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CHAPTER 1: RESEARCH DESCRIPTION 

PROBLEM BACKGROUND 

 THE PROBLEM ITSELF 

Product Development (PD) remains an uncertain process fraught both with reward and 

risk wrapped up by the uncertainties of the engineering development itself and outside changing 

factors over the timeline of each program.  Particularly, changing requirements during product 

development, play havoc with programs.  The multiple stakeholders with their different 

concerns, constraints, changeable priorities and the uncertainty in the cost and engineering 

characteristics of subsystem technologies all impact the total system choice through the program 

life.  Set-Based Design (SBD) methodology as a candidate engineering development approach 

promises to add resiliency into the PD process. 

While there are great qualitative examples from Toyota (Liker 1999), Schlumberger 

(Madhavan 2008) and others, SBD lacks a rigorous mathematical, quantitative formalization.  

Emergence of computational, combinatorial design generation and evaluation tools and methods 

continue, but there are limitations in their use and application as they are all focused on 

generating “point solutions”.  In general, they create efficient “bags” of Pareto optimal or near 

optimal solution points oriented to a single system design.  This is a great weakness because the 

supposedly optimal point solution early in the design will undergo unknown changes that directly 

affect the design space and ultimate program success.  Thus, no insight into system design 

decisions, that are robust and resilient to time and cost changes, occurs.  The additional ongoing 

requirements changes in thresholds and priorities can shatter the vulnerable or brittle point 

solutions when subsystem technology characteristics turn out to be different than expected. 
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A classic example of this was the Future Combat Systems (FCS) program that was to 

develop a family of light, but still well protected and network integrated armored fighting 

vehicles.  The Army outsourced the System Integration to Boeing which created organizational 

cultural problems.  However, the key issue documented for the program failure was the risk and 

uncertainty associated with the requirements as they shifted and morphed over time (Bradford 

2011).  Technically from the author’s experience, the key underlying issue was that the needed 

light-weight armor subsystem did not develop and mature to expectation.  This impacted the 

system weight margin so severely that at one point there were no feasible solutions out of the 

millions of combinations as the design effort progressed.  The program had to raise the system 

weight threshold to find feasibility.  The associated increased costs with the higher weight and 

other unfulfilled requirements eventually caused the Army to cancel the program.  Basically, the 

program’s PD process was too brittle to survive the point based design uncertainties as they came 

to fruition and created large cost breeches. 

Furthermore, from the author’s experience, the Earned Value Management System 

utilized to ensure the system integrators delivered on-time and on-budget, posted near to 

perfect and the Army Program Office successfully passed GAO auditing even though the program 

was cancelled.  This implies that the incremental contractor deliveries met Army expectations 

while the Army successfully managed the team, but the program itself failed.  The only rational 

explanation then, is that the unknown program risks, juxtapose to the requirements, manifested 

themselves to such a degree, that the program reserve was unable to contain the program cost 

breech. 
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The terms design, trade and state space generally mean the same thing, but are used to 

create different emphases in this proposal.  State space is used when considering more 

mathematical aspects.  Trade space is used specifically in the context of structured decisions.  

Design space is used and focused on design decisions occurring between the initiation of 

requirements and the completion of design and testing prior to full production. 

 SET-BASED DESIGN BACKGROUND 

Set-Based Design (SBD) is based on the principle of satisficing given multiple constraints 

(requirements).  Different stakeholders may be the source of different constraints.  The 

requirement thresholds change over time.  The relative priorities, i.e., the willingness of 

stakeholders to relax one requirement to be able to restrict another requirement and still have 

feasible solutions, also change over time.  SBD is an iterative process in which design and 

requirements evolve in parallel, in which stakeholders restrict and relax requirements with 

feedback regarding feasible solutions in design space given the requirements (Singer 2009).  It is 

a concurrent engineering process that helps stakeholders understand the interdependencies 

among the requirements and impact on design as they work to develop the performance 

specification and preliminary design. 

The guiding principle of SBD is to consider the set of feasible designs.  As requirements 

are tightened and re-balanced, the feasible design space is restricted until one, or a few distinct, 

alternative solutions remain.  The design space can also be restricted based on additional 

feasibility assessments and test results.  SBD does not presume there is an objective function for 
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the system, or even a collection of partial objective function for Pareto-optimality.  A design, i.e., 

a point solution, is feasible if it meets all the constraints.   

STATEMENT OF THE PROBLEM 

With increased execution speed requirements and cost scrutiny of modern large-scale 

programs, current execution strategies need resiliency to deal effectively with unknowns, risk 

and program changes.  Set-Based Design itself is a promising capability supporting resiliency and 

change during program execution.  More research is needed to create a functioning SBD trade 

space framework and eventual toolset.  Additionally, current SBD uses are primarily qualitative 

in nature.  Our research will also advance SBD quantitative analysis to engender and develop 

program Product Development (PD) resiliency. 

 
FIGURE 1 - POINT VS. SET BASED DESIGN CONCEPTS 
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Figure 1 shows the general conceptual difference between point-based design and set-

based design (Miller 1993). 

Great capability exists with current system design optimization models, but actual PD 

resiliency, that is set-based, is lacking since analytical mathematical tools, even if combinatorial 

based, only provide point solutions.  The narrow point solutions eventually create design issues 

and unplanned changes as the design uncertainty lifts over time.  This proposal addresses 

framework creation to enable a resilient set-based design process for complex programs.  The 

GAO itself has recognized the need for a greater diversity of design concepts earlier to lower risk 

and design problems later (Martin 2012).  SBD holds great promise when coupled with high speed 

accurate optimization to keep a richer, less failure prone design set to accomplish PD needs both 

in budget and on time.  The GAO specifically identified and correlated program success with 

richer alternatives or solution sets and program failure to those that had less.  However, that 

correlation was only related to the Analysis of Alternatives (AoA) which is wholly associated to 

very high-level requirements at the program start. 

Particularly, this framework will focus on the PD time segment from initial high-level 

requirements, to design completion prior to limited production.  This is specifically, from the 

completion of the AoA which occurs just before the Alternatives System Review (ASR) through 

the Critical Design Review (CDR) for defense programs. Currently, defense programs tend to neck 

down and lock conceptual elements very early in design, limiting the program office’s later 

decision making as unknowns become known. Commercial manufacturing generally follows this 

process, but lacks the formalism of government funded PD.  The framework will be relevant for 
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both commercial and government sectors. By combining set-based design in a framework 

structure that utilizes modern high speed mathematical analytics, a more open and rich design 

trade space can be maintained deeper into programs, allowing for a less risky and more flexible 

program office decision capability. 

Figure 2 shows the PD timeline for formalized defense sector programs.  A, B and C are 

formal program milestones.  Accompanied with the seven technical reviews a typical defense 

program consists of ten or even more epochs or decision points.  The reviews have informal 

decisions that directly impact the formal milestone decisions.  Business programs typically have 

the same work but are not formalized.  Our use of epochs in the framework represent a more 

generic approach but are decision points nonetheless.  Both defense and business should view 

design reviews and formal milestones as epochal decision points. 

 
FIGURE 2 - DEFENSE SECTOR PD TIMELINE 
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PURPOSE OF THE STUDY 

GENERAL GOAL 

As a general goal, we will extend SBD to improve resilience of the development process 

with respect to changes in requirements and to uncertainties in the availability of 

subsystem/component alternatives during system development.  The research will develop a 

conceptual framework that will describe an implementation of the resilient research itself that 

integrates mathematical analysis with the richness of SBD.  The research will combine the 

strengths of SBD and optimization into a new mathematical hybrid approach supporting the 

resilient design process itself and by association, derivative resilient designs that are neither cost 

prohibitive, nor brittle to requirements and uncertainty.  Finally, the research will develop a 

current case or example as a Proof of Concept (POC) to validate the framework and provide 

insight for eventual instantiation of a technical algorithm and solution. 

RESILIENT PD PROCESS CHARACTERIZATION AND GOAL ASSUMPTIONS 

A Resilient PD Process needs to be characterized in two macro manners.  The first is the 

ability to carry multiple efficient designs forward and deeper into the PD process than what is 

current in the singular design process.  The second is the ability to change or modify the design 

or designs on the fly, when uncertainties resolve and technical, cost or schedule risks come to 

fruition.  This may be before or after production.  This is the essence of why SBD was developed 

into Concurrent Engineering (CE) at Toyota in the 1990’s. 
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The development of SBD has been heavily focused toward developing the macro 

processes inside business itself and has only recently moved to actual formulation structures.  

Those structures have recognized the role of bringing in mathematical analysis to work and 

analyze the set solutions through PD (Singer 2009).  However, the research is extremely seminal.  

The fundamentals of what and how mathematical analysis itself is conducted and maintained, 

has not been addressed. 

The very first mathematical issue that must be resolved is the trade space representation 

or region definition of a set solution.  This is because set solutions typically include multiple point 

solutions that may be optimal, suboptimal or potentially infeasible.  Although, all solutions reside 

in the trade space of the system choices, those choices themselves are not static and will morph 

over time.  An entire new topology must be constructed to properly deal with set solutions.  

Supporting data structures need to be described and properly sized to support the potentially 

geometric increase in the solution dimensions themselves, since a set solution must carry greater 

data than a singular solution. 

This is a significant challenge requiring a large effort.  This dissertation’s macro scope will 

be developing the framework with a focus on the topology of the design space, specifically the 

design space region characterization for set solutions.  The research will directly consider the 

time effects associated with evolving requirements, cost basis changes, uncertainty and risk as 

key metrics for the future SBD hybridized analytical framework. 
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RESEARCH OBJECTIVES 

Objective 1:  Develop a rigorous framework extending SBD with formal definition and an 

analytical treatment of the design space created by system requirements, into feasible regions 

or “islands”.  The framework will provide a meaningful organization of the collection of feasible 

point solutions into regions such that: 

1. The regions are distinct from each other in a meaningful sense relative to the design 

process and design changes 

2. Within each region, the point solutions are like each other in a meaningful sense relative 

to the design process and design changes 

Objective 2:  Develop analytic methods to address the sensitivity of the topology of design 

space (i.e., the organization into regions) to the constraint levels, to understand critical levels of 

the constraints, and the effect of constraint levels on feasible regions of design space. 

Objective 3:  Extend the SBD framework to incorporate uncertainty in 

subsystem/component availability. 

Objective 4:  Develop an approach to collapse a feasible region of design space into one 

or more characteristic point designs that are most resilient with respect to changes in the 

constraints, i.e., such that changes in constraints tend not to change the characteristic point(s) 

for the region. 
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CHAPTER 2: REVIEW OF THE LITERATURE 

The Literature Review defines the current state of the Body of Knowledge (BoK) into six 

categories and definitions: 

1. Set-Based Design – General (important background) 

2. Set-Based Design – Formulations (related algorithm/framework development) 

3. Trade Space and Design Region Exploration 

4. Resilient Processes for Design and Development (other advancements related to but not 

SBD) 

5. Mathematical Tools and Methods 

6. Risk and Uncertainty Effecting Development. 

SET-BASED DESIGN – EXPERIENCE AND HISTORICAL EVOLUTION 

SBD started at Toyota and is an extension of the Toyota Production System (TPS).  More 

specifically, it is the analytical extension of their Concurrent Engineering process (Liker 1999).  It 

also naturally flows from their evolutionary improvement process. SBD is primarily concerned 

with not down selecting to a single design too early and with maintaining design data for 

continuous reuse, updating and improvement. 

Toyota learned early on to maintain multiple options throughout the design process. 

Process uncertainty directly impacts planned system integration.  Multiple companies have tried 

to copy TPS. While some have been successful, others haven’t. Typically, non-success is 

associated with not accepting the entire process. This extends to the use of SBD. 
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The U.S. Navy has decided to utilize SBD for their design process. Literature examples of 

military SBD programs are still seminal. The only current example is the Ship-to-Shore Connector 

Program. This is an ongoing program to replace the LCAC. The driving factors for choosing SBD 

for the Ship to Shore Program included a short design timeframe, starting from a blank sheet of 

paper and tight cost constraints. (Mebane 2011)  Of note, this is the only defense program in 

execution that is using SBD, although there are several programs much earlier in cycle that want 

to utilize SBD. 

The U. Navy is hoping to use SBD to affect rapid concurrent developments and to defer 

detailed specifications until trade-offs are more fully understood and they are uncertainty has 

been removed (Singer 2009).  Their version of SBD differs from Toyota’s process in that it must 

be compatible with the DOD acquisition process. This means that the requirements process is 

more deliberate than Toyota’s. Additionally, the Navy’s developmental process is more 

revolutionary than evolutionary compared to Toyota’s. The U.S. Navy is already seeing 

improvements in their design practice with the use of SBD. They have even built the case for the 

use of SBD and design resilience in their Ship Design Manager Manual. (Unknown 2012) 

The Navy as well as the Army are looking at using SBD to reverse a lengthy series of costly 

and failed large programs. The literature documents the Navy’s complete reversal of changing its 

primary destroyer ship type from the newer Zumwalt class to the Burke class. This was done to 

enable a new major AAW upgrade. The Zumwalt class’s design would have required a costly 

upgrade.  The Navy contractors for the Zumwalt class could pick from a fixed set of combat 

requirements (an acquisition reform change) that allowed the Zumwalt class to be less 
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compatible than the Burke class.  Thus, the Zumwalt class’s initial AAW structure was decided 

from a tighter design space.  The GAO audit of this fiasco referenced the need and recommended 

that more alternatives early in the PD cycle would help reduce later design failures. (Martin 2012) 

The key take-away from this section of the literature review is that SBD holds great 

promise and it has proven itself with several very good qualitative decisions.  However, there is 

no analytical and quantitative vision or framework that has been developed to create and 

support a resilient PD process. 

(Liker 1999) (Singer 2009) (Mebane 2011) (Martin 2012) (Unknown 
2012) 

Title: Toyota's 
Principles of Set-
Based Concurrent 

Engineering 

Title: What is 
Set-Based 
Design? 

Title: Set-Based 
Design and the 
Ship to Shore 

Connector (SSC) 

Title: Additional 
Analysis and 

Oversight Required 
to Support Navy 
Combatant Plans 

Title: Ship 
Design 

Manager and 
Systems 

Integration 
Manager 
Manual 

This is the 
definitive article 
that describes 
how SBD or Set 
Based CE (SBCE) 
is a key subset to 
Toyota’s PD 
process.  Key 
emphasis is made 
to holding back 
design “neck-
downs” until 
necessary.  
Process 
uncertainty is the 
key driver in 

This paper 
documents the 
Navy’s need for 
evolving models 
and analysis 
tools to be 
compatible with, 
among other 
things, set-based 
design (SBD).  

SBD allows more 
of the design 
effort to proceed 
concurrently and 
defers detailed 

This paper 
discusses the 
changes that a 
government-led 
design presents 
to design 
approach, 
including 
schedule, 
organization 
structure, and 
methodology 
using the SSC 
program as an 
example. The 
necessity for 

This GAO audit 
documents the 
Navy’s complete 
reversal of a 
primary ship design 
from the Zumwalt 
to the Burke class.  
A key 
recommendation to 
creating and 
maintaining more 
alternatives early in 
the PD process 
gives credence to 
SBD methods.  
Documentation of 

This manual 
serves as a 
guide to 
managers 
involved in 
Ship Design.   
SBD and 
design 
resiliency are 
both 
referenced 
and desired.  
No capability 
to execute 
and enable a 
resilient 
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effectively 
conducting 
engineering with 
manufacturing. 

specifications 
until trade-offs 
are more fully 
understood. This 
paper describes 
SBD principles, 
citing 
improvements in 
design practice 
that have set the 
stage for SBD, 
and relating 
these principles 
to current Navy 
ship designs. 

implementing 
SBD was the 
desire to design 
SSC from a blank 
sheet of paper in 
a short time 
frame - 12 
months. This 
paper describes 
SBD’s 
application to 
SSC, the 
program 
challenges and 
methodology 
adoption. 

sunk costs 
associated with 
“necking-down” 
design solutions too 
early are a key 
finding in the audit 
study. 

design 
process is 
given.  The 
need to 
having an 
SBD-based 
design 
process is 
implied. 

TABLE 1 - SET BASED DESIGN - GENERAL 

SET-BASED DESIGN – FORMULATIONS 

The literature documents several new potential SBD formulations. The literature asserts 

that SBD is superior over traditional point design since SBD maintains a set of solutions later into 

the design allowing flexible choices and design changes because the solution set is not “necked 

down” to a single solution that may fail. This flexibility allows for the eventual solution to 

overcome design failure associated with uncertainty. (Gray 2011) 

The literature proposes the use of fuzzy logic systems as a mechanism to inject 

probabilistic logic into the design process itself. Additionally, the use of fuzzy logic allows 

designers and engineers to better communicate uncertainty in the system design itself. The use 

of fuzzy design, was documented in the research to better model uncertainty and the negotiation 

of design variables. This was especially true when dealing with highly constrained designs.  Fuzzy 
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logic is a potential mechanism that could be applied in the framework as a black box process to 

represent uncertainty and risk.  It is yet to be determined if there is another analytical mechanism 

available that could perform that role. (Gray 2011) 

(Madhavan 2008) (Gray 2011) (Gray 2011) 

Title: An Industrial Trial of an SBD 
Example 

Title: An Applied SBD 
Communications System 

Title: Enhancement of SBD Via 
Introduction of Uncertainty 

A set-based multi-scale and multi-
disciplinary design method has been 
proposed in which distributed 
designers manage 
interdependencies by exchanging 
targets and Pareto sets of solutions. 
The research showed that SBD has 
the potential to reduce costly 
iterations between design teams, 
relative to centralized optimization 
approaches, while expanding the 
variety of high quality, system-wide 
solutions.   An industrial trial, with 
Schlumberger converted the existing 
Schlumberger design process into a 
SBD process. Results indicate that 
SBD delivers the benefits predicted 
in the laboratory, along with a host 
of advantageous side effects, such 
as a library of back-up design 
options for future design projects. 

This presentation covers 
how Set-based design 
(SBD) is superior over 
traditional Point design 
due to the total 
uncertainty in design 
through the PD process.  

Use of Fuzzy Logic Systems 
(FLSs) to share design 
communications of system 
structure and components 
example are covered.  The 
purpose is to affect a 
slower necking down of the 
set design space. 

This dissertation looked at the 
effects of introducing 
uncertainty representation 
into a set-based design 
process. The hypothesis was 
that the introduction of 
design uncertainty would 
enhance the facilitation of 
set-based design practices. 

The results of this 
experimental research have 
shown that the inclusion of 
uncertainty modeling in the 
set-based design process for 
the negotiation of design 
variables enhances the overall 
set-based design progression, 
especially when working with 
highly constrained designs. 

This research has led to the 
enhancement of the set-
based design process by 
providing capabilities to now 
represent uncertainty in the 
set-based design space 
though the use of fuzzy logic 
systems. 

TABLE 2 - SET BASED DESIGN - FORMULATIONS 
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A practical example considered an industrial trial of a collaborative design that had Pareto 

combinatorial solutions. Their research showed that SBD could reduce costly iterations between 

design teams. Schlumberger, the manufacturer, converted their design process into an SBD 

process. They documented the variety of solutions as being richer and of higher quality relative 

to earlier centralized single-point optimization approaches. Future needs were described to 

develop a library of backup design options and development of SBD tools into their collaborative 

design process. (Madhavan 2008) 

The literature concerning formulations showed that SBD is a better concept for 

maintaining flexibility in the design process, but that needs to be integrated with mathematical 

and analytical tools and processes. Both theorization and practical examples of analytical 

frameworks that directly address the uniqueness of the set-based design space are lacking or at 

best highly seminal. 

TRADE SPACE AND DESIGN REGION EXPLORATION 

The BoK does contain research into design space and regionalization for solutions.  

However, it is almost, if not completely focused on point solutions.  However, we still gain some 

insights.  Early design space methods, even though focused on point solutions, recognize that the 

actual state or trade space has specific mathematical characteristics that need to be exploited 

and analyzed to fully understand the design space.  Issues around orthogonality and other 

mathematical topologies need exploitation to understand and utilize the design space properly. 

(Gries 2004) 
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Further insight extends that proper design space exploration directly impacts both design 

convergence and program schedule during design.  Pareto analysis and a movement away from 

hard point solutions is discussed but the conceptualization of formalizing solutions away from 

point to set is lacking. (Thangaraj 2010) 

Finally, functional design in the SBD context is reviewed.  The U. S. Navy has recently 

developed a design space exploration and analysis tool which facilitates the sharing of design 

data and its preference structure.  SBD was shown to do a good job of sharing variable, feasibility, 

and robust information for the design. The paper also proposed future work to develop and 

integrate more functional design information finally the paper related need to further develop 

design trade space exploration into the SBD process itself.  However, the need for a mathematical 

topology for the set solutions themselves and the need to understand and manipulate the set 

solution design trade space is not covered. (McKenney 2012) 

(Gries 2004) (Thangaraj 2010) (McKenney 2012) 

Title: Methods for Evaluating 
Design Space Early in Design 

Title: Rapid Design Space 
Exploration 

Title: Influence of 
Functional Design in SBD 

This paper gives an overview of 
methods used for design space 
exploration (DSE) of micro-
architectures and systems. The 
DSE problem generally considers 
two orthogonal issues: (I) Single 
design point evaluation, (II) design 
space coverage during exploration. 
The latter question arises since an 
exhaustive exploration of the 
design space is usually prohibitive 

Rapid and effective design space 
exploration at all stages of a 
design process enables faster 
design convergence.  This is 
particularly important during the 
early stage of a design where 
design decisions impact design 
convergence.  This paper 
describes a methodology for 
design space exploration using 
design target prediction models.  

This article documents 
the first SBD application 
to a U.S. Navy design – 
the Ship to Shore 
Connector (SSC).  While 
the program was 
deemed successful, SBD 
process improvements 
for ship design were 
described. 
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due to the sheer size of the design 
space. We explain trade-offs linked 
to the choice of appropriate 
evaluation and coverage methods. 

The designer must balance the 
following issues: the accuracy of 
the evaluation, the time it takes to 
evaluate one design point 
(including the implementation of 
the evaluation model), the 
precision/granularity of the design 
space coverage, and, finally, and 
the possibilities for automating the 
exploration process. We also 
summarize common 
representations of the design 
space and compare current system 
and microarchitecture level design 
frameworks. This review eases the 
choice of a decent exploration 
policy by providing a 
comprehensive survey and 
classification of recent related 
work. It is focused on system-on-a-
chip designs, particularly those 
used for network processors. 
These systems are heterogeneous 
in nature using multiple 
computation, communication, 
memory, and peripheral resources. 

These models are driven by 
legacy design data, technology 
scaling trends and, an in-situ 
model-fitting process.  
Experiments on ISCAS benchmark 
circuits validate the feasibility of 
the proposed approach and 
yielded power centric designs 
that improved power by 7–32% 
for a corresponding 0–9% 
performance impact; or 
performance centric designs with 
improved performance of 10.31–
17% for a corresponding 2–3.85% 
power penalty. 

Evolutionary algorithm based 
Pareto-analysis on an industrial 
65nm design uncovered design 
tradeoffs which are not obvious 
to designers and optimize both 
power and performance.  The 
high-performance design option 
of the industrial design improved 
the straight-ported design’s 
performance by 29% with a 2.5% 
power penalty, whereas the low 
power design option reduced the 
straight-ported design’s power 
consumption by 40% for a 9% 
performance penalty. 

This paper introduces a 
design space exploration 
and analysis tool, which 
was developed to 
facilitate sharing 
preference-based design 
data. Compounding 
effects of variables, 
feasibility information, 
and robustness analyses 
are shared in the design 
groups using set-based 
communications. Finally, 
this paper outlines 
future work related to 
the integration of 
functional design 
information, as provided 
by the design space 
exploration tool, into the 
SBD process. 

TABLE 3 - TRADE SPACE AND DESIGN REGION EXPLORATION 

RESILIENT PROCESSES FOR DESIGN AND DEVELOPMENT 

The literature is full of ideas to make the design and development process more resilient 

in a qualitative sense, but is generally lacking in an integrated, quantitative sense.  These papers 

identified obstacles and gaps that will be addressed in our research.  Multiple reviews of maturity 
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assessment, data quality assessment and general design decision support were found. The 

literature also showed general improvement ideas around better collaboration and injection of 

sustainability into the PD process to generate more resilience. 

Maturity assessment is very important in reducing uncertainty between technological 

capability and cost. The less mature an assessment, the greater the risk and uncertainty is to 

successfully complete the design and move to production. Multiple maturity assessment 

techniques are available and vary in performance and capability. However, maturity modeling 

and the use of maturity metrics in actual system decision models is not well integrated. (Azizian 

2009).  This is a major concern area for defense programs that are traditionally much more 

kaikaku i.e. breakthrough than kaizen i.e. gradual improvement focused such as at Toyota.  Both 

sectors want a balanced design approach, but defense will always look for more breakthrough 

technologies. 

Data quality assessment is also referenced in the literature. Clearly, data quality directly 

impacts all designs. Multiple methodologies are available to select, customize, apply and improve 

data. However, the application to design data is not well documented. Data quality assessment 

is found more in the use and development of software specifically and less in design generally. 

Similarly, to technical maturity assessment, data quality assessment needs to be properly 

measured and used in a coherent manner for design processes and design data. (Batini 2009) 

PD as a process, requires the design team to share a similar culture for complete sharing 

of design information and data. Design logic can be viewed quite differently and color decisions 
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based on geographical and cultural differences. Given that many companies and organizations 

operate globally, this simple problem perturbs the design in both technical value and data quality. 

Additionally, new concerns such as sustainable development and ecological efficiency add to 

designs greater requirements. This bolsters the need for a SBD approach that will allow balancing 

sustainability needs with both technical performance and system cost.  (Fiksel 2003)  Very recent 

examples of this trend are available.  The most striking is perhaps Elon Musk’s ventures: Solar 

City and Tesla.  Mathematically, sustainability adds another dimension of valuation that is time 

dependent into the SBD state space.  

Trade space exploration is another critical need documented in the literature, for 

effective design. Papers range from discussing the complexities and cognition effects that people 

have in a qualitative sense (Daskilewicz 2012), to an actual quantitative review of trade space 

exploration tools (Spero 2014).  These framework papers supported the need for structure to 

trade space exploration but fell short of exploring the actual unique mathematical topology 

required for set solutions in their state space. 

Critical program decisions are made based on the outcome of trade studies that employ 

both qualitative and quantitative analyses. Particularly, trade space exploration for engineered 

resilient systems is envisioned to coalesce pertinent information tuned to specific decision-

makers and their needs. The literature documented the need for trade space exploration to 

ensure that attributes and data are accurate. The study presented best common practices for 

trade space exploration and that new tools were needed to track and document a richer trade 

space in order to create not just resilient solutions but a resilient process for design. (Spero 2014) 
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(Fiksel 2003) (Azizian 2009) (Batini 2009) (Daskilewicz 2012) 

Title: Designing Resilient, 
Sustainable Systems 

Title: A 
Comprehensive 

Review and Analysis 
of Maturity 
Assessment 
Approaches 

Title: 
Methodologies for 

Data Quality 
Assessment and 

Improvement 

Title: Rave: A 
Framework to 

Facilitate Research 
in Design Decision 

Support 

Sustainable 
development requires a 
systems approach. The 
development of 
sustainable systems is 
challenging because 
economic, 
environmental and 
social factors need 
balanced through the 
system life cycle.  
Traditional systems 
engineering is 
vulnerable to 
unforeseen factors. 
Resiliency leverages 
design diversity, 
efficiency, adaptability, 
and cohesion. 

Ecological efficiency 
improvements help, 
create value but broader 
systems thinking is 
needed.  A design 
protocol is presented. 
The approach 
encourages explicit 
consideration of 
resilience in the total 
system design process. 

This paper is a 
literature review of 
leading research and 
industrial practices 
for technology 
maturity assessment 
techniques.  The 
focus is on balancing 
cost and technical 
maturity.  The paper 
provides a review and 
analysis of maturity 
assessment 
techniques to provide 
a more resilient 
selection criteria for 
decision makers. 

The paper reviews 
methodologies 
that help the 
selection, 
customization and 
application of data 
quality assessment 
and improvement 
techniques.  It 
provides a 
description of such 
methodologies 
and compares 
them along several 
dimensions. 

Product 
performance and 
value are limited 
by physics, 
economics and 
human cognition.  
Product Design 
improvement is a 
direct result of 
technology 
advancement and 
its advantageous 
application. 

Engineer training 
and experience 
limit design, but so 
do the tools that 
support decision 
making. These 
limitations imply 
substantive 
cognitive 
challenges from 
alternative 
conception 
through trade 
studies. 

TABLE 4- RESILIENT PROCESSES FOR DESIGN AND DEVELOPMENT - 1 
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(Dremont 2013) (Holland 2013) (Spero 2014) 

Title: Maturity 
Integrated in a Meta 
Model of Knowledge 

to Help Decision 
Making in Design 

Title: Engineered 
Resilient Systems: A 

DoD Science and 
Technology Priority 

Area 

Title: Tradespace Exploration for the 
Engineering of Resilient Systems 

Different people and 
interaction in design 
decisions form part of 
PD. While 
collaborative, 
geographic and 
cultural differences 
color decisions. 

The PD process can 
be represented by 
the main sub 
processes from 
conception through 
design to production. 
Preliminary design 
represents the early 
stages of the design 
cycle. Of interest to 
us, particularly at this 
level, is the fact that 
the product being 
defined is the fulcrum 
of the PD process due 
to high uncertainty 
from a lack of 
important knowledge 
at this stage. Flexible 
decision support is 
needed early in PD. 

This document 
defines the USG goals 
to add resilience to 
their PD process.  The 
USG is concerned with 
expanding upon “fast, 
informed, adaptable” 
goals toward 
producing more 
complete and robust 
requirements, and 
generating 
requirements that 
consider many more 
alternative scenarios 
or designs. 

Their position 
supports SBD to 
create a more resilient 
PD process.  

They are also wanting 
to manage the 
perturbations or 
uncertainty associated 
with the original 
requirements as 
tactical usage evolves 
with adaptive 
enemies. 

Tradespace exploration supports the 
Systems Engineering Technical 
Management Process of Decision Analysis 
by identifying compromises, revealing 
opportunities, and communicating the 
impacts of decisions across a system’s 
development lifecycle.  Critical program 
decisions are made based on the outcomes 
of trades and the data coming out of tools 
and methods employing qualitative and 
quantitative analyses. Tradespace 
exploration for Engineered Resilient 
Systems (ERS) is envisioned to coalesce 
pertinent, timely information tuned to 
specific decision makers providing a holistic 
view of decision impacts on required 
system capabilities. This study reveals a 
fundamental insufficiency of ERS trade 
space exploration.  What is needed is a 
deeper understanding of how these tools 
are used when performing tradespace 
exploration. This will enable users to better 
assess tradespace exploration and their 
tools. A review of 81 candidate tradespace 
exploration tools is provided. This study 
addresses the need to assemble a “best 
common practice” process for 
requirements, attribute definition and tool 
selection. A paradigm shift towards 
common tradespace methods, tools, cost 
models, and steps is emphasized. 

TABLE 5- RESILIENT PROCESSES FOR DESIGN AND DEVELOPMENT – 2 
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The defense sector recognizes the need for greater adaptability and resiliency in 

programs.  These are current, stated high priority goals to achieve.  (Holland 2013)  SBD is 

recognized as a process that will not only open the trade space, but also consider uncertainty.  

The usage of mathematical analytics and combinatorial tools are both implied and assumed.  This 

logic is also carried into discussions on the need to understand and leverage maturity in PD 

(Dremont 2013).  The author’s dissertation directly ties on-going design maturity to reduce the 

high uncertainty early in PD.  He proposes that maturity meta-modeling must be integrated into 

PD as a framework.  

MATHEMATICAL TOOLS AND METHODS 

The literature in this area is rather sparse.  Generally, the BoK recognizes that using 

probabilistic methods is the main path forward in softening point-based solutions and recognizes 

that point-based solutions can create uninformed and even incorrect design directions.  Then as 

uncertainty is lifted, recognition of the incorrect path is revealed.  The literature here tends to 

view robustness more from the POV that the point solutions need to be looked at near where 

they’re at, as opposed to carrying a set of solutions that directly covers design uncertainty and 

risk.  Thus, regional description is for the area around the point solutions themselves.  

Recognition is given toward understanding that what may appear to be suboptimal solutions are 

the source of the final best design.  This dovetails with the Toyota experience and their general 

focus to employ smaller, less uncertain changes rather than revolutionary break through designs.  

The key take-away here is that the solution will need to at least soften the point solutions 

probabilistically to more accurately reflect the solution’s uncertainty. 
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Other research touching the very nature of solution clusters gives insight into how regions 

can be described since clusters share may joint edges relative to non-cluster members.  

Significant clustering research has been on-going for twenty to thirty years and forms the basis 

of data mining and the usage of genetic algorithms.  Unfortunately, the clustering research has 

been focused to look at state space entities in current time or as a group stepping forward 

through time.  There has been no application toward using clustering techniques through time 

and considering uncertainty.  However, the uniqueness of the actual graph structures themselves 

does give insight toward framework development (Fortunato 2010). 

Further research in this matter looks at the actual response surfaces of combinatorial 

solutions.  The key point looking forward into research is that multiple convex hulls are required 

to conduct response surface approximation.  A convex hull in this instance is a surface over a 

convex region described by multiple hyper-planes and their intersections.  This is a key point, but 

further questions as to how to categorize multiple convex hulls and to carry them in a set solution 

will need further investigation.  It is acknowledged that regions of solutions are needed to 

describe the solution space in the face of uncertainty (Goel 2006).  In this vein, another article 

postulated adding probabilistic bounds to soften the point solutions.  The author also tied the 

softening of the bounds directly to the cost of a robust design itself (Bertsimas 2004).  This 

concept clearly leads toward, but does not reach our conceptualization of utilizing set solutions 

to both make individual designs more robust and to make the PD process more resilient.  These 

analytical papers project from the point solution paradigm and fall short of touching and 

developing mathematics for set solutions. 
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(Bertsimas 2004) (Goel 2006) (Fortunato 2010) (Azadian 2011) 

Title: The Price of 
Robustness 

Title: Response Surface 
Approximation of Pareto 
Optimal Front in Multi-
Objective Optimization 

Title: Community 
Detections in Graphs 

Title: Dynamic 
Routing of Time-

Sensitive Air Cargo 
Using Real-Time 

Information 

Allowance for 
suboptimal solutions 
in linear 
programming 
problems is explored 
in this paper. 
Nominal values of 
the data are used to 
ensure solution 
feasibility and near 
optimality when the 
data changes.   This 
paper investigates 
ways to decrease the 
price of robustness 
by adding 
probabilistic bounds.  

A systematic approach is 
presented to 
approximate the Pareto 
optimal front (POF) by a 
response surface 
approximation. The 
approximated POF can 
help visualize and 
quantify trade-offs 
among objectives to 
select compromise 
designs. The bounds of 
this approximate POF 
are obtained using 
multiple convex-hulls. 
The POF is approximated 
using a quintic 
polynomial. The 
compromise region 
quantifies trade-offs 
among objectives. 

Graph representation of 
systems’ community 
structure, or clustering 
leverages the different 
organization of vertices in 
clusters where many 
edges join vertices of the 
same cluster while 
comparatively few edges 
join vertices out of the 
clusters. Such clusters, 
are independent 
compartments of a graph 
or regions of state space.  
This problem is hard and 
not solved, despite huge 
effort by a large 
interdisciplinary 
community of scientists. 
Significance of clustering 
and how methods should 
be tested and compared. 

The route planning 
of time sensitive 
air cargo and 
delays is the 
problem reviewed. 
This paper is 
unique in that it 
directly models 
uncertainty 
through a novel 
Markov decision 
model for a true 
optimization 
problem. 

TABLE 6 - MATHEMATICAL TOOLS AND METHODS 

The final article reviewed (Azadian 2011), gives the clearest indication as to our 

framework development.  The paper recognized the need to maintain a set of solutions for the 

routing of air cargo.  The problem uncertainty is associated with routing and scheduling of cargo 

movement where the cargo system, weather and the maintenance of mechanical systems all 
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interact.  Since routes can modify both through locations and time, albeit in a nearer, shorter 

time window than the system design time window, it provides the greatest insight into research 

going forward.  Considering all the other research, its proposal of using Markov decision modeling 

is insightful.  The key take-away from this group of literature is that set solutions may need to 

have some form of Pareto optimal front approximation in some type of Markov chain modeling.  

The size of the support structure for set problems could very well overwhelm data storage and 

manipulation capabilities.  Research is needed in both how to and how much of this logic to 

employ and to create both a sufficient and efficient SBD solution in the state space, with proper 

regionalization that will provide PD process resilience. 

RISK AND UNCERTAINTY EFFECTING DEVELOPMENT 

Our scope for the inclusion of risk and uncertainty in the framework will be a black box 

approach.  The actual mathematical description and analytical development of risk and 

uncertainty for SBD will be done in parallel with this dissertation.  However, risk and uncertainty 

still need to be addressed and modeled in the framework. 

Inclusion of Uncertainty in PD runs the gamut.  The lead paper discusses the need to 

conduct PD, integrated with Risk Management utilizing a Risk-driven Design (RdD) framework.  

The paper although conceptual highlights the need to have risk embedded in a PD framework to 

improve PD process resilience.  This article builds part of the case for the research we plan to do.  

Quantitative analytics were discussed but referred to as a future expansion need into the BoK 

(Bertsimas 2004).   
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(Bassler 2011) (Oehman 2012) (Ratiu 2004) 

Title: Risk-Driven Design - Integrating Risk 
Management with Product Development 

Title: Lean Enablers 
for Managing 
Engineering 

Programs 

Title: Using History 
Information to Improve 
Design Flaws Detection 

This Product Development (PD) thesis 
investigates the integration of risk 
management and uncertainty as an 
emergent property of the PD approach 
itself.  The Risk-driven Design (RdD) 
framework is used as a guiding concept 
for this research because RdD is the only 
risk framework that consists of solution-
neutral principles.  It represents 
objectives or outcomes of successful RM 
instead of prescribing specific and 
external processes on how to manage 
risk. Characteristics of resilience are 
introduced. 

Common PD frameworks were also 
analyzed. The analysis shows that existing 
PD frameworks only partially address 
resiliency in the design process.  Design 
for Six Sigma methods yield the most 
comprehensive risk management oriented 
PD approach. 

Results from a comprehensive survey 
among North American companies with 
185 respondents showed that companies 
currently focus their RM effort too much 
on technological risks and too little on 
customer related risks. A modified PD 
framework that utilizes RdD is proposed in 
the thesis. 

This paper presents 
lean enablers for 
managing 
engineering 
programs.  
Programs fail or 
succeed primarily 
based on people, 
not processes or 
tools. Unstable 
requirements 
increase the cost of 
R&D. Trade space 
exploration, should 
include sets of 
architectures.  This 
paper supports the 
need for a more 
resilient design 
process that 
considers the 
impact of 
requirement 
uncertainty and lack 
of trade space on 
program costs.  

This paper addresses how 
uncertain design flaws 
directly impact system 
maintainers.  Accurate and 
automatic identification of 
the design problems are 
needed.  Essential 
information as design 
problems appears later and 
evolve over time. The 
approach to use historical 
information of the 
suspected flawed structure 
may increase the accuracy 
of the automatic problem 
detection.  A large-scale 
case study is shown to 
improve the accuracy of the 
detection of God Classes 
and Data Classes, and 
additionally how it adds 
valuable semantic 
information about the 
evolution of flawed design 
structures.  This is an 
example of how design 
uncertainty may be 
reduced. 

TABLE 7 - RISK AND UNCERTAINTY EFFECTING DEVELOPMENT – 1 



27 

 

 

 

A key takeaway was that Lean Six Sigma practices appeared to improve PD process 

resilience.  This correlates with other articles that tie the potential use of probabilistic math to 

PD process resilience.  This thought is echoed and modified in another article that presents using 

lean enablers to deal with requirement uncertainty and to open up the design trade space 

(Oehman 2012).  Both papers point to Six Sigma to improve PD process resilience for programs. 

(Wang 1995) (Zhou 2011) 

Title: A Framework for Analysis of Data 
Quality Research 

Title: Application of Data Maturity in Product 
Development Process Control 

Organizational databases are pervaded 
with data of poor quality. However, 
there has not been an analysis of the 
data quality literature that provides an 
overall understanding of the state-of-art 
research in this area. Using an analogy 
between product manufacturing and 
data manufacturing, this paper develops 
a framework for analyzing data quality 
research, and uses it as the basis for 
organizing the data quality literature. 
This framework consists of seven 
elements: management responsibilities, 
operation and assurance costs, research 
and development, production, 
distribution, personnel management, 
and legal function.  The analysis reveals 
that most research efforts focus on 
operation and assurance costs, research 
and development, and production of 
data products. Unexplored research 
topics and unresolved issues are 
identified and directions for future 
research provided. 

In the concurrent and collaborative product 
development process, the realization of quantitative 
analysis and overall control of the development 
process management is the key to improving PD. The 
paper throughout describes the concept and role of 
data maturity, new methods to conduct quantitative 
analysis and overall control of collaborative product 
development process based on the idea of data 
maturity was proposed in this paper.  Based on the 
explanation of the theory of data maturity to control 
the process, the differences and relationship between 
data maturity and milestone was analyzed. The 
division method of data maturity level was discussed, 
and the corresponding relationship between each 
data maturity level and completion degree of the 
digital product model was illustrated also. In addition, 
the overall form of the product collaborative 
development process based on data maturity was 
provided. Finally, the detailed process between 
product structure design, process design and tooling 
design driven by each data maturity were explored, 
which realized the quantitative analysis and overall 
control of the product development process. 

TABLE 8- RISK AND UNCERTAINTY EFFECTING DEVELOPMENT - 2 
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The next grouping looks at uncertainty and risk elements that directly impact the design 

and not the risk process itself.  They include: usage of history information (Ratiu 2004), data 

quality (Wang 1995) and data maturity (Zhou 2011).  Ratiu postulates that history information of 

designs is not only valuable to baseline new design elements, but that it also provides insight into 

reducing design flaws.  This echoes defense sector concerns that maintainer data has been 

ignored at great cost to new programs and that there is great value in using history information 

to reduce design uncertainty itself.  Wang’s article, although dated, is still valid today.  Data 

quality, if not dealt with directly impacts design.  He provides a framework of data quality 

research that is useful.  Unfortunately, there is not a newer similar framework paper to reference. 

Zhou’s article ties in with other papers because it directly correlates the need to actively 

mature product data to reduce uncertainty and risk in PD.  His example which directly looked at 

not only design but tooling design added further conviction that uncertainty must be addressed 

and then as the data matures it should directly evolve the design and neck the set solutions down. 

LITERATURE REVIEW SYNTHESIS 

The BoK supports the theoretical foundation that uncertainty and risk severely impact 

designs as they morph and change in the PD cycle.  Multiple foundational examples of failed 

programs, particularly complex and high cost programs are directly linked to a lack of rich 

alternatives in a robust design space.  Furthermore, failures are tied to design process brittleness 

that is unable to deal with subsystem, assembly or component failures associated with 

uncertainties being realized through time in the PD process.  The ability of SBD to both wax and 

wane set solutions in the face of risk and uncertainty not only provides great promise but there 
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are multiple qualitative examples that have resulted in improved designs and the derived 

resulting industrial profits. 

SBD is not only promising with designs, but there are companies and programs that are 

effectively using it to remove design process brittleness to improve their PD processes.  All the 

literature points to the need of coupling quantitative mathematical analysis into the PD process 

to create not just more process resiliency, but cost-effective and technically improved solutions.  

The need for a framework that couples SBD with mathematical analytics is both real and overdue.  

Novel quantitative processes in point solution methodology whether with genetic algorithms or 

cutting edge combinatorial, stochastic based optimization are continuing to be worked on and 

documented in the BoK.  However, extensions into or in the usage of an analytical process 

coupling SBD logic with fast analytical mathematical tools in a framework or in practice are 

missing or so seminal as to be unavailable now. 

Without adding a quantitative basis to SBD, it will remain merely a very good, but 

qualitative effort associated with organizational conference room decision making.     This is not 

disparaging, but rather is encouraging in that SBD has already proven itself in decision making.  

Therefore, adding a quantitative nature to SBD that keeps the richness of SBD facing and agilely 

dealing with risks in PD, while adding a soft heuristical or even a highly flexible optimization 

process, is both unique and novel. 
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CHAPTER 3: METHODOLOGY 

THEORETICAL FRAMEWORK 

The theoretical mathematical framework (in purple) below shows the macro data 

processes at high level, that the framework will need to work and interact with, as it progresses 

through epochs of the Product Development cycle. We will develop framework formalisms and 

then showcase them in the Proof of Concept example problem.  Additionally, Figure 3 also shows 

the real-world interactions and connections that a framework must maintain to its evolving data 

sources.  Although outside of scope in this research (in blue), it should be noted that no 

framework can be resilient without easy and quick access to good data.  Set-Based Design 

considers the uncertainty of data, but it will function better with good data. 

 
FIGURE 3 – HIGH LEVEL SBD BASED PD FRAMEWORK 

Quantitative SBD Framework
Research and Design the Mathematics for the Framework

Solution Structure: Markov Decision Process
Solution Solve: Stochastic Dynamic Programming

Solution Derivation and Analysis 

EpochA EpochB EpochΓ EpochΩ

Core Design Data:
Performance
Burdens
- SWaP-C
- Costs
Risk/Uncertainty

Set Solution Data – Continuous Update/Decisions Anchored to Epochs but Flexible

Data Quality 
and 

Maturity out 
of Scope
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Fundamentally, our framework will focus development into creating and employing a 

continuous decision process where SBD solutions are carried forward through design milestones 

or epochs.  Current milestone thinking is that there is fundamentally a “necking down” of 

potential solutions at every milestone.  Our framework will keep set solutions longer into the 

process to avoid early mistakes as the uncertainty veil lifts and to also provide a rational, 

technology set of alternatives if an earlier “neck down” in the set solution proves to be 

deleterious. 

The future framework will allow for continuous design updating by developing and 

maintaining regional characterizations that provide insight into technology interplay and toward 

dependencies that move prove to be deleterious to the system solution as uncertainty lifts. 

Significant effort, as raised in the earlier questions is required to understand how to apply 

and correlate solution information for set solutions is going to be done.  This is truly a new 

frontier.  Great effort has been made in the past to create mathematically rigorous and correct 

algorithms and solutions for point based systems.  Further effort has been made to describe SBD 

to avoid the uncertainty trap that proven time and time again to fail the very best and most 

expensive programs.  However, little to no formulation has been accomplished directly with SBD 

outside of singular programs.  More qualitative process improvement has occurred, but the point 

remains that point solution mathematics are far ahead of SBD. 

This framework will lead in hybridizing SBD with current mathematical techniques.  

Research and insight into how set solutions and their regions will be conducted to provide a 
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rational path beyond the current heuristic thinking.  Significant effort will have to be made in 

understanding the data storage, data mining and analytical manipulation of set solutions. 

Finally, both cost effective logic and uncertainty logic will be employed to more accurately 

reflect the true unknowns as preliminary design concepts morph through time and modify in the 

face of evolving requirements, programmatic impacts and technology movement.  Continuous 

system integration processes, as designs morph need to become resilient.  It appears that the 

next major research area will be in the coherent application of SBD logic with mathematical 

analysis inside a data-driven framework that can provide timely guidance through time that is 

sensitive and inclusive of uncertainty. 

RESEARCH QUESTIONS 

Research questions include how to represent regions of design-capability space in a 

manner suitable to perform both the constraint restriction and relaxation operations of set-based 

design and the partition design-capability space into connected regions.  This is two sides of the 

same coin which focuses on how to explain the distinguishing characteristics of different regions.  

This leads to following considerations: 

What properties should formulation of “regions” have?  

What sorts of operations should be performed for the set based design/resilient process 

itself and separately the resulting resilient system designs? 

Conditions of uncertainty will include: the time and cost of technology maturation, the 

funding of that maturation, and specifically the individual performance and burden elements of 
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the subsystem options and the system itself.  Burdens will include: Size, Weight and Power – 

Coolant needed (SWaP-C), costs, risks and required Reliability, Availability, Maintainability – 

Durability (RAM-D). This leads to following considerations: 

How do the design choices, both point and set based, effect technology maturation 

uncertainties? 

Can these uncertainties be reduced or better managed with SBD? 

The interplay of design choices and dynamic funding relative to system and sub-system 

characteristics is an area of exploration.  What level of cost improvement can be expected with 

SBD? 

Funding for different technologies can be correlated for functional reasons that are not 

related to the underlying scientific, engineering challenges.  Technologies may compete to 

perform the same function, and by extension compete for funding, which when given resource 

scarcity usually results in a cancellation of at least one.  Technologies may be synergistic where 

they perform different functions with a positive interaction effect (the whole is more than the 

sum of the parts), in which case funding and/or development progress for one increases the 

likelihood of funding for the other.  What are the interplays between the main program 

forwarding its key technologies and smaller off-shoot engineering change efforts?  Commercially, 

this same question relates between kaizen (evolutionary, continuous change) and kaikaku 

(revolutionary, radical change) and its impact conducting concurrent engineering. (Liker 1999) 
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Conditions of uncertainty related to operational needs and conditions include the 

“threshold” and “objective” capability requirements.  This is where system function performance 

and life cycle parameter levels are measured relatively as to the importance of the different 

capabilities and their employment.  The level of capabilities provided by a system can affect the 

operational needs and conditions:  adaptive adversaries will choose theaters, tactics, and 

materiel that avoid the strengths and exploit the limitations of our systems.  Can this uncertainty 

impact be modeled in the framework? 

The region representation should be symmetric with respect to time in acquisition, i.e., 

the same representation used for necking-down the option set, should also represent the 

potential upgrade options.  How will the regions characterizations modify or change through 

program time? 

Initial clustering and technology off-ramp solutions need identified.  The following 

technical questions apply: 

1. How does the clustering define and characterize the regions? 

2. How will the framework define the on-going clustering over time? 

3. Optimization runs for each “set element” are focused on individual solutions, but by 

definition, each run may include a vast number of pareto-optimal solutions.  How will 

this modify the definitions of the set itself? 

4. Are database technologies sufficient to maintain a vast super set of mathematical 

solutions where each solution set represents a single discrete “set element”? 
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IMPORTANCE OF THE STUDY 

The dissertation will extend the concepts and methods of set-based design with a 

rigorous, practical theoretical framework to improve resilience in the PD process itself, under 

conditions of uncertainty that represent risk and ultimately program opportunity.  This is under 

developed and there is little to no information in the BoK beyond basic qualitative examples. 

A resilient system process is by definition, adaptable and extensible.  Resilient systems 

that are instantiated in a set-based framework are economical for modification and allow 

additional or enhanced capabilities to be applied during design.  This will allow programs to meet 

changing operational needs and conditions as well as exploitation of newly mature technologies.  

Currently, only qualitative examples of SBD-enabled resilient PD processes are known.  This effort 

will extend SBD research into a mathematically rigorous, quantitative venue. 

A resilient system process is also robust operating effectively in a wide range of external 

conditions to include incremental system degradation from damage to or degraded capabilities 

of internal components.  Resilient systems are trustworthy having predictable performance in a 

wide range of natural conditions and during damaged or degraded operational modes.  This effort 

will enhance PD process resiliency by allowing and defining quantifiable SBD analytics into a 

verifiable mathematical framework. 

A resilient system process is reliable having lower rates of critical mission failure and 

provide backup reduced modes to allow for easier maintenance recovery.  They also have low 
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accumulation rates of maintenance-action failures and lower system failure rates due to fewer 

total component failures.   

The primary focus of this research is on the “adaptable and extensible” aspect of 

resilience.  Once the concepts and methods are developed, examination for application and 

adaption will be addressed for other aspects of resilience.  This research area is ground breaking. 

Resilient design can be viewed from multiple perspectives. System development can be 

resilient regarding the design specifications and architecture as the design morphs during 

concept and engineering development in the PD cycle.  A completed system design itself can be 

resilient where the design and manufacturing carries variations to deal with the unknowns that 

become real during the PD cycle.  Additionally, components and assemblies can be individually 

resilient so that equipment can be upgraded or repurposed during RESET and RECAP phases.  

Concurrent, program integration of this type and magnitude is unknown in the defense sector 

and can only be seen in a qualitative sense from the Toyota and other commercial examples. 

Conceptually, set based design, keeps a broad a range of options throughout PD and 

specifically the design phase. (Singer 2009)  The design process itself allows iteratively restricting 

and relaxing constraints to define the “open” options, until a single design remains.  Constraints 

come from different stakeholders.  This is a resilient development perspective. 

Set based design can be extended to the resilient system design perspective.  Here, a 

specific design is viewed as the set of all potential future options and variants which in the 

systems perspective is a combinatorial set of subsystems.  The system is a platform that can 
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support a system family and continuously is open for upgrading and modification.  In this 

perspective, set based design keeps the greatest range of potential capabilities and future 

options open, subject to uncertain funding and operational conditions.  The focus of this research 

is on designing resilient systems or platforms and by later extension to development. 

The key mathematical focus extends from the need to have the PD process itself resilient.  

Point solutions, if optimal, are in a convex set of feasible solutions where the optimal solution 

can be found.  That set of point solutions occupies a state space or a trade space that is convex.  

Other heuristic based mathematical solutions may be employed if the region of feasible 

solutions, the trade space, is either too big or not completely convex.  In that situation, the best 

solution is understood as requiring additional qualitative analysis, but it remains the best point 

solution or is good enough that it can represent the best point solution.  Combinatorial 

optimization yields multiple pareto-optimal solutions in a convex trade space, but it differs in that 

it is sophisticated with its weighting of the metrics.  Thus, one may have a most reliable solution, 

a cheapest solution, a best-balanced solution in the combinatorial scenario.  However, again 

these are point solutions for a given discrete point in time. 

Set solutions have a region associated with them where they are characterized by a given 

technology or other set decision factor such as: cost or even programmatic issues outside of PD.  

Additionally, it is understood to carry uncertainty with it.  These regions then quite simply contain 

and describe a group of related point solutions that are an aggregation which is the set solution.  

A combinatorial or other mathematical tool may be able to identify that set’s region for a given 

snapshot in time.  However, going over time, the very changes of the technologies and reduction 
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in uncertainty, as risks dissipate or evolve, adds a degree of fluidity required to carry and map 

that set forward through time as the set itself evolves.  Regionalization of sets, their descriptions 

and needed development to extend mathematical analytic tools is central to this research.  Most 

importantly this is a way point in SBD research, as very little effort if any effort, has been made 

to add system level quantitative analysis for SBD solutions.  Understanding and knowing how to 

use set solution regions is the next step to adding resiliency to the PD process. 

RESEARCH SCOPE 

1. The framework will focus on the formalisms needed to adequately describe state space 

regions for the SBD problem 

a. Region topology 

b. Inclusion of cost and uncertainty weighted versus technical performance 

c. Other burden parameters such as size, weight, etcetera will be covered 

d. State space region characteristic changes over time  

2. The POC will be limited to a single system and not a more complex system of systems 

3. The POC will have two hierarchies: system and subsystem 

a. Consideration of higher granularity or more detailed hierarchies such as assemblies, 

sub-assemblies and components is out of scope 

b. Burden parameters will be scaled for the POC 

4. The framework will provide the mathematical formalisms necessary to execute a software 

development enabling set solutions indifferent to mathematical solver 

a. A current combinatorial tool/solver is available and will be used during the research 
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b. The framework will allow for the use of other tool/solvers such as genetic algorithms 

and other high-speed heuristic mathematical tools 

5. The scope of research regarding mathematical formalisms is neither focused toward the 

defense sector nor the commercial, private sector.  Information and examples are included 

from both sectors.  This is because PD is similar enough across both sectors.  However, the 

defense sector has a generally unified, systematic PD structure which lends itself to better 

examples since the commercial sector can choose to accept or reject any of the systems 

engineering processes that the defense sector follows. 

a. The scope for the POC will be based from a defense sector problem 

b. The time scope is shown below in Figure 4 

 
FIGURE 4 – PD PROCESS TIME SCOPE FOR THE DISSERTATION 
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RESEARCH APPROACH 

DEVELOPMENT 

OBJECTIVE 1 

Objective: Develop a rigorous framework extending SBD with formal definition and an 

analytical treatment of the design space created by system requirements, into feasible regions 

or “islands”.  The framework will provide a meaningful organization of the collection of feasible 

point solutions into regions. 

We will develop a formalism that supports set solution region discovery and 

characterization to be flexible and to address: 

1. regions of design space and regions of capability space that is requirements based and 

supports dynamic, evolutionary modifications of those same requirements 

2. different, dynamic and evolving search needs of the design space throughout the PD 

cycle 

We will utilize an optimization solver to both enumerate and define all optimal, feasible 

and in-feasible system solutions for an example design problem.  Once we find all potential 

system point solutions we will conduct research into the mathematical or state characteristics of 

these solutions to determine what the actual topology and makeup of set solutions.  We are 

expecting to receive future data sets from both the Tank Automotive Research Development 

Engineering Command (TARDEC) for a future armored vehicle development program.  The 

purpose will be to implement a medium scale real world problem. 
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OBJECTIVE 2 

Objective: Develop analytic methods to address the sensitivity of the topology of design 

space (i.e., the organization into regions) to the constraint levels, to understand critical levels of 

the constraints, and the effect of constraint levels on feasible regions of design space. 

We will develop a formalism to manage the set solution space throughout the PD process: 

1. Support the gradual necking down of sets 

2. Allow programs to proceed without failing cost containment 

3. Properly entertain risky, more promising technologies through the PD decision 

timeline 

4. Allow for programs to “fall-back” to safer, within cost, subsystems as risk and 

uncertainty clear over time, to avoid program cost containment breeches 

We will continue to utilize the optimization solver to resolve the trade space as time 

modifies it, but we will also research the solutions sets themselves to determine how the actual 

morphing of the constraints and requirements change.  This directly impacts the waxing and 

waning of the set solutions themselves and the fulfillment goal to eventually neck down the set 

solution to the best production solution.  

We will also look at the actual database needs for the design problem itself considering 

the changes over time.   We will consider the state space needs, the metrics and other associate 

problem constraints, variables and requirements as well. 
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We will support the basic operations of set-based design and tradespace exploration with 

mathematical analytical methods: 

1. The POC itself, will utilize a current combinatorial optimization algorithm to generate 

example set solutions 

2. We will develop a formalism to allow for multiple analytical methods beyond 

mathematical optimization 

3. This is not restricted to just extending to genetic algorithms, but to any heuristic based 

mathematical solver 

The use of continuous optimization solving and database structuring to maintain the set 

solution movements will be researched to define the eventual framework itself.  This objective 

will support set solution management for design programs as they move through design time. 

OBJECTIVE 3 

Objective: Extend the SBD framework to incorporate uncertainty in 

subsystem/component availability. 

We will develop a formalism that addresses the uncertainty associated with both the 

evolution inherent to the PD cycle and the inclusion of risk as a direct parameter modifying the 

set solutions: 

1. The PD process typically starts with requirements that carry unknowns especially 

regarding cost and technical fulfillment 

2. Risk is a combination of technical fulfillment, cost and schedule unknown impacts 
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3. Uncertainty and risk heavily interplay with the actual fulfillment of programs and a lack 

of considering them adds a brittleness to the progression of the design itself 

No research will be done to develop a metric or measuring system for either risk or 

uncertainty in general.  We will take a black box approach in assuming that the framework will 

support analytical risk and uncertainty scoring.  This is a different and out of scope effort for this 

dissertation.  However, we will treat and test the usage of uncertainty and risk metrics as to how 

they impact set solutions as with the other metrics and mathematical elements listed and 

described in Objective 2. 

OBJECTIVE 4 

Objective:  Develop an approach to collapse a feasible region of design space into one or 

more characteristic point designs that are most resilient with respect to changes in the 

constraints, i.e., such that changes in constraints tend not to change the characteristic point(s) 

for the region. 

We will continue to utilize the optimization solver and database tools above to store and 

understand the developed design information for the set solutions.  We will research the means 

to accurately describe the representative or characteristic region point (s).  Potential exists for 

utilizing closest Euclidian distance, most shared sub-systems or other metrics.  The actual 

technique and validation is part of this research. 

DEMONSTRATION AND EVALUATION 

The research will develop, in the Proof-of-Concept (POC) example problem, validation for 
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the objectives.  As stated above, we are expecting expanded real data from a customer, to further 

validate our findings and move the research into enterprise.  It is expected that an expanded POC 

for this larger problem set will be created and documented.  The POC example problem itself, 

will research to determine what is needed for future framework expansion both academically 

and commercially.  It is anticipated that the partner data providers will help with the actual 

validation and assessment of the framework itself but that is all out of scope for the dissertation 

effort. 

The POC example problem will be used to identify computational requirements for the 

usage of future larger data sets versus the developed framework conceptualization and 

formalisms.  It is also expected that partners will support in validating the accompanying SBD 

topology in the framework itself, post-dissertation. 

Appendix A includes a detailed example of how the framework would work with a small 

sized, but near real-world automotive upgrade program for a generic Main Battle Tank (MBT).  

This example explains the framework in a context where designs are the kernel data elements 

i.e. designs are the points in a set solution.  This is the easiest and most visual mechanism to 

understanding how set value significantly differs from specific point value.  However, when the 

algorithmic structures are created in the framework, we will utilize options as the kernel data 

elements for solution creation.  This presents no issues as every design is a unique set options 

and every set of options describes one or more designs, i.e. a design set, which are supported by 

the option set.  Thus, options and designs can be expressed uniquely and a simple mathematical 

transform is all that’s required to know which designs are represented by options and vice versa.  
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CHAPTER 4: MATHEMATICAL FRAMEWORK AND EXAMPLE PROBLEM 

SBD is a proven qualitative process associated with organizational conference room 

decision making.  This is not disparaging, but rather is encouraging in that SBD has already proven 

itself in decision making.  Therefore, designing a quantitative form of SBD that keeps the richness 

of SBD facing and agilely dealing, with uncertainty in PD, is unique and novel. 

EXTERNALITIES AND APPROACH 

Many systems, especially military systems, have protracted development lifecycles.  

During development, various external factors that influence design decisions often change.  The 

challenge is to develop a system that ends up being cost-effective and is cost effective to develop, 

despite changes in the externalities during development.  A development process that meets 

these challenges is resilient with respect to changes in the externalities. 

The externalities we are considering are: (1) the relative values of system performance, 

system burden, and unit production cost, and (2) the development cost, time and uncertainties 

of candidate technologies/ options. The external factors have a known value at any point in time, 

but their final value, when the development is over and the system enters production, are 

unknown until the end.  They are indeed “random” variables.  Traditional point design treats the 

externalities as “deterministic”.  As a result, reactions to changes can incur greater costs and/or 

performance compromises than if the development program had considered potential variability 

of the externalities. 
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The approach we are pursuing is Set-Based Design (SBD).  SBD carries a (redundant) set 

of options and alternatives forward during development, incrementally winnowing and adjusting 

the set as development proceeds and in response to changes in the externalities, leading to a 

final point design for production.  The principle of SBD is to keep a broad range of options under 

consideration “as long as possible” to provide resiliency to changes in the externalities. 

FRAMEWORK OBJECTIVES 

Our research objectives are: 

1. To give a rigorous formulation to the principle of Set-Based Design, 

2. To give a rigorous analytical approach to make set adjustment decisions, 

3. To give a rigorous analytical formulation of when to make set adjustment decisions. 

EXPECTED NATURE AND SIGNIFICANCE OF THE RESULTS 

We expect that set solutions can be valued to not only include the values of the set’s point 

solutions, but also the value of the set with respect to reducing design uncertainty and increasing 

process resilience for PD programs.  A small example framework problem is constructed to show 

how a SBD problem can be developed.  This example problem utilizes a Markov Decision Process 

(MDP) with a Dynamic Programming (DP) backward propagation algorithm to optimize the SBD 

Contribution-to-Design.  This “Contribution-to-Design” is stochastically determined and is 

expected to yield a more resilient, and potentially, a more intuitive design process through time.  

Finally, we compare the example solution to a traditional single point design scheme.  This 
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provides insights into future development to quantify set value versus point value to extend 

quantitative optimization into the current SBD qualitative processes.  

FRAMEWORK FORMULATION 

The high-level framework process uses a stochastic process to define the value, i.e. 

Contribution-to-Design, of developing multiple options, in a set from PD milestone/epoch to 

epoch.  Contribution-to-Design is a combination of system performance, production cost, 

development time and cost. We treat the Contribution-to-Design as a black box treatment 

(allowing flexibility of application) to seed the values required to develop a Markov Decision 

Process.  This is standard stochastic automata with utilities that presume the “memoryless” 

property, where actions taken in a state depend only on that state and not prior history.  We 

then recursively solve the problem as a Dynamic Programming model utilizing Bellman’s Equation 

with no discount to determine the optimal action (Bellman 1956).  It is worth noting that this is 

neither direct discrete optimization of a design’s characteristics, nor Pareto combinatorial 

optimization that yields a non-dominated set of point solutions.  The three methods will be 

compared using example problem data. 

THE DECISION PROBLEM 

We assume a system consists of several subsystems.  Each subsystem has alternative 

technologies and design options to meet the system requirements.  A final point design consists 

of exactly one choice of an option for each subsystem.  In the general case, not all the subsystems 
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will be present in the final design, so the option of “none” is a realization option for each 

subsystem. 

During development, technologies and design options are selected or rejected, 

subsystems are designed, and integrated in a task network organization leading to complete 

prototype production and testing.  Subsystem design and integration take time and incurs cost, 

and the time and costs depend on the technology and design option choices.  The end system 

performance, production cost, and the development time and cost all depend on: (1) which 

subsystem technologies and design options are chosen, and (2) when the selection/rejection 

decisions are made.  

During development, information regarding the distribution of the external factors 

changes.  Over time, as more data become available, estimates of the means change and 

uncertainty generally decreases – although it is possible that uncertainty can increase.  

The decision problem is to select or reject subsystem options at the appropriate milestone 

or epoch to achieve “best value”, the Contribution-to-Design at the end of the development 

program, despite adapting to changes in the externalities.   

For the illustrative example below, we will assume that we only have three total system 

designs: D1, D2 and D3 available from allowable combinations of subsystem option.  These three 

designs enumerate into seven “Set Solutions”: SS1, SS2 … SS7.  Additionally, we also show the 

possibility of skipping design work. 
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In Figure 5, the PD milestones/Epochs are arranged in time order, such that Epoch 𝛢𝛢 is 

first and Epoch 𝛺𝛺 is last.  The set solutions are all the possible combinations of the three designs 

and are shown up to Epoch 𝛺𝛺.  At Epoch 𝛺𝛺, the last epoch, the final design must be selected, so 

only the designs are shown.  This is a visual representation of the Set-Based Design Process for 

considering which designs to develop.  The colored arcs below represent one (yellow) or two 

(red) designs from not developing a design in the previous epoch.  In most programs, these are 

possible but unlikely.  For example, SS1 in B going to SS2 in Γ requires catching up all the work for 

D2 missed before B. 

 
FIGURE 5 – EXAMPLE PROBLEM – TOTAL SET SOLUTIONS 

DECISION SITUATIONS AND DESIGN DECISION STRATEGIES 

There are four macro decision situations the framework supports: 
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1. When new information regarding the distributions of the externalities becomes 

available, 

2. When an option enters the critical path, i.e., if the design and integration of the option 

does not begin immediately, but has begun later, it increases the total development 

time, 

3. When an option reaches the point at which keeping it under consideration, 

development or integration begins to incur costs at a higher rate, and 

4. When new information indicates that a new option is no longer feasible. 

Situation (a) involves reconsideration of the entire set-solution.  Situations (b) and (c) 

involve only the decision to keep or reject the specific option.  Situation (d) requires the problem 

to be restructured without the option by removing any system design choices that included the 

option. 

Design decision strategies for a point solution are restricted to either modifying the 

current point solution or replacing it with a new point solution.  For set solutions, the choices are 

more resilient.  One can choose to neck-down (i.e., reduce the set size), open-up, or completely 

modify the set solution. 

The following are examples of design decision strategy changes: 

• Neck-Down Example: Epoch 𝐴𝐴: SS7 to Epoch 𝐵𝐵: SS6.  D2 dropped at Epoch 𝐵𝐵. 

• Open-Up Example: Epoch 𝐴𝐴: SS3 to Epoch 𝐵𝐵: SS5.  D1 added at Epoch B with recovery 

costs. 
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• Complete Modify Example: Epoch 𝐴𝐴: SS4 to Epoch 𝐵𝐵: SS3.  D1 and D2 dropped and D3 

added at Epoch 𝐵𝐵 with recovery costs. 

FRAMEWORK DIMENSIONS 

• Epochs aka Milestones (E) – Discrete Time points from 𝐴𝐴 to 𝛺𝛺 where: 

o 𝛺𝛺 = total number of epochs (𝛺𝛺 =3 in the illustrative example): 

o 𝑡𝑡 is the epoch index 

o Design Data is updated, reviewed and then used to make forward 

programmatic decisions from 𝐴𝐴, 𝐵𝐵, 𝛤𝛤… 𝑡𝑡 + 1, … 𝛺𝛺 

• System Designs (𝛥𝛥) – the allowable individual system designs possible from the system 

trade space from 1 to 𝐷𝐷 where: 

• 𝐷𝐷 = total number of allowable system designs (𝐷𝐷=3 in the illustrative example): 

o 𝑑𝑑 is the design index 

o A design must include exactly one option for every subsystem or technology 

under consideration in the trade space 

o Each System Design, 𝛥𝛥𝑑𝑑  is a unique combination of technology options of 

exactly one per subsystem and is both a point solution and a singleton set 

solution 

o Other set solutions are the combinations of multiple system designs (see 

Figure 1) 

• Subsystems or Technology types (SS) – The discrete technology subsets that are 

required to frame a complete system choice where: 
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o 𝐼𝐼 = total number of technology subsets or subsystems (𝐼𝐼 =3 in the illustrative 

example) 

o 𝑖𝑖 is the technology subset or subsystem index 

• Options (O) – for every technology subset or subsystem there are a set of options 

available where: 

o 𝐽𝐽𝑖𝑖  = total number of options per 𝑖𝑖 th subsystem ((𝐽𝐽1, 𝐽𝐽2, 𝐽𝐽3)  = (2,2,2) in the 

illustrative example) 

o 𝑗𝑗 is the 𝑖𝑖th subsystem option sub-index 

o 𝐾𝐾  = total number of options in the trade space (𝐾𝐾  =6 in the illustrative 

example) 

o 𝑘𝑘 is the iterative vector transformation index taken from of the (𝑖𝑖,𝑗𝑗) option 

pairings 

TOTAL DEVELOPMENT COSTS 

The framework calculates Development Costs for every option epoch to epoch. Recovery 

Costs are calculated for options not developed in prior phases.  Finally, System Integration costs 

are calculated for all phases.  The framework considers the following: 

1. Options may share certain costs with other options, 

2. Reduce or Increase System Integration costs dependent on the shared development, 

3. Recovery Costs are calculated for all options where the timeline permits option 

recovery, 

4. There are no recovery costs if the new Set Solution is the same as the old, 
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5. Recovery costs are lower if the new Set Solution shared development with the old, 

and 

6. Recovery costs are higher if development needs to be made up. 

CONTRIBUTION-TO-DESIGN (CTD) VALUE 

We assume that a PD program will consider an initial set solution at the beginning and 

then will potentially modify that set solution at the different program milestones/epochs based 

on new information as time progresses and uncertainty clears.  The Contribution-to-Design (CTD) 

is calculated for each set solution at each epoch.  The framework supports the natural PD cycle 

where subsystem options are typically developed somewhat independently early and then 

require more system integration later.  The following Table 9 shows the relationships between 

the framework dimensions as PD advances through the epochs and phases. 

 
TABLE 9 – FRAMEWORK DIMENSIONAL RELATIONSHIPS 

In Table 9, we show what the key dimensions, values and costs are that the framework 

must track and calculate, to data populate the Markov Decision Process algorithm.  We also show, 

what the required cost balance equations are for each phase of work, i.e. epoch to epoch.  At 

Epochs Key Dimensions Value Calculations Development Costs (DC)
A Options Set Solution CTD Options Dev (A to B)
B to (Ω - 1) Options Set Solution CTD Options Dev + Recovery Costs (B to B+1)
Ω - 1 Options Set Solution CTD Options Dev + SI Costs (Ω-1 to Ω) *** Final Design Set
Ω Designs Point Design Value Options SI Costs (Ω to TP) for the Optimal Design (∆*)
Test/Production (TP) Final Design NA NA

Phases Cost Control Equations for Phase (Et to Et+1)
EA to EB 

EB ... to … EΩ-1

EΩ-1 to EΩ

EΩ to ETP Final Design SI Costs <= Pre-Test Development Budget

∑ 𝐷𝐷𝐶𝐶𝑘𝑘𝐾
𝑘=1 <= Phase Development Budget

∑ 𝐷𝐷𝐶𝐶𝑘𝑘𝐾
𝑘=1 <= Phase Development Budget
∑ 𝐷𝐷𝐶𝐶𝑘𝑘𝐾
𝑘=1 + ∑ ∆𝑑𝑑 𝑆𝑆𝐼𝐼𝐷

𝑑𝑑=1 <= Phase Development Budget
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Epoch Ω, we down select to the final design.  At Ω, the option development is complete, so the 

point design values are all that remains.  Specifically, this is the CTD for the individual subsystem 

option of the single designs themselves.  It is also assumed that only SI costs remain at this point 

in the process. 

General Control Equations: (1) Reject options development that exceeds the phase 

budgets, and (2) Select exactly one Design at Epoch Ω. 

THE CONTRIBUTION-TO-DESIGN FUNCTION: OPTION, SUBSYSTEM AND SET 

CTD DESCRIPTION AND DISCUSSION 

The Contribution-to-Design (CTD) for an option includes both the performance/burden to 

target difference of the technology/option and the expected variance of the developing 

technology/option.  The framework formulation measures the expected confidence of the 

specific technology/option to meet Design Readiness Levels during the phases.  The Design 

Readiness Level is an expansion of the DOD’s Technical and Material Readiness Levels.  Figure 9, 

in Appendix A shows the formal structure for the nine DOD Technical Readiness Levels.  In the 

context of the framework, the Design Readiness Level reflects the maturity of the design relative 

to each of the required target levels in a program. Without loss of generality, in the illustrative 

example, we employ three general levels for design readiness: 1-Least Ready; 2-Somewhat 

Ready; and 3-Fully Ready. 

The general expectation for Design Readiness Level is that, if an option is invested in for 

development during the next phase, it’s readiness should improve, or be no worse, than at the 
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previous epoch.  Tracking the Design Readiness Level throughout the program is synonymous to 

the design moving toward or exceeding the requirement.  However, in no case will the framework 

restrict this.  The framework fully allows modeling decline in readiness.  There are many real-

world cases where readiness estimations were wrong.  Modeling risk and uncertainty for 

readiness is key to injecting realism into estimating readiness improvement.  A whole additional 

area of uncertainty is associated with the potential of changing requirements.  Program offices 

should stochastically model variance in epochal readiness movement for both vagaries in design 

fulfillment and the potential for requirement shift.  The framework imposes no constraint to 

model the targets stochastically for requirement variance and we explicitly model the designs for 

development variance. 

As time progresses, variance should shrink and the probability of achieving the target 

value should either increase for a converging design, or decrease for a diverging design.  

However, the framework will allow any stochastic modeling of the parameters.  The work done 

between Epochs should refine the estimate of the mean and reduce the variance. 

While the estimated confidence is based on estimates, the framework allows for 

continuous updating as uncertainty in the estimates lessens over time.  With the inclusion of 

variance, uncertainty can be properly modeled.  Specifically, probabilities should be updated at 

each epoch as the program learns more about each of the options and can refine the probability 

estimate as the design crystalizes.   Additionally, this approach has significant computational 

advantages since it permits meta-heuristic optimization techniques.  We calculate CTD (s) for: 

options, subsystem and set solution. 
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The Contribution-to-Design is specifically the weighted value of an option, subsystem or 

set solution for a given Design Readiness Level at an epoch.  The ability to transition from epoch 

to epoch is stochastic and is based on the forecasted options’ ability to change state. 

 

CTD OPTION FORMULATION 

This is the Contribution-to-Design formulation for an option at a specific Epoch looking 

forward: 

CTD = ∑ 𝜔𝜔𝑖𝑖 ∙ 𝑃𝑃[𝑍𝑍𝑖𝑖]𝑛𝑛
1           (1) 

where 𝑃𝑃 is the probability lookup of the 𝑍𝑍𝑖𝑖 value (defined below), 𝜔𝜔𝑖𝑖 is the weight of the 

externality (performance or burden parameter), and 𝑖𝑖 is the index for all 𝑛𝑛 externalities. 

∑ 𝜔𝜔𝑖𝑖
𝑛𝑛
1 = 1          (2) 

𝑍𝑍𝑖𝑖 = {(𝜇𝜇𝑖𝑖 − 𝐿𝐿𝑖𝑖)/𝜎𝜎𝑖𝑖} where:        (3) 

𝐿𝐿 = Performance or Burden Requirement Target Value 

{𝜇𝜇,𝜎𝜎} = System or Sub-system externality probability distribution  

In Table 10, we show an example of Option 1’s individual Contribution-to-Design 

calculations for meeting Readiness Levels 1 and 2.  In this example we “weight” the three metrics 

(performance, physical weight burden and AUPC burden).  The Contribution-to-Design is then a 

weighted value of the three probability measures.  
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TABLE 10 – INDIVIDUAL CONTRIBUTION-TO-DESIGN CALCULATION 

CTD SUBSYSTEM FORMULATION 

For Set Solutions with more than one option per subsystem, it is expected that the 

multiple options reduce total design uncertainty should a single option fail to meet targets. 

This is the cornerstone of SBD and has been effectively utilized for over twenty years, 

even if not quantitatively proven.  For the framework, we assume that the multiple option 

designs are independent since we only calculate the probabilities of exceeding targets of the 

readiness levels.  Given independence, the Contribution-to-Design formulation for multiple 

options in a subsystem is: 

𝐶𝐶𝐶𝐶𝐷𝐷𝑖𝑖,𝑅𝑅𝐿𝐿𝑡𝑡→𝑅𝑅𝐿𝐿𝑡𝑡+1 = 1 −  ��1 − � {1}𝑥𝑥𝑖𝑖,𝑗𝑗,𝑡𝑡,𝑅𝑅𝑅𝑅𝑡𝑡
𝑃𝑃𝑟𝑟𝑖𝑖,𝑗𝑗{𝑅𝑅𝐿𝐿𝑡𝑡 → 𝑅𝑅𝐿𝐿𝑡𝑡+1}𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑗𝑗,𝑅𝑅𝐿𝐿𝑡𝑡→𝑅𝑅𝐿𝐿𝑡𝑡+1

3

𝑅𝑅𝐿𝐿𝑡𝑡=1

�
𝑚𝑚𝑖𝑖

𝑗𝑗=1

 

{1}𝑥𝑥𝑖𝑖,𝑗𝑗,𝛺𝛺,𝑅𝑅𝑅𝑅𝑡𝑡
: 1 if option 𝑗𝑗 of subsystem 𝑖𝑖  is selected and its current state in 𝛺𝛺  is 𝑅𝑅𝑅𝑅𝑡𝑡 , 0 

otherwise.            (4) 

where 𝐶𝐶𝐶𝐶𝐷𝐷𝑖𝑖 is the subsystem CTD for the 𝑖𝑖th subsystem. 𝑗𝑗 is the index for the option members, 

from 1 to 𝑚𝑚, where 𝑚𝑚 is the total number of options in the same subsystem that are in the set 

solution. 

Epoch A Option 1 Performance Weight Burden AUPC Burden CTD
Weight 0.3 0.3 0.4
Current Mean 350 350 47000
Current SD 50 100 10000
DRL 1 Target 250 400 45000
DRL 2 Target 300 390 44000
P (X > DRL 1 Tgt) 0.9772 0.6915 0.4208 0.6689
P (X > DRL 2 Tgt) 0.8414 0.6554 0.3821 0.6019
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For the example problem, we will use the data from Table 3 for the third subsystem in 

Epoch 𝐵𝐵 moving forward to Design Readiness Level of 3.  We assume the set solution has options 

5 and 6: 

CTD (Subsystem 3, Epoch 𝐵𝐵 to Epoch 𝛤𝛤, DRL 3) = {1 − ((1 − 0.7) ∙ (1 − 0.1))} = {0.73}. 

CTD SET SOLUTION FORMULATION 

The total CTD for the set solution must then consider the individual subsystem CTD’s at 

the epochs.  Depending on program situation, it may be important to weight the subsystem CTD’s 

differently.  For example, an automotive program may value its engine subsystem higher than its 

entertainment system for its sports car while it reverses that weight value for its minivan.  The 

CTD for the entire set solution at an Epoch moving to given Design Readiness Level during the 

next phase is: 

𝐶𝐶𝐶𝐶𝐶𝐶 =  ∑ {𝑊𝑊𝑊𝑊𝑖𝑖 ∙ 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖}𝐼𝐼
1         (5) 

where 𝐼𝐼 = the number of subsystems, 𝑖𝑖  is the subsystem index, and 𝑊𝑊𝑊𝑊 is the relative 

weight of the subsystems value. 

For the example problem, we will use data from Table 11 at Epoch 𝐵𝐵 for Design Readiness 

Level 3 and an arbitrary weight vector of {0.4, 0.4, 0.2} for the subsystems.  The example set here 

includes all options except for Option 1.  Note: Options 1 and 2 are for a Subsystem A, Options 3 

and 4 Subsystem B and Options 5 and 6 Subsystem C in this example. 

CTD (Set Solution, Epoch 𝐵𝐵, DRL 3) = ((0.4 ∙ 0.9) + (0.4 ∙ 0.73) + (0.2 ∙ 0.73)) = 0.81. 
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TABLE 11 – EXAMPLE ACTION, STATE AND TRANSITION MATRIX 

In Table 11, we show examples of the elements for the required action and state spaces 

to enable the algorithm.  The current Design Readiness Levels (DRL) are in Row 3, and Rows 4 to 

6 show the probability of the options moving up, if invested in for the phase development to the 

next epoch.  Any probability distribution function is allowable, as we are only concerned with the 

likelihood of state changes.  The DRL’s estimates can come from any probability distribution the 

engineering team would use to model the option design likelihood for movement upwards.  We 

also simplistically assume that if the probability for a DRL is equal to 1, it has attained that DRL. 

Although not considered in this current framework a future expanded framework may 

want to consider multiplying the probabilities, instead of taking a weighted average.  For the 

example above, an alternative CTD = 0.9 * 0.73 * 0.73 = 0.48.    Using a weighted average can 

hide the fact that one of the elements has a probability of 0 if the other elements have a high 

probability.  This may mean that in that case, the concept is not feasible if there is no probability 

of success for one metric.   Using the product may also eliminate the need to develop weights.  

However, not all subsystems are equal so we developed the CTD to have a weighting structure. 

Subsystem Subsystem
Epoch A 1 2 3 4 5 6 Epoch B 1 2 3 4 5 6
Action 1 1 1 1 1 1 Action 0 1 1 1 1 1

State DRL 1 1 1 2 1 2 State DRL 1 2 2 2 2 2
P(DRL => 1) 1 1 1 1 1 1 P(DRL => 1) 1 1 1 1 1 1
P(DRL => 2) 0.6 0.7 0.5 1 0.7 1 P(DRL => 2) 1 1 1 1 1 1
P(DRL => 3) 0.3 0.2 0.2 0 0.3 0 P(DRL => 3) 0.2 0.9 0.7 0.1 0.7 0.1

A B C A B C
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VALUE FUNCTION: A MODIFIED CTD IS THE MDP VALUE FOR THE DP ALGORITHM SOLVE 

The value function is the core of the MDP/DP model build and algorithm solve.  At the 

macro level, we begin at the end, Epoch Ω, knowing that we must down select to a single 

integrated prototype design.  So, the MDP Network ends at Epoch Ω.  We accept that there may 

be some modification, rework and additional SI during testing.  The value function at Epoch Ω 

becomes the simple weighted multi-attribute utility value associated to each design.  With a 

design down select at this point, we must select a single point design to complete. 

A key insight of the research earlier, was that we only needed to solve the actions of the 

options themselves and not the designs.  The designs under development prior to full system 

integration, are an extension of the option developments prior to the final epochal decision to 

design down select.  At Epoch Ω, we have taken the optimal set of actions over time, so the design 

down select needs only consider the remaining system integration required for optimal design. 

MDP(s) include: (1) a set of possible world spaces {𝑆𝑆}, (2) a set of possible actions {𝐴𝐴}, (3) 

a real valued reward function 𝑅𝑅(𝑆𝑆,𝐴𝐴) and a description 𝑇𝑇 of each action’s effects in each state.  

For the framework, this is a weighted selection of all the options that considers not only the 

performance and burdens of each of the options, but also their likelihood to meet their 

performance requirements and burden budgets. 

The Dynamic Programming (DP) back solve is initialized by calculating modified CTD 

values to seed the MDP Network and its reward function 𝑅𝑅, beginning with the last epoch just 

before the system integration.  These modified CTD values are the MDP Value Function which we 
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term Contribution-to-Design Value Function (CTDV).  We calculate the CTDV at each state, to be 

a “black box” value from which we can determine a value change, the reward 𝑅𝑅, from state to 

state.  At a high level, we strip the probabilities of the set CTD and use them as the transition 

probabilities for the set solution to either change state(s) or remain in the current state at the 

next epoch.  The value portion of the CTD logic is modified and used to create the value of each 

MDP state.  This creates a set of stochastic automata with utilities for DP solving.  Furthermore, 

it must be understood that the CTD(s) for options, subsystems and set solutions were all created 

utilizing forward logic.  The recursive DP solve requires backwards logic and a modification of the 

CTD(s) to execute a solve to determine optimal investment set actions.  This process is discussed 

further in following sections and a detailed explanation of the algorithmic process and the data 

used are in Appendix B.  Additionally, the specific explanation and how we calculate the CTDV 

black box data is in Appendix B, Section B.2. 

During the development phases between the epochs, we consider budgetary controls to 

not exceed the phase budget, which is standard DOD policy.  We consider every possible action 

that does not violate the budget.  The recursive DP solves for the optimal action.  We utilize 

Bellman’s stochastic balance equations to solve for the optimal initial action.  The actual value 

optimized recursively is the Expected Value of all CTDV improvements.  This modified 

optimization approach allows us to focus on which options are invested in for the optimal actions 

determined at each Epoch.  We further assume the memoryless Markov Property: the effects of 

an action taken in a state depends only on that state and not on the prior history and we apply 

no discount factor. 
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THE RESEARCH EXAMPLE PROBLEM PROOF OF CONCEPT 

This example problem has a significant level of data associated with it.  This section shows 

the high-level data for the Proof of Concept.  The detailed data is in Appendix B.  Appendix B also 

includes the major steps for the development of the software utilizing Excel.  We utilized Excel 

Macros/Visual Basic to instantiate the working framework Proof of Concept. 

Figure 6 shows the goals hierarchy and value weights for the example problem.  There are 

two subsystems and three metrics for the problem itself.  This data applies for our framework’s 

core SBD solution, the single point optimum solution and the combinatorial single-point based 

optima solutions. 

 
FIGURE 6 PROBLEM GOALS HIERARCHY 

FRAMEWORK STATE AND ACTION SPACES 

The State Space is the set of all possible states for the problem, which is every possible 

combination.  The individual state’s dimensions are carried in a vector of: 𝐾𝐾 (total number of 

options) ^  (number of parameters/metrics) x epoch.  The non-epoch cells hold the Design 
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Readiness Levels that can vary, but for the example we use exactly three levels per option/metric 

combination.  The following Table 12 below shows the extreme origin and end states. 

 
TABLE 12 – NOTIONAL ORIGIN AND END STATES 

The state space contains four possible designs.  The possible maximum size of the 

example state space is the product of all option Design Readiness Levels (312) and the number of 

Epochs (4) or 2,125,764. 

The MDP Network for our example, is sparser since we do not start or end at the notional 

origin or end points and we do not have state to state arcs for every possibility.  The actual 

example problem state space is less than 1,000.  The origin points for all seven dissertation 

models are in Appendix B.  Other sparsity occurs, because all the arcs connect points with only 

adjacent epochs, except for our skip investment epoch model in Appendix B.  And in that case, 

we only allow a skip of one epoch investment action.  In the extreme sense, why would one carry 

an option that would skip most of the phase development, especially since a minimum of system 

integration cost would be required?  Furthermore, an option not requiring investment would not 

need to be in the model. 

Options
Metrics P W C P W C P W C P W C
StateA 1 1 1 1 1 1 1 1 1 1 1 1

Options
Metrics P W C P W C P W C P W C
StateΩ 3 3 3 3 3 3 3 3 3 3 3 3

A1 A2 B1 B2

A1 A2 B1 B2
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The Action Space is a matrix of decisions as whether to invest (1) or not invest (0) in an 

option's development for the next Epoch. 

 
TABLE 13 – EXAMPLE PROBLEM ACTION SPACE 

In Table 13, the Action Space is a matrix of all possible action combinations that 

represents whether an option is invested in (1) or not invested in (0) for the next phase’s 

development. This is the Action Matrix!  Additionally, the Action Space can be expanded to cover 

skipped investments.  A skipped investment would be marked by a (2) and the Action Space 

would then be a maximum in size of 81 possible actions.  This is a rather rare occurrence in the 

real world, so it would be easy enough to just add the small set of skip actions for computational 

purposes. 

Actions A1 A2 B1 B2
a1 0 0 0 0
a2 0 0 0 1
a3 0 0 1 0
a4 0 0 1 1
a5 0 1 0 0
a6 0 1 0 1
a7 0 1 1 0
a8 0 1 1 1
a9 1 0 0 0
a10 1 0 0 1
a11 1 0 1 0
a12 1 0 1 1
a13 1 1 0 0
a14 1 1 0 1
a15 1 1 1 0
a16 1 1 1 1
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TABLE 14 – TRANSITION MATRIX EXAMPLE 

The Transition arcs are stochastic.  Forward looking, a transition from one state to another 

has a value change (reward) from that previous to the future state and there is a probability for 

that state change.  Most the example problem models’ transitions are two choices of either move 

up one or remain the same Design Readiness Level for the individual options, although we did 

include some other transitions to test the model’s robustness.  In real life, we need to be 

prepared for state improvement, no state change and the potential for multiple changes.  The 

framework supports these transitions. 

Epoch Pred
A1 A2 B1 B2 In Node

1 13 5 13 3 A Origin
1 13 5 13 3 B 1
2 13 5 13 5 B 1
3 13 5 13 11 B 1
6 13 5 14 3 B 1
7 13 5 14 5 B 1
8 13 5 14 11 B 1

21 13 14 13 3 B 1
22 13 14 13 5 B 1
23 13 14 13 11 B 1
26 13 14 14 3 B 1
27 13 14 14 5 B 1
28 13 14 14 11 B 1
81 14 5 13 3 B 1
82 14 5 13 5 B 1
83 14 5 13 11 B 1
86 14 5 14 3 B 1
87 14 5 14 5 B 1
88 14 5 14 11 B 1

101 14 14 13 3 B 1
102 14 14 13 5 B 1
103 14 14 13 11 B 1
106 14 14 14 3 B 1
107 14 14 14 5 B 1
108 14 14 14 11 B 1

State 
Index

Opt Index
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The actual set solution transitions, typically 16 or more in number, are shown in Table 14.  

The Rewards as stated earlier, are the state to state changes in the CTD.  In the Table 14, row 1 

is the state node at Epoch A.  The remaining rows are the state nodes in Epoch B that a transition 

arc must be connected to from the prior epoch.  The predecessor column shows the parent state 

node from where the state node in the row came from. 

MDP WITH DP SOLVE 

Once the MDP is seeded with the CTDV values, we can conduct the DP recursion.  First, 

we calculate from Epoch 𝛤𝛤  to Epoch Ω the Expected Values of the CTDV’s for every possible 

action, because each transition arc has an associated probability for the possible actions.  Once 

that is accomplished, we have the optimal action and its Expected Value calculated for every 

Epoch 𝛤𝛤 state to its children Epoch Ω states.  It is important to understand, that there may be 

multiple transition arcs with their value and probability of occurrence coming into a state node.  

Each transition arc is created “forward looking”, i.e. from previous state to future state. 

The DP Backsolve is concerned with all transition arcs associated to a specific action into 

the state node.  Thus, for example say, Action 16 would have a State A transition to State B 

likelihood of 0.6 and a State A transition likelihood to State C of 0.4.  If the CTDV is respectively 

0.8 and 0.9 at States B and C than the Expected Value at State A for Action 16 and only Action 16 

= ( (0.8*0.6) + (0.9*0.4) ) = 0.84.  If Action 16 produces the best expected value than the node 

State A would be marked as having an Optimal Action 16 with an Earned Value of 0.84.  That 

earned value would be passed backwards as the DP algorithm solves from Epoch Ω to Epoch Α.  

The next paragraph is a quick explanation of the usage of DP in our framework. 
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In terms of optimization, dynamic programming DP refers to decision simplification by 

breaking decision steps over time into a sequence. This is done by defining our CDPV to all system 

states from epochal time Α through Ω.  The definition of our state value is the CTDV tied to the 

system index, which represents and knows the complete set of specific option DRL(s) and build-

up to the set CTDV.  The CTDV at earlier epochs are found by working backwards, using a recursive 

relationship.  In our framework, we utilize the Bellman equation.  See Appendix B, Section B.2 for 

the exact calculations which are normalized with a penalty function structure for a given state 

not being the best possible state.  Since the CTDV is known for every state, the gains in CTDV are 

easily calculated and balanced with Bellman equations at each epoch. The stochasticity of the 

model is maintained as we also have calculated the transitional state to state calculations.  Finally, 

the CTDV at the initial state of the system is the value of the optimal set of actions. This process 

allows us to recover the optimal values of the action decisions, one by one, by tracking back the 

calculations performed at Ω to A. 

For the example problem, this corresponds to measuring approximately 2,000 arcs to 

determine the Optimal Actions and Expected Values for the 108 Epoch 𝛤𝛤 states.  We continued 

recursively to solve the Epoch 𝐵𝐵 to Epoch 𝛤𝛤 (approximately 500) arcs to find the optimal actions 

for the 24 Epoch 𝐵𝐵 states and we pass the previous best Expected Value for those Actions.  We 

then repeat the same process to calculate the Optimal Action from the MDP Networks origin 

node at Epoch 𝐴𝐴 .  Table 15 below, is a small subset of the more than 2,500 Expected 

Value/Optimal Action sets of calculations.  Node and State are used interchangeably and are the 
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same.  Transitions and Arcs are also used interchangeably and are the same as well.  When either 

term, node or arc is used, we are emphasizing the network aspect and algorithmic solution. 

 
TABLE 15 – BEST ACTION AND EXPECTED VALUE EXAMPLE 

SENSITIVITY ANALYSIS OF THE FRAMEWORK MODEL 

Multiple Scenario Models were created to conduct sensitivity analysis on the proposed 

Framework Model.  Figure 7 below shows the variant models and the path of model creation to 

conduct the sensitivity analysis.  We considered budget, network origin point, metric weights and 

sub-system weights as parameters to conduct sensitivity analysis.  All detailed data supporting 

the tables and figures for this chapter are found in Appendix B.  

Arc 
Number

Epoch 
In

Node 
In

Node 
Out

Epoch 
Out

Γ_Ω Best 
Action

Γ_Ω CTD 
EV

B_Γ Best 
Action

B_Γ CTD 
EV

A_B Best 
Action

A_B CTD 
EV

Origin A a12 0.9927
1 A 1 1 B a12 0.9850
6 A 1 8 B a13 0.9898
7 A 1 21 B a12 0.9866

17 A 1 87 B a8 0.9915
24 A 1 108 B a12 0.9927
25 B 1 1 Γ a7 0.9365
28 B 1 6 Γ a6 0.9442
31 B 1 21 Γ a11 0.9614
36 B 1 28 Γ a10 0.9786
37 B 1 81 Γ a7 0.9614
45 B 1 103 Γ a4 0.9786
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FIGURE 7 – VARIANT MODELS FOR SENSITIVITY ANALYSIS 

Table 16 below shows the optimal actions as found from the Dynamic Programming recursive 

solution. 

 
TABLE 16 – MODEL OPTIMAL ACTIONS 

Model 1 had a lightly constrained budget and correctly picked all options where it could.  

In Model 2 the budget was tightened to specifically force selections between options and it did 

so correctly.  In model 3, we adjusted the performance weight much higher and the model went 

for the development of option A2 as it became more attractive than A1.  In Model 4, we adjusted 
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the cost weight higher and it went back to the same actions in Model 2, although the EV numbers 

were different.  If the cost weight would have been forced even higher, a change in actions would 

have occurred.  In Model 5, we flipped the subsystem weights.  Although the numbers did change, 

it was not enough to alter the actions.  Model 6 modified the network origin and had over 90% 

different arcs.  The same modeling structure was applied as in Model 2, so that actions mimicked 

Model 2.  However, the numbers for the EV were completely different, as the state locations 

were vastly different.  Model 7 covered a skip and recovery.  In this version, we modeled a later 

start but with more attractive metrics and better budget.  The model did take the skip and 

recovery for this unusual scenario.  Generally, development is required to reduce uncertainty, 

but the framework can handle budget skips. 

SUPPORTING FUNCTIONS NEEDED TO IMPLEMENT THE MODEL  

Each externality or parameter/metric must include a target value and a random value (RV) 

distribution of the technology/option to determine the confidence of the individual design sets 

(singletons) and then ultimately the multiple design sets.  That includes: performance and burden 

metrics. 

Each design must calculate the development costs from epoch to epoch and the recovery 

costs from the previous epoch to catch up if the set solution did not that option previously.  

Additionally, reductions and increases associated with shared development and SI costs must be 

calculated. 
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Finally, although not shown here in the example problem, the weights of the externalities 

themselves are also RV’s.  This framework can be extended with a Monte Carlo simulation.  The 

simulation would create a data set of random externality weights from the weight RV’s.  Each 

one of these could then be solved individually, to see the impact on the Set Solutions from epoch 

to epoch. 
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CHAPTER 5: COMPARATIVE ANALYSIS OF THE THREE ANALYTICAL METHODS 

GENERAL RESULTS 

We cannot completely compare the three methods since the framework method employs 

a DP recursion to calculate optimal actions vs. the single point and combinatorial forward models. 

However, we can consider what the forward expected CTD would be for all actions when 

executing the methods going forward.  Developing the individual designs from 𝐴𝐴 to Ω is a pure 

set of 𝑎𝑎11 actions for Design 1, 𝑎𝑎10 for Design 2, 𝑎𝑎7 for Design 3, and 𝑎𝑎6 for Design 4.  The optimal 

set of actions, recursively solved in the framework solution are: 𝑎𝑎12, 𝑎𝑎12, and 𝑎𝑎11.  See Table 17 

below for the comparisons.  The SBD solution shows a higher EV. 

 
TABLE 17 – FORWARD CTD EXPECTED VALUES FOR COMPARING ANALYTICAL METHODS 

For this simple problem, we can use the straight forward Multi-Attribute Utility model to 

determine both the discrete single point optimal design and to also show the full combinatorial 

optima solution.   Figure 8 shows that D1 is the single best design as it has the best total weighted 

utility.  By way of example, the Figure 8 calculations are done by taking the weight vectors from 

A to B B to Γ Γ to Ω System EV Budget - $M
Design 1 a11 a11 a11 0.953602 47
Design 2 a10 a10 a10 0.946763 43
Design 3 a7 a7 a7 0.947511 40
Design 4 a6 a6 a6 0.940672 36
SBD Framework a12 a12 a11 0.963733 58
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Figure 6 and multiplying them with the metric value vectors in Table 18.  These values are the 

design values for the single point optimization.  See the D1 Value calculation below: 

D1 Value = ((0.65*((0.4*0.93175)+(0.25*0.3)+(0.35*0.125))) +  
(0.35*((0.4*0.1495)+(0.25*0.636)+(0.35*0.125)))) = 0.4113 
 
Key point: these are all point design calculations!  The calculations are all made at Epoch 

A for both single point optimization solutions.  This clearly shows the difference in approach 

between set and point solutions.  Point solution algorithms find a single target and then react to 

design uncertainty and requirement shifts, as they occur.  Our set solution framework uses a 

stochastic process to potentially select multiple options in a region of the design space to mitigate 

both design and requirement uncertainty. 

 

 
FIGURE 8 – RANKING FOR BEST DESIGN 

Table 18 shows the CTD Based Expected Values that come from the main problem.  These 

Expected Values assume that the Designs would follow the typical PD process for point based 

design, i.e. the options of the design are developed continuously.  Additionally, we show the CTD 
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values at the metric level so we can determine if there is any pareto dominance between the 

designs. 

  
TABLE 18 – CTD BASED EXPECTED VALUES (DECONSTRUCTED DOWN TO METRIC) 

Green represents the maximum metric value.  Although D1 almost dominates D2, and D3 

almost dominates D4, the B2 option is strongest in cost value, which keeps D2 and D4 as 

combinatorial optima.  Thus, the combinatorial solution shows no complete pareto dominance 

for any design.  The program team would be left to decide it’s best single point design solution 

from the pareto optima to take forward. 

The process for defining the optimum or optima in both single point approaches, focuses 

on selecting a design initially and then developing it.  The framework approach rather determines 

an optimal action to initiate a set solution from an initial optimal action.  That action is based 

stochastically, to develop a set of options that reduce developmental risk and allow for 

uncertainty in the process. 

From a pure quantitative sense, the SBD Framework finds the best expected value.  Of 

note, Action 𝑎𝑎12 is the same as jointly executing 𝑎𝑎10 and 𝑎𝑎11, which are the two best, single point 

design approaches, until dropping down to 𝑎𝑎11 in the final phase.  This approach reduces the risk 

of carrying two designs through the first two phases until uncertainty is reduced. 

Perf Weight Cost Perf Weight Cost 
D1 (A1&B1) 0.93175 0.30000 0.12500 0.14950 0.63600 0.12500
D2 (A1&B2) 0.93175 0.30000 0.12500 0.11700 0.09200 0.14600
D3 (A2&B1) 0.17750 0.69200 0.12500 0.14950 0.63600 0.12500
D4 (A2&B2) 0.17750 0.69200 0.12500 0.11700 0.09200 0.14600

A Values B ValuesDesigns
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Perhaps the biggest issue regarding the use of SBD is the potentially higher cost associated 

with it.  For this example, the SBD Framework approach may cost an extra $11M to execute.  That 

is the immediate trade-off you take with SBD.  However, further factors support the SBD 

Framework yielding superior design results.  The first, is that Production costs are at least one 

order of magnitude higher than R&D costs and Lifecycle costs are typically a magnitude higher 

than Production costs.   Given that, budget increases for higher SBD R&D costs makes very good 

sense. 

DEPARTMENT OF DEFENSE (DOD) CONSIDERATIONS 

The U.S. DoD recognizes developmental risk and often awards two identical design 

contracts, in the hope that two contractors are better than one to reduce their program 

developmental risk.  They presume independence between the contractors in the development, 

even though they are both developing the same options.  Thus, the typical action would be to 

pay $94M for two contractors which is $36M more in the example problem.  However, 

contractors working on different options, is inherently more independent than two contractors 

working on the same options.  While their thought processes may differ, both contractors are 

subject to the same physics, chemistry, math and engineering issues when developing the same 

design.  Further study on how independent designs are, coming from like contracts, is more than 

warranted for future research. 

COMMERCIAL ENTERPRISE CONSIDERATIONS 

Although the DoD Product Development process is more deliberate and is under generally 
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more oversight, Set-Based Design can yield significant improvements to commercial Product 

Development.  Commercial Product Development has the general structure of budgetary 

milestones, but varies dependent on corporate rules.  Engineering and Product Development 

reviews also have similarities.  Thus, both defense and commercial sectors share similar epochal 

needs.  Furthermore, although the DoD has a very formalized structure for its product 

requirements, commercial enterprises almost universally develop and maintain vast databases 

of requirements and specs for their Product Development. 

The greatest difference between the sectors’ versions of Product Development is perhaps 

in time and lifecycle.  It is generally accepted that the defense sector has a longer Product 

Development time span.  It is more correct to say that the defense sector has a more deliberate 

time span.  It also needs to be understood, that the defense sector’s time span for Product 

Development can be and will be dramatically shortened during times of conflict to rush needed 

technical breakthroughs into production. 

Assuming that the commercial sector does have a shorter Product Development time 

span, this Set-Based Design framework provides the same important advantages.  One could even 

say, given that Toyota initially developed Set-Based Design, that this framework may have more 

applicability to the commercial sector.  If so, there are several supporting work streams required 

to commercialize this framework for say a General Motors’ application.  We will discuss that in 

Chapter 6, but it is important to note that a commercial enterprise’s internal data, particularly 

that of failed PD programs is even more important to retain and utilize.  This is because, that data 

will provide past historical refence to how well targets were met and if off, by how much.  The 
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ability to accurately describe the effects of uncertainty to engineering estimates, is crucial.  

Edison himself correlated his thousands of failures to find a workable light source, as a sequence 

of required steps before finding the correct answer.  Enterprises pay a lot for their design data, 

so they should hold on to it, as its value for future stochastic estimates is truly invaluable.   

CHAPTER 6: FUTURE RESEARCH AND NEXT STEPS 

REVIEW OF RESEARCH OBJECTIVES ACCOMPLISHMENT 

OBJECTIVE 1 

The analytical framework developed a topology that created formal definitions for 

dimensional control of set solutions.  The system requirements became target values for 

performance, burden and costs.  The unique multi-dimensional separations between the test 

options and their targets allowed us to define mathematically feasible regions in the trade space 

itself.  The organization of the collection of feasible point solutions into regions which are set 

point solutions allowed us to than compare those regions or sets throughout the epochal 

movement of the Product Development process through time. 

The regions or sets comparative values for similarity and difference from each other are 

known by the looking at and comparing the set’s Contribution-to-Design values and the individual 

point parameters that form the basis of the set calculations.  It is an expectation that every time 

data changes the framework solution can be immediately updated.  This capability is a sign and 

marker of process resiliency. 
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OBJECTIVE 2 

The analytic methods to address the sensitivity of the topology of design space (i.e., the 

organization into regions) to the constraint levels and the understanding of the constraints, and 

the effect of constraint levels on feasible regions of design space was accomplished.  The 

sensitivity analysis capability provided with the Markov Decision Process and Dynamic 

Programming solution structure allows for testing sensitivities for metrics, weights and structure.  

The test problem sensitivities themselves are shown and discussed in both Chapter 5 and 

Appendix B. 

OBJECTIVE 3 

The SBD framework incorporated uncertainty in both subsystem and option component 

availabilities.  Although, uncertainty was directly modelled for estimation of how well the options 

could meet design targets for performance, burdens and cost, we also showed that the targets 

themselves could easily be stochastic estimates themselves.  Two stochastic estimates, if their 

probability density functions can be estimated, just become a new single stochastic function.  The 

moments of value and variance for the framework, follow the rules of logic for stochastic 

mathematics and estimation of uncertainty and chaos. 

OBJECTIVE 4 

Our framework approach and the sensitivity analysis of the test problem, showed that 

characteristic point designs that were resilient with respect to changes in the constraints, 

appeared again and again in the optimal investment actions by epoch per set solution.  It should 
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be noted that this result was for a relatively small trade space.  Further verification of this 

mathematical attribute needs verification with larger data sets, i.e. a larger group of options, 

subsystems and metrics.  

HOW INDEPENDENT IS DESIGN SPACE? 

This question is the most important one going forward into future research.  The research 

in this dissertation leveraged the assumption of option design independence.  Although, a case 

can certainly be made to defend this as a general expectation, it may also be specifically wrong 

in some cases.  Does, the current developmental knowledge presuppose PD efforts to be of one 

form and not another?  If so, does that impact the design space by having many, similar option 

choices?  Does the developmental process itself, formulaically cause a certain type of option to 

be created, more than ones that perhaps don’t have the same general technology structure? 

For instance, the recent breakthrough of true electric powered cars.  Combustion 

powered engines required more cost and more material to raise both performance and reliability.  

Each engine type, diesel vs. gasoline, turbo vs. no turbo, etc would have variations of power to 

weight and weight to reliability curves, but yet they followed similar predictable patterns.  The 

electrical engine, once batteries became sufficiently powerful that hybrid engines were not 

required to beat a 200-mile range, breaks the curves completely.  The reduced part count 

associated with a pure electrical drive train has a very different reliability structure, torque 

performance and even power to weight curve.  The trade space including electric powertrains is 

very different than one with traditional combustion-based powertrains. 
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Since our research assumed option independence, further research to validate it is 

necessary.  However, the general structure of the framework itself would require little to no 

modification.  The primary stochastic nature of the framework structure is inviolate regarding 

change in its indices structure, system hierarchy and epochal nature.  The calculation of 

probabilities done in a dependent structure can occur separately or with a minor modification of 

the framework itself. 

EXPANDING RESILIENCE THROUGH ADDING DSM TO THE FRAMEWORK 

Our framework process, which calculates the probability density functions and values for 

the Contribution-to-Design function, needs efficiency improvements to handle large scale models.  

Use of Design Structure Matrices (DSM) in parallel with this framework can further enhance the 

scalability of the framework.  Key linkage between the Set-Based Design process and the usage 

of Process Design Structures Matrix to reduce design complexity and support design process 

resiliency was postulated for Navy ship design(Doerry 2009). 

POST-DISSERTATION RESEARCH WITH A LARGE MODEL 

Although, the maximum possible trade space expansion is geometric in proportion to the 

number of metrics and epochs we have seen in this research, the real problem size growth 

appears to be potentially linear and no worse than exponential. The utilization of Dynamic 

Programming allows the recursive structure of the Markov Decision Process to be preserved and 

then applied to avoid unnecessary recalculations, with its usage of the Bellman Balance Equations.  

This assertion needs testing with future research. 
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Additionally, other known optimization methods may prove to be even more efficient 

than using Dynamic Programming.  A simple approach that we rejected early in the research, was 

to describe the value of all possible state to state paths for every unique design, could merit 

reconsideration.  This is because the problem could be reduced to a simple, but very large single 

optimization.  We chose not to take this approach, as we focused upon the need to accurately 

describe what set solution value is and how it could be described quantitatively. 

The primary “raison d'être” for Set-Based Design was to allow for the unquantifiable 

reasoning of design uncertainty that generations of developers were very aware of but rarely 

considered.  However, what if a reasonable simulacra of set value is now available and the focus 

is changed to optimal budget actions, instead of point design refinement over time?  If that is the 

case, any optimization method that properly describes and calculates set value should be 

considered. 

The level of problem complexity was defined in our research effort by the need to both 

create an explainable test problem and to also allow for quickly modifying our test algorithm as 

we developed it.  Excel, as a tool with its Visual Basic Macro language worked well in this 

environment, but it also created a situation where its row, column and sheet structure required 

a complicated approach to solve single problems.  Each different model required a separate, new 

workbook with an array of multiple sheets, each performing a small set of steps.  The ability to 

manipulate and modify is an Excel strength, but the requirement to copy and paste process steps 

over and over, just to repeat slightly different problem solutions, is a weakness.  The small 

problem of two options per subsystem, two subsystems, three metrics per option and four 
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epochs was easily handled.  It is anticipated that having the repeatable steps, of the total Markov 

Decision Process problem creation with Dynamic Programming recursive back solve algorithm, 

coded in something as simple as MATLAB would create immediate efficiencies.  We are expecting 

to do this going forward with a post-doctoral research project that would enable an enhanced 

solution framework structure.  We anticipate that a MATLAB analytical based structure with 

relational database software environment is a potential intermediate solution, which can easily 

handle up to 50 options, over 10 subsystems with 5 to 10 metrics per option, and 5 or more 

epochs.  The software is itself not the primary constraint to the problem size.  Rather, it is 

expected that we will need to research further things before developing a commercial application.  

This would include: real-world data sourcing for the problem, verification and validation of 

mathematical relationships discovered in the current effort and specific algorithm choices 

affecting solutions. 

In the long term, using state-of-the-art optimization algorithms and relational databases, 

it may be assumed that the current ability to considering billions of unique point system solutions 

is similarly possible in the set solution context.  This dissertation focused on the creation of the 

mathematics to describe set value quantitatively.  Given validation that our proposed set value 

structure has general merit, any optimization algorithm may be potentially modified for Set-

Based Design action optimization. 
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ANALYTICAL EXTENSIONS 

COMMERCIAL CONSIDERATIONS 

While Return-On-Investment is more identifiable with profit and loss in the commercial 

sector, the defense sector also needs to understand whether a development gives an anticipated 

return. 

Return-On-Investment is a key for commercial Product Development decisions.  Return-

On-Investment calculations are supported by the framework, since optimality is viewed from an 

application of allowable budget actions to select options in the face of uncertainty. Thus, no 

extension of the framework itself is required to conduct sensitivity analysis of the budget for 

chosen option development at the epochs.  However, the actual business mechanics of 

conducting Return-On-Investment calculations for budget decisions is not enabled in the 

framework.  If an enterprise has its own Return-On-Investment software and process, it can be 

fed directly from the framework solutions and data sources.  This could be accomplished in a 

shared data warehouse, structured query environment or with simple copy/pastes to Return-On-

Investment spreadsheet models.  Additional Return-On-Investment considerations as to both 

cost and profit throughout the enterprise’s value chain could follow either mechanisms.  A truly 

elegant approach would be to directly attach the framework as a module to the corporate 

Enterprise Resource Planning (ERP) system.  This would allow for integrated data and its 

maintenance. 
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KNOWLEDGE MANAGEMENT 

As stated multiple times, both data quality and usage of historical data to form usable 

stochastic data for set solutions is incredibly important.  Set-Based Design in its current 

qualitative structure does not rely heavily on data accuracy, as its purpose was to choose option 

development sets to overcome data uncertainty.  However, to employ a quantitative Set-Based 

Design framework, one must understand and know the specific data and its quality to rely on the 

set solution calculations. 

Moving to a resilient quantitative process will require enterprises to have a change in how 

they view their Product Development failures.  Successes are typically oversold and failures are 

ignored.  This creates not only a dearth in total data, but also skews the possible design 

trajectories into false paths, where only success data is considered.  As stated in the literature 

review concerning programs, performance attainment is generally over estimated and 

uncertainty towards burden elements and cost are generally under estimated.  If past failure data 

is disregarded in calculating estimates, then aren’t those estimates at best suspect? 

Knowledge Management needs two changes.  The first is simply the maintenance of 

design failure data.  The second is more profound and quite cultural to the enterprise.  Edison’s 

embrace of failure itself as a value to the process for finding solutions, needs to become a 

cornerstone in engineering analytics.  The extension of immediate profit = the only good, and 

immediate loss = the only bad, creates a long-term loss and misapplication every time an 

enterprise initiates its next Product Development program.  Knowledge Management, where the 
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acceptance and understanding of short term failures, IS value for future Product Development.  

This needs to become the norm. 

ANALYTICAL SOLVING EXTENSIONS 

Utilizing the knowledge of where the origin and final possible states not only reduces the 

actual problem size from theoretical maximum, but also allows us to consider what in 

optimization parlance is termed a “hot-start” basis.  Since Dynamic Programming is concerned 

with keeping the recursive relationship to reduce unnecessary recalculation, it’s usage of the hot 

start basis, is not as dramatic as with launching a simplex or interior point algorithm.  It is 

anticipated that maintaining the Markov Decision Process in the framework to create a 

mathematical network problem, would be useful for other optimization algorithms.  Not only 

would the state space be accurately derived from the theoretical maximum, but it also 

conveniently provides a true origin for the network.  By using the value of the origin, we could 

create a hot basis start for both simplex or interior point algorithms. 

An analytical extension not considered in the research is whether the actual maturity of 

the options and their sequence of selection in the set solutions themselves creates issues.  Future 

research should consider, if there are those effects.  Is it possible there may be underlying auto 

correlation occurring?  Is the sequence of investment actions against the available options 

different for more mature options than less mature options? 

Although, we asserted in our research that options and designs are readily 

interchangeable and that we only need to solve option solution sets, is that true?  Our framework 
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assumed that system integration costs are mostly in the latter epochs and we only considered 

them in the final two epochs.  Could more immature options require earlier and heavier system 

integration?  If so, is there a pattern that would require additional modelling and possible 

modification of the framework?  This is an additional research question for the future. 
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CHAPTER 7: CONCLUSIONS 

The literature review documented the current state of Set-Based Design as a resilient 

Product Development process that has proven qualitative results over the past two decades for 

many Product Development programs.  Quantitative processes with design optimization 

traditionally focus on point solutions.  Combinatorial optimization has increased insight into 

design uncertainty, but still only provide more sophisticated point solutions.  Recently, (Avigad, 

G. 2007) introduced the need to have a Set-Based Design quantitative solution structure that 

balances both optimality in a point solution sense with variability to capture set solutions in 

clustered set solutions.  Resilience in the Product Development process is supported by utilizing 

Set-Based Design to create multi-design sets that increase confidence to attain meeting design 

target requirements. 

The initial mathematical framework proposed in this paper shows a method to combine 

performance and burden information from competing design elements into a Contribution-to-

Design Function that can be optimized.  Specifically, Contribution-to-Design is an optimality 

structure formulating Set-Based Design value, which is not point design optimization in the 

current vernacular. The value is directly associated with maintaining design sets, to directly 

increase design resilience in the face of design uncertainty. A cost structure that details 

developmental costs, design recovery costs and system integration costs from epoch to epoch is 

proposed.  By updating the cost structures and performance estimates at each epoch a design 

fluidity supports set adjustments at epochal decision points.  This also supports the decisions as 

to when to modify the sets.  Key linkage between the Set-Based Design process and the usage of 
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Process Design Structures Matrices to support design process resiliency was postulated for Navy 

ship design (Doerry 2009).  Further research expanding the framework to integrate Design 

Structures Matrices would allow scalability. 

The research was novel in the sense that this is the first quantitative framework to solve 

a Set-Based Design Product Development problem.  Additionally, little research has been applied 

to providing a value structure to set solutions themselves.  Further research supporting the 

findings in a larger scale problem is needed.  Additionally, data quality and knowledge 

management need both research and application to create a viable commercial application of 

this research. 
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APPENDIX A: REAL-WORLD EXAMPLE SCENARIO FOR SET-BASED DESIGN 

Enclosed in this appendix is a current example typical to main battle tank programs.  Tanks 

need to balance engine power, running gear and suspension subsystems to provide mobility.  

Unmet force protection requirements to protect the crew, continue to add weight and/or cost 

to the tank system through the armor subsystem itself or new exotic subsystems such as active 

protection.  The engine subsystem may need to be changed to support new force protection 

technology – heavier armor packs in this scenario. 

In this appendix, we develop all of the high-level thinking associated with considering set 

solutions at the design level.  This appendix is intended to provide insight to the design process 

using set solutions.  The framework presented in this dissertation mathematically focused on 

leveraging unique subsystem option choices which is the best way to analytically solve what 

option set action is optimal.  This appendix focuses on the total design and looks at the option 

combinations to create unique designs and refers to the set solutions as sets of designs.  This is 

easier to understand as a system design is always trying to improve multiple subsystems as the 

program progresses but also to develop the required system integration of those subsystems.  

Both viewpoints are quite accurate.  The options define the unique designs and the designs are 

formed from unique option combinations. 

Shown below is general background on a subset of three generic subsystems, their 

interactions and their considerations that we will express visually. 
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A.1 ENGINE OR POWER SUBSYSTEM 

1. Keep the current gas turbine engine 

a. No Risk 

b. May not meet the automotive mobility requirements 

2. Switch to a current, modern diesel engine 

a. Low to Medium Risk due to uncertainty over system integration and packaging 

concerns 

b. Known performance improvements 

c. Fuel Tank subsystem and Air Filter subsystem will be required 

3. Develop a high energy density diesel engine 

a. High Risk solution – even if a contractor would promise delivery to spec, 

unforeseen issues such as new packaging, greater system integration, unforeseen 

material issues, new supply, etc. could easily negate the best intentions 

b. High appeal for a breakthrough change that would significantly improve the 

automotive performance while fulfilling all system requirements 

c. Significant potential for a cost overrun and program breech if not met 

A.2 RUNNING GEAR SUBSYSTEM 

1. Keep the current track 

a. No risk 

b. Higher maintenance costs, but known 

c. More rugged, but heavier in weight 
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2. Consider a wheeled  

a. Tractive power is less 

b. Extremely inexpensive and lighter weight 

c. Ruggedness has been improved over the years, but it may still not be enough for 

a MBT 

A.3 SUSPENSION SUBSYSTEM 

1. MacPherson 

a. Currently only wheeled applications 

b. Versatile, well know 

2. Hydro-pneumatic Suspension Unit (HSU) 

a. Been around for a while and there are both US and German examples 

b. Could be used for a wheeled running gear subsystem, but the program office only 

wants to consider it for a tracked running gear subsystem 

c. Key advantage is weight and the reliability has increased over time 

d. Minor integration issues are foreseen 

3. Torsion Bars 

a. No risk 

b. Heavy, in both weight and capability 

c. Inexpensive and it is a known quantity for well over 50 years 

d. Lower in cost than the HSU option 
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A.4 COST AND MATURATION CONSIDERATIONS 

Typically, in the past defense programs have tended to go with technically superior point 

solutions like the new High Energy Diesel (HED) and the HSU.  However, if cost or risk/uncertainty 

were viewed as overwhelming, more traditional choices would go into the design.  Regardless, 

these decisions would be made for a single point system design that would only have flexibility 

to modify the subsystems for integration and perhaps minor system modification.  Unknowns in 

cost and maturity, if covered at all, would have a generic total program risk budget to support 

modifications as unknowns become known over time.  In the set solution scenario, some or all 

the subsystem options are carried forward.  This means that all the other subsystem options that 

would be required to change for all the engine options need to be carried forward as well.  That 

specifically means that the set solution size will potentially grow geometrically based on the 

number of other impacted subsystems.  The total solution set would describe a set region in the 

total state space of the entire system design. 

Now let’s consider the time dimension of the program itself and the impact on the set 

solution.  Figure 9 below, shows how defense considers technical maturation or readiness going 

from concept to implementation.  Each of the Technical Readiness Levels (TRL) are expected to 

be fulfilled or completed before allowing the technology and specifically the system to pass the 

milestone decisions.  Thus, if the HED does not meet the technology fulfillment goals, and 

regardless of whether lean or other improved development methods are applied, there will be a 

program breech.  The value of the set solution is obvious.  The program may have to spend extra 

money to keep all four options moving forward, but there is no hard “go – no go” decision 
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anymore.  Additionally, if the HED does not meet expectations, it can continue under 

development and then be deployed in an engineering change later when the problems are 

resolved.  Historically, defense programs are cancelled if the point solution fails.  This meant that 

great technologies were often thrown away and then started from scratch years or decades later 

at great cost. 

 

 
FIGURE 9 - REQUIRED TECHNOLOGY READINESS FOR THE DEFENSE SECTOR PD PROCESS 
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A.5 SET SOLUTION WALK THROUGH 

STEP 1: INITIAL SET SOLUTION 

Figure 10 below shows all 18 points of the complete state space and all of the options 

available regardless as to current feasibility or optimality. 

 
FIGURE 10 – EXAMPLE PROBLEM – FULL STATE SPACE 

STEP 2: INFEASIBILITIES NOT SHOWN 

Figure 11 shows the removal, from view only of infeasible interactions between running 

gear and suspension choices. 

In SBD, the infeasible choices are maintained in the data so that if the design needs to 

reconsider infeasibilities that may change over time. 

Gas Turbine

Diesel - Modern

Diesel – Hi Energy

Example Problem – State Space

2

Engine

Track

Wheels

Running Gear

Torsion BarsMcPherson HSU

Suspension

Keep all possible 
18 combinations in 
the database over 

time.
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FIGURE 11 – EXAMPLE PROBLEM – INFEASIBLE(S) REMOVED 

STEP 3: PARTITION INTO CONVEX SET SOLUTIONS 

We have used the technology difference between track and wheels to define two set 

solutions.  Both are viable now and both are convex sets.  Convexity means simply in this example 

that inside each set solution all subsystem options can be traded.  Figure 12 below shows the 

feasible “two-member” set solution.  

Gas Turbine

Diesel - Modern

Diesel – Hi Energy

Example Problem – No Current Infeasibles

3

Engine

Track

Wheels

Running Gear

Torsion BarsMcPherson HSU

Suspension

For current time 
remove infeasible 

options.
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FIGURE 12 – EXAMPLE PROBLEM – TWO SET SOLUTIONS 

STEP 4: THE FIRST REQUIREMENT AND IMPACT 

We now show how a requirement can remove a set solution.  The requirement shown 

below in Figure 13 will temporarily remove one of the set solutions, the wheeled set from current 

consideration. 

In this case the Wheels solution cannot yet master climbing a 1 Meter vertical face. 

Gas Turbine

Diesel - Modern

Diesel – Hi Energy

Example Problem – Two Sets

4

Engine

Track

Wheels

Running Gear

Torsion BarsMcPherson HSU

Suspension

We have two 
distinct set 

solutions that are 
convex: Track and 

Wheels.



97 

 

 

 

 
FIGURE 13 – APPLICATION OF REQUIREMENT ONE 

However, it may remain in the design database for future consideration as technology 

maturation and uncertainty unfold.  This is an essential task for all defense program offices, i.e. 

the maintenance of design improvements for their products that may have a fifty-year total 

lifecycle before complete new design and replacement.  The M1 Main Battle Tank, was fielded in 

the early 1980’s and is expected to be in the force until the 2030’s or longer. 

For our example, there remain six possible point solutions inside the set solution that are 

currently viable and pass Requirement 1 shown below in Figure 14. 

  

Vehicle Requirement:
Climb 1 meter
vertical face.

Wheels

Track
Yes

No
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FIGURE 14 – EXAMPLE PROBLEM – REMAINING SET SOLUTION 

The remaining trade space for the solution set is shown below in Figure 15.  It shows what 
the requirement does to reducing trade space in the example and by extension what 
requirements in general do to all trade spaces. 

 

Set Choices

6

Vehicle Requirement:
Climb 1 meter
vertical face.

Wheels

Track
Yes

No

HSU

Torsion Bars Diesel -
Modern

Gas Turbine

Diesel - High
Energy

Diesel -
Modern

Gas Turbine

Diesel - High
Energy

All Choices in the Track Set solution 
remain so the set carries 6 possible 
point solutions at this time.
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FIGURE 15 – REMAINING TRADE SPACE AFTER REQUIREMENT ONE IS APPLIED  

Gas Turbine

Diesel - Modern

Diesel – Hi Energy

Example Problem

7

Engine

Track

Wheels

Running Gear

Torsion BarsMcPherson HSU

Suspension

This is the reduced 
set solution with 
Requirement 1 

applied.
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STEP 5: THE SECOND REQUIREMENT AND IMPACT  

All Solutions Remain Available in the Set! 

Performance and Burden data will be considered to help determine the most central or 

potential incumbent choice for the design.  This is very different from point logic.  Now in the 

example, we show this below in Figure 16, where the 2nd requirement is applied to the trade 

space.  Additionally, the program office would need to apply budget to the entire set solution 

going forward. 

 

 
FIGURE 16 – APPLICATION OF REQUIREMENT TWO 

The following points are considerations in the example as we apply the 2nd requirement 

to the trade space itself.  Figure 17 below shows these considerations graphically. 

1. Torsion Bars are simple but weigh more so they require the High Energy Diesel (higher risk 

engine development) 

Track Set Solution:
Vehicle Requirement:
Vehicle Range > 250 miles

HSU

Torsion Bars Diesel - High
Energy

Diesel -
Modern

Diesel - High
Energy
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2. HSU (s) are slightly more complex but lighter weight.  The Modern Diesel will require some 

weight margin.  The Gas Turbine would have required too much weight margin. 

3. The best performance option is the HSU with High Energy Diesel but it also carries the 

greatest risk. 

4. The HSU with Modern Diesel is average total risk with better fuel than most other options.  

 
FIGURE 17 - INTERIM NECKED DOWN SET SOLUTION  

Gas Turbine

Diesel - Modern

Diesel – Hi Energy 9

Engine

Track

Wheels

Running Gear

Torsion BarsMcPherson HSU

Suspension

This is the new 
focused set 

solution with 
Requirement 2 

applied.
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APPENDIX B: DATA SET AND MODELING EXPLANATIONS 

B.1 MACRO PROCESSES 

Our macro process for the framework is to: 

1. Determine the Contribution-to-Design for each possible state.  That requires us to 

create an indexing structure for all states.  Initially, we create option indices where 

we can do the CTD calculations at the option level.  Then from the option indices, we 

create a mapping to the total state space which includes all combinations of the 

option.  This was not required, but rather, it made the matrix manipulations easier to 

maintain and easier to understand. Finally, we can build up the CTD calculations for 

the subsystems and individual set solutions. 

2. Create a Markov Decision Process model for the design problem.  Given that we will 

take the CTD values at each state, we have created a suitable black box structure to 

provide values to the model.  We also need to calculate the stochastic movements of 

all set solutions from state to state.  This is the transition matrix.  The action space is 

whether we will invest in an option. 

3.  The final sub-process is for us to use Dynamic Programming to recursively back solve 

the model to determine the optimal actions for options investment.  We use the 

Bellman Equations to determine the optimal investment actions at each state space 

node.  After traversing the transition arcs recursively, we can avoid calculating arcs 

not on the allowable action paths. 
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Snapshots from the individual models are shown in all the following tables and figures in 

the appendix.  All models are available from the author as open source software.  Please 

email any request to stephen.rapp@wayne.edu. 

B.2 DEVELOP CTD 

As stated in Chapter 4, the Contribution-to-Design Value Function (CTDV) is described as 

the value of the option, subsystem or set at a given Design Readiness Level (DRL). 

We weight the individual option DRLs for both subsystem and parameters.  In the case of 

the examples in the dissertation that includes: performance, weight (physical) and cost (AUPC).  

We use a penalty function for the core value and normalize all values.  The CTDV itself for each 

node becomes a block box value. 

STEP 1: ASSIGN MODEL PARAMETERS AND WEIGHTS 

For all eight models, we utilize the weights to modify the option CTDs to become CTDVs.  

We utilize the budget to control allowable investment actions.  Shown below in Table 19 are the 

weights for Models 1, 2, 6 and 7.  Models 3, 4 and 5 modify the weights to conduct sensitivity 

analysis on the parameters and are shown later. 
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TABLE 19 – PARAMETER WEIGHTS – MODELS 1, 6 AND 7 

STEP 2: BUILD THE OPTION INDICES 

Shown below in Table 20 are the option indices for Models 1, 2, 6 and 7.  Models 3, 4 and 

5 modify the weights to conduct sensitivity analysis on the parameters and are shown later. 

The following is the individual calculation for the Option CTD at each option index node: 

CTD (Option) = 1 – (((3-PV)3*PWt)+((3WV)3*WWt)+((3CV)3*CWt))/8.  The detail for CTD 

formulation is back in Chapter 4.  This formulation yields both a weighted and normalized 

number.  Three DRL levels were chosen for the example problem.  This was deemed to be 

complex enough to determine model effectiveness and in keeping the example problem 

reasonable in size.  Remember than the maximum state space size given 4 options over 4 epochs 

would be: 27 (number of state spaces in option space) 4 (Number of options) * 4 (Number of epochs) = 

2,125,764. 

Long Short Values
Name Name
Performance Weight PWt 0.4
Weight (Physical) Weight WWt 0.25
Cost (AUPC) Weight CWt 0.35
Subsystem A Weight A_Wt 0.65
Subsystem B Weight B_Wt 0.35
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TABLE 20 – INDICES FOR MODELS 1, 6 AND 7 

STEP 3: EXTEND THE OPTION INDICES TO CREATE THE TOTAL SYSTEM STATE SPACE 

In all the following matrices, where the natural total or system state space is indexed, the 

numbers range from 1 to 531,441 and you need to know which epoch (A, B, Γ or Ω) you are in.  

We also reduce the system state space down to only show the actual nodes that will be in MDP 

model itself in a reduced system state space index.  We do this, by determining all the potential 

Option Performance Weight Cost Option Value
Index DRL Value (PV) DRL Value (WV) DRL Value (CV) CTD

1 1 1 1 0.00
2 1 1 2 0.31
3 1 1 3 0.35
4 1 2 1 0.22
5 1 2 2 0.53
6 1 2 3 0.57
7 1 3 1 0.25
8 1 3 2 0.56
9 1 3 3 0.60

10 2 1 1 0.35
11 2 1 2 0.66
12 2 1 3 0.70
13 2 2 1 0.57
14 2 2 2 0.88
15 2 2 3 0.92
16 2 3 1 0.60
17 2 3 2 0.91
18 2 3 3 0.95
19 3 1 1 0.40
20 3 1 2 0.71
21 3 1 3 0.75
22 3 2 1 0.62
23 3 2 2 0.93
24 3 2 3 0.97
25 3 3 1 0.65
26 3 3 2 0.96
27 3 3 3 1.00
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paths each option could take through development.  Typically, this is sparse compared to the 

total possibilities, particularly when we anchor the origin point.  The origin point for all Models 

except for Model 6 is below in Table 21. 

 
TABLE 21 – ORIGIN POINT AND MAX THEORETICAL END POINT 

Also of note, for the example, the option indices are the same.  Had we chosen different 

allowable DRLs for each option or different parameter weights, we would have different option 

indices. 

Shown below in Table 22 is an example of the state space as marked by the four option 

indices, the corresponding system index and the reduced system index that is the state space 

control for the MDP to be developed.  We show a smaller subset of the indices instead of the 

complete set.  All indices are needed to correctly construct and maintain the MDP when it is built 

and the DP Backsolve coming from Epochs Ω to A. 
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TABLE 22 – REDUCED SYSTEM, SYSTEM AND OPTIONS INDICES 

With the option, system and reduced system indices created, all value i.e. CTD, 

calculations can be completed.  As explained in Chapter 4, if there are more than one option per 

subsystem being developed, the CTD calculations assume the option developments are 

independent regarding the total trade space.  We extend this stochastic logic to calculate the 

subsystem CTD, as if the options’ CTDs were probabilities to improve.  A subsystem CTD value in 

this case is 1 – (the product of each option’s (1 - CTD Option Value)).  This is also specifically why 

Red_Sys_Ind Sys_Ind A1 A2 B1 B2
1 239439 13 5 13 3
2 239441 13 5 13 5
3 239447 13 5 13 11
4 239450 13 5 13 14
5 239452 13 5 13 16
6 239466 13 5 14 3
7 239468 13 5 14 5
8 239474 13 5 14 11
9 239477 13 5 14 14

10 239479 13 5 14 16
11 239547 13 5 17 3
12 239549 13 5 17 5
13 239555 13 5 17 11

315 510748 26 26 17 16
316 510978 26 26 26 3
317 510980 26 26 26 5
318 510986 26 26 26 11
319 510989 26 26 26 14
320 510991 26 26 26 16
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we term CTD to being a black box process.  Furthermore, we make these subsystem calculations 

for every node.  If an option is not being invested in, it still retains its current option CTD value 

and it may be developed later or even down-selected “as-is” at Epoch Ω.  This occurs in the real 

world, specifically when a technology option is developed and it does not make the expected 

performance or exceeds either reduced cost or weight targets. 

Further research, in the independence of option development and if this black box 

approach provides quality data, would be beneficial.  The rest of the CTD calculations for each 

set solution can now occur with applying the subsystem weights. 

B.3 BUILD MDP 

With a complete reduced system index, we know which nodes can be used for the MDP 

state space.  We consider each node may exist at every epoch but the actual state space for the 

MDP is the specific allowable combinations of the options possible states at valid epochs. 

STEP 1: DETERMINE MDP NETWORK’S STATE SPACE 

Table 23 below shows all the elements in the Excel models to create and control the MDP 

state space and the snapshot of the action space and transitions.  The far right three columns 

shows the entire potential action space for Option A1 in this case.  The origin is shown on the far 

left.  The On/Off columns are turned on or off as needed by DP solver sheets.  Color: 

1. Green marks what actions are currently on and the MDP network path for those 

values.  In this case no investment in Option A1 was done at all.  The CTD value is 

the option’s value at origin with 100% likelihood. 
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2. Red marks the paths that are off given the investment choices. 

3. The other color choices were purely to help see the data. 

 
TABLE 23 – TOTAL VIEW OF OPTION A1’S MDP NETWORK (STATE, ACTION AND TRANSITION) 

The following Tables 24 through 27 are the individual options’ total possible MDP 

Network paths.  The probabilities are specific epoch to epoch.  Each row is unique for all actions.  

 
TABLE 24 - OPTION A1 MDP 

A1 On/Off AB P{StateB} Index On/Off BΓ P{StateΓ|B} Index On/Off ΓΩ P{StateΩ|Γ} Index P{Path} V{Opt}
0 0 0 AB BΓ ΓΩ

13 2 2 1 0 2 2 2 0.8 14 0 3 2 2 0.5 23 0 3 3 2 0.5 26 0.000 0.956 1 1 1
0 2 2 2 0.8 14 0 3 2 2 0.5 23 0 3 2 2 0.5 23 0.000 0.925 1 1 1
0 2 2 2 0.8 14 0 2 2 2 0.5 14 0 3 2 2 0.9 23 0.000 0.925 1 1 1
0 2 2 2 0.8 14 0 2 2 2 0.5 14 0 2 2 2 0.1 14 0.000 0.875 1 1 1
0 2 2 1 0.2 13 0 2 2 2 0.9 14 0 3 2 2 0.9 23 0.000 0.925 1 1 1
0 2 2 1 0.2 13 0 2 2 2 0.9 14 0 2 2 2 0.1 14 0.000 0.875 1 1 1
0 2 2 1 0.2 13 0 2 2 1 0.1 13 0 2 2 2 1 14 0.000 0.875 1 1 1
0 2 2 2 0.8 14 0 3 2 2 0.5 23 1 3 2 2 1 23 0.000 0.925 1 1 0
0 2 2 2 0.8 14 0 2 2 2 0.5 14 1 2 2 2 1 14 0.000 0.875 1 1 0
0 2 2 1 0.2 13 0 2 2 2 0.9 14 1 2 2 2 1 14 0.000 0.875 1 1 0
0 2 2 1 0.2 13 0 2 2 1 0.1 13 1 2 2 1 1 13 0.000 0.569 1 1 0
0 2 2 2 0.8 14 1 2 2 2 1 14 1 2 2 2 1 14 0.000 0.875 1 0 0
0 2 2 1 0.2 13 1 2 2 1 1 13 1 2 2 1 1 13 0.000 0.569 1 0 0
1 2 2 1 1 13 0 3 2 2 0.2 23 1 3 2 2 1 23 0.000 0.925 0 1 0
1 2 2 1 1 13 0 2 2 2 0.7 14 1 2 2 2 1 14 0.000 0.875 0 1 0
1 2 2 1 1 13 0 2 2 1 0.1 13 1 2 2 1 1 13 0.000 0.569 0 1 0
1 2 2 1 1 13 0 3 2 2 0.2 23 0 3 3 2 0.5 26 0.000 0.956 0 1 1
1 2 2 1 1 13 0 3 2 2 0.2 23 0 3 2 2 0.5 23 0.000 0.925 0 1 1
1 2 2 1 1 13 0 2 2 2 0.7 14 0 3 2 2 0.9 23 0.000 0.925 0 1 1
1 2 2 1 1 13 0 2 2 2 0.7 14 0 2 2 2 0.1 14 0.000 0.875 0 1 1
1 2 2 1 1 13 0 2 2 1 0.1 13 0 2 2 2 1 14 0.000 0.875 0 1 1
1 2 2 1 1 13 1 2 2 1 1 13 1 2 2 1 1 13 1.000 0.569 0 0 0

Yes = 1 and No = 0
Invest DecisionState at A States at B States at Γ States at Ω

On/Off AB P{StateB} Index On/Off BΓ P{StateΓ|B} Index On/Off ΓΩ P{StateΩ|Γ} Index
0 0 0
0 2 2 2 0.8 14 0 3 2 2 0.5 23 0 3 3 2 0.5 26
0 2 2 2 0.8 14 0 3 2 2 0.5 23 0 3 2 2 0.5 23
0 2 2 2 0.8 14 0 2 2 2 0.5 14 0 3 2 2 0.9 23
0 2 2 2 0.8 14 0 2 2 2 0.5 14 0 2 2 2 0.1 14
0 2 2 1 0.2 13 0 2 2 2 0.9 14 0 3 2 2 0.9 23
0 2 2 1 0.2 13 0 2 2 2 0.9 14 0 2 2 2 0.1 14
0 2 2 1 0.2 13 0 2 2 1 0.1 13 0 2 2 2 1 14
0 2 2 2 0.8 14 0 3 2 2 0.5 23 1 3 2 2 1 23
0 2 2 2 0.8 14 0 2 2 2 0.5 14 1 2 2 2 1 14
0 2 2 1 0.2 13 0 2 2 2 0.9 14 1 2 2 2 1 14
0 2 2 1 0.2 13 0 2 2 1 0.1 13 1 2 2 1 1 13
0 2 2 2 0.8 14 1 2 2 2 1 14 1 2 2 2 1 14
0 2 2 1 0.2 13 1 2 2 1 1 13 1 2 2 1 1 13
1 2 2 1 1 13 0 3 2 2 0.2 23 1 3 2 2 1 23
1 2 2 1 1 13 0 2 2 2 0.7 14 1 2 2 2 1 14
1 2 2 1 1 13 0 2 2 1 0.1 13 1 2 2 1 1 13
1 2 2 1 1 13 0 3 2 2 0.2 23 0 3 3 2 0.5 26
1 2 2 1 1 13 0 3 2 2 0.2 23 0 3 2 2 0.5 23
1 2 2 1 1 13 0 2 2 2 0.7 14 0 3 2 2 0.9 23
1 2 2 1 1 13 0 2 2 2 0.7 14 0 2 2 2 0.1 14
1 2 2 1 1 13 0 2 2 1 0.1 13 0 2 2 2 1 14
1 2 2 1 1 13 1 2 2 1 1 13 1 2 2 1 1 13

States at B States at Γ States at Ω
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TABLE 25 - OPTION A2 MDP 

 
TABLE 26 - OPTION B1 MDP 

On/Off AB P{StateB} Index On/Off BΓ P{StateΓ|B} Index On/Off ΓΩ P{StateΩ|Γ} Index
1 1 1
1 2 2 2 0.4 14 1 2 3 2 0.5 17 1 3 3 2 0.3 26
1 2 2 2 0.4 14 1 2 3 2 0.5 17 1 2 3 2 0.7 17
1 2 2 2 0.4 14 1 2 2 2 0.5 14 1 2 3 2 0.8 17
1 2 2 2 0.4 14 1 2 2 2 0.5 14 1 2 2 2 0.2 14
1 1 2 2 0.6 5 1 2 2 2 0.6 14 1 2 3 2 0.8 17
1 1 2 2 0.6 5 1 2 2 2 0.6 14 1 2 2 2 0.2 14
1 1 2 2 0.6 5 1 1 2 2 0.4 5 1 2 2 2 1 14
1 2 2 2 0.4 14 1 2 3 2 0.5 17 0 2 3 2 1 17
1 2 2 2 0.4 14 1 2 2 2 0.5 14 0 2 2 2 1 14
1 1 2 2 0.6 5 1 2 2 2 0.6 14 0 2 2 2 1 14
1 1 2 2 0.6 5 1 1 2 2 0.4 5 0 1 2 2 1 5
1 2 2 2 0.4 14 0 2 2 2 1 14 0 2 2 2 1 14
1 1 2 2 0.6 5 0 1 2 2 1 5 0 1 2 2 1 5
0 1 2 2 1 5 0 2 3 2 0.1 17 0 2 3 2 1 17
0 1 2 2 1 5 0 2 2 2 0.8 14 0 2 2 2 1 14
0 1 2 2 1 5 0 1 2 2 0.1 5 0 1 2 2 1 5
0 1 2 2 1 5 0 2 3 2 0.1 17 0 3 3 2 0.3 26
0 1 2 2 1 5 0 2 3 2 0.1 17 0 2 3 2 0.7 17
0 1 2 2 1 5 0 2 2 2 0.8 14 0 2 3 2 0.8 17
0 1 2 2 1 5 0 2 2 2 0.8 14 0 2 2 2 0.2 14
0 1 2 2 1 5 0 1 2 2 0.1 5 0 2 2 2 1 14
0 1 2 2 1 5 0 1 2 2 1 5 1 1 2 2 1 5

States at B States at Γ States at Ω

On/Off AB P{StateB} Index On/Off BΓ P{StateΓ|B} Index On/Off ΓΩ P{StateΩ|Γ} Index
0 0 0
0 2 2 2 0.7 14 0 2 3 2 0.2 17 0 3 3 2 0.2 26
0 2 2 2 0.7 14 0 2 3 2 0.2 17 0 2 3 2 0.8 17
0 2 2 2 0.7 14 0 2 2 2 0.8 14 0 2 3 2 0.6 17
0 2 2 2 0.7 14 0 2 2 2 0.8 14 0 2 2 2 0.4 14
0 2 2 1 0.3 13 0 2 2 2 0.6 14 0 2 3 2 0.6 17
0 2 2 1 0.3 13 0 2 2 2 0.6 14 0 2 2 2 0.4 14
0 2 2 1 0.3 13 0 2 2 1 0.4 13 0 2 2 2 1 14
0 2 2 2 0.7 14 0 2 3 2 0.2 17 1 2 3 2 1 17
0 2 2 2 0.7 14 0 2 2 2 0.8 14 1 2 2 2 1 14
0 2 2 1 0.3 13 0 2 2 2 0.6 14 1 2 2 2 1 14
0 2 2 1 0.3 13 0 2 2 1 0.4 13 1 2 2 1 1 13
0 2 2 2 0.7 14 1 2 2 2 1 14 1 2 2 2 1 14
0 2 2 1 0.3 13 1 2 2 1 1 13 1 2 2 1 1 13
1 2 2 1 1 13 0 2 2 2 0.8 14 1 2 2 2 1 14
1 2 2 1 1 13 0 2 2 1 0.2 13 1 2 2 1 1 13
1 2 2 1 1 13 0 2 2 2 0.8 14 0 2 3 2 0.6 17
1 2 2 1 1 13 0 2 2 2 0.8 14 0 2 2 2 0.4 14
1 2 2 1 1 13 0 2 2 1 0.2 13 0 2 2 2 1 14
1 2 2 1 1 13 1 2 2 1 1 13 1 2 2 1 1 13

States at B States at Γ States at Ω
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TABLE 27 - OPTION B2 MDP 

STEP 2: ADD ACTION SPACE 

Table 23 above showed the action space tied to the MDP Network for Option A1.  The 

Action Space itself is controlled from the primary control sheet.  Table 24 below shows the 

possible Action Space for the model.  Red represents actions that are outside of the phase budget 

and not available for the DP problem solve.  Green represents what is available.  For Model 1, we 

only had a slightly tighter budget for the final phase to ensure a budget restriction would control 

the solution.  All other models had realistic and varying budget controls which we used for both 

primary quantitative and sensitivity analyses of the models.  The second B to Γ column is used for 

Model 7 where we allowed an epochal investment skip. 

On/Off AB P{StateB} Index On/Off BΓ P{StateΓ|B} Index On/Off ΓΩ P{StateΩ|Γ} Index
0 0 0
0 2 1 2 0.4 11 0 2 2 2 0.1 14 0 2 2 3 0.1 15
0 2 1 2 0.4 11 0 2 2 2 0.1 14 0 2 2 2 0.9 14
0 2 1 2 0.4 11 0 2 1 2 0.9 11 0 2 2 2 0.4 14
0 2 1 2 0.4 11 0 2 1 2 0.9 11 0 2 1 2 0.6 11
0 1 2 2 0.4 5 0 2 2 2 0.5 14 0 2 2 3 0.1 15
0 1 2 2 0.4 5 0 2 2 2 0.5 14 0 2 2 2 0.9 14
0 1 2 2 0.4 5 0 1 2 2 0.5 5 0 2 2 2 0.8 14
0 1 2 2 0.4 5 0 1 2 2 0.5 5 0 1 2 2 0.2 5
0 1 1 3 0.2 3 0 2 1 2 0.4 11 0 2 2 2 0.4 14
0 1 1 3 0.2 3 0 2 1 2 0.4 11 0 2 1 2 0.6 11
0 1 1 3 0.2 3 0 1 2 2 0.6 5 0 2 2 2 0.8 14
0 1 1 3 0.2 3 0 1 2 2 0.6 5 0 1 2 2 0.2 5
0 2 1 2 0.4 11 0 2 2 2 0.1 14 1 2 2 2 1 14
0 2 1 2 0.4 11 0 2 1 2 0.9 11 1 2 1 2 1 11
0 1 2 2 0.4 5 0 2 2 2 0.2 14 1 2 2 2 1 14
0 1 2 2 0.4 5 0 1 2 2 0.8 5 1 1 2 2 1 5
0 1 1 3 0.2 3 0 2 1 2 0.4 11 1 2 1 2 1 11
0 1 1 3 0.2 3 0 1 2 2 0.6 5 1 1 2 2 1 5
0 2 1 2 0.4 11 1 2 1 2 1 11 1 2 1 2 1 11
0 1 2 2 0.4 5 1 1 2 2 1 5 1 1 2 2 1 5
0 1 1 3 0.2 3 1 1 1 3 1 3 1 1 1 3 1 3
1 1 1 3 1 3 0 2 1 2 0.3 11 1 2 1 2 1 11
1 1 1 3 1 3 0 1 2 2 0.5 5 1 1 2 2 1 5
1 1 1 3 1 3 0 1 1 3 0.2 3 1 1 1 3 1 3
1 1 1 3 1 3 0 2 1 2 0.3 11 0 2 2 2 0.4 14
1 1 1 3 1 3 0 2 1 2 0.3 11 0 2 1 2 0.6 11
1 1 1 3 1 3 0 1 2 2 0.5 5 0 2 2 2 0.8 14
1 1 1 3 1 3 0 1 2 2 0.5 5 0 1 2 2 0.2 5
1 1 1 3 1 3 0 1 1 3 0.2 3 0 1 2 2 1 5
1 1 1 3 1 3 1 1 1 3 1 3 1 1 1 3 1 3

States at B States at Γ States at Ω
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TABLE 28 - MODEL 1 ACTION SPACE 

On the same control sheet for the model, we also maintain the Black Box calculator and 

forward looking Expected Value given those actions. See Figure xx below.  This is different form 

the actual Expected Value of a given action when solving recursively which will be discussed 

below in the DP Backsolve section. 

Actions A1 A2 B1 B2 A to B B to Γ B to Γ Γ to Ω
a1 0 0 0 0 1 1 1
a2 0 0 0 1 1 1 1
a3 0 0 1 0 1 1 1
a4 0 0 1 1 1 1 1
a5 0 1 0 0 1 1 1
a6 0 1 0 1 1 1 1
a7 0 1 1 0 1 1 1
a8 0 1 1 1 1 1 1
a9 1 0 0 0 1 1 1
a10 1 0 0 1 1 1 1
a11 1 0 1 0 1 1 1
a12 1 0 1 1 1 1 1
a13 1 1 0 0 1 1 1
a14 1 1 0 1 1 1 0
a15 1 1 1 0 1 1 0
a16 1 1 1 1 1 XX 1 XX 0
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TABLE 29 - BLACK BOX (FORWARD LOOK) 

STEP 3: ADD THE TRANSITIONS 

Tables 23 through 27 all show the transition likelihood moving from state to state for the 

specific options.  We feed those tables from a Transition Probability Matrix.  Table 30 below 

shows the likelihood for state to state movement for Model 1.  This is specifically for Epoch B to 

Epoch Γ. 

Phase Act_Choice A1 A2 B1 B2 EV(System)
A to B a16 1 1 1 1
B to Γ a16 1 1 1 1
Γ to Ω a12 1 0 1 1
EV(Option) 0.93 0.80 0.89 0.80
EV(Subsystem) A EV 0.99 B EV 0.98 0.9829

Black Box Calculator
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TABLE 30 - EPOCH B TO EPOCH Γ TRANSITION PROBABILITIES 

 

Before conducting the DP Backsolve, we build the actual MDP from Epochs A through Ω.  

Those sheets also contain the DP Backsolve calculations are shown in the next section. 

B.4 DP BACKSOLVE 

STEP 1: COMPLETE MDP BUILD 

Table 31 below shows Model 1’s allowable MDP nodes from Epoch A to Epoch B. 

OPT P{X}
EPOCH NODE EPOCH NODE

A1 B 13 Γ 13 0.1
A1 B 13 Γ 14 0.9
A1 B 14 Γ 14 0.5
A1 B 14 Γ 23 0.5
A2 B 5 Γ 5 0.4
A2 B 5 Γ 14 0.6
A2 B 14 Γ 14 0.5
A2 B 14 Γ 17 0.5
B1 B 13 Γ 13 0.4
B1 B 13 Γ 14 0.6
B1 B 14 Γ 14 0.8
B1 B 14 Γ 17 0.2
B2 B 3 Γ 5 0.6
B2 B 3 Γ 11 0.4
B2 B 5 Γ 5 0.5
B2 B 5 Γ 14 0.5
B2 B 11 Γ 11 0.9
B2 B 11 Γ 14 0.1

IN OUT
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TABLE 31 - MODEL 1 MDP - EPOCH A TO EPOCH B 

Table 32 shows how we track the next step to build going from Epoch B to Epoch Γ.  Given 

Excel’s structure, this was a manual process.  Much of the spreadsheets are automated, but the 

actual builds of the MDP’s and their corresponding DP back solves have manual elements.  It is 

expected that the first extension of this algorithm would be code it as a software package.  Excel 

was useful for the testing and analysis in the dissertation effort, but is highly inefficient as a 

software solution.  Table 32 below shows the in and out structure to both build and track the 

Epoch Pred
A1 A2 B1 B2 In Node

1 13 5 13 3 A Origin
1 13 5 13 3 B 1
2 13 5 13 5 B 1
3 13 5 13 11 B 1
6 13 5 14 3 B 1
7 13 5 14 5 B 1
8 13 5 14 11 B 1

21 13 14 13 3 B 1
22 13 14 13 5 B 1
23 13 14 13 11 B 1
26 13 14 14 3 B 1
27 13 14 14 5 B 1
28 13 14 14 11 B 1
81 14 5 13 3 B 1
82 14 5 13 5 B 1
83 14 5 13 11 B 1
86 14 5 14 3 B 1
87 14 5 14 5 B 1
88 14 5 14 11 B 1

101 14 14 13 3 B 1
102 14 14 13 5 B 1
103 14 14 13 11 B 1
106 14 14 14 3 B 1
107 14 14 14 5 B 1
108 14 14 14 11 B 1

Opt IndexState 
Index



116 

 

 

 

MDP itself and then to provide control for the back solve.  Additionally, the system index and 

reduced system index came from these tables.  The indices were cleaned separately in a separate 

sheet and then copied back into the DP solve sheets. 

Yellow row 1 shows all the possible option combinations for going from Epoch A to Epoch 

B.  For example, Option A1, at Epoch A can go from Option A1 index 13 to either Option A1 indices 

13 or 14 at Epoch B.  Green rows are all the possible combinations of transitions coming from 

Epoch A to Epoch B.  Each green row also contains the possible combinations for then going from 

Epoch B to Epoch Γ.  At this point, the Node/Arc structure of the MDP is too big to show efficiently.  

Table 33 below just shows the very first set of transitional arcs Epoch B to Epoch Γ.  There are 24 

sets in Model 1 to cover all the Epoch B to Epoch Γ transitional arcs. 
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TABLE 32 - EPOCH A TO EPOCH B TO EPOCH Γ TRANSITION ARCS 

Sys_Red System Epoch Pred
Index Index A1 A2 B1 B2 In Node A1 A2 B1 B2 A1 A2 B1 B2 A1 A2 B1 B2

1 239439 13 5 13 3 A Orig 13 5 13 3 14 14 14 5 11
1 239439 13 5 13 3 B 1 13 5 13 3 14 14 14 5 11
2 239441 13 5 13 5 B 1 13 5 13 5 14 14 14 14
3 239447 13 5 13 11 B 1 13 5 13 11 14 14 14 14
6 239466 13 5 14 3 B 1 13 5 14 3 14 14 17 5 11
7 239468 13 5 14 5 B 1 13 5 14 5 14 14 17 14
8 239474 13 5 14 11 B 1 13 5 14 11 14 14 17 14

21 246000 13 14 13 3 B 1 13 14 13 3 14 17 14 5 11
22 246002 13 14 13 5 B 1 13 14 13 5 14 17 14 14
23 246008 13 14 13 11 B 1 13 14 13 11 14 17 14 14
26 246027 13 14 14 3 B 1 13 14 14 3 14 17 17 5 11
27 246029 13 14 14 5 B 1 13 14 14 5 14 17 17 14
28 246035 13 14 14 11 B 1 13 14 14 11 14 17 17 14
81 259122 14 5 13 3 B 1 14 5 13 3 23 14 14 5 11
82 259124 14 5 13 5 B 1 14 5 13 5 23 14 14 14
83 259130 14 5 13 11 B 1 14 5 13 11 23 14 14 14
86 259149 14 5 14 3 B 1 14 5 14 3 23 14 17 5 11
87 259151 14 5 14 5 B 1 14 5 14 5 23 14 17 14
88 259157 14 5 14 11 B 1 14 5 14 11 23 14 17 14

101 265683 14 14 13 3 B 1 14 14 13 3 23 17 14 5 11
102 265685 14 14 13 5 B 1 14 14 13 5 23 17 14 14
103 265691 14 14 13 11 B 1 14 14 13 11 23 17 14 14
106 265710 14 14 14 3 B 1 14 14 14 3 23 17 17 5 11
107 265712 14 14 14 5 B 1 14 14 14 5 23 17 17 14
108 265718 14 14 14 11 B 1 14 14 14 11 23 17 17 14

Opt Index In Opt Index Out Opt Index Out Opt Index Out
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TABLE 33 - TRANSITION ARCS FROM NODE 1 AT EPOCH B TO EPOCH Γ 

Step 2 also contains this expanding structure of laying out the complete MDP but also 

includes the initial recursive DP step from Epoch Ω to Epoch Γ. 

STEP 2: FINISH MDP BUILD AND CONDUCT INITIAL RECURSIVE DP STEP 

Table 34 below shows multiple things going from left to right:  

Sys_Red System Epoch Pred
Index Index A1 A2 B1 B2 In Node

1 239439 13 5 13 3 Γ 1
2 239441 13 5 13 5 Γ 1
3 239447 13 5 13 11 Γ 1
6 239466 13 5 14 3 Γ 1
7 239468 13 5 14 5 Γ 1
8 239474 13 5 14 11 Γ 1

21 246000 13 14 13 3 Γ 1
22 246002 13 14 13 5 Γ 1
23 246008 13 14 13 11 Γ 1
26 246027 13 14 14 3 Γ 1
27 246029 13 14 14 5 Γ 1
28 246035 13 14 14 11 Γ 1
81 259122 14 5 13 3 Γ 1
82 259124 14 5 13 5 Γ 1
83 259130 14 5 13 11 Γ 1
86 259149 14 5 14 3 Γ 1
87 259151 14 5 14 5 Γ 1
88 259157 14 5 14 11 Γ 1

101 265683 14 14 13 3 Γ 1
102 265685 14 14 13 5 Γ 1
103 265691 14 14 13 11 Γ 1
106 265710 14 14 14 3 Γ 1
107 265712 14 14 14 5 Γ 1
108 265718 14 14 14 11 Γ 1

Opt Index In
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1. The far left third is final set of transitional arcs for the first node from Epoch Γ to 

Epoch Ω, 

2. Matrix controls to multiply the correct values for actions, 

3. Values for the options, subsystems and specific set solutions at the Epoch Ω end 

nodes and 

4. A control structure to calculate the correct Expected Values for determination of 

the optimal actions going recursively. 

 
TABLE 34 - FINAL MDP BUILD AND FIRST DP STEP 

Table 35 below is a closeup of the left half of Table 34 for discussion.  This is the first set 

of node-arcs from Epoch Γ to Epoch Ω.  There are 108 sets in the total model.  As per the previous 

steps, the first row represents the start node and the remaining rows represent the arcs to all 

the final nodes.  The Option Index Stay to Up Section represents all the possible combinations for 

the unique option sets for their movements.  For example, in the third row, that unique set will 

not change the state of options A1, A2 and B1.  B2 will move from Option State 3 to Option State 

SysRed System Epoch Pred Action
Index Index A1 A2 B1 B2 In Node A1 A2 B1 B2 A1 A2 B1 B2 V{X} V{A1} V{A2} V{A} V{B1} V{B2} V{B} Γ to Ω A1 A2 B1 B2 A1 A2 B1 B2 A1 A2 B1

1 239439 13 5 13 3 Γ 13 5 13 3 14 14 14 5 0.77 0.57 0.53 0.80 0.57 0.35 0.72 a16 1 1 1 1 0.00 0.00 0.00 0.00 1.00 1.00 1.00
1 239439 13 5 13 3 Ω 1 1 1 1 0 0 0 0 0.77 0.57 0.53 0.80 0.57 0.35 0.72 0.00 0.00 0.00 0.00 0.00 a1 0.77 a13

2 239441 13 5 13 5 Ω 1 1 1 0 0 0 0 1 0.80 0.57 0.53 0.80 0.57 0.53 0.80 0.00 0.00 0.00 0.00 1.00 a2 0.80 a12

6 239466 13 5 14 3 Ω 1 1 0 1 0 0 1 0 0.84 0.57 0.53 0.80 0.88 0.35 0.92 0.00 0.00 0.00 1.00 0.00 a3 0.84 a12

7 239468 13 5 14 5 Ω 1 1 0 0 0 0 1 1 0.85 0.57 0.53 0.80 0.88 0.53 0.94 0.00 0.00 0.00 1.00 1.00 a4 0.85 a12

21 246000 13 14 13 3 Ω 1 0 1 1 0 1 0 0 0.87 0.57 0.88 0.95 0.57 0.35 0.72 0.00 0.00 1.00 0.00 0.00 a5 0.87 a13

22 246002 13 14 13 5 Ω 1 0 1 0 0 1 0 1 0.89 0.57 0.88 0.95 0.57 0.53 0.80 0.00 0.00 1.00 0.00 1.00 a6 0.89 a8

26 246027 13 14 14 3 Ω 1 0 0 1 0 1 1 0 0.94 0.57 0.88 0.95 0.88 0.35 0.92 0.00 0.00 1.00 1.00 0.00 a7 0.94 a8

27 246029 13 14 14 5 Ω 1 0 0 0 0 1 1 1 0.94 0.57 0.88 0.95 0.88 0.53 0.94 0.00 0.00 1.00 1.00 1.00 a8 0.94
81 259122 14 5 13 3 Ω 0 1 1 1 1 0 0 0 0.86 0.88 0.53 0.94 0.57 0.35 0.72 0.00 1.00 0.00 0.00 0.00 a9 0.86 a13

82 259124 14 5 13 5 Ω 0 1 1 0 1 0 0 1 0.89 0.88 0.53 0.94 0.57 0.53 0.80 0.00 1.00 0.00 0.00 1.00 a10 0.89 a12

86 259149 14 5 14 3 Ω 0 1 0 1 1 0 1 0 0.93 0.88 0.53 0.94 0.88 0.35 0.92 0.00 1.00 0.00 1.00 0.00 a11 0.93 a12

87 259151 14 5 14 5 Ω 0 1 0 0 1 0 1 1 0.94 0.88 0.53 0.94 0.88 0.53 0.94 0.00 1.00 0.00 1.00 1.00 a12 0.94
101 265683 14 14 13 3 Ω 0 0 1 1 1 1 0 0 0.89 0.88 0.88 0.98 0.57 0.35 0.72 0.00 1.00 1.00 0.00 0.00 a13 0.89
102 265685 14 14 13 5 Ω 0 0 1 0 1 1 0 1 0.92 0.88 0.88 0.98 0.57 0.53 0.80 0.00 1.00 1.00 0.00 1.00 a14 INF
106 265710 14 14 14 3 Ω 0 0 0 1 1 1 1 0 0.96 0.88 0.88 0.98 0.88 0.35 0.92 0.00 1.00 1.00 1.00 0.00 a15 INF
107 265712 14 14 14 5 Ω 0 0 0 0 1 1 1 1 0.97 0.88 0.88 0.98 0.88 0.53 0.94 1.00 1.00 1.00 1.00 1.00 a16 INF

#N/A -20439 1.00 0.97 a8 0.94

Opt Index In Opt Index Stay Opt Index Up Index Actions Invest P(Stay) Invest P(Up)

Action Value Max Action Value
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5.  The 0’s and 1’s allow us to correctly conduct the Expected Values for the actions.  The value 

rows are the CTD calculations are unique for the specific state nodes. 

 

 
TABLE 35 - CLOSEUP OF 1ST BACKSOLVE STEP - ARCS AND VALUES 

Table 36 below is a closeup of the left half of Table 34 for discussion.  Table 36 shows 

where the calculations and the controls are to solve the Action Expected Values. 

SysRed System Epoch Pred
Index Index A1 A2 B1 B2 In Node A1 A2 B1 B2 A1 A2 B1 B2 V{X} V{A1} V{A2} V{A} V{B1} V{B2} V{B}

1 239439 13 5 13 3 Γ 13 5 13 3 14 14 14 5 0.77 0.57 0.53 0.80 0.57 0.35 0.72
1 239439 13 5 13 3 Ω 1 1 1 1 0 0 0 0 0.77 0.57 0.53 0.80 0.57 0.35 0.72
2 239441 13 5 13 5 Ω 1 1 1 0 0 0 0 1 0.80 0.57 0.53 0.80 0.57 0.53 0.80
6 239466 13 5 14 3 Ω 1 1 0 1 0 0 1 0 0.84 0.57 0.53 0.80 0.88 0.35 0.92
7 239468 13 5 14 5 Ω 1 1 0 0 0 0 1 1 0.85 0.57 0.53 0.80 0.88 0.53 0.94

21 246000 13 14 13 3 Ω 1 0 1 1 0 1 0 0 0.87 0.57 0.88 0.95 0.57 0.35 0.72
22 246002 13 14 13 5 Ω 1 0 1 0 0 1 0 1 0.89 0.57 0.88 0.95 0.57 0.53 0.80
26 246027 13 14 14 3 Ω 1 0 0 1 0 1 1 0 0.94 0.57 0.88 0.95 0.88 0.35 0.92
27 246029 13 14 14 5 Ω 1 0 0 0 0 1 1 1 0.94 0.57 0.88 0.95 0.88 0.53 0.94
81 259122 14 5 13 3 Ω 0 1 1 1 1 0 0 0 0.86 0.88 0.53 0.94 0.57 0.35 0.72
82 259124 14 5 13 5 Ω 0 1 1 0 1 0 0 1 0.89 0.88 0.53 0.94 0.57 0.53 0.80
86 259149 14 5 14 3 Ω 0 1 0 1 1 0 1 0 0.93 0.88 0.53 0.94 0.88 0.35 0.92
87 259151 14 5 14 5 Ω 0 1 0 0 1 0 1 1 0.94 0.88 0.53 0.94 0.88 0.53 0.94

101 265683 14 14 13 3 Ω 0 0 1 1 1 1 0 0 0.89 0.88 0.88 0.98 0.57 0.35 0.72
102 265685 14 14 13 5 Ω 0 0 1 0 1 1 0 1 0.92 0.88 0.88 0.98 0.57 0.53 0.80
106 265710 14 14 14 3 Ω 0 0 0 1 1 1 1 0 0.96 0.88 0.88 0.98 0.88 0.35 0.92
107 265712 14 14 14 5 Ω 0 0 0 0 1 1 1 1 0.97 0.88 0.88 0.98 0.88 0.53 0.94

Opt Index In Opt Index Stay Opt Index Up
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TABLE 36 - CLOSEUP OF 1ST BACKSOLVE - ACTION EXPECTED VALUES 

There are automated and manual steps to determine the Expected Values.  The white, 

yellow and green cells underneath the Action Invest section are all pasted data from the 

automated calculations conducted in the left third, the Action Values which are the Expected 

Values.  In the example, we know that Actions 1 through 13 are allowable and Actions 14 through 

16 are over budget, so we mark them as Infeasible.  We also know that Actions 8, 12 and 13 

dominate the yellow actions because they are under budget and contain the options as subsets 

in their set solutions.  Thus, we only need to solve for Actions 8, 12 and 13.  We did solve all the 

actions in yellow to just check.  The green colored data in the Invest P(Stay) B1 column show 

Action
Γ to Ω A1 A2 B1 B2 A1 A2 B1 B2 A1 A2 B1 B2 A1 A2 B1 B2
a16 1 1 1 1 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.00 0.00 0.00 0.00 0.00 a1 0.77 a13

0.00 0.00 0.00 0.00 1.00 a2 0.80 a12

0.00 0.00 0.00 1.00 0.00 a3 0.84 a12

0.00 0.00 0.00 1.00 1.00 a4 0.85 a12

0.00 0.00 1.00 0.00 0.00 a5 0.87 a13

0.00 0.00 1.00 0.00 1.00 a6 0.89 a8

0.00 0.00 1.00 1.00 0.00 a7 0.94 a8

0.00 0.00 1.00 1.00 1.00 a8 0.94
0.00 1.00 0.00 0.00 0.00 a9 0.86 a13

0.00 1.00 0.00 0.00 1.00 a10 0.89 a12

0.00 1.00 0.00 1.00 0.00 a11 0.93 a12

0.00 1.00 0.00 1.00 1.00 a12 0.94
0.00 1.00 1.00 0.00 0.00 a13 0.89
0.00 1.00 1.00 0.00 1.00 a14 INF
0.00 1.00 1.00 1.00 0.00 a15 INF
1.00 1.00 1.00 1.00 1.00 a16 INF
1.00 0.97 a8 0.94

Index Actions Invest P(Stay) Invest P(Up) Invest (ALL) P(Up)

Action Value Max Action Value
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which action dominates.  Refer to Table 28 for verification.  For example, Action 12 yields an EV 

= 0.94.  Action 11, which is dominated by Action 12 yields an EV = 0.93. 

All the action calculations are automated.  The upper left corner is a pull-down menu.  

When you select the action where you want to determine its EV, it automatically conducts all the 

matrices manipulations and calculates the action EV.  The third row is another set of controls to 

ensure that the correct CTDs and their likelihood of occurrences are calculated correctly. 

STEP 3: STORE BEST EXPECTED VALUES AND CONTINUE RECURSIVE DP SOLVE 

Table 37 below shows the ordered Top 30 out of the 108 Epoch Γ nodes that were solved.  

The best Action EV is Action 13 with value: 0.9927.  Since Model 1 only had restricted budget in 

its Final Phase, Action 16 would be the optimal action for the first two development phases from 

Epoch A to Epoch B and Epoch B to Epoch Γ.  The remainder of this step will be explained in the 

next section with Model 2. 
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TABLE 37 - EPOCH Ω TO EPOCH Γ BEST EARNED VALUES 

Red Index Index A1 A2 B1 B2 Epoch Action CTD EV
214 445136 23 17 17 14 Γ a13 0.9929
214 445136 23 17 17 14 Γ a13 0.9929
194 442949 23 14 17 14 Γ a13 0.9920
134 267989 14 17 17 14 Γ a13 0.9918
209 445055 23 17 14 14 Γ a13 0.9915
174 436388 23 5 17 14 Γ a13 0.9911
114 265802 14 14 17 14 Γ a13 0.9907
189 442868 23 14 14 14 Γ a13 0.9907
212 445127 23 17 17 5 Γ a12 0.9907
129 267908 14 17 14 14 Γ a13 0.9904
204 445028 23 17 13 14 Γ a12 0.9897
169 436307 23 5 14 14 Γ a13 0.9897

54 248306 13 17 17 14 Γ a13 0.9895
192 442940 23 14 17 5 Γ a12 0.9895
132 267980 14 17 17 5 Γ a12 0.9894

94 259241 14 5 17 14 Γ a13 0.9894
109 265721 14 14 14 14 Γ a13 0.9893
207 445046 23 17 14 5 Γ a12 0.9891
213 445133 23 17 17 11 Γ a12 0.9889
184 442841 23 14 13 14 Γ a12 0.9885
124 267881 14 17 13 14 Γ a12 0.9885
172 436379 23 5 17 5 Γ a8 0.9882

49 248225 13 17 14 14 Γ a13 0.9881
89 259160 14 5 14 14 Γ a13 0.9880

187 442859 23 14 14 5 Γ a12 0.9879
127 267899 14 17 14 5 Γ a12 0.9879
202 445019 23 17 13 5 Γ a12 0.9879
112 265793 14 14 17 5 Γ a12 0.9878

34 246119 13 14 17 14 Γ a13 0.9878
193 442946 23 14 17 11 Γ a12 0.9877
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B.5 HIGH-LEVEL DATA ALL MODELS 

MODEL 2 DATA 

Model 2 data differs from Model 1 in having restricted budgets for all phases.  A future 

research idea would be to have a general budget for all phases.  There is promise in considering 

a looser structure for phase budgeting, to see if set solution selection could improve.  However, 

our research scope focused on the current DoD budgeting structure and similar tending 

commercial large program structures that break down budgets into phases.  Altering those 

budgets requires executive approval.  Our sensitivity analysis covers considering budget changes 

with Model 2.  Table 38 below shows the modified budget for Models 2 through 6. 

 
TABLE 38 - MODELS 2 THROUGH 6 BUDGET 

Table 39 below shows how the modified budget impacts the allowable actions for the 

model.  Red is over budget and infeasible.  Green is feasible.  The three Dom columns mark 

actions that must be solved with double x’s or if an action is dominated by another action. 

Costs Phase A1 A2 B1 B2 Budget - $M
Dev A to B 14 6 4 2 20
Dev (continue) B to Γ 8 9 5 4 20
Dev and SI Γ to Ω 10 10 6 5 16
SI Ω to TP 5 4 3 3 8
Reserve 9
Total Budget 73
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TABLE 39 - MODEL 2 ACTION SPACE AND ACTIONS 

MODEL 2 DP SOLVE 

Since the budget in the earlier phases of Model 2 make complete option development 

infeasible, we will show the remaining steps of how the DP solve is conducted back to Epoch A 

when all the phases cannot be solved by inspection.  Additionally, we will also show that the 

model needs to be pruned once the optimal action at Epoch A is determined as any options not 

developed from Epoch A forward can be considered for development after Epoch B. 

Table 40 below shows the Top 30 EV’s from the Model 2 Epoch Ω to Epoch Γ Solve. 

Actions A1 A2 B1 B2 A to B Dom B to Γ Dom Γ to Ω Dom
a1 0 0 0 0 1 All 1 All 1 All
a2 0 0 0 1 1 a12 1 a12 1 a10
a3 0 0 1 0 1 a12 1 a12 1 a11
a4 0 0 1 1 1 a8 1 a12 1 XX
a5 0 1 0 0 1 a13 1 a13 1 a7
a6 0 1 0 1 1 a8 1 a8 1 XX
a7 0 1 1 0 1 a8 1 a8 1 XX
a8 0 1 1 1 1 XX 1 XX 0
a9 1 0 0 0 1 a13 1 a13 1 a12
a10 1 0 0 1 1 XX 1 XX 1 XX
a11 1 0 1 0 1 XX 1 XX 1 XX
a12 1 0 1 1 1 XX 1 XX 0
a13 1 1 0 0 1 XX 1 XX 0
a14 1 1 0 1 0 0 0
a15 1 1 1 0 0 0 0
a16 1 1 1 1 0 0 0
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TABLE 40 - MODEL 2 EPOCH Ω TO EPOCH Γ DP SOLVE 

Table 41 below shows the first set solve going from Epoch Γ to Epoch B.  The same 

structure as in the previous solve is maintained.  However, the EV calculations are used only to 

determine the optimal action from Epoch B to Epoch Γ.  The EV’s that are carried back to the next 

recursion are the best EV’s from the initial solve.  Refer to any textbook on DP.  There is a total 

Index In Action CTD EV
214 Γ a11 0.9927
209 Γ a11 0.9917
194 Γ a11 0.9915
134 Γ a11 0.9915
204 Γ a11 0.9909
189 Γ a11 0.9905
129 Γ a11 0.9905
174 Γ a7 0.9902
212 Γ a10 0.9900
114 Γ a11 0.9898
184 Γ a11 0.9897
124 Γ a11 0.9897
169 Γ a7 0.9893
109 Γ a11 0.9889
192 Γ a10 0.9888
132 Γ a10 0.9887

54 Γ a11 0.9887
164 Γ a7 0.9884
207 Γ a4 0.9882

89 Γ a4 0.9880
104 Γ a11 0.9880
213 Γ a10 0.9880

49 Γ a11 0.9877
172 Γ a6 0.9875
112 Γ a10 0.9871

44 Γ a11 0.9869
202 Γ a4 0.9869
193 Γ a10 0.9868
133 Γ a10 0.9867
187 Γ a4 0.9867
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of 24 sets that were solved in Model 2.  Note that for Action 12, the model yields a EV of 0.92.  

This is of course the best EV, but without the next phase development from Epoch Γ to Epoch Ω.  

When we look at the Best EV from Epoch Ω, which is shown in the far right column we can actually 

expect an EV of 0.985. 

 
TABLE 41 - DP SOLVE FOR EPOCH G TO EPOCH B (SET 1 OF 24) 

Once we solve all the 24 sets and find their best EV from the previous solve, we have 

completed the solve to Epoch B, and we know the best action to take from Epoch B to Epoch Γ.  

Table 42 below shows the 24 state node solutions at Epoch B. 

SysRed System Epoch Pred Best EV
Index Index A1 A2 B1 B2 In Node A1 A2 B1 B2 A1 A2 B1 B2 A1 A2 B1 B2 At Node Γ

1 239439 13 5 13 3 B 1 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.90 0.60 0.60 1.00
1 239439 13 5 13 3 Γ 1 0.9365
2 239441 13 5 13 5 Γ 1 0.9442
3 239447 13 5 13 11 Γ 1 0.9499
6 239466 13 5 14 3 Γ 1 0.9442
7 239468 13 5 14 5 Γ 1 0.9564
8 239474 13 5 14 11 Γ 1 0.9538

21 246000 13 14 13 3 Γ 1 0.9614
22 246002 13 14 13 5 Γ 1 0.9691
23 246008 13 14 13 11 Γ 1 a1 DOM a16 0.9748
26 246027 13 14 14 3 Γ 1 a2 DOM a16 0.9691
27 246029 13 14 14 5 Γ 1 a3 DOM a16 0.9813
28 246035 13 14 14 11 Γ 1 a4 DOM a16 0.9786
81 259122 14 5 13 3 Γ 1 a5 DOM a16 0.9614
82 259124 14 5 13 5 Γ 1 a6 DOM a16 0.9691
83 259130 14 5 13 11 Γ 1 a7 DOM a16 0.9748
86 259149 14 5 14 3 Γ 1 a8 0.89 a16 0.9691
87 259151 14 5 14 5 Γ 1 a9 DOM a16 0.9813
88 259157 14 5 14 11 Γ 1 a10 0.89 a16 0.9786

101 265683 14 14 13 3 Γ 1 a11 0.90 a16 0.9691
102 265685 14 14 13 5 Γ 1 a12 0.92 a16 0.9813
103 265691 14 14 13 11 Γ 1 a13 0.88 a16 0.9786
106 265710 14 14 14 3 Γ 1 a14 INF a16 0.9727
107 265712 14 14 14 5 Γ 1 a15 INF a16 0.9850
108 265718 14 14 14 11 Γ 1 a16 INF 0.9823

a12 0.92 0.9850

Opt Index In Invest P(Stay) Invest P(Up) Invest (ALL) P(Up)

Max Action Value



128 

 

 

 

 
TABLE 42 - DP SOLVE FROM EPOCH Γ TO EPOCH B (ALL SETS) 

Finally, we repeat the same process to solve to Epoch A.  Table 43 below shows the 

complete solve to the Origin Point at Epoch A.  There is of course only one set here. 

Index In Action
Best EV at 
Node Γ

1 B a12 0.9850
2 B a12 0.9889
3 B a12 0.9889
6 B a13 0.9871
7 B a13 0.9898
8 B a13 0.9898

21 B a12 0.9866
22 B a12 0.9905
23 B a12 0.9905
26 B a12 0.9887
27 B a12 0.9915
28 B a12 0.9915
81 B a8 0.9867
82 B a8 0.9905
83 B a8 0.9905
86 B a8 0.9888
87 B a8 0.9915
88 B a13 0.9915

101 B a12 0.9882
102 B a12 0.9917
103 B a12 0.9917
106 B a12 0.9900
107 B a12 0.9927
108 B a12 0.9927
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TABLE 43 - EPOCH B TO EPOCH A SOLVE 

Table 44 below is a synopsis of all optimal actions for Model 2. 

 
TABLE 44 - MODEL 2 TOTAL DP SOLVE 

Once we have the complete solve done, we need one final cleanup step.  Action 12 at 

Epoch A means that Option A2 will not be developed.  So, we prune all possible, previously non-

dominated, in budget actions that include Option A2 and then go through a complete resolve to 

verify that the solution remains correct. 

Table 45 below shows the cleaned-up re-solve. 

Arc 
Number

Epoch 
In

Node 
In

Node 
Out

Epoch 
Out

Γ_Ω Best 
Action

Γ_Ω CTD 
EV

B_Γ Best 
Action

B_Γ CTD 
EV

A_B Best 
Action

A_B CTD 
EV

Origin A a12 0.9927
23 A 1 107 B a12 0.9927
24 A 1 108 B a12 0.9927

472 B 108 214 Γ a11 0.9927
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TABLE 45 – MODEL 2 TOTAL DP SOLVE (PRUNED RESOLVE) 

OTHER MODELS UNIQUE DATA 

Table 46 below shows the modified weights for Models 3, 4 and 5.  Models 3 and 4 varied 

the parameter weights.  Model 5 shares the same parameter weights with Model 2, but varies 

the subsystem weights.  Comparative analysis is found in Chapter 5. 

 
TABLE 46 - MODIFIED WEIGHTS FOR MODELS 3, 4, AND 5 

Table 47 below shows the modified origin point. 

 
TABLE 47 - MODEL 6 (MODIFIED ORIGIN) 

Table 48 below shows the modified budget for Model 7.  Model 7 allows for skipping an 

investment from Epoch A to Epoch B. 

Arc 
Number

Epoch 
In

Node 
In

Node 
Out

Epoch 
Out

Γ_Ω Best 
Action

Γ_Ω CTD 
EV

B_Γ Best 
Action

B_Γ CTD 
EV

A_B Best 
Action

A_B CTD 
EV

Origin A a12 0.9927
23 A 1 107 B a12 0.9927
24 A 1 108 B a12 0.9927

472 B 108 214 Γ a11 0.9927

PWt 0.8
WWt 0.1
CWt 0.1
A_Wt 0.65
B_Wt 0.35

PWt 0.1
WWt 0.2
CWt 0.7
A_Wt 0.65
B_Wt 0.35

PWt 0.4
WWt 0.25
CWt 0.35
A_Wt 0.35
B_Wt 0.65

       

Options
Metrics P W C P W C P W C P W C
StateA 2 1 1 2 1 2 2 1 1 1 1 3

A1 A2 B1 B2
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TABLE 48 – MODEL 7 MODIFIED BUDGET 

  

Costs Phase A1 A2 B1 B2 Budget - $M
Dev A to B 14 6 4 2 20
Dev (continue) B to Γ 8 9 5 4 20
Dev (catch up) B to Γ 20 21 12 8
Dev and SI Γ to Ω 10 10 6 5 16
SI Ω to TP 5 4 3 3 8
Reserve 9
Total Budget 73
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Often during a system Product Development program external factors or requirements 

change, forcing system design change.  This uncertainty adversely affects program outcome, 

adding to development time and cost, production cost, and compromise to system performance.  

We present a development approach that minimizes the impacts, by considering the possibility 

of changes in the external factors and the implications of mid-course design changes.  The 

approach considers the set of alternative designs and the burdens of a mid-course change from 

one design to another in determining the relative value of a specific design.  The approach 

considers and plans parallel development of alternative designs with progressive selection of 

options, including time-versus-cost tradeoffs and the impact change-costs.  The approach 

includes a framework of the development process that addresses design and integration lead-

times, and their relationship to the time-order of design decisions, and the time-dependent 

burden of design changes. 
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The framework includes all the mathematical dimensions to define the problem, the time-

based epochal structure, modeling parameters and a unique Set-Based Design value structure.  

The framework uses the Markov Decision Process to create a structured set solution graph and 

the required action space, state space and transition matrix.  The framework’s stochastic based 

value structure, termed Contribution-to-Design, is used to “black box” seed the graph with values 

for a Dynamic Programming algorithm to conduct a recursive back solve.  The Bellman Equation 

based Dynamic Program determines optimal actions for the design set solutions at each epoch.  

Multiple models are developed to conduct sensitivity analysis on the parameters of the 

framework.   
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