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CHAPTER 1 INTRODUCTION 

1.1 Adhesively Bonded Joints 

There is a rapid growth in the application of adhesive bonding in aeronautical, aerospace and 

automotive industries to replace the conventional joining techniques such as welding, riveting or 

bolting. This growth is motivated by the need for bonding composite structures made from light 

weight carbon or glass fiber composites as adhesives are the only way to join disparate materials 

to one another. The application of structural adhesives eliminates sudden change of stresses, 

lowers stresses acting across joined region, uniformly distributes the load, increases load 

carrying capacity and eliminates stress concentration. The result is a reduced overall weight of 

the structure, lower cost, improved long-term durability, improved fatigue resistance, increased 

stiffness of the structure and improved safety. Another promising application is the damping 

properties of the adhesive that may enhance the damping capacity of the whole structure. 

However, adhesives are viscoelastic in nature and when put under load they exhibit time 

dependent behavior. The gradual decrease in their stiffness leads to continuous decrease in load 

bearing performance and subsequently redistribution of the stresses and strains within the 

structure. Another negative point is the complex stress state of adhesive joints that makes it 

difficult to predict its long-term behavior including failure and deformations. Viscoelasticity is a 

mix of elastic and viscoelastic behavior with deformation depending on load, time and 

temperature. Many materials will undergo some level of deformation called creep if put under 

constant stress over a period of time. Increasing the temperature of the material will speed up the 

processes, and the time dependent response of the material decreases. Even though the use of 

adhesive materials started long time ago, most of the adhesives being used today were developed 
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during the last century. Developments in this field continue to meet the different requirements 

and applications in industry. 

1.1.1 Advantages of Adhesively Bonded Joints Over Other Joining Methods 

• The possibility of joining substrates with different materials, geometries and size. 

• Avoid galvanic corrosion that comes as a result of joining dissimilar metals with 

different galvanic potential.  

• No deformation to the substrates being adhesively bonded and reduction in 

manufacturing cost. 

• Adhesive joining will not make any mechanical damage to the bonded substrates, the 

structure of the material is protected.  

• Use of adhesive joints means high product design flexibility 

• Lower structure weight, this is directly related to the reduction in fuel consumption and 

CO2 emissions to the environment. 

• Improved fatigue and impact resistance of the structure by using elastic adhesives, this 

means increased life cycle and reliability of the structure. 

• Stresses are distributed over larger areas which means less stress concentrations in the 

bond connection. 

• The use of adhesive joints reduces the vibration and noise. 

• Reducing the need for many mechanical components such as rivets, screws, washers, etc 

that needed in the traditional way of structure bonding. 

1.1.2 Disadvantages of Adhesive Bonding 

• The adhesive in adhesive joint bonding needs some time to cure and the bonded 

structure cannot immediately put under load.  
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• The long-term behavior is affected by many factors like ultraviolet light, moisture and 

chemicals. 

• There is a need for adherends surface preparation before the application of the 

adhesive to achieve a good adhesion. 

• Difficult to disassemble the adhesive joint and my lead to the destruction of the 

substrates.  

• Environmental concern in dealing with adhesives during the production, application 

and waste management. 

• There is a need for special processes to be followed during the different stages starting 

from design to maintenance of the adhesive joint. 

1.2 Design Aspects of Adhesively Bonded Structures 

Many complex shape products manufactured today came as a result of the use of composite 

materials instead of the traditional materials. Another important aspect is the reinforcement of 

structures by bonding pre-manufactured structure components with a high strength adhesive. The 

following is the aspects that need to be considered in the design or rehabilitation of adhesively 

bonded structure. 

1.2.1. Adhesion Strength 

To achieve high strength bonding the following steps should be followed: 

• The surface of the adherend should be dry and clean from any contaminates. This will 

help the epoxy adhesive flow and wet the surface. 

• The adhesive should have enough time to cure in place and the structure should be free 

from any stresses until the adhesive is fully cured.  
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• Proper selection of the adhesive. Epoxy structural adhesive should be used when high 

strength bonding is needed. 

1.2.2. Adhesive Layer Stresses 

The bonding adhesive layer is subjected to many stresses that can lead to the failure of the 

joint if not considered properly during the design stage. 

• Shear Stress 

This kind of stress arises when the applied forces are at the same line with the adhesive layer 

as in single lap joint (SLJ) Figure1.1. In general, adhesively bonded structures are good in 

resisting shear stresses. The in-plane shear stress is not uniform along the adhesive layer and it is 

maximum at the far ends of the joint. In plane adhesive shear stress decreases with increase in 

bond line thickness. 

 

                                      Figure: 1.1 Shear stress in SLJ. 

• Tensile Stress 

Tensile stress is created as a result of applying load normal to the surface Figure 1.2. It may 

cause an adhesive failure of the structure at a stress far below the adhesive strength. It is 

important to select adhesive with high adhesion strength to the adherend to withstand this kind of 

stress. 
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Figure:1.2 Tensile stress in adhesively bonded joint. 

 

• Peel Stress 

Peel stress occurs as a result of forces trying to pull the bonded structure apart Figure 1.3. As 

a result of this kind of loading, all the stress is concentrated in a very small bond area and very 

high tensile stress is generated at the interface with the two adherends pulling apart. The 

adhesive should be ductile enough to allow for distribution of the load along the adhesive layer. 

Peel stress can be generated as a result of bending of the adhesively bonded structure. Due to the 

high concentrated tensile load created on the edge of the bond line as a result of the peeling 

stress, it is important to avoid this kind of stress during the design stage. This can be done by 

using mechanical fasteners to prevent peel stress from starting at the edge of the bond line. In the 

real adhesively bonded structure it is rare to have a pure kind of stress. Applying tensile stress for 

example, may cause the structure to bend and peeling stress will be created. 

 

 

Figure:1.3 Peeling stress in adhesively bonded joint. 
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• Compression Stress 

In compression loading the adhesive is used as chocking material and as a support to the 

mechanical mounting system Figure 1.4. In this kind of loading it is important to select adhesive 

with proper compressive strength. The compressive stress should be well below the compression 

strength of the adhesive to avoid creep failure as a result of constant stress on the bond line. 

More care should be taken if the structure is exposed to high temperatures.  

 

 

Figure: 1.4 Compression stress in adhesively bonded joint. 

 

1.2.3. Design Considerations 

The above discussed shear, tensile, peel and compression stresses should be considered 

carefully and for a good adhesively bonded structure design the following recommendations 

should be followed: 

• Adhesively bonded structures are good in resisting shear loading. Most of the load should be 

directed to shear. 

• Try to avoid peel stress and improve peel resistance by using adhesive with lower stiffness 

and higher elongation. 

• In most loading situations, it is unlikely to have pure tensile stress. 
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• High stiffness structural epoxy adhesive is recommended for fastener bonding, high 

concentrated stress and chocking. 

• Bonding surface area should be maximum and for good resistance to peel stress the width of 

the bonded area should be maximized. 

• Adhesive thickness depends on adhesive properties and application. 

In order to optimal properties, epoxy adhesive should be properly cured. Adhesive properties 

highly depend on the curing process. 

1.3. Key Issues in Modeling Adhesively Bonded Composites 

The long-term response of adhesively bonded composites depends on many different variables 

such as, adhesive mechanical properties, type of adherends used, adherends surface preparation, 

interaction between the adhesive and the adherend, temperature and relative humidity, kind and 

magnitude of applied stresses. Many studies have been done on the effects of these variables by 

Kinloch, [1], Plecnik,J.M.,et al(1980) [2], Mc Murray, M.K. and Amagi,S.(1999)[3],Gardner, 

D.J. et al., (2006) [4],Curley, A., et al.,(1998) [5]. W.R.Broughton et al., (1999) [6-13] 

performed series of creep experiments on adhesively bonded joints to investigate the effect of 

multiple variables such as temperature and humidity on time to failure of adhesively bonded 

joints. He conducted T-peel, single lap joint and tapered strap joint tests. S. Roy and J.N.Reddy 

(1986) [14] investigated the nonlinear viscoelastic behavior of adhesively bonded joints. They 

developed FEM model based on Schapery’s single integral constitutive law. Delale and Erdogan 

(1981) [15] studied the single lap joint assuming linear viscoelastic adhesive and extended their 

study to the time temperature effect. Botha, Jones and Brinson (1983) [16] used FEM approach 

to perform nonlinear viscoelastic stress analysis on adhesively bonded joint, Henriksen, Becker, 

et al. (1984) [17] extended their viscoelastic stress analysis of adhesively bonded joint to include 
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moisture diffusion, Yadagiri and Papi Reddy (1985) [18] studied the viscoelastic behavior of 

nearly incompressible solids. 

1.4. Finite Element Analysis 

The finite element method is a very powerful numerical technique that widely used in structural 

analysis to simulate the response of any structure shape to various loading and boundary 

conditions. Finite element method long time used to study the stress distribution along the 

adhesive bond. Carver, D. et al., (1971) [19] and Adams, R. et al., (1973) [20]. It is now 

extensively used in the analysis and design of the adhesively bonded joints due to its ability to 

deal with complicated geometries, material and geometrical nonlinearity. Another factor is the 

advances in the computing speed and memory size. A good finite element analysis of adhesively 

bonded joint needs a good description of the geometry, a good modeling of the material behavior 

under stress and proper simulation of the various loading and boundary conditions. The use of 

finite element method to model adhesively bonded joints helps optimizing product performance, 

improves the efficiency in using the materials, reduces the time needed for both, design 

processes and evaluation of design alternatives. Along the years, many analytical and finite 

element models were developed to study the behavior of adhesively bonded joints under 

different types of loading. Results from analytical solutions were compared with the finite 

element analysis and experimental results. Many linear and nonlinear finite element analyses 

were performed on different kinds of adhesive joints to study the adhesive stresses and strains. In 

order to have a good finite element results, it is important to consider the following factors: the 

differences in the mechanical properties within the adhesive joint, moisture and heat effect 

(hygro-thermal behavior), stress concentrations at certain regions of the adhesive joint and the 

low adhesive thickness compared with the thickness of the adherends. There is a need for high 
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degree of freedom in the adhesive joint which means a very fine mesh is required. A good finite 

element analysis should account for the bending effects, shear of the adherends and the nonlinear 

behavior of the adhesive. It is important to take into account the nonlinearity of the material and 

geometry in finite element analysis in order to get good results. Adams, R. and N. Peppiatt, 

(1973-1974) [20-21].  
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CHAPTER 2 LITERATURE SURVEY AND OBJECTIVES 

2.1. Stress Analysis of Adhesively Bonded Joints 

    Analyzing the stresses in the adhesively bonded joint is a complicated issue due to the 

complexity of the stresses in the adhesive bond line. The difference in the mechanical properties 

and material mismatch are the reason behind the stress concentrations at the adhesive adherend 

interface. The simplest adhesively bonded joint stress analysis Figure. 2.1(a) based on the 

assumption that the adherends are rigid and adhesive is subjected to uniform shear stress given 

by, 

 

𝜏 =
𝑃

𝑏 𝑙
                                                                                                                                                         (2.1) 

 

Where, 𝑃 is the applied force, 𝑏 is the joint width and 𝑙 is the overlap length. This analysis is 

based on many simplifications and considered not realistic even though it is used by ASTM and 

ISO standard to roughly predict the adhesive shear strength.  

 

 

Figure 2.1: Single lap joint: (a) Rigid adherends-constant shear stress, (b) Flexible adherends-not 

constant shear. 

 

In Figure 2.1(b), the adherends are assumed elastic and their extension reaches its maximum 

value near to their loaded end. This means that the generated shear stress is not uniform and 
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highest at the overlap ends. In addition, there is the rotation of the adherends as a result of the 

moment generated by the loading forces that leads to peeling stresses in the adhesion bond line 

Figure 2.2. 

 

 

                     Figure 2.2: Shear and peel stress distribution along the SLJ overlap. 

 

In literature, there are many analytical and numerical models to analyze the state of stress in the 

adhesive bond line.  

2.1.1 Analytical Modeling of Adhesively Bonded Joints 

• Volkersen’s model 

The first known analytical model by Volkersen. [22] 

 

 

 

                                              Figure 2.3: Volkersen’s model. 
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This model assumes that the adhesive deforms only in shear and the adherends are elastic and 

deform in tension. The shear stress distribution along the overlap is not uniform and is given by, 

𝜏 =
𝑃 𝜔 cosh (𝜔 𝑋)

2 𝑏 𝑙 sinh (𝜔/2)
+ (

𝜓 − 1

𝜓 + 1
)

𝜔 sinh (𝜔 𝑋)

2 cosh (𝜔/2)
                                                                                (2.2) 

Where,  

P is the applied force, 𝑡1 and 𝑡2 are the upper and lower adherend thickness respectively, 𝐺𝑎 is 

the adhesive shear modulus, 𝑙 is the overlap, 𝑋 is the distance from the middle of the overlap, 𝐸1 

and 𝐸2the upper and lower adherend elastic modulus respectively. 

𝐸 = 𝐸1 = 𝐸2,  𝜔2 = (1 + 𝜓) 𝜑, 𝜓 =
𝑡1

𝑡2
, 𝜑 =

𝐺𝑎𝑙2

𝐸 𝑡1𝑡2
                                              (2.3) 

 

                   Figure 2.4: Volkersen’s model shear stress distribution along the SLJ overlap. 

 

The shear stress is maximum at the ends of the overlap and much lower at the middle. This 

model does not account for the bending as a result of force eccentricity.  
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• Goland and Reissner’s model 

This model [23] can be seen as improvement to Volkersen’s model because it considered the 

adhesive peeling stress as a result of applied force path eccentricity. Figure 2.5 shows the SLJ 

subjected to tensile force per unit width  �̅� . 

 

Figure 2.5: Goland and Reissner’s model. 

 

 

Figure 2.6: Goland and Reissner’s model shear stress distribution and peeling stress along the 

SLJ overlap. 

 

 The shear stress distribution along the overlap is given by, 
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𝜏 = −
1

8

�̅�

𝑐
(

𝛽 𝑐

𝑡
(1 + 3𝑘)

cosh ((𝛽𝑐/𝑡)(𝑥/𝑐)  

sinh (
𝛽𝑐

𝑡
)

+ 3(1 − 𝑘))                                                        (2.4) 

Where, 

𝑃 ̅is the tensile force per unit width, 𝑐 is the half of the overlap and 𝑡 is the adherend thickness. 

𝛽2 = 8 
𝐺𝑎

𝐸

𝑡

𝑡𝑎
 

𝑘 =
cosh(𝑢2 𝑐)

𝑐𝑜𝑠ℎ(𝑢2 𝑐) + 2√2 sinh(𝑢2 𝑐)
 

𝑢2 = √
3(1 − 𝜈2)

2

1

𝑡
√

�̅�

𝑡 𝐸
 

The peel stress distribution along the overlap is given by, 

𝜎 =  
1

𝛥

�̅�

𝑐2
𝑡 [(𝑅2𝜆2

𝑘

2
+ 𝜆𝑘′ 𝑐𝑜𝑠ℎ(𝜆) 𝑐𝑜𝑠(𝜆)) 𝑐𝑜𝑠ℎ (

𝜆𝑥

𝑐
) 𝑐𝑜𝑠 (

𝜆𝑥

𝑐
)

+ (𝑅1𝜆2
𝑘

2
+ 𝜆 𝑘′ 𝑠𝑖𝑛ℎ(𝜆) sin (𝜆))) 𝑠𝑖𝑛ℎ (

𝜆𝑥

𝑐
) 𝑠𝑖𝑛 (

𝜆𝑥

𝑐
)]                                   (2.5) 

Where, 

𝜆 = 𝛾 
𝑐

𝑡
 

𝛾4 = 6
𝐸𝑎

𝐸

𝑡

𝑡𝑎
 

𝐸𝑎 is the adhesive Young’s modulus, 

𝑘′ =
𝑘 𝑐

𝑡
√3(1 − 𝜈2)

�̅�

𝑡 𝐸
 

𝑅1 = 𝑐𝑜𝑠ℎ(𝜆) 𝑠𝑖𝑛(𝜆) + 𝑠𝑖𝑛ℎ(𝜆) 𝑐𝑜𝑠(𝜆) 

𝑅1 = 𝑐𝑜𝑠ℎ(𝜆) 𝑠𝑖𝑛(𝜆) − 𝑠𝑖𝑛ℎ(𝜆) 𝑐𝑜𝑠(𝜆) 
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Δ = 
1

2
(𝑠𝑖𝑛(2𝜆) + 𝑠𝑖𝑛ℎ(2𝜆)) 

And the middle point of the overlap is the origin of the 𝑥-coordinate. Both Volkersen’s model 

[22] and Goland and Reissner’s model [23] were strong contributions toward understanding the 

stress in adhesively bonded joints, but they have the following negative points: 

- Both models did not consider the change in stress across the adhesive thickness 

especially at the area of adherend adhesive interface where failure is more expected. 

- The maximum adhesive shear stress occurs at the ends of the overlap which is a violation 

of the stress-free condition. This overestimation of the adhesive shear stress leads to 

underestimation of failure load prediction. 

- The through thickness shear and normal strains of the adherends were neglected. These 

strains can be important in composite adherends. 

• Harth-Smith’s model 

This model gives an analytical solution to the elastic shear and peel stress of the adhesive 

along the SLJ overlap [24]. It also considered adhesive shear stress plasticity by dividing the 

overlap into a central elastic region of length 𝑑 and two outer plastic regions each of 

length: (
𝑙−𝑑

2
). 

The shear stress distribution along the overlap is given by, 

𝜏 = 𝐴2𝑐𝑜𝑠ℎ(2𝜆′𝑥) + 𝐶2                                                                                                                          (2.6) 

Where, 

𝜆′ = √[
1 + 3(1 − 𝜈2)

4
]

2 𝐺𝑎

𝑡𝑎𝐸 𝑡
 

𝐴2 =
𝐺𝑎

𝑡𝑎𝐸 𝑡
[�̅� +

6(1 − 𝜈2)𝑀

𝑡
]

1

2𝜆′sinh (2𝜆′𝑐)
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𝐶2 =
1

2 𝑐
[�̅� − 2

𝐴2

2𝜆′
sinh (2𝜆′𝑐)] 

𝑀 = �̅� (
𝑡 + 𝑡𝑎

2
)

1

1 + 𝜉𝑐 + (𝜉2𝑐2/6)
 

𝜉2 =
�̅�

𝐷
 

𝐷 =
𝐸 𝑡3

12(1 − 𝜈2) 
 

The peel stress distribution along the overlap is given by, 

𝜎 = 𝐴 cosh(𝜒𝑥) cos(𝜒𝑥) + 𝐵𝑠𝑖𝑛ℎ(𝜒𝑥)𝑠𝑖𝑛(𝜒𝑥)                                                                               (2.7) 

Where, 

𝜒2 =
𝐸𝑎

2𝐷𝑡𝑎
 

𝐴 = −
𝐸𝑎𝑀[sin(𝜒𝑐) − 𝑐𝑜𝑠(𝜒𝑐)]

𝑡𝑎𝐷𝜒2𝑒(𝜒𝑐)
 

𝐵 =
𝐸𝑎𝑀[sin(𝜒𝑐) − 𝑐𝑜𝑠(𝜒𝑐)]

𝑡𝑎𝐷𝜒2𝑒(𝜒𝑐)
 

Shear stress distribution along the elastic region is given by, 

𝜏 = 𝐴2𝑐𝑜𝑠ℎ(2𝜆′𝑥) + 𝜏2(1 − 𝐾)                                                                                                            (2.8) 

Shear strain distribution along the plastic region is given by, 

𝛾 = 𝛾𝑒{1 + 2𝐾[(𝜆′𝑥′ tanh(𝜆′ 𝑑)]}                                                                                                        (2.9) 

Where 𝜏𝑃 is the plastic adhesive shear stress and 

𝐴2 =
𝐾 𝜏𝑃

cosh (𝜆′ 𝑑)
 

The following equations are used to solve for 𝐾and 𝑑: 

�̅�

𝑙 𝜏𝑃
(𝜆′ 𝑙) = 2𝜆′ (

𝑙−𝑑

2
) + (1 − 𝐾)(𝜆′ 𝑑) + 𝐾 𝑡𝑎𝑛ℎ(𝜆′ 𝑑)                                                                (2.10) 
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[1 + 3𝑘(1 − 𝜈2) (1 +
𝑡𝑎

𝑡
)]

�̅�

𝜏𝑃
𝜆2 (

𝑙 − 𝑑

2
) = 2 (

𝛾𝑃

𝛾𝑒
) + 𝐾 [2𝜆′ (

𝑙 − 𝑑

2
)]

2

                                  (2.11) 

2 (
𝛾𝑃

𝛾𝑒
) = 𝐾 ([2𝜆′ (

𝑙 − 𝑑

2
) + 𝑡𝑎𝑛ℎ(𝜆′ 𝑑)]

2

− 𝑡𝑎𝑛ℎ2(𝜒𝑑))                                                        (2.12) 

 

Figure 2.7: Hart-Smith’s model (Plasticity in the adhesive and shear stress strain curve). [24] 

 

• Bigwood and Cocombe model 

This model [25] is an improvement to Goland and Reissner model to work with other types of 

adhesively bonded joints other than tensile loaded SLJ. These connection configurations include tubular 

joints, T-peel joints, SLJ with transverse load and L-joints. The analysis then extended to deal with 

the case of adhesive nonlinear behavior [26]. 
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• Other analytical analysis contributions 

Many researchers tried to develop models that can deal with adhesive joints with 

compositeadherends or adherends that are different in material properties and thickness[26-39]. 

However, general solutions result more complicated equations that need to be solved 

numerically. 

2.1.2 Numerical Modeling of Adhesively Bonded Joints 

Finite element method FEM is widely used to simulate the stresses and strains in the adhesively 

bonded joints. Rao et al [40] proposed 2D adhesive elements that are 6-noded iso-parametric 

elements to model the adhesive. The proposed adhesive elements are compatible with the eight 

node iso-parametric quadratic elements used to model the adherends. The proposed elements 

cannot model the nonlinear adhesive behavior or the joint combined loading. Yadagiri [41] 

modified Rao’s 2D element model to deal with normal and longitudinal stresses and adhesive 

linear viscoelastic behavior.  

Reddy and Roy [42] developed 2D element model where they used elastic solids formulations by 

Lagrange to deal with geometric and material nonlinearity. Their analysis covered the 

viscoelastic behavior and the thermal moisture effects. Amijima and Fujii [43] developed simple 

1D element model to calculate the adhesive normal and shear stresses and takes in to account the 

bending effects. This model deals only with linear material behavior. Carpenter [44] proposed 

2D adhesive element model to simulate the viscoelastic behavior of adhesively bonded lap joints 

using Laplace transformations where inverse transforms were numerically calculated. [45-46] 

developed a 2D model to calculate the distribution of shear and normal stresses for different 

bonded arrangements and to deal with the condition of nearly zero adhesive thickness. This 

analysis accounts for adherends with different materials and thickness. Edlund and Klarbring 
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[47] developed a general 2D element model that deals with both material and geometrical 

nonlinearity. All the last approaches used 2D elements in their analysis and can be applied only 

to simple joints. Many other studies were performed based on 3D elements. Tong and Sun [48] 

proposed 6,16 and 18 node 3D adhesive elements model to analyze bonded repairs of curved 

structures. Andruet et al. [49] developed 2D and 3D elements model based on shell and solid 

elements that allows the analysis of complicated bonded structures. Goncalves et al. [50] 

proposed 3D element model to predict the stresses at the interface between the adhesive and the 

adherends in the adhesive joints. This approach introduced interface element which can be used 

with brick solid elements from the ABAQUS software. 

All the above models are complicated and not widely used in industry. This means that there is a 

need for more simple approaches. 

2.2. Modeling Approaches of Creep in Adhesively Bonded Joints 

Proper design of adhesively bonded joint needs a good understanding of the stress strain in the 

adhesive bond and many models were developed for this purpose. Adhesives are polymeric 

materials and they show time dependent behavior under stress. This means that the issue of creep 

behavior should be addressed at the early stages of design of adhesive joint for any structural 

application. Most of adhesives are linear viscoelastic at low and moderate stress levels and tend 

to behave nonlinear with increasing stresses due to gradual decrease in stiffness [51]. In 

literature, there are many experimental and numerical studies to investigate the linear and 

nonlinear adhesive behavior. There are also some analytical models (viscoelastic and 

viscoplastic) to analyze the stresses and strains in adhesively bonded joints.The simplest and well 

known viscoelastic models developed by Voigt and Maxwell [52]. Other models based on 

springs and dashpots combinations were used to predict the linear viscoelastic response of the 
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material under different loading conditions. The springs and dashpots are to model the elastic 

and viscous components of the viscoelastic material, respectively. Feng et al. [53] developed a 

model to simulate the long-term behavior of epoxy adhesives. This model based on series of 

short-term accelerated tests at different temperatures and construction of the master curve using 

time temperature superposition principle (TTSP). Master curve then modeled using physics 

based coupling model. Dean [54] modeled the nonlinear creep behavior of polypropylene using a 

system of four springs and damping elements. Yu et al. [55] studied the creep behavior of epoxy 

adhesives. They unified theory and viscoelastic models in their simulations. Majda and 

Skrodzewicz [56] simulated the nonlinear creep behavior of epoxy adhesives at room 

temperature using modified Burgers spring and dashpot model. Yu et al. [57] used empirical 

method to determine creep compliance function of viscoelastic adhesive contact models. Roseley 

et al. [58] used two Kelvin-Voight models in series arrangement to improve the simulation of the 

creep behavior of three epoxy adhesives that have glass transition temperature between 30o C and 

60o C. Chiuand Jones [59] used a unified constitutive model to study the time dependent 

characteristics of thermoset adhesive that widely used in the bonded repair of aircraft structures. 

Duncan and Maxwell [60] evaluated the use of newly developed measurement technique to study 

the creep, stress relaxation and properties of flexible adhesives. Dean and Broughton [61] 

developed analytical model to characterize the nonlinear creep behavior of rubber toughened 

adhesives. Their model used for both bulk adhesives and bonded joints and adapted for use with 

finite element software package ABAQUS. Pandey et al. [62] conducted nonlinear finite element 

analysis of adhesively bonded joints using elasto-viscoplastic model to describe the adhesive 

material behavior. The adherends were assumed linear elastic and Ramberg-Osgood relation [63] 

used to describe the stress-strain relation of the adhesive. Mortensen and Thomsen [64] used a  
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                 Figure 2.8: Typical structural adhesive lap joints subjected to axial load. [1] 
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developed unified approach for the analysis and design of adhesively bonded composite 

laminates.  

2.3. Adhesives 

    Humans used adhesives very long time ago. Early adhesives were made from natural materials 

like vegetables, bones, hide and other animal substances. 

Table 2.1 Adhesives development history. [65] 

Adhesive 
Development 

period 

Phenol-formaldehyde, Casein glues 1910 

Cellulose ester, Alkyd resin, Cyclized rubber in adhesives 

Poly-chloroprene (Neoprene), Soybean adhesives 

1920 

Urea-formaldehyde, Pressure sensitive tapes, Phenolic resin adhesive films, 

Polyvinyl acetate wood glues 

1930 

Nitrile-phenolic, Chlorinated rubber, Melamine formaldehyde, Vinyl-

phenolic, AcrylicPolyurethanes 

1940 

Epoxies, Cyanoacrylates, Anaerobics, Epoxy alloys 1950 

Polyimide, Poly-benzimidazole, Poly-quinoxaline 1960 

Second-generation acrylic, Acrylic pressure sensitive, Structural 

polyurethanes 
1970 

Tougheners for thermoset resins, Waterborne epoxies, Waterborne contact 

adhesives, Formable and foamed hot melts, Polyurethane modified epoxy 
1980 

Curable hot melts, UV and light cure systems 1990 
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 It was only the last century when many new kinds of synthetic (polymeric and elastomeric 

resins) adhesives were developed and widely used. The development of new adhesives is 

continuing due to advances in technology and changing needs. 

2.3.1 Definition 

Adhesive is a substance that used to bond two or more surfaces together and resist their 

separation due to its tensile and shear strength. The following are the most common 

characteristics of adhesives: 

- Good in load distribution and transfer within the assembly components. 

- Increase the bonding carrying capacity and strength of the structure. 

- Bonding of dissimilar adherend materials due to adhesive cohesion to many 

substances. 

- Adhesives have high damping capacity to dynamic vibrations and impact. 

2.3.2 Adhesive Selection 

- The temperature and humidity range of service. 

- Chemical and UV light exposure. 

- Type of adherends. 
 

2.3.3 Adhesives Classification 

• According to origin. 

- Natural adhesives. 

They are produced from natural resources such as vegetables and animals.  

- Synthetic adhesives. 
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They are produced from non-organic resources like epoxy, acrylic, polyurethane and 

cyanoacrylate polymers. Their mechanical, physical and chemical properties are much 

better than natural adhesives and as a result they are much widely used in industry. 

• According to the number of components needed to cure the adhesive. 

- One component adhesive. 

This kind of adhesives need external source to be cured. This source can be UV light, 

heat or moisture. As an example, moisture cured polyurethane, silicones and 

cyanoacrylates adhesives. 

- Two or more component adhesive. 

Adhesives from two or more substances chemically react and cross link. As an example, 

two component epoxy, two component polyurethane and acrylates adhesives. 

• According to post cure structure of the adhesive. 

- Thermoplastic Adhesives. 

- Elastomer Adhesives. 

- Thermoset Adhesives. 

• According to curing type of the adhesive. 

- Physically cured adhesives such as pressure sensitive and contact adhesives. 

- Chemically cured adhesives such as polyurethane, epoxy and acrylates adhesives. 

• According to the mechanical properties of the adhesive. 

- Elastic adhesives with high fracture strain such as one component moisture cured 

polyurethane and silicone adhesives. 

- Rigid adhesives that have high impact resistance and low elasticity, such as epoxy 

adhesives, anaerobic adhesives and heat cured one component polyurethane. 
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 Table 2.2 Typical properties of adhesives. [66] 

 Comments Service 

temperature °C 
Cure 

Epoxy High strength and temperature 

resistance, relatively low cure 

temperatures, easy to use, low cost 

-40 to +100 

(180*) 
One part epoxies cure 

with temperature. Two 

part epoxies cure at 

room temperature 

(cure can be 

accelerated with 

temperature) 
Cyanoacrylates Fast bonding capability to plastic 

and rubber but poor resistance to 

moisture and temperature 

-30 to +80 Fast cure (second or 

minute) upon exposure 

to moisture at room 

temperature 

Anaerobics Designed for fastening and sealing 

applications in which a tight seal 

must be formed without light, heat 

or oxygen, suitable for bonding 

cylindrical shapes 

-55 to +150 Cure in the absence of 

air or oxygen at room 

temperature 

Acrylics Versatile adhesives with capabilities 

of fast curing and tolerate dirtier and 

less prepared surfaces 

-40 to +120 Cure through a free 

radical mechanism 

Polyurethanes 

 

Good flexibility at low temperatures 

and resistant to fatigue, impact 

resistance, and durability 

-200 to +80 Room temperature 

Silicones 

 

Excellent sealant for low stress 

applications, high degree of 

flexibility, and very high 

temperature resistance, capability to 

seal or bond materials of various 

natures, long cure times, and low 

strength 

-60 to +300 

(350†) 

Room temperature 

Phenolics Good strength retention for short 

periods of time, limited resistance to 

thermal shocks 

-40 to +175 

(260†) 

Cure with temperature 

and high pressure 

Polyimides Thermal stability, dependent on a 

number of factors, difficult 

processability 

-40 to +50 

(300†) 

Cure with temperature 

and high pressure 

Bismaleimides Very rigid, low peel properties -50 to +200 

(230†) 

Cure with temperature 

and high pressure 

* With different filler materials; †intermittent. 
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2.4 Viscoelasticity 

2.4.1 Introduction 

    There is a big difference between metals and viscoelastic materials in their response to long-

term loading. Beside fatigue which is a common source for mechanical structures failure due to 

long-term cyclic loading, viscoelastic materials have another problem which is the time 

dependence behavior of the mechanical properties. Degradation with time of the stiffness and 

strength may cause premature failure of the structure without any signs, like cracks that usually 

precede fatigue failure. Viscoelastic properties are highly affected by temperature, moisture, 

aging and other factors. 

 

Figure 2.9: Interphase in adhesively bonded joint. [67] 

 

It is also directly related to the molecular structure of the material which makes the deformation, 

failure and fracture process of the viscoelastic materials more complicated and totally different 

from metals. Adhesives which are viscelastic in nature have another durability problem in 

addition to fatigue and time dependent behavior. This problem is a result of the adhesive-
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adherend interface Figure 2.9. In reality, there is no defined interface line between the adhesive 

and the adherend but a diffuse zone from the adherend surface, adherend surface and any 

absorbed matter to form what is known as the interphase zone. This interphase zone is strongly 

related to the durability of the adhesive joint. [67]. It is difficult to perform long-term laboratory 

testing to cover the life span of many composite structures because of their long service life. As 

an example, airplanes, cars, bridges are designed to serve for decades. For this reason, there is a 

need for short time scale testing to predict the longer time scale performance. This means that 

from the design stage there is a need for reliable procedure to predict the life span and the 

deformation, stiffness and strength change with time under severe conditions of temperature, 

moisture and other factors. Glass transition temperature Tg (different for each polymeric 

material) is the temperature of transition from the hard and brittle “glassy” state into the soft and 

ductile “rubbery” state as the temperature increases. This means that temperature is a very 

important factor in the deformation of polymeric materials. Depending on the material 

temperature relative to Tg polymeric material can be glassy, rubbery or viscoelastic. Both glassy 

and rubbery stages show elastic, instantaneous, reversible and time independent strains under 

stress. In the glassy stage, the material temperature is far below Tg and the rate of conformational 

change ‘a change in the shape of a macromolecule, often induced by environmental factors’ is 

very slow Figure 2.10 and the deformation comes as a result of changing of the lengths and 

angles of the atomic bonds. Glassy polymeric material can endure only little strains before brittle 

fracture. On the other hand, rubbery polymeric material temperature is far above Tg, the rate of 

conformational change is very high (instantaneous) Figure 2.10 and the deformation comes as a 

result of large movements of the molecules and atoms rearrangement. Rubbery polymeric 

materials can sustain very large strains before failure. For material temperature, near to Tg Figure 
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2.10 the behavior is viscoelastic (time dependent) which means a combination of fluid and 

elastic properties. The rate of conformational change can be described by Arrhenius equation, 

𝑅𝑎𝑡𝑒 = 𝐴 𝑒−𝐸/𝑅𝑇where A is constant, E is the activation energy of the process, R is the gas 

constant (R=8.314 J/mol-°K) and T is the temperature in Kelvins. 

 

Figure 2.10: Conformational rate versus temperature. 

 

Viscelastic materials have both fluid viscous and solid elastic properties. The behavior of 

viscoelastic materials depends on the time scale and temperature. Material is classified as 

viscoelastic if it satisfies any of the following conditions: 

• Time dependent strain under constant load (creep). 

• Time dependent stress under constant strain (stress relaxation). 

• Hysteresis loop stress strain curve as a result of oscillatory (dynamic) loading. 

• Stiffness depends on the rate of applying stress. 
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Most of materials show some degree of viscoelastic behavior under load, even metals at elevated 

temperatures. Composite structures, especially with polymeric constituents, show time dependent 

viscoelastic behavior under load. 

2.4.2 Characterization of viscoelastic Materials Mechanical Properties 

Viscoelastic materials behavior is characterized by performing a uniaxial tensile test and 

monitoring the response of the material for a period of time. The most common tensile 

viscoelastic tests are: creep, stress relaxation and dynamic loading. 

• Creep 

Creep is a time dependent strain that occurs when the material is subjected to constant stress. 

Creep strain increases with stress, temperature, relative humidity and time. Polymeric materials 

may creep at room temperature. Typical creep curve consists of three stages: primary creep 

where the creep rate is high, secondary creep (steady state creep) where the creep rate is constant 

and the tertiary creep where the creep rate shows continuous increase until rupture Figure 2.11. 

 

 

Figure 2.11:Typical creep curve, 𝜀𝑜is theinstantaneous elastic strain and 𝜀𝑐 is the creep strain. 
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• Stress Relaxation 

Stress relaxation is a time dependent stress that occurs when the material is subjected to a 

constant strain.  

 

                           Figure 2.12: Stress relaxation under constant strain 𝜀0. 

 

• Dynamic Loading 

Creep and stress relaxation tests can be used to study the viscoelastic material response for long 

times, but for shorter times the dynamic test is used. In this test, the strain or (stress) as a result 

of dynamic stress or (strain) is monitored.  

2.4.3 Linear and Nonlinear Viscoelasticity 

For linear viscoelastic behavior, the creep compliance is constant at specific time and stress 

independent. The nonlinear behavior occurs at relatively high stresses Figure 2.13. 
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Figure 2.13: Linear and nonlinear viscoelastic behavior at different times (t1,t2,t3). 

 

2.4.4 Analytical Modeling of Viscoelastic Behavior 

Many viscoelastic material models were developed to fit experimental creep or stress relaxation 

data.In creep testing, a constant stress is applied and strain against time is measured 𝐷(𝑡) =
𝜀(𝑡)

𝜎𝑜
. 

In relaxation test, a constant strain is applied and stress against time is measured   𝐸(𝑡) =
𝜎(𝑡)

𝜀𝑜
. 

 

Figure 2.14: Viscoelastic models: (a) Maxwell, (b) Kelvin, (c) standard solid, and (d) Maxwell-

Kelvin. 

Viscoelastic materials have been modeled by a mixture of Maxwell and Kelvin models. These 

models consist of different spring and dashpot combinations.  
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2.4.5 Linear Viscoelastic Models 

• Maxwell model 

 It adequately describes relaxation but not creep response.  

• Kelvin model. 

- It does not describe well all features of creep and relaxation: 

- Initial elastic response in creep is missing. 

- Relaxation modulus should not be constant. 

• Standard solid model. 

Complete relaxation occurs in much less time required by real polymers. 

• Generalized Maxwell model. 

It consists of spring in parallel with 𝑛 Maxwell elements. The number of Maxwell elements 

increased to increase the number of relaxation times and broaden the range of relaxation time 

Figure 2.15(a). 

 

Figure 2.15: Viscoelastic models (a) Generalized Maxwell model; (b) Generalized Voigt 

(Kelvin) model. 

 

Relaxation modulus for this model given by, 

𝐶(𝑡) = 𝐸𝑜 [1 − ∑ 𝑐𝑖 (1 − 𝑒
−

𝑡

𝜏𝑖)𝑁
𝑖=1 ]                                                                                                     (2.13) 
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Where, 

𝐸0 Elastic modulus at t=0.   

𝑁  Number of Maxwell elements. 

𝑡 Stress relaxation time. 

𝑐𝑖 , 𝜏𝑖 Material constants. 

• Generalized Voigt (Kelvin) model 

It consists of spring in series with 𝑛 Voigt (Kelvin) elements. The number of Voigt (Kelvin) 

elements increased to increase the number of retardation times and broaden the range of creep 

time Figure 2.15(b). 

Creep compliance for this model given by, 

𝐷(𝑡) =
1

𝐸𝑜
[1 + ∑ 𝐷𝑖 (1 − 𝑒

−
𝑡

𝜆𝑖)𝑁
𝑖=1 ]                                                                                                    (2.14) 

Where, 

𝐸0 Elastic modulus att=0 

𝑁  Number of Voigt (Kelvin) elements. 

𝑡 Creep compliance time. 

𝐷𝑖 , 𝜆𝑖 Material constants. 

• Power law (Findley and Khosla) [68]. 

Good for modeling short-term deformation of polymers. 

           𝐸(𝑡) = 𝐴 𝑡−𝑛(2.15) 

Where A and n dimensionless material parameters. 
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2.4.6 Non-linear Viscoelastic Models 

All the previous models are for linear viscoelastic materials which mean that the parameters of 

the model are not function of stress. 

• Nonlinear power law (HRZ) model 

𝜀(𝑡) = a 𝜎𝑏𝑡𝑐 exp(𝐞 𝜎)                                                                                                                             (2.16) 

Where 𝑎, 𝑏, 𝑐, 𝑒 nonlinear power law parameters, 𝜎 creep stress. 

This model was developed to simulate creep of injection molded thermoplastic composites [69]. 

• Schapery’s nonlinear model 

𝜀𝑐𝑟𝑒𝑒𝑝(𝑡) = 𝜎𝑜{ 𝐷𝑜𝑔𝑜 + 𝑔1𝑔2 ∑ 𝐷𝑖 (1 − 𝑒
−(

𝑡

𝑎𝜎
)𝜆𝑖)}𝑁

𝑖=1                                                           (2.17) 

Where 𝒈𝒐, 𝒈𝟏, 𝒈𝟐, 𝒂𝝈 are nonlinear parameters, 𝝈𝒐stress, 𝑫𝒐instantaneous compliance, 𝑫𝒊and 𝝀𝒊 

are prony series coefficents and retardation times respectively. [70-71] 

2.4.7 Superposition Principles 

• Boltzmann Superposition Principle 

This principle can be used to describe the stress strain relationship in linear viscoelastic 

materials. It states that the response of a material to a given load is independent of the response 

of the material to any load which is already on the material. For linear viscoelastic material, the 

deformation at any specific time t is directly proportional to the applied stress Figure 2.16. 
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                       Figure 2.16: Boltzmann superposition principle. 

 
Creep 

ε(t)=Δ 𝜎1D(t-𝜏1)+ Δ 𝜎2 D(t-𝜏2)+ Δ 𝜎3 D(t-𝜏3)                                                                         (2.18) 

where D(t) is the creep compliance. 

The above equation can be written in this form: 

ε(t)=∫ 𝐷(𝑡 − 𝜏)
𝑑𝜎(𝜏)

𝑑𝜏

𝑡

−∞
𝑑𝜏                                                                                                                      (2.19) 

Stress relaxation 

σ(t)=Δ 𝜀1 C(t-𝜏1)+ Δ 𝜀2 C(t-𝜏2)+ Δ 𝜀3 C(t-𝜏3)                                                                         (2.20) 

where C(t) is the relaxation modulus. 

The above equation can be written in this form: 

σ(t)=∫ 𝐶(𝑡 − 𝜏)
𝑑𝜀(𝜏)

𝑑𝜏

𝑡

−∞
𝑑𝜏                                                                                                                     (2.21) 

Where C(t) is the stress relaxation modulus.   

For linear viscoelastic materials, both creep compliance D(t) and stress relaxation modulus C(t) 

are stress independent and are constant for all stresses (or strains) at particular creep or stress 

relaxation time. 
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• Time Temperature Superposition Principle (TTSP) 

    The instantaneous elastic modulus of viscoelastic material under constant load (creep) is 

function in time and temperature. Elastic modulus decreases with time and the increase in 

temperature accelerates this process. TTSP principle is used with linear viscoelastic materials to 

describe this relation. According to TTSP principle the viscoelastic behavior at any temperature 

could be related to that at other temperature by shifting the experimental data along the time 

scale [72]. Short-term creep or stress relaxation accelerating tests are performed at elevated 

temperatures and the resulted curves can be shifted to the selected reference temperature to 

construct “master curve” and shift factors. The generated master curve represents the expected 

long-term creep or stress relaxation of the viscoelastic material at the reference temperature.  

• Mathematical Formulation 

 

𝐸(𝑇1, 𝑡) = 𝐸 (𝑇2,
𝑡

𝑎𝑇
) 𝑏𝑇                                                                                                                       (2.22) 

 
Where 𝑎𝑇 and 𝑏𝑇 are horizontal and vertical shift factors. The temperature change has the same 

effect of shifting the log-log (G versus time) curve a displacement of log 𝑎𝑇 along the time scale. 

The horizontal shift factor 𝑎𝑇could be determined from experimental creep or stress relaxation 

curves Figure 2.17. The vertical shift factor 𝑏𝑇 is a correction factor that accounts for the elastic 

modulus change due to change in temperature and could be neglected due to its small effect 

compared to 𝑎𝑇. 
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Figure 2.17: Construction of master curve (a) Experimental modulus curves at various 

temperatures, (b) Master curve.[73] 

 

• Shift Equations 

- Williams, Landel and Ferry equation (WLF) [74] 

𝐿𝑜𝑔 𝑎𝑇 =
−𝐶1 (𝑇 − 𝑇𝑟𝑒𝑓)

𝐶2 + (𝑇 − 𝑇𝑟𝑒𝑓)
                                                                                                    (2.23) 

 
Where, 𝑇𝑟𝑒𝑓 is the reference temperature, 𝐶1 , 𝐶2 constants, for many polymers and for 𝑇𝑟𝑒𝑓 =

 𝑇𝑔 (glass transition temperature), 𝐶1 = 17.4 and 𝐶2 = 51.6, 𝑇 is the measurement temperature 

and 𝑎𝑇 is the horizontal shift factor. 

- Arrhenius relation 

𝐿𝑜𝑔 𝑎𝑇 =
𝐸

𝑅 (𝑇 − 𝑇𝑟𝑒𝑓)
                                                                                                                        (2.24) 

 

Where E is activation energy, 𝑅 is the gas constant (𝑅 = 8.314  𝐽/𝑚𝑜𝑙𝑒 𝐶𝑂), 𝑇𝑟𝑒𝑓 is the 

reference temperature, 𝑇 is the measurement temperature and 𝑎𝑇 is the horizontal shift factor. 
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The shift factors determined can be fitted to mathematical model to permit shifting of the master 

curve to any temperature. This means that experimental data used to construct master curve at 

high 𝑇𝑟𝑒𝑓 can be easily shifted to low temperature and vice versa. 

2.5 Thesis objectives and contribution 

         Adhesively bonded structures under load exhibit time dependent behavior as a result of 

continuous decrease with time of the adhesive stiffness. This leads to redistribution of stresses 

and strains within the structure resulting parts of the structure to exceed the allowed deformation 

limit or even premature failure of the structure. Some structures are designed to serve for decades 

of years which raise the need for predicting the long-term time dependent behavior of the 

structure. Accelerated three-point bending creep tests on two types of adhesively bonded beam 

specimens: specimens prepared by adhesively bonding two aluminum beams and specimens 

prepared by adhesively bonding two unidirectional carbon fiber laminated beams were 

performed at higher temperatures up to 60 °C and deflection was measured as a function of time 

for both types of specimens. Time temperature superposition principle TTSP based on time 

temperature equivalency was implemented to shift all creep curves into one master curve at 

reference temperature Tref. The resulted master curve covers much longer time span of the creep 

behavior of the structure. Prony series was used to model the master curve by non-linear least 

square fitting then finite element analyses were performed and ABAQUS software was used to 

validate the analytical and experimental results. In literature, most of the time dependent studies 

performed on adhesively bonded structures were done on lap joints where the specimen is 

subjected to axial load along the span. In this study, a different approach was followed where the 

adhesively bonded joints were subjected to flexural creep loading. The reason is that this kind of 

loading is quite common in structures and tends to appear in almost every structure under load 
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even if the structure is not subjected to direct flexural load. In addition, current flexural creep 

work complements the scholarly work related to lap shear type creep response of adhesively 

bonded structures and offers a new dimension. 

2.5.1. Lap shear versus flexural time dependent behavior 

Lap shear time dependent tests are used to study the time dependent properties of adhesives 

and the response of the bonded joint as a whole to long-term loading. In this kind of testing the 

axial load is applied and the response of the lap joint is monitored against time. Even though the 

lap joint is subjected to one type of loading, the stresses developed in the adhesive bond line are 

a combination of shear, peel and normal stresses. In addition, these stresses are not uniform 

along the bond line. For all these reasons, the analytical solutions proposed are generally 

complicated and need to be solved numerically. Flexural time dependent test is much easier to 

perform and requires simple test set up. For low adhesive to adherend thickness, the adhesive is 

assumed under shear stress only which makes the analysis less complicated. Also, flexural 

loading is quite common in structures under load and it is better to study the time dependent 

behavior of adhesively bonded joints under flexural loading by direct application of flexural load 

on the structure. 
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CHAPTER 3 THEORETICAL AND ANALYTICAL CONSIDERATIONS 

3.1. Introduction 

    There are three distinct creep stages: primary, secondary, and tertiary creep Figure 3.1. 

Primary stage is characterized by steady creep rate decrease. During secondary stage, the creep 

rate is almost constant and this stage covers most of the creep time frame. Tertiary stage shows 

rapid increase in creep rate and covers a shorter period of time. This study covers the primary 

and secondary stages of adhesively bonded structure flexural creep. 

 

Figure 3.1: Typical creep curve𝜀𝑜  is theinstantaneous elastic strain and 𝜀𝑐 is the creep strain. 

 

The flexural creep stiffness 𝑆(𝑡)of the adhesively bonded beam under dead weight is represented 

in terms of (w/δ) where w is the applied dead weight at mid-span and δ is the resulting mid-span 

deflection of the adhesively bonded beam Figure 3.2. For linear viscoelastic behavior, the ratio 

(w/δ) at any creep time (𝑡1, 𝑡2, 𝑡3, … ) is constant and load independent Figure 3.3. 
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                                 Figure 3.2: Three point bending of adhesively bonded beam. 

 

 

 
                              Figure 3.3: Linear viscoelastic adhesives creep behavior. 

 

Moussiaux et al. [75] in their solution for the deflection of the adhesively bonded beam under 

three-point bending assumed that the adhesive is under pure shear for low adhesive to adherend 

thickness ratio (𝑡𝑎/ℎ< 0.4) and the Euler-Bernoulli beam theory could be applied for (𝐿/ℎ > 

20).  

3.2. Mathematical Formulation 

   When the mid span dead weight is applied, the adhesively bonded beam will deflect and as a 

result there will be a relative movement between the upper and lower adherends. The adhesive 
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will resist this relative movement and as a result will be subjected to shear stress. The amount of 

adhesively bonded beam deflection depends on the stiffness of both the upper and lower 

adherends and the shear modulus of the adhesive which is assumed under pure shear stress as the 

adhesive thickness is very small compared to the adherends and the location of the adhesive 

bond line along the neutral axis of the adhesively bonded beam where the bending stress is very 

small. Moussiaux et al. [75] proposed a solution of the adhesively bonded beam where a 

cantilever beam under end load w/2 was analogized to three-point bending beam under mid-span 

load (w) Figure 3.4. The analysis included shear stress distribution along the adhesive bond line 

and the deflection of the adhesively bonded beam. The basic idea of their approach is to cut the 

adhesive bond line along the beam mid-plane to free the adhesive shear stress Figure 3.5. To 

preserve the continuity of the adhesive, the total relative displacements of the adhesive in both 

cut sides that resulted from both external and internal loads should equal to zero. These relative 

displacements are: adhesive displacement as a result of adherend bending, displacement as a 

result of shear deformation of the adhesive and displacement as a result of normal deformation of 

the adherend. The resulted continuity equation was used with Euler-Bernoulli deflection equation 

for the adherend to form a differential equation where the adhesive shear stress is the only 

unknown. This equation was then solved using the proper boundary conditions equation (3.3). 

The shear stress is assumed constant through the thickness of the adhesive layer. 

Three assumptions were made in this analysis: 

• The adhesive is under pure shear stress (adhesive thickness to adherend thickness is very 

low). 

• Euler-Bernoulli beam deflection applicable for adherends. 

• Elastic behavior of both adhesive and adherends. 
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It is important to note that the adhesives in their bulk form have properties that differ from their 

properties when used as a thin film in actual bonding joint.  

The mid-span deflection equation was derived by integrating modified Euler-Bernoulli beam 

deflection equation where another term was added to account for the moment generated on the 

adherends as a result of adhesive shear stress. In this equation, the effect of the adhesive on beam 

deflection is seen through the parameterβ which includes the adhesive shear modulus 𝐺𝑎. For 

viscoelastic adhesive, the mid-span creep deflection is given by: 

δ(t) =
𝑤𝐿3

32 𝐸𝑓𝑏 (ℎ +
𝑡a

2
)

3  β(t)                                                                                                                (3.1) 

Where, 

𝛽(𝑡) = (1 +
𝑡𝑎

2ℎ
)

3 

[ 4 (1 −
1

𝛾2
) +

6 𝐸1

𝐺
(

ℎ

𝐿
)

2

+
12

𝛾2
(

1

�̅�2
−

𝑡𝑎𝑛ℎ �̅�2

�̅�3
)] 

𝛾2 = 1 +
1

3(1 + 𝑡𝑎/ℎ)2
 

𝛼(𝑡)2 =
3𝐺𝑎(𝑡)

4𝐸1

(𝐿/ℎ)2
(1 + 𝑡𝑎/ℎ)2

(𝑡𝑎/2ℎ)
 

�̅�(t) =α (t) γ 

𝐸𝑓 adherend flexural modulus, 𝐸1 adherend tensile modulus,𝐺 dherend shear modulus, 𝐺𝑎 is the 

adhesive shear modulus and ℎ,  𝑡𝑎, 𝐿 are the geometrical parameters of the specimen Figure 3.2 

and 𝑏 is the beam width.  
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                        Figure 3.4: Three-point bending-cantilever beam analogy. 

 

            Figure 3.5: Cantilever beam cut along the mid-plane of the adhesive layer. 

 

In equation (3.1) the constant term 𝑤𝐿3/32 𝐸𝑓𝑏(ℎ + 𝑡a/2)3 accounts for the mid-span deflection 

with perfect adhesion (monolithic beam) and the adhesion factor 𝛽 accounts for the effect of 

adhesive- adherends interaction on the adhesively bonded beam deflection. The adhesion factor 

β consists of three terms: the first term is constant and related to the adherends bending and 

depends only on geometry. The second term is adherends shear deflection term which is also 

constant and related to the adherends and geometry. This term is very small compare to other 

deflection terms except for very short beams and high 𝐸/𝐺 ratio like composite adherends. The 

third term which is the most important one depends on the adhesive shear modulus, 𝐺𝑎. The 

value of this term increases with time due to the decrease in adhesive shear modulus in case of 

viscoelastic adhesives. 

Equation (3.1) can be written in the form:  
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𝛽(𝑡) =
32 𝐸𝑓 𝑏 ( ℎ +

𝑡𝑎

2
)

3

𝐿3 𝑆(𝑡)
                                                                                                                    (3.2) 

Where S(t) is the bonded beam stiffness and equal to 𝑤/𝛿(𝑡). 

The adhesive shear stress distribution along mid-span of the adhesive is given by: 

𝜏𝑥𝑦(𝑡) =  
𝑤

2 𝑏 𝛾2(ℎ + 𝑡𝑎)
(1 − 𝑐𝑜𝑠 ℎ �̅� 𝜁 + 𝑡𝑎𝑛 ℎ �̅�  . 𝑠𝑖𝑛 ℎ �̅�𝜁)                                                   (3.3) 

Where 𝜁 = x/(L/2). 

In this study, the bonded beam stiffness S(t) was recorded every time interval of the 

experimental creep test, then these experimental values were used with equation (3.2) to evaluate 

the adhesion factor β(t) in that specific step of creep time. The next step is to use these adhesion 

factor values β(𝑡) with the expressionsfor β(𝑡) in equation (3.1) and numerically solving for 

adhesive shear modulus at every time interval of the creep test. 
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Figure 3.6: Analysis flow chart. 
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3.3. Sensitivity of Adhesively Bonded Beam to Adhesive Shear Modulus 

    The graph in Figure 3.7 shows the sensitivity of the adhesively bonded beam to the change in 

the adhesive shear modulus 𝐺𝑎and can be divided into three zones: The first zone (zone1) is a 

high deformability adhesive zone where the bonded beam behaves like two separate beams each 

loaded by mid-span force of w/2 and (β≈ 4.0).  

 

Figure 3.7: Adhesion factor β versus adhesive shear modulus 𝐺𝑎(𝑀𝑃𝑎). 

 

The third zone (zone3) is the perfect adhesion zone in which the bonded beam behaves as an 

isotropic beam and (β≈1.0). Zone1 and zone3 are connected by zone2 which is high sensitivity 

zone. In this zone, the bonded beam is very sensitive to adhesive shear modulus. The sensitivity 

of the beam to the adhesive shear modulus depends on the beam geometry(𝑡𝑎/ℎ and 𝐿/ℎ) and 

can be increased by increasing the thickness of the adhesive or decreasing the beam length. In 

both cases the requirements for the assumptions of pure adhesive shear and long beam (Euler-

Bernoulli beam theory) should not be violated. 
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Figure 3.8: The composite action between adhesive and adherends. 

 

The three-point deflection of adhesively bonded beam Figure 3.8(b) subjected to mid-span load 

(w) is somewhere between the deflection of monolithic beam Figure 3.8(a) (perfect adhesion β ≈ 

1) and the deflection of one adherend subjected to mid-span load (w/2) Figure 3.8(c) (No 

adhesion β ≈ 4). Cases (a) and (c) are not sensitive to changes in adhesive shear modulus. 
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CHAPTER 4 MATERIALS AND SPECIMENS 

4.1. Material Description 

Two types of specimens were prepared: 

• Adhesively bonded aluminum specimens where the upper and lower adherends were 

prepared from aluminum alloy (6063-T52). Aluminum alloy 6063 is widely used in many 

structural applications such as products used in architecture and building, electrical 

components, furniture and aerospace applications. When heat treated it becomes good 

resistant to corrosion and easily welded or brazed by different methods. Due to its heat 

treatability, its strength can be reduced in the weld area. Aluminum alloy 6063 selected 

for this study because of the wide use of aluminum alloys in many aerospace 

applications. 

• Adhesively bonded carbon fiber specimens where the upper and lower adherends were 

prepared from unidirectional carbon fiber laminate. Carbon fiber has unique technical 

properties and used in many structural applications due to its high strength to weight 

ratio. Carbon fiber is excellent fatigue resistant, light in weight, thermally and electrically 

conductive and has low thermal expansion coefficient. 

• The same kind of epoxy adhesive was used with both types of adhesively bonded 

specimens.  

Before applying the adhesive and creep testing, cut adherends were subjected to tensile and 

flexural testing to determine their tensile and flexural properties. These properties were presented 

in Table 4.1 and used later in the analytical and finite element analysis. 
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                                               Figure 4.1: Tensile testing machine. 

 

The tensile tests were performed according to ASTM D3039/D3039 M standard test where five 

strips of unidirectional carbon fiber material, for both 0o and 90o orientation and with constant 

cross section were tested. The experimental data recorded in the form of force and displacement 

then changed to stress and strain by dividing the force by the specimen cross sectional area and 

the displacement by the initial specimen length (extensometer initial opening). Tensile modulus 

is the tangent of the linear initial part of the stress strain curve. 
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                                     Figure 4.2: Three-point bending testing machine. 

 

The three-point bending tests were performed according to ASTM D790 standard test where five 

specimens of unidirectional carbon fiber material with 0o orientation and constant cross section 

were tested. The modulus of elasticity in bending was calculated by the formula, 

𝐸𝑏 =
𝐿3 𝑚

4 𝑏 ℎ3
                                                                                                                                                (4.1) 

Where 𝑚 is the slope of the linear initial part of the mid-span loaddeflection curve. 
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Table 4.1 Tensile, flexural and shear properties of adherends. 

 

Mechanical property Carbon fiber specimens Aluminum specimens 

Tensile modulus,𝐸1(𝐺𝑃𝑎) 105.0 68.9 

Tensile modulus, 𝐸2(𝐺𝑃𝑎) 2.9 68.9 

Flexural modulus,𝐸𝑓(𝐺𝑃𝑎) 107.0 68.9 

Shear modulus,𝐺12 = 𝐺13(𝐺𝑃𝑎) 6.9 25.8 

Poisson’s ratio, ν 0.30 0.33 

 

4.2. Specimens and dimensions 

    Two types of specimens were prepared, five specimens of adhesively bonded aluminum 

beams and five specimens of adhesively bonded unidirectional carbon fiber laminated beams. 

Water jet machine was used to precisely cut the carbon fiber specimens from ten ply 

unidirectional carbon fiber laminate that was prepared in a vacuum press machine.  

 

 

                                    Figure 4.3: Aluminum and carbon fiber specimens. 
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                                         Figure 4.4: Waterjet cut carbon fiber laminate. 

 

The dimensions of the specimens were presented in Table 4.2. 

Table 4.2 Specimens dimensions. 

 

 Aluminum-adhesive- aluminum Carbon fiber-adhesive-

carbon fiber 

Upper adherend thickness 3.175 mm 1.35 mm 

Lower adherend thickness 3.175 mm 1.35 mm 

Adhesive thickness 0.1 mm 0.1 mm 

Bonded specimen thickness 6.45 mm 2.8 mm 

Length 152.4 mm 152.4 mm 

Width 12.7 mm 25.4 mm 
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                                    Figure 4.5: Curing cycle of the carbon fiber laminate. 

 

In both aluminum and carbon fiber specimens the bonding epoxy adhesive is properly mixed 

with small amount of glass bubbles filler to ensure constant adhesive thickness (𝑡𝑎 = 0.1 𝑚𝑚). 

To have good adhesive to surface bonding strength and before applying the adhesive, the contact 

surfaces should be clean and dry. Platen pressure of 100 𝐾𝑃𝑎 was applied and specimens were 

left to cure at room temperature for 72 hrs.  
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                                                 Figure 4.6: Vacuum press machine. 

 

4.3. Experimental thin adhesive description 

    According to literature, the adhesive is considered thin if adhesive thickness to adherend 

thickness ratio is less than 0.4. In this study, this ratio is 0.0315 for adhesively bonded aluminum 

specimens and 0.074 for adhesively bonded carbon fiber specimens. Since the adhesive layer is 

very thin compare to adherend thickness and the adhesive is located at the neutral plane of the 

adhesively bonded beam, the bending stresses on adhesive are very small and the dominant 

factor is the in plane pure shear stress acting on the adhesive. The resulting adhesive shear strain 

increases with time due to time dependent decrease in bonding adhesive shear stiffness. As a 
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result of this, more flexural load is transferred to the adherends causing more time dependent 

deflection of the adhesively bonded beam. 

4.4. Preparation of adherends surfaces for adhesive bonding 

• Degreasing 

To remove contaminants and dirt from the surface of the adherends. Solvent trichloroethylene 

was used.  

• Abrasion 

To remove heavy deposits from the adherend surface, sand paper was used for aluminum 

adherend and fine emery cloth for carbon fiber adherend. The adherend surface was degrease 

again to remove any debris or contaminants from the abrasion processes. 

• Chemical treatment 

To improve the adhesion ability of the adherend surface, the adherends were first immersed for 

about 10 minutes in a solution of 96% sulfuric acid (10 parts), dichromate (3 parts) and distilled 

water (20 parts). The adherends then rinsed in tap water at room temperature followed by rinse in 

distilled water at temperature ≈ 70 °C. At the final step, adherends were left to dry in the oven at 

about 70 °C and for about 30 minutes. 

4.5. Experimental setup 

    The testing fixture as shown in Figures 4.7 and 4.8 was prepared according to ASTM D-2990 

and ASTM D790 standard [76-77]. It consists of stainless steel loading roller of 6.35mm 

diameter and two stainless steel support rollers of 3.175 mm diameter.  
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Figure 4.7: Flexural creep test stand. 

 

The loading span, beam thickness and adhesive thickness were selected to ensure that the 

adhesively bonded beam is within the sensitive range (zone 2, Figure 3.7). The dead weight 

𝑤 was applied at the mid-span of the specimen through the loading assembly of stainless steel 

rod and flat weight plates in multiples of 5.0 kg. A linear variable displacement transducer 

LVDT was coaxially fixed in the loading assembly Figure 4.7 to measure the mid-span 

deflection during the creep test period. 
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Figure 4.8: Flexural creep testing setup drawing 

4.6. Testing  

    The two sets of adhesively bonded beams were tested for flexural creep. The creep tests were 

performed at different temperatures ranging from 25°C to 60°C. Isothermal flexural creep tests 

were performed on the specimens within this temperature range and with a stepwise temperature 

increment of 5°C. The specimen is heated up by blowing it with a stream of air at constant 

temperature. Two thermocouples were fixed to the specimen and the temperature is monitored 

with the use of LabView data acquisition system [78], Figures 4.7and 4.8. Before starting the 

test, each specimen was equilibrated for 5 minutes then the dead load w was applied at mid-span 

of the specimen where, w = 250 N for aluminum specimens and 200 N for carbon fiber 

specimens. The beam mid-span deflection was registered against creep time for 60 minutes with 

every 2.0 minutes interval of time at the primary stage and every 5.0 minutes at the secondary 

creep stage. 
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CHAPTER 5 RESULTS AND DISCUSSION 

5.1. Construction of Master Curve (TTSP shifting) 

    From the accelerated experimental flexural creep tests and for both aluminum and carbon fiber 

specimens, the variation of bonding adhesive shear modulus with creep time at different 

temperatures is shown in Figure 5.1(a) and (b). From the curves, it is clear that the adhesive is 

viscoelastic and thermo-rheologically simple. According to the time temperature superposition  

 
 

Figure 5.1: Individual creep curves and master curve at Tref =35 °C 

(a) aluminum specimens, (b) carbon fiber specimens. 

 

Principle [79] the viscoelastic behavior at one temperature can be related to that at other 

temperature by applying change in the time scale. This means that changing the temperature of 

any of the creep curves has the same effect of applying a horizontal time shift factor 𝑙𝑜𝑔𝑎𝑇 on a 

logarithmic scale plot of adhesive shear modulus versus time. In this study, the horizontal time 

shift factors were determined directly from the experimental creep curves Figure 5.1 (a) and (b). 

There is also the vertical shift factor 𝑏𝑇 which is also a function in temperature. The value of the 



60 
 

 
 

vertical shift factor is very small compared to the horizontal shift factor and can be neglected. 

The horizontal shift factor is given by, 

log(𝑡′) = log(𝑡) + log(𝑎𝑇)                                                                                                       (5.1) 

The experimentally determined horizontal shift factors are presented in Table 5.1 and Figure 5.2 

shows a plot of horizontal shift factor versus temperature. This curve can be used to determine 

the shift factor at any intermediate temperature.  

Table 5.1 Horizontal shift factor versus temperature. 

 

Aluminum specimens, Tref = 35 o C Carbon fiber specimens, Tref = 35 o C 

Temperature T, o C Horizontal shift factor 

Log(𝑎𝑇) 

Temperature T, o C Horizontal shift factor 

Log(𝑎𝑇) 

35 0 35 0 

40  .95 40  .4 

45  1.7 45  .86 

50  2.5 50  1.6 

55  3.0 55  2.1 

60  3.7 60  3.5 

 

 

                              Figure 5.2: Horizontal shift factor versus temperature. 
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The result is a single master curve that allows the prediction of longer term beam stiffness and 

adhesive shear modulus Figure 5.1 (a) and (b). 

5.2. Modeling of Master Curve 

    Master curves Figures 5.1(a, b) represent the creep response of both composite systems for 

longer period of time (208 days for aluminum specimens and for 131 days for carbon fiber 

composite specimens). Figure 5.3 shows the long-term change of composite beam stiffness (w/δ) 

for both aluminum and carbon fiber specimens. As disused in chapter two, generalized Maxwell 

model Figure 2.14(a) that consists of one spring in parallel with 𝑁 Maxwell elements used to 

model the long-term viscoelastic behavior of the adhesive (master curve) due to its ability to 

cover broader range of the adhesive viscoelastic behavior. 

 

 

Figure 5.3: Long-term bonded beam stiffness versus creep time. 

 

𝐺𝑎(𝑡, 𝑇𝑔) = 𝐺∞ + ∑(𝐺𝑖−1 − 𝐺𝑖)exp (−
𝑡

𝜏𝑖
)                                                                                    (5.2)

𝑁

𝑖=1
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Where 𝐺∞ is the adhesive shear modulus at equilibrium state (t=∞), 𝐺𝑖 and 𝜏𝑖 are Prony series 

parameters. 

Let 𝐺𝑁 =  𝐺∞then, 

𝐺𝑜 = lim
𝑡→0

𝐺(𝑡, 𝑇𝑔) =  𝐺∞ +  ∑(𝐺𝑖−1 − 𝐺𝑖)(5.3)

𝑁

𝑖=1

 

From equation (1) and for N = 1,  

𝐺𝑎(𝑡, 𝑇𝑔) = 𝐺∞ + (𝐺𝑜 − 𝐺∞)exp (−
𝑡

𝜏𝑖
) (5.4) 

From equations (5.3) and (5.4), 

𝐺𝑎(𝑡, 𝑇𝑔) = 𝐺𝑜[1 − 𝑒] (1 − exp (−
𝑡

𝜏𝑖
)) (5.5) 

Where,𝑒 =  (𝐺𝑜 − 𝐺∞)/𝐺𝑂 

Equation (5.5) is one Maxwell element viscoelastic model which is not sufficient to model all the 

features of the long-term viscoelastic adhesive behavior represented by the constructed master 

curve. Generalized Maxwell model Figure 2.14(a) with 𝑁 Maxwell elements and with different 

spring constants were used.  

𝐺𝑎(𝑡, 𝑇𝑔) = 𝐺𝑜 [1 − ∑ 𝑒𝑖

𝑁

𝑖=1

(1 − exp (−
𝑡

𝜏𝑖
))] (5.6) 

Where 𝑒𝑖 =  (𝐺𝑖−1 − 𝐺𝑖)/𝐺𝑂 = 𝛥𝐺/𝐺𝑜

Equation (5.6) can be written in the form: 

𝐺𝑎(𝑡) = 𝐺𝑜 − ∑ 𝑔𝑖 [1 − exp (−
𝑡

𝜏𝑖
)]

𝑁

𝑖=1

(5.7) 

Where, 
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𝐺𝑎(𝑡) Adhesive shear relaxation modulus, 𝐺𝑜instantaneousadhesive shear modulus, 𝑔𝑖and 

𝜏𝑖Prony series parameters and 𝑁 is the number of Prony series terms. Prony series equation 5.7 

was used both analytically and FEM to model the long-term creep of adhesively bonded 

aluminum and carbon fiber composite beams [80-81].  

    In the analytical analysis, Prony series with N number of terms was used to model the 

experimental data by least square fitting. The number of Prony series terms N and initial values 

for Prony series parameters gi ,τi  were selected then optimization performed to determine Prony 

parameters gi ,τi Table (5.2) by minimizing the least squares differences. If the result is not 

accurate enough, the number of Prony series terms N need to be increased and the process is 

repeated until good agreement between the experimental and modeled values are reached. 

    In the FEM analysis, Abaqus software was used to model the long-term creep behavior by 

directly specifying the analytically determined Prony series parameters to Abaqus. In Abaqus, 

long-term creep can be modeled by directly using creep experimental data and Abaqus will 

generate Prony series parameters or as followed in this study by assigning analytically 

determined Prony series parameters to Abaqus. Using the same Prony parameters analytically 

and FEM to compare the long-term behavior in both cases. There is a good agreement between 

analytical and FEM results in simulating the long-term creep of both types of adhesively bonded 

specimens. 
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Table 5.2 Bonding adhesive Prony series parameters𝑔𝑖 and 𝜏𝑖. 

 

Prony 

series  

Term 

Number 

(𝑛) 

Carbon fiber composite beam Aluminum beam 

Normalized 

shear 

relaxation 

modulus (𝑔𝑖) 

Relaxation time 

(𝜏𝑖) 

Normalized 

shear 

relaxation 

modulus (𝑔𝑖) 

Relaxation time (𝜏𝑖) 

1 0.0057 75456.29 0.0281 103286.2 

2 0.0100 103306 0.0387 100006.5 

3 0.0162 100004.7 0.0393 100039.7 

4 0.0163 100038.6 0.0393 100040 

5 0.0165 100038.1 0.0399 100043.4 

6 0.0173 100050.2 0.0976 997662.3 

7 0.0264 96843.14 0.1568 142.9589 

8 0.1013 997722.8 0.2443 11314.93 

9 0.2048 12258.37   

10 0.3320 1758.702   

 

 

 

  

Figure 5.4: Analytical modeling of master curve (a) aluminum specimens, (b) carbon fiber 

specimens. 
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Once the long-term creep of the adhesively bonded beams was modeled, this model is used with 

equations (3.1-3.3) to find out the variation with creep time of the bonded beam stiffness or 

(mid-span deflection), adhesion factor, bonded beam edge shear stress and the variation of 

adhesive shear stress along the bond line for both composite systems as shown in figures 5.5-5.9. 

 

                         Figure 5.5: Variation of bonded beam stiffness versus creep time. 

 

 

               Figure 5.6: Percentage decrease in bonded beam stiffness versus creep time. 
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                                          Figure 5.7: Adhesion factor versus creep time. 

 

  

Figure 5.8: Shear stress variation along the adhesive bond line(a) aluminum specimens, (b) 

carbon fiber composite specimens. 

 

As shown in Figures 5.5-5.9, there is an instantaneous response to the application of the load at 

mid-span of the composite beam which is the elastic part of the deflection and not related to the 

viscoelastic adhesive behavior. The viscoelastic response is high in rate at the beginning and 

gradually decreases to a low rate steady state viscoelastic behavior.  
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                                Figure 5.9: Max. adhesive shear stress versus creep time. 

 

The adhesive shear stress starts zero at the mid-span and at a certain distance from the mid-span, 

it is almost constant value. Adhsive shear stress reaches its maximum value at the support. 

Figure5.8shows the distribution of the in plane adhesive shear stress along the bond line. As we 

see in Figure 5.9, the adhesive shear at the edge slightly decreased but there is a substantial 

decrease in the shear stress at a certain region between the mid-span and the support Figure 5.8.  

5.3. Adherends Stress Analysis 

    A differential section dx was cut from the composite beam Figure 5.10. It is assumed that the 

adherends materials are linear elastic and the adhesive is linear viscoelastic and the stresses in 

the adhesive layer are constant across the thickness. The adhesive is ability to transfer stresses 

between adherends changes with creep time. 
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                       Figure 5.10: Infinitesimal element of adhesively bonded joint. 

 

Equilibrium condition along x-axis of the adherends, 

𝑑𝑁

𝑑𝑥
=  𝜏(𝑥) 𝑏                                                                                                                                            (5.8) 

𝑁(𝑥) = 𝑏 ∫ 𝜏(𝑥) 𝑑𝑥
𝑥

0
(5.9)                                                                                                      (5.9) 

Where 𝑁 is the axial force at the adherends. The moments on both adherends are equal assuming 

the same curvature for both upper and lower adherends as both have the same material and 

geometry. 

𝑀𝑢(𝑥) =  𝑀𝑙(𝑥) = 𝑀(𝑥)                                                                                                         (5.10) 

Where 𝑀(𝑥) the bending moment acting at the adherend. The moment equilibrium of the 

adherend differential segment Figure 5.10 gives, 

𝑀𝑇(𝑥) = 𝑀𝑢(𝑥) + 𝑀𝑙(𝑥) + 𝑁(𝑥) [
ℎ

2
+ 𝑡𝑎 +

ℎ

2
]                                                                             (5.11) 



69 
 

 
 

Where 𝑀𝑇(𝑥) the total moment acting at the composite beam. The last equation can be written in 

the form: 

𝑀(𝑥) =
𝑀𝑇(𝑥) − 𝑁(𝑥)[ℎ + 𝑡𝑎]

2
(5.12) 

From equations 5.9 and 5.12 the distribution of axial stress along the span at the upper and lower 

surfaces of the composite beam is given by, 

𝜎(𝑥) =  
𝑁(𝑥)

𝑏 ℎ
+

6 𝑀(𝑥)

𝑏 ℎ2
(5.13) 

Where 𝑁(𝑥), the axial force and 𝑀(𝑥), the bending moment are changing along the composite 

beam span. The normal stress distribution 𝜎(𝑥)resulted from equation 5.13 was compared with 

FEM results Figure 5.11 (a) and (b) and 5.12 (a) and (b) at time = 0 and at the end of creep test 

time. The results are very similar except at the mid-span and boundary where Saint Venant effect 

makes some difference. The normal stress increase in adherends is a direct result of adhesive 

shear stiffness decrease with creep time. 

 

 

Figure 5.11: Variation of normal stress along the span at upper and lower aluminum composite 

beam surfaces (a) analytical, (b) FEM. 
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Figure 5.12: Variation of axial stress along the span at upper and lower carbon fiber composite 

beam surfaces (a) analytical, (b) FEM. 

 

Figure 5.13 shows the variation of axial stress across the bonded beam thickness at mid-span. 

There is discontinuity in the variation of stress at the adhesive region. The discontinuity 

increased with creep time. 

 

 

Figure 5.13: Variation of axial stress across composite beam thickness at mid-span (FEM). 
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5.4. Finite Element Analysis 

    Finite element analysis was performed as part of the study to predict the long-term creep 

behavior of adhesively bonded aluminum and carbon fiber composite beams under flexural 

three-point loading. This includes simulation of: long-term mid-span creep deflection, variation 

with creep time of the adhesive in plane shear and normal stresses along the bond line and 

adherends creep time dependent stresses and strains. In this static finite element analysis, 

Hypermesh v 11.0 was used as a pre-processor and ABAQUS/Standard 2D was used as a solver. 

HyperView was used as post-processor to process the results from ABAQUS analysis. 

5.4.1 Preprocessing (Hypermesh v 11.0) 

    In this step, the ABAQUS input file was created and the material properties, geometry and 

boundary conditions for both aluminum and carbon fiber composite beams were defined. The 

adherends material properties (aluminum and carbon fiber) were determined from experimental 

tests. In the aluminum composite beam, only isotropic material properties including elastic 

moduli and Poisson’s ratio have been assigned to each aluminum adherend. The carbon fiber 

adherends in the model has been defined as a unidirectional carbon fiber laminate and the lamina 

properties such as E1, E2, G12, G13, G23 and ν12 have been specified for the carbon fiber. The used 

material properties in the model documented in Table 4.1.In both aluminum and carbon fiber 

composites the adhesive properties were given in the form of the instantaneous shear modulus to 

represent the elastic part Table 4.1 and previously determined Prony series coefficients to 

represent the viscous creep part Table 5.2.The material properties then assigned to the material 

component of the finite element model which is the adhesively bonded beam model that was 

created for finite element analysis. The grid geometry of the adhesively bonded aluminum beam 

has been meshed using a very fine mesh of 41480 elements. While 15 elements have been 
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utilized through thickness of each aluminum adherend, there have been 4 elements used through 

the thickness of the adhesive. The problem has been considered as a 2-dimensional plane stress 

problem; therefore, the reduced integration plane stress element formulation (CPS4R) with 

hourglass control commercially available in Abaqus/Standard 2D has been used in this numerical 

analysis. This type of element formulation with hourglass control has been found well suitable 

for such a specific numerical modeling of engineering problems where a structure is subjected to 

a bending load. The adhesively bonded aluminum beam has been loaded at the center of the mid-

span with the magnitude of 250 N. Moreover, the simply supported boundary conditions have 

been successfully assigned to the model. 

 

Figure 5.14: Two-dimensional finite element model for adhesively bonded aluminum beam. 

 

Very fine mesh of 19200 reduced integration plane stress elements (CPS4R) with hourglass 

control has been used in the meshing of adhesively bonded carbon fiber beam. While 10 

elements have been used in through thickness of each carbon fiber beam, 4 elements have been 
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utilized in through the thickness of the adhesive. The bending load of 200 N has been applied to 

the center of the beam. Also, the simply supported boundary conditions have been assigned. 

Figures 5.14-5.15 show the finite element model mesh for both aluminum and carbon fiber 

composite beams. 

 

 

Figure 5.15: Two-dimensional finite element model for adhesively bonded carbon fiber beam. 

 

5.4.2 Simulation (ABAQUS/Standard 2D) 

In this study ABAQUS/Standard was used to simulate the long-term creep response of aluminum 

and carbon fiber adhesively bonded beam composite. This is the stage where the numerical 

problem was solved by ABAQUS/Standard software and a number of different files generated. 

The generated output result file was used in the next post-processer stage. The required time for 

solving the problem depends on the power of the computer used for the analysis, complexity of 

the problem and the number of elements. 
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5.4.3 Post-Proceeding (HyperView) 

    Hypermesh v 11.0 was used in the present study as a post-processor where the results were 

presented in a graphical form. The generated (. fil) file from the simulation stage was converted 

into Hypermesh result (.res) file. The result file then imported to the Hypermesh v11.0 

environment where various results such as stresses, strains and displacements were presented. 

There are many ways to display the results of finite element analysis with Hypermesh v 11.0, 

including animation, colored contour and deformed shape plots. For both aluminum and carbon 

fiber adhesively bonded composites, analytical approach was followed to predict the long-term, 

adhesive in plane shear stress variation along the bond line and the bonded beam mid-span 

deflection. Finite element analyses were performed to validate the analytical results.  

 

                                          Figure 5.16: Long-term creep deflection. 
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Figure 5.17: In plane shear stress versus adhesive bond line (a) aluminum specimens, (b) 

carbon fiber composite specimens. 

 

Figure 5.17shows the in-plane adhesive shear stress distribution along the half span of the 

adhesively bonded beam at 𝑡 = 0 and at the end of the creep time for both analytical and FEM. 

The results show a good match between the analytical and FEM in the in plane adhesive shear 

stress distribution along the bonded beam except in the region near to the supporters where FEM 

showed a steep decline in the shear stress near to the bonded beam supporters due to (Saint-

Venant) effect. The match between the analytical and FEM results in the carbon fiber composite 

beam is not as strong as the aluminum beam Figures 5.16-5.17. This can be because of the less 

accurcy in the values of the carbon fiber composite beam mechanical properties that used in 

analytical and FEM simulation. 
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Figure 5.18: FEM, normal (compressive) adhesive stress distribution along the bond line(a) 

aluminum specimens, (b) carbon fiber composite specimens. 

 

 

 

 

 

Figure 5.19: Mid-span lower adherend lower surface tensile stress versus creep time. 

 

FEM also used to simulate the variation of the adhesive normal stress along the bond line at time 

= 0 and at the end of creep time Figure 5.14. The effect of the loading rollers is strong at mid-

span and at the beam end. There is no strong variation with time of the normal stress especially 

for the region away from the loading supporters. FEM results showed gradual increase with time 
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in the maximum tensile stress at mid-span lower adherend lower surface due to decrease in 

adhesive shear modulus Figure 5.15. 
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CHAPTER 6 CONCLUSION AND RECOMMENDATIONS 

    In literature, axially loaded single and double lap joints testing is the most common way to 

predict the long-term behavior of adhesively bonded structures under constant load. In this study, 

a new approach was followed where a flexural creep testing fixture was prepared and a series of 

short-term three-point creep bending tests at different temperatures were performed on two types 

of specimens: Adhesively bonded aluminum composite specimens and adhesively bonded 

unidirectional carbon fiber specimens. In previous studies, three-point bending tests were 

performed to characterize the elastic mechanical properties of adhesives. In this study, the testing 

and analysis were extended to cover the viscoelastic behavior of the adhesive and the entire 

bonded structure where master curve was constructed by shifting all the resulted individual creep 

curves (TTSP) Figure 5.1 (a, b) and Prony series was used to model the long-term creep behavior 

of the structure. 

6.1 Conclusions 

• A three-point flexural creep testing fixture was prepared to study the long-term linear 

viscoelastic behavior of adhesively bonded structures. Three-point bending test was 

selected because of the simplicity of the experimental setup and the fact that bending 

stresses are quite common in real structural loading. The proposed solution extended the 

analytical approach followed by Moussiaux et al. [75] to cover the viscoelastic range and 

permits the study of long-term creep behavior. Specimens’ dimensions and adhesive 

thickness should be properly selected for the composite beam to be sensitive to the 

adhesive shear modulus change with creep time. 

• Accelerated creep tests were performed at higher temperatures and mid-span deflection 

was measured as a function of time for both types of specimens. Time temperature 
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superposition principle (TTSP) based on the equivalency between time and temperature 

was used to construct the master curve by proper horizontal shifting of all experimentally 

recorded creep curves at different temperatures. All the shifted creep curves were 

transformed into a single reference curve (master curve) at reference temperature (Tref) 

which is a good indication of the linear viscoelastic behavior of the bonding adhesive. 

• The generated master curve is very important because it covers viscoelastic behavior 

times much higher than the range that can be covered experimentally. Also, master curve 

can be shifted to any desired temperature rather than the reference temperature by fitting 

the experimentally determined shift factors to a mathematical model.  

• Prony series was successfully used to model the master curve where Excel solver 2007 

used to perform non-linear least square fitting of the master curve to N terms Prony 

series. Prony series parameters were identified for best fit between master curve and the 

selected viscoelastic model. 

• ABAQUS software was used to model the flexural creep response of the adhesively 

bonded beams and the analytical and finite element analysis results were in good 

agreement for both types of specimens Figure 5.16. Once the difference in the 

instantaneous deflection between the aluminum and carbon fiber composite systems is 

directly related to the difference in the flexural stiffness of the specimens and the mid-

span dead weight load applied, the difference in creep response Figure 5.3 is due to the 

difference in residual thermal stresses as a result of thermal and mechanical properties 

mismatch between adherends and adhesives during the cure processes. There is also the 

difference in response to thermal loading between the two systems that resulted 

difference in their viscoelastic behavior. 
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• The mechanical properties of the adhesive in the bonded joint are affected by adherends 

contact. The thin adhesive layer may exhibit different properties in its bulk form. 

• Bonded structure viscoelastic behavior depends on the mechanical and thermal properties 

of both adherends and adhesive. The difference in mechanical properties and material 

mismatch are the main source of resulting creep response influenced by the adhesive/ 

adherend interface. 

6.2 Recommendations for future work 

• Better understanding of the time dependent behavior of adhesively bonded structures 

requires more understanding of the effect of many environmental factors such as 

temperature, moisture content and aging on the molecular structure of the adhesive and 

how the mechanical properties of the adhesive are affected by this change in adhesive 

molecular structure. 

• The time dependent behavior and durability of the adhesively bonded joints is highly 

affected by the region of interface between the adhesive and adherends. This region, 

which is very thin, is affected by temperature, moisture content and other environmental 

factors in a different way than the adhesive and adherends. More sensitive tests may be 

required. 

• Creep tests were performed at different temperatures where a hot air blower were used to 

heat up the specimen under test. Use of an environmental box, where the experimental 

setup is put inside controlled environment box, will be better and more convenient to 

control the sample condition. 

• It is recommended to use FEM in analyzing the stresses and predicting the long-term 

behavior of adhesively bonded structures due to the complicated state of stress, material 
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and geometrical nonlinearity. Also, the viscoelastic behavior of the adhesive may become 

nonlinear at higher stresses. The available numerical models are complicated and not 

commonly used in industrial application. This rise the need for more simple approach. 
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ABSTRACT 
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    Adhesively bonded structures exhibit time dependent behavior when subjected to constant 

load (creep). The aim of this study is to predict the long-term creep behavior of adhesively 

bonded metal and composite structures under load. Three-point bending test is selected because 

of its simplicity and the fact that bending stresses are quite common. In this study, two types of 

adhesively bonded beam specimens were tested: specimens prepared by adhesively bonding two 

aluminum beams and specimens prepared by adhesively bonding two unidirectional carbon fiber 

laminated beams. Accelerated creep tests were performed at higher temperatures and deflection 

was measured as a function of time for both types of specimens. Time temperature superposition 

principle (TTSP) used to construct the master curve to predict longer term creep of the 

adhesively bonded beams under load at reference temperature. Prony series was used to model 

the master curve by non-linear least square fitting. The analytical results showed good agreement 

with finite element results where ABAQUS software was used to model the flexural creep 

response of the adhesively bonded beams. 
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