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Fallacious arguments against multiplicity adjustment have been cited with increasing 

frequency to defend unadjusted tests. These arguments and their enduring impact are 

discussed in this paper. 
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Introduction 

Since Fisher (1935) suggested Bonferroni-type adjustment to account for multiple 

significance tests, a sophisticated literature has developed on how to address the 

problem of multiplicity. However, many studies involving multiple tests have been 

conducted without accounting for multiplicity, a practice advocated in highly 

influential anti-adjustment literature. 

Perneger (1998) and Rothman (1990) argued not only against the Bonferroni 

procedure but also against the general principle of multiplicity adjustment in a 

defense of failure to adjust for multiplicity. The number of citations of these articles 

per year has trended upward over time (see Figure 1). Rubin (2017) cited Perneger 

(1998) and Rothman (1990) in defense of the claim it is inappropriate to adjust for 

multiple hypotheses. Glickman et al. (2014) and Nakagawa (2004) acknowledged 

the utility of controlling the false discovery rate in certain contexts but dismissed 

the importance of controlling the familywise error rate altogether. False discovery 

rate control, though appropriate in some circumstances, is not an adequate 

substitute for familywise error rate control in general (Dmitrienko et al., 2010, p. 
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39; Finner & Roters, 2001; Frane, 2016; Meijer & Goeman, 2016; Benjamini, 2010; 

Benjamini & Hochberg, 1995). 

There is a reluctance to apply multiplicity adjustment, because it reduces 

statistical power and requires either investing in larger samples or settling for lower 

power. Given the constant pressure to obtain publishable, statistically significant 

discoveries, perhaps it should not be surprising that anti-adjustment arguments are 

so popular. Anti-adjustment articles may appeal to naïve researchers because they 

are written in plain language, appear in non-statistical journals (with rare 

exceptions; Saville, 1990), and rely on appeals to “common sense” (e.g., Perneger, 

1998, p. 1236). Moreover, the recommendations in anti-adjustment articles are 
 
 

 
 
Figure 1. Number of new citations of Perneger (1998) and Rothman (1990) in each year 
(as per Google Scholar, February 8, 2018) 
 



PROBLEMATIC OPPOSITION TO MULTIPLICITY ADJUSTMENT 

4 

often simple heuristics requiring little thought to implement because they advocate 

forgoing adjustment altogether in nearly all circumstances, with little to no 

consideration of contextual factors (such as the goals of the study, how the results 

will be used to make decisions or draw conclusions, and whether there is a 

hierarchical structure to the testing).The aim of the present paper is not to establish 

procrustean rules about how multiplicity should be handled in all contexts. Rather, 

the aim is to document the prevalence and impact of fallacious arguments against 

the principle of multiplicity adjustment, and to provide information to counter the 

use and proliferation of those arguments. 

The phrase “multiplicity adjustment” is used in this paper to mean any sound 

method of addressing multiplicity. This broad definition accommodates methods 

not involving adjustment, per se, of p-values or nominal alpha levels (e.g., certain 

sequential testing methods, when the sequence is defined in a pre-registered study 

protocol). Although multiplicity adjustment is typically discussed in the context of 

null hypothesis testing, the same principles may apply when using confidence 

intervals, rather than p-values, as the primary basis for inference or decision-

making (Phillips et al., 2013). Thus, contrary to some suggestions (e.g., Huisingh 

& McGwin, 2012), examining effect-size estimates and confidence intervals rather 

than only p-values—though generally a good idea—does not in itself eliminate the 

problem of multiplicity. Many adjustment procedures are applicable to confidence 

intervals (e.g., Dunn, 1958, 1961; Dunnett, 1955; Tukey, 1953; Westfall, 1985). 

Misconceptions Underlying Anti-Adjustment Arguments 

Regarding the Universal Null Hypothesis 

Some anti-adjustment arguments (e.g., Perneger, 1998; Savitz & Olshan, 1995) 

included the false claim that Bonferroni-type adjustments only allow inference 

about the “universal null hypothesis,” i.e., about whether the null hypotheses are 

true for all tests—a view that Goeman and Solari (2014, p. 1955) identified as a 

myth. For example, Perneger (1998) claimed if two groups are compared on 20 

variables and at least one p-value is significant at the Bonferroni-adjusted level, 

“We can say that the two groups are not equal for all 20 variables, but we cannot 

say which, or even how many, variables differ…A clinical equivalent would be the 

case of a doctor who orders 20 different laboratory tests for a patient, only to be 

told that some are abnormal, without further detail” (p. 1236). That description 

would be true of a single omnibus test, not of multiple Bonferroni-adjusted tests. 

Bonferroni adjustments, and many similar methods, allow statements to be made 
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about each hypothesis because they control the familywise error rate in the strong 

sense, meaning even if only some of the individual null hypotheses are true 

(Goeman & Solari, 2014). Classical Bonferroni adjustment also controls the per-

family error rate (i.e., the expected number of Type I errors), which is a stricter 

standard than the familywise error rate (Frane, 2015a). 

Rothman (1990) also criticized multiplicity adjustment for allegedly only 

being relevant to the universal null hypothesis. Rothman suggested that even 

entertaining a universal null hypothesis would be fundamentally absurd: “Whereas 

we can imagine individual pairs of variables that may not be related to one another, 

no empiricist could comfortably presume that randomness underlies the variability 

of all observations…To entertain the universal null hypothesis is, in effect, to 

suspend belief in the real world and thereby to question the premises of empiricism” 

(p. 44-45). However, even if only two null hypotheses are true, the familywise error 

rate can be inflated to approximately twice the nominal level. Thus, addressing 

Type I error inflation does not require ascribing all observable associations in the 

world to pure randomness. Moreover, even if all null hypotheses are false, random 

variation can still substantially affect observations, as observed associations vary 

in magnitude—and sometimes direction—from one sample to the next. 

There have been numerous citations of Perneger’s (1998) and Rothman’s 

(1990) claims about the universal null hypothesis (e.g., Armstrong, 2014; Berry, 

2012; De Pablo-Fernandez et al., 2017; Glickman et al., 2014; Jenkins et al., 2009; 

O’Connor et al., 2009, Ostendorf et al., 2017; Racette et al., 2005; Shulz & Grimes, 

2005; Sinclair et al., 2013; van Gils et al., 2009; Zintzaras & Lau, 2008). For 

instance, Armstrong’s (2014) endorsement of Perneger’s claim about the universal 

null hypothesis was in turn cited by several others (e.g., Day & Thorn, 2017; Kim 

et al., 2015; Ozcan et al., 2017) to defend unadjusted tests. 

The claims about the universal null hypothesis by Perneger (1998) and 

Rothman (1990) have also been cited, without critique, in textbooks (e.g., Ahlbom, 

1993, p. 52; Aschengrau & Seage, 2014, pp. 322-323; Shulz & Grimes, 2006, p. 

192), and an education research group at Stanford University responded to criticism 

of their unadjusted testing by claiming adjustment is unnecessary when the 

universal null hypothesis is not of interest (Center for Research on Education 

Outcomes, n.d.), citing Perneger and Rothman. 

Regarding the Inherent Implausibility of Chance Associations 

Many of Rothman’s (1990) objections to multiplicity adjustment apparently reflect 

a more general objection to Type I error control and to any concern that observed 
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associations in a sample might arise by chance. In Rothman’s view, “Being 

impressed by an extreme result should not be considered a mistake in a universe 

brimming with interrelated phenomena” (p. 46). It is true that associations are 

plentiful in the universe, but finite samples can contain misleading associations that 

do not accurately reflect real effects in the population. If that were not the case, then 

there would be no need for inferential statistics at all—even in the absence of 

multiplicity. Yet, Rothman implied that misleading associations are inherently 

unlikely, at least in biological data. 

Rothman (2014) further opined: “If one is studying experiments on psychic 

phenomena, skepticism about the results might lend support to multiplicity 

adjustments. If one is studying physiologic effects of pharmaceutical agents, real 

associations are to be expected and the adjustments are more difficult to defend” (p. 

1063). On the contrary, multiplicity adjustment is a mathematical correction based 

on the number of associations examined, not an expression of skepticism based on 

the type of associations examined. A single positive test of psychic phenomena 

would presumably merit considerable skepticism, even if there were no multiplicity 

to adjust for. Moreover, disregarding multiplicity when evaluating the efficacy of 

pharmaceutical products would be in direct opposition to the guidelines of 

regulatory agencies (Committee for Proprietary Medicinal Products, 2002; Food 

and Drug Administration [FDA], 1998). 

There are situations in which it is appropriate to incorporate prior probabilities 

into the analysis. But that is not achieved by simply ignoring multiplicity. One 

might argue that “strictly true” null hypotheses (meaning there is no effect even 

negligibly different from zero in either direction) are in fact rare in biological 

contexts, and focus should rather be on effect sizes rather than on p-values. But 

even in that case, multiplicity adjustment would likely be useful for computing 

simultaneous confidence intervals for the effect sizes. 

Regarding Statistical Power and Type II errors 

Because the purpose of null hypothesis testing is to protect against spurious 

discoveries, it would be nonsensical to defend the use of an arbitrarily high alpha 

level by noting that high alpha levels make discoveries easier to claim. Yet, this 

argument is frequently advanced, defending inflated familywise alpha levels by 

noting that unadjusted tests provide more statistical power and lower chance of 

Type II error. For instance, Fekkes et al. (2006) stated “No adjustment for multiple 

comparisons, such as the Bonferroni correction, was done, because this would 

result in an increase in Type II errors, that is, finding a true difference and not 
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considering this significant (Perneger, 1998)” (p. 1570). Roberts et al. (2011) 

offered a similar defense of their unadjusted testing: “To avoid Type II errors no 

adjustment was made for multiple comparisons (Perneger, 1998)” (p. 1558). 

Berk, Dean, et al. (2014, p. 360), Berk, Daglas, et al. (2017, p. 415) Carral-

Fernández et al. (2016, p. 232), Cotton, Gleeson, et al. (2010, p. 261), Cotton, 

Lambert, et al. (2013, p. 3), González-Blanch et al. (2015, p. 22), Marion-Veyron 

et al. (2015, p. 165), Mossaheb et al. (2013, p. 164), and Rajapakse et al. (2014, p. 

3) included the following sentence word-for-word: “No adjustments were made for 

multiple comparisons because they can result in a higher type II rate [sic], reduced 

power, and increased likelihood of missing important findings (Rothman, 1990)”. 

Nearly identical sentences have appeared in Allott et al. (2015, p. 130), Smyth et 

al. (2015, p. 889), and others. 

Perneger (1998) proposed several scenarios in which multiplicity adjustment 

would allegedly cause catastrophic Type II errors. Some of those scenarios were 

nonsensical and bore no resemblance to contexts in which multiplicity adjustment 

would actually be applied, e.g.: “In a clinical setting, a patient’s packed cell volume 

might be abnormally low, except if the doctor also ordered a platelet count, in which 

case it could be deemed normal” (p. 1236). Some other scenarios Perneger 

proposed were more vaguely defined. For example, Perneger warned by applying 

multiplicity adjustment, “an effective treatment may be deemed no better than 

placebo” (p. 1236). It is not clear how that would happen, because neither the 

multiple tests nor the structuring thereof was defined in the scenario. In many cases, 

testing can be structured so the familywise error rate is controlled without 

sacrificing statistical power in the primary test of treatment efficacy (Committee 

for Proprietary Medicinal Products, 2002). In other cases, there is effectively no 

Type I error inflation to adjust for, because unanimous statistical significance is 

required on all outcomes simultaneously for the treatment to be approved. In some 

other cases, multiplicity adjustment is required—and for good reason. For instance, 

if a treatment is compared to placebo on five outcomes, any one of which on its 

own could earn approval for the treatment, then without adjustment the probability 

of erroneously declaring the treatment effective is approximately 23% (given a 

nominal alpha level of .05, true null hypotheses, roughly independent outcomes, 

and satisfaction of assumptions). 

Noting that looser Type I error control can provide greater statistical power is 

a trivial and unpersuasive argument for sacrificing statistical rigor. Although 

statistical power is important, the proper way to limit Type II errors is by using an 

adequate sample size—not by allowing Type I errors to be arbitrarily inflated 

(Committee for Proprietary Medicinal Products, 2002; FDA, 1998). 
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In some early-stage research, it may not be feasible to collect a sample large 

enough to provide ample statistical power while stringently controlling for 

multiplicity. But in such cases, rather than ignoring multiplicity to make observed 

trends appear significant, it would be more appropriate to refrain from making 

inferential claims until the trends are confirmed in a legitimately higher-powered 

study. Indeed, contrary to some suggestions (e.g., Aschengrau & Seage, 2014, p. 

323; Savitz, 2003, p. 249), statistical nonsignificance does not necessarily imply 

that the null hypothesis must be accepted per se (in the epistemic sense) without 

any further investigation. Rather, statistical nonsignificance means the null 

hypothesis cannot be rejected based on the present evidence. Yet, Rothman (1990) 

claimed multiplicity adjustment “shields some observed associations from more 

intensive scrutiny by labeling them as chance findings” (p. 46). Although that claim 

may accurately depict how some researchers misinterpret or misuse statistical 

nonsignificance in some cases—whether multiplicity is present or not—it does not 

constitute a legitimate criticism of the principle of multiplicity adjustment. 

Regarding “Arbitrarily” Defined Families 

A popular anti-adjustment argument that resembles the fallacy of slippery slope is 

as follows: The number of tests to adjust for is arbitrary because that family of tests 

could theoretically be extended to include all the tests conducted in a given 

researcher’s career, or all the tests reported in a given journal (e.g., Feise, 2002; 

Moran, 2003; Perneger, 1998; Rubin, 2017; Savitz, 2003, pp. 252-253; for similar 

arguments, see Huisingh & McGwin, 2012; Rothman, 1990). Considering all the 

tests conducted in an investigator’s career or in the history of a journal would 

indeed be an extreme way to define the family in most cases, and the latter would 

present the challenge of accounting for publication bias. But considering each test 

in isolation would be an extreme approach in its own right. For typical applications, 

a middle ground is likely the most sensible strategy (Miller, 1981, pp. 31-32). The 

typical consumer of a study containing multiple tests is presumably interested in 

the results of a particular investigation—not in the results of the author’s entire 

career or of the journal’s entire history. That said, if in a particular case there were 

some compelling reason to interpret results in the context of a researcher’s entire 

career, then it could in fact make sense to adjust inference accordingly. 

Notwithstanding situations where the definition of the family is dictated by some 

regulatory agency or other authority, “There are no hard-and-fast rules for where 

the family lines should be drawn, and the statistician must rely on his [or her] own 

judgment for the problem at hand” (Miller, 1981, p. 35). 
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The grouping of tests into families is contextually dependent and somewhat 

subjective, but not completely arbitrary. Note that the same description—

“somewhat subjective, but not completely arbitrary”—could just as easily apply to 

numerous other a priori decisions, such as what sample size is sufficient, what 

minimum effect size to consider clinically significant, and what overall alpha level 

(.05 or some other level) is appropriate. Just as those decisions can be made in a 

principled way, so can decisions regarding the definition of the family. Contrary to 

Perneger’s (1998) claim “Most proponents of the Bonferroni method would count 

at least all the statistical tests in a given report as a basis for adjusting P values” (p. 

1236), it is doubtful any competent statistician would recommend, for example, 

adjusting the confirmatory test of primary interest to account for a set of descriptive 

follow-up tests (Committee for Proprietary Medicinal Products, 2002). How the 

family should be defined may be debatable in some cases, but that does not mean 

that any definition of the family is as good as another. 

Regarding Planned Tests 

It is often said hypothesis tests planned a priori do not require multiplicity 

adjustment. Statements such as the following, by Fish et al. (2007), are common in 

the scientific literature: “Whilst it is true that if the Bonferroni adjustment was 

applied in the following analysis, none of the associations would reach the corrected 

threshold, there are views strongly opposing the use of such corrections in analyses 

where a priori hypotheses exist (Perneger 1998)” (p. 1325). Moreover, many 

authors of textbooks on applied statistics have explicitly recommended not 

adjusting for multiplicity if the tests were planned (e.g., Ha & Ha, 2012, p. 206; 

McKillup, 2012, p. 163; Pagano, 2013, p. 422; Rutherford, 2011, p. 76; Scheff, 

2016, p. 112). However, there is no apparent scientific basis for that 

recommendation. For a critique of the “planned-hypotheses exemption from 

multiplicity adjustment” see Frane (2015b, pp. 6-7). 

If no specific tests are planned, then the number of potential tests for the 

researcher to choose from may be indeterminate, making meaningful adjustment 

impossible (Hochberg & Tamhane, 1987, p. 10). In that situation, there should not 

be a false sense of security that Type I error inflation can be prevented merely by 

adjusting for the tests that were formally conducted. 
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Conclusion 

Although anti-adjustment arguments are frequently cited in scientific literature, 

they are based largely on misconceptions and, perhaps in some cases, willful 

misrepresentations. Researchers should be wary of citing an opinion as justification 

for a particular approach. Educators and textbook authors should warn students 

about common misconceptions regarding multiplicity. Reviewers and editors 

should be aware such misconceptions are prevalent in the literature and should 

combat the propagation of those misconceptions whenever possible. For instance, 

when reviewing a manuscript, they should be on the lookout for citations of papers 

that serve as go-to references for researchers seeking to shield their unadjusted 

testing from criticism (e.g., Preneger, 1998; Rothman, 1990). 

Once an anti-adjustment paper has been published, other researchers can write 

critical letters in response. However, such letters typically receive much less 

attention than the offending article itself. For example, a letter by Aickin (1999, p. 

127) noted that Perneger’s (1998) paper “consists almost entirely of errors” and a 

letter by Bender and Lange (1998) was similarly critical of Preneger’s paper—

though those letters could not stop its growing influence (as evident from Figure 1). 

There is widespread concern in the sciences (e.g., Baker, 2016) that too many 

findings are not replicable and that there is a high prevalence of Type I errors in the 

literature. Naturally, neglecting multiplicity exacerbates those problems (as noted 

by Bretz & Westfall, 2014; Forstmeier et al., 2016; Young, 2009). Therefore, 

researchers and statisticians have a scientific responsibility to directly confront bad 

practice and misguided thinking concerning multiplicity. 
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