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Samples that include both independent and paired observations cause a dilemma for 

researchers that covers the full breadth of empirical research. Parametric approaches for 

the comparison of two samples using all available observations are considered, under 

normality and non-normality. These approaches are compared to naive and newly proposed 

non-parametric alternatives. 

 

Keywords: Partially overlapping samples, partially paired data, partially correlated 

data, partially matched pairs, t-test, test for equality of means, non-parametric 

 

Introduction 

Basic teaching of statistics usually assumes a perfect world with completely 

independent samples or completely dependent samples. Real world study designs 

and associated analyses are often far from these simplistic ideals. There are 

occasions where there are a combination of paired observantions and independent 

observations within a sample. These scenarios are referred to as ‘partially 

overlapping samples’ (Martinez-Camblor et al., 2012; Derrick et al., 2015; Derrick, 

Russ, et al., 2017). Other terminology for the described scenario is ‘partially paired 

data’ (Samawi & Vogel, 2011; Guo & Yuan, 2017). However, this terminology can 

be misconstrued as referring to pairs that are not directly matched (Derrick et al., 

2015). 

https://dx.doi.org/10.22237/jmasm/1556669520
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A typical partially overlapping samples scenario is a design which includes 

both paired observations and unpaired observations due to limited resource of 

paired samples. When a resource is scarce, researchers may only be able to obtain 

a limited number of paired observations but would want to avoid wastage and also 

make use of the independent observations. For example, in a clinical trial by 

Hosgood et al. (2017) assessing the performance of kidneys following 

transplantation, one group incorporates a new technique that reconditions the 

kidney prior to the transplant, and one group is the control group of standard cold 

storage. When the kidneys arrive at the transplanting center in pairs, one is 

randomly allocated to each of the two groups. When a single kidney arrives at the 

transplanting center, this is randomly allocated to one of the two groups in a 1:1 

ratio. 

A commonly encountered partially overlapping samples problem is a paired 

samples design which inadvertently contains independent observations (Martinez-

Camblor et al., 2012; Guo & Yuan, 2017). In these circumstances the reason for the 

missing data should be considered carefully. Solutions proposed within the current 

paper do not detract from extensive literature on missing data and solutions herein 

are assessed under the assumption of data missing completely at random (MCAR).  

A naive approach often taken when confronted with scenarios similar to the 

above is to discard observations and perform a basic parametric test (Guo & Yuan, 

2017). Naive parametric methods for the analysis of partially overlapping samples 

used as standard include; i) Discard the unpaired observations and perform the 

paired samples t-test, T1; ii) Discard the paired observations and perform the 

independent samples t-test assuming equal variances, T2; iii) Discard the paired 

observations and perform the independent samples t-test not assuming equal 

variances, T3. 

When the omission of the paired observations or independent observations 

does not result in a small sample size, traditional methods may maintain adequate 

power (Derrick et al., 2015). However, the discarding of observations is particularly 

problematic when the available sample size is small (Derrick, Toher, & White, 

2017). Other naive approaches include treating all the observations as unpaired, or 

randomly pairing data (Guo & Yuan, 2017). These approaches fail to maintain the 

structure of the original data and introduce bias (Derrick, Russ, et al., 2017). 

Amro and Pauly (2017) define three categories of solution to the partially 

overlapping samples problem that use all available data and do not rely on 

resampling methods. The categories are; tests based on maximum likelihood 

estimators, weighted combination tests, and tests based on a simple mean difference. 

Early literature on the partially overlapping samples framework focused on 
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maximum likelihood estimators when data are missing by accident. Guo and Yuan 

(2017) reviewed parametric solutions under the condition of normality and 

recommend the Lin and Strivers (1974) maximum likelihood approach when the 

normality assumption is met. However, Amro and Pauly (2017) demonstrate that 

this maximum likelihood estimator approach has an inflated Type I error rate under 

normality and non-normality. Furthermore, maximum likelihood proposals are 

complex mathematical procedures, which would be a barrier to some analysts in a 

practical setting. Thus, these are not considered further in this paper. 

A weighted combination-based approach is to obtain the p-values for T1 and 

T2 as defined above, then combine them using the weighted z-test (Stouffer et al., 

1949), or the generalized Fisher test proposed by Lancaster (1961). When used to 

combine p-values from independent tests, the latter method is more powerful (Chen, 

2011). A procedure specifically attempting to act as a weighting between the paired 

samples t-test and the independent samples t-test under normality was proposed by 

Bhoj (1978). Uddin and Hasan (2017) optimized the weighting constants used by 

Bhoj so that the combined variance of the two elements minimized. Further 

weighted combination tests are proposed by Kim et al. (2005), Samawi and Vogel 

(2011), and Martinez-Camblor et al. (2012). All of these weighting-based 

approaches have issues with respect to the interpretation of the results. The 

mathematical formulation of the statistics does not have a numerator that is 

equivalent to the difference in the two means. Neither do these proposals have a 

denominator that represents the standard error of the difference in two sample 

means, therefore confidence intervals for mean differences are not easily formed. 

Thus, these are not considered further in this paper. 

Looney and Jones (2003) put forward a parametric solution using all of the 

available data that does not rely on a complex weighting structure and is regarded 

as a simple mean difference estimator. However, several issues with the test have 

been identified and their solution is not Type I error robust under normality 

(Mehrotra, 2004; Derrick, Russ, et al., 2017). A correction to the test by Looney 

and Jones is provided by Uddin and Hasan (2017), however the test statistic is a 

minor adjustment, and also makes reference to the z-distribution. 

For the partially overlapping two group situation, two parametric solutions 

that are Type I error robust under the assumptions of normality and MCAR are 

given by Derrick, Russ, et al. (2017). These solutions are simple mean difference 

estimators and act as an interpolation between, firstly T1 and T2, or secondly 

between T1 and T3. These solutions are referred to as the partially overlapping 

samples t-tests. The authors noted that their parametric partially overlapping 

samples t-tests can be readily developed to obtain non-parametric alternatives. 
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Naive non-parametric tests for the analysis of partially overlapping samples 

include; i) Discard the paired observations and perform the Mann-Whitney-

Wilcoxon test, MW; ii) Discard the unpaired observations and perform the 

Wilcoxon Signed Rank test, W. 

In a comparison of samples from two identical non-normal distributions, non-

parametric tests are often more Type I error robust than their parametric equivalents 

(Zimmerman, 2004). For skewed distributions with equal variances, the MW test 

is the most powerful Type I error robust test when compared against T2 and T3 

(Fagerland & Sandvik, 2009a). 

These traditional non-parametric tests provide low power when the discarding 

of observations result in a small sample size. For very small samples MW will only 

detect differences when a very large effect size is present (Fay & Proschan, 2010). 

The normality assumption is often hard to ascertain for small samples, thus non-

parametric solutions that take into account all of the available data would be 

beneficial. 

In textbooks by Mendenhall et al. (2008) and Howell (2012), the null 

hypothesis of the MW test is reported as the distributions are equal. Fagerland and 

Sandvik (2009b) assert that the null hypothesis is more correctly reported as 

Prob(X > Y) = 0.5. For a comparison of two distributions, it is possible that the latter 

null hypothesis is true, but for the samples to be from distributions of different 

shape. When the distributions are equal other than in central location, the MW test 

can be considered as a comparison of central location (Skovlund & Fenstad, 2001). 

The MW test is not recommended as a test for location shift when variances are not 

equal (Zimmerman, 1987; Penfield, 1994; Moser et al., 1989). Ultimately, the MW 

test can detect differences in the shape of the two sample distributions, or their 

medians, or their means (Hart, 2001). 

When there are three or more groups with both paired observations and 

independent observations, a possible non-parametric approach is the Skillings-

Mack test (Skillings & Mack, 1981). This test is equivalent to the Freidman test 

when data are balanced (Chatfield & Mander, 2009). For an unbalanced design the 

Skillings-Mack test requires that any block with only one observation is removed. 

The Skillings-Mack test therefore cannot be used in the two-group situation. This 

gives further motivation for the development of non-parametric tests for the two-

sample scenario. 

In this paper, non-parametric solutions to the partially overlapping samples 

problem are considered, under normality and non-normality. This comparison 

includes a recent parametric solution proposed by Derrick, Russ, et al. (2017) for 

comparative purposes. The parametric solutions by Derrick, Russ, et al. (2017) and 
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newly proposed non-parametric solution are defined, and methodology for 

comparing the Type I error robustness and power of the solutions is given. Results 

of the simulations for Normal and non-normal distributions are then considered, 

followed by a practical example incorporating the techniques explored. 

Solutions to the Partially Overlapping Samples Problem 

Parametric test statistics for the comparison of equal means in the presence of 

partially overlapping samples are taken from Derrick, Russ, et al. (2017). Proposed 

non-parametric solutions derived using the ranks of the actual values within the 

partially overlapping samples t-test procedure are then introduced. In line with 

Derrick et al. (2015) who derived solutions for two partially overlapping samples 

of a dichotomous variable, the standard error of the partially overlapping samples 

tests is derived as the difference between two random variables. 

Parametric Solutions 

Without loss of generality let X̄1 = mean of Sample 1, X̄2 = mean of Sample 2, 

na = number of unpaired observations exclusive to Sample 1, nb = number of 

unpaired observations exclusive to Sample 2, nc = number of pairs, n1 = number of 

observations in Sample 1 (i.e. n1 = na + nc), n2 = number of observations in Sample 

2 (i.e. n2 = nb + nc), 
2

1S  = variance of Sample 1, 
2

2S  = variance of Sample 2, and 

r = Pearson’s correlation coefficient for the nc observations. All variances above 

are calculated using Bessel’s correction as per Kenney and Keeping (1951). 

The parametric partially overlapping samples test statistic Tnew1 is an 

interpolation between the paired samples t-test T1 and the independent samples t-

test assuming equal variances T2, defined as 
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The test statistic Tnew1 is referenced against the t-distribution with degrees of 

freedom 
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For normally distributed data, the independent samples t-test is sensitive to 

deviations from the equal variances assumption. If equal variances cannot be 

assumed then Welch’s test is a Type I error robust alternative under normality 

(Ruxton, 2006; Derrick et al., 2016). It follows that Tnew1 is also sensitive to 

deviations from the equal variances assumption (Derrick, Russ, et al., 2017). The 

partially overlapping samples test statistic when the comparison is not constrained 

to equal variances Tnew2 is an interpolation between the paired samples t-test T1 and 

Welch’s test, T3, defined as 
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The test statistic Tnew2 is referenced against the t-distribution with degrees of 

freedom 
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These solutions are easily applied using the R package ‘Partiallyoverllaping’ 

(Derrick, 2017) as demonstrated by Derrick, Toher, & White (2017). 
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Non-Parametric Solutions 

For the proposed non-parametric solutions, all observations are pooled into one data 

set and assigned rank values in ascending order. This is equivalent to an RT-1 

(Conover & Iman, 1981) ranking procedure. The rank values are substituted into 

the elements of the calculation for Tnew1 and Tnew2 in place of the observed values. 

Tied ranks are each given the median of the tied ranks. This gives the test statistics 

TRNK1 and TRNK2, respectively. The degrees of freedom are υ1 and υ2, respectively, 

calculated using the pooled rank values. The calculation of r uses an RT-2 (Conover 

& Iman, 1981) ranking procedure, so that r represents Spearman’s rank correlation 

coefficient between the paired observations. For the two-sample situation, the 

means, variances, skewness and kurtosis maintain similar characteristics for a 

distribution transformed to ranks, as are observed in the original distribution 

(Zimmerman, 2011). 

Simulation Methodology 

The robustness of existing test statistics and proposed test statistics for two samples 

containing both independent observations and paired observations is assessed using 

simulation. Monte-Carlo studies are long established techniques for identifying 

appropriate test statistics in a given scenario (Serlin, 2000). Firstly, Type I error 

robustness is assessed using liberal robustness criteria (Bradley, 1978). Power is 

only calculated for Type I error robust statistics, so that fair power comparisons can 

be made (Zimmerman, 1987; Penfield, 1994). 

The values na, nb, nc, ρ, 
2

1  and 
2

2  are defined as part of a factorial design 

as given in Table 1. Normal deviates for na and nb observations are calculated using 

methodology outlined by Box and Muller (1958). Similarly, two sets of nc 

observations are generated, and are converted to correlated Normal variates using 

methodology outlined by Kenney and Keeping (1951). 

Each of the test statistics given in Table 1 are assessed firstly under the 

standard Normal distribution. For the comparison of test statistics under non-

normality, random numbers are generated by transformation of bivariate standard 

Normal deviates, N (Forbes et al., 2011). For a moderately skewed distribution, 

Gumbel deviates, G, are generated using the transformation G = log(log U), where 

U is the cumulative distribution function of N. To demonstrate the robustness of 

the test statistics for a more extreme skewed distribution, bivariate Normal deviates, 

N, are transformed into Lognormal deviates, L, using the transformation 

L = exponential (N). 
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Table 1. Summary of the simulation design 
 

Parameter Values 

na 5, 10, 30, 50, 100, 500 

nb 5, 10, 30, 50, 100, 500 

nc 5, 10, 30, 50, 100, 500 

ρ -0.75, -0.50, -0.25, 0.00, 0.25, 0.50, 0.75 

(
2 2

1 2
,σ σ ) (1, 1), (1, 4), (4, 1) 

(μ1, μ2) (0, 0), (0, 0.5) 

Distributions Normal, Lognormal, Gumbel 

Iterations 10,000 

αnominal 0.05 

Language R version 3.1.3 (R Core Team, 2014) 

 
Test statistics 

T1 Paired Samples t-test (discard unpaired observations) 

T2 Equal variances assumed Independent samples t-test (discard paired observations) 

T3 Welch’s unequal variances independent samples t-test (discard paired observations) 

MW Mann-Whitney test (discard paired observations) 

W Wilcoxon test (discard unpaired observations) 

Tnew1 Partially overlapping samples t-test, equal variances assumed 

Tnew2 Partially overlapping samples t-test, equal variances not assumed 

TRNK1 Non-parametric partially overlapping samples t-test, equal variances assumed 

TRNK2 Non-parametric partially overlapping samples t-test, equal variances not assumed 

 
 

In this Monte-Carlo study, the nominal Type I error rate is αnominal = 0.05. For 

each of the parameter combinations in Table 1, two sided tests are performed, and 

the null hypothesis rejection rate is the proportion of the 10 000 replicates where 

the null hypothesis is rejected. 

The alternative hypothesis is generated by adding 0.5 to the n2 observations 

so that μ1 – μ2 = 0.5. The difference applied is arbitrary for the purposes of 

comparing which test statistics are more powerful relative to each other for 

otherwise equivalent simulation parameters. 

The transformations outlined above ensure that the distributions compared are 

of the same shape, and only differ in terms of central location. Additional analyses 

are then performed when the samples are drawn from the Normal distribution with 

unequal variances, and then when samples are drawn from distributions with 

differing functional form. For the latter one sample is taken from a Normal 

distribution and one sample taken from a Lognormal distribution. For assessing the 

Type I error robustness under normality with unequal variances, the n1 observations 

are multiplied by σ1 and the n2 observations multiplied by σ2. Standardizing is 
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performed when comparing samples from two distributions with differing 

functional form. 

Results 

In general, Type I errors are more serious than Type II errors (Wells & Hintze, 

2007). The results therefore show Type I error rates for each of the test statistics 

considered, followed by power only for test statistics that control Type I error. The 

scenario where samples are drawn from the same distribution is firstly considered. 

This is followed by the scenario where samples are drawn from the Normal 

distribution with unequal variances, and finally the scenario when the samples are 

drawn from distinctly differing distributions. 

Samples Taken from Distributions of the Same Shape 

Null hypothesis rejection rates are obtained for each of the parameter combinations 

where μ1 = μ2 and 
2 2

1 2 = . Sampling from identical distributions with equal 

underlying population variances ensures that a difference in central location is 

directly assessed. For each parameter combination, the null hypothesis rejection 

rate represents the Type I error rate of the test. The Type I error rates for each of 

the distributions are given in Figure 1. Reference lines added represent Bradley’s 

liberal Type I error robustness criteria. 

Figure 1 provides evidence that when two samples are drawn from the 

Standard Normal distribution, traditional test statistics that discard data, T1, T2, T3, 

MW, W, MW, remain within Bradley’s liberal Type I error robustness criteria. This 

coincides with findings by Fradette et al. (2003). Figure 1 also shows that the 

statistics Tnew1 and Tnew2 are Type I error robust under normality and equal variances. 

For normally distributed data, the proposed non-parametric statistics, TRNK1 and 

TRNK2, have similar Type I error robustness to Tnew1 and Tnew2. 

Figure 1 suggests that the test statistics under consideration are not sensitive 

to relatively minor deviations from the Normal distribution. However, it can be seen 

that only the following test statistics maintain Bradley’s liberal criteria when both 

samples are drawn from a Lognormal distribution; T2, MW, W, Tnew1, TRNK1, and 

TRNK2. The paired samples t-test, T1, is slightly conservative relative to the other 

test statistics. 
 
 



DERRICK ET AL 

11 

 
 
Figure 1. Type I error rates for when both samples are taken from the same distribution 
 

 
 

The degree of skewness for the Lognormal distribution in this paper is larger 

than the degree of skewness considered by Fagerland and Sandvik (2009a). Figure 

3 shows that the MW test remains Type I error robustness for the more extreme 

degree of skewness in this paper. However, test statistics using separate variances, 

T3 and Tnew2, frequently exceed the upper limit of Bradley’s liberal Type I error 

robustness criteria. 

To explore in more detail the performance of the tests under extreme scenarios, 

Table 2 gives Type I error rates under the Lognormal distribution for small sample 

size combinations and combinations where max{na, nb, nc} – min{na, nb, nc} is 

large. 

The range of the sample sizes in this simulation design is large, Table 2 shows 

that the inflation in the Type I error rate of T3 and Tnew2 increases as 

max{na, nb, nc} – min{na, nb, nc} increases. In the scenario of partially overlapping 

samples, a large overall sample size does not necessarily result in a robust test. 

Simply increasing the number of independent observations does not compensate 

for a small number of paired observations, and vice-versa.  When sample sizes are 

balanced, the non-parametric tests maintain Type I error robustness for the smallest 

sample size combinations in the simulation design. For a balanced design with 



TWO SAMPLES TESTS FOR PAIRED AND UNPAIRED OBSERVATIONS 

12 

increasing sample size the parametric test statistics improve their Type I error 

robustness as per the central limit theorem, the sampling distribution of the mean 

differences approaches normality as sample size increases. 
 
 
Table 2. Type I error rates for selected sample size combinations under the Lognormal 
distribution, ρ = 0.5 
 

na nb nc T1 T2 T3 W MW Tnew1 Tnew2 TRNK1 TRNK2 

5 5 5 0.029 0.027 0.020 0.056 0.062 0.044 0.018 0.051 0.042 

10 5 5 0.024 0.042 0.047 0.046 0.059 0.046 0.028 0.044 0.041 

10 10 5 0.022 0.038 0.033 0.050 0.064 0.032 0.020 0.049 0.046 

10 10 10 0.027 0.040 0.038 0.051 0.042 0.045 0.032 0.048 0.048 

5 5 10 0.030 0.030 0.020 0.057 0.049 0.044 0.013 0.043 0.042 

30 5 5 0.031 0.058 0.120 0.048 0.067 0.046 0.080 0.047 0.052 

30 10 5 0.026 0.056 0.070 0.049 0.067 0.038 0.060 0.045 0.045 

50 5 5 0.022 0.053 0.135 0.052 0.059 0.055 0.098 0.040 0.043 

100 5 5 0.019 0.055 0.176 0.048 0.061 0.038 0.130 0.043 0.065 

500 5 5 0.022 0.044 0.173 0.047 0.063 0.042 0.150 0.049 0.053 

5 5 30 0.032 0.036 0.025 0.050 0.053 0.053 0.036 0.053 0.051 

5 10 30 0.047 0.044 0.048 0.040 0.053 0.072 0.052 0.050 0.051 

5 5 50 0.049 0.025 0.016 0.053 0.048 0.057 0.046 0.040 0.039 

5 5 100 0.050 0.028 0.017 0.053 0.046 0.056 0.043 0.056 0.056 

5 5 500 0.062 0.033 0.018 0.053 0.056 0.066 0.059 0.055 0.055 

 
 
Table 3. Power when μ1 – μ2 = 0.5; calculated at α = 0.05, two sided, averaged over all 
values of nc 
 

  ρ T1 T2 T3 W MW Tnew1 Tnew2 TRNK1 TRNK2 

N na=nb > 0 0.695 0.567 0.565 0.693 0.563 0.865 0.864 0.856 0.855 
  0 0.558 0.567 0.565 0.556 0.563 0.819 0.819 0.811 0.811 
  < 0 0.481 0.567 0.565 0.474 0.563 0.779 0.779 0.772 0.771 
 na≠nb > 0 0.695 0.455 0.433 0.692 0.438 0.839 0.832 0.829 0.824 
  0 0.559 0.455 0.433 0.553 0.438 0.806 0.798 0.795 0.790 
  < 0 0.482 0.455 0.433 0.476 0.438 0.774 0.767 0.763 0.760 

G na=nb > 0 0.611 0.472 0.470 0.630 0.510 0.783 0.782 0.815 0.814 

  0 0.464 0.472 0.470 0.483 0.510 0.720 0.718 0.761 0.760 

  < 0 0.398 0.472 0.470 0.407 0.510 0.678 0.678 0.719 0.719 

 na≠nb > 0 0.612 0.345 0.340 0.629 0.380 0.740 0.735 0.779 0.776 

  0 0.466 0.345 0.340 0.481 0.380 0.693 0.689 0.740 0.736 

  < 0 0.398 0.345 0.340 0.410 0.380 0.655 0.651 0.702 0.699 

L na=nb > 0 0.455 0.340 NR 0.727 0.533 0.596 NR 0.893 0.891 

  0 0.334 0.340 NR 0.729 0.533 0.535 NR 0.857 0.856 

  < 0 0.297 0.340 NR 0.693 0.533 0.506 NR 0.826 0.826 
 na≠nb > 0 0.453 0.194 NR 0.562 0.518 0.514 NR 0.874 0.873 
  0 0.336 0.194 NR 0.430 0.518 0.467 NR 0.851 0.850 
  < 0 0.296 0.194 NR 0.423 0.518 0.438 NR 0.825 0.826 

 

Note: N = Normal, L = Lognormal, G = Gumbel; for test statistics using only independent observations, the 
value for ρ = 0 is displayed; NR is displayed if not Type I error robust 
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Under the alternative hypothesis, when μ1 – μ2 = 0.5, the null hypothesis 

rejection rate represents the power of the test. For test statistics that do not clearly 

violate Bradley’s liberal robustness criteria, the power of the test statistics for each 

of the distributions is given in Table 3. 

When population variances are equal, Table 3 shows that test statistics not 

assuming equal variances, Tnew2 and TRNK2, perform similarly to their counterparts 

where equal variances are assumed, Tnew1 and TRNK1, respectively. 

From Table 3 it can be seen that for normally distributed data, traditional 

parametric methods, T1, T2, and T3, are more powerful than their non-parametric 

counterparts, W and MW. Similarly, when the normality assumption is true, the 

parametric statistics Tnew1 and Tnew2 are marginally more powerful than their non-

parametric counterparts TRNK1 and TRNK2, but not to any meaningful extent. Figure 

2 shows the power for each parameter combination within the simulation design for 

Tnew1 and TRNK1. 
 
 

 
 
Figure 2. Power for each parameter combination, for Tnew1 and TRNK1 
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Figure 3. Power of selected test statistics making use of paired data, for two N(0, 1) 
samples 
 

 

For the non-normal distributions in this simulation, non-parametric methods 

are more powerful than their parametric counterparts when both samples are taken 

from the same distribution. For increasing degrees of skewness, the proposed non-

parametric test statistic, TRNK1, exhibits an increasing power advantage over its 

parametric counterpart, Tnew1. 

From Table 3 it is apparent that for all of the test statistics making use of some 

paired element, a negative correlation between two samples is problematic. A large 

positive correlation results in more powerful results. This is true for each of the 

distributions in the simulation design. For selected tests making use of the paired 

data, Figure 3 shows the power for each parameter combination within the 

simulation design. 

Figure 3 illustrates that as the correlation between the paired observations 

increases, the power of the test statistics making use of paired information increases. 

For the Normal distribution and the Gumbel distribution, when the correlation 

coefficient is negative or small, the power advantage when using all of the available 

data is large. For the Gumbel distribution, Tnew1 is only slightly less powerful than 

TRNK1, however for the Lognormal distribution there is a clear power advantage of 
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TRNK1 over Tnew1. This suggests that the proposed TRNK1 is particularly useful for 

comparing two samples from a distribution with a clear deviation from normality, 

and a negative or small correlation between the two groups. 

Samples Taken from the Normal Distributions with Unequal Variance 

Null hypothesis rejection rates are obtained for each of the parameter combinations 

where μ1 = μ2 and 
2 2

1 2  . When the observations are sampled from two Normal 

distributions with equal means and unequal variances, the null hypothesis rejection 

rate represents the Type I error rate of the test. Type I error rates for each of the test 

statistics across the simulation design are given in Figure 4. 

Figure 4 shows that Type I error robustness is maintained under normality for 

Tnew2. Thus, Tnew2 is the only test statistic making use of all available data to be 

Type I error robust under normality for both equal and unequal variances. 
 
 

 
 

Figure 4. Type I error rates for samples from the Normal distribution with 
2 2

1 2
= 1, = 4σ σ  
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For normally distributed data and unequal population variances, the test 

statistics not assuming equal variances are more Type I error robust than the 

statistics that do assume equal variances. Nevertheless, for TRNK2 the number of 

times the null hypothesis is rejected is in excess of acceptable levels. Closer 

inspection of our results shows these statistics are not robust when the number of 

paired observations is large relative to the total number of independent observations. 

This effect is exacerbated when ρ is large and positive. To a lesser extent, the 

rejection rates for TRNK2 are inflated when the total number of independent 

observations are very large relative to the number of paired observations. 

Samples Taken from Distributions of Unequal Shape 

To consider the behavior of the test statistics when the two samples are drawn from 

distinctly different distributions (standardized to ensure equal means), Figure 5 

shows the null hypothesis rejection rates when observations for Sample 1 are taken 

from the standard Normal distribution, and observations for Sample 2 are taken 

from the Lognormal distribution. 
 
 

 
 
Figure 5. Sample 1 values taken from the standard Normal distribution, Sample 2 
observations are taken from a standardized Lognormal distribution 
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Under the simulation design, standardizing of the population ensures that the 

mean for both distributions is the same, but the shapes of the distributions are 

different. The null hypothesis rejection rate only represents the Type I error rate if 

the null hypothesis is strictly that there is no difference in means. Figure 5 shows 

that the parametric tests are not sensitive to the different shapes of the distributions 

and remain valid for testing the hypothesis of equal means. Conversely, the null 

hypothesis rejection rate is well in excess of 5% for the non-parametric test statistics. 

The non-parametric statistics are sensitive to differences in the shape of the 

distribution, thus could be used to assess the null hypothesis of equal distributions. 

The null hypothesis rejection rates represent power under the latter form of the null 

hypothesis. 

Example 

The following is a classic example by Rempala and Looney (2006), used by Guo 

and Yuan (2017) and Amro and Pauly (2017) to illustrate the partially overlapping 

samples problem. The outcome variable is the Karnofsky performance status scale, 

which measures functional status of a patient. The data is recorded on the last day 

of life and on the second to the last day. For the parametric tests, the null hypothesis 

that the mean Karnofsky score is the same on the last two days of life is tested. For 

the non-parametric tests, the null hypothesis that the distribution of the Karnofsky 

score is the same on the last two days is tested. Assuming the distributions differ 

only in central location, both the parametric and nonparametric tests are assessing 

the same research question. 

For a total of 60 patients, 9 were recorded on both days, 28 were recorded 

only on the second to the last day, and 23 were recorded only on the last day. The 

test statistic and p-value for each of the approaches considered are given in Table 

4, based on the data below: 

 

Patients with scores on both days: 

(20, 10), (30, 20), (25, 10), (20, 20), (25, 20), (10, 10), (15, 15), (20, 20), 

(30, 30) 

Patients with scores only on the second to the last day: 

10, 10, 10, 10, 15, 15, 15, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 25, 

25, 25, 25, 30, 30, 30, 30, 30, 30 

Patients with scores only on the last day: 

10, 10, 10, 10, 10, 10, 10, 10, 10, 15, 15, 20, 20, 20, 20, 20, 20, 20, 25, 

25, 30, 30, 30 
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Using the midpoint of tied ranks to calculate TRNK1 and TRNK2, all scores of 10 have 

rank of 9, all scores of 15 have rank of 21, all scores of 20 have rank of 37, all 

scores of 25 have rank of 53.5, all scores of 30 have rank of 63.5. 

Table 4 shows that the parametric partially overlapping samples t-tests 

provide evidence at the 5% significance level to suggest that there is a difference 

in the mean Karnofsky scores between the last two days of life. Similarly, the non-

parametric partially overlapping samples t-tests provide evidence at the 5% 

significance level to suggest that there is a difference in the distribution of the 

Karnofsky scores between the last two days of life. 
 
 
Table 4. Results from Rempala and Looney (2006) example 
 

Method T1 T2 T3 W MW Tnew1 Tnew2 TRNK1 TRNK2 

Test statistic 1.818 1.800 2.286 412.500 10.000 2.522 2.507 2.534 2.521 

p-value 0.075 0.079 0.052 0.078 0.098 0.015 0.016 0.014 0.015 

Conclusion 

There are many scenarios which gives rise to partially overlapping samples. 

Traditional methods of analyses which discard data are less than desirable. The 

partially overlapping samples t-tests by Derrick, Russ, et al. (2017) offer robust 

parametric solutions, assuming MCAR, using all of the available data. 

Under normality, parametric solutions Tnew1 and Tnew2 are Type I error robust 

and have greater power than other tests statistics considered in this paper. When the 

normality assumption is true, Tnew1 is recommended for equal variances and Tnew2 

is recommended for unequal variances. For the non-normal distributions considered 

here, Tnew1 is Type I error robust when comparing two samples taken from the same 

distribution, whereas Tnew2 is not fully Type I error robust. 

Non-parametric approaches developed in this paper, TRNK1 and TRNK2 are 

Type I error robust when comparing two samples taken from the same distribution 

with equal means and equal variances. When observations for two groups are 

sampled from the same non-normal distribution, there is a power advantage of using 

the non-parametric approaches TRNK1 and TRNK2. 

When comparing samples from two distinctly different distributions, the 

correct form of the null hypothesis for the non-parametric methods is open to 

interpretation. If performing parametric tests, the null hypothesis of equal means is 

valid. Results show that as with traditional non-parametric tests, the proposed non-

parametric test statistics are sensitive to differences in location but are 
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simultaneously sensitive to differences in the shape of the distribution. If the 

sampling distributions are not thought to be identical, the proposed non-parametric 

tests are not appropriate when the primary goal is to assess for differences in 

location. If the research question is whether the distributions are equal, TRNK1 and 

TRNK2 offer valid and more powerful alternatives to their parametric counterparts 

Tnew1 and Tnew2, respectively, as well as more powerful alternatives to standard non-

parametric methods which discard data. 
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