  

1.3.1 Prostatitis  

 Prostatitis is an inflammatory disease that can cause swelling of the prostate 

(72). The disease is quite common and affects about 50% of men during their lifetime 

(73). The disease can be caused by common strains of bacteria and is effectively 

treated with antibiotics; however the cause of infection is unknown in many cases. The 

symptoms of prostatitis include difficulty in urination, and discomfort and pain in the 

pelvic region. Prostatitis can be initially diagnosed using urine and blood samples that 

indicate signs of infection (74). Treatments for the disease include alpha blockers that 

can help relax the muscles surrounding the bladder and prostate, as well as 

nonsteroidal anti-inflammatory drugs(75).  

1.3.2 Benign Prostatic Hyperplasia  

Benign prostatic hyperplasia or BPH is a non-malignant enlargement of the 

prostate (76, 77).  This condition generally occurs in older men (78). The cause of BPH 

is poorly understood.  Some research has indicated that as males age they produce 

more dihydrotestosterone (DHT), because of an increased production of co-factors NAD 

and NADH (79). The accumulation of DHT stimulates the prostate cells to grow (80, 81). 

The majority of the hyperplastic cells are composed of the stroma cells while a minor 

portion is composed of epithelial cells (82).  It has been noted that men who do not 
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produce DHT do not develop BPH (83). Since the prostate surrounds the urethra, 

enlargement of the prostate from BPH can cause urine retention and lower urinary tract 

symptoms. BPH is often diagnosed with a physical exam or a DRE and other medical 

tests such as a urinalysis, prostate specific antigen (PSA) blood test, or a biopsy. Often 

BPH is managed with alpha blockers which prevent the stimulation of adrenergic 

receptors that mediate prostate muscle contraction (84). This use of such molecules 

therefore relaxes the muscles and helps  to improve urine flow and reduce bladder 

blockage (85). Medications like 5-α reductase inhibitors are also used to inhibit the 

production of DHT (86, 87). 

1.3.3 Prostate Cancer 

 Prostate cancer is the most common cancer in American men. Prostate 

carcinomas occur when there is a disruption of epithelial differentiation of luminal cells 

within the gland and dysregulation of autocrine and/or paracrine mechanisms of growth 

control (88). Almost all prostate cancers are adenocarcinomas meaning that these 

cancers develop from glandular cells of the prostate. Certain conditions of the prostate 

have been recognized as a precancerous state. They include prostatic intraepithelial 

neoplasia (PIN) and atypical small acinar proliferation (ASAP) (89). These two types of 

lesions are restricted to the acini and ducts and the cells show a range of atypical 

morphologies (90, 91). PIN and ASAP may be identified in a biopsy of the prostate. In 

prostate cancer the abnormal cells disrupt the basal cell membrane and spread beyond 

these boundaries. PIN lesions are commonly found in the peripheral zone of the 

prostate and high-grade PIN have more pronounced abnormalities compared to low-

grade PIN that are only slightly different compared to normal cells (92). Many studies 
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have shown that there is a strong correlation between the occurrence of high-grade PIN 

lesions and the diagnosis of prostate cancer (93).   

 The prostate gland synthesizes and secretes many unique proteins into the 

seminal fluid. Among them, prostatic acid phosphatase (PAP), prostate-specific antigen 

(PSA), and beta-microseminopreotien (beta-MSP) are predominant and are secreted by 

both normal and  malignant prostate cells (94).  PSA is a serine protease capable of 

cleaving peptide bonds and is responsible for regulating the liquefaction of semen (95). 

Serum PSA has historically been measured as an early detection method for prostate 

cancer but more recent studies have questioned its value in routine screening (96, 97). 

Nevertheless, the PSA test is very useful in monitoring treatment response in patients 

who have undergone surgical or chemical castration or who have been treated with 

systemic therapy for prostate cancer.  

As mentioned earlier, androgens are the physiological ligands required for the 

transcriptional activity of AR. The AR/androgen signaling axis is necessary for 

the initial growth and development of the prostate and in the differentiated 

prostate this axis is required for maintenance of the differentiated state and for 

the secretory function of the prostate. In the normal differentiated prostate, the 

AR/androgen axis regulates both apoptosis and renewal of epithelial cells. In 

prostate cancer, cellular changes affecting this signaling pathway apparently 

cause the proliferative function of AR to become dominant with a simultaneous 

disruption of its differentiation program.  As prostate oncogenesis typically relies 

on AR/androgen signaling, a major clinical approach to treating the disease is to 

target this axis.  
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1.4 Prostate cancer- diagnosis  

In early stage prostate cancer, patients do not often experience clinical symptoms. 

The cancer may be found during routine screening by DRE or by detecting elevated 

serum PSA (98). The PSA test is used for early detection of a tumor and to monitor the 

patient’s response to therapy throughout the course of their disease. It is generally well 

accepted that PSA levels below 4ng/mL are considered to be “normal” whereas levels 

over 10ng/mL are considered to be “high”; a PSA level between 4 and 10ng/mL can be 

considered to be “abnormal” (98). If the PSA level is higher than “normal” most likely 

the physician will repeat the test and follow up with confirmative tests including 

transrectal ultrasound imaging and a biopsy (98). Proteins such as PAP are not used 

for early detection but as biomarkers that provide information on response to therapy 

and progression of tumors if they have spread (99).  

1.4.1 Prostate Cancer Grading 

When there is a definite cancer diagnosis the tumor grade is defined by the 

Gleason score, which is based on histological evaluation of the tissue biopsy. This is a 

system of composite grading that ranges in value from 2 to 10. A low grade cancer 

grows slowly and has a lower tendency to spread. The higher scores indicate relatively 

poor differentiation and a more aggressive cancer.  

1.4.2 Prostate Cancer Staging 

 Staging of the cancer describes the location of tumor lesions and extent of spread. 

Prostate cancer is staged using a system known as TNM staging (100, 101). The ‘T’ 

indicates how large the primary tumor is. The ‘N’ indicates whether the tumor is present 

in the lymph nodes, the location of the infiltrated lymph nodes and the number 
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infiltrated. The ‘M’ indicates the nature and extent of distal metastasis. The stage of the 

cancer, evaluated by combining these three different parameters, enables an 

appropriate treatment plan (102). The stages range from Stage I to Stage IV. In Stage I 

the tumor is slow growing and confined within the prostate gland (103). In Stage II the 

tumor is growing at a faster rate but is still confined. If a patient has been diagnosed 

with Stage III prostate cancer, the cells would have invaded outside of the prostate into 

proximal tissues (103). Stage IV is the most aggressive type of cancer and describes a 

tumor that has spread from the primary site; these new locations could include distant 

lymph nodes, the bladder, bone, liver, lungs, etc. (103). Recurrent prostate cancer is 

also categorized as Stage IV. Thus there are many factors that contribute to a 

patient’s prognosis of prostate cancer that help to guide treatment decisions.  

1.5 Prostate cancer treatment 

Following diagnosis of localized prostate cancer most patients have several 

treatment options. The first line therapies comprise ablation of the prostate (104). This 

may be accomplished by radical prostatectomy where the entire prostate gland and 

some surrounding tissues including the seminal vesicles are surgically removed, 

external beam radiation, internal beam radiation (brachytherapy) and cryotherapy or the 

freezing of the prostate tumor (105, 106). These initial treatments could leave the 

patient with many undesirable genitourinary side effects including irritation and urinary 

retention (107). Moreover, prostate cancer may recur despite these treatments (108-

110). 

1.5.1 Androgen deprivation therapy and anti-androgen therapy   
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Advanced prostate cancer refers to local as well as systemic recurrence following 

first line therapy. Advanced disease is commonly treated with androgen deprivation 

therapy (ADT) by surgical castration or by chemical castration through the use of 

luteinizing hormone-releasing hormone (LHRH) agonists (110). The goal of ADT is to 

reduce the level of androgens in the body to prevent them from stimulating tumor 

growth. These powerful treatments can leave the patient with both acute and chronic 

side effects including fatigue, hot flashes, anemia, osteoporosis, changes in muscle and 

fat mass, sexual dysfunction, and cognitive defects (107, 111, 112). Response to ADT 

is generally temporary, with a median time to recurrence of 18-24 months (113).  

Antagonists of AR or anti-androgens are taken orally every day and may also be 

included with LHRH agonists as first-line hormone therapy. These are drug molecules 

that bind to the ligand binding domain of AR, competing with androgen for binding to AR 

and interfering with the transcriptional activity of AR(114). Examples of anti-androgens 

currently used in the clinic are Flutamide (Eulexin), Bicalutamide (Casodex), and 

Nilutamide (Nilandron) (115-117).  

Despite an initial favorable tumor response to testosterone suppression by 

means of ADT and the use of antiandrogens, prostate cancer frequently recurs by 

progressing to an apparently hormone refractory state. At this stage the 

advanced metastatic disease is referred to as castration resistant prostate cancer 

(CRPC).  

1.5.2 Available Treatments for CRPC  

It is unclear exactly how prostate cancer progresses to CRPC, although it is believed 

that ADT selects for cells that are able to grow and re-populate the tumor in the 
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absence of hormone or cells that are capable of synthesizing and restoring androgen 

intratumorally(118-120). CRPC is typically treated with docetaxel, an anti-mitotic 

chemotherapy, usually with prednisone, a synthetic corticosteroid drug (107, 118). 

However, at this point the disease is typically non-curative.  Relatively new therapies 

have been developed which include cabazitaxel, a chemotherapeutic agent targeting 

microtubules (121) and alpharadin, which is used to treat metastatic bone cancer by 

relying on alpha radiation to kill the cancer cells (122). Abiraterone acetate, an oral 

androgen biosynthesis inhibitor which targets the androgen synthesis enzyme, CYP17 

(123) extends the median survival to 14.8 months from 10.8 months. Enzalutamide, 

which is a high affinity AR antagonist that prevents nuclear localization and 

transcriptional activity of AR, extends median overall survival of CRPC patients by 5 

months (124). Immunotherapies have also been FDA approved. These include 

denosumab, an antibody against RANKL (125) used as a treatment to increase bone 

mass in metastatic prostate cancer and also a vaccine called sipuleucel-T (126) for 

metastatic CRPC. 

All of the current treatments for CRPC offer limited benefit in terms of 

extending median survival.  

1.6  Other Major Limitations of Testosterone Suppression in Prostate Cancer – 

Effects on Normal Tissues  

It is evident from the discussion above that targeting the AR signaling axis has 

proved to be the most effective form of treating advanced prostate cancer. However, the 

conventional approaches in this treatment are severely limited due to the relatively 

frequent and rapid development of drug resistance. Moreover, testosterone suppression 
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has a number of acute and chronic adverse side effects due to its effect on normal 

tissues, as discussed below.      

1.6.1 Hot Flashes 

 Hot flashes are often described by patients as intense warmth and flushness of 

the skin and are one of the most common acute symptoms of ADT (127). They occur 

when the thermoregulatory centers in the hypothalamus are stimulated unnecessarily 

(128). This results in peripheral vasodilation and inapt heating throughout the patient’s 

face and neck which can last from a few seconds to several minutes (129). This is the 

result of withdrawal of androgen leading to disruption of the equilibrium of 

neurotransmitters. This mechanism can also lead to the feeling of anxiousness. It is 

thought that selective serotonin reuptake inhibitors (SSRIs) can increase serotonin 

within these centers to alleviate the intense warmth and perspiration the patient 

experiences due to dysregulation of neurotransmitters within the thermoregulatory 

centers (130-132). 

1.6.2 Hyperlipidemia  

 It is well known that sex hormones such as testosterone can influence the serum 

lipid profiles. Investigation in men with low testosterone levels from ADT has identified 

elevated levels of total cholesterol, low-density lipoprotein, and triglycerides (133, 134). 

Increasing duration of therapy has a positive correlation with further elevation of these 

lipids in the serum (135). Alteration of the lipid profile due to low testosterone levels can 

contribute to heart disease in prostate cancer patients (135, 136). To help manage this 

severe adverse effect, patients may adjust their nutrition plan to a low-cholesterol diet, 

or increase their physical activity to a manageable level without inducing intolerable 
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fatigue. In addition, statin based medications may be used to control cholesterol levels 

(137, 138).  

1.6.3 Sexual Dysfunction  

 Testosterone is the major regulator for sexual function in males and therefore 

one of the major adverse effects of ADT is erectile dysfunction and loss of libido (139). 

This can also negatively impact quality of life. Testosterone is required to facilitate 

erection by acting as a vasodilator in the penis (140). Testosterone contributes to 

activation of nitric oxide synthase, which in turn activates  a series of other enzymes 

and results in dilation of the blood vessels of the vascular beds within the penis leading 

to erection (141, 142). Therefore decreasing testosterone levels by ADT contributes to 

erectile dysfunction. ADT can drop testosterone levels to below 100ng/mL (143); it is 

believed that a minimum value of about 250ng/mL is needed for healthy erectile 

function. Another contributing factor to erectile dysfunction from ADT is the replacement 

of the muscle cells within the penis by fat tissue, leading to flaccidity (144). As a result 

collagen protein deposits arise and cause venous leakage (145). It has been reported 

that libido and sexual activity can improve when ADT is stopped and normal 

testosterone levels are restored (146, 147). Contributing factors to sexual dysfunction 

include the patient’s age, duration of hormone depletion therapy and overall health (148, 

149).  

1.6.4 Anemia 

 Androgens have an important role in the hematopoietic system. Androgens 

regulate the production of red blood cells. Androgen induces the renal production of the 

protein erythropoietin, which promotes the formation of red blood cells by the bone 
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marrow and incorporates iron into these cells (150). The production of erythrogenesis-

stimulating proteins can be induced specifically by testosterone (151, 152). Patients 

undergoing ADT experience a decline in hemoglobin levels and develop anemia as an 

indirect effect of inhibition of erythropoiesis (153). Symptoms include fatigue, loss of 

energy, dizziness, and difficulty in concentration (154). ADT-related anemia can be 

temporary and correlates with the duration of the treatment.  

1.6.5 Skeletal Complications 

 Bone fractures, osteoporosis, bone pain, and bone metastases are all associated 

with men ADT (155-158). Androgens have a major role in skeletal homeostasis 

throughout life (159).  The difference in the size of a male’s skeleton and greater muscle 

mass compared to that of a woman can be explained in part  by the increase levels of 

androgens in males (160).  The androgen receptor is expressed in both osteoclasts 

(161) and osteoblasts (162), which are the cells that facilitate bone turnover and 

remodeling. Androgens stimulate osteoblast differentiation and decrease apoptosis of 

osteoblasts and osteoclasts (163). Androgens also regulate growth factors and 

cytokines to indirectly stimulate bone formation and downregulate factors involved in 

osteoclastogenesis (164). Because androgens are essential for bone turnover and 

development, several skeletal complications result from ADT. It is estimated that there 

is a six-fold increase in the rate of bone fracture in men undergoing ADT as well as a 

greater risk for development of osteoporosis (165-167). Both of these conditions are 

due to the bones becoming brittle and fragile as a result of withdrawal of androgens. 

Bone metastasis of prostate cancer also interferes with normal maintenance of the 
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healthy bone and strength of the bone, again leading to increase fracture rate and bone 

pain.  

 There are several lifestyle modifications, such as light exercise and calcium 

supplementation, to help manage skeletal complications due to ADT. In recent past 

years there has been much focus on supplemental therapies for patients experiencing 

skeletal-related events. Bisphosphonates such as zoledronic acid are the most 

commonly prescribed drug for osteoporosis as they induce osteoclasts to undergo 

apoptosis (168). Inhibition of osteoclast activity can help improve bone mineral density; 

this slows bone loss and reduces fracture and bone pain. Denosumab is a human 

monoclonal antibody which is a receptor activator for nuclear factor kB ligand (RANKL) 

inhibitor (169). RANKL is expressed on osteoclasts and is the key mediator for bone 

destruction (170). Densoumab neutralizes this activity to increase bone mineral density 

and reduce bone brittleness and fracture (171). Densoumab has also been shown to be 

effective in delaying bone metastasis and increased bone metastasis-free survival in 

men with non-metastatic advanced prostate cancer (125).  

1.6.6 Effects on the cardiovascular system  

ADT has been linked to major adverse effects related to cardiovascular disease 

(172-174). These effects can go unnoticed but can be fatal. Heart attacks, strokes, and 

peripheral vascular disease together can be categorized as cardiovascular disease. 

ADT can cause these cardiovascular events by causing metabolic changes. These 

changes can include an increase in high density lipoprotein cholesterol, development of 

hyperglycemia and obesity (136, 175, 176). These conditions are all risk factors that 

contribute to the progression of atherosclerosis, which leads to cardiovascular disease 
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(136). Androgens have also been shown to inhibit local inflammatory responses that 

contribute to atherosclerotic plaque development. The positive effects of androgens 

allow for normal blood flow and therefore have a role in promoting cardiovascular health 

(177). Due to the high risk of development of cardiovascular disease in patients on ADT, 

careful monitoring of the patient’s overall health is essential. Precautions and certain 

alterations to the patient’s lifestyle such as reducing caloric intake and increasing 

physical activity can contribute to lowering the risk of cardiovascular complications as a 

result of ADT.  

1.6.7 Cognitive and Psychological Impairment  

 AR is endogenously expressed throughout the brain including the hippocampus, 

parietal lobe, and prefrontal cortex (178-180). These areas are critical for cognitive 

functions and memory (181). Processes involved in how people think, perceive, and 

remember can all be categorized as cognitive functions. Patients receiving ADT have 

reported memory problems while on therapy and cognitive side effects are almost 

immediate after initiation of treatment (182). Evidence from neuropathological studies 

has shown an association with low levels of testosterone in older men with depression 

(183). These symptoms have been shown to decrease with the use of testosterone 

replacement therapy. Depression is commonly reported in men with prostate cancer 

(184, 185). Depression reported by these patients is often linked with anxiety and is 

exacerbated by ADT(186).  

 As discussed above, adverse effects associated with ADT are both acute 

(fatigue, hot flashes, flares) and long-term (hyperlipidemia, cardiovascular 

disease, anemia, osteoporosis, sexual dysfunction and cognitive defects) and 
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include loss of the feeling of well-being (107, 111, 112). Although these effects are 

somewhat mitigated by routine monitoring, medications and changes in diet and 

lifestyle, the side effects of ADT remain a major challenge in the treatment of 

advanced prostate cancer.   

1.7 Mechanisms of restoration of AR signaling in CRPC  

 It is clear from the cumulative pre-clinical and clinical evidence that the 

progression of prostate cancer is reliant on the AR/androgen signaling axis. Hormone-

deprivation therapy has proven effective in patients; however a major limitation is that 

the cancer progresses to CRPC. An interesting aspect of CRPC is that the cancers 

typically remain dependent on AR for growth stimulation. Treatment-naive prostate 

cancer is typically dependent on androgen for growth and is therefore sensitive to ADT 

and anti-androgen drugs; however as the cancer progresses further, it still remains 

dependent on AR for growth but acts independent of androgen or could thrive on 

androgen produced within the tumor.  Therefore these advanced cancers are insensitive 

to ADT and anti-androgen drugs. Although it is difficult to elucidate the precise 

molecular mechanisms underlying clinical cases of CRPC, evidence based 

studies of in vitro and in vivo models, clinical response to newer drugs as well as 

well substantiated theoretical notions have indicated several possible molecular 

and cellular mechanisms driving CRPC. Notably, almost all of these mechanisms 

restore functional AR signaling. 

1.7.1 Intratumoral Androgen Synthesis 

 One adaptive response to ADT that restores AR signaling is the synthesis of 

intratumoral androgens from different androgen precursors such as cholesterol and 
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adrenal dehydroepiandrosterone (DHEA) (187). It has been reported that there is a 

correlation between the expression of cholesterol and the increase in the expression of 

an enzyme required for de novo androgen synthesis, CYP17A, in CRPC tumor tissue 

(137). Tumors may thus produce testostosterone or DHT through the classical or a 

“backdoor” androgen biosynthesis pathway at levels thought to be sufficient to support 

progression of the disease (188).  However, enzyme inhibitors to circumvent restoration 

of testosterone have only shown modest clinical benefit (189).   

1.7.2 Overexpression of AR 

 One way in which prostate cancer can overcome the ability to grow in castrate 

levels of androgen is through the overexpression of AR (190). In these cells that 

overexpress the receptor, sensitivity to androgen or to hormone-independent 

autocrine/paracrine signaling may be enhanced (191). The overexpression of AR could 

be the result of selective pressure of the androgen depleted environment, causing the 

cells which express more AR to flourish (192).  

1.7.3 Imbalance of AR co-regulator expression   

The androgen/AR signaling axis is directed and finely regulated by many protein 

factors. Once AR is bound to the DNA, the composition of proteins that are co-recruited 

to that site determine if transcriptional activity will occur (193). These proteins are 

known as coregulators of AR and they could be either coactivators or corepressors 

(194). Coactivators are preferentially recruited by agonist-bound AR (195). Coactivators 

enhance transcription, through various mechanisms that either directly modulate the 

pre-initiation complex or do so indirectly through chromatin remodeling (193, 196). 

Corepressors are preferentially recruited by antagonist-bound AR and act through 
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similar mechanisms to repress transcription (197). Therefore the cellular complement of 

coactivators and corepressors can determine the biological response and functional 

activity of AR (198, 199).  It has been shown that CRPC could be supported by an 

imbalance of AR co-regulator expression. In these situations there is a higher 

expression of coactivators in relation to corepressors(200). This disproportionality in the 

coregulator complement could enable AR to be activated by lower levels of androgen or 

even by anti-androgens (57, 201).  

1.7.4 Dysregulation of growth factors and crosstalk with other signaling pathways  

 AR may support growth through activation of the receptor by crosstalk with other 

pathways resulting in the activation of the androgen receptor by ligand independent 

mechanisms. The dysregulation of growth factors in prostate cancer such as insulin-like 

growth factor and cytokine IL-6 contributes to an increase in the activation of MAPK 

pathways, PI3K/AKT pathways, and the PKC pathway (37, 202-204). This leads to 

direct phosphorylation of AR (205). Therefore the deregulation of multiple growth factors 

and the crosstalk between the nuclear receptor pathway and these MAPK signaling 

pathways can contribute to the development of androgen independent prostate cancer.   

1.7.5 Mutations in AR and Splice Variants of AR  

Increases in somatic mutations within AR have been reported in advanced 

prostate cancer samples (206, 207). As a result of these gain-of-function mutations, the 

malignant cells acquire a proliferative advantage. For example, the widely used 

hormone-sensitive prostate cancer cell line, LNCaP cells, contain a missense mutation 

at amino acid 877, converting the amino acid from threonine to alanine within the ligand 
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binding domain of the receptor(44). This mutation permits anti-androgens to bind as 

agonists and confers a growth-gain-of-function for the receptor (44).   

More recent studies have established a role of the AR splice variants (AR-V) in 

acquired resistance to hormonal therapies in prostate cancer. AR splice variants are 

alternatively spliced variants of the androgen receptor and more than twenty different 

splice variants of AR have been identified (208). Almost all of the splice variants that 

have been identified have carboxyl-terminal truncations that eliminate the ligand binding 

domain of the receptor (208). The AR splice variants retain their amino-terminal domain 

which harbors two transactivation domains Tau-1 and Tau-5 which confer constitutive 

activity (209). This is significant because it allows for the activation of AR signaling in 

the absence of hormone ligand. Therefore ADT and antiandrogens, which both target 

the ligand binding domain of native AR are ineffective against AR-V expressing tumors 

(210-212).  AR-V7 and ARv567es are the most common and abundant AR variants found 

in clinical prostate tumors (213-215). Studies have shown that the expression of AR-V7 

and ARv567es correlates with disease progression to CRPC and are the most commonly 

found splice variants associated with tumor metastasis and decrease in patient survival 

(216, 217).   

 The binding of agonist is an essential event in the classical (ARE-mediated) 

mode of target gene activation by AR. Full length AR requires ligand binding to initiate 

homodimerization (33). In the process of dimerization, intramolecular interaction 

between the carboxyl- and amino-terminal regions of AR leads to a D-box-dimerization 

transition(218). The homodimer can then directly bind to ARE enriched DNA sequences 

and activate target gene transcription. It has been shown by studying D-box-D-box 
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interactions that dimerization of AR-V7 also must occur to transactivate target genes 

(219). Deletions or mutations in the D-box prevent dimerization in both the full length 

receptor and AR-V7 resulting in loss of their ability to activate target genes. This results 

in loss of their ability to support CRPC cell growth. Therefore it has been proposed that 

targeting the D-box interface might be an effective therapeutic approach to treating AR-

V7 dependent tumors (219).  

  An important question is whether the splice variants of AR can activate the 

same set of canonical target genes as the full length receptor (AR-FL). It has been 

shown in several studies that AR-Vs localize to the nucleus in the absence of ligand to 

activate target genes. The AR-Vs can also facilitate AR-FL to localize in the nucleus in 

the absence of androgen (220, 221). When co-expressed, AR-V7 and AR-FL co-localize 

at the canonical ARE enhancer in the PSA gene promoter. Interestingly, in contrast to 

full length AR alone,  co-occupancy of the full length and variant forms of AR at this site 

is not enhanced or diminished in the presence of androgen or in the presence of the 

potent anti-androgen, enzalutamide (220). Ubiquitin-conjugating enzyme E2C (UBE2C) 

is as an AR-V specific target gene; the promoter of this gene can only be occupied by 

an AR-V7 homodimer or by an AR-V7/ ARv567es heterodimer but not by AR-FL (213, 

215, 220). This indicates that most likely, there is a separate subset of direct target 

genes that are activated by AR-Vs alone. There is cumulative evidence to support the 

idea that there is a set of genes that are upregulated by AR-Vs alone and that they 

comprise genes that support CRPC cell growth (219, 222-224).  

Following castration, the molecular changes in the tumor AR signaling axis 

discussed above overcome or minimize the need for systemic androgen to 
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activate AR. In these situations the tumors may themselves synthesize androgen 

to near pre-castration levels but, more often, AR is localized in the nucleus in the 

absence of androgen or in the presence of extremely low levels of androgen. 

Future studies may reveal additional mechanisms contributing to the 

development of CRPC. Presumably, even within a tumor, several mechanisms 

contribute to the ability of AR to activate transcriptional growth in the absence of 

hormone because of the heterogeneity of this type of cancer. Several newer 

approaches have attempted to disrupt ligand-independent activity of AR in 

prostate cancer.  

1.8 Targeting the amino-terminal domain of AR  

Despite the more recent development of enzalutamide and abiraterone acetate to 

treat CRPC, tumor escape and resistant mechanisms that restore AR signaling, as 

mentioned above, still remain a major challenge for treatment of the disease. Although 

there is a modest benefit and a gain in median overall survival of less than 6 months 

with these current agents for the treatment of CRPC, the majority of CRPC cases will 

develop resistance and the therapy will essentially become ineffective. As with all other 

current therapies, the functional action of these molecules targets the carboxyl ligand 

binding domain of AR. However, it is the amino-terminal domain of AR which harbors 

the region that drives constitutive hormone-independent transcriptional activity of AR or 

its splice variants in CRPC. It has been shown that deletions within this region of the 

receptor result in a transcriptionally inactive protein (40). Because the N-terminal 

domain of the receptor has not been crystallized due to the intrinsically disordered 

nature of the protein, it has made it difficult to develop targetable therapies to this 
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region by means of structure-based design.  Despite these challenges, efforts have 

been made to use high-throughput screening methods to discover drug candidates that 

block recruitment of coactivators to the N-terminal domain. An advantage of such drugs 

is their expected ability to inactivate AR splice variants that pose a major problem in 

prostate cancer progression. Notable developments in studies of small molecules 

targeting interactions of the N-terminal domain of AR as well as very early conceptual 

studies of cell penetrating antibodies with similar effects are discussed below.  

1.8.1 Bromodomain inhibitors  

 As mentioned earlier, the transcriptional activity of AR is precisely regulated by a 

complex network of proteins and epigenetic mechanisms that enable its entry into the 

nuclear compartment and localization to the chromatin. Therefore these mediators of 

transcription propose an alternative strategy for disrupting AR signaling in CRPC 

patients. Bromodomain and Extra-terminal motif (BET) proteins have a wide variety of 

functions in regulating transcription including histone acetyltransferase activity, 

chromatin remodeling and recruitment of co-regulators (225). BRD4 is a conserved BET 

family member that associates with acetylated chromatin and has a critical role in 

recruitment of the positive transcription elongation factor, P-TEFb, which in turn 

enhances the activity of RNA polymerase II by stimulating phosphorylation of its 

carboxyl-terminal domain (226-228). It was shown using co-immunoprecipitation studies 

that BRD4 directly interacts through its two conserved bromodomains, BD1 and BD2, 

with the N-terminal domain of AR to facilitate transcriptional activity (229). Inhibition of 

BRD4 decreases recruitment of full length AR and splice variants of AR to target loci in 

the chromatin to an extent that is comparable to the effect of enzalutamide on full length 
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AR (229). BRD4 inhibition is selective for AR-positive prostate cancer cell lines in 

promoting the induction of apoptosis and cell cycle arrest. Blockade of BRD4 in vivo 

resulted in inhibition of CRPC tumor growth (229). An interesting  study that was done in 

parallel with the tumor xenograft models was observing the effect bromodomain 

inhibition of BRD4 had on metastasis. This was of interest because other studies have 

described enzalutamide to have a pro-metastatic effect in pre-clinical models (230) .  

There was evidence of metastases in the femur and liver of enzalutamide treated VCaP 

tumor-bearing mice in contrast to no evidence of metastasis in mice bearing the same 

tumors treated with BRD4 inhibitors(229). By functioning downstream in the AR 

signaling pathway, BET inhibitors are likely to circumvent resistance mechanisms that 

restore functional AR. There are at least four compounds currently  being studied as 

BRD4 inhibitors. One of them, JQ1, is still in preclinical evaluation (231-233). BRD4 

inhibitors currently in Phase 1 clinical trials are GSK525762 (NCT01587703), GS-

5829(NCT0207228), and OTX015 (NCT02259114).  

1.8.2 EPI family small molecules 

 The EPI family of small molecules compounds was initially discovered by 

screening a library of marine sponge extracts (234). The screen was performed to 

identify molecules that blocked the transactivation of the N-terminal domain of AR (234). 

This family of compounds binds to AF-1 of AR, specifically tau-5, blocking protein-

protein interactions in this region (235). The binding of the EPI to this region also blocks 

the amino and carboxyl terminal interaction required for ligand activity of AR (234, 236). 

As a consequence they inhibit transactivation of the AR N-terminal domain. EPI seems 

to be specific for AR and does not inhibit transcriptional activities of the progesterone 
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and glucocorticoid receptors (234). EPI suppresses activation of the classical androgen 

responsive genes, PSA and TMPRSS2 (234). It does not compete for the ligand binding 

domain like other current AR targeted therapies and is effective in blocking 

transcriptional activity of the major AR splice variants. It has been demonstrated in a 

number of different prostate cancer cells lines that EPI is able to inhibit AR-dependent 

growth but has no effect on cells that do not rely on AR signaling for proliferation and 

survival (234). It was shown to be effective in blocking tumor growth in xenograft models 

that express full length AR and those that express splice variant AR in castrated male 

mice (234, 236, 237). There was no toxicity to internal organs of animals treated with 

EPI systemically; this along with the selective antitumor activity observed in preclinical 

models suggests potential for EPI as a new class of therapeutic drugs for CRPC (234, 

236).  

 Further investigations of EPI compounds have led to the development of EPI-

506. This is the first AR N-terminal domain inhibitor to enter into clinical trials. The 

original EPI compound that was discovered through screening was compound EPI-001. 

When detailed preclinical studies were conducted on this compound along with four of 

its isomers, EPI-002 was found to be the most potent (234, 236, 237). Compound EPI-

506, which is the clinical drug candidate, is a prodrug form of EPI-002. Currently, EPI-

506 is under investigation in Phase I/II clinical trials. Patients with metastatic CPRC who 

have failed on enzalutamide and abiraterone are eligible for this trial. The study is 

currently enrolling in both the United States and Canada (NCT02606123). EPI-506 has 

the potential to circumvent major AR-related resistance mechanisms and is the first 
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drug to enter clinical trials that has the ability to inhibit both the classical AR 

transcriptional signaling and also AR-V dependent signaling.  

1.8.3 Sintokamides 

Sintokamide A (SINT1) has also shown novel effects on the N-terminal domain of 

the androgen receptor. This is a natural compound (238) isolated from the marine 

sponge Dysidea sp. This natural product was able to block transactivation by the N-

terminal domain and inhibit AR-dependent proliferation in prostate cancer cells in vitro 

and of CRPC xenografts in vivo (238). SINT1 was able to selectively block the 

transcriptional activity of both full length AR and AR splice variants by binding to AF-1, 

without interfering with other nuclear receptors with similar structures (239). SINT1 was 

unable to prevent the interaction between AR and STAT3, which is a necessary 

transcription factor in AR signaling, unlike EPI indicating that STINT1 binds to a different 

region of AF1 than EP1 (238, 239). These studies imply that most likely there are 

multiple regions within AF-1 that can be targeted independently. Further 

characterization of these sponge extracts may provide the foundation for further 

development of AR N-terminal targeted therapies.  

1.8.4 Bispecific antibodies to inhibit N-terminal AR activity   

Although still in the early stages of preclinical development, the synthesis and use of 

the bispecific antibody (bsAb), 3E10-AR44, to penetrate prostate cancer cells and 

simultaneously bind to the N-terminal domain of the AR is noteworthy. Treatment with 

the bsAb in the androgen sensitive PC cell line LNCaPs, resulted in accumulation in 

the nuclear compartment with AR (240). 3E10-AR44 was able to co-immunoprecipitate 

with AR as well as mutant AR or AR-V7, and inhibited AR activity in promoter-reporter 
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based assays (240). Data on 3E10-AR44 was presented in 2015 at the annual 

American Association for Cancer Research meeting and are currently unpublished. 

Data on the effects of 3E10-AR44 on tumor growth are unavailable. Nevertheless, 

3E10-AR44 may represent an interesting alternative approach to inhibiting AR function 

in a manner that does not rely on the ligand binding domain of the receptor (240).   

Clearly, drugs that inhibit the transcriptional activity of AR by preventing co-

activator recruitment by the N-terminal domain of AR hold promise in 

overcoming the limitations of ADT and anti-androgens in that they are effective 

against AR splice variants that lack the ligand binding domain. Nevertheless, this 

approach is still limited by its lack of selectivity for androgen signaling in 

prostate cancer cells vs. normal tissues and may cause many of the side effects 

associated with ADT and androgen antagonists. In the following sections, this 

thesis advances a new concept to address this problem.   

1.9 Targeting AR tethering proteins  

Currently major efforts are underway to discover/develop new therapeutics for 

CRPC tumors including those resistant to enzalutamide and abiraterone. The idea of 

targeting the N-terminal transcriptionally active domain of AR is a novel approach that 

is suitable for disruption of canonical AR signaling pathways as well as AR-V 

transcriptional pathways. However, in all cases, the current clinical paradigm remains 

as total and ubiquitous attenuation of AR signaling. Disrupting the androgen signaling 

axis is clinically validated and the best available treatment for prostate cancer but is 

seriously limited by side effects of depriving the patient of testosterone or its receptor 

function in all tissues (107, 111, 112). It is therefore desirable to selectively disrupt a 
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functional arm of AR that is critical for prostate tumor growth at all stages but not for 

the normal role of androgen or AR in various normal tissues. Such an approach would 

obviate the need for testosterone suppression while enabling improved therapy 

outcome for the spectrum of prostate tumors including CRPC. 

  The precise mechanisms by which prostate cancer cells reprogram AR signaling 

to primarily support growth have not been well understood. Recent work from our lab 

and others [reviewed in (241)] has strongly supported the general premise that the 

pattern of expression of proteins that tether AR to chromatin during development, 

differentiation and malignant transformation of the prostate could redirect AR signaling 

according to the physiological context. This may be exemplified by the ability of several 

well established AR tethering proteins to profoundly influence the pattern of gene 

activation by androgen/AR. Those proteins include HoxB13 (involved in development) 

(242), C/EBPalpha (involved in terminal differentiation) shown in our lab (243-245) and 

ELK1 (required for growth signaling by AR) shown in our lab (246).  

1.9.1 HoxB13 

HoxB13 is a transcription factor that belongs to the homeodomain family of 

proteins and plays a vital role in prostate development (247, 248). HoxB13 can 

associate with the DNA binding domain of AR (242). It can associate with AR bound to 

a canonical ARE and act as a co-repressor of AR gene transcriptional activity (242, 

249). HoxB13 can also act as a tether for AR at homeobox elements in the chromatin. 

In the presence of androgen, HoxB13 can recruit AR and support transcriptional activity 

at those sites (242). HoxB13 and AR may also interact by binding at adjacent sites on 

the chromatin (242).  It has been suggested that in addition to supporting prostate 
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development, the cooperative actions of HoxB13 and AR may have a regulatory role in 

growth and migration of prostate cancer cells (242).  

1.9.2 C/EBPα 

 The CCAAT enhancer binding protein, C/EBPα, is a member of dimeric basic 

leucine zipper family of transcription factors and is involved in differentiation of several 

different types of tissues (250).  C/EBPα is also a tumor suppressor and exerts anti-

proliferative effects through protein-protein interactions including stabilization of p21 and 

disruption of E2F complexes (251-253) (254, 255). Activation of the phosphatidylinositol 

3 kinase/AKT pathway can lead to dephosphorylation, causing C/EBPα to stimulate 

proliferation by sequestering the tumor suppressor protein, retinoblastoma (256) (257).    

 Our lab has shown that coincident with differentiation of prostate epithelial cells, 

C/EBPα enters the nuclear compartment, suggesting a role for the protein in prostate 

differentiation(244) Previously it was reported that C/EBPα associates with AR bound to 

classical androgen response elements and acts as a co-repressor to suppress AR-

mediated gene transcriptional activity (258). Studies from our laboratory following this 

finding revealed the action of C/EBPα as a tethering protein for AR at C/EBP-binding 

sites that could enable AR to activate a different set of genes possibly contributing to 

prostate differentiation and other functions of AR in the prostate (245). Although in the 

normal prostate, androgen is needed for nuclear localization of AR, the mechanism of 

recruitment of AR by C/EBPα per se was found to be ligand-independent and without a 

need for dimerization of AR (245). The interaction of C/EBPα with AR involves multiple 

domains of AR (245).  
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1.9.3 ELK1 and other TCF subfamily members  

The E twenty six (ETS) domain transcription factors have distinct roles in 

differentiation, development, transformation, and cellular proliferation (259). Within this 

large family of proteins exists a subfamily of three members, the ternary complex factors 

(TCF), ELK1, ELK3 (Net), and ELK4 (Sap-1). The TCF subfamily members are 

characterized by the presence of the ETS DNA-binding domain of about 85 amino acids 

and like all ETS proteins; they bind to cis elements in the DNA containing a GGA core 

sequence. TCF proteins characteristically also interact with serum response factor 

(SRF) at serum response elements (SREs) as a ternary complex. The formation of this 

nuclear ternary complex is required for transient induction of immediate early genes 

such as c-fos and Egr-1 (260, 261) in response to hyperphosphorylation of ELK1 by 

activated mitogen-activated protein (MAP) kinase pathways (262).  

The TCF subfamily polypeptides contain four domains (A, B, D, and C domains) that 

are conserved among ELK1, ELK3, and ELK4 (Figure 1.4). The N-terminal region 

comprises the A domain which encompasses the ets DNA binding domain (263). The B 

domain interacts with SRF and allows for the formation of the ternary complex (264). 

The C domain resides at the C-terminus of the protein and regulates activation through 

phosphorylation by MAPK. The D domain is a docking site (D box) for MAPK. There is 

an additional MAPK docking site within the C domain, known as the FXFP motif or F 

box. The three TCF subfamily members also contain domains that distinguish them 

from each other. ELK1 contains a repressor (R) domain that diminishes the activity of 

the C-terminal which has similar activity to the CID domain of ELK3. ELK3 contains an 

additional inhibitory domain, NID domain, which inhibits transactivation and DNA 
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binding. ELK4 also has an NID domain with similar function. ELK3 has an additional 

phosphorylation regulatory J domain (259). 

ELK1 is primarily regulated through phosphorylation by the MAP kinase pathway 

protein ERK at serine 383; however it can also be phosphorylated by the MAP kinases 

JNK and p38.  There have been several studies of ELK1’s role in neuronal cell 

differentiation; however ELK1 knockout mice are viable and phenotypically normal (265) 

suggesting functional redundancy within the TCF subfamily members. ELK1 is 

expressed in the clinical spectrum of prostate tumors (266). ELK4 plays a role in 

regulating the proliferation of T cells after targeted activation by the ERK and p38 

pathways. ERK and p38 target ELK3 through the D domain; in addition ELK3 can also 

be targeted through the JNK pathway at the J domain. ELK3 is expressed at sites of 

angiogenesis and vasculogenesis. Knockout of ELK3 results in the most severe 

phenotypic effect of all the TCF subfamily members. ELK3 most closely resembles 

ELK1 in structure and DNA binding specificity most likely causing a large part of the 

redundancy of ELK1 in normal tissues (259, 264). 

1.9.4 ELK1 as an AR tethering protein essential for PC/CRPC growth  

Our lab has reported that, in a PC cell line model capable of growing robustly in the 

complete absence of hormone, AR was localized in the nucleus without the need for 

hormone and that AR expression was obligatory for cell growth (267). In these same 

cells, replacement of endogenous AR with a DNA binding domain mutant of AR that 

could not bind directly to DNA, did not impair cell growth (267). The mutant AR was able 

to associate with the chromatin and activate the required genes to support cell growth 

(267). In the same cells, the direct binding of endogenous AR to DNA required  
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  Figure 1.4 Schematic of the structural domains of ELK1, ELK4, and 
ELK3, the three TCF subfamily members. The A box represents the 
conserved ETS DNA binding domain. The B box is the SRF interaction 
domain. ELK4 contains one inhibitory domain and ELK3 contains two 
inhibitory domains represented by NID (net inhibitory domain) and CID 
(CtBP interaction domain). Docking sites for MAP kinases are represented 
by J, and D. The black box represents an additional secondary MAPK 
docking site known as the FXFP motif. The C box is responsible for 
transcriptional activation and contains phosphorylation sites targeted by 
MAPK.  
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androgen (267). These findings suggested that hormone-independent growth of 

prostate cancer cells could be supported by AR by associating with chromatin through 

DNA bound tethering proteins.  

Systematic  studies of a large number of candidate AR tethering proteins led our lab 

to the discovery that ELK1 is an AR tethering protein that is obligatory for androgen/AR-

dependent malignant growth in a variety of the well-established PC/CRPC models 

(246). Both hormone sensitive PC and CRPC cell line models are absolutely addicted to 

ELK1 for AR-dependent growth, anchorage-dependent and –independent colony 

formation, and tumorigenicity (246, 268). ELK1 was at least partially required for 

activation by AR of approximately 27% of AR target genes in prostate cancer cells; 

these genes were primarily and heavily enriched for cell growth functions (246). The 

tethering of AR by ELK1 to ELK1 binding sites allows for constitutive activation of these 

genes. This dependence of prostate cancer cells on ELK1-dependent AR signaling is 

independent of known ets1-TMPRSS2 gene fusions (246). The cooperative action of 

ELK1 and AR is hormone-independent, unless hormone is needed for nuclear 

localization of AR and is mediated through the N-terminal A/B domain of AR. ELK1 is 

not required for growth of AR-negative cancer cell lines where it may be substituted by 

other proteins (e.g. ELK3) that do not interact with AR. In the normal differentiated 

prostate epithelium and in other normal differentiated AR+ tissues, where growth genes 

are not activated, it is possible that ELK1 is displaced in the chromatin by related 

members of the large ETS family that do not associate with AR. Alternatively, at the 

relatively low AR levels in normal tissues, the receptor could be sequestered by 

preferential binding to AREs associated with genes unrelated to growth. AR binding 
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sites in the chromatin are enriched for ELK1 binding elements (269) which are among 

the most enriched motifs at these sites (270).   

1.10 The ELK1-AR complex as a critical and selective therapeutic target in 

prostate cancer  

Both early stage and advanced prostate tumors are generally dependent on the 

androgen receptor (AR) for growth (271-274).Tumor growth could be driven by 

physiological levels of androgen, post ablation levels of androgen or by the androgen 

receptor (AR) acting completely independent of androgen. Hence, the disease is 

managed clinically by disrupting the AR signaling in the tumors via the use of androgen 

deprivation therapy (ADT) through androgen ablation and the use of androgen 

antagonists.  However, these options present major drawbacks including limited efficacy 

in advanced disease, progression to castrate resistant prostate cancer (CRPC), and 

many undesirable acute and chronic side effects on non-target tissues including the 

central nervous system, cardiovascular system, bone, muscle, and adipose tissue. 

Therefore a more  strategic approach is one that could disrupt a functional arm of AR 

signaling that is critical for prostate tumor growth at all stages but not for the essential 

roles of AR in normal adult tissues.  

AR regulates genes to support diverse physiological functions in various tissues but 

in prostate cancer (PC) cells AR is redirected to gene targets that primarily support 

growth. The specificity of AR tethering interactions could be critical for AR-dependent 

growth signaling in both early stage prostate cancer and CRPC. If such tethering 

mechanisms are not required for the adult normal physiology they could then act as a 

functionally selective therapeutic target in prostate tumors. It has been previously shown 
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in our lab that ELK1, an ETS family transcription factor, tethers AR to the chromatin 

leading to the sustained activation of a critical set of growth genes in prostate cancer 

cells (246). ELK1 is genetically redundant in normal tissues (110). Moreover, our lab 

has shown that in a variety of prostate cancer cell lines both androgen and AR-

dependent are addicted to ELK1 for cell growth, colony formation, and tumorgenicity 

(246).  

The ELK1-AR synergy is independent of the classical mechanism of activation of 

ELK1 by ERK-dependent phosphorylation (246). The unique role of ELK1 in prostate 

cancer cells is underscored by the fact that ELK3, the closest functional substitute for 

ELK1, does not bind AR (246). Moreover, in contrast to ELK1, ELK3 is expressed at 

higher levels in normal prostate epithelial cells and tissues compared to standard 

models of both early stage PC and CRPC (266). Targeting the ELK1-AR complex for 

disruption would obviate the need for androgen ablation and reduce adverse effects 

associated with current AR targeted therapies. Because the synergy between the two 

proteins is a downstream event in the AR signaling axis, this approach would also 

evade resistance mechanisms to current therapies as these mechanisms typically 

restore functional AR. Therefore targeting the ELK1-AR complex should be effective 

against both hormone-dependent PC, as well as CRPC. The focus of this dissertation is 

to prove this concept and also discover a functional class of small molecules that could 

be developed as drugs that target the ELK1-AR complex.   
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CHAPTER 2-THESIS OUTLINE 

This thesis describes our efforts to develop small molecule drugs using two different 

mechanistic approaches.  

Chapters 3 and 4 describe the first approach. Here, the central premise was to 

avoid global attenuation of androgen/AR signaling, by only targeting a critical growth 

signaling arm of AR, specifically, the interaction of AR with ELK1 which has previously 

been reported by this laboratory. In order to accomplish this, we first mapped the 

docking sites for AR on ELK1 (Chapter 3). Next we designed and developed a high 

throughput small molecule screening system which we then used to discover and 

develop a lead drug candidate that would selectively disrupt the ELK1-AR complex 

(Chapter 4). 

Chapter 5 describes the second approach. Here we developed hybrid molecules 

that incorporate scaffolds of a high affinity AR antagonist (enzalutamide) and a histone 

deacetylase (HDAC) inhibitor, suberoylanilide hydroxamic acid (SAHA). The hybrid 

molecules possess weak HDAC inhibitor activity compared with SAHA. Our premise 

was that the weak activity of the hybrid molecule would minimize the pan-HDAC 

inhibitor activity of SAHA. At the same time the enzalutamide moiety should redirect the 

HDAC inhibitor activity to client proteins of HDAC6 within the AR chaperone complex, 

resulting in cell growth inhibition in enzalutamide resistant cells expressing full length 

AR.         
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CHAPTER 3- THE AMINO-TERMINAL DOMAIN OF THE ANDROGEN RECEPTOR 

CO-OPTS ERK DOCKING SITES IN ELK1 TO INDUCE SUSTAINED GENE 

ACTIVATION THAT SUPPORTS PROSTATE CANCER CELL GROWTH 

Reprinted by permission from Journal of Biological Chemistry Copyright 2016 
 

3.1 Introduction 

The androgen receptor (AR) and other members of the nuclear receptor (NR) 

superfamily mediate the transcriptional activities of their ligands as well as some of their 

non-genomic actions (60, 275-278).  NRs in the cytosol, in the nucleus or in association 

with plasma membrane proteins are known to interact with a variety of signaling 

pathway proteins, either as protein kinase substrates or as regulators of transcription or 

signal transduction. Although some of the client proteins of NRs in these pathways have 

been identified, including those shared by different NRs, there is paucity of information 

on the structural elements that enable the mutual recognition of NRs and signaling 

proteins in both normal physiology and in pathogenesis. 

Most early stage and advanced prostate tumors depend on AR for growth (272-

274, 279-281). The human AR is a 919 amino acid polypeptide with a basic structural 

organization typical of NRs (282). In the classical model of gene regulation by AR, 

ligand binding is critical for several events including release of AR from a cytosolic 

chaperone complex as well as phosphorylation, stabilization, dimerization and nuclear 

import of AR (282-284). Ligand binding is also needed for optimal binding of AR to DNA 

at well-characterized response elements associated with target genes (267, 285).  

However, advanced prostate cancer (PCa) cells may acquire the ability to localize 

adequate AR to the nucleus where it is transcriptionally active through mechanisms that 

include AR amplification, hormone-independent phosphorylation of AR through hyper-

activated signaling pathways or overexpression of ligand-independent AR splice 
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variants (221, 286-288). Splice variants of AR have carboxyl-terminal truncations that 

lack the ligand binding domain (289). The above cellular changes in advanced PCa 

cells, as well as intratumoral androgen biosynthesis, could render the tumors resistant 

to conventional AR-targeted therapies, including surgical or chemical castration and 

androgen antagonists (120, 192, 211, 214, 290, 291). Normal and malignant prostate 

epithelial cells appear to redirect androgen/AR signaling to regulate different sets of 

genes via tethering proteins that bind AR to chromatin (241, 242, 245, 246, 267). 

Therefore, developing drugs that disrupt interactions of AR with a tethering protein 

required exclusively for growth is an attractive approach to overcoming resistance to 

current AR-targeted therapies and would also obviate the need for androgen ablation.     

We have previously reported that the ETS family transcription factor ELK1 is 

essential for growth in PCa cells that are either dependent on androgen or independent 

of hormone but still dependent on AR (246). In contrast, ELK1 was not required for 

growth in AR-negative PCa cells. In PCa cells, ELK1 is required wholly or in part for 

activation by androgen/AR of approximately 27 percent of target genes and these genes 

are enriched for clusters supporting cell cycle progression and mitosis (246). Promoter 

activation analyses, mammalian two-hybrid assays and chromatin immunoprecipitation 

studies have indicated that ELK1 recruits AR as a transcriptional co-activator (246). 

Other investigators have extended these studies to demonstrate that ELK1 is similarly 

required for androgen-dependent growth of bladder cancer (292, 293). Moreover, 

chromatin sites of AR binding are highly enriched for ELK1 binding DNA cis-elements 

(294). 
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ELK1 belongs to the ternary complex factor (TCF) sub-family of ETS proteins 

that characteristically bind to purine-rich GGA core sequences (295). ELK1 is activated 

through hyper-phosphorylation by ERK to transiently activate immediate early genes in 

association with the serum response factor (SRF) (261, 262, 295-297). Accordingly, 

ELK1 is one of many substrates of ERK1/2 that have variable types and combinations 

of recognition motifs for ERK (298-300). In the absence of hyper-phosphorylation, ELK1 

is in a repressive association with many genes (301). However, ELK1 is expressed in 

the clinical spectrum of prostate tumors (266) and in PCa cells the activation of AR 

target growth genes through ELK1 was constitutive and did not entail hyper-

phosphorylation or activation of immediate early genes (246). In this study, we now 

elucidate the physical basis for the interaction between ELK1 and AR in the context of 

growth dependency of PCa cells on ELK1. 

3.2 Experimental Procedures   

3.2.1 Cell culture and reagents 

LNCaP, CWR22Rv1 cells and HeLa cell lines were from the American Type 

Culture Collection (Manassas, VA); 293FT cells were from Invitrogen. HeLa cells with a 

stably integrated minimal promoter-luciferase reporter containing five upstream Gal4 

elements (Gal4-TATA-Luc) and expressing a Gal4-ELK1fusion protein in which the Gal4 

DNA binding domain was substituted for the ETS DNA binding domain of ELK1 were 

kindly provided by Dr. Johann Hofman (Innsbruck Medical University).  These cells were 

then stably transduced with a vector expressing the full-length AR. Recombinant HeLa 

cells were also generated by stably transducing Gal4-TATA-Luc and a vector 

expressing the AR (A/B) domain fused to the VP16 transactivation domain [AR(A/B)-
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VP16]. LNCaP cells were routinely grown at 37°C in 5% CO2 in RPMI 1640 medium 

supplemented with 10% FBS (Invitrogen), 100 units/ml penicillin, 100 µg/ml 

streptomycin, 2mM L-glutamine mixture (Invitrogen); and sodium pyruvate (1mM) 

(Invitrogen). CWR22Rv1 cells were grown in phenol-red free RPMI 1640 medium 

supplemented with 10% FBS (Invitrogen), 100 units/ml penicillin, 100 µg/ml 

streptomycin, and 2mM L-glutamine mixture (Invitrogen). Parental and recombinant 

HeLa cells were grown in DMEM supplemented with 10% FBS and 100 units/ml 

penicillin, 100µg/ml streptomycin, 2mM L-glutamine mixture (Invitrogen). Additionally, 

the culture media for the recombinant HeLa cells included one or more of the following 

selection antibiotics: 100µg/ml Hygromycin (Invitrogen) (for Gal4-ELK1), 100µg /ml or 

400ug/ml Geneticin (Invitrogen) (for Gal4-TATA-Luc) and 2 µg /ml Puromycin (Sigma-

Aldrich) [for AR or AR(A/B)-VP16]. For hormone depletion, LNCaP cells were grown in 

phenol-red free RPMI 1640 medium supplemented with 10% heat-inactivated and 

charcoal-stripped FBS (Sigma) and 100 units/ml penicillin, 100µg/ml streptomycin, and 

2mM L-glutamine mixture for 96 hours before each experiment. For hormone depletion, 

parental and recombinant HeLa cells were grown in phenol-red free DMEM 

supplemented with 5% heat-inactivated and charcoal-stripped FBS (Sigma) and 2mM L-

glutamine for 48 hours before each experiment. Affinity-purified rabbit anti-human 

antibody to AR (sc-7305) and mouse antibodies to Gal4 (sc-510) and GAPDH (sc-

47724) were purchased from Santa Cruz Biotechnology (Santa Cruz, CA). Rabbit 

monoclonal anti-human antibody to ERK1/ERK2 (ab17942), rabbit monoclonal anti-

human to androgen receptor-ChIP grade antibody (ab74272), rabbit monoclonal anti-

human antibody to ELK1 (ab32106) and Mouse monoclonal anti-human antibodies to 
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the Androgen Receptor (ab77557) and ELK1 (ab7712) were from Abcam (Cambridge, 

MA). R1881 was kindly provided by Dr. Steve Patrick (Wayne State 

University/Karmanos Cancer Institute, Detroit, MI). Testosterone was from Sigma-

Aldrich. Lipofectamine TM 2000 was purchased from Thermo Scientific (product number 

78410). Trametinib was purchased from Selleckchem. AKTi-1/2 was purchased from 

EMD Millipore (Darmstadt, Germany). esiRNAs were purchased from Sigma-Aldrich.  

3.2.2 Purified proteins  

Full length human AR expressed in insect cells and purified to >95% by affinity 

chromatography and FPLC chromatography (ab82609) was purchased from Abcam 

(Cambridge MA). Recombinant his-tagged ELK1 as well as his-tagged ELK1 mutated in 

both the D-box (∆308-321) and the DEF motif (F397L, P398A) expressed from 

baculovirus infected Sf9 cells were purified using nickel agarose affinity 

chromatography. The proteins were eluted with 200mM imidazole and dialysed against 

20 mM HEPES, pH 7.9 containing 10% glycerol, 20mM KCl, 2mM MgCl2, 0.2 mM 

EDTA, 0.5mM benzamidine and 0.5mM DTT. Purity of the proteins was estimated to be 

> 85% by SDS-polyacrylamide gel electrophoresis.  

3.2.3 Surface plasmon resonance  

Amine Coupling Kit, CM5 sensor chip and HBS-N buffer (GE Healthcare) were 

used for surface plasmon resonance (SPR) analysis. The rate and equilibrium binding 

constants of the interaction of AR with ELK1 or mutant ELK1 were determined using a 

Biacore 3000 (Biacore, Piscataway, NJ). Affinity-purified AR polypeptide (ligand) was 

immobilized on a CM5 research grade sensor chip by an amine coupling method (302). 

The immobilization involved activation of carboxymethyl groups on a dextran-coated 



46 

 

chip by reaction with N-hydroxysuccinimide, followed by covalent bonding of the ligand 

to the chip surface via amide linkages. Reference surfaces were prepared in the same 

manner but blocked with ethanolamine and thus contained no ligand. Kinetic binding 

analysis was carried out by injecting affinity-purified ELK1 polypeptide at different 

concentrations (0-160 nM) or mutant ELK1 (100 nM) into the flow cells (ligand and 

reference cell), and the interaction (response units, RU) between analyte and ligand 

was recorded as the ligand RU minus the reference RU. Kinetic values were determined 

using BIAevaluation software (Biacore), and the data were fitted with the model showing 

closest match (303, 304). A 1:1 Langmuir binding model was generally selected, in 

which all the sensorgrams representing the different analyte concentrations were fitted 

simultaneously with the wide window of association and dissociation phases. Individual 

concentration curves were also evaluated to confirm the fitting data. The equilibrium 

dissociation constant (Kd) was calculated by Kd = koff/kon. 

3.2.4 Plasmids  

The expression plasmid for human full length ELK1 in the pCMV plasmid was 

purchased from OriGene (Rockville, MD). The pLenti-GIII-CMV-hELK1 Lentiviral Vector 

was from Applied Biological Materials Inc. The Gal4-TATA-luc plasmid (pG5luc-

Promega) and expression plasmid for VP16 and Gal4 were purchased from Promega 

(Madison, WI) (CheckMate Mammalian Two-hybrid System). The pRL plasmid encoding 

Renilla luciferase was purchased from Promega. The PatheDetect pFC-MEK1 trans-

Reporter plasmid with a S218/222E point mutation and internal deletion between amino 

acid residues 32-51 rendering it constitutively active was from Stratagene. The pLVX-

AR-V7 plasmid and pLVX control plasmid were a kind gift from Dr.Yan Dong from 
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Tulane University (New Orleans, LA).  Construction of the (ELK1)2-TATA-Luc plasmid 

and the ARE-TATA-Luc plasmid has been previously described (246). The Gal4-ELK1 

fusion construct in which the DNA binding domain of ELK1 (amino acid residues 1-86) 

was deleted and replaced with the Gal4 DNA binding domain was constructed by PCR 

by using the ELK1-pCMV expression plasmid (Origene, Rockville, MD) as the template. 

The appropriate PCR primers were custom synthesized to generate the various amino-

terminal and carboxyl-terminal deletion constructs of Gal4-ELK1 using the ELK1-pCMV 

expression plasmid as the PCR template and subcloned at BamHI (upstream) and NotI 

(downstream) sites in the pBind vector expressing Gal4 fusions. The following ELK1 

deletions reported previously (305) (i.e., pCMV5L ELK1 ∆31, pCMV5L ELK1 ∆D, 

pCMV5L ELK1 ∆32, pCMV5L ELK1 ∆32, pCMV5L ELK1 ∆24, pCMV5L ELK1 ∆19, 

pCMV5L ELK1 FxLa) were subcloned into the appropriate vectors. PCR primers were 

designed to subclone each of the ELK1 deletions into the pBind vector at BamHI 

(upstream) and NotI (downstream) sites.  All other ELK1 internal deletion and mutant 

constructs were generated using the The QuickChange II XL Site-Directed Mutagenesis 

kit (Agilent Technologies) according to the manufacturer’s protocol. They include: 

Lentiviral ELK1 ∆308-321 and Lentiviral ELK1 FxLa, Gal4-ELK1∆287-306, Gal4-

ELK1∆307-313, Gal4-ELK1∆307-315, Gal4ELK1∆400-407, Gal4-ELK1∆331-340, and 

Gal4-ELK1∆340-350.  

The AR(A/B)-VP16 fusion construct was initially constructed using the VP16 

expression plasmid from Promega. Using this plasmid as the PCR template, custom 

synthesized PCR primers were then used to amplify the AR(A/B)-VP16 sequence which 

was cloned into the pCDH-CMV-MCS-EF1-Puro cDNA Cloning and Expression Vector 
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(System Biosciences) at NheI (upstream) and BamHI (downstream) sites. The full 

length AR was subcloned from the pCMV expression vector (Origene) into the pCDH-

CMV-MCS-EF1-Puro cDNA Cloning and Expression Vector (System Biosciences) at 

NheI (upstream) and BamHI (downstream) sites.  Generation of the AR(A/B) expression 

plasmid in the pCDH vector has been described (246). Custom synthesized PCR 

primers were used to amplify and clone the five tandem Gal4 elements from the pG5luc 

vector into the pGreenFire1TM-mCMV-EF1-Neo (Plasmid) at SpeI (upstream) and 

BamHI (downstream) sites.  

All of the plasmid constructs generated above were sent to either the Plant-

Microbe Genomics Facility for DNA Sequencing at The Ohio State University 

(Columbus, OH) or to Genewiz (South Plainfield, NJ) to verify DNA sequences before 

the constructs were used in the studies. 

3.2.5 siRNA mediated gene knockdown  

The appropriate recombinant HeLa cells were plated in a 6-well plate (CytoOne, 

from USA Scientific) in DMEM media supplemented with 10% FBS and 2mM L-

glutamine 24 hours before transfection. The following day cells were transfected with 

esiRNAs against ERK1 (MAPK3, 1ug) and ERK2 (MAPK1, 1ug) or 2µg of control siRNA 

using LipofectamineTM 2000. 

3.2.6 Co-Immunoprecipitation  

HeLa cells were transfected with the expression plasmid for AR and co-

transfected with expression plasmid for wtELK1, ELK1∆308-321 or ELK1 FxLa. Cells 

were harvested in radioimmune precipitation assay lysis buffer and 1X protease inhibitor 

mixture 48h post-transfection. Whole cell lysates (500µg) were pre-cleared for 2h using 



49 

 

protein A-agarose beads (Calbiochem). Immunoprecipitation was performed by first 

incubating 100 µl of the protein A-agarose beads with 20µg of the anti-rabbit androgen 

receptor antibody (ab74272) or negative control for 4h. After washing the antibody 

bound beads three times, 500 ug of the cell lysate was added and incubated at 4°C 

overnight under rotary agitation. At the end of the incubation, the complexes were 

washed five times with the radioimmune precipitation assay buffer. The western blot 

was probed with mouse monoclonal AR antibody (ab77557) and mouse monoclonal 

ELK1 antibody (ab7712).  

3.2.7 Other experimental methods 

Transient transfection and luciferase reporter assays, Checkmate mammalian 

two hybrid assay, Lentivirus mediated gene knockdown and gene expression, cell 

proliferation assay, western blot analysis, RNA isolation, reverse transcription, and real 

time PCR have been described in (246). 

3.2.8 Statistical analysis  

All experiments were performed in triplicate and repeated at least three times. 

The error bars in all graphs represent the standard deviation. Statistical analysis was 

performed using one-way ANOVA with post-hoc and LSD (Least Square Differences) 

and/or T-test using GraphPad v.6.0 software. The P values are indicated in the figure 

legends. 

3.3 Results 

3.3.1 Role of the amino-terminal A/B domain of AR in functional interactions with 

ELK1 
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AR includes (i) an amino-terminal A/B domain containing ligand-independent 

transcriptional activation functions (AF1 and AF5), (ii) a carboxyl-terminal region (E and 

F domains) containing the ligand binding pocket and a ligand-dependent activation 

function (AF2) and (iii) internal DNA-binding and hinge domains (C and D domains) 

(Figure 3.1A). Typically, (e.g., in LNCaP cells) the binding of androgen is necessary for 

AR to localize in the nucleus, to associate with classical androgen response elements 

(AREs) and activate its gene targets. However AR has splice variants with carboxyl-

terminal truncations that remove the ligand binding pocket; such variants are known to 

activate growth genes and support growth of PCa cells in a hormone-independent 

manner. Therefore we tested the ability of the A/B domain of AR to induce ELK1-

dependent gene activation. In contrast to full-length AR the AR A/B domain does not 

require bound hormone for nuclear localization.    

We first used a minimal TATA-dependent promoter luciferase construct in which 

two ELK1 binding cis-elements were placed upstream of the TATA box [(ELK1)2-TATA-

luc]. This construct was transfected along with an expression plasmid for either the full-

length AR or the N-terminal A/B domain of AR into AR-negative HeLa cells. The full-

length AR was able to activate the promoter in an androgen-dependent manner (Figure 

3.1B). In contrast, the A/B domain activated the promoter to a comparable extent both in 

the presence and in the absence of hormone (Figure 3.1B). On the other hand, when 

the cells were transfected with the minimal promoter construct in which the ELK1 

binding elements were substituted with a canonical androgen response element (ARE), 

promoter activation only occurred through the full-length AR and in the presence of  
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Figure 3.1 Adequacy of the A/B domain of AR for functional interactions of AR with 
ELK1. A shows a schematic for the organization of functional domains in AR. The A/B 
domain is the amino-terminal domain (NTD), which contains the ligand-independent 
activation functions AF1 and AF5. The C domain comprises the DNA binding domain 
(DBD) adjacent to a hinge region (D). The E domain encompasses the ligand binding 
domain (LBD) and the ligand-dependent activation function, AF2. The F domain 
represents the carboxyl-terminal domain. B and C, hormone-depleted HeLa cells were 
transfected with an ELK1-driven minimal promoter-luciferase reporter ((ELK1)2-TATA-
LUC) (B) or with an androgen-response element-driven minimal promoter-luciferase 
reporter (ARE-TATA-Luc) (C) and co-transfected with expression plasmids for the AR A/B 
domain, full-length AR, or the plasmid vector control. The cells were treated with either 
testosterone (10 nm) or vehicle at the time of transfection. Luciferase activity was 
measured in the cell lysates 48 h post-transfection. D shows a Western blot of lysates 
from cells transfected with expression plasmids for either the full-length AR or the AR A/B 
domain and treated with either testosterone (10 nm) or vehicle for 48 h and probed using 
an antibody to the amino-terminal domain of AR or with antibody to GAPDH (loading 
control). E, hormone-depleted LNCaP cells were treated with R1881 (1 nm) or vehicle for 
48 h. Total RNA from the cells was used to quantify mRNA levels for the indicated genes 
that were known to be either ELK1-dependent or ARE-dependent for activation by AR. F, 
hormone-depleted LNCaP cells transduced using lentivirus expressing either the AR A/B 
domain or with control lentivirus. Cells were harvested 72 h after infection. Total RNA 
from the cells was used to quantify mRNA levels for the indicated genes that were known 
to be either ELK1-dependent or ARE-dependent for activation by AR. The inset shows 
cell lysates probed by Western blotting using an antibody to the amino-terminal domain 
of AR or with antibody to GAPDH (loading control). G, hormone-depleted LNCaP cells 
transduced using lentivirus expressing either the AR A/B domain or with control 
lentivirus. After 72 h, cells were plated in 96-well plates, and cell growth was monitored 
by the MTT assay. The vector control cells were treated with R1881 (1 nm) or vehicle 24 
h after plating. The inset shows Western blotting analysis of cell lysates, 72 h post-
infection, using antibody to the amino-terminal domain of AR or with antibody to GAPDH 
(loading control). For all transfections, a Renilla luciferase reporter was used as the 
control for transfection efficiency. In all panels, the error bars represent standard 
deviation of experimental triplicates. *, p < 0.001. Reprinted by permission from Journal 
of Biological Chemistry Copyright 2016 (1). 
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androgen (Figure 3.1C). Western blot analysis confirmed expression of both the full-

length AR and AR(A/B) in the transfected cells (Figure 3.1D).  

Next, we compared the abilities of AR(A/B) and the full-length AR to activate 

genes (CDCA3, CDCA5, CDC6 and DTL) previously shown to be activated by AR in an 

ELK1-dependent manner (246). We also tested for activation of genes (PRKCA, 

TMPRSS2 and KLK3) known to be activated by androgen (R1881) in an ARE- 

dependent manner. Androgen activated both classes of target genes in LNCaP cells, 

which express full-length AR (Figure 3.1E). However, when AR(A/B) was ectopically 

expressed in LNCaP cells in the absence of androgen (Figure 3.1F, inset), only the 

ELK1-dependent target genes were activated (Figure 3.1F). This result demonstrates 

that the A/B domain of AR is able to recapitulate ELK1-dependent gene activation by 

androgen plus AR.    

Next, we tested whether the A/B domain of AR could support hormone-

independent growth in LNCaP cells. AR(A/B) was ectopically expressed in LNCaP cells 

by lentiviral transduction and control cells were infected with non-expressing lentivirus 

(Figure 3.1G, inset). Growth of the control cells was dependent on androgen (Figure 

3.1G). The A/B domain of AR was capable of supporting androgen-independent cell 

growth, albeit less robustly than androgen (Figure 3.1G).  

Collectively, the data in Figure 3.1 demonstrate that the amino-terminal A/B 

Domain of AR is adequate for cooperation with ELK1 and for ELK1-dependent 

transcriptional activation. This hormone-independent action of the A/B domain is 

associated with partial recapitulation of androgen-dependent growth induced by full-
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length AR. The A/B domain may represent the minimal structural unit of AR that is 

required for synergizing with ELK1.      

3.3.2 Mapping the region(s) in ELK1 required for association with AR(A/B) 

ELK1 consists of several functional domains. The amino-terminus comprises the 

A domain, encompassing the ETS DNA binding domain (263). The B domain interacts 

with SRF and directs ternary complex formation (264). The C domain resides at the C-

terminus of the protein and regulates activation through phosphorylation by mitogen-

activated protein kinases (MAPKs). The D domain is a docking site for MAPKs. There is 

also an additional MAPK docking site within the C domain, known as the DEF (Docking 

site for ERK, FXFP) motif (259, 306, 307). Segments of ELK1 that are required for 

association with the AR A/B domain were mapped using a mammalian two-hybrid 

assay. For the two-hybrid assay, we used HeLa cells in which a minimal promoter-

luciferase reporter construct with Gal4 elements upstream of the TATA box (Gal4-

TATA-Luc) was stably integrated. These cells also stably expressed the AR(A/B)-VP16 

fusion protein. The recombinant HeLa cells were transfected with Gal4-ELK1 fusion 

constructs in which the DNA binding domain (amino acids 1-86) was replaced by that of 

Gal4.  The reporter readout was used to assess the ability of the Gal4-ELK1 fusion 

proteins to associate with AR(A/B)-VP16. In parallel, HeLa cells stably expressing Gal4-

TATA-Luc alone were co-transfected with each one of the Gal4-ELK1 constructs and an 

expression plasmid for a constitutively active mutant of MEK1 (CA-MEK1). Activation of 

Gal4-TATA-Luc by CA-MEK1 entails phosphorylation and functional association of 

ERK1/2 with Gal4-ELK1; therefore this parallel test probes the ability of each Gal4-

ELK1 deletion/mutation construct to associate with and become activated by ERK1/2.    
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  Figure 3.2 Mapping ELK1 polypeptide segments required for co-activation by 
AR(A/B) by amino-terminal deletion analysis. A shows data obtained using 
recombinant HeLa cells generated by stably transducing a minimal promoter-luciferase 
reporter containing upstream Gal4 elements (GAL4-TATA-LUC) and also with a vector 
expressing the AR A/B domain fused to the VP16 transactivation domain. Cells were 
transfected with plasmids expressing Gal4 fusion proteins of ELK1. The fusion 
constructs substituted the Gal4 DNA binding domain (Gal4-DBD) for the ETS DNA 
binding domain of ELK1. Within this fusion construct, a series of amino-terminal 
deletions were made, as indicated in the schematic in A. Forty eight hours after 
transfection with the various Gal4-ELK1fusion constructs, cells were harvested by 
preparing lysates for measurement of luciferase activity. The promoter activity shown on 
the y axis required the presence of the AR A/B domain as knocking down AR(A/B) 
expression in the same cells transfected with full-length Gal4-ELK1 decreased the 
promoter activity to the basal value shown in the figure for Gal4-DBD alone. The inset 
shows cell lysates probed by Western blotting with antibodies against Gal4 or GAPDH 
(loading control). B shows data obtained using recombinant HeLa cells generated by 
stably transducing only GAL4-TATA-LUC. The cells were transfected with each of the 
Gal4-ELK1 fusion constructs used in A and co-transfected with an expression plasmid for 
a constitutively active mutant of MEK1 or with the vector control. Forty eight hours after 
transfection with the various Gal4-ELK1 fusion constructs, cells were harvested by 
preparing lysates for measurement of luciferase activity. The inset shows cell lysates 
probed by Western blotting with antibodies against Gal4 or GAPDH (loading control). C 
shows a schematic of the domain organization of ELK1; here, the amino-terminal 
deletion mapping of an ELK1 polypeptide segment encompassing residues required for 
association with AR(A/B) (data from A) is represented by gray shading. For all 
transfections, a Renilla luciferase reporter was used as the control for transfection 
efficiency. In all panels, the error bars represent standard deviation of experimental 
triplicates. *, p < 0.001. Reprinted by permission from Journal of Biological Chemistry 
Copyright 2016 (1) 
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First, Gal4-ELK1 constructs containing progressive deletions beginning from the amino-

terminus were tested in the two-hybrid assay (Figure 3.2A). Expression of the 

transfected constructs was confirmed by western blot, using antibody to the Gal4 DNA 

binding domain (Figure 3.2A, inset).  The reporter assay values were similar to the full 

length construct for deletions to positions 187, 261, 287 and 297. However, there was 

virtually a complete loss of reporter activity for deletions to positions 317, 327, 337, 367 

and 397. These results map an element required for association of AR(A/B) to the  

region downstream of amino acid residue 297 of ELK1 (Figure 3.2A and schematic in 

Figure 3.2C). The parallel experiment testing activation of the Gal4-ELK1 constructs by 

CA-MEK1, showed a virtually identical pattern of activity (Figure 3.2B and inset), a 

result that is consistent with the position of the D-box region beginning at residue 312 

(schematic in Figure 3.2C). 

  Next, Gal4-ELK1 constructs containing progressive deletions beginning from the 

carboxyl-terminus were tested in the two-hybrid assay (Figure 3.3A). Again, expression 

of the transfected constructs was confirmed by western blot (Figure 3.3A, inset).  The 

reporter assay values were similar to the full length construct for the deletion made at 

position 397, but was lost for deletions to positions 387, 377 and 367. These results 

map an element required for association of AR(A/B) to the region upstream of amino 

acid residue 397 of ELK1 (Figure 3.3A and schematic in Figure 3.3C). The parallel 

experiment testing activation of the Gal4-ELK1 constructs by CA-MEK1 again showed 

the same pattern (Figure 3.3B and inset). This result is consistent with the position of 

the DEF motif, which serves as an additional ERK docking site (schematic in Figure 

3.3C). 
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Figure 3.3 Mapping ELK1 polypeptide segments required for co-activation by 
AR(A/B) by carboxyl-terminal deletion analysis. A shows data obtained using 
recombinant HeLa cells generated by stably transducing a minimal promoter-luciferase 
reporter containing upstream Gal4 elements (GAL4-TATA-LUC) and also with a vector 
expressing the AR A/B domain fused to the VP16 transactivation domain. Cells were 
transfected with plasmids expressing Gal4 fusion proteins of ELK1. The fusion 
constructs substituted the Gal4 DNA binding domain (Gal4-DBD) for the ETS DNA 
binding domain of ELK1. Within this fusion construct, a series of carboxyl-terminal 
deletions were made, as indicated in the schematic in A. Forty eight hours after 
transfection with the various Gal4-ELK1 fusion constructs, cells were harvested by 
preparing lysates for measurement of luciferase activity. The promoter activity shown on 
the y axis required the presence of the AR A/B domain because knocking down AR(A/B) 
expression in the same cells transfected with full-length Gal4-ELK1 decreased the 
promoter activity to the basal value shown in the figure for Gal4-DBD alone. 
The inset shows cell lysates probed by Western blotting with antibodies against Gal4 or 
GAPDH (loading control). B shows data obtained using recombinant HeLa cells 
generated by stably transducing only GAL4-TATA-LUC. The cells were transfected with 
each of the Gal4-ELK1 fusion constructs used in A and co-transfected with an 
expression plasmid for a constitutively active mutant of MEK1 or with the vector control. 
Forty eight hours after transfection with the various Gal4-ELK1 fusion constructs, cells 
were harvested by preparing lysates for measurement of luciferase activity. 
The inset shows cell lysates probed by Western blotting with antibodies against Gal4 or 
GAPDH (loading control). C shows a schematic of the domain organization of ELK1; 
here, the carboxyl-terminal deletion mapping of an ELK1 polypeptide segment 
encompassing residues required for association with AR(A/B) (data from A) is 
represented by gray shading. For all transfections, a Renilla luciferase reporter was used 
as the control for transfection efficiency. In all panels, the error bars represent standard 
deviation of experimental triplicates. *, p < 0.001. Reprinted by permission from Journal 
of Biological Chemistry Copyright 2016 (1). 
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Additionally, we made and tested the effects of a series of short, overlapping 

internal deletions within Gal4-ELK1 (Figure 3.4A) using the two-hybrid assay. The 

internal deletions covered segments flanking and within the region mapped above by 

amino- and carboxyl-terminal deletion analyses. Expression of the Gal4-ELK1 

constructs was confirmed by western blotting (Figure 3.4A, inset). As shown in Figure 

3.4A, the reporter assay values for the constructs clearly fell into two groups – those 

corresponding to the activity of the full length construct and those approaching the 

background value obtained by transfecting the Gal4 DNA binding domain alone. Based 

on this data, we were able to confirm and further bracket peptide motifs required for 

association of AR(A/B) to within the amino acid sequences 307-350 and 372-397. 

Activation of the Gal4-ELK1 internal deletion constructs by CA-MEK1 followed a similar 

pattern except for the deletion 351-371 which reduced activation by CA-MEK1 but not 

association with AR(A/B)-VP16 (Figure 3.4B and inset). These results are again 

consistent with the locations of the ERK docking sites in ELK1 (D box and DEF motif) 

(schematic in Figure 3.4C). As residues 351-371 lie within the transactivation domain 

(domain C, residues 351-399) of ELK1 (schematic in Figure 4C) and includes two ERK 

phosphorylation sites (297) its requirement for optimal activation of ELK1 by CA-MEK1 

was anticipated.    

To further refine the mapping data for the motif required for association of 

AR(A/B) within the ELK1 polypeptide segment 307-350, we made additional deletions of 

residues 331-340 and 341-350 (Figure 3. 5A). Western blotting confirmed expression of 

the constructs (Figure 3.5B, inset). Neither deletion reduced the reporter activity in the 

two-hybrid assay (Figure 3. 5B), thus further bracketing the upstream element required  
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  Figure 3.4 Mapping ELK1 polypeptide segments required for co-activation by 
AR(A/B) by internal deletion analysis. A shows data obtained using recombinant HeLa 
cells generated by stably transducing a minimal promoter-luciferase reporter containing 
upstream Gal4 elements (GAL4-TATA-LUC) and also with a vector expressing the AR 
A/B domain fused to the VP16 transactivation domain. Cells were transfected with 
plasmids expressing Gal4 fusion proteins of ELK1. The fusion constructs substituted the 
Gal4 DNA binding domain (Gal4-DBD) for the ETS DNA binding domain of ELK1. Within 
this fusion construct, a series of internal deletions were made, as indicated in the 
schematic in A. Forty eight hours after transfection with the various Gal4-ELK1 fusion 
constructs, cells were harvested by preparing lysates for measurement of luciferase 
activity. The promoter activity shown on the y axis required the presence of the AR A/B 
domain because knocking down AR(A/B) expression in the same cells transfected with 
full-length Gal4-ELK1 decreased the promoter activity to the basal value shown in the 
figure for Gal4-DBD alone. The inset shows cell lysates probed by Western blotting with 
antibodies against Gal4 or GAPDH (loading control). B shows data obtained using 
recombinant HeLa cells generated by stably transducing only GAL4-TATA-LUC. The cells 
were transfected with each of the Gal4-ELK1 fusion constructs used in A and co-
transfected with an expression plasmid for a constitutively active mutant of MEK1 or with 
the vector control. Forty eight hours after transfection with the various Gal4-ELK1 fusion 
constructs, cells were harvested by preparing lysates for measurement of luciferase 
activity. The inset shows cell lysates probed by Western blotting with antibodies against 
Gal4 or GAPDH (loading control). C shows a schematic of the domain organization of 
ELK1; here, the deletion mapping of two ELK1 polypeptide segments encompassing 
residues required for association with AR(A/B) (data from Figs. 3A, ,44A, and and55A) is 
represented by gray shading of the two segments. For all transfections, a Renilla 
luciferase reporter was used as the control for transfection efficiency. In all panels, the 
error bars represent standard deviation of experimental triplicates. *, p < 0.001. 
Reprinted by permission from Journal of Biological Chemistry Copyright 2016 (1) 
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  Figure 3.5 Further refinement of the mapping of ELK1 motifs required for co-
activation by AR(A/B). A shows the ELK1 polypeptide sequence. The bracketed 
segments indicate the two segments that were mapped from the deletion analyses in 
Figs. 33–5 as regions containing residues essential for the association of ELK1 with 
AR(A/B). The boxed segments denote the D-domain of ELK1 and the FXFP motif of 
ELK1. The segments in bold font represent peptides that were deleted for further 
mapping in B and C. B and D show data obtained using recombinant HeLa cells 
generated by stably transducing a minimal promoter-luciferase reporter containing 
upstream Gal4 elements (GAL4-TATA-LUC) and also with a vector expressing the AR 
A/B domain fused to the VP16 transactivation domain. Cells were transfected with 
plasmids expressing Gal4 fusion proteins of ELK1. The fusion constructs substituted the 
Gal4 DNA binding domain (Gal4-DBD) for the ETS DNA binding domain of ELK1. Within 
this fusion construct, the indicated internal deletions or mutations were made, as 
indicated in the schematics in B and D. Forty eight hours after transfection with the 
various Gal4-ELK1 fusion constructs, cells were harvested by preparing lysates for 
measurement of luciferase activity. The promoter activity shown on the y axis required 
the presence of the AR A/B domain as knocking down AR(A/B) expression in the same 
cells transfected with full-length Gal4-ELK1 decreased the promoter activity to the basal 
value shown in the figure for Gal4-DBD alone. The insets in B and D show cell lysates 
probed by Western blotting with antibodies against Gal4 or GAPDH (loading control). C 
and E show data obtained using recombinant HeLa cells generated by stably 
transducing only GAL4-TATA-LUC. The cells were transfected with each of the Gal4-
ELK1 fusion constructs used in B and D, respectively, and co-transfected with an 
expression plasmid for a constitutively active mutant of MEK1 or with the vector control. 
Forty eight hours after transfection with the various Gal4-ELK1fusion constructs, cells 
were harvested by preparing lysates for measurement of luciferase activity. The insets in 
C and E show cell lysates probed by Western blotting with antibodies against Gal4 or 
GAPDH (loading control). For all transfections, a Renilla luciferase reporter was used as 
the control for transfection efficiency. In all panels, the error bars represent standard 
deviation of experimental triplicates. *, p < 0.001. Reprinted by permission from Journal 
of Biological Chemistry Copyright 2016 (1) 
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for association of AR(A/B) to within amino acid residues 307-330. These internal 

deletions also had no effect on activation of Gal4-ELK1 by CA-MEK1 (Figure 3.5C and 

inset). Finally, we tested whether the FQFP motif (FXFP motif) and the D-box region 

(residues 308-321), both of which direct ERK docking to ELK1, were also required for 

the association of AR(A/B) to ELK1. We tested a Gal4-ELK1 construct in which the 

FQFP motif was mutated to FQLA, a Gal4-ELK1 construct in which the D-box region 

(ELK1 residues 308-321) was deleted and a Gal4-ELK1 construct with both lesions. All 

three  

resulted in loss of function of AR(A/B)-VP16 in the two-hybrid assay (Figure 3.5D and 

inset), mirroring the loss of activation by CA-MEK1 (Figure 3.5E left and right).          

Collectively, the data from Figures 3.2-3.5 identify two peptide motifs in ELK1 

that are both essential for its association with the A/B domain of AR. The pattern of 

retention or loss of association with AR(A/B) due to the various deletions/mutations in 

ELK1 mirrored the pattern for activation by ERK with one exception, i.e., a deletion 

within the transactivation domain of ELK1, which disrupted activation by ERK but did not 

affect association with AR(A/B). The two ELK1 motifs required for association with 

AR(A/B) equate to the two ERK docking sites in ELK1.  

3.3.3 ELK1 motifs required for association with the AR A/B domain participate in 

hormone-induced activation of ELK1 by full-length AR 

To further validate the mapping of ELK1 motifs required for association with AR, 

it was necessary to confirm that the mapping data obtained above by the mammalian 

two-hybrid assay using AR(A/B)-VP16 applies to the full-length AR. For this purpose we 

tested Gal4-ELK1 fusion constructs with deletions and mutations that were indicative for 
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bracketing the binding sites for AR(A/B) (Figure 3.6A). Each of these constructs, as well 

as control constructs, were co-transfected with full-length AR into recombinant HeLa 

cells in which the Gal4-TATA-Luc promoter-reporter was stably integrated. The cells 

were treated with testosterone or the vehicle control beginning at the time of 

transfection. Androgen activated the promoter only in cells transfected with Gal4-ELK1 

constructs that were found in the preceding sections to have the ability to bind AR(A/B) 

(Figure 3.6A). It was confirmed that both AR and the appropriate Gal4-ELK1 construct 

were expressed in the transfected cells, as observed by western blot using antibody to 

either Gal4 or AR (Figure 3.6B).  

To complement the above data we co-expressed in HeLa cells, AR and wtELK1 

or AR and a mutant of ELK1 in which either one of the two ERK docking sites was 

disrupted. AR and wtELK1 co- immunoprecipitated in these cells; however, when ELK1 

was mutated at either one of its two ERK docking sites, it was unable to co-

immunoprecipitate with AR (Figure 3.6C).  

These results demonstrate that functional association of the full-length AR with 

ELK1 (or transcriptional co-activation of ELK1 by AR) requires the same ELK1 motifs as 

those mapped for the binding of AR(A/B) to ELK1.  

3.3.4 Influence of SRF on the interaction of AR with ELK1 

Functional interactions between AR and ELK1 could be influenced by the 

association of ELK1 with its DNA binding partner, SRF. To explore this possibility we 

first used recombinant HeLa cells in which a minimal promoter-luciferase reporter 

construct with Gal4 elements upstream of the TATA box (Gal4-TATA-Luc) was stably 

integrated in the chromatin. The cells also stably expressed full-length AR and the Gal4-  
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Figure 3.6 ELK1 motifs required for co-activation by full-length AR. A shows data 
obtained using recombinant HeLa cells generated by stably transducing a minimal 
promoter-luciferase reporter containing upstream Gal4 elements (GAL4-TATA-LUC). 
Cells were plated in hormone-depleted media and co-transfected with expression 
plasmids for the indicated Gal4-ELK1 fusion proteins and an expression plasmid for full-
length AR. The fusion constructs substituted the Gal4 DNA binding domain (Gal4-DBD) 
for the ETS DNA binding domain of ELK1. At the time of transfection, the cells were 
treated with testosterone (10 nm) or vehicle control. Forty eight hours after transfection, 
cells were harvested by preparing lysates for measurement of luciferase activity. B 
shows cell lysates probed by Western blotting with antibodies against Gal4, AR, or 
GAPDH (loading control). C shows data on co-immunoprecipitation of ectopic AR and 
ectopic ELK1 or ELK1 mutants from HeLa cell lysates. HeLa cells were transfected with 
the expression plasmid for AR and co-transfected with an expression plasmid for 
WTELK1 or one of two ELK1 mutants, ELK1Δ308–321 and ELK1 FxLa. The lysates 
were immunoprecipitated (IP) using either antibody to AR or a negative control. The 
immunoprecipitates were probed by Western blotting using antibody to either AR or 
ELK1 as indicated. *, p < 0.01. . Reprinted by permission from Journal of Biological 
Chemistry Copyright 2016 (1) 
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ELK1 (87-428) fusion protein. Induction of reporter luciferase activity by testosterone 

was measured to quantify the binding of AR to ELK1. In these cells, lentiviral 

transduction with shRNA against SRF resulted in knocking down SRF at both the 

mRNA and protein levels compared to control shRNA (Figure 3.7A and inset). 

Knockdown of SRF significantly increased testosterone-induced luciferase activity 

(Figure 3.7B). 

 As a complementary approach, we used recombinant HeLa cells that stably 

expressed the AR(A/B) domain fused to the VP16 transactivation domain [AR(A/B)-

VP16]. Additionally, the Gal4-TATA-Luc promoter-reporter was stably integrated in the 

chromatin. In these cells, we examined the effect of SRF knockdown on the hormone-

independent activation of ELK1 by AR(A/B)-VP16. Cells were transduced with shRNA 

against SRF or with control shRNA followed by transfection with the Gal4-ELK1 fusion 

construct or with the Gal4 control vector. SRF shRNA substantially decreased both SRF 

mRNA and protein (Figure 3.7C and inset) and increased the luciferase reporter activity 

three-fold compared to cells transduced with control shRNA (Figure 3.7D). Taken 

together, these results demonstrate that SRF is not required for activation of ELK1 by 

AR; rather, SRF may hinder optimal ELK1-dependent transcriptional activation by AR. 

3.3.5 Influence of ERK1/2 on the interaction of AR with ELK1  

The requirement for MAPK docking motifs in ELK1 suggested the possibility that 

the functional association of AR with ELK1 could involve ERKs, the classical ELK1 

activating protein kinases, as an essential component of the ELK1-AR complex.  As a 

first test we used recombinant HeLa cells stably expressing AR(A/B)-VP16 in which the 

Gal4-TATA-Luc promoter-reporter was also stably integrated. These cells were co-
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transfected with siRNAs against ERK1 and ERK2 or transfected with control siRNA. 

ERK mRNAs and proteins were depleted within 48 hours of siRNA transfection 

compared with the control siRNA (Figure 3.7E, top and bottom). Following knockdown 

of ERKs, the cells were transfected again, this time with expression plasmid for the 

Gal4-ELK1 fusion protein or the control Gal4 vector. In parallel, cells were also co-

transfected with Gal4-ELK1 and the expression plasmid for CA-MEK1. The reporter 

luciferase activity was measured 24 hours following the second transfection (72 hours 

following the first transfection) while the knockdown of ERKs persisted (Figure 3.7E, top 

and bottom). The synergistic activation of the promoter-reporter by AR and ELK1 was 

unaffected by the combined depletion of ERK1 and ERK2 (Figure 3.7F). In contrast, the 

CA-MEK-induced hyper-activation of the promoter was abrogated by depletion of ERK1 

and ERK2, decreasing the promoter activation to the level observed for cells only 

expressing AR(A/B) and Gal4-ELK1 (Figure 3.7F). 

Next we tested whether AR(A/B) would compete with ERKs as activators of 

ELK1. We used recombinant HeLa cells in which the Gal4-TATA-Luc promoter-reporter 

was stably integrated and which also stably expressed the Gal4-ELK1 fusion protein. As 

expected, in these cells ectopic expression of CA-MEK1 strongly stimulated expression 

of the luciferase reporter (Figure 3.7G). However, co-expression of AR(A/B) decreased 

the promoter activation (Figure 3.7G), indicating that AR interferes with hyper-activation 

of ELK1 by ERKs.       

In a third approach, the effect of ERK activity on the interaction ELK1 and AR 

was tested using HeLa cells co-transfected with the (ELK1)2-TATA-luc reporter and an 

expression plasmid for either AR(A/B) or CA-MEK1. The (ELK1)2-TATA-luc promoter is  
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  Figure 3.7 Effect of depleting SRF or ERK1/2 on the interactions of AR with ELK1. 
A and B show data obtained using recombinant HeLa cells generated by stably 
transducing a minimal promoter-luciferase reporter containing upstream Gal4 elements 
(GAL4-TATA-LUC) and also with vectors expressing AR and a Gal4-ELK1 fusion 
construct in which the Gal4 DNA binding domain was substituted for the ETS DNA 
binding domain of ELK1. The cells were depleted of hormone and then transduced with 
shRNA against SRF or a non-targeted control shRNA using lentivirus. Seventy two hours 
after infection, cells were treated with testosterone (10 nm) or vehicle for a further 48 h. 
The cells were then harvested to quantify SRF mRNA (A) or for Western blotting analysis 
using antibody to SRF or to GAPDH (loading control) (A, inset) or for luciferase activity 
(B). C and D show data obtained using recombinant HeLa cells generated by stably 
transducing GAL4-TATA-LUC and also a vector expressing the AR A/B domain fused to 
the VP16 transactivation domain (AR(A/B)-VP16). The cells were transduced with 
shRNA against SRF or a non-targeted control shRNA using lentivirus. Seventy two hours 
after infection, the cells were transfected with expression plasmid for the Gal4-ELK1 
fusion protein. Forty eight hours later, the cells were harvested to quantify SRF mRNA 
(C) or for Western blotting analysis using antibody to SRF or to GAPDH (loading control) 
(C, inset) or to measure luciferase activity (D). E–G show data obtained using the 
recombinant HeLa cells with stably incorporated GAL4-TATA-LUC and stably expressing 
the AR(A/B)-VP16 fusion protein. Cells were transfected with a mixture of siRNA against 
ERK1 and ERK2 or with control non-targeted siRNA. After 48 h of transfection, the cells 
were harvested to quantify mRNAs for ERK1 and ERK2 (E) or for Western blotting 
analysis using antibody to ERK1/2 or to GAPDH (loading control) (E, below); the 
remaining cells were transfected for a second time with the Gal-4ELK1 expression 
plasmid or the control vector plasmid or the plasmid for constitutively active mutant of 
MEK1 (F). After a further 24 h, the cells were harvested to quantify mRNAs for ERK1 
and ERK2 (E) or for Western blotting analysis using antibody to ERK1/2 or to GAPDH 
(loading control) (E, below) or to measure luciferase activity (F). H, HeLa cells were co-
transfected with an ELK1-driven minimal promoter-luciferase reporter ((ELK1)2-TATA-
LUC) and expression plasmid for either AR(A/B) or constitutively active MEK1 or control 
vector plasmid. The cells were treated with trametinib (1 μm) or vehicle for 48 h 
beginning with the time of transfection. Luciferase activity was measured in the cell 
lysates. For all transfections, a Renilla luciferase reporter was used as the control for 
transfection efficiency. In all panels, the error bars represent standard deviation of 
experimental triplicates. *, p < 0.001; **, p < 0.001. Reprinted by permission from Journal 
of Biological Chemistry Copyright 2016 (1) 
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responsive to the endogenous ELK1 in the cells. Following the transfections, the cells 

were treated with the MEK inhibitor, trametinib. As expected, MEK-induced activation of 

the promoter was inhibited by trametinib (Figure 3.7H). In contrast, trametinib did not 

affect activation of the promoter by AR(A/B). The results from the complementary 

approaches of depletion and inhibition of ERK1/2 and competition between MEK1 and 

AR(A/B) as activators of ELK1 all demonstrate that the functional interaction of AR and  

ELK1 is insensitive to the expression or activation status of ERKs. The data indicates 

that the association of AR with ELK1 occurs independently of ERK1 and ERK2. 

3.3.6 Direct binding of AR and ELK1  

The studies above indicate that the classical binding partners of ELK1, i.e. SRF 

and ERK1/2, interfere with rather facilitate functional association of AR with ELK1. 

Therefore, to test whether the association of AR with ELK1 could be due to direct 

binding, we used surface plasmon resonance (SPR). Purified AR (Abcam, Cambridge, 

MA) was immobilized as the “ligand”. His-tagged ELK1 and his-tagged mutant ELK1 in 

which both the D-box and the DEF motif were disrupted (∆308-321, F397L, P398A) 

were affinity purified to >85% percent (Figure 3.8A) and used as the analyte. The 

binding kinetics for ELK1 was determined at concentrations of 0, 5, 10, 20, 40, 80, and 

160 nM (Figure 3.8B).  Bovine serum albumin was used as the negative control. Kinetic 

constants were evaluated using the BIAevaluation software. The equilibrium 

dissociation constant for the AR-ELK1 interaction was determined to be 1.9 × 10-8 M. 

When the mutant ELK1 was used as the analyte at a concentration of 100nM the 

average response from triplicate measurements was reduced by ~90 percent compared 

with 100nM ELK1 (Figure 3.8C). The relatively high affinity of binding of purified 



74 

 

preparations of AR and ELK1 strongly supports the concept that the in situ interactions 

of the two proteins are due to direct binding. Moreover, loss of this binding due to 

disruption of the ERK docking sites in ELK1, strongly indicate that these are also the 

docking sites for AR.   

3.3.7 Relevance of the physical association of ELK1 and AR to androgen-

dependent cell growth  

Previous studies using ELK1 depletion methods have demonstrated that both 

prostate and bladder cancer cells require ELK1 for androgen-dependent growth (246, 

292, 293). However, they did not test the physiological effect of disrupting the 

association of ELK1 with AR.  To disrupt the hormone-dependent association of AR and 

ELK1 in situ without disrupting the ability of ELK1 to bind to DNA, we used an ELK1 

mutant lacking the D-box region (amino acids 308-321) that should compete with 

endogenous ELK1 for binding to chromatin. We tested whether the mutant ELK1 would 

produce a dominant-negative effect on androgen-dependent growth. LNCaP cells were 

transduced with lentiviral expression vectors for either ELK1 or the ELK1Δ308-321 

mutant (Figure 3.8D, inset). Ectopic overexpression of ELK1 did not appreciably 

influence androgen (R1881)-dependent growth compared with the vector-transduced 

control (Figure 3.8D). In contrast, ectopic overexpression of the ELK1Δ308-321 mutant 

showed a dominant-negative effect by inhibiting hormone-dependent growth.  To 

confirm that the dominant-negative effect of this ELK1Δ308-321 on androgen-

dependent growth was not due to dependence on activation of ELK1 by ERK, we 

demonstrate that LNCaP growth is insensitive to inhibition of MEK by trametinab (Figure 

3.8E); as a control in Figure 3.8E, the AKT inhibitor AKTi-1/2 completely inhibited  
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Figure 3.8 Direct binding of ELK1 and AR and the effect of disrupting docking 
sites in ELK1 on AR binding and androgen-dependent cell growth. A shows SDS-
PAGE of purified His-tagged ELK1 protein and His-tagged ELK1 protein mutated (ELK1 
mut) in both D-box (Δ308–321) and DEF motif. The protein bands were visualized by 
Coomassie Blue staining and estimated to be >85% pure and used in the SPR 
experiments below together with purified AR obtained commercially. B shows SPR 
kinetic curves for quantitative analyses of AR binding to His-tagged ELK1. AR was 
immobilized on a CM5 sensor chip, and ELK1 was diluted in a series of concentrations 
(0, 5, 10, 20, 40, 80, and 160 nm). The results were normalized by subtracting the SPR 
response (RU) for buffer alone or BSA and performed in duplicate. C shows SPR kinetic 
curves for quantitative analyses of AR binding to His-tagged mutant ELK1. AR was 
immobilized as in B, and ELK1 or mutant ELK1 was used at 100 nm. The kinetic curves 
for triplicate determinations are shown. D, hormone-depleted LNCaP cells were 
transduced using lentivirus expressing either the WTELK1, or ELK1(Δ308–321), or with 
control lentivirus. After 72 h, cells were plated in 96-well plates, and cell growth was 
monitored by the MTT assay. Twenty four hours after plating, the cells were treated with 
R1881 (1 nm) or vehicle for a further 72 h. The inset in D shows Western blotting 
analysis of cell lysates, 72 h post-infection, using antibody to ELK1 or with antibody to 
GAPDH (loading control). The error bars represent standard deviation of experimental 
triplicates. *, p < 0.001. E, hormone-depleted LNCaP cells were plated in 96-well plates 
in the presence of R1881 (1 nm) together with vehicle, trametinib (1 μm), or AKTi-1/2 (2 
μm). MTT assay was performed 72 h later. The error bars represent standard deviation 
of experimental triplicates. *, p < 0.001. Reprinted by permission from Journal of 
Biological Chemistry Copyright 2016 (1) 
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 androgen-dependent growth. These results further validate the model that docking of 

AR on ELK1 is an essential component of growth signaling by androgen/AR in prostate 

cancer cells.   

3.3.8 Synergy between the splice variant AR-V7 and ELK1 and AR-V7 dependent 

cell growth   

  The ability of the amino-terminal A/B domain of AR to synergize with ELK1 

suggested that AR-V7, the major splice variant of AR, would most likely also synergize 

with ELK1. To test this possibility we co-transfected the (ELK1)2-TATA-luc promoter-

reporter construct with an expression plasmid for AR-V7 and wtELK1 into the AR-

negative HeLa cells. Ectopic AR-V7 activated the promoter driven luciferase activity well 

above the basal level presumably associated with endogenous ELK1 (Figure 3.9A). 

Similarly, when the Gal4-TATA-luc promoter was co-transfected with Gal4-ELK1 and 

AR-V7, there was strong induction of promoter activity (Figure 3.9B). Western blot 

analysis confirmed expression of the AR-V7 construct in both cases (Figure 3.9C).  

We have previously demonstrated that ELK1 is necessary for androgen/AR-

dependent growth of prostate cancer cells. To test whether prostate cancer cells that 

are dependent on AR-V7 also depend on ELK1, we used shRNA to deplete ELK1 in 

CWR22Rv1 cells, which depend on endogenous AR-V7. Partial depletion of ELK1 

prevented the growth of these cells (Figure 3.9D, top and bottom panels).  

These results confirm that the AR-V7 splice variant cooperates with ELK1 as a 

transcriptional co-activator in the same manner as AR(A/B)  and that ELK1 is also 

necessary for AR-V7 dependent growth of prostate cancer cells.  
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Figure 3.9 Functional association of ELK1 and AR-V7 and effect on cell growth. A, 
HeLa cells were co-transfected with an ELK1-driven minimal promoter-luciferase 
reporter ((ELK1)2-TATA-LUC) and expression plasmid for either AR-V7 or WTELK1 or 
control vector plasmid for 48 h. Luciferase activity was measured in the cell lysates. For 
all transfections, a Renilla luciferase reporter was used as the control for transfection 
efficiency. B, HeLa cells were co-transfected with a Gal4-driven minimal promoter-
luciferase reporter (Gal4-TATA-Luc) and expression plasmid for either AR-V7 or Gal4-
ELK1 or control vector plasmid for 48 h. Luciferase activity was measured in the cell 
lysates. For all transfections, a Renilla luciferase reporter was used as the control for 
transfection efficiency. C shows a Western blot of HeLa cell lysates corresponding to all 
of the transfections in A and B, which was probed using an antibody to the amino-
terminal domain of AR or with antibody to GAPDH (loading control). D, top panel shows 
the effect of depleting ELK1 by lentiviral shRNA transduction on the growth of 
CWR22Rv1 cells monitored by the MTT assay compared with control shRNA. The 
Western blot in the bottom panel shows ELK1 shRNA-induced depletion of ELK1 
compared with control shRNA; GAPDH was probed as the loading control. Reprinted by 
permission from Journal of Biological Chemistry Copyright 2016 (1) 
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3.4 Discussion  

The results of this study elucidate the nature of the interaction of the ligand-

independent A/B domain of AR with ELK1 that accounts for the ELK1-dependent 

transcriptional activity of AR in PCa cells. Systematic mapping using a mammalian two-

hybrid assay and an extensive series of ELK1 deletion and point mutants, and 

confirmatory co-immunoprecipitation experiments, identified the two ERK docking motifs 

(D-box and DEF motif) in ELK1 as the elements essential for co-activation by AR. 

Nonetheless, the AR synergy with ELK1 is independent of ERKs and involves AR 

binding directly to ELK1. Interactions with ELK1 are required for hormone-dependent 

growth of PCa cells and also account for the ability of the AR A/B domain, as well as the 

major AR splice variant AR-V7, to support their hormone-independent growth.  Indeed 

the results strongly support the view that synergy with ELK1, via AR docking on ELK1, 

is a critical component of growth signaling by AR and AR-V7. 

The mammalian two-hybrid mapping data with Gal4ELK1 mutants were clear-cut. 

Parallel studies using a constitutively active form of MEK to activate ELK1 demonstrated 

that the regions required for co-activation by AR(A/B) precisely coincided with the D-box 

and DEF motifs in ELK1 (298-300). Activation was hormone independent as, in contrast 

to full length AR, the A/B domain is not constrained by the need for ligand binding to 

enter the nuclear compartment. Importantly, mapping data for the sites of interaction of 

the AR A/B domain with ELK1 were entirely recapitulated with full length AR and 

confirmed by co-immunoprecipitation. There were two notable differences between co-

activation of ELK1 by AR and activation by MEK. First, the level of ELK1 transcriptional 

activity induced by MEK was substantially higher than that induced by AR. This 
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difference in magnitude is associated with the transient nature of ELK1 activation 

through the MAPK pathway in contrast to the constitutive ELK1-dependent activation of 

growth genes by AR (246). Second, an intact ELK1 transactivation domain was 

essential for activation by MEK but not for co-activation of ELK1 by AR. This finding 

indicates that AR only utilizes ELK1 for recruitment to regulatory sites in chromatin to 

activate growth genes and that the transcriptional activity per se of ELK1 is unimportant 

for the ELK1-AR synergy. 

Complementary approaches, including one- and two-hybrid assays, promoter 

assays, gene knockdown, MEK inhibition and competition assays demonstrated that the 

classical binding partners of ELK1 in the TCF complex, i.e. SRF and ERKs (307), are 

not required for co-activation of ELK1 by AR. Indeed, SRF and ERKs both appeared to 

interfere with the interaction of AR with ELK1. SRF knockdown may release ELK1 from 

immediate early gene promoters, which are unresponsive to androgen (246). Similarly, 

ELK1 recruits ERKs directly to a subset of target genes (308) suggesting that ERK 

competes directly with AR for ELK1 binding. Indeed SPR confirmed binding between 

ELK1 and AR with a relatively high affinity (Kd, 1.9 x 10-8 M), strongly supporting the 

premise that the transcriptional synergy between ELK1 and AR is due to direct binding. 

Loss of this binding upon mutational disruption of the ERK docking sites in ELK1 

equates the ELK1 motifs required for functional association with AR with those required 

for direct binding of AR to ELK1.  

ETS elements are commonly enriched at or in the vicinity of AR binding sites in 

the chromatin (269, 309) and indeed physical association of AR has been suggested 

with ETV1 (310) and ETS1 (309). However, in neither case has the structural binding 
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elements in either AR or the ETS protein been elucidated. Among the known DNA 

binding proteins that have been suggested to recruit AR, the interactions of AR with 

HoxB13 and C/EBPa are perhaps the best studied.  HoxB13 interacts with the DNA 

binding domain of AR (242) whereas C/EBPa did not show a strong AR domain 

selectivity for interaction and its association with AR involved multiple AR domains 

(245). Relatively little is known about the structural basis for non-genomic interactions of 

AR and other nuclear receptors with signaling pathways involving MAPK, PI3K/Akt, 

PKC, PLC and GPCR (275). Notable exceptions include the direct or indirect 

associations of NRs with the Src SH2 or SH3 domains where proline-rich motifs in AR 

and the progesterone receptor or LXXL motifs in the estrogen receptor are required 

(311-314). The relatively large size and multi-domain structure of NRs appears to offer a 

diversity of binding motifs for interactions with co-activators and DNA binding 

transcription factors. 

To our knowledge the functional interaction of AR with ELK1 is the first 

demonstration of a nuclear receptor co-opting protein kinase docking sites to regulate or 

constitutively activate a signaling pathway. The finding that ERK docking motifs can 

recruit AR suggests that AR may adopt similar modes of interaction in its crosstalk with 

other signaling molecules. Certainly, by mimicking ERK interactions with docking motifs, 

AR may interact with additional substrates of ERK, of which there are over fifty (298).  

There is much crosstalk between AR genomic and non-genomic pathways in prostate 

cancer. The canonical pathway for AR signaling requires nuclear translocation of the 

ligand bound receptor to activate transcription and induce proliferation in PCa cells. 

Activation of the MAPK phosphorylation cascade can be induced through non-genomic 



82 

 

pathways of AR signaling and stimulate cell proliferation. Activated ERK can 

phosphorylate AR and its coactivators, and therefore this feedback loop of the non-

genomic AR signaling may induce genomic AR signaling in prostate cancer (315, 316). 

These are pathways that are well known in the literature pertaining to PCa; however 

these classical genomic and non-genomic AR signaling pathways are independent of 

the AR tethering mechanism and the ability of AR to co-opt the ERK docking sites in 

ELK1 to activate transcription.    

Overexpression of an ELK1 docking site mutant in which the ability to associate 

with AR was disrupted without disrupting the DNA binding domain, had a dominant-

negative effect on androgen-stimulated growth in PCa cells. This was unrelated to loss 

of ERK binding in the mutant ELK1 as the cells were insensitive to MEK inhibition. As 

the discrete DNA binding domain in the mutant ELK1 was not compromised, the mutant 

presumably still bound to ELK1 elements in the DNA; however, because the D-box was 

deleted in the mutant ELK1, our mapping data would predict that AR would not bind to 

it. The dominant-negative effect of the mutant ELK1 on androgen-stimulated growth is 

therefore consistent with this prediction. These observations provide an additional 

functional link between recruitment of AR by ELK1 and growth signaling by AR in PCa 

cells. The characterization of such discrete AR interacting motifs should enable 

development of small molecule drugs that bind to those sites and selectively target 

dysregulated growth signaling in prostate cancer, while avoiding the global side effects 

of androgen ablation.     
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CHAPTER 4- Tumor Selective Disruption of Androgen Receptor function in 
Prostate Cancer  
 

The information on the high throughput screening methodology and small 

molecule inhibitors of ELK1-AR interactions described in this chapter comprise 

intellectual property of Wayne State University and is covered by provisional patents 

filed by the university. 

 
4.1 Introduction 

A unique feature of prostate oncogenesis is its dependence on androgen, which 

acts by binding to and activating transcriptional signaling by the androgen receptor 

(AR). Both early stage and advanced prostate tumors are generally dependent on AR 

for growth (272-274, 279-281). Following initial surgery or radiation treatment, residual 

or recurrent prostate cancer (PC) is commonly treated by suppressing testicular 

androgen synthesis, typically by disruption of the pituitary hypothalamus axis (chemical 

castration) (107, 110). In addition, androgen antagonists or an androgen synthesis 

inhibitor may be used to inhibit AR activation via intratumoral testosterone synthesis 

(317). Unfortunately, the initial responders to androgen deprivation therapy (ADT) tend 

to develop hormone refractory disease, referred to as castration resistant PC (CRPC), 

which nevertheless continues to depend on AR (192, 214, 290, 291, 318, 319). Growth 

signaling may be sustained in CRPC largely through amplification of AR (291) or 

expression of its spice variants. Splice variants of AR lack the ligand binding domain but 

are localized in the nucleus of CRPC cells (289). AR splice variants are frequently co-

expressed with full length AR with which they heterodimerize and translocate to the 

nuclear compartment in a ligand-independent manner (220). AR splice variants, in 



84 

 

collaboration with full length AR, confer optimal hormone-independent growth and 

insensitivity to anti-androgens and their expression is both functionally and clinically 

linked to tumor progression (210, 221, 319, 320). Resistance mechanisms also include 

hormone-independent cross-talk between AR and certain signaling pathways and 

alterations in the AR co-regulator complement or mutation of AR (291). 

  Adverse effects associated with ADT are both acute (fatigue, hot flashes, flares) 

and long-term (hyperlipidemia, insulin resistance, cardiovascular disease, anemia, 

osteoporosis, sexual dysfunction and cognitive defects) and include loss of the feeling 

of well-being (107, 111, 112). The high affinity androgen antagonist enzalutamide, used 

to treat CRPC, inactivates AR by blocking its nuclear entry and impairing its 

transcriptional activity (321) but it necessarily also abrogates AR signaling in normal 

tissues (322) and is ineffective against AR splice variants or highly overexpressed AR 

(221, 323-325). The recurrent and metastatic disease is then treated by chemotherapy, 

which is typically non-curative and has adverse side effects. Newer types of 

chemotherapy, immunotherapy and radiation therapy offer valuable, but limited, 

improvements (112, 121-123, 125, 126, 321, 322). Experimental drugs that block co-

activator protein binding to AR have been developed via high throughput small molecule 

screening. They are effective against AR splice variants (234, 236, 326, 327) but they 

may also be expected to impair AR function in normal tissues.  

Thus the current clinical paradigm for long-term treatment of advanced PC is 

ubiquitous attenuation of AR signaling (328). However, these approaches have two 

major limitations: 1. ineffectiveness against advanced tumors in which functional AR has 

been restored through any of the aforementioned mechanisms; and 2. the need to 
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deprive the patient of androgen or AR function in all tissues and the consequent multiple 

long-term side effects noted above. A strategic approach to addressing the dual 

limitation of ADT is to identify and disrupt a functional arm of AR that (i) is preserved as 

a crucial mechanism for supporting growth in CRPC and (ii) is necessary for tumor 

growth, but not for the physiological role of androgen in differentiated normal tissues. 

Mechanisms of growth signaling by AR that are tumor-specific could potentially offer a 

highly sensitive point of attack, even in cells that have acquired resistance to ADT and 

anti-androgen therapies. 

As androgen plays a major role in all physiological aspects of the normal prostate 

epithelium including development, differentiation, maintenance and function (329), 

malignant prostate epithelial cells must selectively support mechanisms that redirect 

androgen/AR signaling to strongly support growth. In the classical model of gene 

regulation by AR the receptor requires bound ligand to homo-dimerize, enter the 

nucleus and bind to DNA at well-characterized androgen response elements (AREs) 

associated with target genes (58-60, 284, 285). When the bound ligand is an agonist, 

AR then recruits co-activators; in contrast, when bound to antagonists, co-repressors 

are preferentially recruited (59, 60). AR contains sites of co-regulator binding that are 

either ligand-dependent or -independent. However, in PC cells that are adapted to grow 

in the absence of hormone, the AR apo-protein is localized in the nucleus, where it is 

transcriptionally active even in the absence of hormone (210, 221, 245, 267, 289). AR 

cannot optimally bind to AREs without androgen; nevertheless, both ligand-bound and -

unbound AR will still activate a large set of growth supporting genes and support growth 

through associations with chromatin via putative tethering proteins (267). We have 
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previously reported that ELK1 is an AR tethering protein that is obligatory for 

androgen/AR-dependent malignant growth in a variety of well-established PC/CRPC 

models (246, 268). 

           ELK1 is a downstream effector of the MAPK signaling pathway and belongs to 

the ternary complex factor (TCF) sub-family of the ETS family of transcription factors. 

ELK1 characteristically binds to purine-rich GGA core sequences (295) and is in a 

repressive association with many cell growth genes. Phosphorylation by ERK transiently 

stimulates ELK1 to activate its target genes including association with serum response 

factor (SRF) for activation of immediate early genes (261, 262, 295-297, 308). ELK1 

was at least partially required for a substantial proportion (~ 27 percent) of all gene 

activation by androgen in PC cells (246). The activation of AR target growth genes 

through ELK1 is mechanistically distinct from the mode of activation of immediate early 

genes by ELK1 in that it does not require hyper-phosphorylation by ERK; the 

phosphorylation state of ELK1 is unaltered in the context of the ELK1-AR synergy (246). 

Tethering of AR by ELK1 in PC/CRPC cells enables constitutive activation of a crucial 

set of growth genes by AR. In the normal differentiated prostate epithelium and in other 

normal differentiated AR+ tissues, where growth genes are not activated, it is possible 

that ELK1 is displaced in the chromatin by related members of the large ETS family that 

do not associate with AR. Alternatively, at the relatively low AR levels in normal tissues, 

the receptor could be sequestered by preferential binding to AREs associated with 

genes unrelated to growth. The N-terminal A/B domain of AR [AR(A/B)], which lacks the 

ligand binding site, is adequate for interaction with ELK1 (246), in contrast to other 

known AR tethering proteins (242, 245). AR splice variants, which have C-terminal 
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deletions and lack the ligand binding domain (LBD), also synergize with ELK1 and 

support growth (268). 

The goal of this study is to establish the feasibility of developing a new class of 

small molecule drugs that could selectively suppress growth signaling by AR or its 

variants required by PC/CRPC without affecting other actions of the receptor. To 

accomplish this, we undertook an unbiased cell-based screen to search for small 

molecules that could block the association of AR with ELK1 and further derived a lead 

molecule from an initial hit. Here we report on this small molecule discovery including a 

detailed evaluation of its mechanism of action and selectivity and efficacy as an inhibitor 

of the growth of PC/CRPC cells and tumors. 

4.2 Materials and Methods 
 

4.2.1 Cell Culture and Reagents 

LNCaP, CWR22Rv1, VCaP, DU145, HEK293, H1650 and HeLa cell lines were 

from the American Type Culture Collection (Manassas, VA); 293FT cells were from 

Invitrogen. LNCaP, CWR22Rv1 and H1650 cells cells were routinely grown at 37°C in 

5% CO2 in RPMI 1640 medium supplemented with 10% FBS (Invitrogen), 100 units/ml 

penicillin, 100 µg/ml streptomycin, 2mM L-glutamine mixture (Invitrogen), with the 

exception that sodium pyruvate (1mM) (Invitrogen) was included in the LNCaP culture 

media alone. VCaP, HEK293, DU145 and HeLa cells were grown in DMEM medium 

supplemented with 10% FBS (Invitrogen), 100 units/ml penicillin, 100 µg/ml 

streptomycin, 2mM L-glutamine mixture (Invitrogen) or for hormone depletion, LNCaP 

cells were grown in phenol-red free RPMI 1640 medium supplemented with 10% heat-

inactivated and charcoal-stripped FBS (Sigma) and 100 units/ml penicillin, 100µg/ml 
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streptomycin, and 2mM L-glutamine mixture for 96 hours before each experiment. 

Affinity-purified rabbit anti-human antibody to AR (sc-7305) and mouse antibody to 

GAPDH (sc-47724) were purchased from Santa Cruz Biotechnology (Santa Cruz, CA). 

Rabbit monoclonal anti-human antibody to ELK1 (ab32106) was from Abcam 

(Cambridge, MA). Testosterone was from Sigma-Aldrich. Lipofectamine TM 2000 was 

purchased from Thermo Scientific (product number 78410). 5,7,3’,4’-

Tetrahydroxyflavone was from Selleckchem (S2320); 5,7,3’,4’-Tetrahydroxyisoflavone 

was from BOC Sciences (480-23-9). The following compounds were from INDOFINE 

Chemical Company: 5,7,3’,4’-Tetrahydroxyflavanone (021111S); 5,3’,4’-

Tetrahydroxyflavone (T-406); 5,3’-Dihydroxyflavone (D-409); 7,4’-Dihydroxyflavone (D-

412); 5-Hydroxyflavone (H-025); 3’-Hydroxyflavone (H-410); 5,3’-Dihydroxy-6,7,4’-

trimethoxyflavone (D-123). The following compounds were from Extrasynthase: 3’,4’,7-

Trihydroxyflavone (1223); 5,7-Dihydroxyflavone (1362S); 3’,4’-Dihydroxyflavone (1204); 

4’,5,7-Trihydroxy-3’-methoxyflavone (1104S); 3’,4’,5,7-Tetrahydroxyflavone-3-

methoxyflavone (1342); and 3’,4’,5,7-Tetramethoxyflavone (1204). The following 

compounds were from Cayman Chemical: 4’,5,7-Trihydroxyflavone (10010275) and 

5,7,3’-Trihydroxy-4’-methoxyflavone (18649). 7,3’-Dihydroxyflavone was from Sigma-

Aldrich (CDS06791). 4’,5-Dihdyroxyflavone was from Sana Cruz (sc-267859). shRNAs 

targeting AR and ELK1 and non-targeting control shRNA in the lentiviral expression 

vector pLKO.1-puro were purchased from Sigma-Aldrich. The pLVX-AR-V7 plasmid and 

pLVX control plasmid were a kind gift from Dr.Yan Dong from Tulane University (New 

Orleans, LA). 
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4.2.2 Generation of recombinant cell lines for high throughput screening and 

counter screening of small molecule libraries 

The recombinant cells used for primary screening were generated from HeLa 

HLR cells, kindly provided by Dr. Johann Hofman (Innsbruck Medical University), which 

were originally designed to serve as a cell-based assay system to measure modulation 

of MAPK activity. HeLa HLR cells have a stably integrated minimal promoter-luciferase 

reporter containing five upstream Gal4 elements (Gal4-TATA-Luc) and also 

constitutively express a Gal4-ELK1fusion protein in which the Gal4 DNA binding domain 

is substituted for the ETS DNA binding domain of ELK1. We stably transduced these 

cells with a vector expressing the full-length AR. The full length AR was subcloned from 

the pCMV expression vector (Origene) into the pCDH-CMV-MCS-EF1-Puro cDNA 

Cloning and Expression Vector (System Biosciences) at NheI (upstream) and BamHI 

(downstream) sites. The lentiviral vector expressing full length AR was then packaged in 

lentivirus and the HeLa HLR cells were infected as described below in the sub-section 

‘Lentivirus-mediated-Transduction’. After 72h of infection, 2 ug/mL of puromycin was 

added to the culture media to select for the transduced cells. The cells were plated at 

low density for colony formation (20 -40 colonies) in a 100 mm dish. Clonal cells were 

isolated using cloning cylinders from CORNING (Cat. #3166-8). The selected clones 

were further expanded and then tested for luciferase induction by testosterone. The 

clone that gave the greatest luciferase signal to noise ratio in response to testosterone 

treatment was then chosen for use in the primary screening assay for high throughput 

small molecule screening.  



90 

 

The cells generated for counter screening comprise HeLa cells stably transduced 

with a lentiviral plasmid construct containing a minimal promoter-luciferase reporter and 

an upstream androgen response element (ARE) sequence. The cells were also 

transduced with a lentiviral expression plasmid for the full-length AR. These constructs 

were made as follows. Custom synthesized PCR primers were used to amplify and 

clone the ARE sequence from the pG5luc vector into the pGreenFire1TM -mCMV-EF1-

Neo (Plasmid) at SpeI (upstream) and BamHI (downstream) sites.  The lentiviral vector 

expressing ARE-luciferase reporter was then packaged in lentivirus and parental HeLa 

cells were infected as described below under the sub-section ‘Lentivirus-mediated-

Transduction’. After 72h of infection, 400 ug/mL of Geneticin was added to the culture 

media to select for the transduced cells. These cells were then infected with the 

lentivirus containing the full length AR expression plasmid described above. After 72h of 

infection, 2 ug/mL of Puromycin was added to the culture media to select for the 

transduced cells. Clonal cells harboring both the ARE-promoter-luciferase reporter and 

also stably expressing AR were then isolated using cloning cylinders as described 

above. The selected clones were further expanded and then tested for luciferase 

induction by testosterone. The clone that gave the greatest luciferase signal to noise 

ratio in response to testosterone treatment was then chosen for use in the counter 

screening assay for high throughput small molecule screening. All of the plasmid 

constructs generated above were sent to either the Plant-Microbe Genomics Facility for 

DNA Sequencing at The Ohio State University (Columbus, OH) or to Genewiz (South 

Plainfield, NJ) to verify DNA sequences before the constructs were used in the studies. 
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The recombinant HeLa cells generated above were routinely grown in DMEM 

supplemented with 10% FBS and 100 units/ml penicillin, 100µg/ml streptomycin, 2mM 

L-glutamine mixture (Invitrogen) and the appropriate selection antibiotics. The 

antibiotics used in the culture media for the primary screening cells included 100µg/ml 

Hygromycin (Invitrogen) (to maintain Gal4-ELK1), 100µg /ml Geneticin (Invitrogen) (to 

maintain Gal4-TATA-Luc) and 2 µg /ml Puromycin (Sigma-Aldrich) (to maintain AR). 

The antibiotics used in the culture media for the counter screening cells included 400 

µg/ml Geneticin (Invitrogen) (to maintain ARE-TATA-Luc) 2 µg /ml Puromycin (Sigma-

Aldrich) (to maintain AR).  

4.2.3 High Throughput Screening  

The high throughput screening was conducted at University of Michigan’s Center 

for Chemical Genomics Screening facility under the guidance of its Director, Martha 

Larsen.  Recombinant primary screening cells were first depleted of hormone by 

growing them for 24h in media in which the serum used was heat-inactivated and 

charcoal-stripped. The cells were then plated in 384-well white flat bottom plates (5,000 

cells/well) (Corning Product #3570) using a Multidrop (Thermo Fisher Scientific, 

Waltham, MA). The plates were then incubated for 24h prior to adding compounds. The 

following day compounds from the LOPAC, Prestwick, or Maybridge Hitfinder libraries 

were added precisely in a 0.2 µL volume in the test wells using a Biomek FX liquid 

handler (Beckman Coutler, Break, CA) to achieve final media concentration of 10 µM of 

each compound. Using the same technique, testosterone was added in addition to the 

compounds to achieve a final media concentration of 10 nM. As the compounds were 

re-constituted from powder stocks using dimethyl sulfoxide (DMSO) as the solvent, the 
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final media concentration of DMSO was 0.4% v/v. For the assay negative control on 

each plate, one row of wells on each plate contained 10 nM testosterone and 0.4% v/v 

of DMSO. For the assay positive control on each plate, one row of wells on each plate 

contained 10 nM testosterone and 10 uM enzalutamide dissolved in DMSO (0.4% v/v of 

DMSO in the wells). The plates were incubated for 24h at 37°C in 5% CO2. The medium 

was then aspirated leaving a residual volume 10µl using an Elx 405-plate washer (Bio 

Tek U.S.). Then, 10 uL of the assay reagent Bright-Glo (Promega Corp., Madison WI) 

was added to each well. Luciferase activities in the wells were then measured using a 

Biomek FX dual head (Beckman) plate reader. A total of 18,270 compounds were 

tested in the primary screen. A ‘hit’ was initially defined using relatively low stringency 

criteria as a compound able to reduce luciferase activity in the test well ≥ 3 standard 

deviations below the negative control wells or to a level ≥ 40% of the enzalutamide 

control wells. For the primary assay this definition produced 1613 hits for an overall hit 

rate of 8.8%. The 1613 compounds were then tested again in the primary screening 

assay in parallel with the counter screening assay in triplicate. A hit was now redefined 

as a compound able to reduce luciferase activity in the test wells ≥ 3 standard 

deviations below the negative control wells and that was unable to reduce luciferase 

activity ≥ 50% in the counter screen. By this definition, 92 hits were obtained. 

Compounds were further triaged based on their ability to inhibit in the primary screen by 

≥ 80% and produced no inhibition in the counter screen. One of the top hits was 

prioritized for this study.  

4.2.4 Purified Proteins 
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Full length human AR expressed in insect cells and purified to >95% by affinity 

chromatography and FPLC chromatography (ab82609) was purchased from Abcam 

(Cambridge MA). Recombinant his-tagged ELK1 expressed from baculovirus infected 

Sf9 cells was purified using nickel agarose affinity chromatography as previously 

described by us (268). The proteins were eluted with 200mM imidazole and dialysed 

against 20 mM HEPES, pH 7.9 containing 10% glycerol, 20mM KCl, 2mM MgCl2, 0.2 

mM EDTA, 0.5mM benzamidine and 0.5mM DTT. Purity of the proteins was estimated 

to be > 85% by SDS-polyacrylamide gel electrophoresis.  

4.2.5 Surface Plasmon Resonance  

Amine Coupling Kit, CM5 sensor chip and HBS-N buffer (GE Healthcare) were 

used for surface plasmon resonance (SPR) analysis. The rate and equilibrium binding 

constants of the interaction of AR with KCI807 was determined using Biacore 3000 

(Biacore, Piscataway, NJ). Depending on the experimental plan, affinity-purified AR or 

ELK1 polypeptide (ligand) was immobilized on a CM5 research grade sensor chip by an 

amine coupling method (302). The immobilization involved activation of carboxymethyl 

groups on a dextran-coated chip by reaction with N-hydroxysuccinimide, followed by 

covalent bonding of the ligand (AR) to the chip surface via amide linkages. Reference 

surfaces were prepared in the same manner but blocked with ethanolamine and thus 

contained no ligand. To examine binding of KCI807 or enzalutamide, kinetic binding 

analysis was carried out, by injecting the compound (analyte) at different concentrations 

(0-320 nM for KCI807 or 0-200 nM for enzalutamide) into the flow cells (ligand and 

reference cell). The interaction (response units, RU) between analyte and ligand was 

recorded as the ligand RU minus the reference RU. Kinetic values were determined 
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using BIAevaluation software (Biacore), and the data were fitted with the model showing 

closest match (303, 304). A 1:1 Langmuir binding model was generally selected, in 

which all the sensorgrams representing the different analyte concentrations were fitted 

simultaneously with the wide window of association and dissociation phases. Individual 

concentration curves were also evaluated to confirm the fitting data. The equilibrium 

dissociation constant (Kd) was calculated by Kd = koff/kon. In all cases, baseline was 

established in the presence of the vehicle used for the compounds (DMSO) 

appropriately diluted in HBS-N buffer.   

Competition binding experiments were executed on the Biacore 3000 system at a 

flow rate of 5-10 µl/min in HBS-N buffer (330, 331). A fixed concentration (200 nM) of 

AR in the presence of increasing concentrations of KCI807 or enzalutamide was passed 

over a covalently stabilized ELK1 sensor surface for 5 min at 50 µl min-1. The sensor 

surface was regenerated between experiments by dissociating any formed complex in 

HBS-N buffer for 30 min, followed by a further 30-min stabilization period. After 

regeneration, the SPR signal returned to the original level (baseline). In all cases, 

baseline was established in the presence of the vehicle used for the compounds 

(DMSO) appropriately diluted in HBS-N buffer. The binding curves were analyzed using 

the heterogeneous analyte competition model. The kinetic curves were analyzed for a 

one-to-one Langmuir fitting model provided by with the Biacore 3000 instrument 

software. 

4.2.6 Transfections and Reporter Luciferase Assays   

Hela Cells were plated in a 24-well plate at a concentration of 75,000 cells/well in 

antibiotic-free red DMEM. The following day the cells were transfected with a total of 
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300 ng of plasmid DNA/well using Lipofectamine 2000. The cells were incubated for 24h 

then lysed using luciferase assay lysis buffer 5X (REF: E291A) from Promega. The 

luciferase activity of the cell lysates were measured using firefly substrate from 

Promega and a luminometer (Lumat LB9501, Berthold, Wildbad, Germany).  

4.2.7 Lentivirus-mediated-Transduction  

shRNAs for ELK1, AR, and non-targeting control shRNA were packaged in 

293FT cells. The lentiviral particles were generated using lipofectamine and three 

plasmids, pMD2G, pMDLg/RRE, and pRSV/Rev which all code for essential elements of 

the virus. The virus containing supernatant was harvested at 48 and 72 h after 

transfection. Cells were plated in 6-well poly-D-lysine coated plates (BD Falcon) in 

phenol red-free medium supplemented with 10% heat-inactivated charcoal-stripped 

FBS and 2mM L-glutamine. The following day cells were infected with  control shRNA, 

ELK1 shRNA, or AR shRNA lentivirus with Polybrene (8µg/ml) for a 5 h duration, 

followed by an additional 5h. After infection, the virus was replaced with fresh phenol 

red-free growth medium.  

4.2.8 Colony Growth Assay  

Cells were trypsinized, and 1000 cells/well were seeded in poly-D-lysine coated 

6-well plates in phenol red-free regular growth media. The cells were treated with the 

indicated concentration of KCI807, which was replenished every 48h. The cells were 

grown at 37°C in 5 % CO2 for 10 days until colonies grew to the desired size in the 

untreated control wells. Colonies were fixed with methanol and stained with crystal 

violet. Each treatment was conducted in triplicate and the number of colonies was 

counted using the GelCountTM colony counter and a 350 size cutoff.  
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 4.2.9 Cell Monolayer Growth Assay 

Cells were trypsinized and 3000-4000 cells/well were seeded in 96-well plates 

coated with poly-D-lysine. The cells were seeded in phenol red-free medium 

supplemented with 10% FBS, 100units/ml penicillin, 100 µg/ml streptomycin, 2mM L-

glutamine mixture and sodium pyruvate (1mM) for LNCaP cells and phenol red-free 

medium supplemented with 10% FBS, 100units/ml penicillin, 100 µg/ml streptomycin 

and 2mM L-glutamine mixture for VCaP, 22Rv1, DU145, HeLa, HEK293 and H1650 

cells. The cells were grown at 37°C in 5% CO2. Twenty four hours after seeding in the 

96-well plates, the cells were treated with the indicated concentration of KCI807 or 

DMSO (vehicle). The cells were re-treated on Day 3 by removing half the volume of 

medium and replacing it with fresh treated medium. Cell viability was determined using 

the MTT assay from day zero until day five. MTT (10µL, 5mg/mL) was added to each 

well and incubated for 2h at 37°C. The formazan crystal sediments were dissolved in 

100µL of DMSO, and the absorbance at 570nm was measured using the BioTek 

Synergy 2 Microplate Reader (BioTek, Winooski, VT). The assay was conducted in 

sextuplicate wells and values were normalized to day zero.  

4.2.10 Western Blot Analysis  

The treated cells were washed once with phosphate buffered saline (PBS) and 

then lysed with RIPA buffer (150mM NaCl, 1% Nonidet P-40, 0.5% sodium 

deoxycholate, 0.1% SDS, 50mM Tris of pH 8.0) containing a protease inhibitor cocktail 

(Pierce, Thermo Fisher Scientific). The cell lysates were then incubated on ice for 40 

minutes and vortexed every 10 minutes. Total protein concentrations were estimated 

using the Bradford Assay (Bio-Rad). Ten micrograms of each protein sample was 
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heated at 95°C for 5 minutes and resolved by electrophoresis on 8% polyacrylamide-

SDS gels and electrophoretically transferred to PVDF membranes (Millipore, Billerica, 

MA). The membranes were then probed overnight at 4°C with the appropriate primary 

antibody followed by the appropriate horseradish peroxidase-conjugated secondary 

antibody. The blots were then developed to visualize the protein bands using the 

HyGLO Chemiluminescent HRP Antibody Detection Reagent (Denville Scientific, 

Metuchen, NI) (332) (332) (332) (332) (331) (331) (331) (75) (74). 

4.2.11 RNA isolation, Reverse Transcription, and Real Time PCR. 

Total RNA was isolated from cells using the RNeasy Mini Kit (Qiagen). Reverse 

transcription PCR was then performed using 500 ng of total RNA with random primers 

and using the high-capacity complementary DNA Archive kit (Applied Biosystems). The 

complementary DNA from this reaction was measured using quantitative real time PCR 

using the StepONE Plus Real Time PCR system (Life Technologies Corporation, 

Carlsbad, CA). All reactions were performed in triplicate and normalized to 

glyceraldehyde-3-phosphate-dehydrogenase values in the same samples. All primers 

and Taqman probes were purchased from the applied Biosystems inventory (Invitrogen) 

4.2.12 Measurement of intracellular and serum levels of compounds 

4.2.12.1 Chromatographic and mass-spectrometric conditions 

Instrumentation 

All LC-MS/MS analyses were performed on an AB SCIEX (Foster City, CA) QTRAP 

6500 LC-MS/MS system, which consists of a SHIMADZU (Kyoto, Japan) Nexera ultra-

high performance liquid chromatography (UPLC) coupled with a hybrid triple quadrupole 

/ linear ion trap mass spectrometer. The UPLC system is equipped with two X2 LC-
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30AD pumps, an X2 SIL-30AC autosampler, a CBM-20A communication bus module, 

an X2 CTO-30A column oven, and two DGU-20A degassing units.  Analyst®1.6 

software was used for system control and data acquisition, and MultiQuant 3.0 software 

was used for data processing and quantitation. 

Liquid chromatography   

Chromatographic separation was achieved on a Waters XBridge C18 (2.1 × 50 mm, 

3.5 µm) column using an optimized gradient elution consisting of mobile phase A (0.1% 

formic acid in water) and mobile phase B (0.1% formic acid in acetonitrile), at a flow rate 

of 0.3 mL/min. The elution gradient program was as follows [shown as the time (min), 

(% mobile phase B): 0 – 2.5 min, 40%; 2.5 – 4.5 min, 40 – 55%; 4.5 – 5 min, 55 – 

100%; 5 – 6 min, 100%; 6 – 6.5 min, 100 -  40%;  and 6.5 – 10 min, 40%.  Column oven 

temperature was maintained at 40°C.  To minimize the carryover, external and internal 

washes were implemented prior to and post the injection for both the auto-sampler 

syringe and injection port, as follows: 50% methanol (for R3) was used for external 

wash with one second rinse dip and 500 µL volume, and the mixture of 

IPA:MeOH:Acetonitrile:H2O 1:1:1:1 (for R1) and 40% acetonitrile (R0) was used in the 

internal wash with sequence R1 to R0. 

Mass spectrometry (MS) 

The QTRAP 6500 mass spectrometer was operated in electrospray positive 

ionization using multiple reaction monitoring mode (MRM).  The MS parameters were 

optimized to obtain the most sensitive and specific MS transitions for 5, 3’-

dihydroxyflavone, 5, 3’, 4’-trihydroxyflavone, and 5, 7, 3’, 4’- tetrahydroxyflavone by 

direct infusion 0.5 µM of the standard solutions into the ion source with a syringe pump.  
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The Turbo ion-spray voltage was set at 4500 V and the source temperature was set at 

500 C.  Collision gas was optimized at medium level with curtain gas, ion source gas 1 

and ion source gas 2 delivered at 20, 30 and 30 psi, respectively.  The dwell time was 

set for 50 ms.  For each compound, four most sensitive MS transitions were selected 

and the corresponding decluttering potential, collision energy, collision cell exit potential, 

and entrance potential were optimized as shown in table below.  

DP: Decluttering Potential 
CE: Collision Energy 
CXP: Collision Cell Exit Potential  
 
4.2.12.2 Sample Preparation 

Q1 

(m/z) 

Q3 

(m/z) 

Time 

(ms) ID 

DP 

(Voltage) 

CE 

(Voltage) 

CXP 

(Voltage) 

255 137.1 50 5,3-dihydroxyflavone_1 130 41.5 23.3 

255 152 50 5,3-dihydroxyflavone_2 130 61.9 25.8 

255 181 50 5,3-dihydroxyflavone_3 130 43.5 16.9 

255 155 50 5,3-dihydroxyflavone_4 130 54.1 25 

271.3 117.1 50 5, 3’, 4’-trihydroxyflavone_1 99.7 46.2 13.8 

271.3 135 50 5, 3’, 4’-trihydroxyflavone_2 99.1 39.1 11.9 

271.3 137.1 50 5, 3’, 4’-trihydroxyflavone_3 97 39.7 12.3 

271.3 225.1 50 5, 3’, 4’-trihydroxyflavone_4 97.4 41.8 13.6 

287.5 135 50 5, 7, 3’, 4’-tetrahydroxyflavone_1 118.9 39.2 15.7 

287.5 153 50 5, 7, 3’, 4’-tetrahydroxyflavone_2 120 41.8 13.9 

287.5 160.9 50 5, 7, 3’, 4’-tetrahydroxyflavone_3 112.4 44.9 22.1 

287.5 241 50 5, 7, 3’, 4’-tetrahydroxyflavone_4 82.3 41 13.9 
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Stock solutions, calibration standards, and quality control (QC) samples 

The stock solutions were prepared in DMSO at a final concentration of 5 mM, and 

stored in brown glass vials at –20 ºC.  The working solutions were prepared freshly by 

serial dilutions of the stock solution with DMSO on each day of analysis.  For the 

concentration determination in mouse serum or cell samples, the calibration standards 

were prepared by spiking 5 µL of working solution into 95 µL of blank human plasma or 

untreated cell lysate, respectively. All standards were prepared fresh daily.   

Mouse serum samples for the determination of serum concentrations of 5,3-

dihydroxyflavone 

Frozen serum samples were thawed at room temperature.  An aliquot of 100 µL 

serum was transferred into a micro centrifuge tube, and 1000 µL ethyl acetate was 

added.  The mixture was vortex-mixed for 15 minutes and centrifuged at 14000 rpm at 

40C for 15 min, 950 uL of the supernatant was transferred to a new 1.7 mL centrifuge 

tube, and dried under a steam of nitrogen at room temperature. The sample was then 

reconstituted with 100 µL 40% acetonitrile, and 5 µL was injected into the LC-MS/MS 

system. 

Cell samples for the determination of intracellular concentrations of 5,3-

dihydroxyflavone, 5, 3’, 4’-trihydroxyflavone, or 5, 7, 3’, 4’-tetrahydroxyflavone 

The suspended cells were sonicated to generate a cell lysate, and then 1000 µL 

ethyl acetate was added. The mixture was vortex-mixed for 15 minutes and centrifuged 

at 14000 rpm at 40C for 15 min, 950 uL of the supernatant was transferred to a new 1.7 

mL centrifuge tube, and dried under a steam of nitrogen at room temperature. The 

sample was then reconstituted with 100 µL 40% acetonitrile, and 5 µL was injected into 
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the LC-MS/MS system.  Measured concentrations were normalized to cell protein 

concentrations. 

4.2.13 Tumor xenograft model studies 

The 22Rv1 human CRPC xenograft model was established subcutaneous 

implant of 22Rv1 cells (10,000,000 cells) and serial passaging of the tumors in male 

SCID mice. 5,3’-Dihydroxyflavone was administered by ip injection (formulation: 1% 

carboxymethyl cellulose, 5% DMSO, and 0.5% NaHCO3). For preliminary dose 

determinations, mice were tested for immediate post-injection toxicity by monitoring 

weight and behavior following daily ip injection of 3 doses of the compound (100, 150 

and 250 mg/kg body weight) for a duration of 7 days. As the mice were asymptomatic at 

all doses, the highest dose of 250mg/kg body weight was used for anti-tumor efficacy 

studies of the compound. Plasma levels of unmetabolized compound for this dose 

regimen were determined by LCMS at our institutional Pharmacology Core Services as 

described in a separate sub-section.  Male SCID mice were implanted bilaterally SC 

with 30-50 mg tumor fragments by 12 gauge trocar, and randomly distributed to various 

treatment and vehicle control groups. Treatment typically began 5 days post-implant 

(early stage disease) to determine antitumor efficacies and to further evaluate potential 

cumulative toxicities. Tumors were measured with a caliper 3 times/week and tumor 

masses (in mg) estimated by the formula, mg = (a x b2)/2, where “a” and “b” are tumor 

length and width in mm, respectively. Mice were sacrificed when cumulative tumor 

burdens reached 5-10% of body weight (1-2g).  

4.3 Results 

4.3.1 Discovery of the lead compound 
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For initial discovery of small molecules that selectively blocked the binding of 

ELK1 and AR, we developed a stringent and methodical system for high throughput 

screening (HTS) of a high diversity compound library. We expected a relatively high 

probability of success because we were screening for molecules that could bind at any 

one of a minimum of four target sites, considering the two AR docking sites on ELK1 

and the corresponding binding sites in AR. Therefore, we screened a diversity library of 

~ 20,000 small molecules based on conventional wisdom at our facility that the primary 

hit rate for a single target in cell-based HTS by moderately stringent criteria is 1-2 %.    

For the primary screen, we used recombinant AR+ HeLa cells harboring a Gal4 

promoter-luciferase reporter as well as a Gal4-ELK1 fusion protein gene. When these 

cells are treated with testosterone AR translocates to the nucleus where it binds to 

Gal4-ELK1 and activates the reporter gene. The cells for counter screening were 

identical to the primary screening cells with the exception that an androgen response 

element (ARE) sequence replaced Gal4 in the promoter and Gal4-ELK1 was absent. 

Compounds of interest should only suppress the signal in the primary screening assay, 

as the only difference between these two assays is AR recruitment to the promoter via 

ELK1 binding vs. direct DNA binding (Illustrative schematic in Figure 4.1). The Z-factor 

for the primary screening assay was 0.734 and for the counter screening assay it was 

0.711. In both assays enzalutamide, which does not allow nuclear translocation of AR, 

completely suppressed the signal (Figure 4.2a, 4.2b). We initially screened two pilot 

sets of compound libraries, LOPAC and Prestwick, and then the Maybridge Hit Finder 

library, all of which are diversity sets, at a compound concentration of 10 µM. A hit in the 

primary screen was defined as a compound able to reduce luciferase reporter activity ≥  
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Figure 4.1 Schematic of HTS screening system (a) Schematic of the reporter 
system for the primary screening assay. Recombinant HeLa cells used in this 
assay harbor the Gal4-TATA-luc promoter-reporter, and express a Gal4-ELK1 
fusion protein as well as the androgen receptor (AR). Gal4-ELK1 is bound to the 
Gal4 elements in the promoter. In the absence of testosterone (red circle), AR is 
localized in the cytoplasm. When testosterone is present it binds to AR causing 
AR to translocate to the nucleus where it then binds to Gal4-ELK1 and activates 
the downstream luciferase reporter.  (b) Schematic of the reporter system for the 
counter screening assay. Recombinant HeLa cells used in this assay are 
identical to the primary screening cells except for the absence of Gal4-ELK1 and 
substitution of the Gal4 elements in the promoter with a canonical ARE. In this 
case, testosterone causes cytosolic AR to translocate to the nucleus and bind as 
a dimer to the ARE in the promoter resulting in activation of the luciferase 
reporter.  
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Figure 4.2 Testing recombinant Hela cells for HTS. 
Recombinant HeLa cells used in the primary screen (a) and 
in the counter screen (b) were treated with either vehicle 
(ethanol) or 10 nM testosterone together with 10uM of 
Enzalutamide or vehicle (DMSO) control. Cells were 
harvested and luciferase assay was performed 24 h post-
treatment.  
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3 standard deviations below the negative control or to a level ≥ 40% of the enzalutamide 

control. This definition produced 1613 hits. Elimination of false positives by counter-

screening resulted in 15 compounds with variable potencies (40% - 100% inhibition) in 

the primary screen. We chose 5,7,3’,4’-tetrahydroxyflavone (Hit 1), one of our top hits in 

terms of potency of inhibition in the primary screen (80% - 100% in < 6 hours) and 

virtual absence of an effect in the counter screen (Figure 4.3a). This hit was prioritized 

for further studies because it is a natural dietary product and could potentially be 

introduced relatively rapidly in the clinic in an appropriately modified form.  

Hit1 is itself highly unstable (easily oxidized) in vitro and rapidly metabolized in 

vivo because of its multiple phenolic hydroxyl groups including hydroxyls on adjacent 

carbon atoms (333, 334); hence its reported anti-inflammatory, neuroprotective and 

other physiological effects (335, 336) may be related to its metabolites rather than its 

original structure. In order to identify the essential structural elements required for 

selective activity against the ELK1-AR complex, we conducted structure-activity 

analysis using the same in vitro assay as in the primary screening. First, we tested the 

effect of substituting the flavone scaffold in Hit 1 with the closely related flavanone and 

isoflavone scaffolds. Hit 1 was unable to affect either ELK1-dependent or ARE-

dependent promoter activation by AR upon scaffold substitution (Figure 4.3b, 4.3c).  

Further structure-activity analysis using derivatives of Hit 1 in which individual or pairs of 

hydroxyl groups were substituted by hydrogen indicated that only the hydroxyls at the 5 

and 3’ positions are necessary for inhibition of the ELK1-AR synergy (Table 4.1). 

However, the hydroxyl group at either position alone had no activity (Table 4.1). 

Substitution of all four hydroxyl groups with methoxy groups or substitution at the 3’  
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Figure 4.3 Hit1 (5,7,3’,4’-Tetrahydroxyflavone) selectively inhibits ELK1-dependent 
promoter activation by AR and the compound scaffold is obligatory. Dose response 
curve for (a) 5,7,3’,4’-Tetrahydroxyflavone (b) 5,7,3’,4’-Tetrahydroxyisoflavone (c) 
5,7,3’,4’-Tetrahydroxyflavanone for inhibition of promoter activation by testosterone in the 
primary screening assay (ELK1-dependent promoter activation by AR) compared with 
the counter screening assay (ARE-dependent promoter activation by AR). The cells were 
simultaneously treated with compound and testosterone for 6h and promoter activity was 
measured in terms of reporter luciferase activity. 
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Table 4.1 Structure-activity relationships for inhibition of ELK1-dependent 
promoter activation by AR. The primary screening assay (ELK1-dependent 
promoter activation by AR) was used to determine the IC50 values for Hit1 and its 
various derivatives as indicated, using a compound dose range of 1-10µM.  
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 position alone with a methoxy group abolished activity (Table 4.1). Further, methoxy 

substitutions on carbons at positions 4’, 6 and 7 were tolerated although the derivatives 

had sub-optimal activity (Table 4.1). Finally, methoxy substitution on the carbon at 

position 3 was not tolerated (Table 4.1), predicting possible steric hindrance from any 

bulky substitutions at this position. 

                   To test the relative stability of 5,3’-dihydroxyflavone, we compared the 

intracellular concentrations of 5,3’-dihydroxyflavone, 5,3’,4’-trihydroxyflavone and 

5,7,3’,4’-tetrahydroxyflavone (Hit 1) following incubation at a media concentration of 

2µM compound. The intracellular concentration of 5,3’-dihydroxyflavone was unchanged 

between 1h and 6h in contrast to the tri- and tetra-hydroxy compounds whose 

concentrations rapidly declined during this period, indicating that removal of hydroxyl 

groups at the 7 and 4’ positions in Hit 1 conferred stability without compromising 

effectiveness against the target (Figure 4.4).    

As a secondary test of target selectivity, we examined the effect of 5,3’-

dihydroxyflavone on activation of ELK1 by MEK/ERK using recombinant HeLa cells 

harboring the Gal4 promoter-luciferase reporter and expressing the Gal4-ELK1 fusion 

protein. In these cells, activation of the luciferase reporter by transduction with a 

constitutively active mutant form of MEK was completely inhibited by the MEK inhibitor 

trametinib but 5,3’-dihydroxyflavone did not inhibit the promoter activation (Figure 4.5).  

To conclude, 5,3’-dihydroxyflavone, which is much more stable and predictably 

bioavailable than Hit 1, is the minimal structure that is fully and selectively active against 

the target ELK1-AR interaction. We name this lead compound KCI807. 

4.3.2 Binding of KCI807 to AR and disruption of ELK1 binding  
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Figure 4.4 Cellular uptake in HeLa cells for active 
compounds. HeLa cells were treated with 2 µM of each 
compound and incubated for 1h or 6h. At the end of the 
incubation the cells were washed 3x with cold PBS and 
scraped in molecular grade H

2
0. The compounds were 

extracted and then quantified using LCMS. 
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  Figure 4.5 KCI807 does not inhibit ERK1/2 activation of 
ELK1. HeLa cells were co-transfected with the Gal4 promoter-
luciferase reporter construct and the expression plasmid for the 
Gal4-ELK1 fusion protein gene. In addition the cells were 
transfected with an expression plasmid for a constitutively active 
MEK1 protein. The cells were then treated with the MEK1 
inhibitor, trametinib (1 µM ), KCI807 (20 µM), or vehicle (DMSO). 
Cells were harvested 48h post transfection and luciferase activity 
was measured.  
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Figure 4.6 KCI807 binds to purified AR and blocks ELK1 binding. (a) Surface 
plasmon resonance (SPR) kinetic curves for quantitative analyses of KCI807 binding to 
AR. AR was immobilized and KCI807 (analyte) was diluted in a series (0, 10, 20, 40, 80, 
1600, and 320nM). (b) SPR kinetic curves for quantitative analyses inhibition of binding 
of AR (used as analyte) to immobilized ELK1 by KCI807. A fixed concentration of AR 
(200 nM) was combined with KCI807 diluted in a series (0, 50, 100, 200, 400, 800, and 
1600 nM). (c) SPR kinetic curves for quantitative analyses of enzalutamide binding to 
AR. AR was immobilized and enzalutamide (analyte) was diluted in a series (0, 6.25, 
12.5, 25, 50, 100, 200nM). (d) SPR kinetic curves to test for inhibition of binding of AR 
(used as analyte) to immobilized ELK1 by enzalutamide. AR (200 nM) was combined 
with enzalutamide (0 uM or 1 uM). (e) and (f) Chromatin immunoprecipitation using anti-
AR antibody and LNCaP cells treated with R1881 (10nM), R1881 (10nM) + KCI807 
(20uM), or vehicle for 2h. The target sites for the ChIP assay included  previously 
established sites in the chromatin at which ELK1 recruits AR (e) or the canonical ARE 
enhancer sites associated with the PSA or theTMPRSS2 gene. 
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It was determined by surface plasmon resonance (SPR) that KCI807 binds to purified 

immobilized AR with a dissociation constant of 7x10-8 M (Figure 4.6a). In contrast, 

KCI807 did not bind to immobilized ELK1 (Figure 4.6b). SPR analysis demonstrated 

that KCI807 blocked binding of purified AR (used as analyte) to purified immobilized 

ELK1 progressively with increasing molar ratios relative to AR (Figure 4.6b). In contrast, 

although SPR analysis could demonstrate the binding of enzalutamide to AR with a 

dissociation constant of 1.7x10-9 M (Figure 4.6c), enzalutamide was unable to block the 

binding of AR to ELK1 (Figure 4.6d).  

We then tested the ability of KCI807 to selectively block recruitment of AR by 

ELK1 to chromatin in situ. Chromatin immunoprecipitation (ChIP) assays showed that in 

LNCaP PC cells, KCI807 prevented association of AR with two previously (246) 

established sites in the chromatin at which ELK1 recruits AR (Figure 4.6e). In contrast, 

KCI807 did not affect AR recruitment at the well-established canonical ARE enhancer 

sites associated with the PSA or TMPRSS2 gene (Figure 4.6f).  

The set of complementary results described above establish that KCI807 directly 

binds to AR and selectively blocks its physical association with ELK1, inhibiting ELK1-

dependent transcriptional activity of AR.    

4.3.3 Narrow genotropic effects of KCI807 in AR-V7 expressing CRPC cells 

KCI807 also inhibited hormone-independent promoter activation by the splice 

variant AR-V7 (Figure 4.7a). The relatively higher concentrations of the compound 

required for this inhibition is likely because AR-V7 was overexpressed in the assay 

system.  
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  Figure 4.7 Transcriptional targets of KCI807. (a) HeLa cells were co-transfected with 
the Gal4 promoter-luciferase reporter construct and the Gal4-ELK1 fusion protein 
expression plasmid.  In addition the dells were transfected with either the AR-V7 
expression plasmid or the corresponding vector plasmid (pLVX). At the time of 
transfection with AR-V7, the cells were also treated in parallel with KCI807 (10 uM and 
20 uM) or with the vehicle control. Promoter activity was measured in terms of reporter 
luciferase activity. (b) 22Rv1 cells were infected with lentivirus expressing shRNA 
selective for full length AR or ELK1 shRNA or control shRNA. The cell lysates were 
analyzed by western blot to confirm knockdown of full length AR (top left panel) or ELK1 
(top right panel). Real time PCR was used to confirm depletion of mRNA for  full length 
AR (bottom left panel) or ELK1 mRNA (bottom right panel). (c) In the 22Rv1 cells in 
which full length AR was depleted, the mRNAs for the indicated panel of genes were 
measured by real time PCR. (d) In the 22Rv1 cells in which ELK1 was depleted, the 
mRNAs for the same panel of genes were measured by real time PCR. (e) 22Rv1 cells 
were treated with 10 µM of KCI807 for 72h and real time PCR was used to measure 
mRNAs for the indicated panel of genes tested in c and d. 
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To test the selectivity of KCI807 for ELK1-dependent gene activation by AR vs. 

other target genes of the receptor, we examined 22Rv1 CRPC cells, which are 

dependent on both full length AR and AR-V7 for hormone-independent growth. In these 

cells, depletion of full length AR using lentiviral shRNA (Figure 4.7b, left) led to  

reduction in mRNA levels of representative AR target genes previously (246) shown to 

be activated by AR in either an ELK1-dependent or -independent manner (Figure 

4.7c).Depletion of ELK1 using lentiviral shRNA (Figure 4.7b, right) caused reduction 

only in the mRNAs for genes previously reported to be ELK1-dependent for regulation 

by AR (Figure 4.7d, left of the dashed line). Treatment of the cells with KCI807 

decreased expression of only the genes supported by ELK1 (Figure 4.7e). The results 

demonstrate selectivity of KCI807 for AR target genes that are synergistically activated 

by ELK1 and AR, which are typically strongly associated with cell cycle progression and 

mitosis.     

4.3.4 Selective in vitro growth inhibition by KCI807 and comparison with 

enzalutamide 

KCI807 inhibited both androgen-dependent and androgen-independent in vitro 

growth of standard AR-dependent PC/CRPC cell line models. After initiation of colony 

formation of the enzalutamide-resistant (191) 22Rv1 CRPC cells, further colony growth 

was virtually completely inhibited by KCI807 beyond 125nM compound, with an IC50 of 

33.12 nM. With respect to dose response of the cell growth inhibition by the MTT 

viability assay, KCI807 was more effective than enzalutamide in LNCaP (androgen-

dependent) and 22Rv1 (androgen-independent) cells; moreover, KCI807 completely 

inhibited cell growth whereas enzalutamide only showed partial effects even at a  
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Figure 4.8 Inhibition of AR-dependent PC/CRPC clonogenic survival and cell 
growth by KCI807 and comparison with enzalutamide.  (a) 22Rv1 cells were 
seeded in triplicate wells in phenol red-free growth media and treated with the indicated 
concentrations of KCI807 with replenishment of the treatments every 48h. Colonies 
were stained with crystal violet, 10 days later. The left panel shows representative 
images of the stained wells. The colony counts were determined using a size cutoff and 
average values from replicate wells are plotted in the right panel. (b) - (g) The growth 
inhibitory effects of KCI807 were compared with that of enzalutamide using the MTT 
assay. Twenty four hours after plating the cells, they were treated with the indicated 
concentrations of each compound. (b) LNCaP Cells + KCI807 (c) LNCaP Cells + 
enzalutamide (d) VCaP Cells + KCI807 (e) VCaP Cells + enzalutamide (f) 22Rv1 cells 
+ KCI807 (g) 22Rv1 cells + enzalutamide. 
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a. 

Supplementary Figure 4.9 Effect of KCI807 on in vitro growth of AR-
negative cancer cell lines was measured by the MTT assay. All values 
were normalized to the Day zero value for each cell line. (a) Du145 Cells 
(b) HeLa Cells (c) HEK293 Cells (d) H1650 Cells  
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concentration of 20 µM (Figure 4.8). VCaP cells (androgen-dependent) were the most 

sensitive to KCI807 as well as enzalutamide at comparable doses (Figure 4.8). KCI807 

did not appreciably affect the growth of AR-negative cell lines including DU145 (PC 

cells), HeLa (cervical cancer cells), HEK293 (adenovirus transformed kidney fibroblasts) 

and H1650 (lung adenocarcinoma cells) (Figure 4.9). The growth inhibitory effect of KCI 

807 is thus selective for PC cells that are dependent on AR and/or AR-V7 and further 

this compound shows a better growth inhibitory profile than enzalutamide in well-

established cell line models.    

4.3.5 Suppression of CRPC growth in vivo by KCI807 

The in vivo anti-tumor efficacy of KCI807 was tested using the 22Rv1 cell line 

xenograft model in male SCID mice. Tumor xenografts of 22Rv1 cells were implanted 

into male SCID mice in the two flanks. Following growth of implanted tumors to ~100 

mg, the compound was administered (begin treatment on Day 5) intraperitoneally on 

alternate days at a dose of 250 mg/kg. for 18 days, reaching a total dose of 4.5 g/Kg. 

Tumor growth was completely inhibited up until the time the experiment was terminated 

when the tumor burden in the placebo group reached 5-10% of body weight (Figure 

4.10a). The mice treated with KCI807 did not show appreciable weight loss or obvious 

physical or behavioral abnormalities (Figure 4.10b). The serum concentration of 

unmetabolized KCI807 24h following the final injection was 0.56 µM.   

4.4 Discussion  

Current and experimental modalities of therapeutic targeting of the AR signaling 

axis in prostate cancer, including inhibition of testosterone synthesis and antagonists 

that bind to either the ligand binding pocket of AR or to the amino-terminal hormone-  
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Figure 4.10 Inhibition of in vivo CRPC tumor growth by KCI807. Tumor xenografts 
of 22Rv1 cells were implanted into male SCID mice in the two flanks. On Day 5 after 
implantation, mice were administered 250mg/Kg of KCI807 or vehicle control, 
intraperitoneally, every other day for 18 days, reaching a total dose of 4.5 g/Kg. (a) 
Tumor volumes were measured every 3 days. (b) Changes in body weight of the mice 
administered either KCI807 or the vehicle control were recorded.   
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independent activation functions of AR, entail global disruption of androgen/AR actions 

(337). This study was undertaken to prove the concept that a critical growth signaling 

arm of AR could be selectively disrupted by small molecule drug candidates that could 

also circumvent resistance to current treatments from restoration of AR function. Using 

an unbiased HTS approach combined with SAR studies, we have discovered and 

characterized a flavonoid molecule (KCI807) that directly binds to AR, blocks binding of 

ELK1 to AR and also prevents recruitment of AR to chromatin by ELK1. As a result, 

KCI807 selectively inhibits transcriptional activity of AR mediated by ELK1 binding DNA 

elements vs. canonical AREs. This is reflected by selective inhibition by KCI807 of 

ELK1-dependent activation of endogenous genes by AR. As target genes of ELK1-

dependent transcriptional activation by AR are critical for cell cycle progression and 

mitosis, KCI807 selectively inhibits AR-dependent prostate cancer cell growth in vitro 

and tumor growth in vivo. As ELK1 binds to the amino-terminal domain of AR, KCI807 is 

also able to inhibit ELK1-dependent transcriptional activity of the major AR splice 

variant, AR-V7 and to inhibit growth of AR-V7 expressing cells and tumors. 

 Similar to other nuclear receptors, including steroid receptors, the amino-terminal 

domain of AR is intrinsically disordered (338). This is a major obstacle for structure-

based design of small molecule drugs targeting functional motifs within this region of the 

receptor. Nevertheless, it has been previously demonstrated by the empirical approach 

of small molecule screening and structure-activity studies that small molecules including 

certain bis-phenols (EPI) (237) and Sintokamide A (239) can bind selectively to this 

domain of AR with profound inhibitory effects on co-activator binding. Mutational and 

binding analysis indicates that for binding to ELK1, the amino-terminal domain of AR 
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precisely only requires the two ERK docking sites in ELK1 (268). Based on our 

structure-activity studies, the structure of KCI807 only retains the minimal features of 

the initial hit from our HTS that are required for disrupting the interaction of AR with 

ELK1, i.e., a flavone scaffold and two hydroxyl groups at specific positions (5 and 3’). 

Notably, removal of hydroxyl groups at positions 7 and 4’ results in a more stable 

molecule and also prevents rapid metabolism in vivo as observed in the mouse model. 

This relatively small molecule binds to AR with a dissociation constant that is only ~ 3 

times that for the binding of ELK1 to AR (268) presumably by binding to a substructure 

required for the formation the recognition site for one of the two AR docking sites on 

ELK1. Nevertheless, KCI807 did not interfere with the activation of ELK1 by ERK. 

Indeed, it has not been possible to identify structures within the amino-terminal region of 

AR that are similar to the two docking site recognition sites in ERK previously identified 

using substrate peptides for hydrogen exchange mass spectrometry and X-ray 

crystallography (339, 340). Therefore, there appears to be some degree of 

conformational flexibility that enables AR to bind to ELK1. By extension of this principle, 

it may be possible to identify other small molecules that selectively disrupt the AR-ELK1 

complex by binding to other sites on AR or to either one of its two docking sites on 

ELK1. 

From pharmacological and clinical perspectives, the results of this study 

establish that the ELK1-AR interaction is a drugable target. In the mouse tumor 

xenograft model, complete suppression of CRPC tumor growth and as well a relatively 

high level of unmetabolized compound were achieved. This is encouraging because 

even rapidly metabolized dietary flavonoids, reach quite high (5 - 10 µM) plasma levels 
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in humans after continuous dietary supplementation (341). KCI807 was generally a 

better inhibitor of androgen/AR-dependent PC/CRPC cell growth in vitro when 

compared with enzalutamide in the same dose range using standard cell line models. 

KCI807 showed no apparent toxicity in the mouse xenograft tumor model of AR-V7 

expressing CRPC while showing profound anti-tumor activity. As KCI807 did not 

interfere with the classical ARE-dependent promoter and gene activation by AR, it is 

clear that it does not affect co-activator recruitment by the amino-terminal domain of AR, 

in contrast to current experimental drugs (237, 239) targeting the amino terminal domain 

that affect a broader range of transcriptional activities of AR. However, the possibility 

exists that KCI807 may interfere with binding of AR to a yet unidentified tethering 

protein(s) although this would likely have a much narrower range of effects than 

systemic testosterone suppression.  

Disruption of ELK1-dependent gene activation by KCI807 could in turn affect the 

expression of certain indirect target genes. Notably, although the PSA encoding gene 

(KLK3) is regulated by AR via canonical AREs, it is also known to be activated by the 

protein products of genes such as HIST1H4D (342) and H2AFX (343) which we have 

found to be synergistically activated by ELK1 and AR. Therefore PSA, which is a 

biomarker of prostate tumor response to conventional anti-androgen treatments, may 

also serve as a biomarker of response to KCI807.    

In conclusion, our studies demonstrate that the ELK1-dependent arm of 

androgen/AR signaling is a drugable and functionally tumor selective target in the 

spectrum of prostate tumors including CRPC and one that predictably obviates the need 

for systemic testosterone suppression. 
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CHAPTER 5- Hybrid Enzalutamide Derivatives with Histone Deacetylase Inhibitor 

Activity Decrease HSP90 and the Androgen Receptor Levels and Inhibit Viability 

in Enzalutamide Resistant C4-2 Prostate Cancer Cells  

Reprinted with permission of the American Society for Pharmacology and Experimental 
Therapeutics. All rights reserved. 
 
MOLECULAR PHARMACOLOGY Mol Pharmacol 90:225–237, September 2016 
Copyright ©2016 by The American Society for Pharmacology and Experimental 
Therapeutics 
 
5.1 Introduction 
 

Prostate cancer (PCa) is the second leading cause of cancer-related deaths in 

men in the United States (344). PCa is initially managed with surgery, radiation, 

androgen antagonists (e.g., bicalutamide) and surgical or chemical castration. However, 

the relapsed or metastatic disease post-castration (castration-recurrent prostate cancer 

or CRPC) has poor prognosis with most patients dying within 2 years (345). Innovative 

treatment approaches are urgently needed to treat CRPC patients.  

 Androgen receptor (AR) signaling is a major driving force in all stages of PCa 

(114). CRPC cells evolve mechanisms to re-activate AR signaling under androgen 

deprivation conditions (346); these mechanisms include overexpression and gain-of-

function mutations of AR (347, 348), overexpression of AR splice variants (AR-Vs) 

(210), compensatory cross-talk between AR and other signaling pathways (349) and 

enhanced intra-tumoral androgen biosynthesis (350). Enzalutamide (Enz) is a newly 

FDA approved AR antagonist that prolongs survival of CRPC patients (351, 352). Enz 

competitively binds to AR with 5-8 fold higher affinity than bicalutamide and, in contrast 

to bicalutamide, does not promote AR nuclear translocation (321). Nevertheless, 

acquired resistance to Enz typically develops within months and is associated with a 

relatively short-lived patient survival benefit. Indeed, in vivo generated CRPC cell line 
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models that vastly overexpress AR (e.g., C4-2 cells), presumably in combination with 

changes in other cellular signaling pathways, are completely resistant to Enz in 

conditioned media while remaining addicted to AR (191).  

 A possible strategy to overcome resistance to androgen depletion is to induce 

destabilization and degradation of AR and its associated proteins in CRPC cells. AR is 

stabilized in the cytosol by its interaction with heat shock protein 90 (HSP90) and other 

chaperone proteins. HSP90 is commonly overexpressed in many types of cancer cells 

and has been explored as a drug target for cancer treatment, including PCa (353, 354). 

HSP90 is an ATP-dependent molecular chaperone that aids the folding and stability of a 

number of client proteins, such as steroid receptors, protein kinases, transcription 

factors and proteins involved in regulating cell survival. Therefore, inhibition of HSP90 

leads to degradation of its client proteins via the ubiquitin-proteasome pathway. 

Association of the AR apo-protein with HSP90 is critical for stabilizing AR in a 

conformation that allows androgen binding (355, 356). In PCa cells, HSP90 inhibitors 

induce AR degradation and impair AR nuclear translocation while simultaneously 

reducing the levels of other oncogenic client proteins, such as p-AKT/AKT, EGFR and 

IGF-IR and survivin (357-360). Simultaneous disruption of AR and other aberrant 

growth/survival networks via HSP90 inhibition is an advantageous treatment strategy for 

CRPC as this would silence potentially mutually compensatory oncogenic signaling 

pathways. Despite this attractive scientific rationale, clinical development of HSP90 

inhibitors for PCa treatment were disappointing (361-364) and was also limited by 

adverse toxicity to non-target tissues.  
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 One of the actions of histone deacetylase (HDAC) inhibitors (HDACi) is to disrupt 

HSP90 activity. HDACs remove acetyl groups from lysine residues of histone and non-

histone proteins. Eighteen HDACs categorized into four classes have been identified in 

mammalian cells. Among them, HDAC6 is a zinc-dependent, class-IIb HDAC and is 

localized in the cytoplasm (365). HDAC6 deacetylates HSP90 (366, 367). Inhibition of 

HDAC6 could result in hyper-acetylation of HSP90, loss of ATP binding and dissociation 

and degradation of its client proteins, including AR. The HDACi LAQ-824 (368), PDX-

101 (i.e. Belinostat) (369), suberoylanilide hydroxamic acid (SAHA or vorinostat) (370, 

371) and natural products sulforaphane (372) and genistein (373) have all been 

reported to reduce AR protein levels in PCa cells by disrupting the HDAC6-HSP90 

chaperone function. 

 Clinical use of HDACi is now confined to hematological malignancies. Although 

nuclear HDACs (e.g., HDAC1 and HDAC3) are indispensable for AR transcriptional 

activity (374) and increased HDAC levels have been reported in clinical CRPC samples 

and positively correlated to Gleason scores (375, 376), they are not likely to serve as 

effective drug targets to treat PCa. HDACi, such as vorinostat (SAHA) (377), romidepsin 

(FK-228) (378), panobinostat (LBH-589) (379) and pracinostat (SB-939) (380) have 

been tested in CRPC patients but have resulted in modest outcomes. Toxicities 

associated with their pleiotropic effects could contribute to the ineffectiveness of HDACi 

in PCa treatment. Moreover, recent studies have associated the pleiotropic effects of 

HDACi, particularly epigenetic modifications of chromatin-associated proteins, with 

induction of epithelial to mesenchymal transition (EMT) in prostate, endometrial and 

nasopharyngeal cancer cells (381-384). Therefore clinical translation of the extensive 
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and promising pre-clinical findings of the efficacies of HDACi in treating solid tumors 

must address the issue of toxicities that prevent application of effective HDACi 

treatment regimens in the clinic.  

 We sought to develop enzalutamide derivatives armed with HDACi activity to 

antagonize AR and HSP90 actions in AR-overexpressing and enzalutamide resistant 

CRPC cells with reduced pleiotropic effects typical of strong HDACis. Accordingly, we 

have designed, synthesized and tested the prototype compounds 2-75 and 1005.  The 

2-75 and 1005 chemical scaffolds are designed to retain AR binding affinity. The 

compounds are also designed to have lower intrinsic HDACi activity compared to 

SAHA, thus reducing the HDACi activity against non-target proteins. Nevertheless, the 

HDACi activity is expected to produce effective disruption of AR as well as other HSP90 

client proteins, resulting in loss of viability in Enz-resistant CRPC cells. 

5.2 Materials and Methods 

5.2.1 Compound Synthesis 

 Detailed procedures for the synthesis of compounds 2-75, 1005, 3-52 and 1002 

are described in (385). The chemical identities of the compounds were confirmed by 

using 1H, 13C-NMR and high resolution mass spectrometry. All chemical compounds (2-

75, 1005, 3-52 and 1002 ) listed were synthesized by Dr. Zhihui Qin’s laboratory.  

 5.2.2 HDAC activity assay 

 In vitro HDAC inhibition was measured by using the HDAC fluorimetric 

assay/drug discovery Kit (Enzo Life Sciences, BML-AK500) and the HDAC6 

fluorometric drug discovery kit (Enzo Life Sciences, BML-AK516) following the 
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manufacturer’s protocols and instructions.  IC50 values were calculated from nonlinear 

aggression plots using GraphPad Prism5 software. 

5.2.3 Cell Culture and Reagents 

 LNCaP and PC3 cell lines were from American Type Culture Collection 

(Manassas, Va). LNCaP and C4-2 cells were routinely grown at 37°C in 5% CO2 in 

RPMI 1640 medium supplemented with 10% FBS (Invitrogen); 100units/ml penicillin, 

100 µg/ml streptomycin, 2mM L-glutamine mixture (Invitrogen); and sodium pyruvate 

(1mM) (Invitrogen). PC3 cells were grown in RPMI 1640 medium supplemented with 

10% FBS (Invitrogen); 100units/ml penicillin, 100 µg/ml streptomycin, and 2mM L-

glutamine mixture (Invitrogen). Affinity-purified rabbit anti-human antibody to AR (sc-

816), mouse anti-human antibody to GAPDH (sc-47724) and affinity-purified mouse 

anti-human antibody to alpha tubulin (sc-8035) were purchased from Santa Cruz 

Biotechnology (Santa Cruz, CA). Affinity-purified rabbit anti-human antibody to HSP90 

(C45G5) #4877, rabbit anti-human antibody to acetylated lysine #9441, and affinity-

purified rabbit anti-human antibody to p21 Waf1/Cip1 #2947S were purchased from Cell 

Signaling Technology. Affinity-purified rabbit anti-human antibody to acetyl-tubulin 

(#ABT241), acetyl Histone H4 (#07-328), acetyl Histone H3 (#ABE18) were purchased 

from Millipore. R1881 was kindly provided by Dr. Stephan Patrick (Karmanos Cancer 

Institute). Cycloheximide was from Sigma. All experiments were conducted using 

phenol-red free growth media. For hormone depletion, cells were grown in phenol-red 

free RPMI 1640 medium supplemented with 10% charcoal stripped FBS (Sigma-

Aldrich) which was heat inactivated at 56°C for thirty minutes, and a mixture of 

100units/ml penicillin, 100 µg/ml streptomycin and 2 mM L-glutamine for 96 h.   
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5.2.4 Cell Viability Assay 

Cells were trypsinized and 6000 cells/well were seeded in 96-well plates coated 

with poly-D-lysine. The cells were seeded in phenol red-free medium supplemented with 

10% FBS, 100units/ml penicillin, 100 µg/ml streptomycin, 2mM L-glutamine mixture and 

sodium pyruvate (1mM) for C4-2 cells and phenol red-free medium supplemented with 

10% FBS, 100units/ml penicillin, 100 µg/ml streptomycin and 2mM L-glutamine mixture 

for PC3 cells. The cells were grown at 37°C in 5% CO2. Twenty four hours after seeding 

in the 96-well plates, the cells were treated with indicated compound or DMSO (vehicle). 

The culture medium was not changed during the time course of the assay. On day zero 

and on day 3, cell viability was determined using the MTT assay. MTT (10µL, 5mg/mL) 

was added to each well and incubated for 2h at 37°C. The formazan crystal sediments 

were dissolved in 100µL of DMSO, and the absorbance at 570nm was measured using 

the BioTek Synergy 2 Microplate Reader (BioTek, Winooski, VT). The assay was 

conducted in sextuplicate wells and values were normalized to day zero (386). IC50 

values were calculated from nonlinear aggression plots using GraphPad Prism5 

software. 

5.2.5 Western Blot Analysis 

 Cells were washed once with phosphate buffered saline (PBS) and then lysed 

with RIPA buffer (150mM NaCl, 1% Nonidet P-40, 0.5% sodium deoxycholate, 0.1% 

SDS, 50mM Tris of pH 8.0) containing a protease inhibitor cocktail (Pierce, Thermo 

Fisher Scientific). The cell lysates were then incubated on ice for 40 minutes. Total 

protein concentrations were estimated using the Bradford Assay (Bio-Rad). Protein 

samples (10-40 µg) were heated at 95°C for 5 minutes and resolved by electrophoresis 
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on 8% polyacrylamide-SDS gels and electrophoretically transferred to PVDF 

membranes (Millipore, Billerica, MA). The membranes were then probed overnight at 

4°C with the appropriate primary antibody followed by the appropriate horseradish 

peroxidase-conjugated secondary antibody. The blots were then developed to visualize 

the protein bands using the HyGLO Chemiluminescent HRP Antibody Detection 

Reagent (Denville Scientific, Metuchen, NI) (332). 

5.2.6 RNA isolation, Reverse Transcription, and Real Time PCR 

Total RNA was isolated from cells using the RNeasy Mini Kit (Qiagen). Reverse 

transcription PCR was then performed using 500 ng of total RNA with random primers 

and using the high-capacity complementary DNA Archive kit (Applied Biosystems). The 

complementary DNA from this reaction was measured using quantitative real time PCR 

using the StepONE Plus Real Time PCR system (Life Technologies Corporation, 

Carlsbad, CA). All reactions were performed in triplicate and normalized to 

glyceraldehyde-3-phosphate-dehydrogenase values in the same samples. All primers 

and Taqman probes were purchased from the applied Biosystems inventory (Invitrogen) 

(387). 

5.2.7 Chromatin Immunoprecipitation (ChIP) 

C4-2 cells were treated with either vehicle, R1881 (1 nM or 10 nM), or 10uM of 

each indicated compound for 2 h and then subjected to ChIP using anti-AR antibody 

(sc-816 from Santa Cruz, CA). The ChIP assay was performed using the EX ChIP 

chromatin immunoprecipitation kit (catalogue number 17-371 from Millipore, 

Temecula,CA) according to the vendor’s protocol. The ChIP signals were measured by 
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quantitative real time PCR analysis of the immunoprecipitated products. Each sample 

was tested in triplicate (246). 

5.2.8 Statistical Analysis 

All experiments were performed in triplicate groups and repeated at least three 

times. The error bars in all graphs represent the standard deviation. Statistical analysis 

was performed using one-way ANOVA with post-hoc and LSD (Least Square 

Differences) and/or T-test (388) using GraphPad v.6.0 software. 

5.3 Results 

5.3.1 Design and synthesis of compounds 2-75 and 1005 with partial chemical 

scaffolds of Enz and SAHA.  

Compounds 2-75 and 1005 were designed to retain partial functional scaffolds of 

Enz and SAHA (Figure 5.1A). Upon binding to AR, the cyano group of Enz/Enz 

derivatives forms a critical hydrogen bond with Arg752, and the conformationally 

restricted thiohydantoin ring in the middle forces the rest of the molecule to the “H11 

pocket”, a region near the C terminus of helix 11 and the loop connecting helices 11 and 

12 (389). To design derivatives with both AR-binding and HDACi activities, different 

linkers connecting Enz and a zinc binding group (ZBG) were introduced to retain the 

above structural features that are required for AR binding in an antagonist-related 

conformation. 1005 is a cinnamyl hydroxamic acid derivative with a three-carbon linker. 

A relatively longer carbon chain in 2-75 was used to more closely mimic the chemical 

structure of SAHA.  Compound 7 (3-52), a close structural analogue of 2-75 using 

methyl ester to replace ZBG was synthesized as a control compound without an HDACi 

functional group (Figure 5.1B). Compound 7 (3-52) and synthetic intermediate  
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Figure 5.1 Compound structures and synthetic schemes. (A) Chemical structures of 
Enz, SAHA, 1005, 2-75, 1002, and 3-52. (B) Synthesis of 1005, 2-75, 1002, and 3-52. 
Reagents and conditions are as follows: (a) ethyl acrylate, Pd(OAc)2, P(o-tolyl)3, DIPEA, 

DMF, 80°C, 75%; (b) 37% HCl (aq), acetonitrile, reflux, 91%; (c) NH2OTHP, BOP, DIPEA, 

DMF, 51%; (d) HCl (4 N in dioxane), MeOH, 60% for 1005, 32% for 2-75; (e) HCOOLi, 
Ac2O, Pd2(dba)3, LiCl, DMF, 80°C, 92%; (f) 7-amino-N-(tetrahydro-2H-pyran-2-yl)oxy 

heptanamide, HBTU, DIPEA, DMF, 30%; and (g) methyl 7-aminoheptanoate 
hydrochloride, HBTU, DIPEA, DMF, 47%. BOP, benzotriazol-l-yl-oxy-tris-
(dimethylamino)phosphonium hexa-fluorophosphate; DIPEA, N,N-Diisopropylethylamine; 
DMF, N,N-Dimethylformamide; HBTU, 2-(1H-benzotriazol-1-yl)-1,1,3,3-
tetramethyluronium hexafluorophosphate; THP, tetrahydropyranyl. Reprinted with 
permission of the American Society for Pharmacology and Experimental Therapeutics. 
All rights reserved. 

 



134 

 

compound 2 (i.e. 1002, an ethyl ester analogue of 1005, Figure 5.1A, B) were used to 

investigate AR antagonist properties of 2-75 and 1005 scaffold, respectively.   

 Both 2-75 and 1005 were synthesized from a 4’-iodo substituted intermediate 

(Figure 5.1B) 1. Acrylate linker of 1005 was introduced via Pd(OAc)2-catalyzed Heck 

reaction to afford compound 2, followed by hydrolysis of ethyl ester, coupling to THP  

 (tetrahydropyranyl acetal)-protected hydroxylamine and the final acidic deprotection. To 

synthesize 2-75, carboxylation of aryl iodine 1 was performed using a palladium-

catalyzed carboxylation reaction (390), the resulted carboxylic acid then coupled with 

primary amines to attach the alkyl chain with protected hydroxamic acid (compound 6) 

or methyl ester (compound 7). Removal of THP protecting group gave the final product 

2-75. The detailed synthetic procedures are described in the Supplemental Material. 

5.3.2 Compounds 2-75 and 1005 possess intrinsically weak inhibitor activity 

against nuclear HDACs and cytosolic HDAC6 

To measure HDAC inhibitory activities of 2-75 and 1005, cell-free enzymatic 

assays were performed against a nuclear extract of Hela cells and also against human 

recombinant HDAC6. HDAC1 and HDAC2 are enriched in nuclear extracts whereas 

HDAC6 is a cytosolic enzyme that is the principal modulator of the acetylation status of 

HSP90. The HeLa cell nuclear extract was used to evaluate inhibitory activity against 

nuclear HDACs. 2-75 and 1005 dose-dependently inhibited HDACs enriched in the Hela 

nuclear extract with IC50 values of 1.08 µM and 2.41 µM compared to a value of 0.30 

µM for SAHA (Figure 5.2A). In contrast, compounds 3-52 and 1002, which share the 

chemical scaffolds of 2-75 and 1005 respectively, but lack the HDACi functional group, 

did not inhibit nuclear HDAC activity even up to a concentration of 25 µM (Figure 5.2B). 
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As expected, Enz also lacked any HDACi activity in contrast to a pan-HDACi, 

trichostatin A (TSA), which was used as a positive control (Figure 5.2B). 2-75 and 1005 

were also weaker inhibitors of recombinant HDAC6, with IC50 values of 2.0 µM and 6.93 

µM, respectively compared with the IC50 of 0.85 µM for SAHA (Figure 5.2C). As 

expected, the negative control compounds 3-52 and 1002 as well as Enz did not show 

significant inhibitory activity against HDAC6 even at a concentration of 25 µM (Figure 

5.2D). Again, TSA served as the positive control in Figure 5.2D. 

 The HDACi activities of 2-75 and 1005 were also compared with those of their 

parent compounds in situ in both LNCaP and C4-2 prostate cancer cells using activation 

of the DLC1 tumor suppressor gene as the readout. SAHA induces histone acetylation 

at the DLC1 promoter and effectively increases DLC1 mRNA expression in prostate 

cancer cells (391). Accordingly, DLC1 mRNA was strongly up-regulated by SAHA in 

both LNCaP cells (Figure 5.2E) and in C4-2 cells (Figure 5.2F). As expected from the 

fact that DLC1 is not an AR-regulated gene, Enz had no effect on DLC1 mRNA 

expression. Consistent with the results of the cell-free HDACi assays above, 

compounds 2-75 and 1005 were poor inducers of DLC1 mRNA compared with SAHA, 

both in LNCaP cells and in C4-2 cells (Figure 5.2E and 5.2F). Further, similar to the 

results from cell-free assays, 1005 was a much weaker HDACi than 2-75 in the in situ 

assays (Figure 5.2E and 5.2F). Taken together, the results indicate that compounds 2-

75 and, to a greater degree, 1005 have much less potent HDACi activity in the cellular 

context reflecting their intrinsically weak inhibitor activities compared with SAHA.  

 5.3.3 The partial Enz chemical scaffold confers AR targeted antagonist activity 

without ligand-induced chromatin association of AR 
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Figure 5.2 Measurement of intrinsic and in situ HDACI activities. (A) Dose-
dependent inhibition of HDACs from HeLa cell nuclear extract by 2-75, 1005, and SAHA. 
HeLa cell nuclear extract was incubated with each drug at the indicated concentrations. 
IC50 values were calculated from nonlinear regression plots using GraphPad Prism5 

software. (B) Enz, 1002, and 3-52 were tested against HeLa cell nuclear extract at 
10 µM and 25 µM and TSA (1 µM) was used as a positive control. (C) Dose-dependent 
inhibition of recombinant HDAC6 by 2-75, 1005, and SAHA. Recombinant HDAC6 was 
incubated with each drug at the indicated concentrations. IC50 values were calculated 

from nonlinear regression plots using GraphPad Prism5 software. (D) Enz, 1002, and 3-
52 were tested against recombinant HDAC6 at 10 µM and 25 µM and TSA (1 µM) was 
used as a positive control. (E) LNCaP cells were treated with the indicated compounds 
(10 µM) or vehicle (DMSO) for 48 hours. Cells were then harvested to quantify mRNA for 
DLC1 and values were normalized to the values for GAPDH mRNA. (F) C4-2 cells were 
treated with the indicated concentrations of Enz, SAHA, 2-75, or 1005 or vehicle (DMSO) 
for 48 hours. Cells were then harvested to quantify mRNA for DLC1 and values were 
normalized to the values for GAPDH mRNA. In all panels, the error bars represent the 
standard deviation of experimental triplicates. Where indicated *, **, §, §§, P < 0.05. 
DMSO, dimethylsulfoxide; TSA, trichostatin A. Reprinted with permission of the 
American Society for Pharmacology and Experimental Therapeutics. All rights reserved. 
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Although C4-2 cells are not growth-inhibited by Enz due to hormone-independent 

actions of AR, the canonical androgen target genes KLK3 and TMPRSS2 are activated  

by androgen and their activation is inhibited by androgen antagonists (241). HDACi are 

also potent inhibitors of the androgen signaling axis as they cause degradation of AR in 

the cytosol in addition to other cellular effects (368, 369, 392). To test whether the Enz  

moiety could enable 2-75 and 1005 to target to AR, we tested the ability of compound 3-

52 to inhibit activation of KLK3 and TMPRSS2 by androgen. Compound 3-52 shares the 

chemical scaffold of 2-75 but lacks the HDACi functional group; therefore 3-52 should 

depend on the partial Enz chemical scaffold to antagonize gene activation by androgen. 

SAHA partially inhibited activation of KLK3 (Figure 5.3A) and TMPRSS2 (Figure 5.3B) 

by the synthetic androgen R1881 in C4-2 cells whereas Enz showed progressive 

inhibition at higher doses. Compounds 2-75 and 1005 were both better inhibitors of 

gene activation by androgen compared with either Enz or SAHA (Figure 5.3A and 5.3B). 

On the other hand, compound 3-52 inhibited activation of KLK3 and TMPRSS2 to a 

degree that was comparable to Enz suggesting that the partial Enz chemical scaffold in 

compounds 2-75 and 1005 retained an Enz-like AR binding property. The superior 

androgen antagonist activities of 2-75 and 1005 compared with Enz may be explained 

by their additional HDACi activities.  

 AR ligands including agonists and classical androgen antagonists such as 

bicalutamide promote nuclear translocation of AR and the binding of AR to canonical 

hormone (androgen) response elements associated with androgen-regulated genes. In 

contrast, Enz does not stimulate AR nuclear translocation and DNA binding (321, 393). 

To test whether the partial Enz chemical scaffold would mobilize AR to the chromatin,  
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Figure 5.3 Testing the ability of 
compounds to interact with AR 
and to induce chromatin 
association of AR. (A and B) Data 
obtained using C4-2 cells are shown. 
After 96 hours of hormone depletion, 
cells were treated with R1881 (1 nM) 
and 1 µM, 2.5 µM, 5 µM, or 10 µM of 
the indicated compound or vehicle 
(DMSO) for 48 hours. Cells were then 
harvested to purify total RNA. The 
mRNAs for KLK3 and TMPRSS2 
were quantified by normalizing to the 
values for GAPDH mRNA. In all 
panels, the error bars represent the 
standard deviation of experimental 
triplicates. (C) C4-2 cells plated in 
hormone-depleted medium were 
treated with vehicle, R1881, or the 
indicated compound for 2 hours. 
Cells were harvested and subjected 
to ChIP using AR antibody. TaqMan 
probes targeting androgen response 
element enhancer elements 
associated with the KLK3 gene were 
used to quantify the 
immunoprecipitated chromatin. In all 
panels, the error bars represent the 
standard deviation of experimental 
triplicates. Where indicated, * and 
§, P < 0.01. Reprinted with 
permission of the American Society 
for Pharmacology and Experimental 
Therapeutics. All rights reserved. 
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we employed chromatin immunoprecipitation using C4-2 cells treated with androgen, 

Enz, SAHA and compound 2-75. As a target site for the ChIP assay, we chose the well- 

established AR binding enhancer elements located 4kb upstream of the transcription 

initiation site of the KLK3 gene. As seen in Figure 5.3C, androgen treatment strongly 

stimulated chromatin association of AR whereas Enz, SAHA and compound 2-75 all  

gave the basal ChIP signal corresponding to the vehicle treatment control. These 

results suggest that the new compounds must antagonize AR in the cytosolic rather 

than in the nuclear compartment.   

5.3.4 Compounds 2-75 and 1005 induce enhanced degradation of AR and HSP90 

and hyper-acetylation in a putative 55 KDa HSP90 fragment 

Previous observations using potent non-targeted HDACi have shown that the 

compounds directly affect the AR signaling axis by hyper-acetylation of the AR 

chaperone complex, through inhibition of HDAC6, leading to degradation of HSP90 as 

well as release and degradation of AR. We therefore hypothesized that despite their 

intrinsically weak HDACi activities, the Enz moiety may enable compounds 2-75 and 

1005 to more effectively target AR in its chaperone complex, leading to relatively 

efficient degradation of AR. To test this possibility, we treated C4-2 cells with Enz, 

SAHA, 1005 and 2-75 at doses ranging from 1µM to 10µM for 24h. Western blots of the 

cell lysates were probed for AR and GAPDH (loading control) and the AR band 

intensities relative to GAPDH were quantified using ImageJ software (Figure 5.4A). 

Whereas Enz did not cause an appreciable change in the AR protein level, SAHA did 

cause a decrease in AR level in a dose-dependent manner (Figure 5.4A). Compared to 

SAHA, both 2-75 and 1005 decreased the AR level to a greater extent with 2-75 being  
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Figure 5.4 Modulation of protein levels and hyperacetylation. C4-2 cells 
were treated with the indicated concentrations of Enz, SAHA, 1005, or 2-75 or 
with vehicle (dimethylsulfoxide) for the time indicated. Cells were then 
harvested for Western blot analysis using antibody to AR (A), HSP90 (B), 
acetyl lysine (C), or GAPDH (loading control). ImageJ software was used to 
determine the intensities of the bands relative to the vehicle control for each 
protein. The values were then divided by the values for GAPDH within the 
same samples. Reprinted with permission of the American Society for 
Pharmacology and Experimental Therapeutics. All rights reserved. 
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more effective than 1005 at each dose (Figure 5.4A). To determine whether the 

decrease in AR was due to increase in the rate of AR degradation we tested the effects  

of the compounds after blocking de novo protein synthesis using cycloheximide. We 

monitored degradation of p21 to confirm the activity of cycloheximide. As expected 

there was a rapid decrease in p21 upon treatment with cycloheximide confirming that  

the treatment efficiently blocked de novo protein synthesis (Figure 5.5). In the presence 

of cycloheximide the AR protein level was decreased by approximately half at the end of 

24h indicating a relatively slow turnover of the AR protein.  Under these conditions 

treatment with SAHA, 1005 and 2-75 all caused greater declines in the AR level with 2-

75 showing the strongest effect (Figure 5.5). The results indicate that the decrease in 

AR caused by 1005 and 2-75 is due to increased degradation of AR. The extent of 

degradation of AR in C4-2 cells appeared adequate to offset the high level of 

overexpression of AR that is necessary to support growth in these cells.  

To explore a possible link between decreased AR levels and effects of the 

compounds on the AR chaperone complex, we examined whether compounds 2-75 and 

1005 decreased the level of HSP90. Probing of the lysates from the treated cells (48h 

treatment) for HSP90 by western blot and quantification of HSP90 was conducted by 

procedures similar to that used above for AR. Enz had no effect on the level of HSP90 

whereas in the SAHA-treated cells, a decrease in HSP90 was evident at the higher 

doses (5µM and 10µM) (Figure 5.4B). On the other hand, cells treated with 1005 and 2-

75 showed more marked reduction in HSP90, with 2-75 being more efficient than 1005. 

Probing identical western blots with an antibody against acetylated lysine showed that 

SAHA as well as 1005 and 2-75, but not Enz, showed hyper-acetylation of a ~55 kDa  
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Figure 5.5 Induction of AR 
degradation. C4-2 cells were 
pretreated with cycloheximide 
(20 µM) or with vehicle for 2 hours, 
followed by the introduction of Enz 
(10 µM), SAHA (10 µM), 1005 
(10 µM), 2-75 (10 µM), or vehicle for 
the indicated durations. Cells were 
then harvested for Western blot 
analysis and probed with antibody 
to AR, p21, or α-tubulin (loading 
control). ImageJ software was used 
to determine the intensities of the 
bands relative to the 0-hour time 
point for each treatment. CHX, 
cycloheximide. Reprinted with 
permission of the American Society 
for Pharmacology and Experimental 
Therapeutics. All rights reserved. 
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polypeptide (Figure 5.4C), similar to one that has previously been identified as a 

fragment HSP90 produced by SAHA treatment (394).  Taken together, the above 

results are consistent with the view that the ability of the compounds to induce 

acetylation and reduction of HSP90, and consequently AR degradation, underlies the 

ability of the compounds to attenuate AR signaling. 

5.3.5 The hybrid molecules selectively inhibit cytosolic HDAC6 in situ 

As HSP90 in the AR chaperone complex is a target of the cytosolic HDAC6, the 

hyper-acetylation of degradation of HSP90 induced by 2-75 and 1005 is likely to occur 

through inhibition of HDAC6. If this were the case, we may expect that 2-75 and 1005 

would also induce hyper-acetylation of α-tubulin which is diagnostic of HDAC6 inhibition. 

To test this possibility, we treated C4-2 cells with Enz, SAHA, 1005 and 2-75 at doses 

ranging from 2.5µM to 10µM for 24h. Western blots of the cell lysates were probed for 

acetyl-tubulin, as well as total α-tubulin. The band intensities for acetyl-tubulin relative to 

total α-tubulin were quantified using ImageJ software (Figure 5.6). 2-75 induced a 

greater degree of hyper-acetylation of α-tubulin (relative to total tubulin) compared to 

SAHA, whereas 1005 produced a similar effect albeit to a somewhat lesser degree than 

SAHA (Figure 5.6). When the same cell lysates were probed using antibodies against 

acetylated histones H3 and H4, it was clear that SAHA alone induced a strong induction 

of histone acetylation (Figure 5.6). The results clearly demonstrate strong and selective 

in situ activity of 2-75 and 1005 on cytosolic HDAC6.  

5.3.6 Compounds 2-75 and 1005 up-regulate p21 and inhibit viability of Enz-

resistant prostate cancer cells 
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Figure 5.6 Hyperacetylation of α-tubulin and histones H3 and H4. C4-2 cells 
were treated with Enz, SAHA, 1005, or 2-75 (2.5 µM, 5 µM, or 10 µM) or vehicle for 
24 hours. Cells were then harvested for Western blot analysis and probed with 
antibody to acetyl histone H3, acetyl histone H4, acetyl tubulin, or α-tubulin. ImageJ 
software was used to determine the intensities of the bands of acetyl tubulin relative 
to the total amount of tubulin for each treatment. The ratio of acetyl tubulin to total 
tubulin in each sample is indicated. Reprinted with permission of the American 
Society for Pharmacology and Experimental Therapeutics. All rights reserved. 
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HDACis activate transcription of p21. However, as compounds 2-75 and 1005 

exhibited weak intrinsic HDACi activity against nuclear HDACs and as their apparent 

major cellular HDACi activity was related to targeting of the AR axis within the cytosolic 

compartment, it was of interest to examine their ability to induce p21.   

 Enz had no effect on p21 mRNA expression in either the Enz-sensitive LNCaP 

cells (Figure 5.7A) or in the Enz-insensitive C4-2 cells (Figure 5.7B), whereas SAHA  

 induced p21 mRNA in both cell lines (Figure 5.7A and 5.7B). Compounds 2-75 and 

1005 both induced p21 to a greater extent than SAHA in the two cell lines (Figure 5.7A 

and 5.7B). Moreover, combined treatment with equimolar concentrations of Enz and 

SAHA did not induce p21 to a greater extent than SAHA alone, indicating the 

importance of the hybrid scaffold of 2-75 and 1005 (Figure 5.7C).  

 To expect therapeutic effects from 2-75 and 1005, it is important to establish that, 

similar to SAHA, they can induce loss of viability in Enz-resistant CRPC cells, rather 

than mere growth inhibition. Therefore, the effects of 2-75, 1005 and SAHA on cell 

viability were assessed in the well-established C4-2 model of Enz-resistant CRPC.  

 In C4-2 cells Enz could not appreciably affect viability even at a concentration of 

10 µM, whereas SAHA caused loss of viability in a dose dependent manner (Figure 

5.8A). Compounds 2-75 and 1005 both caused greater loss of viability compared with 

SAHA with compound 2-75 being more effective than 1005 (Figure 5.8A). As a control, 

compound 1002, which has a chemical scaffold similar to 1005 but lacks the HDACi 

activity (Figure 5.2B and 5.2D), was unable to affect C4-2 cell viability (Figure 5.8A). As 

another experimental control, at the lower drug concentration (2.5 uM) although SAHA, 

2-75 and 1005 caused growth inhibition, combining Enz with SAHA (each at 2.5 uM) did  



147 

 

 

  

Figure 5.7 Induction of p21 mRNA. 
(A) LNCaP cells were treated with 
Enz, SAHA, 1005, or 2-75 at a 
concentration of 10 µM or with vehicle 
(dimethylsulfoxide) for 48 hours. Cells 
were then harvested to quantify p21 
mRNA and the values were 
normalized to those for GAPDH 
mRNA. (B) C4-2 cells were treated 
with Enz, SAHA, 1005, or 2-75 at the 
indicated concentrations or with 
vehicle (dimethylsulfoxide) for 48 
hours. Cells were then harvested to 
quantify p21 mRNA and the values 
were normalized to those for GAPDH 
mRNA. (C) C4-2 cells were treated 
with either Enz (10 µM) or SAHA 
(10 µM), an equimolar (10 µM each) 
mixture of Enz and SAHA, 2-75 
(10 µM), or 1005 (10 µM). Cells were 
then harvested to quantify p21 mRNA 
and the values were normalized to 
those for GAPDH mRNA. In all 
panels, the error bars represent the 
standard deviation of experimental 
triplicates. Where indicated, *, §, 
○ P < 0.05. Reprinted with permission 
of the American Society for 
Pharmacology and Experimental 
Therapeutics. All rights reserved. 
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Figure 5.8 Effects on cell viability 
in Enz-resistant CRPC cells. (A) 
C4-2 cells were seeded in 96-well 
plates and 24 hours later, they were 
treated with the indicated 
compounds (2.5 µM, 5 µM, or 
10 µM) or with vehicle 
(dimethylsulfoxide). Cell density was 
measured by the MTT assay on 
days 0 and 3 of treatment. Values 
equal to or above that on day 0 
were considered to represent 100% 
viability. (B) C4-2 cells were seeded 
and treated 24 hours later with Enz 
(2.5 µM), SAHA (2.5 µM), an 
equimolar mixture of Enz and SAHA 
(each compound at 2.5 µM), 2-75 
(2.5 µM), 1005 (2.5 µM), or vehicle 
(dimethylsulfoxide). Cell density was 
measured by the MTT assay on 
days 0 and 3 of treatment. The y-
axis shows percent cell growth on 
day 3 relative to the cell density on 
day 0. (C) PC3 cells were seeded in 
96-well plates and 24 hours later, 
they were treated with the indicated 
compounds (2.5 µM, 5 µM, or 
10 µM) or with vehicle 
(dimethylsulfoxide). Cell density was 
measured by the MTT assay on 
days 0 and 3 of treatment. Values 
equal to or above that on day 0 
were considered to represent 100% 
viability. In all panels, the error bars 
represent the standard deviation of 
experimental sextuplicate samples. 
Where indicated, *, §, ○ P < 0.05. 
MTT, 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide. 
Reprinted with permission of the 
American Society for Pharmacology 
and Experimental Therapeutics. All 
rights reserved. 
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not enhance the ability of SAHA to inhibit cell growth (Figure 5.8B). In the AR-negative 

PC3 PCa cells, SAHA induced loss of viability in a dose-dependent manner (Figure 

5.8C). However, in contrast to C4-2 cells, neither 2-75 nor 1005 affected viability of PC3 

cells within the duration of the assay (Figure 5.8C). As expected, the AR-positive and 

hormone-dependent LNCaP cells were sensitive to SAHA, 2-75 and 1005 as well as 

Enz (Figure 5.9). 

The results indicate that despite the weaker inherent HDACi activities of 2-75 and 

1005 compared with SAHA, the compounds could be as good or better at reducing 

viability of Enz-resistant and AR-overexpressing PCa cells.  

5.4 Discussion  

The success of clinical interventions in prostate cancer, including surgical or 

chemical castration and treatment with androgen antagonists and androgen synthesis 

inhibitors support the view that the majority of prostate tumors are addicted to AR to 

support PCa growth and progression (273). Nevertheless, the current interventions that 

target androgen/AR signaling are circumvented by the tumors, most commonly through 

mechanisms that restore functional AR (395, 396), resulting in short-lived clinical benefit 

from the treatments. The goal of this study was to develop a class of compounds that 

may overcome this manner of resistance to the conventional treatments by efficiently 

disrupting both AR and HSP90 in the AR-HSP90 complex with minimal effects on most 

other cellular targets. To accomplish this, we synthesized compounds that would 

incorporate properties of two well-known drugs, an HDACi (SAHA) that efficiently 

modifies and disrupts the cytosolic AR chaperone complex and an AR ligand (Enz), 

which is a high affinity AR antagonist. We additionally sought to substantially weaken 
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Figure 5.9: Effects on cell viability in androgen-sensitive cells. 
LNCaP cells were seeded in 96-well plates and 24h later, they were treated with the 
indicated compounds (10 uM) or with vehicle (DMSO). Cell density was measured by the 
MTT assay on Days 0 and 3 of treatment. The error bars represent standard deviation of 
experimental sextuplicate samples. Where indicated, P < 0.05 Reprinted with permission 
of the American Society for Pharmacology and Experimental Therapeutics. All rights 
reserved. 
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the intrinsic HDACi activity of the drug to minimize its ability to affect many targets. The 

studies described above suggest that compounds 2-75 and 1005 may be prototype 

molecules that fit this paradigm.  

The HDACi functional groups in 2-75 and 1005 conferred only weak HDACi 

activity in cell-free assays using either nuclear HDACs or the cytosolic HDAC6 

compared with SAHA; the shorter carbon chain in 1005 resulted in even weaker HDACi 

activity than 2-75. The relative potencies of HDACi inhibition of 2-75 and 1005 was 

clearly reflected in their relatively poor ability to induce DLC1, an established nuclear 

target gene of HDACi (391, 397, 398), that is strongly induced by SAHA. 2-75 and 1005 

were also poor modulators of histone acetylation in situ compared with SAHA.  

Therefore, the new molecules may have less toxic effects than those associated with 

the potent pan-HDACi activity of SAHA (377).  

SAHA partially inhibited gene activation by androgen but did not produce a 

further dose-dependent inhibition between 1µM and 10 µM concentrations. At this time, 

we do not have a clear explanation for why this effect of SAHA was only partial except 

that it may be related to the pleiotropic cellular effects of SAHA including its effects on 

cross-talking molecular pathways. More important, 2-75 and 1005 produced a dose-

dependent inhibition of gene activation by androgen similar to Enz. The stronger 

inhibition observed for the compounds compared to Enz may be attributed to their 

HDACi moieties. However, the close parallel between the control compound 3-52 and 

Enz in their dose-dependent antagonism of gene activation by androgen, despite the 

lack of a HDACi functional group in 3-52, indicates that the Enz moiety in 2-75 and 1005 

is functional in enabling binding to AR. Additionally, ChIP analysis showed that the 
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modified Enz scaffold retained the inability of Enz to mobilize AR to its chromatin 

binding sites in the nucleus in contrast to conventional androgen antagonists. 

In the context of targeted delivery to AR via their Enz moiety, the weak intrinsic 

HDACi activities of 2-75 and 1005 were adequate to mimic or surpass the effects of 

SAHA on AR protein levels. The efficiency of degradation of AR by 1005 was 

comparable to SAHA but 2-75 clearly induced AR degradation to a greater degree at 

each dose. This difference between 2-75 and 1005 may be related to the fact that the 

HDACi activity of 1005 was less than that of 2-75, despite their common Enz moiety. To 

test the mechanism by which 2-75 and 1005 may cause AR degradation, we relied on 

literature reports that HDACi destabilize and degrade AR by hyper-acetylating and 

inducing degradation of the cytosolic AR chaperone protein, HSP90 (368, 369, 392). It 

has also been reported that the hyper-acetylation and degradation of HSP90 coincides 

with the appearance of a ~55 KDa HSP90 polypeptide fragment. As a diagnostic test of 

this mechanism, we observed that similar to SAHA, 2-75 and 1005 did indeed cause a 

decrease in HSP90, with 2-75 being more efficient than either SAHA or 1005. We were 

able to observe the predicted ~55KDa fragment in cells treated with SAHA, 2-75 or 

1005 using an antibody against acetylated lysine; however our antibody against HSP90 

was unable to detect this fragment, possibly because  the levels of the cleaved HSP90 

fragment were too low to be in the detectable range of the antibody. Nevertheless, all 

indications point to the AR chaperone complex in the cytosol as the mediating the action 

of 2-75 and 1005. Consistent with this view HDAC6 which is associated with the AR-

HSP90 complex was more strongly and selectively inhibited in situ by 2-75 compared to 
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SAHA. Indeed 1005 which had weaker intrinsic HDACi activity than 2-75 also strongly 

inhibited HDAC6 in situ with virtually no effect on histone acetylation.  

An increase in the expression of the cyclin-dependent kinase inhibitor p21 (399) 

is a hall mark of the antiproliferative effects of HDACi (400, 401). Potent inhibition of the 

nuclear HDAC1 at the promoter of the p21 gene is associated with induction of p21 by 

HDACi (402). Inhibitors of HSP90 also increase p21 expression in PCa cells (368). 

Therefore it is significant that p21 mRNA was induced by both 2-75 and 1005 more 

strongly than SAHA and that combination with Enz did not further increase p21 

induction by SAHA. The inability of Enz to induce p21 in the hormone-dependent 

LNCaP cells despite the sensitivity of the AR signaling in these cells to Enz suggests 

that induction of p21 by 2-75 and 1005 may not be directly related to disruption of AR; 

rather, it may be due to their effects on additional HSP90 client proteins through AR-

mediated targeting of HDACi activity to HSP90. Notably, AKT and GR are also HSP90 

client proteins and upregulated AKT or GR signaling were reported to result in Enz 

resistance (403-406),. Therefore, these pathways could be involved in the loss of 

viability induced by the compounds.  

HDACi pharmacophores have previously been linked to a chemical scaffold of 

cyanonilutamide, which is another nonsteroidal AR antagonist (392). However, the 

antiproliferative effects of cyanonilutamide-HDACi were related to their ability to induce 

AR nuclear localization, enabling elevated local concentrations of HDACi activities in the 

nucleus. In contrast, our prototype drug molecules were designed to limit nuclear 

HDACi activities as an approach to limiting toxicity. Our working model that would need 

further testing is that in C4-2 cells, 2-75 and 1005 bind to cytosolic AR and inhibit 
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HDAC6 associated with the AR chaperone complex,  resulting in HSP90 acetylation and 

degradation, AR degradation, suppression of ligand-insensitive gene activation by AR 

and inhibition HSP90 interactions with additional client proteins (Schematic in Figure 

5.10). We propose that this mechanism may address some of the limitations of strong 

pan-HDAC inhibitors related to toxicity.  
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Figure 5.10 Mechanistic model for the actions of compounds 1005 and 2-75. (A) In 
the absence of bound ligand, AR is in a stable complex with HSP90, which is maintained 
in a hypoacetylated state by HDAC6. Hypoacetylated HSP90 stabilizes AR and also 
supports cell survival through regulation of its other client proteins. When 2-75 or 1005 
bind to AR in the chaperone complex, their HDACI moieties inhibit HDAC6 that 
associates with the complex. Despite their relatively weak intrinsic HDACI activities, the 
efficiency of HDAC6 inhibition by the hybrid molecules is enhanced by their localized 
effect in the chaperone complex. (B) This results in hyperacetylation of HSP90, leading 
to destabilization of AR and also loss of cell survival through deregulation of other 
HSP90 client proteins. Reprinted with permission of the American Society for 
Pharmacology and Experimental Therapeutics. All rights reserved. 
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CHAPTER 6- CONCLUSIONS  

 The goal of this dissertation work was to use new mechanistic concepts and 

approaches for the development of small molecule drug candidates to treat prostate 

cancer. Using complementary methods, we discovered that the amino-terminal domain 

of AR utilizes the two ERK docking sites on ELK1 to directly bind to ELK1, inducing 

constitutive activation of genes essential for prostate cancer growth even in cells that 

are insensitive to androgen and resistant to enzalutamide  (Chapter 3). Through the 

development of a strategic cell-based screening assay and further tertiary tests and 

structure-activity studies, we have identified a lead small molecule drug candidate that 

binds directly to AR, disrupts its interaction with ELK1 to selectively block ELK1-

dependent gene activation by AR and suppresses growth of AR positive PC/CRPC cells 

and tumors (Chapter 4). Finally, as an alternative approach we developed hybrid small 

molecule drugs containing partial structural scaffolds derived from enzalutamide and 

SAHA, two therapeutics currently in the clinic. By weakening the pan HDAC inhibitor 

`activity of SAHA and using enzalutamide to direct the HDAC inhibitor activity, we could 

more selectively disrupt the growth of AR overexpressing prostate cancer cells (Chapter 

5).  

 Because of the dependence of early stage and advanced prostate tumors on AR, 

testosterone suppression is a mainstay in the treatment of prostate cancer. Prostate 

cancer progresses to become resistant to ADT by restoring functional AR.. ADT is also 

associated with many major undesirable side effects on normal tissues. Our lab has 

previouslydiscovered that tethering of AR by ELK1 in PC/CRPC cells enables 

constitutive activation of a crucial set of growth genes by AR. In this study, we have 

discovered a lead compound, KCI807that disrupts the ELK1-AR interaction and 
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selectively suppress growth signaling by AR in PC/CRPC cells. KCI807 represents a 

new functional class of potential small molecule drugs that offers the dual benefit of 

obviating the need for testosterone suppression and being effective against a broader 

spectrum of prostate tumors.   

In our second approach, we reduced the potency of histone deacetylase activity 

of SAHA while generating a hybrid molecule that would enable targeting of this activity 

to the Hsp90-AR complex. These studies resulted in a prototype compound that has the 

potential to circumvent the pan activity of currently used HDAC inhibiting drugs that is 

associated with toxicity. Furthermore, this prototype drug should me more selective for 

AR positive prostate cancer cells.  

Together, these studies have addressed two separate goals to prove the 

principle that small molecules can be developed for prostate cancer that 1.) can be 

functionally tumor selective in both early stage and advanced disease and  that do not 

require androgen ablation and 2.)  that have the capability of being active in 

enzalutamide-resistant prostate cancer cells.  For these reasons, such molecules 

should serve as superior therapeutics compared with conventional hormonal therapies 

for prostate cancer.  
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APPENDIX- INTELLECUTAL PROPERTY  

The information on the high throughput screening methodology and small 

molecule inhibitors of ELK1-AR interactions described in chapter  four comprise 

intellectual property of Wayne State University and is covered by provisional patents 

filed by the university. 
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Prostate cancer (PC) is generally dependent on the androgen signaling axis for 

tumor growth. PC is managed by androgen deprivation therapy (ADT). The tumors then 

frequently progress by restoring ADT-resistant AR signaling through mechanisms such 

as intratumoral androgen synthesis, overexpression of AR, expression of splice variants 

of AR and alteration in the balance of AR co-regulators.  This stage of progression is 

termed castrate recurrent prostate cancer (CRPC). Moreover, ADT has many major 

undesirable acute and chronic side effects on various normal tissues. Therefore a more 

strategic therapy  approach is one that would disrupt a functional arm of AR signaling 

critical for PC/CRPC growth but not for the essential physiological roles of AR in normal 

adult tissues. This thesis describes two different mechanism-based approaches to 

develop small molecule drugs that address the above problems.  

The transcription factor ELK1 tethers the androgen receptor (AR) to chromatin, 

enabling sustained activation of genes critical for growth in prostate cancer cell lines. 

The N-terminal A/B domain of AR [AR(A/B)], which excludes the ligand binding pocket 

of AR, is adequate for interaction with ELK1. This is significant because the major splice 

variants of AR (AR-V7) that lack the ligand binding domain, as well as overexpressed 
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full length AR, are known to strongly support growth of castration resistant prostate 

cancer (CRPC). In our first approach to develop small molecule drugs for prostate 

cancer, we showed that both wtAR and AR-V7 synergize with ELK1 by coopting the two 

ERK docking sites on ELK1, independent of the classical mechanism of (transient) 

activation of ELK1 via phosphorylation by ERK. As the association of ELK1 and AR is 

only required for prostate tumor growth, disrupting this interaction should selectively 

inhibit the growth of CRPC cells without interfering with the physiological role of 

androgen in normal tissues. Therefore, small molecules that disrupt binding of AR to 

ELK1 should inhibit the growth of a broader spectrum of advanced prostate tumors than 

androgen ablation or conventional anti-androgen therapies without the many acute and 

chronic side effects associated with those treatments. We have developed and 

conducted a stringent in situ high throughput screen for small molecules that selectively 

disrupt the ELK1-AR synergy. We initially screened over 18,000 compounds from 

diversity sets that follow the Lipinski guidelines for “drug-likeliness”. Our top hit from the 

screen inhibited ELK1-dependent promoter activation by androgen in a dose-dependent 

manner but did not inhibit promoter activation via canonical androgen response 

elements. Follow up structure-activity studies identified a lead compound that was much 

more stable than the initial hit. We report discovery of this small molecule (KCI807) that 

selectively disrupts ELK1-dependent promoter activation by wild-type and variant forms 

of AR without interfering with ELK1 activation by ERK. KCI807 has an obligatory flavone 

scaffold and functional hydroxyl groups on C5 and C3'. KCI807 binds to purified AR, 

blocking ELK1 binding, and selectively blocks recruitment of AR to chromatin by ELK1. 

KCI807 narrowly affects a subset AR target growth genes and selectively inhibits AR-
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dependent growth of PCa cell lines and Enzalutamide-resistant PCa tumor xenografts. 

The results offer a mechanism-based therapeutic paradigm for disrupting the AR growth 

signaling axis in the spectrum of prostate tumors while avoiding global attenuation of 

testosterone actions. 

The second approach to developing new small molecule drugs  against prostate 

cancer involved the development of hybrid molecules. Histone deacetylase inhibitors 

(HDACis) can disrupt androgen signaling through the down regulation of heat shock 

protein 90 (HSP90). However despite their ineffectiveness in prostate cancer (PCa) 

cells  non-selective toxicities are associated with these molecules. We designed hybrid 

molecules containing partial scaffolds of the AR targeted drug, enzalutamide, and the 

HDAC inhibitor, suberoylanilide hydroxamic acid (SAHA),  to weaken the intrinsic pan-

HDACi activity of the molecule and to selectively target the cytosolic AR-HSP90 

complex in AR overexpressing and enzalutamide-resistant PCa cells. These new 

molecules, 2-75 and 1005, showed reduced potency in intrinsic HDAC inhibitor activity, 

degraded the HSP90 chaperone protein, induced hyper acetylation of the HDAC6 

substrate α tubulin, induced p21, and caused loss of viability of the enz-resistant C4-2 

cells all to a greater extent compared to either parent compound alone. These results 

suggested that these new molecules could be used as prototypes for the development 

of hybrid HDAC inhibiting drugs with reduced pan HDAC inhibitor activity and increased 

selectivity for AR overexpressing PC cells.   
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