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CHAPTER 1: BACKGROUND 

1.1 Clinical pathology of breast cancer Breast cancer is the most common type of cancer 

diagnosed in women and the second leading cause of cancer related deaths in the United States 

(1). Due to the dependence on female sex hormones for growth and progression, this disease is 

diagnosed predominantly in women; however, it is still observed in men, accounting for less than 

one percent of all diagnosed breast cancers.    Herein, we will discuss the biological properties of 

breast cancer from origin within the breast tissue to developed lesions and what factors drive this 

progression. 

1.1.1 Histological subtypes: In order to understand breast cancer as a disease, it is 

important to know the biological composition of the breast and that not all breast cancer is the 

same.  Although being classified under the umbrella of breast cancer, the origin of the tumor within 

the breast is critical for diagnosis and treatment of the disease.  Breast tissue comprises lobules, 

ducts, adipose tissue, and connective tissue. The lobules produce milk, and the ducts carry milk to 

the nipple, whereas the connective tissue and adipose tissue provide structural support to hold other 

tissues in proper orientation to deliver milk (2). Breast cancer usually develops in the lining of the 

ducts, which comprises differentiated epithelial cells (3). The predominant histological subtypes 

of breast cancer are ductal carcinoma in situ (DCIS), invasive ductal carcinoma (IDC), and 

invasive lobular carcinoma (ILC) (4). Ductal carcinomas (DCIS, and IDC) are the most commonly 

diagnosed breast cancers. DCIS is intra-ductal, confined to the duct structure and has not yet 

invaded through the basement membrane (5), whereas IDC is invasive and has left the confines of 

the duct (6). DCIS is commonly treated by surgical resection involving lumpectomy (minimal 

tissue removal), or mastectomy (partial or complete), followed by radiation (7). IDC is the most 

common type of invasive breast cancer (80%) and its prognosis is variable, depending on 
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histopathological grade/subtype, tumor size, lymph node positivity, hormone receptor status and 

HER2 status (4). Treatment for IDC includes surgery (lumpectomy or mastectomy) followed by 

radiation, chemotherapy and hormone therapy. ILC is less common (<15% of invasive breast 

cancers) and predominantly occurs in post-menopausal women and usually maintains hormone 

receptor status throughout progression (7). Treatment of ILC is identical to IDC but the metastatic 

tissue profile is quite distinct. IDC preferentially metastasizes to the lungs, bone and central 

nervous system, whereas ILC metastasizes to gastrointestinal sites and organs located in the 

peritoneal cavity (8–10).  

1.1.2. Breast cancer staging: After determining the histological subtype of the disease, it 

is important to diagnose the stage, an indication of how advanced the disease is for both diagnostic 

tools and for therapeutic intervention.  The most common classification of staging for breast cancer 

is the TNM system (T= tumor size, N= lymphnode status, and M= metastasis). Tumor size can be 

denoted as “tis” (which represents ductal/lobular carcinoma in situ) or be given a numeric value. 

A value of 1 represents a tumor size less than 2cm. A value of 2 represents a tumor larger than 

2cm but less than 5cm.  A value of 3 is a tumor larger than 5cm, and a value of 4 is any tumor that 

has spread beyond the breast. Lymph node (LN) status is divided in to 4 subcategories; N0 (no LN 

metastasis), N1 (1-3 axillary LN are positive for cancer cells), N2 (4-9 axillary LNs are positive), 

and N3 (10 or more axillary LN are positive, or a supraclavicular LN is positive). Metastasis is 

subcategorized into 3 groups: MX (cannot be assessed), M0 (no metastasis), and M1 (metastasis). 

Based upon this classification system, breast cancers can be subdivided into stage I-IV. Stage I is 

classified as early detected breast cancer whereas stage II and III are defined as locally advanced 

breast cancer. Stage IV is any breast cancer that has metastasized.    
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1.1.3. Molecular classification: Estrogen has long been thought to be the primary culprit 

in breast oncogenesis, beginning with the discovery in 1902 that removal of ovaries in women 

with breast cancer resulted in regression of tumor size (11). Furthermore, it was discovered that 

estrogen was one of the primary hormones produced by the ovaries (12) and this led to  strategies 

in the early 20th century to focus on surgery and oophorectomy which resulted in positive outcomes 

(30% survival). In 1968 the estrogen (ER) receptor was discovered (13), paving the way to 

classification of breast cancer on the basis of hormone receptor status. ER was  used as a predictive 

marker for outcome of estrogen ablative therapy (14). This early classification was the foundation 

for the modern molecular classification of breast cancer, which also takes into account, expression 

of the progesterone receptor (PR) and the cell surface tyrosine kinase protein HER2/neu (human 

epidermal growth factor 2). A majority of breast cancers are hormone receptor positive (60% pre-

menopausal, and 80% post-menopausal) (15). Hormone receptor positive breast tumors rely upon 

estrogen for growth and survival; hence anti-estrogens and estrogen depletion by non-invasive 

methods have become a mainstay in treating ER+ breast cancer. Breast cancers can express HER2 

either in conjunction with or independently of ER and PR. HER2 is amplified in 30% of all breast 

cancers (16–18) and is associated with greater morbidity (19,20). Due to the high incidence of 

HER2 amplification, HER2 targeting antibodies have been produced and are used in the clinic.  

Humanized monoclonal antibodies targeting HER2 include pertuzamab which targets subdomain 

2 of HER2 and trastuzumab which targets subdomain 4 of HER2. These monoclonal antibodies 

inhibit dimerization with HER3 and HER2 and ultimately cause the internalization of HER2  (21). 

Combining these antibodies with chemotherapy improves median survival from 20 months to 25 

months (22). When ER, PR and HER2 are all absent in the tumor, the breast cancer is classified as 

triple negative breast cancer (TNBC). TNBC has a poor prognosis and can only be treated with 
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conventional chemotherapy, surgery and radiation due to the absence of drug target receptors (1). 

Taking into account histological grade and receptor status, breast cancer is classified as Luminal 

A, Luminal B and Basal like, which is included in a broader classification as triple negative breast 

cancer.    

Luminal A breast cancers are highly differentiated and strongly resemble the cells of the 

inner lumen of the breast duct. Luminal A tumors tend to be ER positive, PR positive, and HER2 

negative. This type of tumor is often classified as a low tumor grade. Roughly 65% percent of 

breast cancers are luminal A (23,24). Luminal A tumors have the best prognosis, with 97% 10-

year relapse free survival (24). These tumors frequently have low histological grade, low degree 

of nuclear pleomorphism, low mitotic activity and are associated with good prognosis. Luminal-

A is characterized by very high levels of ER and lower levels of high mitotic genes. Genetic 

profiling has shown that Luminal A breast cancers have high expression of cytokeratins (CK) 8 

and 18 and other luminal associated markers including ER regulated genes. These genes include 

LIV1, ZIP6, FOXA1, XBP1, GATA GATA3, BCL2, erbB3 and erbB4 (25). Luminal A subtype 

is defined as ER-positive and PR-positive tumors with negative HER2 and low Ki67 index by 

immunohistochemistry (26). Recurrence is common in bone, whereas liver, lung and central 

nervous system metastases occur in less than 10% of patients and treatment is mainly based on 

hormonal therapy (27). Luminal A breast cancers are often treated with surgery and anti-estrogen 

therapy. Chemotherapy is not commonly used, as it has shown no additional benefit (28).  

Luminal B tumors comprise of 15-20% of all cases of breast cancer and are considered 

more aggressive than Luminal A breast cancers. Luminal B breast cancers are also highly 

differentiated and originate from the inner lumen of the breast duct. Luminal B tumors tend to be 

estrogen receptor positive, progesterone receptor positive, and can be HER2 negative or positive. 



	
   5	
  

They have a higher grade, faster progression, and worse prognosis than Luminal A cancers (29). 

Furthermore, these tumors have a higher rate of relapse (30). The largest difference between the 

two luminal subtypes is that Luminal B has increased expression of the genes v-MYB, GGH, 

LAPTMB4, and CCNE1. Furthermore this subtype also expresses HER2 in a third of the cases 

(31,32). Histologically Luminal B is defined as ER-positive, HER2-negative and Ki67 high. Also, 

Luminal B breast cancers can be classified as ER and HER-2 positive with low Ki67 staining 

intensity. It is important to note there is currently no standard way to define Luminal A and 

Luminal B by Ki67 cutoffs alone (33). The overall survival of untreated Luminal B cancers is 

similar to TNBC and HER2+/ ER- cancers (34). Luminal B tumors tend to not be as sensitive to 

hormone therapy as Luminal A tumors. Furthermore, this subtype is more resistant to microtubule 

targeting taxanes when compared to HER2+/ER- and basal like breast cancers. This resistance has 

been attributed to the fact these cancers rely upon alternate growth pathways through PI3K, 

FGFR1, HER1, and Src signaling pathways (35–40). Fibroblast growth factor 1/ and 2 (FGFR1 

and FGFR2) are amplified in Luminal B breast cancers and is associated with a higher resistance 

to endocrine therapy. Diagnosis occurs at a younger age with advanced stages of disease (40). 

Patients tend to have larger tumors and more lymph node metastasis. Furthermore Luminal B 

subtypes are more likely to relapse (40). Treatment options for Luminal B tumors include; surgery, 

chemotherapy, immunotherapy (trastuzumab) and anti-estrogen therapy (41). Once metastasis has 

occurred, patients are usually aggressively treated with anti-estrogen therapy, followed by single 

agent chemotherapy (anthracycline or taxane) (42). There are few proven standards of care in in 

metastatic breast cancer management, resulting in variable treatment regimens depending on 

physicians and patients (42). 
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Basal like breast cancers account for roughly 35% of breast cancer cases (45,46). This 

subtype is associated with a high histological grade, poor tubule formations, and has necrotic cores.  

Furthermore, basal like tumors have high mitotic rates with solid growth patterns. They are marked 

by their high aggressiveness and high rates of metastasis to the brain and lungs (43,44). Basal like 

tumors also have high expression of myoepithelial markers, such as laminin, CK5, CK14, and 

CK17. Furthermore, these cells do not express high levels of ER, PR, or HER2 (70% of cases) and 

are also grouped as TNBC (44) .  Though not required for basal-like identification, this subtype 

has frequent P53 mutations, inactivation of Rb, and dysregulated integrin expression (44).  

Oftentimes it is thought that basal-like breast cancers are triple negative, but the two 

classifications are not synonymous. Roughly 20-30% of basal-like breast cancers are not triple 

negative. TNBC is a classification used for immunohistochemical (IHC) identification of disease, 

and only relies upon the three markers ER, PR, and HER2. Basal-like breast cancer are identified 

by their gene expression, via microarray or realtime-PCR. It is important to note the basal-like 

classification is currently not in use in the clinical setting. This is in part due to the fact that all 

therapies currently used rely on the three markers identified by IHC for indication of various 

treatments. The classification of “triple negative” is considered to be a reliable surrogate for basal-

like for all treatment purposes (45). There is a large amount of research to explore putative 

biomarker candidates for basal-like breast cancers, however, there have not been any reliable 

complementary biomarkers used in the clinic thus far (46). Researchers have also added the 

subtype of basal-like cancer as claudin-low. Claudins are needed for tight junctions between cells, 

and are commonly found in epithelial-like cells. Claudin-low basal-like breast cancers tend to be 

more mesenchymal-like and have much poorer outcomes when compared to other basal-like breast 

cancers (47).  
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Next generation sequencing, microarrays, and IHC analyses have shown that basal-like 

breast cancers make up roughly a third of breast cancer 1 (BRCA1) related breast cancers. BRCA1 

is a gene located on chromosome 17. When BRCA1 is expressed, it plays a pivotal role in the 

DNA damage sensing process, and facilitates DNA damage repair. BRCA1 deficient tumors tend 

to be triple negative with P53, EGFR, and X-chromosome abnormalities. Basal-like tumors and 

BRCA1 related breast cancers both behave similarly and have early relapse and similar pattern of 

metastatic disease (48). BRCA1 is specifically involved in DNA double strand break repair. 

BRCA1 deficient cells are highly sensitive to agents that create double strand breaks, when used 

with a poly-ADP ribose polymerase (PARP) inhibitor (induce synthetic lethality) (49). PARP is 

an enzyme that repairs DNA single strand breaks, and inhibiting PARP increases the chances of 

creating multiple nicks in the DNA to create double strand breaks. Thus, inhibiting PARP in 

BRCA1 deficient cells can increase the number of double strand breaks, creating a lethal 

phenotype. PARP inhibitors are currently indicated for BRCA1 deficient advanced ovarian cancer, 

with several clinical trials on breast cancer ongoing. TNBC also includes secretory, adenoid, 

medullary (BRCA1 related), and high grade invasive ductal carcinomas. Triple negative breast 

tumors are treated with surgery, adjuvant chemotherapy, and radiotherapy (50). Triple negative 

non-basal like tumors have 93% 10-year relapse free survival, whereas basal-like has an 86% 10-

year relapse free survival (24). More importantly if relapse occurs, it happens within three years. 

Women with BRCA1/2 deficiency have shown to benefit from prophylactic use of tamoxifen, and 

showed a significant reduction (10%) of contralateral breast cancer incidence after initial diagnosis 

(51). The benefits of tamoxifen have been attributed to the possible role of ERb in TNBC (52), but 

further investigation is needed.  
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1.1.4. Breast Cancer Etiology:  Despite the fact that the etiology of breast cancer is not 

well understood, reports have described it as a culmination of factors such as hereditary-

predisposition, somatic mutations, reproductive physiology, and environmental pressures. Germ 

line mutations account for a small proportion of predisposition to breast cancer, and are primarily 

attributed to BRCA1 (1% of cancers) and BRCA2 (4% of cancers), and carriers with susceptibility 

mutations have an 80% life time risk of developing breast cancer, and women with a primary 

family member with BRCA1 and/or BRCA2 mutations are twice as likely to develop breast cancer 

than the female population (53–55). More importantly BRAC1/2 mutations are more strongly 

associated with developing TNBC, resulting in prophylactic measures such as mastectomy, 

tamoxifen, and oophorectomy (56).  

Increased exposure to estrogen (earlier onset of menarche and later onset of menopause) 

has shown to increase risk of developing breast cancer (57). Furthermore, exposure to estrogenic 

like compounds, aromatic amines, polyaromantic hydrocarbons, tobacco smoke and radiation are 

risk factors associated with breast cancer (58). More recently it was shown that hormone 

replacement therapy (HRT) which is used to mitigate menopausal symptoms plays a role in breast 

cancer risk. The women’s health initiative study of 2007, showed women receiving estradiol (E2) 

and medroxyprogesterone acetate (MPA) had increased incidence of advanced stage invasive 

breast cancer when compared to non-users. Furthermore, women who received hysterectomies and 

received estrogen alone had decreased late stage IDC breast cancer when compared to non-users 

(59,60). These studies were essential to the decision to decrease HRT in the general public to 

reduce the incidence of IDC. 
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1.2 Estrogen Biology. Estrogens are the primary female sex steroid hormones and are 

responsible for the development and regulation of the female reproductive system, secondary 

sexual characteristics and development of the central nervous system. There are three naturally 

occurring estrogens in women; Estrone (E1), Estradiol (E2), and Estriol (E3) (61). E3 is the most 

abundant estrogen, yet the weakest in terms of estrogenic activity. E2 is 80 times more potent and 

plays the predominant role in estrogen signaling during sexual maturation and development (62). 

The lower circulating plasma levels of E2 when compared to E1 and E3 is because of  E2’s high 

affinity for steroid hormone-binding globulin (SHBG) (63). In pre-menopausal women, E2 is 

primarily produced by the ovaries and has dynamic concentration ranges depending on the stage 

of the menstrual cycle.  Plasma levels range between 1.4-1.6 nM during the follicular phase and 

3.6-4.2 nM during the luteal phase (64). During pregnancy, estrogen levels increase about 40 times 

in the form of E3 due to heightened production in the placenta (65).  Synthesis of estrogens is 

stimulated by the secretion of gonadotropin releasing hormone (GnRH) which is synthesized in 

the hypothalamus. GnRH stimulates the release of follicle stimulating hormone (FSH) from the 

anterior portion of the pituitary gland. FSH then acts as a signaling molecule to increase estrogen 

synthesis in the granulosa cells of the ovary  (66). High levels of circulating estrogen acts as a 

negative regulator on GnRH production, creating a negative feedback loop (66). Biochemical 

synthesis of estrogens starts in the theca-interna of the ovary, whereas androstenedione is 

synthesized from cholesterol. Androstenedione then passively diffuses to the granulosa cells where 

it is converted into either E1 or testosterone. In an additional step, testosterone is converted to E2 

by the enzyme aromatase (67). Both E1 and E2 can be readily converted to E3 by redox reactions 

in the liver or placenta (68–70). Adipose tissue, smooth muscle and liver  express high levels of 

aromatase which can convert circulating androgens to estrogens, and this is the primary source of 
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estrogens post-menopause (69,71). Though circulating E2 plasma levels are profoundly low post-

menopause (~0.1nM), breast tissue estrogen levels are significantly higher (1.4+0.7 nM) (72–74). 

Higher breast tissue concentrations are maintained by local de novo synthesis and what is believed 

to be a retention capture mechanism that is not well understood (73). 

Estrogen plays a diverse role in vertebrate development which includes sexual maturation 

and cognitive health. The human female relies upon estrogen and progesterone for the 

development of the breast in both pre-pubertal and post-pubertal stages (75). During the 

development of the breast, the ductal system is primarily under the control of E2 and progesterone. 

Duct elongation is stimulated by both estrogen and progesterone whereas ductal branching is 

stimulated by growth hormone and progesterone (75). The proliferative effects of E2 also occurs 

in the endometrium, where E2 acts as the initiator of the menstrual cycle. E2 is required for 

endometrial wall thickening during the follicular and early luteal stages of the menstrual cycle 

(76).  The endometrium then becomes much more vascularized to support the implantation of  the 

blastocyst and for placental development (76). 

Estrogen functions are not limited to reproductive health and have critical roles in 

maintaining bone mineralization and density. Estrogen signaling alters population pools of 

osteoclasts (responsible for bone resorption) and osteoblasts (responsible for bone formation)(77) 

(77).  Estrogen limits osteoclasts formation by decreasing their population through apoptosis, and 

increases osteoblasts by supporting their proliferation. Post-menopausal osteoporosis is primarily 

the result of low circulating estrogen, causing a shift in balance resulting in osteoclasts out 

numbering osteoblasts (77). Prolonging estrogen exposure with exogenous hormone has shown to 

be beneficial in fighting osteoporosis (78). Estrogen also acts as an important regulator of 

cardiovascular health by maintaining a lipid profile that is high in HDL-cholesterol and low in 
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LDL-cholesterol (79).  The shift in lipid profile has had a significant effect in lowering risk of 

coronary heart disease (79).  Furthermore, estrogen is known to be important in cognitive memory, 

mood, libido, and obsessive compulsive disorder (80–82). Estrogens have diverse roles in human 

development and the need for their stringent regulation is essential in normal human physiology 

throughout a woman’s life. 

1.3 Estrogen receptor Structure and function. Estrogens have great potential in 

changing physiology and cellular phenotypes in relatively short spans of time. Estrogen signals 

through the estrogen receptors. Estrogen actions can be mediated by non-genotropic estrogen 

receptor proteins which are primarily membrane bound G-coupled protein receptors. Many have 

been identified, but the most significant one is considered to be GPR30, which is expressed in 

most cell types. In general, when using the nomenclature “ER” henceforth, reference is made to 

the nuclear receptor subtype coded by the ESR genes. ER is a ligand-activated transcription factor 

which preferentially binds the more potent estrogen E2. ER is a nuclear receptor that belongs to 

the steroid/thyroid/retinoid/orphan receptor superfamily.  There are two main isoforms; ERa and 

ERb. ERa is encoded by the gene ESR1 located on 6q24 and spans nearly 300kb with eight coding 

exons (about 140kb) and seven introns (83). ERb is encoded by ESR2 on chromosome 14q21 and 

comprises eight exons (84). Both receptors comprise an activation function domain 1 (AF1-A/B), 

a DNA binding domain (C Domain), a hinge region (D Domain) and activation function domain 

2 (AF2-E Domain). They are homologues with 17% similarity in the A/B domain, 97% in the C-

domain, 30% in the D domain, 55% in the E domain and 18% in the F-domain (85). The AF-2 

domain of both receptors is responsible for ligand activated functions.  E2 binding creates a unique 

conformation change resulting in repositioning of helix 12 in the AF-2 region. The change in 

position of helix 12 is what promotes dimerization and co-regulator binding. A ligand’s ability to 
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alter the position of helix 12 is what distinguishes an agonist from an antagonist (86). The ESR1 

gene has at least seven known promoters, and none of them have a CCAAT, GC, or TATA box. 

The diversity in promoters is thought to be responsible for tissue and cell specific regulation by 

distinct signaling pathways.  The ESR2 promoters have not been well studied, but two (GO and 

ON) are known to strongly regulate its expression (87). The two receptors are found in the breast 

tissue, cardiovascular system, bone, and ovaries. However, distinct tissue specific regions of 

expression have been reported. ERa is primarily expressed in the liver and thecal cells of the ovary, 

whereas ERb is the predominant isoform in the smooth muscle and granulosa cells (88). In normal 

breast tissue, ER+ cells are largely non-dividing but utilize E2 signaling to upregulate paracrine 

factors to support ER-negative cell growth (89).  

 The functional canonical signaling of ER is primarily based upon location, ligand binding, 

and cofactor recruitment.  Initially ER is bound by chaperone heat shock proteins (Hsps) Hsp70 

and Hsp90 (90). Ligand binds to ER in the ligand binding domain creating a three-dimensional 

structural shift releasing ER from Hsp grasp. A heterodimer or homodimer composed of ERa and 

ERb can bind to estrogen response elements (EREs) in DNA directly. EREs are 13 nucleotide 

palindromes consisting of two half sites separated by 3 nucleotides:  GGTCAnnnTGACC (91). 

Once ER binds to the ERE it recruits cofactors for expression or repression of target genes. The 

majority of co-activators belong to the p160 family which consists of SRC1/2/3, ACTR, A1B1 

and GRIP1. These proteins then bind to the AF-2 domain of ER by utilizing their NR-box (92). 

This complex in-turn recruits and binds to the core transcription machinery to express ER target 

genes downstream. In contrast, ER can also bind to the co-repressors SMRT and NCoR which 

recruit histone deacetylases (HDACs) to keep downstream genes inaccessible (93). Most of ER 

target genes are targeted through ERE specific binding and regulation, yet a large minority (30%) 
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of genes do not contain EREs. ERE-independent regulation is due to ER’s ability to bind to other 

transcription factors and regulate a distinct subsets of genes. ER binding can be mediated by SP1, 

Fos, Jun and NF-κB to target a distinct sets of genes (94).  All of these tethering mechanisms still 

rely on P160 proteins for transactivation. 

ER can act as a transcription factor in a ligand-independent manner. Growth factors 

signaling through insulin-like growth factor-1 (IGF-1), epidermal growth factor receptor (EGFR) 

and insulin-like growth factor receptor (IGFR) activate MAPK. Active MAPK signaling results in 

phosphorylation of ER at ser118. Phospho-ser118 causes ER to act as a transcription factor in the 

absence of ligand and stabilizes ER by decreasing proteolytic turnover (95). Rapid non-genomic 

signaling does play a role in ER signaling, but most long-term ER functions rely upon classical 

ligand-dependent canonical signaling.  

1.4 Adjuvant therapy in Hormone receptor positive breast cancer. When initially 

diagnosed, breast cancer is generally localized. However, after metastasis has occurred patients 

are virtually incurable and succumb to metastatic disease. First line therapy includes surgery and 

chemotherapy and is usually followed by adjuvant therapies to minimize growth of cells that have 

already spread. In hormone receptor positive breast cancer, anti-estrogen therapy is a critical tool 

and is divided into three categories: selective estrogen receptor modulators (SERMs), Aromatase 

inhibitors, and Selective estrogen receptor down regulators (SERDs).   

1.4.1 SERMs are a group of compounds that bind ER and act as partial 

agonists/antagonists. SERMs are primarily used because they repress the canonical signaling by 

recruiting co-repressors at ERE sites in breast tissue. The most widely used SERMs are Tamoxifen 

and Raloxifene. Tamoxifen is indicated for use in both pre-and post- menopausal women and was 

the first SERM used in ER+ breast cancers in the U.S. (96). Tamoxifen has antagonist effects on 
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breast tissue  but acts as a partial agonist on bone, cardiovascular and the uterine tissues (97). The 

agonist or antagonist effects of Tamoxifen are  based upon the promoter context and cell type (98). 

Tamoxifen at a dose of 20mg/day reduces mortality in breast cancer patients by 26% and decreases 

contralateral breast cancer incidence by 50% (99). Benefits are reported to persist for an additional 

10 years after treatment. Due to the estrogenic effects of Tamoxifen on the endometrium and 

cardiovascular system, women are twice as likely to develop endometrial cancer when treated with 

Tamoxifen for longer than 5 years (100) and are at increased risk for vascular thrombotic events 

(101).  

Raloxifene is a second generation SERM initially used to treat osteoporosis. However, a 

large comparative clinical trial of Tamoxifen and Raloxifene showed the efficacy of Raloxifene 

was no different from Tamoxifen in preventing hormone receptor positive breast cancer (102). 

When comparing the two SERMs, Raloxifene had a lower toxicity profile and less side-effects 

when compared with Tamoxifen. Patients using Raloxifene have lower incidence of thrombotic 

events, and lower risk of endometrial cancer when compared to Tamoxifen (102).  There are third 

generation SERMs available and studied, however, there is no additional benefit when compared 

to Tamoxifen and Raloxifene.  

1.4.2  Aromatase Inhibitors block the activity of the protein aromatase, a cytochrome P450 

enzyme responsible for converting testosterone to E2 and androstenedione to E3 (103).  Aromatase 

is expressed in a variety of tissues and plays a necessary role in estrogen production. Following 

menopause, the synthesis of estrogens by the ovaries stops but peripheral tissues can still maintain 

low systematic levels of estrogen through the expression of aromatase (103). There are two types 

of aromatase inhibitors; Type 1 and Type 2 inhibitors (104). Type 1 inhibitors include exemestase 

and formestane, which act as competitive inhibitors of androstenedione. Type 2 inhibitors include 
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anastrozole and letrozole, which reversibly bind to the heme-group of the aromatase enzyme (105).  

Aromatase inhibitors are able to decrease intratumoral estrogen levels 30-fold (106), and virtually 

ablate circulating hormone levels in post-menopausal women (107). Pre-menopausal women have 

an intact hypothalamic-gonadal feedback loop which can compensate for the reduction of estrogen 

by aromatase inhibitors, thus aromatase inhibitor use is restricted to post-menopausal women 

(108). Aromatase inhibitors are indicated for postmenopausal women with local ER+ breast 

cancers and have been shown to decrease relapse by 40% (109). 

1.4.3 SERDs are indicated for ER+/Her2- tumors that rely on ER for proliferation 

independent of E2. Most tamoxifen and aromatase inhibitor-resistant breast cancers develop 

resistance by non-classical signaling as described above. SERDs such as Fulvestrant are steroidal 

anti-estrogens used in second-line therapy of ER positive breast cancers. Fulvestrant binds to ER, 

and is a pure competitive inhibitor with no agonist activity. It functions by binding to ER in the 

ligand binding domain and inhibits ER dimerization and signals proteolytic degradation with its 

long hydro-carbon side chain (110). Fulvestrant decreases cancer progression by 34% in patients 

resistant to first line therapies (111). Use of Fulvestrant is limited to second line treatment, 

primarily because of the global loss of ER, which is needed in normal healthy tissue.  

1.4.4 Luminal Breast Cancer: Resistance to Endocrine Therapies. Resistance to 

endocrine therapy has been addressed by several theories of how hormone receptor positive breast 

cancer may behave over the course of disease progression. ER loss over time occurs in 20% in 

patients originally diagnosed with Luminal subtypes of breast cancer (112–114). These tumors are 

no longer reliant on estrogen and utilize pathways that are used in lieu of estrogen. In some cases, 

upregulation of HER2 occurs and, although it is rare (113,115), can actually drive down the 

expression of ER and PR, rendering cells less responsive to anti-estrogen therapy (116,117). Pre-
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clinical work has suggested the possibility that tumors switch back and forth between ER  and 

HER2 positivity by selective pressure from neo-adjuvant therapies (29,113,115,116,118,118). 

This may require continuous monitoring with use of multiple biopsies.  

ER splice variants (ERa36) and estrogen related receptors ERR, though not commonly 

seen, have been implicated in resistance to tamoxifen therapy. ER coregulators are thought to play 

a more important role in tamoxifen resistance. Overexpression of A1B1 has shown to be an 

important for tamoxifen resistance both in vitro and in the clinical setting (119,120). Furthermore, 

the silencing of NCoR is associated with lack of transrepression by Tamoxifen, resulting in 

Tamoxifen resistance (93). ER can localize outside of the nucleus where it can act as an activator 

of cytoplasmic and membrane signaling complexes (120–123). These pathways have been shown 

to be a part of a feed forward loop which increases ER cytoplasmic localization, enhancing ER’s 

non-genomic signaling. Interestingly both tamoxifen and estrogen can activate this cascade, 

creating an “off target” effect that supports tamoxifen resistance (120,121,123). Lastly ER can 

remain active in the presence of estrogen antagonists via tethering by NF-kB and AP-1 to maintain 

its genotropic effects (121,124,125).  

Loss of PR is common during hormone therapy and is associated with worse outcome. ER 

upregulates PR, and if a tumor is ER+/PR-, it indicates ER is functioning independent of ligand 

(117).This is in part to be due to ER splice variants, and gain of function mutations. PR loss is also 

associated with increased PI3K signaling, which is known to downregulate PR expression (126). 

In some instances when patients progress on antiestrogen therapies (Tamoxifen and aromatase 

inhibitors), high dose estrogen is given to stimulate a switch to estrogen dependence and 

upregulation of ER. Following estrogen treatment, patients are withdrawn from estrogen. This 

induced estrogen dependence and deprivation causes cells to become less proliferative. Though 



	
   17	
  

this is not common practice, a single patient is reported to have metastatic bone disease controlled 

for 8 years by continuous sequences of estrogen therapy followed by withdrawal (119). Other 

resistant theories include the small population of tumor like stem cells, which may play a crucial 

role in shifting the balance of tumor cell populations between endocrine dependent and 

independent pathways.  

Though there is no clinical evidence, pre-clinical studies have shown that upregulation of 

mitotic signaling pathways may play a role in endocrine therapy resistance. For example, 

upregulation of Myc, cyclin D and cyclin E cause resistance to anti-estrogens in vitro. Furthermore, 

loss of function mutations in P27 and P21, followed by inactivation of pRb is also indicative of 

resistance (127,128). In parallel, it is expected that growth factor receptor signaling from the tumor 

microenvironment plays an essential role in resistance. Tyrosine kinase families such as  IGF1, 

FGF, and VEGF, as well as cellular Src, AKT, and stress-related kinases have been implicated 

(117,129–131). Despite knowledge of all of these possible pathways and mechanisms of 

resistance, the most reliable and clinically relevant mechanism established to date is the 

EGFR/HER2 pathways as therapies that target this signaling axis are effective.   

1.5 ER+ breast cancer dormancy and the role of anti-estrogen therapy 

Breast Cancer Dormancy and metastasis is the primary reason for mortality in ER+ breast 

cancer cases. Dormancy is defined as a period when tumors are undetectable and can remain in a 

quiescent state below the threshold for identification in the clinic. Roughly 20-40% of ER+ breast 

cancer metastasizes to distant sites, with half occurring after 5 years of dormancy (upwards to 20 

years) before reappearing (132). ER- tumors recur much more quickly and reappear in less than 3 

years (133). ER+ breast cancers rely upon E2 for growth and proliferation and anti-estrogen 

therapies have powerful effects in decreasing recurrence (134). However, recurrence is simply 
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postponed with increased time of exposure to anti-estrogens. This  suggests that limiting E2 

signaling through ER does not kill the cancer cells but keeps cells in a state of dormancy (132). E2 

is not required for basal growth and survival of ER+ cells. The ER apoprotein can maintain low 

state of basal growth through the upregulation of the RARa apoprotein, directing cell survival and 

growth pathways (135). Though anti-estrogen therapy increases duration of survival in ER+ breast 

cancer cases, the issues of metastasis and dormancy remain as major problems throughout the 

remaining years of a patient’s life.  

1.6 Progesterone Biology 

Progesterone is a steroid sex hormone that is often thought of as estrogen’s opposing 

counterpart. It belongs to a group of hormones called progestogens and is the most functionally 

relevant and abundant progestogen in the human body (136). Progesterone acts as a signaling 

molecule by binding to its receptors, the progesterone receptors (PR). There are two major nuclear 

PR isoforms and several membrane PRs that act as strong intracellular signal transducers (as 

discussed below).  

Progesterone is synthesized from its precursor pregnalone by the enzyme 3-beta-

hydroxysteroid dehydrogenase (137). During pre-menopausal years the corpus luteum secreted 

progesterone disseminates through the entire body. Most of the systemic progesterone is bound to 

albumin and transcortin with only 10% being unbound (138). Progesterone is often called the 

hormone of pregnancy because of its important roles prior to blastocyst implantation and post-

implantation (76). Progesterone is responsible for converting the endometrium into the secretory 

phase, a time when the endometrial epithelium is prepared for implantation. It however plays an 

anti-mitogenic role in opposing the trophic effects of E2 on the endometrium. However, 

progesterone promotes a state of stasis that supports vascular composition following implantation 
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for fetal development and placental growth (139). If implantation does not occur, progesterone 

levels decrease due to loss circulating human chorionic gonadotropin (developed by the blastocyst) 

signaling to the corpus luteum. Loss of progesterone signaling  results in atrophy and shedding of 

endometrial lining and marks the beginning of menses (140).  Progesterone is also responsible for 

reducing the maternal adaptive immune system in order to protect the fetus from rejection (141).  

The presence of progesterone is required for pregnancy and inhibition of fetal partition throughout 

the gestational term. During this protective period, progesterone reduces smooth muscle 

contractility, inhibits lactation, and opposes onset of labor. Progesterone is essential for secondary 

sexual characteristics such as proper breast development. Progesterone is responsible for 

lobuloalveolar development in the mammary gland (described further below) by the upregulation 

of paracrine factors such as RANKL (142).  

1.7 Nuclear Progesterone Receptor Isoforms and their functions 

  The progesterone receptor (PR) is encoded by the PGR gene located on chromosome 

11q22. It has three isoforms which are all encoded by the same gene. The expression of each 

isoform is under the control of  alternate promoter usage (143). The expression of the progesterone 

receptors is primarily regulated by the distinct estrogen response elements located upstream of the 

PGR locus. The three isoforms include the progesterone receptor A (PR-A), the progesterone 

receptor B (PR-B) and the progesterone receptor C (PR-C). PR-A and PR-B are the major isoforms 

expressed in human tissues and have a ligand dependent role. The long-term genotropic actions of 

progesterone are mediated through PR-A and PR-B and act in a similar fashion as other steroid 

receptors. In the absence of ligand, the PRs are sequestered by heat shock proteins Hsp-90,-70 and 

P59 (144–146). Upon progesterone binding, the receptor undergoes a conformational change  

resulting in a monomeric receptor absent of Hsp’s (147). The receptors spontaneously dimerize 
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(both in hetero- and homo-dimers) and bind to specific DNA sequences called progesterone 

response elements (PREs) (147,148). PR/PRE occupied sites recruit co-activators and co-

repressors to regulate gene expression. PR-B is the longer isoform with a length of 933 amino 

acids and includes an additional AF3 domain (149). PR-A is identical to PR-B except that it lacks 

the N-terminal AF-3 domain and is 769 amino acids in length (149) (Figure 1.1). Both isoforms 

have identical transcriptional activation domains (AFs) with AF1 located in the N-terminus and 

AF-2 in the ligand binding domain. AF1 and AF2 can function independently or they can synergize 

through an intra-molecular interaction between the N- and C-termini (143,150–153). Both 

homodimers and heterodimers can bind to an imperfect PRE palindrome (G•ACA• • •TGT•C) 

(154). Each one of the three possible dimer pairs regulates a distinct set of genes (155,156).  Both 

receptors have similar affinity for progesterone, but the transcriptional profile of each isoform has 

little overlap (157). In most cellular contexts, PR-A acts as a transcriptional repressor and PR-B 

acts as a transcriptional activator (158). PR-B has a higher affinity for transcriptional co-activators 

GRIP and SRC1, whereas these cofactors do not bind to PR-A.   The first 140 amino acids of PR-

A contain the inhibitory domain (ID). The ID is completely exposed due to the lack of the AF-3 

domain (158) . When deleterious point mutations are made in the ID,  the transcriptional repressive 

function of PR-A is lost (158). The intact exposed ID is responsible  for the high affinity between 

PR-A and the co-repressor SMRT (159). PR-A is considered a strong trans-dominant repressor of 

PR-B, glucocorticoid receptor (GR), androgen receptor (AR), mineralocorticoid receptor (MR), 

and estrogen receptor (ER) (160–162).  
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Figure 1.1. Progesterone receptor isoforms and functional domains 

 

 

 

Unlike ER, PR is not inherently proliferative or anti-proliferative. Progesterone/PR activate 

the progression through one mitotic cycle followed by G1 arrest.  The halt in cell cycle is caused 

by the induction of P27, P21 and reduction of cyclins D and E. During G1 arrest, progesterone 

upregulates growth factor receptors to promote paracrine stimulation of growth. Progesterone can 

be paradoxical and  can act as an inhibitor of growth, or a necessary prerequisite for growth 

depending on the environmental context (163,164). The inhibitory effects of progestins on tumor 

growth were being pursued as a therapeutic in the early 1980s, and was observed to be as useful 

as anti-estrogens (165). However, it is important to note these early studies were using tumor 

growth as an endpoint and not tumor progression (invasion and metastasis) which will be discussed 

below.  
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Both PR-A and PR-B are normally expressed in vivo, however the ratio of expression is 

variable based upon tissue/cell type, physiological states, and disease. PR-A and PR-B are known 

to have unique tissue specific roles, and can have altered expression ratios depending on the 

anatomical and physiological context. Isoform levels change drastically in the endometrium 

depending on the stage of the menstrual cycle. In the CNS PR-A is the predominant form in the 

pituitary gland and PR-B is the predominant isoform in the hypothalamus (167). In the breast, 

overexpression of PR-A causes severe hyperplasia and disorganized basement membrane of the 

duct (168). In contrast, overexpression of PR-B causes growth arrest of the duct and inhibition of 

lobulo-alveolar differentiation (169). Furthermore, PR-A knockout in mice has no effect on normal 

breast development. Clinical evidence has shown different roles for each isoform expression in 

cancer as well.  Overexpression of PR-A in human breast tumors is associated with more 

aggressive breast cancers and lower disease-free survival (170). In contrast, over-expression of 

PR-B is associated with more aggressive endometrial, cervical and ovarian cancers (171). Though 

the PR isoforms are similar in structure, the distinct role of each is quite different depending on 

the cell type and tissue.  

1.8 Role of estrogen in invasion and metastasis 

ER positive breast cancer accounts for the majority of breast cancers (75-80%) and strongly 

relies upon E2 for growth. Growth is supported by activation of genes that support mitosis, cell 

cycle progression, and survival (172). Tamoxifen and aromatase inhibitors as described above 

have had significant impact in increasing survival. However, ER+ breast cancers can become 

growth adapted through multiple pathways (173) to grow independent of E2 (135). In over 90% of 

cases with lymph node positive metastasis, cancer cells still retain ER even if growth is not reliant 

on E2 (174).  
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The majority of studies of E2 mediated effects on breast cancer have been devoted to the 

genotropic effects on growth (175). However, it is important to note that E2/ER play multiple roles 

unrelated to proliferation. In the ductal epithelium, E2 signaling through ER is required for terminal 

differentiation and morphogenesis of the duct. In ER expressing breast cancer cells, E2 represses 

invasion both in vitro and in vivo (176–178). Furthermore, clinical evidence from The Women’s 

Health Initiative has shown that women with prior hysterectomy receiving estrogen hormone 

replacement monotherapy have decreased risk for invasive ductal carcinoma when compared to 

non-users (60).  

Transcriptional regulation by E2 through ER can activate genes but a majority of E2 

regulated genes are repressed. Most studies of E2-repressed genes have focused on a subset of 

genes thought to be negative regulators of growth and survival(179–181). However, E2 also 

represses critical genes that are necessary for invasion in vitro (182). This repressive effect on 

invasion was clearly defined by the ability of ER to bind co-repressors and down regulate genes 

needed for invasiveness (182). Furthermore, the use of tamoxifen blocked the repressive role of 

ER increasing invasion (182).  Ectopic overexpression of ER in the presence of estrogen reduced 

invasive capacity in hormone receptor-negative cells (183). Furthemore,  ER’s ability to repress 

invasion occurs even if cells do not rely on E2 for growth (182). The hormone regulated repressive 

effects of ER rely upon the AF-2 domain, as mutations in this region (LBD) result in loss of 

regulation of invasiveness (184) (Figure 1.1). Clinical studies have shown that tamoxifen did 

reduce mitotic capabilities of ER+ breast cancer, but also increased the risk of contralateral ER- 

breast tumors 5 fold (134). E2 and ER play an important dual role in supporting growth/survival 

but repressing invasiveness/metastasis in breast cancer cells. 
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1.9 Role of progesterone in breast cancer invasiveness and metastasis 

Progesterone and other progestins increase invasiveness and metastasis. During normal 

post-pubertal development breast cells are required to proliferate, migrate, and invade during the 

luteal phase and pregnancy (185). Both of these events are marked by high levels of plasma 

progesterone. This lead to the hypothesis that progesterone could take advantage of these pathways 

and utilize them for the progression of breast cancer. Women receiving hormone replacement 

therapy with both E2 and progestin have a higher incidence of invasive breast cancer when 

compared to non-users and women receiving E2 monotherapy (59). Progestins at high doses cause 

rapid cellular changes through non-genomic signaling. These rapid signaling cascades increase 

migratory capacity by increasing focal adhesion (FA) complexes needed for lamellopodia and 

fillopodia (186). FAs are mediated by Focal Adhesion Kinases (FAKs), which activate the 

recruitment of the stress fiber mediators vinculin, talin and paxillin (187,188). High dose 

progesterone (>10nM) through PR increases FAK phosphorylation resulting in rapid increased 

cellular protrusions into the extracellular space. Furthermore, increased migratory ability is 

mediated by liganded nuclear PRs utilizing Src signaling (189). Interfering with each PR, Src, 

RHOA, ROCK2, MAPK and MEK1/2 independently resulted in the blocking of progestins’ ability 

to promote FA complexes. In addition to FAK signaling, high doses of progestin (>20 nM) has 

been reported to reduce E-cadherin protein in MCF7 cells, resulting in a more mesenchymal 

phenotype. Non-genomic signaling clearly results in an increased metastatic phenotype, however, 

all studies were performed at doses well above post-menopausal plasma and correspond to HRT 

scenarios. 

Malignant ER+ breast cancer tissues often have a dysregulated expression of the PR 

isoforms. Normal PR+ breast tissue cells express equal amounts of each PR isoform. However, 
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70% of metastatic tumors have an excess of PR-A or PR-B (170,190). Moreover, the over-

expression of PR-A is associated with lower disease-free survival (170). Interestingly, tumors 

overexpressing PR-A often manifest in post-menopausal years (170), a time when circulating 

progesterone levels are in the sub-nanomolar ranges (191). Most studies of progesterone receptor-

dependent invasiveness have relied upon the ectopic expression of PR-B with progestin doses well 

above physiological levels (192–196). Knock out models in mice show that PR-B expression alone 

allows for normal breast ductal morphogenesis (197). In contrast, the expression of PR-A alone 

leads to malignant transformation (198). Furthermore, overexpression of PR-A leads to ductal 

hyperplasia and dysplasia at normal endogenous progesterone levels (168,199). It was long 

thought that following menopause, progesterone was virtually absent (~1 nM) when compared to 

their normal physiological ranges during reproductive years (4 nM in the follicular phase and 

increases up to 50 nM in the luteal phase) (200).  This lead to the hypothesis that the mere 

expression of either progesterone receptor isoform in the absence of hormone could regulate a 

gene profile that supported invasiveness. It has been reported that apo-PR-A has a distinct 

regulatory profile that is sufficient to alter cell morphology into a more migratory phenotype (201). 

Historically all of the in vitro evidence supporting the role of progesterone on breast cancer cell 

invasiveness has relied upon the forced expression of the progesterone receptors in triple negative 

breast cancer, or with progesterone doses well above normal tissue concentrations throughout a 

woman’s life. Furthermore, progesterone signaling has been primarily studied in the absence of 

E2, and little is known about the cross talk between ER and PR and their combined role in breast 

cancer progression.  
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1.10 The Role of EMT in ER+ Breast Cancer Metastasis 

The current understanding of the role of reproductive hormones on ER+ breast cancer 

progression and invasiveness has primarily focused upon the role of E2 signaling through its 

receptor ER. ER has become a quintessential biomarker in predicting the use of antiestrogens and 

aromatase inhibitors in the clinic (202). E2 is known to function through ER to activate the 

expression of growth and survival genes (203), and conversely recruit co-repressors to trans-

repress genes required for invasiveness (182). Hormonal regulation of invasiveness in ER+/PR+ 

breast cancers has been well studied but little ground has been gained on the role of these receptors 

and ligands on the epithelial-to-mesenchymal transition (EMT) thought to occur during metastasis.  

EMT is often regarded as an essential step in the progression of breast cancer to a more 

invasive phenotype (204). This transition is marked by loss of polarity, loss of cell-cell adhesion 

with gain in migratory and invasive capacities (204). This process is occurs in the development of 

the mesoderm (205), neural tube formation (206), wound healing (207) and cancer metastasis 

(208). The mesenchymal like phenotype  is marked by loss of E-cadherin, beta catenin, and  

claudin-1, along with a gain of expression of N-cadherin, vimentin, slug, and snail (209). EMT has 

become an important topic in the progression of breast cancer oncogenesis. However, the 

relationship between EMT and hormonal regulation in ER+ breast cancers has become less clear 

with many confounding interpretations (175,210–214).  

The loss of E-cadherin is considered to be necessary for the EMT to begin (215) . Some 

reports have shown that low dose E2 decreases the expression of E-cadherin, resulting in increased 

migratory capacity. However, there was no investigation into its regulation on invasiveness 

(183,216–218). Initiation of metastasis requires cells to become more invasive, and EMT confers 

a more invasive phenotype. However, EMT has been reported to not be required for metastasis 



	
   27	
  

(204,219,220). Moreover, pathological analysis of IDC tissues have shown that cells within a 

lesion retain tertiary structures such as  acinars and  luminal spaces (221). These structures 

maintain tight junctions, desmosomes, and cellular polarity (221,222). Most important, the 

epithelial characteristic in these patients (N=149) showed no correlation with metastatic disease 

(222). These finding have been partially reconciled by the concept of epithelial reversion from the 

mesenchymal phenotype (223,224). Until recently this has been the justification for the lack of 

mesenchymal-like cells seeded in meta-sites. Mechanistic fate mapping in both breast and 

pancreatic cancer have shown that EMT is unnecessary for  invasion and metastasis to occur 

(219,220). It is important to note  that EMT can lead to cellular dissemination but is not required 

(219,220). EMT is reported to actually play a crucial a role in chemo-resistance during metastasis 

(219,220). EMT in breast cancers has been widely attributed to loss of ER. The ER apoprotein is 

considered to be the master regulator of maintaining a epithelial-like phenotype and epithelial 

markers (211–213,225,226). This is at odds with the few reports stating E2 signaling through ER 

is a primary component of advanced disease progression (227,228). Hormonal regulation of 

invasiveness has been clearly defined, but whether EMT plays a part has not been clearly 

elucidated. 

1.11. Current status of treatments for advanced breast cancer and their limitations 

1.11.1 Survival of patients with metastatic breast cancer 

Patients with estrogen receptor (ER)-positive metastatic breast cancer often respond to 

endocrine therapy (ET), which can reduce tumor burden and symptoms with generally fewer side 

effects and toxicities when compared to chemotherapy. However, few if any patients with 

metastatic breast cancer will be cured, and the goal of therapy is principally for palliative purposes. 

Efforts are made to reduce the number of side effects and still stabilize or reduce the burden of 
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disease. Once a patient develops progressive breast cancer that is not responding to endocrine 

therapy, chemotherapy regimens are implemented in the same manner as hormone receptor 

negative breast cancer as discussed below.  

Following surgery of breast cancer, disease can recur at both regional and distant sites. 

Local recurrence is defined as cancer that reappears on the ipsilateral chest wall. Furthermore, 

recurrence can also include a tumor that involves regional lymph nodes such as ipsilateral axillary, 

supraclavicular and less commonly the infraclavicular and/or internal mammary nodes. Roughly  

5-10% of patients who have received surgery will have locoregional relapse within a 10 year time 

(229–235). Half of these patients will have recurrence isolated in the chest wall (236,237). Of these 

patients, 30-40% will  have regional metastases in the supraclavicular, axillary, or internal 

mammary nodes. It is estimated that patients with locoregional metastasis have synchronous 

distant metastasis as well (234). The median time to locoregional recurrence after surgery is 3 

years, and over 90% arise within five years (238–241). However, relapse can be delayed with the 

use of Tamoxifen in hormone receptor-positive disease (242). For women with locoregional 

metastasis, the most consistently accurate prognostic factor is the interval between initial diagnosis 

and recurrence. Disease-free survival of at least two years is associated with a significantly better 

outcome when compared to earlier recurrence regardless of breast cancer subtype (229,233,238). 

Furthermore, long-term control of disease is dependent upon the disease volume. Disease control 

rates are highest with either limited chest wall or axillary node involvement, and when 

supraclavicular nodes are not involved (238,241). 

There are few prospective randomized trials, and most available data come from single 

institute studies (238). A post-mastectomy study in 145 women showed that survival depended on 

the location of metastasis, and was comprised of patients with diverse subtypes of breast cancer. 
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Though hormone positive breast cancers are less likely to relapse at meta-sites, if locoregional 

disease persists aster initial treatment, survival rates are similar to other breast cancers (hormone 

receptor negative). Overall survival rates for breast cancer identified in the chest wall alone, or 

axilla alone is 50%. Survival rates for supraclavicular nodes alone and chest wall plus axilla is 

28%. Lastly, survival rates for supraclavicular nodes plus chest wall/axilla are 7% (238). 

1.11.2 Treatment of metastatic breast cancer 

  Surgical intervention: Whenever possible, guidelines suggest wide excision of all nodules 

that are amenable to resection (230,238,240,243). Resections have shown to reduce the required 

dose of radiotherapy (RT) and increase long-term disease control (as discussed below). Though 

conservative surgery is often considered, complete excision results in less frequent recurrence 

(21% vs. 60%) (241).  However, extensive surgery for locally recurrent disease is only performed 

if other options are limited (244–246), and if surgery cannot be performed, systemic treatments 

are preferable (discussed below).  Following wide local excisions, a second local recurrence occurs 

in 60-70% of cases (247,248). The likelihood of success is increased when a recurrence pattern in 

a patient has fewer lesions with a relapse period of greater than 2 years for all breast cancers 

(244,249–252). 

 Radiotherapy (RT) is an essential part of treatment for women with breast cancer 

recurrence. Optimal RT management generally involves treatment to the entire chest wall and 

draining lymph node areas. Conservative treatment of the chest wall increases the risk for future 

recurrences in the supraclavicular and axillary regions(238,241,243). For patients who have a non-

resectable chest wall recurrence, radiation alone can be attempted. However, 60 to 70 percent will 

experience a second local recurrence (239,241,248,253). Because of the high risk of a second 

recurrence in these patients, systemic therapy (discussed below) is preferred.  
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Systemic therapy: 

 It is commonly agreed that higher response rates are seen with chemotherapy when 

compared to endocrine therapy in advanced hormone receptor positive cancer with poor prognosis 

(especially with visceral metastasis). A meta-analysis that included eight randomized trials, 

compared chemotherapy alone to endocrine therapy alone (254). Patient response was far superior 

for chemotherapy over endocrine therapy (relative risk 1.25, 95% CI 1.01-1.54). In general, 

endocrine therapy is beneficial but has to be timed correctly. Endocrine therapy has fewer side 

effects, but its benefits only occur after many months of treatment. Therefore, chemotherapy with 

anthracyclines, taxanes, platinums, and etoposide are first line in advanced metastatic disease. 

After (if) chemotherapy stabilizes disease progression, a switch to maintenance endocrine therapy 

can be used. Endocrine therapy is a preferable method when the option is available because of 

reduced treatment side effects without compromising overall survival (255–257). It is important 

to note no survival benefit was seen when chemotherapy and endocrine therapy were combined. 

Treatment approach and success  

As discussed above, breast cancer treatment options can vary among individuals, but 

systematic treatments of early stage breast cancers are quite distinct systematic. Most of the 

treatment regimens primarily depend upon hormone receptor and HER2 status. However once 

distal metastasis has occurred (Stage 4), almost all cancers are aggressively treated with 

chemotherapy with follow up advanced hormone therapy(ER+), or with experimental drugs (Table 

1). Furthermore, success rates for 5-year survival are dependent upon stage and disease 

progression, and less dependent upon disease subtype, although this may change for more recently 

developed treatments when prospective studies with endpoints of up to 20-year survival are 

completed.  
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1.11.3 Molecular subtype-site specific distal metastases and overall survival.  

Though advances in breast cancer have been made in the past 20 years, roughly 30% of 

patients with early diagnosed breast cancer will experience relapse with distant metastatic disease. 

Triple negative cancers are often thought of as the more aggressive disease due to limited treatment 

options. However, even with lower relapse rates, ER+ positive tumors make up the majority of 

metastatic breast cancers. A study with a sample size of 3,726 patients found that of all breast 

cancers, 22% of breast cancers metastasized to distant organs and were ER+, whereas the other 

subtypes accounted for less than 5% of breast cancer patients (27). Furthermore, although women 

with ER+ breast cancers do have a higher 10-year overall survival rate (Table 1), 30% and 46% of 

the patients with  luminal A and luminal B cancers respectively will not survive 10 years. This 

clearly demonstrates that ER+ breast cancers are not truly indolent, even though more treatment 

options are available for them.  

Risk of recurrence is generally defined by tumor size, nodal involvement, and 

lymphovascular invasion (27). However, there has not been a large-scale analysis of spread and 

specific recurrence. Current EMSO and UpToDate guidelines focus on treatment strategies for 

specific subtypes of disease based upon the molecular subtype at initial diagnosis (i.e. hormone 

therapy vs chemotherapy). Characteristics of the primary tumor are generally retained at the meta-

site.  Yet as disease progresses with continuous relapse, a defined treatment scheme for each 

subtype fades. Though the total number of patients that succumb to breast cancer are similar 

between subtypes (Table 1), the disease progression in the final stages is quite different, with 

different specific sites of metastasis between subgroups (Table 2). Bone is the common site 

amongst all subtypes (except basal). A report using multivariate analysis (with luminal A as the 

control) showed luminal B tumors preferentially metastasizing to the brain and lungs when 
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compared to other tumor subtypes. However, all the other subtypes have more metastasis to the 

liver and bone when compared to Luminal B (27). 

 

Table 1.2 Patient relapse rate, overall survival and frequency of distant metastasis. 

 

Table 1.3 Metastatic site based upon breast cancer molecular subtype 

It is important to note that current treatment regimens for luminal breast cancer focus 

primarily on reducing tumor burden, rather than inhibiting metastasis. Currently there are no 

treatments that specifically target the process of metastasis, which is the cause of 95% of breast 

cancer deaths. It is therefore the goal of this study to first seek a better understanding of 

fundamental mechanisms that determine the metastatic potential of luminal breast cancer. A little 

explored area in this regard is micro RNA-mediated regulation of metastasis in luminal breast 

cancer despite the known importance of micro-RNAs in many aspects of hormone signaling in 

breast cancer.  It is the premise of this thesis that discovery of micro RNA mediators of hormonal 

control of invasiveness and metastasis of luminal breast cancer will enable a better mechanistic 

understanding of metastasis of this major cancer sub-type.   

 

 

Total N = 3726 N Percent of Patients 15 year Relapse Rate 10 Year Overall survival Distant metastasis
Luminal A 1639 44% 28% 70% 12%
Luminal B 894 22% 43% 54% 10%

Luminal HER2+ 242 7% 48% 46% 3%
HER2+ enriched 265 7% 51% 48% 4%

Basal like 365 10% 43% 53% 4%
TNBC Non Basal 317 9% 35% 63% 2% 	

No. Patients
Subtype  N N % N % N % N % N % N % N %

Luminal A 458 35 7.6 131 28.6 109 23.8 305 66.6 73 15.9 129 28.2 62 13.5
Luminal B 378 41 10.8 121 32 115 30.4 270 71.4 88 23.3 133 35.2 73 19.3

Luminal HER2+ 117 18 15.4 52 44.4 43 36.8 76 65 26 22.2 40 34.2 16 13.7
HER2+ (ER-/PR-) 136 39 28.7 62 45.6 64 47.1 81 59.6 34 25 43 31.6 23 16.9

Basal 159 40 25.2 34 21.4 68 42.8 62 39 63 39.6 47 29.6 38 23.9
TN nonbasal 109 24 22 35 32.1 39 35.8 47 43.1 39 35.8 31 28.4 28 25.7

OtherBrain Liver Lung Bone Distant Nodal Pleureal
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1.12 microRNA biogenesis and Regulation of mRNAs 

Micro RNA (miRNA) is a small non-coding RNA molecule that is roughly 22 nucleotides 

in length. miRNAs are conserved in plants, animals, and viruses (258). These short RNAs 

primarily act as endogenous silencers of mRNA transcripts (258). miRNAs function by base 

pairing with complementary sequences found within mRNA sequences resulting in silencing by 

three different modes of action: (I) recruitment of mediators that cleave the mRNA into two pieces; 

(II) destabilization of the mRNA by shortening the poly(A) tail; and (III) significantly decreasing 

efficiency of ribosomal translation machinery (259,260). The human genome codes for over 1000 

miRNAs which are found in both introns and exons (261). miRNAs in animals are very 

promiscuous with a single miRNA targeting up to 500 unique mRNA transcripts. It is estimated 

that 60 percent of the human genome is regulated by miRNAs (262,263). miRNA genes are 

transcribed by RNA polymerase II and require a promoter sequence upstream (264,265). The 

initial RNA transcript is called the pri-miRNA. This precursor is capped at the 5’ end and has a 

poly (A) tail a the 3’ end. Pri-miRNA is 80 nucleotides longs and folds back on itself to create a 

secondary stem and loop structure. The pri-miRNA is then processed by the enzymes Drosha, and 

Pasha, cleaving the 5’-Cap and Poly (A) tail. This shorter double stranded RNA structure is called 

pre-miRNA (264,266). It is important to note that each pri-miRNA can code for up to 7 miRNAs. 

However, expression patterns of miRNAs from the same pre-cursor can vary based on the flanking 

processing coding sequences (267). Pre-miRNAs are then exported from the nucleus by Exportin-

5, which recognizes the enzyme Drosha and 3’ overhang of the miRNA (268). Once in the 

cytoplasm, the loop joining the 3’ and 5’ segment is cleaved by the protein Dicer. This process 

creates an imperfect RNA duplex, and also unwinds the duplex (269,270).  Only one strand is 

incorporated into the RNA induced silencing complex (RISC). This is in part decided by the 
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thermodynamic stability of base-pairing on the 5’end compared to the 3’ end, and the location of 

the loop cleavage (271–274). The passenger strand is often rapidly degraded prior to RISC 

complex joining.  Once the RISC has joined, the Argonaute protein (Ago) in the complex can 

cleave the mRNA target or sequester the mRNA to inhibit translation (275). There are 8 Ago 

proteins in humans, and all have unique co-factor binding abilities that result in various levels of 

mRNA translational repression (276). The functional guide miRNA is thought to be retained in 

the cleft of the Ago protein and can target multiple mRNAs. Thus, a single miRNA can be much 

more potent than the previously expected 1:1 miRNA/mRNA degradation (275,276). Degradation 

of mature miRNAs and miRNA duplexes outside of the scope of the RISC complex have been 

discovered in C-elegans and plants. However, human homologues are yet to be elucidated (277).   

1.13 miRNA Mediators in Breast Cancer  

miRNAs can be deemed oncogenes or tumor suppressors depending on the context of 

mRNA inhibition and pathway regulation. After the discovery of miRNAs, it was observed that 

various breast cancer subtypes exhibited unique miRNA profile signatures (278–281). Most 

studies on miRNAs are focused on associations to identify signatures for tumor subtype. However, 

functional studies have shown that most miRNAs act as tumor suppressors and play a strong role 

in opposing progression in various tumor types (282). For instance, miR-125b down regulates 

HER2 but is absent in most HER2+ tumors (283). miR-205 regulates HMGB3 and its ectopic 

expression significantly promotes apoptosis in breast cancer (284,285). Expression of the miR-17-

92 cluster in breast cancer is associated with significantly reduced metastasis (286) and the miR-

200 family is essential for maintaining epithelial phenotype (287,288). Furthermore reintroduction 

of miR-200 family members have decreased aggressiveness of various tumor subtypes (289–291).  

It is very clear that tumor suppressor miRNAs in one cancer type can act as an oncogene 
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in another cancer cell type. The actions of many miRNAs are dependent upon cell, tissue, and 

environmental contexts. These miRNAs can have various different roles system-wide (281). This 

has been considered to be the result of inconsistent studies in the miRNA field, as high-throughput 

studies are highly flawed based on limitations in technology (281).  Furthermore, low throughput 

studies using specific primer/probes for mature miRNAs have shown context specific regulation 

of miRNAs.  For instance, miR-146 acts a tumor suppressor by targeting  NF-κB in gastric cancers, 

but also strongly down regulates BRCA1 in breast cancers (292–294). These studies truly 

underscore the importance of miRNA investigation in tissue specific contexts when attributing 

functional roles to each miRNA.  

Most studies on miRNAs have relied on the basic observation of virtual complete loss, or 

gain of miRNA expression in disease tissues when compared to normal tissues. Very little is 

known about the modulation of expression of miRNAs by hormones and their respective receptors. 

A compilation of six studies has shown that E2 was able to regulate 43 miRNAs (295), but little 

was done to explore the functionality of any of the miRNAs. It was identified that miRNAs that 

are present in triple negative breast cancers and absent in ER+ breast cancers were important for 

the identification of ER regulation. Inhibition of miRs-221/222 in MDA-MB-468 restored ER 

expression and increased tamoxifen sensitivity (296). Furthermore, estrogen signaling can sel-

regulate oneself by negative feedback loops utilizing miRNAs. E2/ER signaling negatively 

regulates itself by upregulating miR-206 which targets ER mRNA(297). E2 regulation of miRNAs 

has been well noted and is hypothesized to play a critical role in breast cancer development. In 

contrast, progesterone regulated miRNAs are understudied in the breast tissue with a majority of 

studies focusing on miRNA expression in endometrial tissue (298).  
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1.14 Current challenges of directly using miRNAs in cancer treatment 

A described above many miRNAs are tumor suppressors and oncogenes (onco-miRs), and 

reintroducing miRNAs/inhibitors in the in vitro setting has been demonstrated to cause modulation 

of tumor growth and invasion to overcome chemoresistance. Re-introducing miRNAs is achieved 

by using synthetic RNA duplexes (mimics) that can be chemically modified to be more stable and 

amenable to different delivery methods. To inhibit a miRNA, antimiRs, and antigomirs are used. 

AntimiRs are single stranded RNAs that are complementary in sequence to the mature form of 

miRNA and often reduce the overall targeted miRNA. Furthermore, antigomirs are miRNA 

inhibitors with the 2′-O-methoxyethyl modification. This modification creates a much stronger 

bond to the miRNA, but also stabilizes the entire duplex.  

The most common mode of delivery is the use of lipid nanoparticles, and is currently in 

use in a phase I clinical trial (NCT01829971). The tumor suppressor miR-34 has been successfully 

delivered to lung(299), prostate(300), and liver (300) in mouse models. Studies were performed 

with local injection and systemic delivery, which both resulted in decreased tumor growth. In other 

reports researchers have delivered miRNAs using 1,2 dioleoyl-sn glycero-3 phosphatidylcholine 

(DOPC) liposomal carriers.  In mouse tumor model studies, DOPC delivery of miR-200 family 

members increased radiosensitivity and decreased total tumor burden when compared to control 

mice (301).  

In addition to the classical nanoparticle delivery systems, miRNAs can be linked to a 

peptide backbone that is sensitive to pH (pHLIP). When the miRNA-pHLIP encounters a low pH 

environment, a conformation change occurs. The peptide carboxyl terminal end is then inserted 

into the cell membrane and the miRNA is released. This creates a unique delivery system with the 

miRNA remaining stable during transport to the tumor microenvironment (302). 
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miRNAs are viewed as desirable therapeutics due to their low toxicity profile, and chemical 

stability. Given the current rapid advances in understanding each miRNA and its role in cancer, 

numerous drug targets within their regulatory pathways will eventually likely be identified. The 

current limitations of direct clinical applications of miRNAs in treating disease primarily relate to 

efficiency of delivery of their mimics and inhibitors, but it may only be a matter of time before 

successful delivery methods are developed. As it pertains to this thesis, studies of miRNAs can 

provide fundamental insights into molecular mechanisms governing cancer progression. 

Novel regulatory pathways involving miRNA mediators of metastasis of luminal breast 

cancer could reveal protein targets for selective interventions to suppress metastasis of 

luminal breast cancer.      
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CHAPTER 2- ROLE OF THE SHORT ISOFORM OF THE PROGESTERONE 
RECEPTOR IN BREAST CANCER CELL INVASIVENESS AT ESTROGEN AND 
PROGESTERONE LEVELS IN THE PRE- AND POST-MENOPAUSAL RANGES 
  
2.1 Introduction 

The process of breast oncogenesis is believed to span up to several decades. Most (> 78 

percent) of newly diagnosed breast cancer cases occur in women whoare older than 50 years (303) 

and the median age at diagnosis is 61 years (304). In most cases the tumors express the estrogen 

receptor (ER). ER+ tumors are exquisitely sensitive to anti-estrogen therapy. However, ER+ breast 

cancer is often metastatic at the time of diagnosis and metastatic ER+ tumors also frequently 

appear after many years of dormancy (132,305). In either case, the metastatic disease is generally 

incurable and even targeted therapies are generally only palliative. Therefore, it is necessary to 

understand more about deregulated molecular mechanisms that confer invasive properties on ER+ 

breast cancer cells. Clearly, both pre-menopausal and post-menopausal events that influence breast 

tumor invasiveness are clinically highly significant in breast tumor progression. Profound 

decreases in the levels of circulating estrogen and progesterone are a hallmark of post-menopausal 

physiology although, in post-menopausal women, breast, endometrial and adipose tissues contain 

much higher levels of estrogen and progesterone, compared to plasma levels of the hormones 

(73,74,306–308).  

As the progesterone receptor (PR) gene is a target of estrogen, the PR expression status of 

ER+ breast tumors is believed to reflect the robustness of ER signaling and hence predict patient 

response to anti-estrogen therapy. Nevertheless, PR agonists do directly support invasiveness and 

metastatic potential in ER+/PR+ breast cancer cells, as demonstrated using in vivo experimental 

models (309,310). The physiological relevance of these model systems is supported by the 

observation that in postmenopausal women, hormone replacement therapy with the combination 
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of estrogen and progestin was associated with increased incidence of invasive breast cancer and 

breast cancer mortality compared with non-users (59) whereas, estrogen monotherapy in women 

with prior hysterectomy was associated with a persistent decrease in the onset of invasive breast 

cancer (60). However, in post-menopausal women who are not undergoing hormone replacement, 

the role of the endogenous hormones in the progression of ER+/PR+ breast tumors is unclear. 

      PR has two isoforms, A and B, that are expressed by alternative promoter usage from a 

single gene; PR-B is identical to PR-A except for the presence of an additional 164 amino acid 

amino-terminal segment that contains within it, an additional activation function, AF3 (311). PR-

B and PR-A exhibit both distinctive and overlapping patterns of agonist-induced gene activation 

or gene repression, depending on the variable contexts of the target promoters and the nature of 

the associated chromatin sites of PR binding (156,311,312). In cells expressing equal amounts of 

PR-A and PR-B, a substantial proportion of the two proteins are sequestered by forming a 

heterodimer; the heterodimer regulates a smaller and unique set of genes compared to the 

homodimers (155,156). Clinical studies have shown that although in normal breast PR-A and PR-

B are expressed at comparable levels, this balance is commonly altered during breast oncogenesis 

with a predominance of a high PR-A:PR-B ratio in early, as well as progressed lesions (190). An 

elevated PR-A:PR-B ratio, which is frequently due to overexpression of PR-A, is associated with 

a lower rate of disease-free survival (170). 

      In vitro molecular studies have shown that when hormone-depleted breast cancer cells are 

treated with PR agonists, they induce invasiveness through several non-genomic and genomic 

signaling pathways of progestin (192,313–318). Some of those studies have further reported that 

it is PR-B that mediates progestin-induced invasiveness in vitro (192,193). The progesterone doses 

that were used to demonstrate substantial PR-B dependent effects on invasiveness in vitro were 
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relatively high, corresponding to the plasma range of the hormone levels associated with only the 

luteal phase of the menstrual cycle or with pregnancy. Horwitz and co-workers have also elegantly 

demonstrated in vitro that the mere overexpression of PR-A confers an inherently more aggressive 

phenotype in breast cancer cells, including adhesion to extracellular matrix, migratory capacity 

and survival, due to hormone-independent gene regulation by PR-A (201).  

      Most breast tumors are ER+ (319) and continue to retain ER expression even as they 

progress to hormone-independence (320,321). Estrogen supports the growth of ER+ breast tumors 

but it suppresses invasiveness of the tumor cells whether or not their growth is hormone-sensitive 

and also suppresses breast tumor progression (321–327). However, in vitro studies of the role of 

PR in breast cancer cell invasiveness have generally been investigated mechanistically in the 

absence of estrogen signaling. The studies have either used ER+ cell line models in the absence of 

estrogen or they have relied on forced expression of PRs in ER-negative cells (192–196). The 

relative contributions of PR ligands to invasiveness through opposing the suppressive effect of 

estrogen and the underlying mechanisms are still unclear in the literature.  

Further, although the gene regulatory profile of ER has been shown to be estrogen dose-

dependent (328), it is less clear whether PR has distinct mechanisms of action that depend on 

progesterone dose. The plasma levels of estrogen in pre-menopausal women is 1.4 nM - 1.6 nM in 

the follicular phase and 3.6 nM - 4.2 nM in the luteal phase (64). Plasma levels of estrogen in post-

menopausal women is 0.027+ 0.01 nM whereas breast tissue levels of estrogen in post-menopausal 

women is 1.4+0.7 nM (72–74). The plasma level of progesterone ranges from 0.6 nM to 4 nM in 

the follicular phase and increases up to > 50 nM in the luteal phase(200) whereas post-menopausal 

women have a wide range of 0.047nM to 0.318nM (median 0.127nM) (191). The breast tissue 

level of progesterone in post-menopausal women is above an order of magnitude greater than its 
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plasma levels (306). Therefore, further investigation of the role of the individual PR isoforms on 

ER+ breast cancer cell invasiveness in the context of estrogen signaling and in the physiological 

range of breast tissue hormone levels was needed to more fully understand early events in 

hormonal regulation of breast cancer progression.  

      The ER+ model cell lines used in this study included T47D (ER+/PR+), ZR-75-1 

(ER+/PR+) and BT474 (ER+/PR+/HER2+) cells. All three cell lines express both PR-A and PR-

B. To dissect the actions of the individual PR isoforms, we also used recombinant T47D cells 

generated by Dr. Kathryn Horwitz and co-workers that virtually exclusively expressed PR-A or 

PR-B in addition to ER (329). 

2.2 Materials and methods 

2.2.1 Chemicals and reagents.  

Dulbecco’s modified Eagles medium (DMEM) and phenol red-free DMEM, glutamine, 

penicillin, streptomycin, Fetal Bovine Serum (FBS), charcoal stripped FBS and TaqMan probes 

were purchased (Life Technologies, Carlsbad, CA). 17β-estradiol (E2), R5020, RU486, 

progesterone and medroxyprogesterone acetate (MPA) were purchased from Sigma Aldrich (Saint 

Louis, MO). Growth factor reduced matrigel (Cat# 356231) and calcein AM fluorescent dye (Cat# 

354216) were purchased from BD Biosciences (San Jose, CA). PR-B directed siRNAs (339,340) 

and control non-silencing siRNA (Cat# SIC001) were ordered from Sigma Aldrich (St. Louis, 

MO). siRNAs targeting TM4SF1 (Cat# S8367), HES1 (Cat# S6920), PRKCH (CAT#S1107), and 

ELF5 (CAT# S4629) were purchase from Life Technologies (Carlsbad, CA).  

2.4.2 Cell culture and treatment.  

BT474, T47D and ZR-75-1 breast cancer cells (American Type Culture Collection) were 

cultured in DMEM supplemented with FBS (10%) penicillin (100 unit/ml) streptomycin 
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(100ug/ml) and L-glutamine (2mM). T47D-A and T47D-B cells were a generous gift from Dr. 

Katherine Horowitz (University of Colorado, Denver, CO) and were cultured as previously 

described (312). The cell lines were all cultured at 37°C with 5% CO2. Before hormone treatment, 

cells were plated in 6-well plates at 30% confluence in phenol red-free media supplemented with 

charcoal-stripped FBS and incubated at 37°C with 5% CO2 for 48 h. Cells were then treated with 

vehicle, progesterone, MPA, R5020, RU486 and E2 alone or in various combinations at 

concentrations as indicated for each individual experiment for a duration of 48 h. The cells were 

then harvested for mRNA analysis, western blot analysis or cell invasion assays. 

2.2.3 Western blot analysis. 

 Cells were lysed using RIPA Buffer (150mM NaCl, 1% NP-40, 0.5% sodium 

deoxycholate, 1% SDS, and 50mM Tris pH 8.0) containing protease inhibitor cocktail (Pierce 

Biotechnology, Rockford IL). The lysates were chilled on ice and agitated by vortex every ten 

minutes for one hour. Total protein concentration was measured by Bradford assay (Bio-Rad 

laboratories, Hercules, CA). A total amount of 10-40 µg protein per sample was resolved by 

electrophoresis on a 8% SDS-polyacrylamide gel and transferred to a PVDF membrane (Millipore 

Corporation, Bedford MA). Membranes were probed with primary polyclonal rabbit anti-PR 

antibody (sc-539, Santa Cruz biotechnologies, CA), polyclonal rabbit anti-ERa antibody (sc-543, 

Santa Cruz Biotechnologies, CA), mouse monoclonal anti-GAPDH antibody (sc-4472, Santa Cruz 

Biotechnologies, CA), rabbit polyclonal anti-HES1 (sc-25392, Santa Cruz Biotechnologies, CA) 

or mouse monoclonal anti-ELF-5(sc-376737, Santa Cruz Biotechnologies, CA). The blots were 

then probed with appropriate horseradish peroxidase conjugated secondary antibody (Vector 

Laboratories, MD). The protein bands were visualized using enhanced chemiluminescence reagent 

Hyglo Quick spray (Denville Scientific, South Plainfield, NJ) per the manufacturer’s suggested 
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protocol. Relative protein expression was determined by ImageJ (National Institutes of Health, 

USA).  

2.2.4 RNA isolation, reverse transcription PCR and real time PCR.  

Total RNA was isolated using the RNeasy mini kit (Qiagen, MD). Reverse transcription 

PCR reactions were performed using high capacity complementary DNA archive kit (Life 

Technologies Corporation, Carlsbad, CA) according to manufacturer’s protocol. cDNA was 

measured by quantitative real time PCR using the StepOne Plus Real time PCR system (Life 

technologies Corporation, Carlsbad, CA). All mRNA measurements were performed in biological 

triplicates, and all CT values were normalized to intra-sample GAPDH. mRNA values were 

represented as fold difference, which is calculated using the formula = 2-DDC
T, where DDCT = DCT 

sample -DCT calibrator (DCT =CT of gene of interest- CT of GAPDH).  

2.2.5 Boyden chamber transwell invasion assay.  

Cells (1x105) were re-suspended in the appropriate culture media devoid of serum and 

phenol red and added to the top chamber of the flouroblok inserts (Cat# 351152, 8 µM pore 

membrane: BD biosciences, Bedford, MA) coated with growth factor reduced matrigel (0.2 

mg/ml). The chemoattractant comprised phenol red-free media supplemented with FBS (20%).  

The appropriate hormone treatment was included in both the top and bottom chambers. Each 

treatment was replicated in three wells and the entire experiment was replicated at least three times. 

Cells were allowed to invade for 24 h at 37°C with 5% CO2. Cells that invaded to the bottom 

surface were stained with calcein AM (4ug/ml) in serum free media in the dark for 1 h at 37°C 

with 5% CO2. Images were captured in an identical manner from each well in 5 non-overlapping 

fields (the middle of the well and surrounding fields) using a 4x objective. Images were analyzed 
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using ImageJ software (National Institutes of Health, USA) and the number of cells invaded was 

quantified by brightness and pixel size.  

2.2.6 Migration Assay.  

Pre-treatment and preparation of cells and the experimental protocol were identical to those 

described above for the Boyden chamber transwell invasion assay with the exception that the 

transwells were devoid of matrigel.  

2.2.7 Lentiviral transduction.  

293FT cells were used to generate lentiviral particles by transfection using lipofectamine 

2000 (Life Technologies Corporation, Carlsbad, CA). Packaging plasmids pMD2G, PMDLg/RRE, 

and pRSV/Rev were cotransfected with pCDH PR-A expression plasmid, or pCDH empty vector 

plasmid. Lentivirus containing supernatant was harvested at 48 h and 72 h after transfection. T47D 

cells were plated in phenol red-free DMEM supplemented with heat-inactivated charcoal-stripped 

FBS (10%) and 2mM L-Glutamine two days before infection. For infection, T47D cells were 

transduced with either pCDH empty vector lentivirus or pCDH PR-A lentivirus with polybrene (8 

µg/ml) for 5 h. A second transduction was performed similarly for another 5 h. The cells were then 

incubated in phenol red-free DMEM supplemented with charcoal-stripped serum (10%) and L-

Glutamine (2mM) for 48 h. Following infection, cells were harvested for western blots and cell 

invasion assays as described previously.  

2.2.8 siRNA Transfection.  

Cells were plated to 30% confluence without antibiotic in phenol-red free DMEM medium 

supplemented with 10%charcoal-stripped FBS. 24 hours later cells were transfected with siRNA 

directed against specific gene targets or non-silencing siRNA using lipofectamine (Life 

Technologies, Carlsbad, CA) according to the manufacturer’s protocol. 



	
   46	
  

2.2.9 mRNA expression profiling.  

T47D-A and T47D-B cells were depleted of hormone for 48 h as described above. Cells 

were then either treated with vehicle, 1nM E2, 1nM R5020, or 1nM E2+ 1nM R5020 for 48 h. Total 

RNA was isolated using the RNeasy mini kit (Qiagen, MD). Sample identities were randomized 

for blinded analysis. The samples were analyzed at the Wayne State University School of Medicine 

Applied Genomics Center (AGTC) using the HumanHT-12 v4 Expression BeadChip with the 

Illumina HiScan System (Illumina, San Diego, CA). A total of 47,000 probes were used to analyze 

the transcriptome expression for each treatment group. Data was analyzed using Partek V6.6 

software (St. Louis, MO), and processed using genome Studio (Illumina, San Diego, CA). 

Expression values were normalized using quantile-normalization, with background subtraction. 

Log transformation to the base of 2, followed by one way ANOVA was used to determine error. 

The differentially expressed genes were identified by comparing E2 treatment with vehicle 

treatment, R5020 treatment with vehicle treatment and E2 treatment with E2+R5020 treatment 

(repressed or activated with a fold difference of 1.5 and a p value < 0.05). Genes that had activated 

expression in E2+R5020 treatment but were repressed by E2 treatment were identified. Genes that 

were activated in E2 treatment but repressed by E2+R5020 were also identified. Gene ontology 

analysis was performed by literature mining by searching the MEDLINE database (National 

institutes of Health, USA) with a query of “name of gene” followed by the term “AND Cancer” 

or “ AND Breast Cancer”.  All articles under the specified query were examined to determine gene 

function in breast cancer. Validation of Microarray Data was performed by real-time RT-PCR as 

described above using TaqMan probes.  
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2.2.10 Statistical analysis.  

Experimental values were presented as mean +/- standard deviation using triplicate 

treatment sets. The statistical difference between values was determined by using one way 

ANOVA followed by post hoc paired t-test. The significant P values are noted in the figures. 

Concordant results were obtained from at least three repetitions of the experiments conducted on 

different days. 

2.2.11 Supplemental Tables 1-13. mRNA profiling of estrogen (1nM) and progesterone 

(1nM) regulated genes in cells expressing ER and either PR-A or PR-B .  

Expression values from genome expression profiling in tables can be found: 

http://www.impactjournals.com/oncotarget/index.php?journal=oncotarget&page=article&op=vie

w&path%5B%5D=508 

2.3 Results  

2.3.1 Estrogen dose dependence for inhibition of invasiveness. 

 Estrogen (E2) is known to inhibit breast cancer cell invasiveness (326,330–333). To relate 

the effect of E2 on invasiveness to physiological E2 levels, the E2 dose response for inhibition of 

invasiveness was determined in BT474, T47D and ZR-75-1 cells. E2 was able to inhibit 

invasiveness of the cells in the sub-nanomolar range with most of the inhibition occurring below 

0.01 nM and virtually complete inhibition occurring at 0.1 nM in all three cell lines (Figure 2.1-

A, B, C). Thus the E2 dose that was required for substantial or virtually complete suppression of 

invasiveness in the three ER+ cell lines is at the low end of the literature consensus for both plasma 

and breast tissue levels of E2 in pre-menopausal (1.4nM- 4.2nM) or post-menopausal (0.027 + 0.01 

nM in plasma; 1.4nM + 0.7 in breast tissue) women (64,72–74). Invasiveness remained completely 

suppressed at higher concentrations of E2 (10nM and 20nM) (Figure 2.2). 
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2.3.2 Dose-dependent dual regulation of invasiveness by natural and synthetic progestins.   

Plasma levels of progesterone are known to change throughout a woman’s menstrual cycle 

ranging from 0.6 nM to 4 nM in the follicular phase and upwards to greater than 50 nM in the 

luteal phase (200). Furthermore, the median plasma concentration of progesterone in post-

menopausal women is 0.127 nM (191)  with breast tissue concentrations an order of magnitude 

greater than in the plasma (306). To examine the effects on progesterone in the context of estrogen 

signaling, BT474, T47D and ZR-75-1 cells were treated at varying concentrations (0 nM-100 nM) 

of progesterone either alone or in the presence of a fixed concentration (1 nM) of E2 (Figure 2.1D-

F). In all the three cell lines E2 alone inhibited invasiveness. However, progesterone at 0.5 nM at 

least partially rescued invasiveness from the effects of E2 and showed virtually complete rescue in 

all cases at a concentration of 1 nM. It may be noted that progesterone alone (in the absence of E2) 

did not influence invasion below a concentration of 2.5 nM - 5 nM but only rescued invasiveness 

from E2 regulation in the low concentration range (Figure 2.1-D, 2.1E, 2.1F). At higher 

concentrations, progesterone progressively increased invasiveness of the cells independent of 

estrogen (Figure 2.1D-F).  
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Figure 2.1 Dose response of regulation of breast cancer cell invasiveness by estrogen and 
progesterone. In panels A-C, hormone depleted BT474 cells (Panel A), T47D cells (Panel B) and 
ZR-75-1 cells (Panel C) at 30% confluence were treated with vehicle or the indicated 
concentrations of E2 for 48 h. Cells were trypsinized and subjected to the matrigel transwell 
invasion assay with vehicle or the appropriate concentration of hormone present in the top and 
bottom chambers, as described under Materials and Methods. In the negative control, serum free 
media (SFM) was used instead of the FBS chemoattractant. Data points in the plots in Panels A-C 
represent values for invasiveness represented as average number of cells invaded with the 
background (SFM) values subtracted. In panels D-F, Hormone depleted BT474 cells (Panel D), 
T47D cells (Panel E) and ZR-75-1 cells (Panel F) at 30% confluence were treated with vehicle or 
E2 (1 nM) and the indicated concentrations of progesterone for 48 h. Cells were trypsinized and 
subjected to the matrigel transwell invasion assay. 
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Figure 2.2 Inhibition of invasiveness by estrogen at different concentrations.  Hormone 
depleted BT474 cells  (Panel A), T47D cells (Panel B) and ZR-75-1 cells (Panel C) at 30% 
confluence were treated with vehicle or the indicated concentrations of E2 for 48 h. Cells were 
trypsinized and subjected to the matrigel transwell invasion assay with vehicle or the appropriate 
concentration of hormone present in the top and bottom chambers, as described under Materials 
and Methods. In the negative control, serum free media (SFM) was used instead of the FBS 
chemoattractant. Values are represented as average number of cells invaded from experimental 
triplicates and the error bars represent standard deviation. P Values are indicated.  
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The hormones regulated invasiveness of the cells without affecting their migratory capacity 

(i.e., in the absence of matrigel in the transwells) (Figure 2.3). Thus, the data in Figure 2.1 (D-F) 

reveals two components of progesterone’s effect on invasiveness in vitro in the three cell line 

models studied: (i) at low concentrations, progesterone rescues invasiveness from suppression by 

E2; and (ii) at higher concentrations, progesterone also induces invasiveness independent of E2.  

As noted above, during the luteal phase of the menstrual cycle, the E2 level is elevated to 

about 4 nM along with an increase in the progesterone levels from about 4 nM to about 50 nM. 

Therefore, we tested the effect of 4 nM and 50 nM R5020 (a more stable synthetic progestin), in 

the presence of 4 nM E2 on invasiveness of T47D, ZR-75-1 and BT474 cells (Figure 2.4A-2.4C). 

In all the three cell lines, suppression of invasiveness by E2 was completely prevented by both 

concentrations of R5020 and at 50 nM R5020, there was a further increase in invasiveness (Figure 

2.4A-2.4C).  

      The dual effect of progesterone on invasiveness was recapitulated in all the three cell lines 

using the potent synthetic progestin medroxyprogesterone acetate (MPA). When MPA is used as 

a contraceptive (intramuscular route of administration) it has a mean plasma concentration of 2.58 

nM (334) and has a 10-20 fold higher plasma concentration when administered orally during 

hormone replacement therapy (335). At a concentration of 1 nM, MPA only reversed suppression 

of invasion by E2, but at higher concentrations (10 nM and 100 nM) MPA induced an increase in 

invasiveness well above the basal level whether or not E2 was present (Figure 2.4D-2.4F).  
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Figure 2.3 Absence of hormonal control of migration capacity of ER+/PR+ model cells.  
Hormone depleted T47D cells (Panel A), BT474 cells (Panel B) and ZR-75-1 cells (Panel C) at 
30% confluence were treated with vehicle, E2 (1 nM), R5020 (1 nM), or E2 (1 nM) plus R5020 (1 
nM) for 48 h. Cells were trypsinized and subjected to transwell migration assay (i.e., in the absence 
of matrigel) with vehicle or the appropriate concentration of hormone present in the top and bottom 
chambers, as described under Materials and Methods. In the negative control, serum free media 
(SFM) was used instead of the FBS chemoattractant. Values are represented as average numbers 
of cells migrated from experimental triplicates and the error bars represent standard deviation. 
One-way ANOVA was performed and there was no significant difference between the treatment 
groups.  
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Figure 2.4 Regulation of breast cancer cell invasiveness by pre-menopausal concentrations 
of estrogen and progestin and dose-dependent effects of medroxyprogesterone acetate. In 
panels A-C, hormone depleted ZR-75-1 cells (Panel A), T47D cells (Panel B), and BT474 cells 
(Panel C) at 30% confluence  were treated with vehicle or E2 (4 nM), alone or in combination with 
R5020 (5 nM or 50 nM)  for 48 h. Cells were trypsinized and subjected to the matrigel transwell 
invasion assay with vehicle or the appropriate concentration of E2 and/or R5020 present in the top 
and bottom chambers, as described under Materials and Methods. In the negative control, serum 
free media (SFM) was used instead of the FBS chemoattractant. In panels D-F, hormone-depleted 
ZR-75-1 cells (Panel D), T47D cells (Panel E), and BT474 cells (Panel F) cells at 30% confluence 
were treated with vehicle or the indicated concentrations of MPA either with or without 1nM E2 
for 48 h. Cells were trypsinized and subjected to the matrigel invasion assay as described under 
Materials and Methods. One-way ANOVA was performed on triplicate treatment sets and P values 
are indicated.  
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2.3.3 The distinctive role of each PR isoform in the regulation of invasiveness by progestins.  

The above observations led to the question of which PR-isoform(s) could mediate each of 

the two components of the regulation of invasiveness by progestins. To address this question, the 

effect of progestin dose on breast cancer cell invasiveness was tested in the absence or presence of 

1nM E2 using recombinant T47D cells that exclusively express PR-A (T47D-A cells) or PR-B 

(T47D-B cells) (Figure 2.5A). The recombinant cells were a kind gift from Dr. Kathryn Horwitz 

who generated the cells as previously described (329). Due to possible variance in absolute values 

of the number of cells invaded across experiments for a given cell line, we compared the invasive 

capacity of the T47D-A and T47D-B cells plated together under the same conditions at the same 

time. There was no difference in the invasive capacity of the two isogenic cell lines (Figure 2.6).  

In T47D-A cells both, R5020 and MPA only rescued invasiveness from E2 regulation at all 

concentrations tested (1nM, 10nM or 100 nM) but had no effect on invasiveness in the absence of 

E2 (Figure 2.5B and 2.5C). In contrast, in T47D-B cells, 1 nM of either R5020 or MPA was unable 

to rescue invasiveness from E2 regulation but at the higher concentrations (10 nM or 100 nM) they 

induced invasiveness well above the basal level and this was uninfluenced by the presence of E2 

(Figure 2.5D and 2.5E).  
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Figure 2.5 PR-A vs. PR-B mediated effects of progestins on invasiveness of breast cancer 
cells. Panel A shows a western blot of cell lysates from T47D-A and T47D-B. In panels A-E, 
hormone-depleted T47D-A cells (Panels B and C) and T47D-B cells (Panels D and E) at 30% 
confluence were treated with vehicle or 1 nM E2 in combination with the indicated concentrations 
of R5020 (Panels B and D) or MPA (Panels C and E) for 48 h. Cells were trypsinized and 
subjected to the matrigel transwell invasion assay, as described under Materials and Methods. In 
panels F-J, hormone depleted cells were transfected with either siRNA directed against PR-B or 
non-targeted control siRNA and incubated for 48h. In Panel F cell lysates from the transfected 
cells were analyzed by western blot for PR or GAPDH (loading control.  T47D cells transfected 
with control siRNA (Panel G) or PR-B targeted siRNA (Panel H) and also BT474 cells transfected 
with control siRNA (Panel I) or PR-B targeted siRNA (Panel J) were treated with hormones and 
subjected to the matrigel transwell invasion assay. In panels B-E and G-J, One-way ANOVA was 
performed and P values are indicated.  
 

0
200
400
600
800

1000

SFM 0 1 10 100
R5020 (nM)

C
el

ls
 in

va
de

d

T47D-A cells
B

*
Vehicle
E2

*P<0.001

0
200
400
600
800

1000

SFM 0 1 10 100
MPA (nM)

C
el

ls
 in

va
de

d

T47D-A cells
C

*Vehicle
E2

*P<0.001

MPA (nM)

0
500

1000
1500
2000

SFM 0 1 10 100

C
el

ls
 in

va
de

d

T47D-B cells

* *

Vehicle
E2 *

E

*P<0.001

A

Vehicle
E2

*P<0.01
**P<0.001
*

0

500

1000

1500

SFM 0 1 10 100

**

*

T47D cells 
ctrl siRNA

R5020 (nM)

T47D cells 
PR-B siRNAVehicle

E2

0

500

1000

SFM 0 1 10 100

C
el

ls
 in

va
de

d

*

R5020 (nM)

*P<0.001

C
el

ls
 in

va
de

d

0
500

1000
1500
2000

SFM 0 1 10 100

**

**
*

BT474 cells 
ctrl siRNA

Vehicle
E2

*P<0.01
**P<0.001

C
el

ls
 in

va
de

d

R5020 (nM)

0

500

1000

SFM 0 1 10 100

*

C
el

ls
 in

va
de

d

BT474 cells 
PR-B siRNA *P<0.001

Vehicle
E2

R5020 (nM)

J

I

H

G

PR-B

PR-A

GAPDH

Ctrl 
siRNA

PR-B 
siRNA

T47D cells

-

Ctrl 
siRNA

PR-B 
siRNA

BT474 cellsF

PR-B

PR-A

GAPDH

T47D-A T47D-B

0
500

1000
1500
2000

SFM 0 1 10 100
R5020 (nM)

C
el

ls
 in

va
de

d

T47D-B cells
D

**
*

Vehicle
E2

***

*P<0.05
**P<0.01

***P<0.001



	
   56	
  

As a complementary approach, we utilized siRNA knockdown of PR-B in parental T47D 

cells and in BT474 cells that express equal amounts of PR-A and PR-B.  Both cell lines were 

transfected with siRNA directed against a target site in the unique 5’ segment of the PR-B mRNA 

or with control non-silencing siRNA using Lipofectamine. Knockdown of PR-B (western blots in 

Figure 2.5F) resulted in a loss of E2-independent induction of invasiveness at the higher 

concentrations (10 nM and 100 nM) of R5020 in both T47D cells and BT474 cells (Figure 2.5H 

and 2.5J) in contrast to the control siRNA transfected cells (Figure 2.5G and 2.5I).  However, the 

selective depletion of PR-B did not alter R5020’s ability to rescue invasiveness in the presence of 

E2, at all concentrations (1nM, 10nM, and 100nM) of R5020 (Figure 2.5G-2.5J). This result is 

consistent with those observed above using T47D-A cells. The above results demonstrate that PR-

A exclusively mediates the role of low dose progestins in opposing suppression of invasiveness 

by E2, whereas PR-B exclusively mediates E2-independent induction of invasiveness at high doses 

of progestins. 

 

Figure 2.6 Invasive capacity of the isogenic T47D-A vs. T47D-B cell lines. T47D-A and T47D-
B cells at 30% confluence were incubated in hormone-depleted media for 96 hours. Cells were 
trypsinized and subjected to the matrigel transwell invasion assay as described under Materials 
and Methods. Values are represented as average number of cells invaded from experimental 
triplicates and the error bars represent standard deviation. 
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2.3.4 Effect of RU486 on PR-A mediated induction of invasiveness by progestins.  

RU486 is a synthetic antagonist of progesterone that is PR isoform selective in specific 

target gene contexts. Therefore it was of interest to test the effect of RU486 on the PR-A dependent 

actions of progesterone on breast cancer cell invasiveness. The cell lines T47D-A, T47D-B and 

BT474 were treated with either E2, the progestin R5020, or the anti-progestin RU486, each at a 

concentration of 1 nM in the various combinations indicated in Figure 2.7.  In T47D-A cells, 

RU486 disrupted the ability of R5020 to rescue invasiveness from E2 suppression but did not have 

any effect by itself on invasiveness, in either the presence or absence of E2 (Figure 2.7A). On the 

other hand, in T47D-B cells, RU486 had no effect on invasiveness under any of the conditions 

tested when each of the ligands was used at a concentration of 1 nM (Figure 2.7B). In BT474 cells, 

which express equal amounts of both PR isoforms, the effect of RU486 was similar to that 

observed in the T47D-A cells, demonstrating that agonist or antagonist actions that modulate the 

effect of PR-A on invasiveness are functionally independent of PR-B expression (Figure 2.7C). 

2.3.5 Hypersensitization of PR-A to progestin through overexpression of the receptor.  

As noted above, PR-A is frequently overexpressed in invasive clinical breast tumors. It was 

therefore of interest to examine the possibility that overexpression of PR-A in the tumor cells may 

sensitize PR-A mediated regulation of invasiveness to post-menopausal breast tissue levels of 

progesterone. 
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Figure 2.7 Effect of RU486 on regulation of breast cancer cell invasiveness by R5020 in 
relation to estrogen, PR-A and PR-B. Hormone depleted T47D-A (Panel A), T47D-B (Panel B), 
and BT474 (Panel C) cells at 30% confluence were treated with vehicle or the indicated 
combinations of E2, R5020 and RU486, each at a concentration of 1nM for 48 h. Cells were 
trypsinized and subjected to the matrigel transwell invasion assay with vehicle or the appropriate 
concentration of E2, R5020 or RU486 present in the top and bottom chambers, as described under 
Materials and Methods. In the negative control, serum free media (SFM) was used instead of the 
FBS chemoattractant. Values are represented as average number of cells invaded from triplicate 
treatment sets and the error bars represent standard deviation. One-way ANOVA was performed 
on triplicate treatment sets and P values are indicated.  
 

 

Figure 4

0

500

1000

1500

C
el

ls
 in

va
de

d

T47D-A

0

300

600

900

1200

0

1000

2000

C
el

ls
 in

va
de

d T47D-B

C
el

ls
 in

va
de

d BT474

A

B

C

* * *
*

* **
*

**

* * *
*

*P<0.0001

*P<0.0001

*P<0.0001



	
   59	
  

 
 
Figure 2.8 Effect of overexpressing of PR-A on the progestin dose response for rescue of 
invasiveness from estrogen regulation. PR-A was ectopically overexpressed in hormone-
depleted T47D cells by lentiviral transduction, as described under Materials and Methods. Whole 
cell lysates from cells transduced with either the PR-A expression vector or the control empty 
vector were probed for PR and for GAPDH (Panel A). Cells transduced with the control empty 
vector (Panel B) or PR-A expression vector (Panel C) at 30% confluence were treated with vehicle 
or the indicated concentrations of R5020 in the absence or in the presence of E2 (1 nM) for 48 h. 
Cells were then trypsinized and subjected to the matrigel transwell invasion assay. Values are 
represented as average number of cells invaded from triplicate treatment sets and the error bars 
represent standard deviation. One-way ANOVA was performed on triplicate treatment sets and P 
values are indicated.  
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T47D cells express comparable amounts of PR-A and PR-B protein as observed on a 

western blot probed with an antibody against a common carboxyl-terminal peptide of the two 

receptor isoforms (Figure 2.8A). Lentiviral transduction of a PR-A expression plasmid increased 

the level of PR-A by approximately 3.7-fold, without altering the expression of PR-B (Figure 

2.8A). The R5020 dose-dependence for rescue of invasiveness from E2 regulation was compared 

between the PR-A overexpressing cells and the control cells transduced with the empty vector. 

Overexpression of PR-A clearly conferred hypersensitivity to R5020 as the progestin partially 

rescued invasiveness even at a concentration of 0.05 nM and fully rescued invasiveness at a 

concentration of 0.2 nM in the PR-A overexpressing cells (Figure 2.8C); in comparison, in the 

control cells a concentration of 0.5 nM - 1.0 nM R5020 was required to observe similar effects 

(Figure 2.8B).  

2.3.6 PR isoform A-dependent regulation of E2 target genes by progestin and their functional 

role.  

E2 acts through its receptor ER to repress expression of genes known to be involved in 

breast tumor invasion, EMT, and metastasis (182,332,333,336,337). The ability of progestins to 

oppose E2 regulation of invasiveness did not involve a decrease in ER expression as evident from 

a western blot of T47D-A cells treated with R5020 (Figure 2.9A).  

Next, we undertook to examine PR isoform-specific effects on transcriptional signaling by 

E2 using T47D-A or T47D-B cells. A concentration of 1 nM R5020 was chosen because at this 

concentration the progestin completely rescued invasiveness from E2 regulation (through PR-A) 

but did not exert E2-independent effects on invasiveness (through PR-B). The cells were treated 

with vehicle, 1 nM E2, 1 nM R5020 or 1 nM R5020 + 1 nM E2 for an extended duration of 48 

hours to examine expression of both direct and indirect target genes of the hormones. mRNA 
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expression profiles were examined by DNA microarray analysis using the Illumina platform and 

an arbitrary cut off value of 1.5-fold was applied to identify patterns of changes in mRNA 

expression. In T47D-A cells, among 631 genes that were repressed by E2 (Supplemental Table 1) 

(Figure 2.9B), R5020 opposed the repression of 108 genes (Supplemental Table 2) (Figure 2.9B) 

including 48 genes that were activated by R5020, independent of E2 (Supplemental Table 3) 

(Figure 2.9B). In T47D-B cells, among 311 genes that were repressed by E2 (Supplemental Table 

4) (Figure 2.9C), R5020 opposed the repression of 47 genes (Supplemental Table 5) (Figure 2.9C) 

including 21 genes that were activated by R5020, independent of E2 (Supplemental Table 6) 

(Figure 2.9C). Inspection of these gene lists revealed that of the 108 E2 repressed genes whose 

expression was rescued by R5020 in T47D-A cells, only 9 genes were also rescued by R5020 in 

T47D-B cells. The E2 repressed genes that were activated by progesterone alone were also cell-

type specific, with only 8 exceptions. Thus, repression of 99 genes by E2 was opposed by R5020 

in an exclusively PR isoform A-dependent manner. We next searched the literature to identify all 

the genes in this group that had suggested or established roles in breast tumor biology. A total of 

19 genes were clearly known to be associated with breast tumor biology and they predominantly 

supported breast tumor progression, including invasiveness and metastasis (Supplemental Table 

7). The DNA microarray data is validated for 4 representative genes (HES1, PRKCH, ELF5 and 

TM4SF1) by quantitative real time RT-PCR in Figure 2.10A and 2.10B using T47D-A and T47D-

B cells. We also confirmed that these four genes were regulated in T47D (parental), BT474, and 

ZR-75-1 cells in the same pattern as that observed in T47D-A cells (Figure 2.10C-2.10E). 
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Figure 2.9 Effect of low dose progestin on the gene repression profile of estrogen in relation 
to PR-A and PR-B. Hormone depleted T47D-A or T47D-B cells at 30% confluence were treated 
with vehicle, 1 nM E2, 1 nM R5020 (P) or 1nM E2 plus1nM R5020 (E2+P) for 48 h. In Panel A, 
whole cell lysates from the treated T47D-A cells were probed by western blot for ERα and for 
GAPDH. In parallel, total RNA was extracted from the treated T47D-A and T47D-B cells and 
subjected to mRNA expression profiling as described under Materials and Methods.  The mRNA 
profiling data is represented in the Venn diagrams in Panel B (for T47DA cells) and in Panel C 
(for T47D-B cells).  Panels B and C show comparisons among the gene set repressed by E2 (E2 
repressed vs. Vehicle), the gene set activated by R5020 in the absence of E2 (P activated vs. 
Vehicle) and the gene set activated by R5020 in the presence of E2 (E2+P activated vs. E2). The 
data represents results from experimental triplicates. 
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Figure 2.10 Validation of gene expression profiling. The total RNA samples used for mRNA 
expression profiling in Figure 6 were used for validation of the mRNA profiling data for selected 
genes in T47D-A cells (Panel A) and T47D-B cells (Panel B). Validation of estrogen and progestin 
regulation of these genes in the PR-A+ cells was also extended to T47D (parental) cells (Panel C), 
BT474 cells (Panel D) and ZR-75-1 cells (Panel E). RNA purified from the treated cells was 
reverse transcribed and the cDNA was analyzed by real-time PCR using TaqMan Probes, as 
described under Materials and Methods. Relative mRNA levels were measured in the samples for 
HES1, PRKCH, ELF5, and TM4SF1 genes. All CT Values were normalized to GAPDH and 
represented as fold change in comparison to vehicle treated controls.  
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The four genes (HES1, PRKCH, ELF5 and TM4SF1) validated above have all been 

associated with cancer progression. To directly test whether regulation of these genes by E2 

mediated the hormonal effects of E2 on invasiveness in ER+ breast cancer cells, we used a loss-

of-function approach. T47D and BT474 cells were transfected with siRNAs against the four genes 

either individually (Figure 2.11A and 2.11E) or together (Figure 2.11B and 2.11F); in all cases, 

the siRNAs effectively knocked down the genes, as observed by their mRNA levels compared to 

the cells transfected with control non-targeted siRNA (Figure 2.11A, 2.11B, 2.11E and 2.11F). 

Individually knocking down the genes decreased invasiveness of the cells to different degrees 

(Figure 2.11C and 2.11G) and the combined knockdown completely suppressed invasiveness 

(Figure 2.11D and 2.11H). The results indicate the functional relevance of genes whose regulation 

by E2 was found in this study to be opposed by low dose progesterone acting through PR-A. Clearly 

the subset of E2 repressed genes that are counter-regulated by progesterone/PR-A include genes 

that mediate hormonal regulation of invasiveness in breast cancer cells.  

A similar analysis was then conducted for E2 activated genes in T47D-A (Figure 2.12A 

and Supplemental Tables 8-10) and T47D-B (Figure 2.12B and Supplemental Tables 11-13) cells. 

We found that activation of 112 genes by E2 was opposed by R5020 in an exclusively PR-A 

isoform dependent manner. Within this group, the small number of genes with better known 

functions in breast tumor biology tended to support growth and inhibit invasiveness. 
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Figure 2.11 Functional testing of selected tumor progression genes. Hormone-depleted T47D 
cells (Panels A-D) and BT474 (Panels E-H) were transfected with control siRNA, TM4SF1 
siRNA, HES1 siRNA, ELF5 siRNA and PRKCH siRNA independently (Panel A, C, E, and G) or 
all four targeted siRNAs in combination (Panels B, D, F, H). After 72 hours cell were subjected 
to the transwell matrigel invasion assay (Panels C, D, G, and H) as described under Materials and 
Methods.  In the negative controls, serum free medium (SFM) was used instead of the FBS 
chemoattractant. Values are represented as average number of cells invaded from triplicate 
treatment sets and the error bars represent standard deviation. One way ANOVA was performed 
on triplicate treatment sets and P values are indicated.  
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Figure 2.12 Effect of low dose progestin on the gene activation profile of estrogen in relation 
to PR-A and PR-B. Hormone depleted T47D-A or T47D-B cells at 30% confluence were treated 
with vehicle, 1 nM E2, 1 nM R5020 (P) or 1nM E2 plus1nM R5020 (E2+P) for 48 h. Total RNA 
was extracted from the treated T47D-A and T47D-B cells and subjected to mRNA expression 
profiling as described under Materials and Methods.  The mRNA profiling data is represented in 
the Venn diagrams in Panel A (for T47DA cells) and in Panel B (for T47D-B cells).  Panels A and 
B show comparisons among the gene set activated by E2 (E2 activated vs. Vehicle), the gene set 
repressed by R5020 in the absence of E2 (P repressed vs. Vehicle) and the gene set repressed by 
R5020 in the presence of E2 (E2+P repressed vs. E2). The data represents results from experimental 
triplicates.  
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2.4 Discussion 

The results of this study reveal that the positive effect of progestins on invasiveness of ER+ 

breast cancer cells has two components: 1. rescue of invasiveness from estrogen repression at 

relatively low progestin concentrations that is mediated exclusively by PR isoform A; and 2. 

estrogen-independent induction of invasiveness at high progestin concentrations that is mediated 

exclusively by PR isoform B. Moreover, PR-A was sensitized to even lower levels of progestin 

when this receptor isoform was overexpressed relative to PR-B. Similar to the observations here 

on PR isoforms, other steroid receptors are also known to induce distinct genotropic and 

phenotypic effects at different hormone doses as well as hypersensitization to hormone by a few 

fold overexpression of the receptor (328,338). 

 The relevance of the above findings to the physiological hormone status prior to and after 

menopause is apparent. The estrogen dose that was required for substantial or virtually complete 

suppression of invasiveness in ER+ cells is well under the plasma levels of estrogen in pre-

menopausal women. It is also within the range of plasma and breast tissue levels of estrogen in 

post-menopausal women. The full effect of PR-A on the invasiveness of the various breast cancer 

cell lines occurred at < 1 nM progesterone and the dose requirement was reduced to < 0.2 nM 

when the expression level of PR-A was elevated. Thus, dysregulated PR-A has the potential to 

rescue invasiveness of breast cancer cells from estrogen regulation in response to post-menopausal 

plasma/breast tissue progesterone levels. This is in contrast to PR-B, which only induced 

invasiveness progressively with progesterone dose in the range of 5 nM to 50 nM. Thus, isoform 

A of PR plays the predominant hormone-dependent role in increasing invasiveness of ER+ breast 

cancer cells at progesterone concentrations that include the entire range of follicular phase, luteal 

phase and post-menopausal hormone levels, particularly when the cells overexpress PR-A. The 
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findings on the role of PR isoforms also extend to plasma progestin levels associated with the use 

of MPA, either in contraception or in hormone replacement therapy. Therefore in luminal breast 

cancer, prior to diagnosis or after cessation of treatment, PR-A may have a greater mechanistic 

role in promoting invasiveness than PR-B. 

      The unique ability of only isoform A of PR to oppose regulation of invasiveness by 

estrogen at low progesterone concentrations is clearly reflected in the differential abilities of PR-

A and PR-B to mediate cross-talk between progesterone and estrogen with respect to patterns of 

gene regulation. Gene expression analysis using isogenic recombinant (T47D) cells that 

exclusively expressed either the A or the B isoform of PR revealed that the cross-talk between 

estrogen and low dose progesterone affected the expression of estrogen target genes with diverse 

functions. However, among these genes, the subsets that were regulated by progesterone through 

PR-A vs. PR-B were largely non-overlapping. The genes whose regulation by estrogen was 

opposed by progesterone in an exclusively PR-A dependent manner included both estrogen-

activated and estrogen-repressed genes. The estrogen-repressed genes were more noteworthy in 

the context of this study as they included genes with established roles in progression of breast 

cancer. Moreover, we demonstrated that selected genes from this subset (HES1, PRKCH, ELF5 

and TM4SF1) did support invasiveness in ER+ breast cancer cells.             

           In response to the binding of progesterone, several mechanisms could conceivably enable 

PR-A to oppose estrogen’s action on a subset of estrogen target genes. The ligand-dependent 

activity of PR-A did not result in any change in ER expression. Rather, the exact mechanism of 

PR-A isoform dependent cross-talk between progesterone and estrogen signaling could depend on 

the target gene context. For example, (i) PR-A could compete with ER to bind to tethering proteins 

at repressive sites in the chromatin, either simply blocking repression by estrogen/ER or activating 
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the target gene; (ii) PR-A could bind at chromatin sites that are different from the repressive sites 

of ER binding and compete with ER for interaction with the pre-initiation complex of the target 

genes; (iii) PR-A could indirectly oppose gene regulation by estrogen by regulating transcription 

of other regulatory proteins or microRNAs. The amino-terminal truncation in PR-A could expose 

protein binding motifs that are unexposed in PR-B enabling unique or higher affinity interactions 

of agonist bound PR-A with other regulatory proteins in the chromatin. Similar chromatin 

interactions of PR-B may therefore require higher doses of progestins. More extensive studies 

including ChIP-seq analyses should help to establish specific mechanisms by which PR-A may 

de-regulate estrogen target genes. 

      In mice, selective ablation of PR-B revealed that PR-B was not required for the normal 

physiology of the uterus or the ovary but was necessary for pregnancy-associated mammary gland 

morphogenesis (198). That study demonstrated that the ability of progesterone to suppress 

estrogen-induced endometrial proliferation was due to PR-A. In contrast, when PR-A was 

selectively ablated, progesterone not only failed to inhibit estrogen-induced cell proliferation in 

the endometrium but actually further increased proliferation of the uterine epithelium, an effect 

mediated by PR-B (197). Therefore, given the necessary role of PR-A in endometrial physiology, 

selectively disrupting its actions in breast cancer cells vs. endometrial tissue will require a better 

understanding of tissue-specific molecular pathways by which PR-A opposes estrogen signaling 

in breast cancer. Identifying and narrowly targeting a critical cross-talk pathway between PR-A 

and ER may enable suppression of tumor progression without disrupting the protective role of PR-

A in the endometrium or the adverse effects of a broader PR antagonist. Such an intervention may 

also be useful in combination hormone replacement therapy. A molecular signature of hyperactive 

PR-A may also more effectively predict tumor progression.  
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CHAPTER 3. THE SHORT PROGESTERONE RECEPTOR ISOFORM SUPPORTS 
INVASIVENESS AND METASTASIS OF LUMINAL BREAST CANCER BY 
SUPPRESSING REGULATION OF CRITICAL MICRO RNAS BY ESTROGEN  
 
3.1 Introduction  

Breast oncogenesis may span up to several decades. Most (> 78 percent) of newly 

diagnosed breast cancer cases occur in women older than 50 years (303) with a median age at 

diagnosis of 61 years (304). Most breast tumors express the nuclear receptors for estrogen (ER) 

and progesterone (PR) (341) even through progression (174). Primary ER+ tumors are highly 

responsive to anti-estrogen therapy. However, ER+ breast cancer is often metastatic at the time of 

diagnosis and metastatic ER+ tumors also frequently appear after many years of dormancy 

(132,305). Indeed, over a fifth of breast cancer patients harbor distally metastasized ER+ 

tumors(27). Unfortunately, the metastatic disease is generally incurable and even targeted 

therapies are generally only palliative. Therefore, it is necessary to understand more about 

deregulated molecular mechanisms that confer invasive/metastatic properties on ER+ breast 

cancer cells. However, in contrast to more aggressive cancers, studies of metastasis of luminal 

breast cancer are rather sparse, due in part to the inherently slow metastatic spread of the tumors 

in animal models(342). This has likely limited studies of metastasis of ER+ breast tumors to 

models in which the tumor cells are directly injected into the circulation, bypassing events in the 

initiation of metastasis at the primary tumor site (342). Therefore, it is also desirable to design an 

experimental strategy that can functionally link novel physiological mechanisms governing 

invasiveness of ER+ breast cancer cells to their ability to leave the primary tumor site.    

Estrogen supports the growth of ER+ breast tumors but it suppresses invasiveness of the 

tumor cells whether or not their growth is hormone-sensitive and also suppresses breast tumor 

progression (183). High dose and potent synthetic forms of progestins directly support 
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invasiveness and metastasis in ER+/PR+ breast cancer cells, demonstrated using in vivo 

experimental models (309,310). These models may be physiologically relevant in postmenopausal 

women on high dose hormone replacement therapy, where the combination of estrogen and 

progestin was associated with increased incidence of invasive breast cancer and breast cancer 

mortality compared with non-users (59), in contrast estrogen monotherapy in women with prior 

hysterectomy was associated with a persistent decrease in the onset of invasive breast cancer (60). 

However, in post-menopausal women who are not undergoing hormone replacement, the role of 

the endogenous hormones in the progression of ER+/PR+ breast tumors have not been adequately 

studied. Compared to the knowledge on the influence of estrogen on breast tumor physiology, 

much less is known about the mechanisms of progesterone action, particularly in the presence of 

active estrogen signaling. Moreover, although the levels of estrogen and progesterone change 

throughout the menstrual cycle and decrease after menopause very little is known about the 

hormone actions on tumor invasiveness/progression in the context of this changing hormone status 

during a woman’s lifetime. Our recent findings in chapter 2 have addressed these questions by 

identifying a fundamental role for cross-talk between ER and PR in governing invasiveness of a 

variety of model luminal breast cancer cell lines in the entire range (pre- and post-menopausal) of 

physiological levels of estrogen and progesterone (157). 

PR has two isoforms, A and B, expressed by alternative promoter usage from a single gene; 

PR-B is identical to PR-A except for the presence of an additional 164 amino acid amino-terminal 

segment that contains within it, an additional activation function, AF3 (157). PR-B and PR-A 

induce both distinctive and overlapping patterns of agonist-induced gene activation or gene 

repression, depending on the variable contexts of the target promoters and the nature of the 

associated chromatin sites of PR binding (156,157,312). The heterodimer of PR-A and PR-B 
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regulates a smaller and unique set of genes compared to the homodimers (156). Clinical studies 

have shown that although in normal breast PR-A and PR-B are expressed at comparable levels, 

this balance is commonly altered during breast oncogenesis with an increase in PR-A in early as 

well as progressed lesions (190). Overexpression of PR-A is associated with increased 

invasiveness of clinical tumor lesions and a lower rate of disease free survival (170). 

In vitro studies in the literature originally suggested that PR-B is the principal mediator of 

progesterone-induced invasiveness of breast cancer cells (192,193), at odds with the clinical 

observations noted above that implicate PR-A in tumor progression. However, the in vitro studies 

of PR-B were performed at high (luteal stage and pregnancy-associated) concentrations of 

progesterone and also were conducted in the absence of estrogen signaling (192–195,343). The 

plasma estrogen range in pre-menopausal women is 1.4 nM -1.6 nM during the follicular phase, 

and 3.6 nM - 4.2 nM during the luteal phase (64). Plasma progesterone ranges from below 4 nM 

during follicular phase, up to > 50 nM during the luteal phase (344). Post-menopause, there is a 

marked decrease in circulating hormone levels with median values of 0.14 nM for estrogen and 

0.13 nM for progesterone, yet the breast tissue may retain up to about 1nM  of each hormone 

(191,306). We have recently reported studies that were performed in the entire range of estrogen 

and progesterone concentrations corresponding to pre- and post-menopausal hormone status and 

in the presence of both estrogen and progesterone signaling  (Chapter 2) (157). As the previous in 

vitro studies of high dose progesterone effects on metastasis were conducted in the absence of 

estrogen signaling, we considered the possibility that modulation of estrogen action may comprise 

a distinct aspect of the regulation of invasiveness by progestins in the range of its physiological 

levels (157) . Estrogen strongly suppressed invasiveness of ER+ breast cancer cells at 

concentrations below 0.01 nM. At low (< 1 nM) concentrations, progesterone/progestins 
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completely abrogated the inhibition of invasiveness by estrogen. It was only in a higher (5 nM - 

50 nM) concentration range that progestins progressively induced invasiveness in the absence of 

estrogen. The ability of progestins to rescue invasiveness from estrogen regulation was exclusively 

mediated by PR-A and was uninfluenced by PR-B. On the other hand, PR-B mediated the estrogen-

independent component of progestin-induced invasiveness at either pharmacological (used in 

hormone replacement) progestin levels or progesterone levels associated with pregnancy. 

Overexpression of PR-A in PR-A+/PR-B+ cells lowered the progestin concentration needed to 

completely rescue invasiveness (to < 0.2 nM). The studies demonstrate that progesterone 

influences breast cancer cell invasiveness by rescuing it from estrogen regulation, exclusively via 

PR-A, in the entire pre- and post-menopausal range of estrogen and progesterone concentrations 

(157). These findings reconcile in vitro actions of PR isoforms with the clinically observed 

association between PR-A and progression of luminal breast cancer. 

Although progesterone, acting through PR-A, appears to be the major culprit in promoting 

invasiveness of luminal breast cancer cells by counteracting estrogen, directly testing the effect of 

this mechanism on metastasis in vivo by manipulating hormone levels is not possible because 

estrogen depletion would prevent tumor formation. Instead, if a critical pathway of hormonal 

cross-talk between PR-A and ER that regulates in vitro invasiveness could be identified, it should 

be possible to test the effect of disrupting this pathway on metastasis using an appropriate in vivo 

model. Additionally, such a cross-talk pathway(s) may reveal better therapeutic targets as clinical 

interventions that broadly or systemically obstruct progesterone/PR signaling are precluded by the 

need for progesterone for endometrial homeostasis (145,345) and off-target effects of progesterone 

antagonists (346). In luminal breast cancer cells, ER strongly regulates tumor cell characteristics 

by regulating micro-RNAs (miRNAs) (347–350) and is itself also regulated by miRNAs 
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(347,350,351).There is less information on the regulation of PR by miRNAs or on regulation of 

miRNAs by progesterone/PR. Indeed, miRNAs regulate up to a third of the human genome and 

have diverse roles in normal physiology as well as profound roles as tumor suppressors and 

oncogenes (352). This study was undertaken to explore the possibility that regulation of certain 

miRNAs could be critical for cross-talk between progesterone/PR-A and estrogen/ER in the 

specific context of hormonal control of invasion in vitro and to manipulate such a cross-talk 

pathway(s) as a means of establishing the role of hormonal cross-talk of PR-A with ER in 

metastasis of luminal breast cancer.   

3.2 Materials and Methods 

3.2.1 Cell Line Models and Breast Tumor Specimens 

BT474, T47D and ZR-75-1 breast cancer cells were purchased from American Type 

Culture Collection (ATCC). T47D-A (ER+/PR-A+/PR-B-null) and T47D-B (ER+/PR-B+/PR-A-

null) recombinant cells isogenic with parental T47D cells were a generous gift from Dr. Katherine 

Horowitz (University of Colorado, Denver, CO) and were cultured as previously described 

(329).T47D-PR-A++ cells were previously generated in our laboratory (157). Recombinant BT474 

cell lines with stable expression of PR shRNA (PR-shRNA cells), miR-92a-3p (miR-92a-3p-On 

cells) or miR-26b-5p inhibitor (miR-26b-5p-Off cells) and control cells harboring Lenti-miR-

Blank plasmid were generated using PR shRNA lentiviral plasmid (Cat# 0000436004, Sigma-

Alrdrich, St. Louis MO) hsa-miR-92a-3p miRNA Lentivector  (Cat# mh11076, ABM, Vancouver, 

BC) or LentimiR-Off-hsa-miR-26b-5p vector (Cat# mh30381, ABM, Vancouver, BC) or control 

LentimiR-blank vector (Cat# m007, ABM, Vancouver, BC) by lentiviral transduction methods 

described below. All human tumor samples, classified as ER+/PR+ ductal carcinoma, were 

obtained from Cooperative Human Tissue Network (CHTN).  
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3.2.2 Cell Culture and Hormone Depletion 

Cell line models were cultured in DMEM supplemented with FBS (10%) penicillin (100 

unit/ml) streptomycin (100ug/ml) and L-glutamine (2 mM) at 37°C in 5% CO2. To maintain 

selection pressure, the media for the recombinant BT474 cells contained 0.5µg/ml puromycin and 

the media for T47D-A and T47D-B cells contained 200ug/ml geneticin. For hormone depletion, 

cells were plated at 30% confluence in phenol red-free media supplemented with charcoal-stripped 

FBS and incubated at 37°C in 5% CO2 for 48 h.  

3.2.3 Western Blot of Cells and Breast Tumor Tissues 

Cell lysates were prepared as described (157). To prepare tumor tissue lysates, tissue 

(100mg) suspended in 500 ul of RIPA buffer was homogenized using the BioGen-PRO200 tissue 

homogenizer (Cat# 01-01200, Cambridge, MA) for 15 seconds on ice and centrifuged at 15,000x 

G and supernatant was used. Western blot was performed as previously described (157). The 

antibody probes include monoclonal rabbit anti-PR antibody (Cat# 8757, Cell Signaling, Danvers, 

MA), EMT sampler kit antibodies (Cat# 9782, Cell Signaling, Danvers, MA) or mouse monoclonal 

anti-GAPDH antibody (sc-4472, Santa Cruz Biotechnologies, CA) and appropriate horseradish 

peroxidase conjugated secondary antibodies (Vector Laboratories, MD). Relative protein 

expression was determined by semi-quantitative densitometry of auto-radiographic film using 

ImageJ software (National Institutes of Health, USA). 

3.2.4 Boyden Chamber Transwell Invasion Assay 

Cell invasion assays were performed as previously described (Chapter 2). 

3.2.5 Isolation and Measurement of Micro RNA and mRNA  

Total RNA was isolated from cells or tissues using the Exiqon miRCURY total RNA 

isolation kit (Vedebaek, Denmark).  Breast tumor tissue lysates were prepared by suspending 50 
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mg tissue in 500ul of the lysis buffer and homogenized using the BioGen-PRO200 tissue 

homogenizer (Cat# 01-01200, Cambridge, MA) for 15 seconds on ice. Homogenized solution was 

centrifuged at high 15,000x G and supernatant was used for RNA extraction. Reverse transcription 

PCR reactions were performed using high capacity complementary DNA archive kit, or miRNA 

reverse transcription kit (Life Technologies Corporation, Carlsbad, CA). cDNA was measured by 

quantitative real time RT-PCR using TaqMan probes and the StepOne Plus Real time PCR system 

(Life technologies Corporation, Carlsbad, CA). All RNA measurements were performed in 

biological triplicates, and all CT values were normalized to intra-sample GAPDH (mRNA) or 

U6snRNA (miRNA). RNA values were represented as fold difference, which is calculated using 

the formula = 2−ΔΔCT, where ΔΔCT = ΔCT sample − ΔCT calibrator.  

3.2.6 Affymetrix Profiling of Micro RNAs Regulated by PR-A  

Hormone depleted T47D-A and T47D-B cells were treated with vehicle, or R5020 (1nM). 

Total RNA samples, isolated using the Exiqon miRCURY isolation kit (Denmark), were analyzed 

at the University of Michigan Microarray Core using the Affymetrix miRNA microarray 

generation IV (Affymetrix, Santa Clara, CA). Expression values were normalized using quantile-

normalization, with background subtraction. Log transformation to the base of 2, followed by one-

way ANOVA was used to determine error. The differentially expressed genes were identified by 

comparing R5020 treatment with vehicle treatment (repressed or activated with a cutoff fold 

difference of 1.5 and a p value < 0.05).  Real-time RT-PCR was performed as described above to 

validate miRNAs that were exclusively regulated by PR-A. 

3.2.7 Lentiviral Transduction 

Packaging of lentiviral particles with pCDH empty vector plasmid, pCDH-PR shRNA, hsa-

miR-92a-3p miRNA Lentivector or LentimiRa-Off-hsa-miR-26b-5p vector and transduction of 
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cells ware performed as described (157). The pool of recombinant cells was selected by culturing 

in puromycin containing media for 6 weeks.  

3.2.8 Transfection of siRNA or miRNA Inhibitor 

Cells were plated to 30% confluence without antibiotic in phenol-red free DMEM medium 

supplemented with 10% charcoal-stripped FBS. 24 hours later cells were transfected with siRNA 

directed against specific gene targets, miRNA inhibitors (miRVana, Life Technologies, Carlsbad, 

CA) directed against specific miRNA targets or with appropriate non-silencing controls using 

lipofectamine (Life Technologies, Carlsbad, CA). 

3.2. 9 Metastasis Pathway Gene Array Expression Analysis  

Human Tumor Metastasis Fast TaqMan Real-Time PCR array (Life Technologies, 

Carlsbad, CA) was performed on StepOne Realtime (Applied Biosystems). cDNA samples from 

BT474 (control transduced cells), BT474 92a-3p-On cells and BT474 miR-26b-5p-Off cells were 

analyzed. The ΔΔCt method was used as described above to quantify gene expression.  

3.2.10 Mouse Metastasis Model 

Female athymic nude mice (Envigo, Indianapolis, IN) were implanted with 0.72 mg slow-

release estradiol pellets (Innovative research of America, Sarasota, FL) on Day 0. On Day 3, 1 × 

107- 2 × 107 cells were suspended in 300µl of equal parts DMEM and Matrigel and implanted 

subcutaneously in the right flank just below the right shoulder. Mice were sacrificed on day 17. 

Tumors, ipsilateral and contralateral axillary and inguinal Lymph-nodes and livers were harvested 

from the mice. All tissues were homogenized and total RNA extracted as described above for 

human tissues. The degree of tissue infiltration by the human tumor cells (metastasis) was 

measured in terms of the amount of mRNA present for human GAPDH by quantitative real time 
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RT-PCR using human and mouse species-specific high efficiency Taqman Probes. The mRNA 

values for human GAPDH was normalized to the mRNA for mouse GAPDH.  

3.3 Results 

3.3.1 Identification of micro RNAs that are uniquely regulated by low dose progesterone 

through PR-A.  

Progesterone bound to PR-A could impinge on regulation of invasiveness by E2/ER in a 

manner that is mediated by one or more miRNAs in the following ways (depicted as schematics 

in Figure 3.1A and 3.1B). First, Progesterone/PR-A could either activate or repress miRNA(s) 

(independent of estrogen) and this would then result in rescue of invasiveness from estrogen 

repression (Figure 3.1A). On the other hand, E2/ER could either activate or repress miRNA(s) 

resulting in inhibition of invasiveness; in this case, progesterone/PR-A could suppress regulation 

of the miRNAs by E2, resulting in rescue of invasiveness from estrogen repression (Figure 3.1B). 

To identify these putative miRNAs we used the following cell line models: T47D-A (ER+/PR-

A+/PR-B-null), T47D-B (ER+/PR-A-null/PR-B+), parental T47D (ER+/PR-A+/PR-B+), BT474 

(ER+/PR-A+/PR-B+) and ZR-75-1(ER+/PR-A+/PR-B+).  

To identify candidate miRNAs in the putative pathways illustrated in Figure 3.1A, we 

first undertook Affymetrix miRNA profiling to screen for miRNAs activated or repressed by 

PR-A but not PR-B at a low dose (1 nM) of R5020. This was accomplished by using Affymetrix 

miRNA profiling of miRNA changes in hormone-depleted T47D-A vs. T47D-B cells treated 

with R5020 followed by data validation by quantitative RT-PCR.  We found 5 miRNAs, that 

were activated by low dose progestin and PR-A (i.e., in T47D-A cells) but not by PR-B (i.e., in 

T47D-B cells). They are miR-6805-5p, miR-584-5p, miR-1228-5p, miR-501-5p and miR-668-

5p. These 5 miRNAs were also strongly up-regulated in other PR-A-positive cell lines including 
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parental T47D cells, BT474 cells and ZR-75-1 cells (Figure 3.1C; values in Table 3.1). The 

same Affymetrix miRNA analysis did not reveal any miRNAs that were repressed via PR-A 

alone. 

In contrast to progestin regulated miRNAs there is considerable literature data on 

miRNAs regulated by E2 acting through ER (not shown). All of these miRNAs, that were either 

activated or repressed by E2, were tested by real time RT-PCR analysis to identify miRNAs 

whose regulation by E2 was prevented by R5020 in T47D-A cells (i.e., via PR-A) but not in 

T47D-B cells (i.e., via PR-B). In this manner, ten miRNAs were identified; five among them 

(miR-17-5p, miR-20a-5p, miR-92a-3p, miR-106a-5p and miR-106b-5p) were activated by E2 

and five (miR-26b-5p, miR-27a-5p, miR-27b-5p, miR-200c-5p and Let7a-5p) were repressed by 

E2 in the absence of progestin/PR-A. The counter-regulation of these E2-regulated miRNAs by 

progestin/PR-A was also confirmed in the other PR-A-positive cell lines including parental 

T47D cells, BT474 cells and ZR-75-1 cells (Figure 3.1D and 3.1E; values in tables 3.2 and 3.3).  

Finally, to ensure that higher doses of progestin did not enable PR-B to mimic regulation of the 

15 miRNAs by PR-A, T47D-B cells were treated with vehicle, 1 nM E2, and 1nM E2 plus R5020 

(1nM-50nM). There was no progestin dose-dependent miRNA activation or opposition to E2 

regulation by PR-B (Figure 3.2).  

 

 

 



	
   80	
  

 

Figure 3.1: Possible pathways and candidate miRNAs that could be involved in the 
hormone-dependent cross talk of PR-A with ER that regulates invasiveness in breast 
cancer cells. Panel A and Panel B are schematic representations of possible pathways by which 
miRNAs could mediate the cross-talk of progestin (P)-bound PR-A with E2-bound ER to 
influence invasiveness and metastasis of luminal breast cancer cells. In Panels C-E, hormone 
depleted T47D-A, T47D-B, T47D, BT474, and ZR-75-1 cells at 30% confluence were treated 
with vehicle, 1 nM E2, 1 nM R5020 (P) or 1nM E2 plus1nM R5020 (E2 + P) for 48 h. Total RNA 
was then extracted and the relative levels of each miRNA indicated were quantified in all the 
samples. The miRNA profiling data is represented in the heat map in Panel C for miRNAs 
activated by progestin plus PR-A (even in the absence of E2), in Panel D for E2 activated 
miRNAs that were counter-regulated by progestin plus PR-A and in Panel E for E2 repressed 
miRNAs that were counter-regulated by Progestin plus PR-A. The data represents results from 
experimental triplicates. 
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Table 3.1 Data corresponding to heat map in Figure 3.1C 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

miRNA Cell	Line Vehicle	 Vehicle		(STDV) E2 E2	(STDV) R5020 R5020	(STDV) E2+R5020 E2+R5020	(STDV)
miR-668-5p T47DA 1 0.137 0.759 0.179 12.787 0.456 8.995 0.888
miR-668-5p T47DB 1 0.044 0.623 0.077 1.120 0.071 0.817 0.027
miR-668-5p T47D 1 0.101 0.689 0.108 11.109 0.086 14.911 1.534
miR-668-5p BT474 1 0.059 0.507 0.068 7.430 0.212 6.966 0.580
miR-668-5p ZR-75-1 1 0.109 0.326 0.038 5.531 0.248 7.757 0.370
miR-501-5p T47DA 1 0.115 0.570 0.011 2.665 0.014 2.131 0.195
miR-501-5p T47DB 1 0.043 0.452 0.008 1.183 0.022 0.410 0.040
miR-501-5p T47D 1 0.130 0.886 0.002 2.553 0.087 3.650 0.378
miR-501-5p BT474 1 0.009 0.854 0.015 3.056 0.069 3.269 0.427
miR-501-5p ZR-75-1 1 0.058 0.483 0.013 2.684 0.064 2.591 0.162
miR-1228-5p T47DA 1 0.235 0.333 0.168 8.806 1.515 11.414 2.080
miR-1228-5p T47DB 1 0.183 0.454 0.158 0.814 0.040 0.434 0.156
miR-1228-5p T47D 1 0.731 0.671 0.100 3.463 0.047 8.467 2.631
miR-1228-5p BT474 1 0.261 0.607 0.153 5.550 0.799 6.340 0.880
miR-1228-5p ZR-75-1 1 0.643 0.676 0.249 14.028 1.160 13.336 2.044
miR-584-5p T47DA 1 0.015 0.413 0.008 10.488 0.307 9.007 0.455
miR-584-5p T47DB 1 0.023 0.454 0.012 0.884 0.019 0.634 0.026
miR-584-5p T47D 1 0.066 0.650 0.039 9.094 0.292 7.867 0.520
miR-584-5p BT474 1 0.058 0.527 0.006 6.498 0.077 7.806 0.787
miR-584-5p ZR-75-1 1 0.036 0.463 0.011 11.993 0.010 11.784 0.809
miR-6805-5p T47DA 1 0.300 1.248 0.014 3.662 0.025 5.516 0.374
miR-6805-5p T47DB 1 0.372 0.401 0.263 0.759 0.138 0.279 0.245
miR-6805-5p T47D 1 0.338 0.520 0.359 2.766 1.261 7.552 2.352
miR-6805-5p BT474 1 0.794 0.365 0.364 3.895 1.628 2.909 0.458
miR-6805-5p ZR-75-1 1 0.516 0.657 0.211 7.338 2.672 7.158 2.117
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Table 3.2 Data corresponding to the heat map Figure 3.1D 
 
 
 
 
 
 
 
 
 
 
 
 
 

miRNA Cell	Line Vehicle Vehicle	(STDV) E2 E2	(STDV) R5020 R5020	(STDV) E2+R5020 E2+R5020	(STDV)
miR-17-5p T47DA 1 0.062 2.507 0.035 1.327 0.018 0.961 0.008
miR-17-5p T47DB 1 0.203 3.709 0.182 1.040 0.019 3.031 0.354
miR-17-5p T47D 1 0.009 4.162 0.178 2.035 0.050 1.098 0.056
miR-17-5p BT474 1 0.013 6.276 0.336 0.705 0.018 0.741 0.008
miR-17-5p ZR-75-1 1 0.023 5.567 0.051 1.066 0.040 0.858 0.039
miR-20a-5p T47DA 1 0.013 1.703 0.014 0.353 0.003 0.262 0.006
miR-20a-5p T47DB 1 0.195 4.368 0.286 1.253 0.086 3.572 0.222
miR-20a-5p T47D 1 0.075 4.048 0.056 1.009 0.034 0.795 0.012
miR-20a-5p BT474 1 0.038 7.425 0.413 0.835 0.016 0.870 0.010
miR-20a-5p ZR-75-1 1 0.034 5.527 0.102 1.102 0.008 0.839 0.015
miR-92A-3p T47DA 1 0.020 2.541 0.024 0.786 0.006 0.955 0.014
miR-92A-3p T47DB 1 0.141 3.217 1.325 1.259 0.472 2.921 3.323
miR-92A-3p T47D 1 0.046 4.651 0.123 1.445 0.072 1.168 0.022
miR-92A-3p BT474 1 0.029 6.591 0.043 1.062 0.037 1.253 0.011
miR-92A-3p ZR-75-1 1 0.021 5.882 0.046 1.129 0.011 0.713 0.009
miR-106A-5p T47DA 1 0.049 3.737 0.051 2.012 0.060 1.768 0.046
miR-106A-5p T47DB 1 0.090 4.436 0.204 1.161 0.111 3.779 0.344
miR-106A-5p T47D 1 0.019 4.966 0.070 1.137 0.015 0.773 0.053
miR-106A-5p BT474 1 0.038 7.581 0.291 1.075 0.015 1.026 0.020
miR-106A-5p ZR-75-1 1 0.062 8.964 0.116 1.335 0.052 1.120 0.021
miR-106b-5p T47DA 1 0.045 4.024 0.084 1.162 0.008 0.970 0.019
miR-106b-5p T47DB 1 0.048 3.217 0.515 1.259 0.086 2.921 0.202
miR-106b-5p T47D 1 0.064 1.362 0.023 0.420 0.003 0.311 0.003
miR-106b-5p BT474 1 0.013 3.095 0.018 0.414 0.024 0.377 0.006
miR-106b-5p ZR-75-1 1 0.022 2.404 0.010 0.470 0.013 0.408 0.002
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Table 3.3 Data corresponding to the heat map in Figure 3.1E 
 
 
 
 
 
 
 

 

Figure 3.2. Higher doses of progestin do not enable PR-B to mimic the actions of PR-A on 15 
miRNAs. Hormone depleted T47D-B cells at 30% confluence were treated with vehicle, 1 nM E2, 
1 nM R5020 (P) and 1nM E2 plus 1 nM, 10 nM or 50 nM R5020 for 48 h. Total RNA was then 
extracted and the relative levels of each miRNA indicated were quantified. The miRNA profiling 
data is represented in the heat map. 
 

miRNA Cell	Line Vehicle Vehicle	(STDV) E2 E2	(STDV) R5020 R5020	(STDV) E2+R5020 E2+R5020	(STDV)
miR-26b-5p T47DA 1 0.074 0.204 0.004 0.820 0.067 0.973 0.021
miR-26b-5p T47DB 1 0.033 0.545 0.007 1.403 0.030 0.665 0.022
miR-26b-5p T47D 1 0.056 0.501 0.018 0.978 0.469 1.031 0.067
miR-26b-5p BT474 1 0.067 0.694 0.049 1.240 0.017 1.168 0.101
miR-26b-5p ZR-75-1 1 0.087 0.350 0.046 1.201 0.027 1.795 0.127
miR-27a-5p T47DA 1 0.305 0.212 0.044 3.399 0.252 2.362 0.253
miR-27a-5p T47DB 1 0.102 0.603 0.144 0.997 0.149 0.544 0.070
miR-27a-5p T47D 1 0.096 0.508 0.097 2.280 0.602 5.320 1.091
miR-27a-5p BT474 1 0.258 0.267 0.238 1.004 0.284 1.440 0.336
miR-27a-5p ZR-75-1 1 0.261 0.233 0.017 0.824 0.131 0.793 0.088
miR-27b-5p T47DA 1 0.086 0.167 0.059 0.828 0.197 0.874 0.129
miR-27b-5p T47DB 1 0.033 0.516 0.010 0.928 0.147 0.600 0.031
miR-27b-5p T47D 1 0.032 0.487 0.010 1.289 0.067 1.033 0.036
miR-27b-5p BT474 1 0.150 0.376 0.125 1.177 0.303 1.130 0.145
miR-27b-5p ZR-75-1 1 0.073 0.046 0.012 0.714 0.015 0.683 0.034
miR-200c-5p T47DA 1 0.265 0.343 0.069 1.495 0.087 1.188 0.070
miR-200c-5p T47DB 1 0.085 0.600 0.084 1.583 0.153 0.756 0.023
miR-200c-5p T47D 1 0.138 0.504 0.039 2.533 0.038 1.514 0.985
miR-200c-5p BT474 1 0.023 0.272 0.034 0.925 0.078 1.123 0.313
miR-200c-5p ZR-75-1 1 0.139 0.282 0.029 1.260 0.024 1.790 0.069
Let7a-5p T47DA 1 0.055 0.216 0.002 1.519 0.012 1.258 0.056
Let7a-5p T47DB 1 0.065 0.527 0.004 1.830 0.120 0.782 0.026
Let7a-5p T47D 1 0.026 0.642 0.011 1.392 0.035 1.177 0.034
Let7a-5p BT474 1 0.065 0.577 0.016 1.207 0.079 0.888 0.005
Let7a-5p ZR-75-1 1 0.026 0.562 0.008 1.898 0.047 1.812 0.052

E2	repressed	miRNAs	expression
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E2 (1nM)
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3.3.2 Regulation of micro RNAs by PR-A is sensitized to lower doses of progestin by 

overexpression of PR-A to a level observed in tumors. 

We have previously reported that compared to T47D cells, in the isogenic recombinant 

T47-D-PR-A++ cells that express a 3.6-fold higher level of PR-A (Figure 3.3E), lower doses of 

progesterone can rescue invasiveness from estrogen repression (Chapter 2). Among 53 primary 

tumor specimens examined by western blot, 13 specimens (~ 25 percent) showed levels of PR-A 

expression that were comparable to or higher than that in T47D-PR-A++ cells (Figure 3.3A), 

confirming the clinical relevance of this isogenic model. In T47DA++ cells, every one of the above 

15 miRNAs was optimally regulated at or below 0.2 nM R5020 whereas the parental T47D cells 

required 0.5 – 1 nM R5020 for the same level of regulation (increase or decrease in the absence or 

presence of 1nM E2) (Figure 3.3B-D; values in Table 3.4). This level of hyper-sensitization to 

progestin of miRNA regulation in T47D-PR-A++ cells corresponds to the previously reported 

progestin dose dependence of invasiveness of T47D-PR-A++ cells vs. parental T47D cells (157). 

3.3.3 miR-92a-3p and miR-26b-5p are functionally linked to hormonal control of 

invasiveness. 

We tested the ability of E2 to repress invasiveness or for R5020 to rescue invasiveness 

following inhibition of each of the above 15 miRNAs in T47D and BT474 cells. Inhibition was 

confirmed by reduction in target miRNA 72h post-transfection, although residual miRNA-

inhibitor duplexes may also be detected.   
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Figure 3.3: PR overexpression in primary luminal breast tumor specimens and the effect 
of PR-A overexpression on hormone sensitivity of miRNA regulation. Whole cell lysates 
from primary luminal breast tumors from 53 patients together with whole cell lysates from T47D 
PR-A++ cells were analyzed on western blots that were probed for PR and GAPDH (Panel A). 
Hormone-depleted T47D parental cells and T47D PR-A++ cells at 30% confluence were treated 
with vehicle, 1nM E2 or 1nM E2 plus a range (0.05nM – 1nM) of concentrations of R5020 (P) 
for 48h. Total RNA was then extracted and the relative levels of each miRNA indicated were 
quantified in all the samples. The miRNA profiling data is represented in the heat map in Panel 
B for miRNAs activated by progestin plus PR-A (even in the absence of E2), in Panel C for E2 
activated miRNAs that were counter-regulated by progestin plus PR-A and in Panel D for E2 
repressed miRNAs that were counter-regulated by progestin plus PR-A. The data represents 
results from experimental triplicates. In Panel E, whole cell lysates from T47D cells and T47D 
PR-A++ cells were probed by western blot for PR and GAPDH.  

T47D
T47D 

PR-A++ T47D
T47D 

PR-A++ T47D
T47D 

PR-A++ T47D
T47D 

PR-A++ T47D
T47D 

PR-A++

Vehicle

1nM E2

1nM E2+ 0.05nM P

1. nM E2 +0.2nM P

1nM E2 +0.5 nM P

1nM E2+1nM P

T47D
T47D 

PR-A++ T47D
T47D 

PR-A++ T47D
T47D 

PR-A++ T47D
T47D 

PR-A++ T47D
T47D 

PR-A++ T47D
T47D 

PR-A++ T47D
T47D 

PR-A++ T47D
T47D 

PR-A++ T47D
T47D 

PR-A++ T47D
T47D 

PR-A++

Vehicle

1nM E2

1nM E2+ 0.05nM P

1. nM E2 +0.2nM P

1nM E2 +0.5 nM P

1nM E2+1nM P

miR-1228-5p miR-584-5P miR-668-5P miR-501-5P miR-17-5P miR-20a-5P miR-92a-3P miR-106a-5P miR-106b-5P

Progestin Activated E2 Activated

miR-6805-5P

miR-200c-5p miR-27a-5p miR-27b-5p Let-7a-5p miR-26b-5p

E2 Repressed

B.

T47D T47D
PR-A++

PR-B

PR-A

GAPDH

E.

C.

D.

T47D
PR-A++

PR-B

PR-A

GAPDH

A.
Patient Tumors

1    2    3     4   5    6    7     8   9   10   11  12  13 14   15  16  17  18  19   20   21  22  23  24   25  26

27  28  29  30  31  32  33  34  35   36  37  38  39 40  41 42  43   45   46  47  48  49   50  51  52  53

T47D
PR-A++

T47D
PR-A++

T47D
PR-A++

PR-B

PR-A

GAPDH

Patient Tumors

Patient Tumors Patient Tumors

magnitude of change    0   0.4   0.8   1.2   1.6   2   2.4   2.8   3.2   3.59   >3.99  
greater than zero                                                          

less than zero                                                          
	

0 1.0 5.0

0 0.5 1.0

magnitude of change    0   0.4   0.8   1.2   1.6   2   2.4   2.8   3.2   3.59   >3.99  
greater than zero                                                          

less than zero                                                          
	

Relative Expression

Relative Expression



	
   86	
  

 
 
 
 

 
 
Table 3.4 Data corresponding to heat maps in Figure 3.2B -D 
 

Cell	Line
miRNA miR-1228-5P miR-584-5P miR-668-5P miR-501-5P miR-6823-5P miR-1228-5P miR-584-5P miR-668-5P miR-501-5P miR-6823-5P

V 1 1 1 1 1 1 1 1 1 1
1nME 1.0377 0.6988 1.2414 1.3504 1.6888 1.1959 0.9914 1.2280 1.1559 1.3404

1nM	E+0.05nM	P 1.6626 0.7308 3.1849 3.8049 1.6862 1.1345 1.1206 1.3647 1.5847 1.3384
1nM	E+0.2nM	P 5.1131 3.0360 4.4787 6.1258 3.6560 1.1678 1.2877 1.6620 1.5874 1.8280
1nM	E+0.5nM	P 4.5812 3.8757 5.3508 7.7104 7.2341 2.0791 1.6298 1.8000 2.4149 2.1418
1nM	E+1nM	P 5.5846 3.9295 10.6955 11.2391 7.3695 5.4435 4.1027 3.2645 4.2015 5.5063

Cell	Line
miRNA miR-1228-5P miR-584-5P miR-668-5P miR-501-5P miR-6823-5P miR-1228-5P miR-584-5P miR-668-5P miR-501-5P miR-6823-5P

V 0.2821 0.2511 0.2605 0.0327 0.2895 0.1909 0.3371 0.0768 0.0472 0.1406
1nME 0.0240 0.2530 1.3226 0.4523 0.3514 0.0262 0.2002 0.1574 0.0405 0.8399

1nM	E+0.05nM	P 1.5487 0.2511 1.0117 1.4731 0.2774 0.0200 0.1436 0.3878 0.6602 0.5661
1nM	E+0.2nM	P 0.7863 0.8540 1.2262 0.4526 0.1742 0.0156 0.3212 0.7843 0.5650 0.6601
1nM	E+0.5nM	P 1.4848 1.1721 0.7908 0.8417 1.0526 0.7158 0.7465 0.7117 0.0576 1.1079
1nM	E+1nM	P 0.2519 0.6110 2.4907 0.1754 1.0388 1.8445 0.8914 1.1964 0.4397 0.7762

Cell	Line
miRNA miR-200c-5p miR-27a-5p miR-27b-5p LET7a miR-26b-5p miR-200c-5p miR-27a-5p miR-27b-5p LET7a-5p miR-26b-5p

V 1 1 1 1 1 1 1 1 1 1
1nME 0.2120 0.4680 0.2290 0.4142 0.3212 0.2368 0.2891 0.1382 0.1937 0.1394

1nM	E+0.05nM	P 0.2213 0.3612 0.2089 0.3256 0.3197 0.5974 0.6471 0.2833 0.1142 0.1767
1nM	E+0.2nM	P 1.3835 1.0420 1.1593 1.7439 1.0006 0.4183 0.3477 0.3214 0.2216 0.1692
1nM	E+0.5nM	P 1.0297 1.5235 0.7375 1.2017 0.7361 1.3036 0.5882 1.2017 0.8695 0.3253
1nM	E+1nM	P 0.9201 2.0322 1.0644 1.2943 0.7032 0.9459 1.5867 0.8708 0.8190 0.6338

Cell	Line
miRNA miR-200c-5p miR-27a-5p miR-27b-5p LET7a miR-26b-5p miR-200c-5p miR-27a-5p miR-27b-5p LET7a-5p miR-26b-5p

V 0.0500 0.0329 0.1349 0.0659 0.0566 0.0789 0.1228 0.1277 0.0258 0.0516
1nME 0.0344 0.0634 0.0475 0.0102 0.0054 0.0148 0.0295 0.0379 0.0095 0.0042

1nM	E+0.05nM	P 0.0104 0.1058 0.0166 0.0014 0.0101 0.0652 0.0524 0.0264 0.0418 0.0409
1nM	E+0.2nM	P 0.0473 0.0961 0.0626 0.0255 0.0540 0.0171 0.0346 0.3291 0.0092 0.0291
1nM	E+0.5nM	P 0.0391 0.0789 0.1241 0.0303 0.0396 0.0562 0.0335 0.1603 0.0117 0.0212
1nM	E+1nM	P 0.0437 0.0866 0.1258 0.0121 0.0039 0.0446 0.0789 0.0583 0.0286 0.0557

Cell	Line
miRNA miR-17-5p moR-20a-5p miR-92a-3p miR-106a-5p miR-106b-5p miR-17-5p moR-20a-5p miR-92a-3p miR-106a-5p miR-106b-5p

V 1 1 1 1 1 1 1 1 1 1
1nME 7.823 4.965 4.436 4.261 5.504 6.306 4.054 3.786 3.116 2.516

1nM	E+0.05nM	P 7.544 4.582 3.952 3.670 5.007 5.190 3.508 2.639 2.897 2.970
1nM	E+0.2nM	P 1.514 1.247 1.284 1.147 1.410 4.090 2.038 2.036 2.095 2.794
1nM	E+0.5nM	P 1.206 0.911 0.921 0.656 1.274 1.800 1.116 0.728 1.013 0.916
1nM	E+1nM	P 1.413 0.917 0.921 0.454 1.180 1.633 0.887 0.718 0.653 0.703

Cell	Line
miRNA miR-17-5p moR-20a-5p miR-92a-3p miR-106a-5p miR-106b-5p miR-17-5p moR-20a-5p miR-92a-3p miR-106a-5p miR-106b-5p

V 0.1333 0.2080 0.2075 0.0180 0.0665 0.0790 0.2086 0.4110 0.0202 0.0616
1nME 0.1146 0.1938 0.5273 0.0674 0.1015 0.1690 0.3245 0.9685 0.1023 0.1320

1nM	E+0.05nM	P 0.0829 0.2934 0.0738 0.0692 0.1176 0.4861 0.0736 0.0759 0.1628 0.0178
1nM	E+0.2nM	P 0.1163 0.0626 0.1987 0.0140 0.0627 0.0697 0.3214 0.0539 0.0592 0.2230
1nM	E+0.5nM	P 0.0810 0.1299 0.1858 0.0136 0.0506 0.1451 0.1580 0.0087 0.0510 0.0634
1nM	E+1nM	P 0.1902 0.2831 0.0502 0.0136 0.0342 1.4383 0.1822 0.0112 0.0330 0.0265

Progestin	Activated	miRNAs	Realtive	Expression

Progestin	Activated	miRNAs	Standard	Deviation
T47D	PR-A	++ T47D

E2	Repressed	miRNAs	Realtive	Expression

T47D	PR-A	++ T47D

E2	Activated	miRNAs	Realtive	Expression

T47D	PR-A	++ T47D

E2	Repressed	miRNAs	Standard	Deviation
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Figure 3.4: Effect of inhibiting miRNAs hormonally regulated by PR-A and ER on 
invasiveness of luminal breast cancer cells. Hormone-depleted T47D and BT474 cells were 
transfected with either control Inhibitor (I-Ctrl) or the indicated miRNA specific inhibitor. The 
inhibitors are indicated in the Figure by using the prefix ‘I’ for the corresponding target miRNA. 
Twenty-four hours later, cells were treated for 48 h with vehicle, E2 (1nM), or E2 (1nM) + R5020 
(1nM) as indicated. Total RNA was then extracted and the relative levels of each miRNA 
indicated were quantified in all the samples. Histograms show the miRNA expression data for 
progestin activated miRNAs (Panel A), E2 activated miRNAs (Panel D) and E2 repressed 
miRNAs (Panel G). In parallel, the treated cells were subjected to the trans-well matrigel invasion 
assay (Panels B, C, E, F, H and I). One-way ANOVA with Post-hoc unpaired t-test was 
performed on triplicate treatment sets and P-values are indicated. 
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We first inhibited each of the progestin/PR-A activated (but not E2-regulated) miRNAs, 

miR-6805-5p, miR-584-5p, miR-1228-5p, miR-501-5p and miR-668-5p (Figure 3.4A). 

Invasiveness was unaffected in all cases in the presence of E2 and R5020 (Figure 3.4B and 3.4C), 

indicating that these miRNAs do not have a role in hormonal cross-talk between progestin/PR-A 

and E2/ER that influences invasiveness.             

Next, we inhibited the five miRNAs whose activation by E2 was blocked by progestin 

(miR-17-5p, miR-20a-5p, miR-92a-3p, miR-106a-5p and miR-106b-5p) (Figure 3.4D). 

Inhibition of miR-92a-3p alone abrogated the ability of E2 to repress invasiveness in both T47D 

and BT474 cells (Figure 3.4E and 3.4F). Therefore, the ability of progestin/PR-A to block 

activation of miR-92a-3p by E2 must be critical for the functional cross-talk of progesterone via 

PR-A.  

Finally, we inhibited the five miRNAs whose repression by E2 was blocked by progestin 

(miR-26b-5p, miR-27a-5p, miR-27b-5p, miR-200c-5p and Let7a-5p) (Figure 3.4G). Inhibition 

of miR-26b-5p alone abrogated the ability of progestin to rescue invasiveness from E2 repression 

in both T47D and BT474 cells (Figure 3.4H and 3.4I). Therefore, the ability of progestin/PR-A to 

block repression of miR-26b-5p by E2 must also be a critical mechanism of cross-talk of 

progesterone via PR-A in the rescue of invasiveness.  

3.3.4 miR-92a-3p and miR-26b-5p regulate genes associated with invasiveness and metastasis 

in luminal breast cancer cells   

To further study the roles of miR-92a-3p and miR-26b-5p in relation to gene expression 

and metastasis, we generated two types of pooled (to avoid clonal bias) stable recombinant BT474 

cells. In one case, miR-92a-3p (E2 activated miRNA) was constitutively expressed (‘miR-92a-3p-

On’ cells in Figure 3.5A). In the other case, miR-26b-5p (E2 repressed miRNA) was constitutively 
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inhibited due to expression of a miR-26b-5p inhibitor (‘miR-26b-5p-Off’ cells in Figure 3.5B). 

Hormonal regulation of miR-26b-5p and miR-92a-3p was unaffected in miR-92a-3p-On cells and 

miR-26b-5p-Off cells, respectively, indicating these two miRNAs are regulated independently 

(Figure 3.5A and 3.5B). Both the miR-92a-3p-On cells (Figure 3.5C) and the miR-26b-5p-Off 

cells (Figure 3.5D) showed repressed invasiveness even in the absence of hormones, similar to the 

E2 treated control cells (harboring Lenti-miR-blank plasmid). Moreover, the ability of R5020 to 

rescue invasiveness was lost in both the miR-92a-3p-On cells (Figure 3.5C) and in the miR-26b-

5p-Off cells (Figure 3.5D), in contrast to the control cells. Next, the miR-92a-3p-On and miR-26b-

5p-Off cells, treated with both E2 and R5020, were examined for quantitative changes in the 

metastasis/invasion transcriptome, using a commercial pathway cDNA TaqMan PCR array. When 

compared to the control cells, both the recombinant cells showed broad and partially overlapping 

increases in the expression of cellular adhesion molecules and inhibitors of metastasis but not a 

remarkable effect on the expression of genes known to promote metastasis (Figure 3.5E; values in 

Table 3.5). Therefore, miR-92a-3p and miR-26b-5p are part of independently regulated but 

convergent pathways through which E2 controls genes that have functional roles in metastasis. It 

follows that the ability of PR-A to oppose regulation of these miRNAs by E2 enables progesterone 

to induce a gene regulatory pattern that supports metastasis. 
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Figure 3.5: Roles of miR-92a-3p and miR-26b-5p in regulation of invasiveness and metastasis 
genes. Control BT474 cells (harboring Lenti-miR-Blank plasmid) and isogenic recombinant cells 
constitutively expressing miR-92a-3p mimic (BT474 miR-92a-3p-On cells) or stably expressing 
miR-26b-5p inhibitor (BT474 miR-26b-5p-Off cells) were hormone depleted and treated with 
vehicle or 1 nM E2, 1 nM R5020 or the combination of E2 and R5020 for 48 h. Total RNA was 
then isolated and miR-92a-3p  (Panel A) and  miR-26b-5p (Panel B) were quantified. In parallel, 
the trans-well invasion assay was performed on the treated BT474 miR-92a-On cells (Panel C) 
and BT474 miR-26b-Off cells (Panel D) together with the parental control cells. In Panel E, total 
RNA was isolated from BT474 control, miR-92a-On and miR-26b-Off cells treated with1 nM E2 in 
combination with 1nM R5020 for 48 h and analyzed using the Taqman metastasis transcriptome 
array. The transcriptome expression profile is shown in the heat map. 
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Table 3.5 Data corresponding to heat map in Figure 4E. 

 

 

 

 

 

GENE Fold Ctrl
Fold BT474-92a-

ON
Fold BT474 26B-

Off
CD44 1 2.316416999 2.574727833
CDH1 1 2.025666086 2.384783942
CEACAM1 1 4.845103232 5.42203053
CTNNA1 1 7.106474336 8.400452225
DCC 1 4.958002985 44.31955593
FAT1 1 9.395387515 16.2554325
FN1 1 1.578332857 5.461599989
ITGB3 1 21.29900314 15.36544899
LAMB1 1 6.696123735 3.480976036
MCAM 1 14.83712831 7.093445645
NCAM1 1 2.723552889 7.633145435
NF2 1 3.432347888 8.139986046
PECAM1 1 1.950441098 2.064285982
PNN 1 4.776060885 3.502094472
EPCAM 1 12.85159964 8.040079562
TPBG 1 8.611349358 2.909127387
BRMS1 1 2.298133076 2.404106858
CD82 1 2.262846516 2.365688268
DAPK1 1 15.38801379 18.52161213
FGFR4 1 2.171072951 4.718021745
HTATIP2 1 5.600129858 11.83932987
KISS1 1 3.663169991 1.108748001
KISS1R 1 3.500650202 0.864848727
MTSS1 1 2.708765346 5.514740787
NME1 1 3.39929129 7.445899935
SERPINB5 1 2.196839365 2.576055727
SMAD2 1 5.694093453 3.994134299
SMAD4 1 6.143653096 3.756083873
TIMP1 1 5.899718246 1.913834685
TIMP2 1 2.966268703 0.984000086
TIMP4 1 5.502287445 10.74901235
TNFSF10 1 10.75559405 3.654028186
CTSK 1 0.621476427 0.293877228
CXCL12 1 1.01222664 1.448997555
CXCR4 1 11.3978419 13.94306207
FXYD5 1 3.52564289 2.506085504
HPSE 1 1.218603449 0.958312208
MET 1 0.916107629 1.171739803
MGAT5 1 1.2646 1.259167763
MMP1 1 1.01222664 0.975231364
MMP14 1 1.047621586 1.550015227
MMP9 1 1.170272731 6.45689996
MTA1 1 1.186129555 0.942979457
MTA2 1 1.218603449 1.799029205
RHOC 1 1.482436467 18.48372069
S100A4 1 1.488414392 1.05132146
SNCG 1 1.578332857 0.892392677
TIAM1 1 1.636131835 1.331492053
TMPRSS4 1 1.680661473 1.523832323
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An additional relevant question was whether estrogen and/or progesterone could at least 

partially regulate epithelial vs mesenchymal characteristics of luminal breast cancer cells, although 

it has been well established that ER expression confers the epithelial phenotype. Using a 

commercial EMT panel antibody kit and BT474, T47D, and ZR-75-1 cell lines, we observed no 

change in established epithelial/mesenchymal markers when cells were treated individually or in 

combination with E2 and R5020 (Figure 3.6A and 3.6B) in contrast to depletion of the ER apo-

protein (Figure 3.6C). Therefore, it was irrelevant to explore EMT in the context of hormonal 

regulation of miR-92a-3p or miR-26b-5p.           

3.3.5 miR-92a-3p and miR-26b-5p profoundly impact metastasis in vivo   

Studies of hormonal regulation of metastasis of model luminal breast tumor xenografts in 

mice is technically challenging for the following reasons. First, estrogen needs to always be present 

for the tumors to grow, optimally administered to the mice through implanted slow release, low 

dose E2 pellets; therefore, the hormone levels cannot be modulated. Second, the constant exposure 

to even the low dose of E2 needed to support tumor growth causes urinary retention and cystitis in 

the mice, limiting the duration of the experiments to about 2-3 weeks. Finally, luminal breast 

tumors are inherently less aggressive and metastasize relatively slowly, so that it is not possible to 

histologically detect micro-metastases within the 2-3-week duration of the experiments. We 

overcame these problems in the current study design that investigated whether modulation of 

miRNAs 92a-3p and 26b-5p could govern metastasis in mice bearing luminal breast tumor 

xenografts.  
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Figure 3.6. Hormonal regulation of invasiveness is not mediated by epithelial to 
mesenchymal transition (EMT). BT474, T47D and ZR-75-1 cells cells were treated with vehicle 
(V), E2 (1nM ), R5020 (P) (1nM)), E2+R5020 (E+P) (each at 1nM) for 48 h and  and total protein 
was analyzed by western blot for epithelial and mesenchymal markers (Panel A). A similar 
analysis was performed on T47D cells using hormone concentrations representing the follicular 
phase (4 nM E2, 4 nM P) and luteal phase (4 nM E2, 50 nM P) of the menstrual cycle (Panel B). In 
no case did hormones induce EMT. BT474, T47D, and ZR-75-1 cells were hormone-depleted, 
transfected with either Control siRNA or ER siRNA  and cell lysates were analyzed by western 
blot for epithelial and mesenchymal markers 72 h post-transfection (Panel C); loss of the ER apo-
protein induced EMT.  
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Figure 3.7 In BT474 PR-shRNA cells, progestin cannot rescue invasiveness from estrogen 
repression. BT474 PR-shRNA cells show depletion of PR mRNA (Panel A, left) and loss of PR 
protein (western blot in Panel A, right) compared with the control BT474 cells. In the trans-well 
invasion assay, E2 (1 nM) suppresses invasiveness even in the presence of R5020 (1 nM) in BT474 
PR-shRNA cells (Panel B, right). In contrast, in the control BT474 cells, R5020 rescues 
invasiveness from E2 repression (Panel B, left). 
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We used as xenograft models, the recombinant BT474 cells in which cross-talk between 

E2/ER and progestin/PR-A affecting invasiveness was disrupted by constitutive expression of 

miR-92a-3p (miR-92a-3p-On cells discussed above) or constitutive inhibition of miR-26b-5p 

(miR-26b-5p-Off cells discussed above) for comparison with the control cells. As a metastasis 

assay validation tool, we also generated and used as xenografts, pooled (to avoid clonal bias) stable 

recombinant BT474 cells in which PR was knocked down (BT474 PR-shRNA cells); in these cells, 

we confirmed that the PR knockdown resulted in loss of the ability of R5020 to rescue in vitro 

invasiveness from E2 regulation (Figure 3.7). The previously established range of plasma estrogen 

in mice implanted the slow release E2 pellets is 1.8 - 4.8 nM (353,354). The established range of 

plasma progesterone in mice on commercial diet is 3.2 - 5.6 nM (354). To measure metastasis of 

subcutaneous implantation of the xenografts in the right flank, we measured tumor cell infiltration 

in the ipsilateral axillary lymph nodes by the sensitive assay of measuring mRNA for human 

GAPDH present in the lymph nodes, 14 days after implanting the xenografts. The control BT474 

cells consistently infiltrated the lymph node whereas depletion of PR in these cells showed 

virtually complete suppression of lymph node infiltration, validating the metastasis assay (Figure 

3.8A and 3.8B). In mice bearing xenografts of miR-92a-3p-On cells (Figure 3.8C and 3.8D) or 

miR-26b-5p-Off cells (Figure 3.8E and 3.8F), metastasis was similarly dramatically suppressed, 

demonstrating that the profound effects of changing the levels of these two miRNAs on cellular 

invasiveness observed above extend to their effects on metastasis in vivo.  
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Figure 3.8: Roles of miR-92a-3p and miR-26b-5p in regulating metastasis in an in vivo 
lymph node infiltration model. BT474 control cells (Panels A-F), BT474 PR-shRNA cells 
(Panels A and B), BT474 miR-92a-3p-On cells (Panels C and D) and BT474-miR-26b-5p-Off 
(Panels E and F) were implanted subcutaneously in the right flank to form tumor xenografts in 
athymic female nude mice (8 mice per group) that had been implanted with slow release, low dose 
estradiol pellets. Mice were sacrificed at 2 weeks, and the proximal ipsilateral lymph node (right 
axillary) was harvested. Total RNA was extracted from lymph nodes, and high efficiency species 
specific Taqman probes for human and mouse GAPDH were used to measure relative degrees of 
lymph node infiltration by the human tumor cells.  Using the Ct values for human GAPDH as 
Target and mouse GAPDH as endogenous reference, the human cell infiltration into mouse lymph 
node was calculated by the ∆∆Ct method with a calibrator ∆Ct of 10.79 in all cases (Panels A, C 
and E). Tumor mass was measured on the day of sacrifice (Panels B, D, and F). Statistical 
analysis using Student’s unpaired t-test was used for two group comparisons and P-values are 
indicated.  
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The foregoing results strongly support the premise that positive (for miR-92a-3p) or 

negative (for miR-26b-5p) regulation of these two miRNAs by E2 causes suppression of not only 

invasiveness but also metastasis of luminal breast cancer cells and that by extension of this 

reasoning, the restoration of these miRNAs to their original levels (as in the control tumors) by 

progesterone via PR-A must support metastasis. 

3.3.6 In primary human luminal breast tumors PR-A expression correlates negatively with 

miR-92a-3p and positively with miR-26b-5p  

Using total RNA samples extracted from 53 ER+/PR+ primary luminal breast tumor 

specimens, the expression profile of PR-A mRNA was obtained and compared with the expression 

profiles of miR-92a-3p and miR-26b-5p obtained from the same RNA preparations. Despite the 

inherent and variable heterogeneity among the tumor specimens due to a variable ratio of tumor 

cells to stroma, miR-92a-3p correlated negatively with PR-A mRNA with an r = -0.272 (p=0.004) 

(Figure 3.9) and miRNA-26b-5p correlated positively with PR-A mRNA with r = 0.342 (p=0.001) 

(Figure 6B). Moreover, as shown in the heat map in Figure 3.9C, the inverse expression trends of 

the two miRNAs generally occurred within the same samples. Finally, relative PR-A protein levels 

among the tumors generally corresponded to the relative PR-A mRNA levels (Figure 3.9D) with 

the caveat that the protein was measured only semi-quantitatively by non-linear densitometry from 

western blots (Figure 2A) and was also necessarily extracted from a different part of each tumor 

specimen than RNA.  
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3.4 Discussion 

In aggressive cancers including hormone receptor-negative breast cancers, at least the early 

stages of metastasis have likely already occurred at the time of detection of the primary tumor. In 

contrast, luminal breast tumors are better differentiated and relatively indolent, metastasize much 

slower and offer a wider window of time for prediction of metastatic potential and for effective 

intervention to suppress metastasis. This study has elucidated a critical role for two miRNAs in 

enabling progesterone to oppose specific actions of estrogen, thus promoting invasiveness and 

metastasis of luminal breast cancer cells. The mechanism entails a central role for the short PR 

isoform A in mediating this effect of progesterone. We have previously shown that PR-A induces 

invasiveness in the entire range of circulating hormone levels covering pre- and post-menopausal 

years and that overexpression of PR-A further sensitizes the cells to progesterone levels in the low 

end of its post-menopausal plasma range, an observation that also held true for the response of the 

two miRNAs to progesterone. In this study, the discovery of miRNAs that mediate the cross-talk 

between PR-A and ER that results in invasiveness was crucial in developing a study design that 

demonstrated the profound role of this cross-talk in supporting metastasis in vivo. 

None of the five miRNAs identified in this study as being regulated by progesterone in a 

PR-A isoform-specific, but estrogen-independent, manner affected the ability of estrogen to 

suppress invasiveness. However, two of ten miRNAs that were regulated by estrogen in a manner 

that was opposed by progesterone, exclusively via isoform A of PR, had profound roles in 

invasiveness and metastasis. They are miR-92a-3p (activated by estrogen) and miR-26b-5p 

(repressed by estrogen). We demonstrated that regulation of these two miRNAs enabled estrogen 

to suppress invasiveness and blocking of this regulation by progesterone via PR-A restored 

invasiveness. Further, up-regulation of miR-92a-3p and down-regulation of miR-26b-5p induced 
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changes in invasion and metastasis pathway genes that were similar in part but both trending 

toward a non-metastatic phenotype and also resulted in suppression of metastasis in vivo. Notably 

miR-92a-3p and miR-26b-5p mediate independent but convergent pathways of hormonal control 

of invasion and metastasis. The ability of estrogen to effectively suppress invasiveness even at 

very low concentrations (~ 0.01 nM)(157) may therefore be explained by the combined effects of 

sub-optimal regulation of these two miRNAs by estrogen.  

We observed relative overexpression of PR-A in about 25 percent of primary luminal breast 

tumors obtained from patients. When, in an isogenic cell line model, PR-A was overexpressed to 

such a level, the reduced progestin concentration required for optimal induction of invasiveness 

also optimally suppressed regulation of miR-92a-3p and miR-26b-5p by estrogen. The clinical 

relevance of this functional effect of PR-A overexpression is further supported by the negative 

correlation of miR-92a-3p expression and positive correlation of miR-26b-5p expression with PR-

A expression in clinical tumors, notwithstanding the inherent heterogeneity in tumor vs. stromal 

content in the specimens.      

Consistent with our findings, miR-92a expression is inversely correlated to tumor grade, 

positive lymph node status and recurrence-free survival in breast cancer (355,356). Curiously, 

miR-92a is part of the miR-17∼92 cluster that supports oncogenesis and cancer progression in 

many other cell types (356,357) demonstrating cell type-specific differences in the actions of miR-

92a. miR-26a and miR-26b are both repressed by estrogen via stimulation of c-MYC expression 

resulting in the proliferative effect of estrogen in breast cancer cells (358). However, it is only 

miR-26b that is of interest in our study as the repression of miR-26a was opposed by progestin 

through PR-B as well as PR-A. Relatively little is known about the role of miR-26b in invasiveness 

and metastasis of breast cancer. In mesenchymal stem cells, miR-26b induces migration by 
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activating focal adhesion kinase (359) whereas, in bladder cancer, miR-26b inhibits migration and 

invasion (360). In the case of luminal breast cancer, our studies show that the ability of 

progesterone plus PR-A to prevent suppression of miR-26b-5p by estrogen leads to increased 

invasion and metastasis, again underscoring cell type specific differences in the actions of miR-

26b-5p.   

In conclusion, our model systems have established narrow miRNA-mediated pathways of 

cross-talk in hormone-dependent signaling between ER and PR-A which may account for the 

variable invasive and metastatic potential of primary luminal breast tumors. The relative 

expression/activity of PR-A may be a particularly significant determinant of the extent of this 

cross-talk, especially in the context of post-menopausal plasma hormone levels. Therefore, this 

study may have established a fundamental physiological mechanism governing metastatic spread 

of luminal breast cancer. Additionally, miRNA signatures of hyperactive PR-A have the potential 

to serve as predictors of clinical progression of luminal breast cancer. Moreover, miRNAs 

identified in this study that mediate functionally relevant cross-talk between PR-A and ER may 

reveal target pathways for interventions to suppress progression of luminal breast cancer that 

would avoid disruption of hormone signaling in normal tissues.         
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CHAPTER 4- CONCLUSION 

Our studies have been described in this thesis in two parts entitled “Role of the short 

isoform of the progesterone receptor in breast cancer cell invasiveness at estrogen and 

progesterone levels in the pre- and post-menopausal ranges” and “The Short Progesterone 

Receptor Isoform Supports Invasiveness and Metastasis of Luminal Breast Cancer by Suppressing 

Regulation of Critical Micro RNAs by Estrogen”. The results of these two studies are summarized 

below. 

Role of the short isoform of the progesterone receptor in breast cancer cell 

invasiveness at estrogen and progesterone levels in the pre- and post-menopausal ranges.  

Overexpression of PR-A is a negative prognosticator for ER+ breast cancer but in vitro studies 

have implicated PR-B in progestin-induced invasiveness. As E2 is known to suppress invasiveness 

and tumor progression and as the in vitro studies were conducted in models that either lacked ER 

or excluded estrogen, we examined the role of PR isoforms in the context of estrogen signaling. 

E2 (< 0.01nM) strongly suppressed invasiveness in various ER+ model cell lines.  At low (< 1nM) 

concentrations, progestins completely abrogated inhibition of invasiveness by estrogen. It was only 

in a higher (5nM - 50 nM) concentration range that progestins induced invasiveness in the absence 

of estrogen. The ability of low dose progestins to rescue invasiveness from estrogen regulation was 

exclusively mediated by PR-A, whereas PR-B mediated the estrogen-independent component of 

progestin-induced invasiveness. Overexpression of PR-A lowered the progestin concentration 

needed to completely rescue invasiveness. Among estrogen-regulated genes, progestin/PR-A 

counter-regulated a distinctive subset, including breast tumor progression genes (e.g., HES1, 

PRKCH, ELF5, TM4SF1), leading to invasiveness. In this manner, at relatively low hormone 

concentrations (corresponding to follicular stage and post-menopausal breast tissue or plasma 
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levels), progesterone influences breast cancer cell invasiveness by rescuing it from E2 regulation 

via PR-A, whereas at higher concentrations the hormone also induces invasiveness independent of 

estrogen signaling, through PR-B. The findings point to a direct functional link between PR-A and 

progression of luminal breast cancer in the context of the entire range of pre- and post-menopausal 

plasma and breast tissue hormone levels.    

The Short Progesterone Receptor Isoform Supports Invasiveness and Metastasis of 

Luminal Breast Cancer by Suppressing Regulation of Critical Micro RNAs by Estrogen.  

Distal metastasis of luminal breast cancer is frequent and incurable, yet the underlying mechanisms 

leading to it are poorly understood. E2 suppresses invasiveness of luminal breast cancer cells even 

at post-menopausal concentrations through ER Invasive tumors overexpress PR-A. Even at low 

(post-menopausal) concentrations, progesterone activates PR-A, inducing invasiveness by 

counteracting estrogen, particularly when cells are hyper-sensitized to progesterone by PR-A 

overexpression. As a means to interrogating the role of this cross-talk in determining metastatic 

potential, we explored micro RNA mediators of selective cross-talk of PR-A with ER. We also 

developed a quantitative PCR-based lymph node infiltration assay in mouse xenograft models to 

address the slowness of tumor spread that limits studies of metastasis of luminal breast cancer. 

Fifteen miRNAs were regulated by progesterone via PR-A, but not PR-B, with increased 

progesterone sensitivity when PR-A was overexpressed. Two among them, whose induction (miR-

92a-3p) or repression (miR-26b-5p) by estrogen was suppressed by progesterone plus PR-A, were 

critical for the cross-talk of PR-A with ER that caused a gene regulatory pattern of invasiveness 

and metastasis and complete rescue of invasiveness in vitro. The effect of expression changes of 

these miRNAs on in vitro invasiveness also manifested as metastatic potential in vivo. Finally, in 

primary breast tumors, PR-A expression correlated negatively with expression of miR-92a-3p and 
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positively with expression of miR-26b-5p. The studies establish hormonal cross-talk between PR-

A and ER as likely a fundamental physiological mechanism that enables metastasis of luminal 

breast cancer. Additionally, micro RNAs, as biomarkers of hyperactive PR-A, may aid in 

predicting metastatic potential of luminal breast tumors. Further, miR-92a-3p and miR-26b-5p 

may reveal target pathways for selective intervention to suppress hormone-regulated metastasis, 

both pre- and post-menopause. 
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ABSTRACT 
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METASTASIS OF LUMINAL BREAST CANCER 

 
by 

THOMAS MCFALL 
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Over 20% of breast cancer cases present with distal metastasis and they are predominantly 

of luminal subtypes. As luminal breast cancer is relatively indolent, it is believed that progression 

to metastasis must occur over many years, generally well into post-menopausal years. 

Unfortunately, very little is known about the mechanisms by which these hormone receptor 

positive tumors metastasize, likely in part due to their slow metastatic rates in animal model 

systems as well. Moreover, the literature lacks adequate mechanistic understanding of cross talk 

between estradiol (E2) and progesterone, particularly in the context of breast cancer invasion and 

metastasis.  In this thesis, we sought to investigate the roles of estrogen and progesterone and their 

nuclear receptors to better understand hormonal regulation of metastasis at physiologically 

relevant hormone levels both pre- and post-menopause. The novelty of our experimental approach 

and study design is three-fold: 1. exploration of the isoform-specific actions of the progesterone 

receptor; 2. investigation of selective micro RNA mediated pathways of cross talk between 

estrogen and progesterone and 3. development of a quantitative lymph node infiltration assay to 

monitor metastasis of luminal breast cancer in xenograft models. 
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