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Two quasi-likelihood ratio tests are proposed for the homoscedasticity assumption in the 

linear regression models. They require few assumptions than the existing tests. The 

properties of the tests are investigated through simulation studies. An example is provided 

to illustrate the usefulness of the new proposed tests. 

 

Keywords: Bootstrap, homoscedasticity test, quasi-likelihood, regression model, 

variance function 

 

Introduction 

Homoscedasticity or constant variance is a standard assumption in regression 

models. The violation of this assumption can lead to inefficient estimation or 

incorrect inference (Ruppert et al., 2003). Former research studied 

homoscedasticity tests in different parametric and nonparametric regression models. 

For the linear regression model, Cook and Weisberg (1983) proposed a score test 

statistic for parametric variance functions; Breusch and Pagan (1979) proposed a 

Lagrange multiplier test for a fairly wide class of alternative hypotheses; Diblasi 

and Bowman (1997) constructed a nonparametric test of constant variance. All of 

them require the assumption that the errors have the normal distribution. Koenker 

(1981) proposed a variant of the Breusch-Pagan test by relaxing the normality 

assumption, but the alternative hypotheses still cannot include all of the possible 

heteroscedastic models. 

https://dx.doi.org/10.22237/jmasm/1556669460
https://dx.doi.org/10.22237/jmasm/1556669460
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For nonparametric regression models, Eubank and Thomas (1993), Müller 

and Zhao (1995), respectively, presented tests for nonparametric and semi-

parametric variance functions under the assumption of normal distributed errors; 

Dette and Munk (1998), Dette (2002), Liero (2003), and Wang and Zhou (2005) 

developed tests by comparing variance estimators under two hypotheses under the 

Lipschitz continuous assumption; Francisco-Fernández and Vilar-Fernández 

(2008) proposed two new tests based on nonparametric smoothing; Dette et al. 

(2007) and Dette and Hetzler (2008) considered tests of a parametric form of 

conditional variance. For partially linear regression models, You and Chen (2005), 

Lin and Qu (2012), respectively, presented heteroscedasticity tests based on the 

research of Dette and Munk (1998) and Dette (2002); Dette and Marchlewski 

(2008) considered testing a parametric form of the conditional variance. 

Linear regression models are the most popular models. The homoscedasticity 

tests for linear models in the literature referenced above require assumptions, such 

as normality and parametric variance functions. These assumptions greatly restrict 

their applications to real data analysis. 
 
 

 
 
Figure 1. Scatter plot of BWT versus HWT 
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As an example, consider the Cats data in MASS package in R. 144 adult [over 

2kg (kilograms) in weight] cats used for experiments with the drug digitalis had 

their heart in g (grams) and body weight in kg recorded. The interest is if the heart 

weight (HWT) is associated with the body weight (BWT) for cats. A scatter plot of 

BWT versus HWT is given in Figure 1, which indicates a linear relationship. A 

linear regression line can be fit to investigate their association. However, the 

variances of the observations may be different. In order to choose appropriate 

inference methods to obtain efficient estimation or correct inference, check the 

homoscedasticity assumption for the linear regression model. Shown in Figure 1. 

the variances are larger for the middle response values than small and large 

response values. This suggests the researchers to consider the variance as a function 

of the mean. However, it is hard to specify the form of the variance function, which 

is required by the existing homoscedasticity tests for the linear regression model. 

As will be shown, if the true variance function is not in the specified alternative, 

the test is not reliable, i.e., cannot maintain the probability of the type-I error and 

has low power. Therefore, in order to obtain the reliable test results, 

homoscedasticity tests are proposed in which the alternative hypothesis includes all 

possible heteroscedastic models, for the linear regression model. 

Two powerful quasi-likelihood ratio tests are proposed for linear regression 

models with minimum assumptions, that is, they do not require a known 

distribution and specific variance function forms of the data. This is achieved due 

to the good properties of quasi-likelihood. As shown in Wedderburn (1974), the 

quasi-likelihood has similar properties as the log-likelihood function. It only 

requires assumptions on the first two moments which is much easier to postulate 

than the entire distribution of the data. Due to these properties, quasi-likelihood 

ratio tests have the potential to achieve high power but require fewer assumptions. 

In addition, these tests can be easily extended to more complex models, such as 

partially linear models and nonparametric models, with minimum assumptions. 

Two Quasi-Likelihood Ratio Tests for Homoscedasticity 

Consider the linear model 

 

 , 1, ,i i iy i n = + =   (1) 

 

where εi, are identically and independently distributed with mean zero and unknown 

variances σ2(μi); yi has mean μi = Xi
Tβ where Xi is a p-dimensional vector of known 



YU ET AL 

5 

constants and β is a vector of parameters. The homoscedasticity test for model (1) 

is to test if the variance σ2(μi) is constant. 
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for some unknown positive constant σ2. 

First Test: Quasi-Likelihood Ratio Test 

Quasi-likelihood proposed by Wedderburn (1974) is defined as follows: 

 

 
( )2

1
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i
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=  .  (2) 

 

In (2), it is assumed the variance is a function of the mean, but the form of the 

variance function is not specified. Therefore, few assumptions are required for the 

proposed tests based on the quasi-likelihood. The score function of the quasi-

likelihood (2) is derived as its first derivative as 

 

 ( ) ( )T 2

1

1 n
T

i i i i

i

y
n

 
=

= −βU X X β .  

 

Wedderburn (1974) showed that quasi-likelihood (2) has similar properties to the 

log-likelihood. Then the test statistic is constructed as 

 

 ( )1 0 12QLR Q Q= − − ,  

 

where Q0 is the quasi-likelihood function under H0 and Q1 is the quasi-likelihood 

function under H1. Next, we will explain how to calculate these quasi-likelihood 

functions. 

To calculate Q0 under H0 (i.e., the data are homoscedasticity), we estimate β 

by the least squares estimator β  for model (1). Then we calculate 
T

i i = X β  and 

( )
22

1
1

n

i ii
n y 

=
= − . Therefore, the quasi-likelihood under H0 can be calculated 

as 
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To calculate Q1 under H1 (i.e., the data are heteroscedasticity), we first 

estimate β by maximizing the quasi-likelihood (2), which is same as solving the 

score function Uβ = 0. In Uβ, we approximate the variance function σ2(μi) as a spline 

function. Specifically, the variance function is approximated by a basis expansion 
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where J is the number of B-spline basis functions, Bj, j = 1,…, J, are the B-spline 

basis functions (De Boor, 2001) and γj, j = 1,…, J, are unknown spline coefficients 

to be estimated. The number J is determined by the degree of the splines and the 

number of knots, the choices of which will be introduced in the following algorithm. 

Then the score function is approximated by 

 

 
( )

( )
1

1

1

B

n T

i i ii

J

j i jj

y

n



 

=

=

−
=



β

X
U ,  

 

which is a function of μi. Therefore, the estimator β̂  is the solution of 0=βU . We 

use the following algorithm to obtain β̂  and calculate the quasi-likelihood under 

H1: 

 

(1) Initialize the variances with 
( ) ( )2 0ˆ 1i  = . 

(2) At the (k + 1)th step, 

(a) For the given variance 
( ) ( )2ˆ k

i  , the parameter estimates ( )1ˆ k+
β  

are obtained by maximizing the quasi-likelihood (2) using the 

Newton-Raphson with scoring method. 

(b) For given ( )1ˆ k+
β , calculate 

( )1T ˆˆ k

i i
+

= X β  and the basis expansions 

( )ˆB j i . Then the estimators ˆ
j  of γj are obtained by the least 

squares method for the following model: 
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where ( )
22ˆ ˆ

i i iy = −  are the 'observed' values of the variances 

σ2(k+1)(μi) and i , i = 1,…, n, are error terms with mean zero and 

constant variance. Now σ2(k+1)(a) is calculated by 
( ) ( ) ( )2 1

1
ˆˆ B

Jk

j jj
a a 

+

=
= , where J = nknots + d – 1 and nknots and 

d are the number of knots and the degree of the spline, respectively. 

In the algorithm, we use a cubic B-spline, so d = 3, and the bs 

function in R software is used to choose the quantiles as knots for 

a given number of knots. The number of knots is varied in the 

range from 1 to 15, out of which we select the one that minimizes 

the Akaike-like (AIC-like) criterion (Yu & Peace, 2012) 
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(c) Repeat Steps (a)-(b) until 
( ) ( ) ( )1 1ˆ ˆ ˆk k k

l
+ +
− β β β , where l is the 

prespecified convergence criterion. The converged estimators are 

β̂  and the corresponding variance estimators are ( )2ˆ . . Chiou 

and Müller (1999) proved that under regularity conditions, both β̂  

and ( )2ˆ .  are consistent estimators. 

(3) The quasi-likelihood under H1 is calculated as 
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Now we are ready to calculate the quasi-likelihood ratio test statistic as 
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Second Test: Modified Quasi-Likelihood Ratio Test 

A modified quasi-likelihood is proposed: 
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It is easy to see that (3) has the same first derivative as (2). In other words, (3) and 

(2) have the same score functions. Then (3) has similar properties to the log 

likelihoods as well based on the Theorem 1 in Wedderburn (1974, p. 440). 

Therefore, it can be used to construct likelihood ratio test as well. Moreover, the 

estimators of β are same by maximizing (3) or (2) because they have the same score 

functions. 

The motivation of the modified quasi-likelihood is that it has the same value 

under H0 as (2). In addition, the calculation for (3) is much less time consuming 

than the calculation for (2). First, we only need to calculate the variances at ˆ
i  

values for (3) but need to calculate all values in the integral for (2). Second, the 

integration of (3) has a closed form. However, (2) does not have a closed form and 

we need approximations in the calculation. 

The test statistic based on (3) is constructed as 

 

 ( )* * *

0 12QLR Q Q= − − ,  

 

where 
*

0Q  is the modified quasi-likelihood function under H0 and *

1Q  is the 

modified quasi-likelihood function under H1. Because the estimators of β based on 

(3) are same as those based on (2) under both H0 and H1, use the same procedures 

to estimate the β and σ2(μi). Then 
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The quasi-likelihood ratio test statistic is 
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Remark. Comparing QLR1 and QLR2, we see that the only difference between 

them is the denominator ( )2ˆ .  of quasi-likelihood under H1. For different patterns 

of the variance functions, either one of the proposed tests can be more powerful 

than the other one. 

Bootstrap Procedure for the Critical Values of the Test 

Because the quasi-likelihood has the properties of log likelihood, the proposed 

quasi-likelihood ratio tests follow the Chi-square distribution based on the theory 

of the likelihood ratio tests. However, it is well known that for nonparametric 

smoothing tests, the asymptotic theory does not provide accurate approximations 

to the distribution of the test statistic when the sample size is small or moderate 

(Hardle & Mammen, 1993). Alternatively, bootstrap method is often used to 

approximate the distribution of the test statistic. Therefore, a similar bootstrap 

procedure as in Wang and Zhou (2005) is proposed to approximate the critical 

values of the tests in practical applications. The bootstrap procedure is proposed as 

follows. Denote B as the sufficient large number of bootstrapping. Therefore, for 

b = 1,…, B, 

 

(1) For i = 1,…, n, let * T *

,i b i iy = +X β , where 
*

i  is a bootstrap sample from 

centered ( )i i iy = − . 

(2) With the bootstrap sample ( ) *

,, , 1, ,i i by i n=X , calculate QLR1b and 

QLR2b for each bootstrapping sample using the new proposed methods. 

(3) Let QLR1η be the ηth order statistic of QLR11,…, QLR1B; then QLR1|(1−α)B| 

approximates the (1 – α)-quantile of the distribution of QLR1 under the 

null hypothesis. Similarly, calculate QLR2|(1−α)B| to approximate the 

(1 – α)-quantile of the distribution of QLR2 under the null hypothesis. 
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Simulations 

The performance of the proposed tests is investigated for finite samples. Compare 

the two quasi-likelihood ratio tests with the parametric score test proposed by Cook 

and Weisberg (CW test) (Cook & Weisberg, 1983), the Breusch-Pagan test (BP 

test) (Breusch & Pagan, 1979), and its variant proposed by Koenker (VBP test) 

(Koenker, 1981). These tests require assumptions, such as normal error and some 

specific functional forms of the variance. 

Evaluate Size (Type-I Error) of the Test 

Homoscedastic data is generated under H0 from yi = 1 + xi + εi, where the xi are 

generated from the standard normal distribution. Consider two different 

distributions for εi: the standard normal distribution [N(0, 1)], and the t distribution 

with 4 degree of freedom [t(4)]. Sample sizes are 70 and 100. The test is calculated 

with 1000 simulation runs for each scenario and nominal level 0.05. We use 

B = 500 bootstrap samples per run to obtain the critical values. The results are 

summarized in Table 1 and it can be seen that the proposed tests maintain the 

specified nominal level satisfactory. For CW and BP tests, when the error term 

follows t distribution, the probability of type-I errors is much higher or lower than 

the nominal level 0.05. Clearly, CW and BP tests are not robust. However, VBP 

test is robust for the non-normal distributed data. 

Empirical Power of the Test 

In order to investigate the power of the tests, consider two alternatives: 

 

Alternative I: yi = 1 + xi + 0.5exp(2xi)εi 

Alternative II: yi = 1 + xi + 0.5[1 + sin(3xi)]εi 

 

where both xi and εi are generated from the standard normal distribution. Table 2 

summarizes the results. Alternative I satisfies all of the assumptions required by the 

CW, BP, and VBP tests, and they are more powerful than the quasi-likelihood ratio 

tests. However, in alternative II, the true form of the variance function does not fit 

the general formulation of the alternative hypotheses in the CW, BP, and VBP tests, 

and their powers are much lower than the new proposed quasi-likelihood ratio tests. 

The power of the quasi-likelihood ratio tests is satisfactory. The first quasi-

likelihood ratio test is more powerful than the second test for alternative I, but less 

powerful for alternative II. Although the classical tests are powerful against the 
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Table 1. Empirical size of the tests 
 

N  N(0, 1) t(4) 

70 Test I 0.045 0.040 
 Test II 0.054 0.067 
 CW 0.051 0.170 
 BP 0.051 0.170 
 VBP 0.044 0.052 

100 Test I 0.038 0.049 
 Test II 0.063 0.047 
 CW 0.044 0.193 
 BP 0.044 0.193 
 VBP 0.044 0.050 

 
 
Table 2. Empirical power of the tests 
 

N  Alternative I Alternative II 

70 Test I 0.548 0.570 
 Test II 0.355 0.964 
 CW 1.000 0.179 
 BP 1.000 0.179 
 VBP 1.000 0.041 

100 Test I 0.588 0.848 
 Test II 0.464 0.981 
 CW 1.000 0.178 
 BP 1.000 0.178 
 VBP 1.000 0.043 

 
 

specified alternative, they may have very low power if the true variance forms are 

not in the specified direction. However, the new proposed quasi-likelihood tests 

have satisfactory powers for different true variance forms because they include all 

possible variance forms in the alternative hypothesis. 

Cats Data Analysis 

The usefulness of the new quasi-likelihood ratio tests is illustrated on the Cats data, 

which is introduced in the Introduction section. The intent is to investigate if the 

heart weight (HWT) is associated with the body weight (BWT) for cats. Scatter plot 

(Figure 1) shows the linear relationship between BWT and HWT. Therefore, the 

following linear regression model is fitted to the data: 

 

 0 1i i iBWT HWT  = + + ,  (4) 
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where εi is the error term with mean zero and variance σ2(μi) and μi = β0 + β1HWTi. 

First, we check the normality assumption of the data. Q-Q plot (Figure 2) shows 

that the data satisfies the normality assumption. In order to see the variance form, 

Figure 3 shows the plot of 2ˆ
i  versus i̂ , where iii HWTBWT 10

ˆˆˆ  −−= , 10
ˆ,ˆ   

are the least squares estimators of β0, β1 in model (4), and ii HWT10
ˆˆˆ  += . It 

indicates the homoscedasticity assumption is not satisfied. Because the normality 

assumption is satisfied, the CW and the BP tests may be used to check the 

homoscedasticity assumption. Both the CW and the BP tests got a p-value 0.11 by 

assuming the variance of BWT σ2(μi) is a function of the mean μi. It concludes the 

data is not heteroscedastic. 

However, as shown in Figure 3, the variance form is not exponential, which 

is assumed by the CW test, so the CW test has low power. For the BP test, although 

the variance form is sufficiently general to include a fairly wide class of 

heteroscedastic models, it does not include some heteroscedastic models, such as 
22

ii   . From Figure 3, the square of the mean may contribute to the shape of the 

variance function. This may be the reason that the BP test has low power and hence 

is not significant. Then, apply the two quasi-likelihood tests to this linear regression 

model. The first test gives a p-value 0.03, and the second test gives a p-value 0.2. 

The first test is significant and the second one is not. This suggests the 

heteroscedastic variance structure of this dataset is easier to be identified by the 
 
 

 
 
Figure 2. Q-Q plot to check the normality assumption 
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Figure 3. Plot of checking the variance function 
 

 

first test than the second one, so the first test is more powerful than the second one. 

Because the quasi-likelihood ratio tests can test for all possible heteroscedastic 

models, their test results are reliable, and we conclude that the data is 

heteroscedastic. 

Discussions and Conclusions 

The classical homoscedasticity tests for linear regression models, such as the CW 

and the BP tests, cannot test for all possible heteroscedastic models. If the true 

variance form is not in the specified alternative hypotheses, the tests are not reliable. 

However, for real data, the true variance form is usually unknown and is hard to 

specify, so we do not know if the test results are valid or not. In this paper, we 

proposed two quasi-likelihood ratio tests, which can test for all possible 

heteroscedastic models. Hence, they are valid for all real data and have wider 

applications than the classical homoscedasticity tests for linear regression models. 

Moreover, the quasi-likelihood ratio tests have the potential to achieve greater 

power due to its log-likelihood properties. Furthermore, the quasi-likelihood ratio 

tests are easy to be implemented. The simulation shows the new proposed quasi-
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likelihood ratio tests maintain the probability of type-I error well and have 

satisfactory powers. The real data analysis shows the new proposed tests are useful. 

A new form of quasi-likelihood is proposed for the second test. It has a 

simpler form that results in easy and less time-consuming computations. 

Simulations show the quasi-likelihood ratio test based on this new form is more 

powerful for some scenarios. The proposed tests can be easily extended to other 

models by using the estimators in the quasi-likelihood for the corresponding models. 

Future research can be conducted to extend these two tests to other models, such as 

nonparametric models or partial linear models. 
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