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CHAPTER 1: INTRODUCTION 

1 DNA damage and cancer  

 Transformation of genetic information from parents to their offspring is the 

fundamental requirement for the existence of all living beings on earth. Therefore, the 

genetic information transfer process must be done with greater accuracy and efficiency 

than that of all other biological processes. As the holder of genetic information, DNA 

must be protected from threats that cause DNA damage. To accomplish this goal, cells 

have developed various defensive, repair and surveillance mechanisms in the cell [1-3]. 

However, all these mechanisms have limitations that cause some of the DNA damage 

and create health problems such as cancer, one of the main health issues that humans 

face today as it is second only to  human death by cardiovascular diseases [4]. 

Conversion of a normal healthy cell into a tumorigenic cell is a complex and 

catastrophic process. Often mutations cause such cellular transformations that by 

resulting the activation of oncogenes or inactivation of tumor suppressor genes.  

 Somatic mutations are generated by various exogenous and endogenous 

factors, low fidelity in DNA replication and imperfect DNA repair machinery [5-8]. 

Tobacco smoking, exposure to UV light, certain food (grilled, fried and red meet), 

obesity, infections, stress and lack of physical activity are some of the lifestyle factors 

that may have a link with cancer initiation [9]. Among all the cancer types that have 

been diagnosed in humans, more than 25% of cancers are directly related to smoking 

[10] and It has been determined that benzo[a]pyrene (B[a]P) is one of the key DNA 

damaging chemicals in cigarette smoke. B[a]P has an ability to chemically modify the 

DNA, and it has been shown to disrupt DNA replication. One mechanism that is used to 
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overcome these types of damages is employed by Y-family polymerases. This research 

is focused on studying Dpo4’s conformational changes and related mutagenic 

properties during processing B[a]P-modified DNA in real time using smFRET.  

1.1  Chemical carcinogenesis  

There has been a long history of research on chemical carcinogens. In 1761John 

Hill made the First recorded observation of a chemical carcinogenesis when he linked 

increased levels of nasal cancer with the use of snuff. However, the first dated study of 

chemical carcinogenesis was done by Sir Percival Pott in 1875. Pott observed a 

common occurrence of scrotum cancer among chimney sweepers in England and 

inferred that scrotum cancer was caused by excessive exposure to soot. His 

observation is also considered the first report of occupational-related cancer. Pott’s 

observation laid the foundation for the discovery of many environment carcinogens that 

are now known to cause cancer in humans today [11]. There are massive levels of 

carcinogens in our environment and it is unavoidable that some of these chemicals will 

enter the human body by air, food or water.  

Most known chemical carcinogens can be generally classified into two groups 

based on their functions [12]: ether genotoxic or epigenetic carcinogens. Genotoxic 

carcinogens directly react with DNA to generate mutations. Epigenetic carcinogens do 

not react with DNA directly, but they interfere with the DNA expression and cell 

proliferation [13]. One of the major obstacles to identifying carcinogenic chemicals and 

their relationship to cancer is the long latency period between chemical exposure and 

cancer development [11]. Some of the known carcinogenic compounds, such as 2-

napthylamine, benzidine and vinyl chloride, have a 20-30-year latency period.  



3 
 

 

In 1970, Millers found that many unreactive carcinogenic chemicals follow a 

common mechanism in carcinogenesis that requires cellular metabolism [11, 14]. They 

showed that 2-AAF must be metabolically activated to reactive species before DNA 

adducts can form. Later, many metabolic pathways and various enzymes were 

identified as being involved in carcinogenesis.  

Some of the enzymes involve in these pathways introduce very reactive organic 

functional groups to the carcinogenic compounds that are known as activators. In 

contrast some other enzymes convert these functional groups into less reactive, water 

soluble compounds, which are known as inactivators. Therefore, carcinogenic chemical 

exposure leads to initiate two competitive metabolic reactions in the cells. The activated 

compounds have an infinite number of possibilities to react with other cellular molecules 

before inactivating. If these activated molecules react with DNA recruiting barriers for 

DNA replication, the cells get one step close for cancer initiation. DNA repair pathways 

play a key role in eliminating these carcinogenic adduct modified DNA to prevent them 

to be processed by polymerases to introduce mutations.  The carcinogenic adducts 

escaped form DNA repair may induce mutations in the cells which may cause for 

cellular death or ultimately cancer. The processes involved in chemical carcinogenesis 

are summarized in the Figure 1 [11]. 

. 
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Figure 1. The process of chemical carcinogens leading to cancer. Chemical exposure 
causes competition between metabolic activation and inactivation. The activated 
chemical carcinogens may escape from the inactivation to react with biological macro 
molecules. These adducted molecules may slip through the reaper processes to cause 
mutations. Some of the mutations disrupt the cellular processes leading to cell death, 
and others tend to abolish the cell’s regulatory process to convert it into a cancer. The 
figure was adapted from [11]. 
 

1.2 Benzo[a]pyrene 

 As mention above, many skin cancer cases were reported among workers in 

chimney cleaning, later correlation course found in other industries such as paraffin 

refining, shale oil and coal tar industries [15, 16]. Although scientists had tried to 

reproduce skin cancers by applying those industrial raw materials using animal models 

to understand the carcinogenicity, those experiments were not successful. After many 

years of effort, J.W. Cook, C.L. Hewett and I. Hieger in Kennaway’s lab were finally able 

Carcinogen

MetabolismInactivation

Activation to reactive nucleophile

Reaction with cellular macromoleculesReaction with small and 

non-DNA macro molecules

Reaction with DNA and (DNA adducts)

DNA repair

Mutation

Cellular repair

(cell death)
Multiple steps in carcinogenesis

Cancer
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to identify the benzo[a]pyrene (B[a]P) as a cause of the coal tar associated cancer 

(Figure 2) [15]. The B[a]P, which belongs to a group of potentially toxic compounds 

known as polycyclic aromatic hydrocarbons (PAHs) [16], is the first discovered and 

mostly studied exogenous cancer-causing agent [17]. Today, major sources of PAHs, 

B[a]P in particular, are byproducts of incomplete combustion of fossil fuels, including 

emissions from combustion engines, coke ovens, volcanic eruptions, forest fires and 

soot, smoke from coal or tar furnaces [18]. Among all the B[a]P sources, cigarette 

smoke is particularly important because over a million people die each year from lung 

cancers, which have been identified to show a direct association with cigarette smoking 

[19, 20].  

 

Figure 2. Structure of Benzo[a]pyrene (B[a]P). The highlighted bonds represent the 
boundary of the Bay-region. 

Once burned, a cigarette contains about 20-40 ng of B[a]P, which has been proposed 

as the key carcinogenic compound responsible for lung cancer found in smokers [20, 

21] An occurrence of a higher percentage (~60%) of mutations, such as G to T 

transversion, has been identified in human lung tumors. These transversion mutations 

are the hallmark of mutations caused by PAHs, particularly B[a]P [20].  
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1.2.1 Benzo[a]pyrene metabolism 

 B[a]P is a hydrophobic, planer, aromatic hydrocarbon that is chemically inert and 

insoluble in an aqueous environment (Figure 2). Therefore, once B[a]P is ingested and 

absorbed into the body, it has to be converted to a water-soluble compound in order to 

facilitate excretion. This process is called the metabolic activation and as a result of 

extensive research, three potential metabolic activation pathways have been identified. 

They are the bay-region dihydrodiol epoxide pathway, the one-electron oxidation 

pathway and the dihydrodiol dehydrogenase pathway [22, 23].  

 The B[a]P metabolic activation by the bay-region dihydrodiol epoxide pathway is 

thought to be the major activation route using metabolomics, DNA binding and 

carcinogenesis experiments. It comprises three enzymes-mediated biochemical 

reactions. The first reaction is the oxidation of C7-C8 double bond in B[a]P ring “A” 

(Figure 2). Epoxidation of these prochiral aromatic carbon atoms produce two optically 

active isomers. They can be identified as 7R,8S-epoxide and (Figure 2, compound I) 

7S,8R-epoxide (not shown). Both isomers initiate a series of biochemical reactions. 

However, only 7R,8S-epoxide produces biologically important major products. 

Therefore, 7S,8R-epoxide and its subsequent reactions are not shown in Figure 3. This 

oxidation reaction is initiated by cytochrome P450 enzymes (CYPs) particularly 

monooxygenase enzymes [22-24].  

 The second reaction is the hydrolysis of B[a]P-7,8-epoxide to form trans B[a]P-

7,8-diol which is conducted by microsomal epoxide hydrolase (EH). Hydroxyl group 

addition takes place via an inversion of configuration converting 7R,8S-epoxide into 

7R,8R-diol (Figure 3, compound II) [25].  
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 The third reaction is the oxidation of C9-C10 double bond in B[a]P ring “A” to 

produce vicinal diol-epoxide, B[a]P-7,8-diol-9-10-epoxide (BPDE) which is driven by 

cytochrome p450 enzymes (Figure 3). This reaction further adds stereoisomeric 

complexity to B[a]P metabolic activation by making another two pairs of enantiomers 

which are named as (+)-anti- BPDE and (-)-syn- BPDE isomers (Figure 3, compound III 

and IV).  

 The product of the third reaction can be further hydrolyzed to make B[a]P-

7,8,9,10-tetrol which is a highly hydrophilic compound that can be excreted from the 

body [22, 26]. Based on quantitative metabolism studies, it has been identified that (±)-

anti- BPDE (compound II) is the major and most biologically active BPDE isomer, 

possibly due to its longer half-life [15].  

1.2.2 Structural characteristics of B[a]P isomers 

 An epoxide is a highly reactive organic group because it can efficiently undergo 

nucleophilic addition reactions. Therefore, BPDE formed during the B[a]P metabolic 

activation process can react with various cellular macromolecules such as DNA, RNA 

and protein. It was first thought that instead of reacting with DNA, the planer BPDE 

would intercalate between two base pairs because it could be stabilized by hydrophobic 

interactions with adjacent bases in the core of the DNA helix [27]. However, it was 

confirmed that B[a]P can form a covalent bond with DNA, mostly reacting with purine 

residues [28]. 
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Figure 3. The reaction scheme shows the formation of major DNA adducts by the B[a]P 
metabolic activation pathway (highlighted arrows). 
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 The nucleophilic addition reaction with BPDE and dG leads to a racemic mixture 

of enantiomers distinguished as trans and cis dG adducts [29]. It has been identified 

that (+)-trans (compound VII) and (+)-cis (compound VIII) DNA adducts are the most 

abundant isomers (Figure 3). It has also been shown that BPDE reacts with the 

exocyclic amine group (N2) at C6 of the deoxy adenine (dA) and at the and N7 position 

of guanine to yield minor products. It is thought that these adducts have an insignificant 

impact on biology [28].  

 B[a]P adducts and their structural properties on DNA seem to play a critical role 

in numerous cellular events including DNA replication, lesion recognition and DNA 

repair [28]. The magnitude of the DNA damage and related biological consequences 

can be attributed to the conformational diversity of B[a]P adducts on DNA. Each isomer 

forms different conformations on DNA that leads to generate totally different mutagenic 

properties.  

1.2.3  B[a]P isomers conformations in the DNA 

 Many solution NMR studies were done in the 1990’s to understand the structural 

properties of the B[a]P adduct in DNA. Among other researchers, N. E. Geacintov, Suse 

Broyde and D. J. Patel were the pioneers in the field of B[a]P-DNA structure 

determination by solution NMR. They characterized many structures by placing B[a]P 

isomers in various places in the DNA, such as duplex DNA, primer-template junction 

and in front of an abasic site. Dramatically different B[a]P adduct conformation were 

found in different DNA construct for various B[a]P isomers. For instance, the (+)-trans-

dG adduct in the duplex DNA has shown that the pyrenyl ring system in the minor 

groove of the DNA over the sugar group of the G18. The B[a]P ring system is pointing 
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towards the 5’ end of the DNA template. The Watson-Crick base pairing between the 

modified dG* and dC is not disrupted (Figure 4A) [30]. In the same duplex DNA, the (-)-

trans-dG adduct orients 3’ end of the template while adduct resting on the minor groove 

over the sugar group of C17 (Figure 4B).  

 

 

Figure 4. Solution NMR structures of the B[a]P adducts. (A) (+)-trans-B[a]P-N2-dG 
adduct (B) The space filling model of the (+)-trans-B[a]P-N2-dG adduct shows minor 
groove B[a]P in blue color. (C) (-)-trans-B[a]P-N2-dG adduct (D) The space filling model 
of the (-)-trans-B[a]P-N2-dG adduct. B[a]P adduct is shown in blue. And the modified G 
is in yellow. The figure is adapted with permission from [28], Appendix A1. 
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However, the corresponding cis adducts represent remarkably different 

conformations from those of the trans adduct. Their solution NMR structure show that 

the B[a]P ring system is intercalated inside the duplex DNA in both cis isomers [31]. The 

modified dG* is displaced within the minor groove. Furthermore, the normal dC:dG* 

base pairing is totally disrupted, and the dC is displaced to from the helix (Figure 5).  

 

Figure 5. Solution NMR structures of the B[a]P adducts. (A) (+)-cis-B[a]P-N2-dG adduct 
(B) The space filling model of the (+)-cis-B[a]P-N2-dG adduct shows minor groove B[a]P 
in blue color. (C) (-)-cis-B[a]P-N2-dG adduct (D) The space filling model of the (-)-cis-
B[a]P-N2-dG adduct. B[a]P adduct is shown in blue. And the modified G is in yellow. 
The figure is adapted with permission from [28] Appendix A1. 

The bulky DNA adducts are known to deform the DNA structure or around the 

damage site. These distorted sites on the DNA tend to form misaligned and 
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frameshifted intermediates in the DNA replication. which causes base deletions to 

generate (deletion duplex, Figure 6 sequence) [28]. The B[a]P adduct conformations in 

the deletion duplex are significantly different from the full-duplex. The solution NMR 

structures of both sterioisomeric trans adducts have shown the same modified dG* 

displaced intercalated conformation (Figure 6). 

In contrast, the (+)-cis-B[a]P-N2-dG adduct has a nearly identical conformation in 

both the duplex and deletion duplex as shown in Figure 6. Interestingly, both the (+)-

trans-B[a]P-N2-dG and (+)-cis-B[a]P-N2-dG isomers in the deletion duplex share similar 

structural features except for the position of the benzylic ring [32].   

 

Figure 6. Solution NMR structures of the B[a]P adducts. (A) (+)-trans-B[a]P-N2-dG 
adduct. The top-down view is shown below (B) (+)-cis-B[a]P-N2-dG adduct. The top-
down view is shown below. The figure is adapted with permission from [28], Appendix 
A1. 

DNA primer-template junctions are a very important system in DNA replication. 

The polymerases add dNTPs to the 3’ end of the primer, complementary to the 
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templating base. The smooth replication machinery is blocked or disrupted if the 

templating base is modified by a DNA adduct. Therefore, the B[a]P adduct 

conformations at the primer-template junction are important to understand its effects on 

the primer extension.  The solution NMR structure of the (+)-trans-dG at the primer-

template junction shows a stacking conformation with the terminal base pair in the 

duplex region. This stacking conformation does not disturb the base pairing in the 

duplex region (Figure 7) [28]. However, they were not be able to fully resolve the 

structure for the (-)-trans-dG at the primer-template junction due to the unstructured 

nature at the damage site. In contrast to the  (+)-trans-dG adduct, the (-)-trans-dG 

adduct may disrupt the base pairing in the duplex region around the primer-template 

junction [28].  

 

Figure 7. Solution NMR structures of the (+)-trans-B[a]P-N2-dG adduct at the primer 
template junction. The figure is adapted with permission from [28], Appendix A1. 
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1.3 Y-family DNA polymerase 

 Replication of whole genomic DNA is an essential process that must be 

completed before cell division. To achieve this goal, replication of billions of nucleotides 

regardless of the DNA sequence is governed by high fidelity polymerases. This is a fast, 

highly accurate process only specialized high-fidelity polymerases can accomplish with 

an extremely low error rate.  However, these polymerases are vulnerable to the 

presence of damage in the DNA which can cause them to stall at the damage site [33], 

which may lead to collapse of the replication fork. The genomic DNA is often exposed to 

various exogenous and endogenous DNA damaging agents that are frequently “road 

blocks” for replicative polymerases [17, 34]. This damage includes DNA strand breaks, 

base hydrolysis, base modification, and the deamination and alkylation of bases. The 

majority of these DNA lesions are repaired by several DNA-repair pathways. However, 

some lesions cannot be repaired or escape from the repair machinery [35]. Two 

alternative routes have been discovered to overcome these replication-barriers and to 

maintain genomic integrity in every organism [33, 36, 37]. One is homologous 

recombination (HR), which includes a network of interrelated pathways to repair double 

stand DNA (dsDNA) breaks and inter strand crosslinks. Furthermore, HR provides 

greater support in recovering a stalled or broken replication fork [38]. The second 

pathway is to use specialized DNA polymerases to replicate across from and past a 

DNA adduct [33]. The DNA damage site may have structural and chemical properties 

that are bulky, unrepairable and unfavorable for proper Watson−Crick (WC) base 

pairing and base stacking. In that case, these specialized polymerases are able to 

synthesize past the adduct because their active site is able to tolerate the DNA damage 
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[33]. This damage tolerance DNA replication is called translesion synthesis (TLS), and 

most specialized polymerases engaged in TLS are part of the Y-family of polymerases 

[33-37].  

 All the Y-family polymerases that have been discovered so far are classified into 

six major groups. These group are represented by E. coli pol IV, V human pol and 

Rev1. All the Y-family polymerases contain two major parts: a catalytic region and a 

regulatory region [33]. The catalytic region consists of four subdomains, which include 

the finger, palm, thumb and little finger (LF). Both replicative and TLS polymerases 

contain finger, palm and thumb subdomains, but relatively smaller thumb and finger 

subdomains are found in Y-family polymerases, which allows the polymerase to 

accommodate a bulky DNA adduct. This also causes the DNA substrate to be more 

solvent-exposed at the active site of the polymerase. The finger subdomain of 

replicative polymerases undergoes a large open to closed conformational change when 

a nucleotide binds to the DNA-polymerase complex. Y-family polymerases are thought 

to not undergo these large structural changes but may undergo smaller localized 

rearrangements [39].  

 The LF domain is found only in Y-family polymerases, and it has the most 

diverse DNA sequence among the Y-family members [33]. The thumb and LF 

subdomains hold the DNA substrate. While palm subdomain performs the catalysis, this 

catalytic region contains the important three carboxylates, Asp 7, Asp 105, Glu 106. 

These three amino acids are highly conserved in all the Y-family members, and they 

coordinate with two Mg2+ ions during catalysis. Also, it has been discovered that some 

Y-family polymerases display a pre-formed active site, where the fingers are closed in 
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the absence of either DNA or dNTP [40, 41]. The most important feature of Y-family 

polymerases is the large solvent-accessible active site which can accommodate bulky 

DNA adducts.  This spacious active site allows  dNTPs and Mg2+ ions to move in and 

pyrophosphate to come out freely without larger conformational changes of the 

subdomains of the polymerase [33].  

 All high-fidelity polymerases are adapted to replicate normal DNA with uniform 

WC base pairs. Therefore, cells do not need many different types of replicative 

polymerases. However, there are many different types of DNA lesions that can form 

upon exposure to a damaging agent, and these require many specialized polymerases 

to accomplish TLS. E. coli contains five DNA polymerases, but only one of them (Pol III) 

is a replicative polymerase while three are Y-family polymerases. For comparison, five 

of 17 DNA polymerases are replicative polymerases in humans. Although Y-family 

polymerases are essential for TLS, they have a high error rate when coping with DNA 

presumably because of the looser active site and missing proofreading activity that is 

present in replicative polymerase complexes [33].  

1.3.1  Y-Family polymerases in action- TLS 

 Y-family polymerases have an ability to tolerate a variety of structurally different 

and potentially mutagenic DNA lesions during DNA synthesis. Despite their overall 

fidelity, carcinogenic adduct bypass ability, and structural properties, Y-family 

polymerase have a higher degree of specificity for particular type/types of lesions. Here, 

I summarize the potential diversity and carcinogenic specificity of different Y-family 

polymerases in TLS. One of the remarkable discoveries about Y-family polymerases is 

the linkage of the pol  with the xeroderma pigmentosum (XP) [42, 43]. XP is a rare, 
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genetic disorder, which makes the Individuals extremely sensitive to ultra violet (UV) 

light. The UV light exposure can cause dermatological cancer by creating cyclobutene 

pyrimidine dimers (CPDs) in DNA. The pol  can replicate CPDs containing DNA with a 

higher accuracy and processivity [44] yet, patients with XP were identified to carry non-

functional pol  When the mutations in the gene of polPOLH) in humans produce 

the inactive polymerase, other Y-family polymerases might be recruited to replicate 

CPD DNA. However, they perform error prone replication of CPDs by making mutations, 

which eventually leads to the development of skin cancer. In addition to CPDs, 

polcan bypass cisplatin adducts which are widely used as chemotherapeutic drugs 

[45].  

 Apurinic and Apyrimidinic sites are other common DNA lesion types which are 

generated by lost DNA bases due to various reasons. It is estimated that more than 103 

AP sites are created in a single mammalian cell per day [46, 47]. The DNA replication 

by high fidelity polymerases is impeded by AP sites and many studies show that the 

replicative polymerases cannot efficiently bypass AP sites. Therefore, Y-family 

polymerases usually process AP sites in the cells, and tend to add dATP across the AP 

site which is often referred to as the “A”-rule [48]. Studies show that both Y-family pol  

and pol  can successfully bypass AP sites in an error-prone manner [47, 49].   

 The pol  deleted mouse embryonic cells have shown a higher sensitivity for 

B[a]P adducts but are not sensitive to UV light, indicating pol  is not involved in 

bypassing the CPDs [50, 51]. It has been shown that the human pol  is the only Y-

family polymerase which has the ability to bypass the B[a]P adduct error free [52]. The 

pol gene expression is controlled by the aryl-hydro carbon receptor and therefore the 
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cells exposed to the PAHs, such as B[a]P, activate the pol  expression, which prevents 

PAH-induced mutagenesis [50]. Various DNA adducts can upregulate pol  expression 

in the P53 dependent pathway. If P53 is non-functional, there are alternative pathways 

to activate pol  in response to DNA damaging agents. Therefore, pol  is very 

important in TLS in mammals because it can be activated by both P53 dependent and 

independent pathways [53, 54].  

 Pol  is a unique TLS polymerase, and its other homologs have been found only 

in higher eukaryotes, such as drosophila, mice and human [35, 55]. Pol  shows tissue 

specific expression in mammals, and is highly expressed in human and mice testes, 

probably indicating a role in spermatogenesis [56]. Pol  is highly error prone in 

replicating DNA, and it prefers to incorporate purines rather than pyrimidines in both 

modified and unmodified DNA [57]. Pol  has the ability to process non-structured and 

distorted DNA lesions by incorporating nucleotides using Hoogsteen base pairing [35, 

58]. Though it can incorporate nucleotides across different types of DNA lesions such 

as CPDs, 8-oxo-dG and PAHs modified DNA, the extension after the lesion is strongly 

inhibited [35, 59, 60]. Therefore, translesion synthesis of pol  must be accompanied by 

another Y-family polymerase. Interactions of the Pol  were observed with the REV1 

polymerase in the process of co-localization with the DNA replication machinery in UV- 

induced cells [61]. Another interesting finding about pol  is that both the pol -/-, pol -/- 

cells have shown extreme UV sensitivity compared to only pol -/- cells. However, 

significantly higher-level of mutations that can cause XP appeared in pol -/- cells, 

suggesting that pol  replicates CPDs in the absence of pol  but generating many 

replication errors [35, 62, 63].  There is also strong evidence for the linkage between pol 
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 and carcinogenesis since the over-expression of pol  has been observed in several 

breast cancer cell lines [64].  

1.3.2  DNA polymerase IV (Dpo4) 

Dpo4 is isolated from the thermophilic archaeon bacterium, Sulfolobus 

solfataricus, which shows in hot springs at 800C. Although most organisms have several 

Y-family polymerases, Sulfolobus solfataricus has only one called DNA polymerase IV 

(Dpo4). Therefore, it should have the ability to process a broad range of DNA lesions 

and because of this Dpo4 is one of the most studied Y-family polymerases. In addition, 

its extraordinary thermal stability allows for easy purification and handling.   

 More than 100 crystal structures have been solved for apo-Dpo4 and other 

Dpo4-DNA structures such as binary complexes and ternary complexes, demonstrating 

significantly different domain arrangements between the apo-Dpo4 structure and the 

Dpo4-DNA structures [65]. In the binary and ternary complexes, the little finger domain 

wraps around the DNA, causing the little finger and finger domain sit closer to each 

other. However, in the apo-Dpo4 structure the little finger domain is stacked with the 

thumb domain (Figure 8A) indicating the it has the flexibility to move and rotate 

independently. This mobility of this domain is supported by the linker, which tethers the 

LF to the core domain. Dpo4 is in the identical conformation in both binary and ternary 

crystal structures (Figure 8D) [65] and it is believed that the Dpo4 global conformation 

remains constant in both binary and ternary structures, but the detailed analysis of the 

amino acid residues shows some local conformational changes. For instance, Arg51, 

which stays out of the active site in the apo-Dpo4 moves into the active site in the binary 

complex, providing electrostatic stabilization to the bound DNA. The Dpo4 nucleotide 
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binding site is occupied by Tyr10 in the apo and binary structures but It moves away to 

provide a space for the incoming dNTP in the ternary complex.  [65]. 

 

 

Figure 8. The Dpo4 crystal structures. (A) the color coded Dpo4 domains are shown in 
the apo-Dpo4. (B) The Dpo4-DNA binary complex structure (C) The crystal structure of 
the Dpo4-DNA-dNTP ternary complex. (D) The overlay of the apo, binary and ternary 
Dpo4 conformations. The figure is adapted with permission from [65], Appendix A2. 
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Dpo4 active site draws major attention compared to all the other interesting 

properties. Consistent with the other polymerases, the Dpo4 active site also contains 

three highly conserved carboxylates surrounded by the palm and finger domains (Figure 

9) [66]. In 2001 the Wei Yang group produced two types of Dpo4 crystal structures. In 

the first crystal structure, the templating base is the dT that is stabilized by the V32, A42 

and G58 whereas the ddATP is the correct incoming nucleotide (Figure 9A) which is 

associated with A44, A57 and T45, R51 by van der Waals interactions and H-bonding 

respectively [66]. The sugar ring and phosphate groups are stabilized by the Y12, D105, 

K159, D7 and the metal ion while tA4 in the template stays outside the helix. Even 

though the templating base and the incoming nucleotide are properly aligned for the 

base pairing for nucleotidal reaction to occur, the space between the LF and fingers 

domain permits the active site exposed to the solvent, creating it less protected. In the 

second crystal form, the templating base and the incoming dNTP are dG. Surprisingly, 

Dpo4 has translocated to the tC3 bypassing the tG4. The ddGTP, pT12 and tT2 have 

shown significant directional changes to support this skipped-template structure [66]. 
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Figure 9. Dpo4 active site structure in the presence of cognate and non-cognate 
nucleotides. (A) Dpo4 active site conformation in the presence of the next correct 
nucleotide (dTTP). (B) The Dpo4 active site interactions with a wrong nucleotide 
(dGTP). The figure is adapted with permission from [66]. Appendix A3. 

 

1.4 Single-molecule FRET 

 Conventional biochemical experiments provide ensemble average results 

because all molecules are considered to be a single homogenous population. However, 

this is not the case in reality. Complex biological reactions cannot be simply averaged or 

synchronized because often they are multi-step and several subpopulations can be 

present at a given time. The best way to cope with this problem is to monitor the 

dynamics of a large population of individual molecules at specific time points over the 

course of a reaction [67]. Use of optical methods to detect and study biological 
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molecules was first developed by the Hirschfeld lab in the 1970s [68]. There have been 

numerous advancements in the technology of single-molecule detection, and this 

method now has the tools to study the structural, functional and dynamic features of 

complicated biological reactions at the single-molecule level, which provides reaction 

details that cannot be seen in ensemble average experiments [67-70].  

 Early single-molecule experiments used a single dye (fluorophore), which 

allowed the localization and quantification of the labeled macromolecules. These 

experiments were taken to the next level by using two or three fluorophores, which 

gives much more power to study macromolecular interactions, translocation and 

movements. The fluorescence intensity fluctuation, polarization and fluorescence 

(FÖrster) resonance energy transfer (FRET) are some of the parameters measured in 

single molecule spectroscopy [71, 72]. In physical theory, ground state (S0) electrons 

absorb photons to different vibrational exited state sates (S1) (Figure 10A) [73]. Some of 

the electrons lose their energy and fall to the lowest vibrational energy level of the 

exited state due to vibrational relaxation. The energetically unstable electrons in the 

exited state relax back to the ground state by emitting excess energy as photons. The 

excitation and relaxation may not occur between the same energy levels. Usually less 

energy is emitted during relaxation with a longer wavelength. This process is called 

fluorescence (Figure 10A).  The emission energy from the relaxing molecule (donor) 

can be transferred to another chromophore (acceptor) if it is in close proximity, causing 

non-radiatively by coupling of dipole-dipoles (Figure 10B). Therefore, FRET is a non-

radiative electromagnetic phenomenon where the quantum energy transfer between two 

fluorophores is measured [73]. The fundamental requirement for FRET is the overlap of 
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the emission spectrum of the donor and the excitation spectrum of the acceptor. FRET 

efficiency depends on the distance between the donor and acceptor fluorophores 

(Figure 10C). The FRET efficiency can be calculated by the FÖrster equation, E = (1 + 

(R / R0)6)–1 where R0 is the radius when E=0.5 and R is the inter fluorophore distance. 

The distance dependency of FRET is very useful as a molecular ruler to estimate the 

intermolecular distances within the range of 20-70 Å (Figure 10C).  

 

Figure 10. The fundamentals of the Florence and FRET. The fundamentals of the 
Florence and FRET. (A) the theory behind the fluorescence process. (B) The 
nonradiative fluorescence energy transfer between the donor and acceptor. (C) The 
distance dependency of the FRET phenomena. The figure is adapted from [73]. 

 The apparent FRET efficiency (EFRET) can be estimated by measuring the ratio of 

the emission intensities of the donor and acceptor fluorophores [EFRET = (IA/IA +ID)].  The 

change in FRET can be directly related to the real time conformational dynamics of 

individual macromolecules [74]. Therefore, the use of the smFRET technique to answer 

fundamental biological questions has exploded since its discovery. Currently it has been 
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used in various systems to study macromolecular interactions and dynamics, such as 

protein-protein, protein-DNA, protein-RNA, RNA folding, protein folding, mortar proteins, 

and ion-channels, and its uses continue to expand in many applications [74, 75]. 

1.4.1 Use of smFRET in studying DNA polymerase mechanism 

DNA polymerase mechanism involves several steps with different reactions 

rates. Over the past few decades the polymerase mechanism has been extensively 

elaborated with conventional biochemical techniques and structural studies. The 

advancement of  crystallographic techniques has generated many thousands of 

structures of various polymerases allowing us to visualize the different stages of the 

polymerase mechanism [76]. However, these structures generate a snapshot of a 

multistep, dynamic reaction. Over the last decade, various single-molecule techniques 

have been used to probe the DNA replication process. These techniques have a huge 

advantage over the conventional methods because the transition intermediates, 

population heterogeneity and their binding and dissociation kinetics can be easily 

measured using single-molecule methods. Furthermore, these techniques have the 

freedom to change the positions of the fluorophores on the polymerase and also to 

study the dynamic changes in real time.  

 Several FRET-based single-molecule approaches have illuminated knowledge 

about polymerase conformational changes in the DNA replication mechanism. One of 

the early studies from our lab with E. coli DNA polymerase I (Klenow fragment, KF) was 

able to study the DNA replication mechanism in a single-base pair resolution [77]. They 

used a FRET system with Cy3 label on DNA and Cy5 labeled on KF. The observed that 

FRET states for the KF-DNA interactions clearly represented the stages of the known 
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polymerase mechanism. One of the observed results is that KF binding to the mismatch 

DNA causes the polymerase to change the conformation to the exonuclease site. They 

observed a major conformational change, which was not known before, after the 

nucleotide incorporation; presumably it was assigned as a proofreading step [77]. The 

observed KF binding conformations in that study are summarized in the Figure 11.   

 

Figure 11. KF binding conformations to the DNA. (A)  KF’s kinetic mechanism during 
DNA synthesis. (B) The KF (green) binding conformations to the DNA. The domains of 
the KF are labeled as the corresponding letters (Thumb-T, fingers-F, Palm-P). The 
exonuclease domain is marled in orange. The active site (purple) and preinsertion site 
(yellow) are located on the palm domain. First, KF binding to the DNA forms an open 
binary complex (FRET ~0.68). KF translocases to the transient intermediate site after 
incorporating nucleotides (FRET~ 0.47). Then polymerase moves backward and 
positions at the preinsertion site (FRET~0.62). The correct dNTP selection occurs after 
the preinsertion site. If there is a mismatch at the primer template junction, the KF, 
translocates to the exonuclease site (FRET 0.26). The figure was adapted from [77]. 

The KF nucleotide selectivity was thoroughly studied using smFRET and smPIFE 

in our lab [78]. The KF binding to DNA is stabilized in the presence of the correct 

nucleotide and dNTP selection appeared to occur before forming the closed ternary 

complex. Because more noncognate nucleotides are present than correct nucleotides 
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for any incorporation step. Therefore, incorrect nucleotide rejection might occur in a step 

that prevents KF dissociation [78].  

 The KF finger closing mechanism was studied by Santoso et al. in 2010 [79] in a 

study that placed both fluorophores on the KF, with one on the finger domain and one 

on the thumb domain. The change in FRET was directly proportional to the finger 

closing and opening moments. The high FRET and low FRET efficiencies were 

identified as finger closing and opening, respectively. Their results indicate that the 

finger closing might not be represented by a successful dNTP incorporation; instead, 

other mechanisms such as fidelity checking can occur before the dNTP incorporation. 

An incomplete finger closing was observed in the presence of a mismatch in the primer 

template junction which supports their initial hypothesis [79].  

 

Figure 12. The conformational changes of the finger domain during DNA binding and 
nucleotide selection. (A)The positions of the fluorescent labels on finger (F) and thumb 
(T) domains. (B) The proposed mechanism for the KF pre-chemistry steps. The KF-
DNA binary complex, the O-helix (O) in the open conformation. KF forms an initial DNA-
KF-dNTP complex in the presence of nucleotide which followed by a fidelity checking 
step. If the correct dNTP is selected, the finger domain closes to form the stable ternary 
complex. The figure was adapted from [79].   
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Figure 13. Dpo4 conformational changes during DNA binding and nucleotide 
incorporation. (A) The positions of the fluorophores on Dpo4. The two structures show 
the change of positions of them during finger movements. (B) The characteristic 
intensity and FRET traces with captured Dpo4 conformational changes. (C) The 
proposed reaction pathway of dNTP incorporation at the KF active site. KF is in the 
open conformation of the DNA-KF binary complex. Upon KF binding to the correct 
nucleotide, the open conformation goes to the closed conformation quickly. The open 
conformation is in equilibrium with ajar which check the nucleotide binding to the active 
site. The incorrect nucleotide causes for rapid conformational change form ajar to open. 
The figure is adapted with permission [80], Appendix A4. 
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This intermediate, fidelity checking conformation observed in the crystal structure 

in 2011 [81] and, David Miller’s group apparently observed this also fidelity checking 

step using smFRET [80].  

1.4.2 Adaptation of smFRET technique to study Dpo4 

Since its discovery hundreds of biochemical and structural studies have been 

carried out on Dpo4 to understand its properties, function and role in TLS, but no 

studies have determined the Dpo4 binding conformations and related binding kinetics in 

real-time using single molecule techniques. In 2013, our lab adapted the smFRET 

technique to characterize the real-time Dpo4 binding conformations and related binding 

kinetics [82].  

We used the Cy3/Cy5 fluorophore system to label the DNA and the Dpo4 

respectively as was used with KF. However, in contrast to the previous single molecule 

experiments with KF, the DNA-Dpo4 binary complex was formed to sample two FRET 

states that these were not static conformations as appear to correspond to two Dpo4 

binding conformations. Interestingly, transitions between these two FRET states were  

observed. The addition of dNTPs resulted in only a single FRET distribution (low FRET 

state, Figure 14). The corresponding Dpo4 binding kinetics also reveal the formation of 

a relatively stable ternary complex in the presence of the next correct nucleotide. The 

observed FRET states were in good agreement with previously published crystal 

structure information of the Dpo4 [82]. The new findings of the Dpo4 binding 

conformation in the binary complex and ternary complex are summarized in the Figure 

14.  
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In 2015, the single molecule method developed to study conformational 

dynamics of Dpo4 binding to normal DNA was taken into the next level to study 

carcinogenic adduct modified DNA. When we studied the conformational changes that 

occur during the bypass of AF and AAF adducts in DNA [83]. In contrast to the 

unmodified DNA, the smFRET results revealed that the binding conformation of the 

binary complexes is different in AF/AAF modified DNA indicating an altered structure at 

the adduct site.  However, in the presence of dNTPs, Dpo4 forms a ternary complex 

conformation similar to the unmodified DNA. Furthermore, that study reveals different 

dNTP disincorporation pathways for AF and AAF modified DNA [83].  

 

Figure 14. The proposed mechanistic pathway of Dpo4 binding to unmodified DNA. The 
figure was adapted with permission form [82], appendix A5. 
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CHAPTER 2: EXPERIMENTAL PROCEDURES 

Some sections of this chapter were taken from the manuscript, Liyanage et al. 

2 Materials and methods 

2.1 Materials 

2.1.1 Benzo[a]pyrene 

A racemic mixture of activated B[a]P ((±)-anti-B[a]PDE) was perched from 

National Cancer Institute, Chemical Reference Standard Repository, Kansas City, MO.  

2.1.2 DNA oligonucleotides 

Custom synthesized DNA oligonucleotides including Cy5-DNA, Biotin-DNA and 

amino modified C6-dT were purchased from either Eurofins genomics (Louisville, KY 

40299) or Integrated DNA Technologies (Coralville, Iowa). All the DND sequences are 

shown in Table 1. 

2.1.3 MALDI-TOF MS 

ZipTip pipette tips were purchased form Merk Millipore Ltd. Tullagreen. The 

3HPA used for matrix preparation was bought form Sigma Aldrich.  

2.1.4 DNA polymerase IV 

Archaeon bacterium Sulfolobus solfotericus DNA polymerase IV gene carrying 

plasmid (p1914) transformed E. coli strain (RW 382) was generously gifted by Dr. Roger 

Woodgate (NICHD). 
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Table 1. The DNA sequences used for all the primer extension assays and single 
molecule experiments 

 

Cy3 is attached to blue underline T 

Red G is the B[a]P modified base 

  

Experiment Name Sequence 

To make  
B[a]P 
template 

11 mer  5’ CCATAGATACC 3’ 

15 mer 5’ CpATGTCGTTTTGGTG 3 ‘ 

26 mer scaffold 5’ CACCAAAACGACATGGGTATCTATGG 3’ 

 
Single 
molecule 
FRET 

20 mer primer 5’ [Biotin]-CACCAAAACGACATGGGTAT 3’ 

21 mer primer 5’ [Biotin]-CACCAAAACGACATGGGTATC 3’ 

21 mer primer  
mismatch 

5’ [Biotin]-CACCAAAACGACATGGGTATT 3’ 

26 mer modified 
template 

5’ CCATAGATACCCATGTCGTTTTGGTG 3’ 

26 mer 
unmodified 
template 

5’ CCATAGATACCCATGTCGTTTTGGTG 3’ 

Primer 
extension 
assays 

16 mer primer 5’ [Cy5]-CACCAAAACGACATGG 3’ 

20 mer primer 5’ [Cy5]-CACCAAAACGACATGGGTAT 3’ 

21 mer primer 5’ [Cy5]-CACCAAAACGACATGGGTATC 3’ 

 
21 mer primer  
mismatch  

5’ [Cy5]-CACCAAAACGACATGGGTATT 3’ 
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2.1.5 Single molecule FRET 

The quartz slides were purchased from TED PELLA, Inc. The amino propyl 

silane was purchased from UTC Inc. Bristo, PA for the quartz slide silanization reaction. 

The m-Peg and Biotin-Peg used for the pegilation reaction during single molecule slide 

preparation were purchased from Laysan Bio Inc. Arab, AL 35016. The NeutrAvidin 

used for immobilizing DNA was purchased from Life Technologies, Eugene, OR. 

2.2 Methods  

2.2.1 DNA purification 

All the DNA oligonucleotides were HPLC purified (Virion pro Star) using a C18 

analytical column. The HPLC buffer systems and gradients are listed in the Table 1. All 

the buffers were degassed before running the HPLC. The HPLC column was washed 

(100% Buffer B) and equilibrated (100% Buffer A) at least for 15 min prior to each 

injection. The purified DNA quantified and stored in -20oC freezer. 
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Table 2. The HPLC buffers used for DNA purification. 

 

 

 

2.2.2 DNA purity checking  

The purified and B[a]P modified DNA quality was checked by MALDI-TOF MS. A 

100 pmol of the DNA was mixed with 15 L of 0.1 M TEEA to make the DNA solution. In 

the desalting process, first ZipTip was washed three times with 50% ACN. Then the tip 

was equilibrated with 0.1 M TEEA. The DNA sample was aspirated more than 20 times 

into the equilibrated ZipTip for maximum DNA binding to the column. Then the tip was 

washed three times with 0.1 M TEEA. Finally, the tip was washed three times by 

purified water. Meantime, 2 L of 3HPA solution (about 50 mg of 3HPA was dissolved in 

20 L of 25 mM ammonium acetate) spotted on to the MALDI plate. When the 3HPA 

spot is completely dried, the DNA was eluted (elution solution 50% ACN) directly onto 

the spot. When the spot is completely dried, the plate was taken to the instrument 

Experiment Buffer A Buffer B Gradient (Buffer B) 

11 mer  0.1 M TEEA, 5% 
ACN 

95% ACN 5-21% over 30 min 

B[a]P –11 mer 0.1 M TEEA 65% CAN 35% ,0.1 M 

TEEA 

0-65 over 80 min 

Cy3-15mer 
0.1 M TEEA, 5% 
ACN 

95% ACN 5-30% over 40 min 

Cy3-26mer 
0.1 M TEEA, 5% 
ACN 

95% ACN 5-30% over 40 min 
30-100% over 
50min 

DHPLC 
0.1 M TEEA, 5% 
ACN 

65% ACN 10-28% over 60 min 
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(Bruker) for analysis. The MALDI spectra for the (+Cis) and (+trans) modified 11 mer 

DNA are shown in Figure 15. 

 

Figure 15. The MALDI spectra for the (+)-cis-B[a]P-11mer (left) and (+)-trans-B[a]P-
11mer (right). 

 

2.2.3 DNA Cy3 labeling for smFRET experiments  

To make the Cy3 labelled oligonucleotides the amino modified C6-dT containing 

DNA was reacted with Cy3 mono reactive dye (GE Healthcare Bio-Sciences). The 

reaction scheme is shown in Figure 16A. The Cy3 dye was dissolved in 40 L DMF and 

stored under argon gas in -20oC. Usually 5-10 nM DNA was reacted with 15 L of Cy3 

in a solution contain Dioxane (10L), DMF (10L) DIPEA (3 L) For ~1 hr at room 

temperature. The reaction was quenched by adding 10 L of DDT). The Cy3 labeled 

DNA was purified from the unlabeled DNA using HPLC (the buffer are shown in Table 1, 

the HPLC chromatogram is in Figure 16B). The 26 mer oligonucleotide was Cy3 labeled 

to make the unmodified template for smFRET experiments (Amino modified dT is at 14th 

poison on the template). However, The Cy3 labeled B[a]P modified 26 mer template 

was made differently.  
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Figure 16. Cy3 labelled DNA HPLC purification. (A) The Cy3 labelling reaction. (B) The 
HPLC chromatogram for Cy3 labeled DNA purification.  The Aurora spectrum on the top 
shows the 260 nm and 550 nm absorption. The red line indicates the Cy3 labelled DNA 
peak.  
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2.2.4 Preparation of B[a]P modified DNA template.  

The BPDE was dissolved in a solution containing 19:1 THF:TEA extremely 

carefully inside the hood. A continuous stream of argon gas was flowed over the tube to 

minimize the contact with oxygen. B[a]P-modified template was prepared as described 

[84] (Figure 17). Briefly, a racemic mixture of (±)-anti-B[a]PDE was incubated with an 

11-mer containing a single dG. The reaction yields four isomeric products that were 

separated by reverse phase HPLC (Figure 18). The selected B[a]P-modified 11-mer 

was ligated to a Cy3-labeled 15-mer using T4 DNA ligase and the final product (26-mer) 

was purified by reverse phase HPLC with a heated column (DHPLC). The 26-mer 

unmodified template and B[a]P modified template were heat annealed to the 

appropriate primer depending on the experiment.

 

 

Figure 17. Preparation of B[a]P modified DNA. 
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Figure 18. B[a]P isomers separation by HPLC.  

2.2.5 Primer extension and single nucleotide incorporation assays. 

 Cy5-labeled primers and B[a]P modified or unmodified templates (15 nM) were 

incubated with Dpo4 (2 nM for unmodified template and 50 nM for B[a]P modified 

template) in reaction buffer (50 mM Tris-HCl, pH 7.5, 10 mM MgCl2, 1 mM DTT, 25 

g/ml bovine serum albumin (BSA), 100 M dNTPs, (±)10% DMSO) at 37oC. 10 μL 

aliquots of the reaction mixture were taken for each time point and mixed with 2x DNA 

loading buffer (95% formamide, 1 mg/ml bromophenol blue, 10 mM EDTA) to quench 

the extension reaction. The samples were loaded to a 20% polyacrylamide denaturing 

gel and run for ~16 hrs at 800V. Gels were scanned for Cy5 fluorescence in a Typhoon 

9210 Variable Mode Imager (GE Healthcare).  

Single nucleotide incorporation assays were carried out at 370C in a buffer 

containing 50 mM Tris-HCl, pH 7.5, 50 mM NaCl, 5 mM Mg, 0.025 mg/ml BSA, 10 mM 

DTT, 10 nM primer/template. Dpo4 concentration in the both unmodified and B[a]P 
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modified template containing reactions was 10 nM. However, incubation time for 

unmodified template containing reaction was 1 min whereas modified DNA reaction was 

20 min. At the end of the incubation time, the reaction was quenched with 2X DNA 

loading dye. The gel electrophoresis is done similar the primer extension assay.  

2.2.6 Dpo4 purification and Cy5 labeling 

Dpo4 purification was carried as described [82, 85]. The native single cysteine in 

Dpo4 was labeled with a Cy5 maleimide ester (GE healthcare) as described [82]. 

2.2.7 Single molecule experiments 

DNA was immobilized on a PEGylated quartz slide surface via biotin-streptravidin 

linkage. The PEGylated slide was prepared as previously described [69, 82, 86]. Single 

molecule experiments were done as follows: PEGylated slides were incubated with a 

streptavidin solution (0.02 mg/ml) for 7 min. After washing, 10-15 pM biotinylated 

primer-template was introduced and incubated for another 7 min. After a final wash, 

Cy5-labeled Dpo4 (10-15 nM) was introduced in binding buffer containing 50 mM Tris-

HCl, pH 7.5, 35 mM CaCl2, 25 g/ml BSA, oxygen scavenging system 

(dihydroxybenzoic acid and photocatechuate dioxygenase from Pseudomonas sp.) and 

1 mM Trolox. Calcium ions were used for all smFRET experiments to prevent DNA 

synthesis in the presence of dNTPs. Single molecule experiments were conducted at 

21oC in a home-built prism-based total internal reflection microscope. All the smFRET 

experiments were carried out at 80 ms time resolution. The traces were analyzed with 5 

point moving average. The apparent FRET efficiencies were calculated as FRET= IA/(ID 

+ IA), where ID and IA are the of donor and acceptor fluorescence intensities, 
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respectively. All smFRET histograms were built using >100 trajectories. The calculated 

FRET values are associated with an error of ± 0.02.  

2.2.8 Single molecule microscopy 

A home-built total internal reflection microscopy (TIRF) was used to measure the 

FRET intensity. The detailed experimental set up is explained in [86]. Briefly, a 532 nm 

green laser light is directed onto the single molecule experimental slide through a 

quartz, Pellin-Broca prism.  The optics were arranged to get the incident beam angle 

greater than the critical angle, there by an evanescence wave is crated on the slide. The 

evanescence wave excites the fluorescence probes which are immobilized to the quartz 

slide. The donor (Cy3) and acceptor (Cy5) emissions were collected by a water 

immersion objective lens which is fixed to an inverted microscope. The Cy3 and Cy5 

emissions were separately recorded by a CCD camera (Ixon+, Andor). 

MD simulations  

The crystal structure of the binary complex of DpO4 (pdbid 2IA6[18]) with the 

BPA adduct was used as the starting template for all simulations. MolProbity [87] was 

employed to check and protonate the structure. The DNA substrate sequence was 

modified to be similar to the primer used experimentally (5’-CATGGGTATC, 3’-

GTACCCATA(B[a]P-cis-G)ATA), and the adduct in the crystal structure was modified 

from the trans conformation to the cis conformation, with the backbone of the DNA helix 

remaining in the same location as the crystal structure. The final C base in the 5’ DNA 

strand was also modified to investigate several different systems and structural aspects. 

A total of nine systems with different nucleotide substitutions, adduct orientations and 

solvents were created to investigate the impact of DMSO on the system—six were in 
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pure water, three were in 90% water and 10% DMSO. All molecular dynamics 

simulations and structural analysis was done with the AMBER 14 simulation 

package,[88-90] and PCA and NMA were done with in the ProDy module in VMD [91, 

92]. 

The simulations in pure water comprise two binary insertion complexes and one 

binary pre-insertion complex. All of the insertion binary complexes in water have the 3’-

B[a]P adduct stacked within the DNA helix and the modified G nucleobase stacked 

within the minor groove [93]. The two sub-systems for the insertion binary complex had 

modified bases at the ending 5’ position opposite the adduct, which was changed from 

C to G in the second system. The corresponding nucleobase was deleted completely 

from the third to simulate the pre-insertion complex. These systems were compared in 

order to investigate the effect of different nucleobases on the stability of the complex. 

Two additional simulations were run in 10% DMSO with the adduct flipped out into 

solvent; one with the original experimental primer given above and one with the final 

nucleobase at the end of the 5’ strand (across from the adducted base location) deleted. 

Further changes were not performed for the DMSO since the flipped-out conformation 

for the B[a]P-cis-G adducted base does not have substantial interaction with the 

corresponding nucleobase. Additionally, the TYR-274 amino acid in the protein chain 

was changed to the primary Dunbrack rotamer (53.1377%) in order to eliminate steric 

clashes with the flipped out DNA base in the 10% DMSO systems [94]. 

 Partial charges for the B[a]P-cis-G adduct were calculated using RESP fitting on 

the RED development servers [95, 96] and the standard procedure for creating modified 

nucleotides for proper linkages between nucleobases. An additional angle parameter 
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was taken from Mocquet 2007, and the partial charges generated in this work compared 

favorably with the partial charges from those results [97]. The guanine geometry 

parameters were taken from the OL15 DNA force field [98], and the remaining geometry 

parameters for the adduct were generated from the GAFF force field [99]. Parameters 

for the Ca2+ ions present in the crystal structure [100] and parameters for the DMSO 

solvent box[101] (where appropriate) were taken from the literature.   

 Molecular dynamics simulations on all systems were performed with the 

pmemd.cuda program from AMBER16, with the ff14SB force field for all of the protein 

parameters,[88-90] the OL15 force field for the DNA parameters[98] and a 1 fs timestep. 

Long-range electrostatics were treated with sPME with an 8Å cutoff for all nonbonded 

interactions.[102] All simulations were performed in the NVT ensemble with the 

Berendsen thermostat and barostat[103], and SHAKE was applied to all bonds involving 

hydrogen atoms.  

 Prior to solvation, all systems were neutralized to a net charge of 0 with Na+ ions 

in AMBER16’s tleap program. The water systems were solvated in a rectangular box of 

TIP3P water using a 12Å pad between the surface of the protein and the edge of the 

box [104]. For the systems with 10% DMSO, in order to ensure an even distribution of 

DMSO molecules within the box, the AMBER16 program AddToBox was used to 

generate the 10% DMSO/90% TIP3P water solvent boxes, with the parameters of the 

box given to meet or exceed 12 Å from the surface of the protein and the edge of the 

box. RMSD, RMSF, correlation analysis, and solvation shell tracking were all calculated 

with AMBER16’s cpptraj program. PCA and NMA were done with in the ProDy module 
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in VMD [91, 92]. 33,000 snapshots from each trajectory were analyzed with ProDy’s 

PCA algorithm, with 100 PC modes generated. 
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CHAPTER 3: BULKY LESION, (+)-cis-B[a]P-N2-dG BYPASS REQUIRES DPO4 
BINDING IN DISTINCT CONFORMATIONS 

 

Some sections of this chapter were taken from the manuscript by Pramodha Liyanage 

et al. “Bulky Lesion Bypass Requires Dpo4 Binding in Distinct Conformations” under 

review, JACS. 

3 Background and significance 

 Extensive crystallographic studies have revealed that Dpo4 contains a spacious 

active site able to accommodate two templating bases simultaneously. Also, because it 

has unusually small finger and thumb domains, it has a very open active site with few 

DNA contacts leading to DNA slippage during synthesis and resulting in high levels of 

mismatch and frame-shift mutations [18, 105]. In high fidelity DNA polymerases, correct 

dNTP incorporation is accomplished by a large conformational change in the thumb and 

fingers domain, while crystal structures show that most Y-family polymerases, such as 

Dpo4, do not exhibit large conformational rearrangements in the ternary complex, which 

is also thought to affect the accuracy of nucleotide incorporation [106].  

 Replication of B[a]P-modified DNA is highly error prone, and the error signature 

depends on the organism studied, the specific DNA sequence around the adduct 

position and the stereochemistry of the adduct [107]. In some cases, more than one Y-

family polymerase is required for successful primer extension across and after the 

adduct position [16, 60].  Once translesion synthesis has occurred, the bulky adduct can 

result in a distortion in the DNA that can activate the nucleotide excision repair (NER) 

pathway that will maintain the genomic integrity but fix a mutation if inaccurate DNA 

synthesis had occurred [108]. 
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 In the present study, smFRET and single nucleotide incorporation assays were 

used to characterize Dpo4 bypass of a DNA template containing (+)-cis-B[a]P-N2-dG 

adduct. Our data show that Dpo4 binds to the B[a]P-modified DNA in two distinct 

conformations when the modified base is at the templating position. These 

conformations were identified as pre-insertion binary complex I and insertion binary 

complex I, each of which has the B[a]P adduct intercalated into the DNA helix, blocking 

nucleotide incorporation from occurring.  

A recent study about the cytosolic dynamics which was carried out using 

confocal microcopy estimated the cytosolic dielectric constant as ~21.9, which is lower 

than that of the dielectric constant of water, ~78 [109].  Therefore, presumably solvation 

of B[a]P adducts is supported by the cytosolic micro environment stabilizing the 

hydrophobic pyrene ring system. Furthermore, they suggested a solvent system, 18% 

DMSO and tracetin, to be used in vitro to imitate the cytosolic polarity [109]. We used 

DMSO to mimic the cytosolic microenvironment to study the Dpo4 binding 

conformations and bypass mechanism in vitro. However, we could use only up to 15% 

DMSO to maintain the proper refractive index in the smFRET experiments.  

 Dpo4 can slowly extend the primer across from and after the adduct in the 

presence of DMSO by making a productive binary complex in which the (+)-cis-B[a]P-

N2-dG adduct is likely flipped out and exposed to the solvent. The smFRET experiments 

in the presence of DMSO reveal that Dpo4 also binds to form two complexes (insertion 

binary complex II and preinsertion binary complex II) and gel analysis shows that DMSO 

enhances the rate of incorporation across from the adduct. In the presence of DMSO, 

Dpo4 predominantly incorporates dG across from the adduct, producing a G:G 
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mismatch. Finally, when the DNA primer terminates across the adduct, DMSO has a 

more prominent effect on the Dpo4 binding conformation because in its presence we 

observe a single FRET value. Accurate incorporation occurs at the position following the 

adduct for both the modified and unmodified templates. 

3.1 Results 

3.1.1 Stalled Dpo4 primer extension is rescued by DMSO 

Successful DNA adduct bypass depends on various factors, such as the nature 

of the adduct, its orientation within the DNA helix, the flanking DNA sequence and the 

properties of the DNA polymerase. To investigate the blocking potential of the B[a]P 

adduct, we first performed running start primer extension assay by Dpo4 using either an 

unmodified or (+)-cis-B[a]P-N2-dG-modified template (Figure 20). The unmodified 

primer-template DNA construct results in efficient DNA synthesis, and the starting 

product is fully extended within 1 min (Figure 19). Lowering the Dpo4 concentration 

reveals replication intermediates at early time points and full extension after 10 minutes 

(Figure 1B, left panel). By contrast, the B[a]P-modified template results in Dpo4 stalling 

one base before the adduct (Figure 20C). After 30 minutes of incubation, some 

incorporation across the adduct takes place, but fully extended product is not observed 

even after two hours (Figure 20C).  
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Figure 19. Dpo4 running start primer extension assay with unmodified template. The 
16mer primer is fully extended to 26mer product in one minute.  The sequence used for 
the extension assay is shown on the top of the gel.  

 Previous work using a (+)-cis-B[a]P-N2-dA adduct has shown that the B[a]P 

aromatic moiety can adopt a stacked conformation within the DNA helix, similar to what 

is observed for the (+)-cis-B[a]P -N2-dG adduct, effectively blocking replication by Dpo4 

[16]. In that study, it was shown that adduct stacking could be reduced by the addition of 

an organic solvent, such as DMSO, that reduced the dielectric constant of the media 

presumably causing the adduct to adopt an alternate, more solvent exposed 

conformation and allowing increased adduct bypass [16]. To test whether a reduction in 

adduct stacking can also enhance bypass synthesis with the (+)-cis-B[a]P -N2-dG 

adduct, we added 10% DMSO to the reaction buffer and measured DNA extension past 

the adduct. 
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Figure 20. DMSO rescues stalled Dpo4 primer extension. (A) Chemical structure of the 
carcinogenic adduct (+)-cis-B[a]P-N2-dG isomer. (B) Primer extension assay with 
unmodified template. DNA construct used for the assay is shown on top with 5’-Cy5 
labeled primer). Primer extension reaction was initiated with 2 nM Dpo4 and aliquots 
were quenched at the indicated time points before loading onto a denaturing acrylamide 
gel. The enzyme completes the extension in 30 min both in the absence and presence 
of DMSO. (C) Primer extension assay with B[a]P modified template. Position of the 
adduct is indicated by red G with an asterisk. Reaction was initiated with 50 nM Dpo4. 
The adduct stalls Dpo4 one nucleotide before the adduct position (arrow). 10% DMSO 
rescues stalled Dpo4 after 60 min.  

In agreement with the prior study, the presence of 10% DMSO allows Dpo4 to 

extend across and past the B[a]P adduct faster than in the absence of the organic 

solvent (Figure 20C). Addition of 10% DMSO did not significantly alter DNA extension 

kinetics for the unmodified template (Figure 20B). These data suggest that DMSO 

induces a conformational rearrangement of the B[a]P adduct that results in the 

formation of a more catalytically active complex. 

3.1.2 B[a]P adduct induces different Dpo4 binding conformations compared to 

unmodified DNA  

 It has been shown that different Y-family polymerases display different 

efficiencies and fidelities for the same B[a]P adduct during TLS [52]. However, most of 

these ensemble-averaged experiments do not provide information about the 
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polymerase binding dynamics in the population or sub-populations. Single-molecule 

techniques such as smFRET enable the monitoring of transient events and individual 

molecular populations [110]. To characterize the conformation and dynamics of Dpo4 

on the adducted DNA using smFRET, we labeled the DNA with a FRET donor (Cy3) 

and Dpo4 with a FRET acceptor (Cy5, Figure 21A). This labeling strategy has 

previously enabled us to characterize Dpo4 binding kinetics while monitoring the global 

conformation of the binary complex [82, 83]. The resulting single-molecule trajectories 

show free DNA as Cy3-only fluorescence, and Dpo4 binding as anti-correlated 

increases in Cy5 fluorescence and decreases in Cy3 (Figure 21B). In agreement with 

our previous work, [82] the DNA-Dpo4 binary complex samples two FRET distributions 

for the unmodified DNA construct (Figure 21B, right). The main population is centered at 

~0.8 FRET, while the minor population is centered ~0.6 FRET. Based on our previous 

work,[82] we assign the high FRET peak (0.8) to a pre-insertion binary complex, and the 

low FRET peak (0.6) to the insertion binary complex. Single-molecule trajectories with 

the (+)-cis-B[a]P -N2-dG-modified template also exhibit a similar behavior with two 

possible binding configurations (Figure 21C). Analysis of ~100 single-molecule 

trajectories shows a bimodal FRET distribution, albeit with overall lower FRET values 

(peaks centered at ~0.5 and ~0.75, Figure 21C, right), indicating that the (+)-cis-B[a]P-

N2-dG adduct slightly distorts the polymerase binding orientation on the DNA template. 
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Figure 21. Single-molecule Dpo4 binding dynamics on unmodified and B[a]P-modified 
templates. (A) Schematic diagram of the smFRET setup to monitor the Dpo4 binding 
dynamics to DNA. Cy3-labeled primer-template is immobilized onto a quartz slide 
trough biotin-streptravidin and with Cy5-labeled Dpo4 in solution. Upon Dpo4 binding, 
FRET takes place between Cy3 and Cy5. (B) Characteristic smFRET Dpo4 binding 
trajectory to the unmodified DNA. DNA sequence is on the right (see materials and 
methods). Underlined T indicates Cy3 position. Dpo4 binding decreases Cy3 
fluorescence (ID, blue) while Cy5-signal (IA, red) increases simultaneously. Apparent 
FRET efficiencies (bottom) are as calculated as IA/ (IA + ID). Time-binned smFRET 
histogram from >100 trajectories; bimodal distribution reveals two binding 
conformations. (C) smFRET Dpo4 binding trajectories to the B[a]P modified DNA. Red 
G indicates adduct location. Time-binned smFRET histogram from >100 trajectories 
yields a bimodal distribution revealing two binding conformations. 
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3.1.3 Dpo4 binds to B[a]P-modified DNA in a catalytically active conformation in 

the presence of DMSO  

There is no structural information for the (+)-cis-B[a]P-N2-dG adduct in complex 

with Dpo4. Early solution NMR studies of the (+)-cis-B[a]P-N2-dG adduct in duplex DNA 

have shown that the B[a]P hydrocarbon moiety intercalates into the helix [28]. Crystal 

structures of the (+)-cis-B[a]P-N2-dA DNA adduct in complex with Dpo4 show two 

possible conformations where B[a]P moiety is either stacked within the DNA helix or 

flipped out to the major groove [16]. The latter orientation is energetically unfavorable 

because the hydrophobic moiety is exposed to solvent, but presumably it can be 

stabilized in the presence of organic solvents, which has been also shown to improve 

Dpo4 lesion bypass synthesis [16]. As shown above, the presence of DMSO also 

enhances Dpo4 bypass of the (+)-cis-B[a]P-N2-dG adduct. Therefore, we hypothesize 

that the (+)-cis-B[a]P-N2-dG adduct behaves akin to the (+)-cis-B[a]P-N2-dA adduct in 

the binary complex. To test this, we measured the binary complex orientation using 

smFRET in the presence of DMSO (Figure 23A). 

 Addition of DMSO does not significantly affect the FRET distribution for the 

unmodified template, and the relative area under each peak remains essentially 

unchanged throughout the DMSO titration (Figure 23B), suggesting that the equilibrium 

between the insertion and pre-insertion binary complexes is not altered by DMSO. In 

the presence of the B[a]P-modified template, increasing the DMSO concentration favors 

the low FRET conformation (designated insertion binary complex II) and shifts the FRET 

distribution towards lower values (Figure 23B). We also measured the polymerase 

complex dissociation kinetics by analyzing the dwell-time distributions (Figure 23). For 
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the unmodified template, Dpo4 dissociates with a rate constant koff = 0.22 s-1, which 

agrees well with our previous data using a different DNA construct (0.20 s-1) [82]. This 

value remains unchanged in the presence of up to 15% DMSO (Figure 22C). 

   

 

 

Figure 22. Dpo4 binding conformation of the (+)-cis-B[a]P-N2-dG modified template. (A) 
smFRET histograms with increasing DMSO to monitor its effect on Dpo4 binding for the 
unmodified and modified DNAs. All histograms are fit to binomial distributions. (B) 
Relative fraction area of high FRET state as a function of DMSO percentage in the 
buffer. Solid lines represent linear fits to the data. DMSO stabilizes the low FRET 
conformation for the adducted DNA but the unmodified DNA. (C) Dpo4 dissociation rate 
constant (koff) as function of DMSO concentration. DMSO stabilized the modified binary 
complex but not with the unmodified DNA.  
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However, in the presence of the B[a]P-modified template Dpo4 dissociates 

approximately two-fold faster (koff = 0.42 s-1), indicating that the adduct destabilizes the 

binary complex by about 0.32 kcal/mol. Addition of DMSO decreases koff linearly (Figure 

21C) to 0.21, in agreement with the idea that the organic solvent favors the B[a]P 

solvent-exposed conformation, thus re-stabilizing the binary complex. 

 

 

Figure 23. Dwell time distributions for Dpo4-DNA binary complex. The dissociation 
constants (koff) were calculated by fitting data to single exponential decays. The 
corresponding smFRET experiments were carried out as a function of DMSO 
concentration shown in Figure 7C. 
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3.1.4 Dpo4 favors dG misincorporation across (+)-cis-B[a]P-N2-dG adduct 

 Y-family polymerases do not have proofreading activity, which is an inherent 

property of high fidelity polymerases. Therefore, Y-family polymerases have higher error 

rates (in the 10-2 - 10-3 range) when copying normal DNA [111]. To study the preference 

of Dpo4 nucleotide incorporation in the ternary complex, we first used a single-

nucleotide incorporation assay with unmodified DNA (Figure 24). Dpo4 mainly 

incorporates the next correct nucleotide, dC, across from the dG in the unmodified 

template in the presence or absence of DMSO. However, other non-complimentary 

bases can also be incorporated depending on the Dpo4 concentration and reaction time 

(data not shown).  

  

 

 

Figure 24. Dpo4 incorporates the next correct nucleotide in the unmodified DNA 
construct. Single nucleotide incorporation assay shows the tendency of dNTP 
incorporation across the dG, templating base in the 20mer/26mer primer-template. 
Unmodified DNA sequence used for this assay is shown on the top. Dpo4 mainly 
incorporates dC in both in absence and presence of DMSO. Lanes 1 and 7 represent 
control experiments in absence of dNTPs in the experiments (labeled as -). Lanes 2 and 
8 represent experiments with all 4 dNTPs (labeled as 4). Other lanes contain only the 
designated dNTP. 
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 We next carried out single-nucleotide incorporation assays to characterize the 

Dpo4 error signature across (+)-cis-B[a]P-N2-dG. In the absence of DMSO, DNA 

extension proceeds inefficiently with minor amounts of dG and dA mostly being 

incorporated (Figure 25A left). The same reaction in 10% DMSO proceeds to a much 

larger extent, with dG being preferentially incorporated across from the adduct (Figure 

25A right), thus resulting in the formation of a G:G mismatch. These results suggest that 

the DMSO-induced solvent exposed conformation of (+)-cis-B[a]P-N2-dG adduct is more 

catalytically active but does not adopt a conformation permitting correct dNTP 

incorporation. 

To investigate the possible ternary complex conformations leading to this error 

signature, we carried out smFRET experiments in the presence of each nucleotide. To 

prevent dNTP incorporation, we used Ca2+ as divalent metal ion instead of Mg2+, which 

has been used in the past for inhibiting nucleotide incorporation by Dpo4 [82, 112]. In 

agreement with our previous results, binding to an unmodified template in the presence 

of each of the four dNTPs produces a single FRET distribution (Figure 25B, left panels, 

red). Addition of 10% DMSO (Figure 25B, blue) did not significantly alter peak positions 

with the exception of dGTP and dTTP, both of which change slightly. The lack of 

significant changes in the FRET distributions suggests that the overall conformation of 

the polymerase complex remains largely unchanged in the presence of DMSO.  

In the presence of the (+)-cis-B[a]P-N2-dG adduct and each dNTP (Figure 25B, 

right panels), the ternary complexes sample mostly a single conformation, with FRET 

values consistently larger than the unmodified template, suggesting that the ternary 

complex structure is somewhat distorted by the presence of the adduct. When 10% 
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DMSO is present (blue histograms), FRET distributions for dATP and dCTP remain 

unchanged (centered at ~0.62), whereas the FRET distributions for dGTP and dTTP, 

shift towards lower values (~0.53). This value is similar to that of the unmodified 

template with the correct nucleotide (dCTP) indicating that, in the presence of DMSO, 

the B[a]P-modified ternary complex adopts a similar conformation to the cognate dG 

base in presence of either dGTP or dTTP. 

3.1.5 B[a]P adduct at duplex DNA terminus is bypassed in an error-free manner  

 We next determined how a (+)-cis-B[a]P-N2-dG adduct bound to the terminal 

base pair of the primer-template affects the binary complex conformation. As expected 

for the unmodified primer-template in the absence of DMSO, Dpo4 samples the two 

conformations that we have previously assigned to the pre-insertion (FRET ~0.8) and 

insertion binary complexes (FRET ~0.6, Figure 26A). In the presence of 10% DMSO, 

the FRET distribution does not significantly change and still exhibits two main 

populations, showing again that the organic solvent does not alter the equilibrium 

between the insertion and pre-insertion binary complexes (Figure 26B). Symmetric 

transition density plots at both 0% and 10% DMSO show reversible shuttling between 

the insertion and pre-insertion conformations (Figure 26A and B). 
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Figure 25. Dpo4 binding dynamics to the DNA with adducted dG as templating base in 
the presence of each nucleotide. (A) Modified DNA sequence used for this single 
nucleotide incorporation assay (top). Lanes 1 and 7 are control experiment in the 
absence of dNTPs. Lanes 2 and 8 are control experiments in the presence of all dNTPs. 
The other lanes contain only the specified nucleotide. In the absence of DMSO no 
incorporation takes place. In the presence of DMSO dG is incorporated across the 
adduct (B) smFRET distributions for Dpo4 binding to unmodified (left) and B[a]P 
modified (right) DNA in the presence of 1 mM dNTP as indicated, in the absence (red) 
and presence (blue) of 10% DMSO. In the presence of nucleotides all histograms are fit 
to single Gaussian distributions. 
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When the B[a]P adduct is present at the DNA duplex terminus and in the 

absence of DMSO, the FRET distribution solution shows two peaks centered near ~0.7 

and ~0.5, presumably corresponding to slightly perturbed conformations of the pre-

insertion complex I and insertion binary complex I as observed in Figure 21 (Figure 

26C). Addition of 10% DMSO results in a dramatic change of the FRET distribution that 

only exhibits a single peak centered ~0.55. This result shows that in 10% DMSO Dpo4 

samples only the B[a]P solvent-exposed conformation, which results in a global 

conformation akin to the insertion binary complex II (Figure 26D). 

Extension of DNA with (+)-cis-B[a]P-N2-dG adduct at the duplex terminus by 

Dpo4 takes place mostly error-free in this sequence context (Figure 28A), as dT is the 

only nucleotide showing significant incorporation across from dA. The degree of dT 

incorporation is very slightly enhanced by the presence of 10% DMSO, suggesting that 

the solvent exposed conformation for (+)-cis-B[a]P-N2-dG adduct may be favored even 

in the absence of organic solvent. The same DNA primer with unmodified template 

shows similar dT incorporation across the dA (Figure 27). In agreement with these 

results, the FRET distribution in the presence of the next correct nucleotide dT is 

virtually identical in 0% and 10% DMSO (Figure 27). Moreover, this FRET value (0.55) 

matches the one observed for the unmodified DNA construct in the presence of dT, 

suggesting that the conformation of the cognate ternary complexes is very similar for 

unmodified and B[a]P modified DNA constructs. Addition of incorrect nucleotides dA, dC 

and dG for the B[a]P-modified DNA results in higher FRET values (~0.6) when 

compared to the cognate dT (Figure 28B). The tertiary complex binding conformation 

only resembles the ones observed with the unmodified DNA in the presence of the 
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correct dTTP. As we have previously shown, for unmodified DNA all four dNTPs result 

in similar FRET distributions (~0.54), suggesting that cognate and non-cognate ternary 

complexes present an overall similar structural arrangement. 

 

  

 

Figure 26. Dpo4 binding dynamics to the DNA where the primer terminates across the 
adduct. (A) Dpo4 binding to the unmodified DNA in the absence of DMSO. 
Characteristic FRET trajectory (top), histogram (bottom left) with bimodal fit and 
transition density plot (TDP, bottom right). (B) Dpo4 binding to the unmodified DNA in 
the presence of 10% DMSO. Characteristic FRET trajectory, and resulting histogram 
and transition density plot (TDP). (C) Dpo4 binging to the adducted DNA in the absence 
of DMSO. Characteristic FRET trajectory, and resulting FRET histogram and TDP. (D) 
Dpo4 binging to the adducted DNA in the presence of 10% DMSO. Characteristic FRET 
trace, FRET histogram and TDP.  

 

 



60 
 

 

 

Figure 27. Single nucleotide incorporation assays on 21mer/26mer unmodified DNA 
primer-template. Cy5-labeled DNA primer shows the extended products on the gel. 
Dpo4 incorporates the next correct dNTP, dT in the DNA construct shown on top of the 
gel. In this single nucleotide incorporation assay, lanes 1and 7 (dash line) 
corresponding to control experiments without dNTPs.  Lanes 2 and 8 contain all four 
dNTPs (labeled as 4). Other lanes contain the designated dNTP below the lane. The 
primer extension reaction was quenched after 1 min.  

 

3.1.6 Misincorporated dG forms a stable conformation across the (+)-cis-B[a]P-

N2-dG adduct. 

Incorporation of dG across the (+)-cis-B[a]P-N2-dG adduct by Dpo4 is strongly 

supported by biochemical and single molecule data (Figure 25). To further investigate 

the experimental results, we performed several molecular dynamics simulations of 

various systems. All simulations have RMSDs below 2.5 Å on average, indicating that 

the protein structures were fairly stable in the simulations. The details of the RMSD 

results the is shown in the Figure 29.  
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Figure 28. Dpo4 incorporates the correct dNTP after the adduct position. (A) Single 
nucleotide primer extension of the adducted DNA in the absence and presence of 
DMSO. After the adduct position there is no observable difference in Dpo4 synthesis 
with DMSO. (B) FRET efficiency histograms for Dpo4 biding to unmodified (left) and 
B[a]P modified DNA (right) in the presence of indicated nucleotide (1 mM). The FRET 
distributions in the presence of 10% DMSO are shown in blue stairs and in grey bars 
(with Gaussian fit in red) in the absence of DMSO. 
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Figure 29. The RMSD of the protein backbone over time for each trajectory. 

 

To confirm the stability of the (+)-cis-B[a]P-N2-dG:dG (B[a]P-dG:dG) mismatch, 

and to show that the force field parameters for the computational simulations were 

consistent with those in the literature, we investigated the relative structure of the DNA 

in three similar systems with different nucleotides across from the adduct (Figure 30). 

Figure 29A denotes a structure where the (+)-cis-B[a]P-N2-dG has no corresponding 

nucleobase, i.e. the binary preinsertion complex. In this case, the adduct over the 

course of the simulation becomes stacked within the minor groove and distorts the 

attached nucleobase and backbone structure substantially. Structures in Figure 29B 

and Figure 29C are consistent with previous work done by Broyde et al.; although the 

previous work was focused on systems where the adduct was mid-DNA chain rather 

than at the primer-template junction [108]. The (+)-cis-B[a]P-N2-dG:dC (B[a]P-dG:dC) 

complex shows that the adduct remains stacked within the major groove and the 
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adducted G base remains stacked within the minor groove for the duration of the 

simulation (Figure 30B). 

 

Figure 30. Representative structures of the DNA helix structures from the end of three 
MD simulations. (A) The structure of B[a]PG without a corresponding nucleobase at the 
end of 100 ns of MD in a pure water system. (B) The structure of B[a]PG-dC at the end 
of 100 ns of MD in a pure water system. (C) The structure of B[a]PG-dG at the end of 
100 ns of MD in a pure water system. 

Broyde’s results show the dC base to be in a similar, flipped-out orientation, but 

with a hydrogen bond not seen here—most likely the fact that the dC base is at the end 

of the DNA primer makes it even more mobile and less likely to form a hydrogen bond 

with the backbone. The (B[a]P-dG:dG) system (Figure 30C) also is consistent with 

Broyde’s results, where the adduct is stacked within the major groove, the adducted dG 

base is stacked within the minor groove, and the corresponding dG base orientation is 

also stacked within the major groove and on top of the adduct, which is again consistent 

with the literature. This is also in good agreement with the experimental and previous 

computational results that the dG incorporation across from the adduct is the most 

stable and preferred structure [108]. 
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 In addition, to further investigate the movement and structure of the protein, 

several sets of dynamic structural analyses were performed. Cross-correlation analysis 

was done on the B[a]P-dG:dC and B[a]P-dG:dG systems in water and 10% DMSO to 

help isolate differences in the relative movements of the residues in each trajectory. 

Additionally, two different sets of residue-wise correlation analysis subtractions 

(difference correlation) were performed—first, between two systems in water with 

differing nucleotides across from the adducted base (dC and dG) and second between 

one system in DMSO with a solvent-exposed conformation and one system in water, 

with the same nucleotide across from the adducted base (dC). Finally, the difference 

correlation associated with the adducted base was extracted and mapped onto the 

protein and DNA (Figure 31).  

 

Figure 31. Difference correlation analysis relative to the adducted B[a]P-dG residue. 
Difference correlation analysis relative to the adducted B[a]P-dG residue. Red denotes 
an increase in anticorrelation, yellow denotes no difference in correlation, and blue 
denotes an increase in correlation. The color scale has been rescaled to a range of -0.5 
to 0.5 for clarity.  (A) The difference in correlation between B[a]P-dG:dC in pure water 
and B[a]P-dG:dG in pure water relative to the adducted residue with the calcium ions 
colored in gray. (B) The difference in correlation between B[a]P-dG:dC in  10% 
DMSO/90% water with a solvent-exposed adduct conformation and B[a]P-dG:dC in 
pure water with the calcium ions colored in purple. 
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The difference in correlation between the two systems in pure water is fairly 

negligible, indicating that the movement of the protein and DNA residues relative to the 

adduct is essentially the same regardless of the corresponding nucleotide, despite the 

differences in DNA conformation (Figure 31). In DMSO, however, there are very large 

differences between the correlation relative to the adducted base, especially for the 

section of protein around the adducted base and near the active site. The correlated 

movement of the palm domain of Dpo4 relative to the adducted base in its flipped out 

orientation is reasonable considering the change in orientation. Also interesting is the 

large increase in anti-correlated movement of the thumb region of Dpo4, since that 

particular region is associated with the translocation of the DNA. To further investigate 

the large-scale motions of the protein we also performed principal coordinate analysis 

(PCA), which shows substantial differences in the largest movements of the protein 

between the (B[a]P-dG:dC) system in water versus in 10% DMSO. PCA is a useful tool 

to isolate and show large protein movements. PCA was performed on 33000 snapshots 

for each trajectory. 100 total modes were generated, and the cross-correlation plots for 

those modes were subtracted in the same way described in above for the distance 

correlation plots (Figure 32). These plots show some interesting features and strong 

differences; notably, there are again fewer differences between B[a]P-dG:dC in water 

and B[a]P-dG:dG in water versus B[a]P-dG:dC in water and B[a]P-dG:dC in DMSO. In 

light of the experimental results that show a return to function for Dpo4 with the adduct 

in a solvent-exposed conformation, the substantial differences in the large motions of 

the protein support the concept that not only is the structure of the protein different, but 

that the overall movement of the protein has drastically changed.  A representative 
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depiction of the first (and largest) principal coordinate (PC) for B[a]P-dG:dC in water and 

B[a]P-dG:dG in DMSO can be seen in Figure 31A and Figure 31B respectively. The two 

modes contain not only very different movements, but also the B[a]P-dG:dC in water’s 

first PC has substantially less movement overall. This is also consistent with the 

experimental result that when the adduct is stacked within the major groove of the DNA 

helix, the protein is blocked from functioning properly. That said, it is important to 

recognize that the first PC only represents one large-scale motion of the protein—while 

more difficult to visually interpret, the overall correlation differences are more telling, 

since they show substantial differences in many of the PCs rather than just one. 

To investigate the effect of solvation in 10% DMSO on the adduct, a radial 

distribution function (RDF) for the C3B atom in the adduct (near the middle of the B[a]P 

adduct, with the same atom naming scheme as in PDB 2IA6) and the sulfur atoms in 

the DMSO solvent was calculated (Figure 33B). The DMSO RDF adopts two distinct 

conformations, with either the sulfur or the methyl groups facing the B[a]P rings, which 

in this case can be seen most clearly above the adduct (Figure 33A). 



67 
 

 

 

Figure 32. Structural representations from principal coordinate analysis Structural 
representations from principal coordinate analysis and difference correlation matrices 
generated from the first 100 PC modes and normalized to +/- 1. (A) The first principal 
coordinate (PC) mode of B[a]P-dG:dC in water. (B) The first PC mode of B[a]P-dG:dG 
in DMSO in the solvent-exposed orientation.  (C) The subtraction of the normal mode 
correlation matrices of B[a]P-dG:dC in water from B[a]P-dG:dG in water (D) The 
subtraction of the normal mode correlation matrices of B[a]P-dG:dC in DMSO 
subtracted from B[a]P-dG:dC in water. 
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Figure 33. (A) Representative structure of the solvent-exposed adduct in 10% 
DMSO/90% water after 100 ns of MD simulation. The adduct is represented in VDW, 
the first solvation shell of DMSO (within 5.15 A) is represented in ball and, the second 
solvation shell of DMSO (within 10.15 A) is represented by ball and stick and colored 
transparent yellow, and the first solvation shell of water (within 5.15 A) is represented by 
ball and stick and colored transparent red. (B) Calculated average radial distribution 
function over the entire 100 ns MD trajectory between the C3B atom in the B[a]P adduct 
and the S atom in the DMSO solvent molecules, and between the C3B atom in the 
B[a]P adduct and the O atom in water. 
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On average, it is observed that when the sulfur from DMSO is pointing towards 

the B[a]P the distance between this atom and C3B of B[a]P is around 4.5-5 Å. 

Conversely, when the methyl groups of DMSO are pointing towards the B[a]P the 

distance is increased to 5-5.5 Å. This helps explain the splitting observed in the first 

peak, since the different conformations result in slightly different distances between the 

two molecules.  

There are two distinct peaks at 5.15 and 10.15 Å, indicating two solvation shells 

of DMSO around the adducted base. Figure 33A shows a representative structure with 

for the solvation around B[a]P. The colored and solid DMSO molecules are within 5.15 

Å of the adduct, whereas the transparent yellow DMSO molecules are within 10.15 Å of 

the adduct. Additionally, all water molecules within 5.15 Å from the adduct are displayed 

in transparent red. Our results indicate that there are no water molecules interacting 

with the top or bottom of the adduct; only a few along the equatorial hydrogens on the 

side of the ring structure, which is represented in the RDF of water as the first maxima. 

Taken together, these results suggest that the adduct is microsolvated by DMSO. Our 

simulation results are consistent with the smFRET results presented above, which 

indicate that the solubility of the B[a]P is increased in 10% DMSO and therefore that a 

solvent-exposed conformation would be much more favorable. 

2.3 Discussion 

 Exposure to exogenous mutagens is one of the main causes of somatic 

mutations, some of which eventually lead to cancer. One means for understanding the 

mutagenic outcome of DNA damage is to visualize how DNA polymerases interact with 

lesions formed by various carcinogenic DNA adducts. B[a]P shows complicated 
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carcinogenic properties because it forms different isomeric DNA adducts that each 

shows distinct mutational patterns in DNA. Most research about B[a]P carcinogenesis 

has focused on the more abundant (+)-trans-B[a]P but we believe that a complete 

understanding of the mutagenic properties of B[a]P requires an in-depth 

characterization of all isomers resulted from BPDE reaction with DNA bases. Therefore, 

in this work we have used smFRET, primer extension assays and molecular dynamic 

simulations to study the mechanistic implications of bypass of a bulky lesion, (+)-cis-

B[a]P-N2-dG by the model Y-family polymerase Dpo4.  

Even though Y-family polymerases are essential for TLS of bulky B[a]P-DNA 

adducts, it is not known if a single Y-family polymerase can bypass all the B[a]P 

stereoisomers [52]. Y-family polymerases have been shown to incorporate both correct 

and incorrect dNTPs across the B[a]P adduct [113]. The ability to successfully 

synthesize past the adduct also depends on the nature of the lesion [52]. Many studies 

have shown that primer extension after the adduct is severely inhibited or slowly 

rescued and may require the action of a second polymerase [52, 114, 115]. For 

example, Woodgate et al. have found evidence suggesting two Y-family polymerases 

are required for successful B[a]P-dA bypass: Pol  incorporates mostly dT across a 

B[a]P-dA adduct and Pol  extends past the terminal B[a]P-dA:dT base pair [60]. 

 Although the precise mechanism by which bulky adducts inhibit high-fidelity DNA 

polymerases is not known, there is evidence that these structures may prevent 

nucleotide incorporation by precluding the large finger-closing movement required for 

dNTP incorporation [110, 116]. Y-family polymerases do not generally undergo such 

large rearrangements during their catalytic cycle and also present wider active sites that 
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can presumably accommodate a bulky adduct structure. Therefore, it is believed that 

inhibition of Y-family polymerases activity by adducted DNA bases occurs through major 

alteration of the cognate DNA/Pol complex structure [18]. The most important and non-

mutually exclusive distortion mechanisms include stacking of an aromatic moiety within 

the DNA helix, flipping the adducted base to a syn conformation or 

misalignment/rotation of the primer-template DNA strands. Even though Dpo4 is a 

versatile polymerase able to bypass a wide variety of DNA damage, the strong 

roadblock posed by (+)-cis-B[a]P-N2-dG suggests that the DNA/Pol structure is severely 

distorted by the adduct. The structures generated by MD simulations have revealed the 

stacked and distorted adduct conformations at the primer template junction (Figure 30), 

as discussed in the results section. Similar to other B[a]P adducts; the longer pause 

occurs during dNTP incorporation opposite the damaged base. No crystal structures 

exist with a (+)-cis-B[a]P-N2-dG adduct as the templating base, but our data suggest 

that the aromatic moiety of B[a]P is present in one of two conformations: either stacked 

within the DNA helix or in a solvent-exposed, catalytically active conformation (Figure 

34). Interestingly, even though different B[a]P isomers show distinct error signatures, 

the DNA synthesis-blocking mechanism seems to share similar features among all 

B[a]P adducts and it implies some degree of B[a]P stacking in the DNA helix (Figure 

34). 

 One remarkable feature of Dpo4 synthesis is that it incorporates mostly dG 

across from a (+)-cis-B[a]P-N2-dG adduct, a quite uncommon base insertion, and does 

not show any tendency to incorporate the correct nucleotide dC. When the dC base is 

placed opposite B[a]P adduct, it flips out from the helix showing an unfavorable 
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interaction with the adducted base (Figure 30B). This indicates that, although the (+)-

cis-B[a]P-N2-dG adduct is a minor reaction product, it has the potential to be a strong 

mutagen with an unusual mutational signature. Moreover, the fact that this mutation was 

not observed in E. coli or COS7 cells [117] suggests that pol  (the eukaryotic Dpo4 

homologue) may not be responsible for synthesis across from the (+)-cis-B[a]P-N2-dG 

adduct. Also, the fact that synthesis past the adduct is accurate may imply that this 

polymerase takes on that synthetic role. Unlike what is observed using the (+)-trans-

B[a]P-N2-dG adduct, Dpo4 does not use the downstream templating base for damage 

bypass with the cis adduct. This suggests that, for the (+)-cis-B[a]P-N2-dG adduct, a 

misaligned structure with the adducted base looped-out (and not base-paired) is 

catalytically inefficient or not favored. Therefore, in this case we conclude that 

nucleotide incorporation takes place with the adducted dG sitting in the active site, and 

adopting alternate rotameric and/or tautomeric conformations to enable dG:dG pairing. 

In agreement with this idea, recent molecular dynamics simulations have shown that dG 

is the most stable nucleotide that can pair with a (+)-cis-B[a]P-N2-dG adduct.[108] It 

appears that the dG:dG base pair is stabilized by some of the major groove contacts of 

the purine ring system. Also, the least nucleotide excision repair efficiency is observed 

when dG is the partner of the (+)-cis-B[a]P-N2-dG adduct suggesting that this mispaired 

structure is the least distorting.  

When the primer is extended one nucleotide and the (+)-cis-B[a]P-N2-dG adduct 

sits at the primer-template junction, our data is also consistent with a (+)-cis-B[a]P-N2-

dG stacked solvent–exposed conformation, which is presumably more catalytically 

active. In contrast with our prior studies with the aromatic amine-dG adducts, Dpo4 
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extends past the (+)-cis-B[a]P-N2-dG adduct in an error-free manner, suggesting that 

the solvent-exposed conformation does not dramatically distort DNA at the Dpo4 active 

site. Shown in Figure 34 is a model that incorporates the various binding conformations 

we observe into a possible mechanistic pathway that allows Dpo4 to bypass the (+)-cis-

B[a]P-N2-dG adduct. 

 

  

 

Figure 34. Comparison of the adduct conformation in the presence and absence of 
DMSO. (A) A representative structure of Dpo4-DNA binary complex. The adduct is 
stacked in the minor groove. (B) A representative structure of Dpo4-DNA binary 
complex in the presence of DMSO. The adduct is flipped outside of the helix and 
exposed to the solvent.    

When Dpo4 binds to the (+)-cis-B[a]P-N2-dG-modified DNA, we observe two distinct 

Dpo4 binding conformations that are in dynamic equilibrium (insertion binary complex I 
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and preinsertion binary complex I, Figure 35). Dpo4 prefers to form the preinsertion 

complex I, where the terminal base pair occupies the dNTP binding site,[82] but we also 

observe a substantial fraction of the complex in the insertion I conformation. This latter 

structure places the (+)-cis-B[a]P-N2-dG in the templating position so that the B[a]P is in 

the active site blocking incorporation (Figure 35), as evidenced by our primer extension 

results (Figure 20).  

Previously, it has been observed that the use of organic solvents could enhance 

the bypassing of the B[a]P adduct by Dpo4 [16]. The proposed reasoning for this 

observation was that hydrophobic properties of the organic solvent could stabilize the 

solvent exposed pyrene ring system. Since Dpo4 active site is open to the solvent, it is 

possible these hydrophobic molecules directly interact with the adduct within the active 

site. The cytosolic hydrophobicity is much lower than that of the aqueous buffers used 

for the in vitro experiments [109]. Adding DMSO can increase the hydrophobicity of the 

solution mimicking the micro environmental polarity of the cytosol and the local 

environment in a replication complex.  

 In the presence of DMSO, smFRET experiments provide evidence for the 

existence of two new binding conformations that we label preinsertion binary complex II 

and insertion binary complex II, both of which appear to have the (+)-cis-B[a]P-N2-dG 

adduct flipped out in a solvent exposed orientation (Figure 35). These two 

conformations are also in equilibrium, with insertion binary complex II being most stable. 

Because this structure has neither the terminal nucleotide nor the B[a]P adduct in the 

active site, this complex is able to incorporate a nucleotide across from the modified 

base, but because the adduct alters the templating base orientation, incorporation is 
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highly inaccurate. MD simulations for the binary complex in the presence of 10% DMSO 

also shows the formation of the solvent exposed conformation of the (+)-cis-B[a]P-N2-

dG adduct in the primer-template junction (Figure 35). Furthermore, the solvent 

exposed B[a]P adduct seems to be sandwiched between the LF and finger domain of 

the Dpo4 (Figure 35).  

  

Figure 35. Proposed model shows different Dpo4 binding conformations on (+)-cis-
B[a]P-N2-dG (red star) modified DNA and possible mechanistic implications that permit 
Dpo4 for bypassing the adduct. When Cy3 (blue) labelled DNA binds to Cy5 (red) 
labelled Dpo4 (green), it forms the insertion binary complex I where the adduct locates 
Dpo4 active site (yellow) in the intercalated orientation. The adduct bypassing is 
prohibited in this conformation. At the same time, Dpo4 samples high FRET state, 
preinsertion binary complex I where the terminal base of the primer is located in the 
Dpo4 active site which is again unfavorable conformation for primer extension. We 
found that in the presence of DMSO, Dpo4 forms a binding conformation which permits 
Dpo4 to bypass the adduct forming insertion binary complex II. The adduct is in the 
exposed conformation and Dpo4 active site is opened for dNTP incorporation. Even 
with DMSO, Dpo4 is equilibrated between two FRET states forming another high FRET 
conformation, preinsertion complex II. In the absence of DMSO, preinsertion binary 
complex I generates a higher population whereas insertion binary complex II forms a 
higher population with DMSO. Formation of insertion binary complex II can follow either 
pathway. Upon addition of dNTPs, the primer extension can occur from insertion binary 
complex II. The G:G mismatch bond is shown in red line and newly formed 
complementary bases are shown in blue lines.  
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 Using the same model shown in Figure 35 to interpret the analogous Dpo4 

binding conformations for the DNA construct where the (+)-cis-B[a]P-N2-dG adduct is 

located at the primer terminus with a dC partner base, we observe both insertion and 

preinsertion complex I, with the preinsertion complex predominating. The addition of 

DMSO leads to the predominant formation of insertion binary complex II, presumably 

because the B[a]P adduct is preventing translocation to the preinsertion complex.  
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CHAPTER 4: THE DPO4 BINDING CONFORMATIONS DURING BYPASSING THE 
(+)-trans-B[a]P-N2-dG ADDUCT. 

 

Some sections of this chapter were taken from the manuscript by Pramodha Liyanage 

et al. “Bypass of bulky lesions requires Dpo4 to bind in a productive conformation” 

4 Background and significance 

The (+)-trans-B[a]P-N2-dG adduct is known to reside in the minor groove of the 

B-DNA whereas (+)-cis-B[a]P-N2-dG adduct is intercalated in the DNA helix. These 

conformational differences within the DNA explain their different carcinogenic 

properties. Previous studies have shown that Dpo4 can bypass the (+)-trans-B[a]P-N2-

dG adduct less efficiently and, it is highly mutagenic causing all three base substitution 

mutations [118]. The crystal structure has been resolved for the Dpo4 and (+)-trans-

B[a]P-N2-dG modified DNA binary complex where the DNA primer terminates across the 

adduct (Figure 36) [18]. Two types of crystal structures were obtained with different 

adduct orientations. One of them has a pyrene ring system intercalated into the DNA 

double helix which displaces the modified dG into the minor groove (Figure 36A). This 

adduct conformation has disrupted the base pairing at the primer-template junction. In 

contrast to stacked B[a]P orientation, the second crystal form shows that the modified 

dG is flipped out and the B[a]P adduct is buried in the gap between the LF and core 

domains producing a more open active site for nucleotide incorporation (Figure 36B). 

The adduct flipped-out orientation may reduce the structural distortion at the primer-

template junction. 
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Figure 36. Dpo4 crystal structure of the (+)-trans-B[a]P-N2-dG modified DNA bound 
Dpo4. (A) The adduct (Red) is in the intercalated conformation within the Dpo4 active 
site. (B) The adduct’s solvent exposed conformation in the Dpo4 where it is sandwiched 
between the little finger and core domains. (C) A schematic representation of the 
intercalated conformation of the adduct without polymerase. The black arrow indicates 
the position of the (+)-trans-B[a]P-N2-dG adduct. (D) A schematic representation of the 
exposed conformation of the adduct without polymerase. The black arrow indicates the 
position of the (+)-trans-B[a]P-N2-dG adduct. This figure was adapted form [18]. 
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When the second crystal was co-crystallized with the dTTP in the ternary 

complex, they observed that a looped out modified dG and misaligned the primer-

template, leading to successful DNA synthesis (Figure 37) [18]. This study provided the 

basic structural information for a -1-frameshift mutation and template misalignment. 

 

Figure 37. Ternary complex crystal structure with Dpo4 and (+)-trans-B[a]P-N2-dG 
modified DNA. (A) The adduct is placed in the structural gap of the Dpo4 little finger and 
core domain. (B) A schematic representation of the exposed conformation of the adduct 
in the ternary complex (The structure of the Dpo4 is not shown). The modified dG is 
looped out and the terminal base of the primer (dA) base pair with dT next to the 
modified dG. The DNA sequence supports for this base pairing. The incoming dT binds 
to the next templating base, dA. This figure was adapted form [18]. 

However, the Dpo4 global conformation is nearly identical in both crystal types 

observed in Figure 36 A and B. Therefore, we cannot get any information about Dpo4 

binding conformations and relative movements out of these static crystal structure. Here 

we use smFRET, to obtain the Dpo4 binding dynamics to the (+)-trans-B[a]P-N2-dG 

modified DNA in real time. We monitor the Dpo4 binding conformations before and after 

the B[a]P adduct using different DNA primers.  

Our data show that Dpo4 binds to the B[a]P modified DNA in two different 

conformations in the binary complex. The predominant conformation is in equilibrium 

with the nonproductive, less stable conformation. In the Dpo4 predominant 
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conformation, the B[a]P adduct may exist in two different positions in the DNA.  The 

B[a]P intercalated conformation blocks the dNTP incorporation while he solvent 

exposed adduct conformation facilitates error prone DNA synthesis past the B[a]P 

adduct. Furthermore, our data supports the previously discovered Dpo4 5’ replication 

slippage and the-1 frameshift mutation mechanism.  

4.1 Results 

4.1.1 B[a]P adduct induced Y-family polymerase stalling slowly rescued by Dpo4 

The previous studies show that the (+)-trans-B[a]P-N2-dG adduct is a strong 

block for high fidelity DNA polymerases [119, 120].  Therefore, Y-family polymerases 

must be involved in processing this adduct in vivo. First, we did the running start primer 

extension assay to study dNTP incorporation across and past the adduct by Dpo4 in our 

sequence. Both unmodified and B[a]P modified 26mer DNA template was used with a 

16mer primer. Dpo4 could extend the primer very efficiently with unmodified template, 

and 100% extended product appeared within one minute (Figure 38B). The (+)-trans-

B[a]P-N2-dG adduct is positioned in the 21st position on the template. Dpo4 could 

extend the B[a]P modified template-primer up to the 20th base efficiently. But Dpo4 

showed a strong pause one base before the adduct position. The blocked replisome 

slowly recovered over time, and the fully extended primer started to appear after 30 min 

(Figure 38C). However, only 22% bypass product was generated at 120 mins. 

Incorporation of dNTP across the adduct seem to be more difficult for Dpo4 than 

replication after adduct.  
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Figure 38. Dpo4 slowly extend the primer after carcinogenic adduct. Dpo4 slowly 
extend the primer after carcinogenic adduct. (A) Chemical structure of the (+)-trans-
B[a]P-N2-dG carcinogenic adduct. (B) Running start primer extension assay for 
unmodified DNA construct. The 16 mer primer with 5’-Cy5 labelled is hybridized to 
unmodified DNA (26 mer). A portion of the DNA sequence is shown on the top. The 
primer extension assays were initiated by adding Dpo4 (20 nM) to the reaction and at 
37oC. The 0th time refers to the reaction right before adding Dpo4. The percent 
extension is reported above each band with respect to the intensity of the 0th time band. 
(C) The primer extension assay for the (+)-trans-B[a]P-N2-dG modified template. This 
assay was carried out under the same conditions as unmodified template. The modified 
DNA primer-template is shown on the top of the gel. The red “G” indicates the position 
of the adduct on the template which is located at 5 nucleotides away from the primer 
terminus. A strong pause appeared at the 20th position during DNA synthesis.   

 

4.1.2 B[a]P adduct effects on Dpo4 binding conformation 

To study the Dpo4-DNA binding conformations and related biophysical 

phenomena, we designed the smFRET experiment similar to (+)-cis-B[a]P-N2-dG 

adduct that we discussed in the chapter 3. According to the experimental set up, the 

relative positions of the fluorophores will be changed depending on the binding, 

translocation and corresponding conformational changes of the Dpo4 (Figure 39A). The 

recoded fluorescence intensity fluctuation, and the corresponding FRET changes are 

shown in Figure 39B, left.  
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Figure 39. Experimental set up to study DNA-Dpo4 interactions. (A) B[a]P modified, 
Cy3 labeled DNA template is hybridized to a 3’ biotinylated primer. The DNA construct 
is immobilized to a quartz slide by a biotin-streptavidin linkage. The Cy5 labelled Dpo4 
is free floating in the buffer. When Dpo4 binds to the DNA, FRET occurs between 
fluorophores. (B) Dpo4 binding conformation on the unmodified template. A part of the 
unmodified DNA construct is shown on the top of the figure. The representative 
fluorescence donor (blue) and accepter (red) intensity trace (top) and the corresponding 
FRET trace is shown (below). The smFRET histogram shows the Dpo4 binding 
conformations to unmodified template. The data is fitted to two Gaussian functions. 
Below the histogram, the transition density plot (TDP) is given for Dpo4 binding to the 
unmodified template. (C) A part of the B[a]P modified DNA construct is shown on the 
top. The representative intensity trace and the FRET trace are for the modified template 
(left). Sm FRET histogram and TDP for modified template is shown on the right. 
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First, we used the 8Cy3 (the Cy3 label is 8 nucleotides away for the primer 

template junction) unmodified DNA construct to study the effect of the Dpo4 binding 

conformation. The binding of Dpo4 to the unmodified template generated two distinct 

peaks similar to a previously published study [82]. The histogram in Figure 38B shows 

the two FRET peaks which are centered at FRET 0.81 and FRET 0.66, presumably two 

different Dpo4 binding orientations in DNA. The histogram was best fitted for two 

Gaussian distributions that show two asymmetric sub-populations. The prominent high 

FRET peak revels that the Dpo4 binds to DNA in a conformation which has a greater 

preference over the other low FRET state conformation. The corresponding transition 

density plots further confirm the occurrence of the prominent high FRET conformation 

and their transition between the two FRET stets (Figure 38B, bottom right). The 

appearance of two FRET states with the interaction of Dpo4 and DNA and the 

analogues Dpo4 binding orientations were thoroughly explained in Brenlla et al. [82, 83]. 

The high FRET and low FRET Dpo4 binding conformations were assigned as the 

preinsertion binary complex (PBC) and incretion binary complex (IBC), respectively [82]. 

In the PBC, the terminal base pair occupies at the Dpo4 active site that blocks the dNTP 

incorporation. Therefore, the PBC seems to be a nonproductive binary complex 

whereas the IBC is considered as a productive binary complex where the templating 

base occupies at the Dpo4 active site. The next nucleotide can be incorporated across 

the templating base in the IBC. 

The smFRET experiments with the (+)-trans-B[a]P-N2-dG modified template also 

show two distinct FRET states indicating two possible Dpo4 binding conformations 

(Figure 39C). However, they are broader and slightly lower compared to the FRET 
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values observed for the unmodified template, indicating that Dpo4 binding is altered by 

the modified DNA at the adduct site. The most interesting feature is their population 

distribution. In the modified template, the lower FRET peak is significantly higher and 

broader than that of the high FRET peak. This suggests that Dpo4 prefers to bind to the 

low FRET conformation.  

4.1.3 Dpo4 ternary complex binding conformations with dC and dT are similar in 

both unmodified and B[a]P modified templates, respectively.  

 

It is commonly observed among classical DNA polymerases that they stall just 

before the B[a]P adduct. Some polymerases are able to incorporate dNTPs across the 

adduct in a mostly error prone or rarely error free manner, but further extension is 

strongly inhibited [52]. It has been seen previously that the nucleotide selectivity of 

Dpo4 depends on the DNA sequence while bypassing the B[a]P adduct [16, 18]. 

Therefore, we carried out a single nucleotide incorporation assay to visualize the dNTP 

selectivity in our sequence. First, we used a 20mer/26mer unmodified DNA primer-

template to study the dNTP selectivity. Dpo4 synthesizes the unmodified DNA in the 

presence of all four nucleotides very efficiently (Figure 40A, left). The fully extended 

26mer product appeared in the gel within a minute. In the presence of only a single 

nucleotide, Dpo4 incorporated dC, the next correct base across the unmodified dG. 

Although a small amount of dT incorporation can be seen in the gel, dA and dG were 

not incorporated at all under the reaction conditions.  
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Figure 40. Ternary complex Dpo4 binding conformations with the modified dG as the 
templating base. (A) The B[a]P modified DNA sequence used for the single nucleotide 
incorporation assay is shown on the top. The lane 1 and 7 depicts the 26 mer control 
DNA band. The lane 2 and 8 are control experiments with all four dNTPs. The other 
lanes corresponding to the single nucleotides as indicated. The Dpo4 concentration is 
10 nM for the both modified and unmodified experiments. However, the reaction time for 
the unmodified template is 1 min, and for the modified template is 20 min. the next 
correct nucleotide, dC is incorporated in the unmodified template. Dpo4 predominantly 
incorporated dT, which is the complementary base next to the modified dG. (B) Single 
molecule FRET histograms for the ternary complex Dpo4 binding conformations. The 
histograms in the left and right are for the unmodified and modified DNA respectively. 
(C) The Dpo4 dissociations rate constant for the binary complex and ternary complex 
conformations are plotted for the unmodified template (left) and modified template 
(right).   
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However, the single nucleotide incorporation assay with a longer reaction time 

and a high concentration of Dpo4 shows the incorporation of all non-cognate dNTPs in 

multiple times [111, 121]. Nucleotide incorporation by Dpo4 in the (+)-trans-B[a]P-N2-dG 

modified template strongly depends on the DNA sequence [18]. Previous studies have 

revealed that Dpo4 tends to incorporate the dNTP across the adduct not complimentary 

to the modified dG but to the base 5’ to the B[a]P modified dG [18].In agreement with 

this, Figure 40A (right) shows Dpo4 incorporated dT complimentary to the dA which is at 

5’to the modified dG. The reaction with all four dNTPs (Figure 40A-right) showed the 

fully extended product, but the intensity and the migration of the band are comparatively 

lower than that of the unmodified DNA. The observation may indicate the inefficient 

activity of Dpo4 and its single nucleotide shorter product in the presence of a 

carcinogenic adduct, revealing the compatibility of this out come with the previously 

published data [18]. 

Then we conducted the smFRET experiments with individual nucleotides to learn 

the significance of Dpo4 binding conformations. These experiments were carried out in 

the presence of Ca2+ to prevent the dNTP incorporation. Unlike the DNA-Dpo4 binary 

complex, we observed a single FRET state for the Dpo4-DNA-dNTP ternary complex 

similar to a previously published study (Figure 40B) [82].  The single FRET state 

indicates that Dpo4 forms a unique conformation in the ternary complex. The smFRET 

histogram with unmodified template in the presence of dCTP shows a peak centered at 

FRET 0.55. Interestingly, Dpo4 showed a similar FRET value for the B[a]P modified 

template in the presence of dTTP, which is the preferred base across the adduct (Figure 

40B). The stability of the Dpo4-DNA interaction in both binary and ternary complexes 
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can be measured by the polymerase dissociation rate constant (koff). We performed the 

dwell time analysis to calculate koff values of the ternary complex for all the smFRET 

experiments, and the calculated koff values for both unmodified and modified templates 

are plotted in Figure 39C. The most stable conformation was represented by the lowest 

dissociation rate constant. The lowest koff value, 0.10 ± 0.01 was obtained for the 

ternary complex with dC (Figure 40C, right). Interestingly, that is the correct nucleotide 

incorporated by Dpo4 in the unmodified template (Figure 40A, right). Dpo4 forms a 

relatively stable binding conformation in the ternary complex with dC compared to the 

binary complex (koff = 0.25 ± 0.01). All the non-cognate dNTPs received higher koff 

values compared to the dC indicating a relative binding instability in the ternary complex 

(Figure 40C, right). The dwell time histograms for the modified DNA show the lowest koff 

value for the dT, which is the preferred nucleotide across the adduct (Figure 40C, right). 

The other nucleotides show relatively higher koff values indicating the formation of less 

stable ternary complexes. In addition, an smFRET experiment with B[a]P modified 

template shows koff 0.47± 0.02 in the binary complex whereas unmodified template 

gives koff 0.25 ± 0.01. The structural constrain imposed by the bulky adduct at the 

modified DNA causes relative instability in the binary complex, giving a higher koff value.   

4.1.4 Dpo4 binds to the B[a]P modified dG:dT mis-paired DNA similar to the 

unmodified DNA 

Our next aim was to the study the Dpo4 binding conformations when the primer 

terminates across the adduct in real time. To do that, we used a 21mer DNA primer with 

a terminal dC, which is the complimentary base for the dG in the template. In this DNA 

construct, since the Cy3 label is located 9 nucleotides away from the primer terminus, it 
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is called the 9Cy3. Dpo4 showed two distinct FRET states (FRET = 0.55, 0.74) for the 

unmodified, 9Cy3, binary complex which are lower than that of the unmodified, 8Cy3 

binary complex (Figure 41). Since Dpo4 binds to a primer that is one base longer in the 

9Cy3 DNA construct, the relative positions of the fluorophores would be longer, giving 

smaller FRET values. Surprisingly, the B[a]P modified-9Cy3 binary complex generated 

a FRET distribution similar to the B[a]P modified-8Cy3 binary complex (Figure 41).  

 

Figure 41. Binary complex Dpo4 binding conformation of the 9Cy3 DNA construct. (A) 
The characteristic traces, histogram and TDP for unmodified template. (B) The 
characteristic traces, histogram and TDP for B[a]P modified template. 
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One possible explanation for this observation is that the modified dG*:dC base 

pair might create a massive destabilization at the DNA primer template junction which 

would prevent the translocation of the Dpo4 on the DNA. On the other hand, Dpo4 

naturally incorporates dT instead of dC across the B[a]P adduct (Figure 40A). Further, 

the primer extension by Dpo4 was strongly inhibited for the 9Cy3 primer with terminal 

dC (Figure 42).  

 

Figure 42. Single nucleotide incorporation in the 9Cy3 DNA construct. The DNA primer 
terminates with the correct dNTP, dC (Sequence). Dpo4 incorporates the correct dT 
across the unmodified dG (lift). The nucleotide incorporation is strongly inhibited in the 
midwifed template.  

 

Therefore, to study Dpo4’s nucleotide incorporation ability after the adduct 

position, we used a 21mer premier with a terminal dT (Figure 43). However, there is a 

G:T mismatch at the primer-template junction in this DNA construct (named as 

9Cy3mm). The unmodified 9Cy3mm binary complex shows a typical two FRET 

efficiency distribution (FRET = 0.52 and 0.71, Figure 41A). The decreased FRET values 

are consistent with the movement of Dpo4 from 8Cy3 to 9Cy3 DNA. The observed 

FRET efficiency values for the B[a]P modified 9Cy3mm binary complex is very similar to 
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the unmodified DNA (FRET=0.55 and 0.71, Figure 43B). However, the FRET 

distribution is rather different when comparing the unmodified and modified binary 

complexes. Dpo4 prefers to sample the high FRET (0.71) preinsertion conformation in 

the unmodified template possibly due to the fact that this DNA construct contains a 

nucleotide mismatch in the primer- template junction. However, Dpo4 binds to both 

FRET states almost equally in the B[a]P modified 9Cy3mm binary complex. We used 

Hidden Markov Model (HMM) to check the transition between these two states. The 

corresponding transition density plot illustrates the Dpo4 shuttle between the two states 

(Figure 43). 

The dwell time analysis of the 9Cy3mm binary complexes generated the 

dissociation rate constant for both templates (Figure 44). We obtained a relatively lower 

koff value for the B[a]P modified template (koff = 0.52±0.03) compared to the unmodified 

template (koff =0.64±0.04). The nucleotide mismatch at the primer-template junction may 

destabilize the Dpo4-DNA binary complex conformation in the unmodified template. 

4.1.5 The next correct nucleotide incorporation after the adduct gives the 

greatest stability in the ternary complex.  

Next, we wanted to study Dpo4’s dNTP incorporation ability and corresponding 

binding conformations in the ternary complex for the 9Cy3mm DNA construct. The fully 

extended primer appeared in less than 5 minutes for the 9Cy3mm unmodified template 

(Figure 45A). The single nucleotide incorporation gel picture reveals the selectivity of 

the nucleotides during the DNA synthesis.  
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Figure 43. The smFRET result for the Dpo4 binding dynamics when the primer 
terminates across the adduct. The smFRET result for the Dpo4 binding dynamics when 
the primer terminates across the adduct. (A) The DNA sequence (top) is for the 9 Cy3 
unmodified DNA construct. The characteristic fluorescence intensity trace and the 
corresponding FRET trace are shown on the left. The resulting FRET histogram is best 
fit for double Gaussians (top right). The TDP (bottom right) shows the dynamic Dpo4 
movements between the two FRET states shown in the histogram. (B) The 9Cy3 B[a]P 
modified DNA sequence (top) used for the Dpo4-binary complex smFRET experiments. 
The intensity trace, FRET trace, histogram and the TDP are shown.   
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Figure 44. The dwell time analysis of the 9Cy3mm DNA construct. 
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Figure 45. The Dpo4 binding conformations for the G:T mismatch DNA construct 
(9Cy3mm).  (A) The DNA sequence shown on the top used for the single nucleotide 
incorporation assay. The lanes 1and 7 are for the control experiment without dNTPs. 
The control experiment with all four dNTPs shows the lane 2 and 8. The other lanes for 
the experiments with a single nucleotide as indicated. (B) the FRET histograms for 
Dpo4 binding conformations in the 9Cy3mm DNA construct. The histograms were best 
fit for a single Gaussian disturbing. The histograms in the left column are for the 
unmodified template whereas the histograms in the right column for the B[a]P modified 
DNA. (C) The Dpo4 dissociation rates constant for the binary complex and ternary 
complex are shown in the graphs. 

  



94 
 

 

It shows that Dpo4 incorporates all the non-cognates in the unmodified DNA, 

which is consistent with its low processivity and fidelity (Figure 45A). The B[a]P modified 

9Cy3mm DNA has shown the extension of the primer to be one nucleotide shorter than 

the fully extended product. This result indicates that the terminal dT in the primer may 

base pair with the dA 5’on the template next to the lesion while looping out the modified 

dG with B[a]P adduct.  

 We performed the smFRET experiments to evaluate the effect of single 

nucleotides in Dpo4 binding to the 9Cy3mm ternary complex (Figure 45B). Consistent 

with previous results, Dpo4 binds to both DNA constructs with a single conformation 

generating one FRET distribution. Though the gel picture shows the incorporation of 

non-cognate nucleotides in the unmodified template, the smFRET histograms show a 

clear discrimination of Dpo4 binding conformation with the different nucleotides. The 

lowest FRET distribution (FRET = 0.49) is given for the Dpo4 ternary complex with dT 

which is the next correct dNTP. The highest FRET value (FRET = 0.59) was obtained 

for the ternary complex with dC, which is not incorporated according to the gel picture. 

The other non-cognate nucleotides, dA and dG, were given intermediated FRET values, 

(FRET = 0.52, 0.56 respectively) and they have been incorporated in the unmodified 

DNA. The low FRET insertion binary complex is believed to be the productive 

conformation that leads for successful DNA synthesis. We observe throughout our 

smFRET experiments that the lowest FRET state is given for the next correct dNTP in 

the ternary complex. Furthermore, the dwell time analysis of the ternary complex 

unmodified DNA gives the lowest koff value (0.38±0.03) for the dT, indicating the 
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formation of the most stable ternary conformation compared to the other dNTPs (Figure 

43C, left).   

The smFRET experiments were carried out under the same conditions as the 

unmodified DNA to determine the Dpo4 binding conformations in the 9Cy3mm, B[a]P 

modified ternary complex (Figure 45B, left). The lowest FRET value was obtained for 

the Dpo4-DNA-dA ternary complex. Probably the base, dA, is the one being 

incorporated in the misaligned, modified DNA construct. Moreover, the lowest koff value 

also obtained for the dA containing ternary complex (Figure 45C, right).  The overall 

result confirms that the Dpo4 ternary complex is favorable for the dA incorporation. 

4.1.6 Discussion 

The (+)-trans-B[a]P-N2-dG adduct tends to disrupt the essential minor groove 

polymerase contacts introducing a distortion in the damage site which cannot be 

tolerated by high fidelity polymerases. However, Y-family polymerases, including Dpo4, 

can bypass this adduct less efficiently [122, 123]. In contrast to the (+)-trans-B[a]P-N2-

dG adduct, the (+)-cis-B[a]P-N2-dG adduct conformation in the DNA, completely blocks 

the DNA synthesis.  

Using well established 5’ slippage mechanism, Dpo4 slowly bypasses the (+)-

trans-B[a]P-N2-dG adduct in our DNA sequence, which has AG*A at the primer-template 

junction (Figure 35) [18, 118]. The dT incorporation is significantly favored across the 

adduct in the 8Cy3 ternary complex with a B[a]P modified template indicating that Dpo4 

incorporates incoming dTTP with dA, which is the second template base 5’ of the 

modified dG (Figure 38). This mechanism is supported by the Dpo4’s large active site 

which can accommodate two bases simultaneously [105, 124].  
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The crystal structure of the Dpo4 binary complex reveals that the last base pair of 

the primer-template junction is located at the nucleotide binding site [125].  In this 

conformation, the Dpo4 active site is blocked, and dNTP incorporation is prevented. 

Therefore, during a successful nucleotide incorporation, Dpo4 has to move one base 

forward to align with the proper templating base. In the absence of nucleotides, Dpo4 

might move back and forth to find the proper alignment of the templating base before 

catalysis. These dynamic movements which were not seen in the crystal structure were 

characterized in this study in real time using smFRET.     

Consistence with the previously published study,[82] our data shows that Dpo4 

shuttles between two FRET states in the 8Cy3 unmodified binary complex (Figure 36B). 

The predominant high FRET state (FRET = 0.81) is considered as PIBC where Dpo4’s 

active site is blocked by the terminal base pair of the DNA. The PIBC is in equilibrium 

with the low FRET IBC where the active site is open for nucleotide incorporation. The 

TDP also gives direct evidence about the transition of Dpo4 between these two FRET 

states.  

The 8Cy3, (+)-trans-B[a]P-N2-dG modified binary complex shows a totally 

inverted FRET distribution (Figure 39C). The Dpo4 prefers to bind to the low FRET 

(FRET = 0.57) state, and we propose two possible Dpo4 binding conformations, IBC1 

and IBC2 for the low FRET state (Figure 46). In IBC1 the adduct is intercalated to the 

DNA, and it blocks the Dpo4 active site. In IBC2, presumably Dpo4 is located in the 

same position on the DNA, but the adduct might change its intercalated/stacked 

conformation to the exposed/outside conformation. The exposed adduct might release 

the distortion of the primer template junction. Most importantly, the Dpo4 active site is 
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vacant in the IBC2. As we propose that the position of the Dpo4 is the same in both 

IBC1 and IBC2, the crystal structure of the (+)-trans-B[a]P-N2-dG adduct with Dpo4 also 

shows the same Dpo4 conformation in both crystals [18].  

The IBC1 is in equilibrium with PIBC1 where Dpo4 translocates backward on the 

DNA, which gives a high FRET state (FRET = 0.77). The Dpo4 active site is occupied 

by the terminal base pair in the PIBC1. The same way, IBC2 is in equilibrium with 

PIBC2 blocking the Dpo4 active as shown in Figure 46.   

We propose that the low FRET, IBC1 and IBC2 are relatively stable compared to 

their PIB complexes, which may be short lived and/or unable to get in the crystals. The 

small population in the high FRET state in the Figure 37C histogram (FRET = 0.77) 

supports the idea of the instability of the PIB complexes. However, the resolution limits 

of the FRET experiments do not capture the interconversion dynamics between IBC1 

and IBC2. As we see a very broad transition in the TDP (Figure 39C) compared to the 

unmodified DNA, these transitions may be buried in there. 

 



98 
 

 

 

Figure 46. The proposed model shows the possible Dpo4 binding conformations during 
bypassing the (+)-trans-B[a]P-N2-dG adduct. The proposed model shows the possible 
Dpo4 binding conformations during bypassing the (+)-trans-B[a]P-N2-dG adduct. When 
Dpo4 binds to the B[a]P modified DNA, it forms two possible conformations in the binary 
complex, the insertion binary complex (IBC) and preinsertion binary complex (PIBC). 
The B[a]P adduct can passion in two different ways in the IBC. Therefore, IBC can have 
two sub conformations, IBC1 and IBC2. In the IBC1 the adduct is intercalated into the 
DNA.  The adduct places exposed or outside the helix in the IBC2. These two 
conformations are in equilibrium with the corresponding high FRET preinsertion 
conformations, PIBC1 and PIBC2. Out of all four possible confrontations, only IBC2 has 
an open active site for nucleotide incorporation. Therefore, we propose that only IBC2 
will lead for a successful dNTP incorporation. As Dpo4 uses a template slippage 
mechanism for dNTP incorporation, in our template, dTTP is incorporated 
complementary to the next base 5’ to the modified dG. The B[a]P modified dG is 
skipped and looped out causing to make -1 frame shift mutation. After dT incorporation, 
the next binary complex also can be in two possible conformation such as IBC3 and 
PIBC3. Again, IBC3 has the open active sine which allows for continuing DNA 
synthesis.  

The Dpo4 binding conformation in the ternary complex depicts a significant 

change compared to the binary complex. A single FRET state is formed in the ternary 

complex, indicating a single Dpo4 binding conformation regardless of the nucleotide. 

This new FRET state in the ternary complex is closer to the low FRET state in the IBC, 

which indicates that the translocated Dpo4 active site is ready for the dNTP 

incorporation as it is blocked in the PIBC. The 8Cy3 ternary complex gives nearly 

identical FRET values for all the dNTPs (Figure 40B). The potential reason for this 
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observation would be due to the fact that the Dpo4 incorporates all the noncognate 

dNTPs in the unmodified DNA. However, the dissociation rate constants for the 

unmodified template clearly shows the greatest ternary complex stabilization for the 

incorporation of dCTP across the unmodified dG (koff = 0.10±0.02, Figure 40C left). The 

same phenomenon was observed for the 8Cy3 B[a]P modified ternary complex during 

the incorporation of dT across the adduct having the lowest dissociation rate constant 

(koff = 0.16±0.02, Figure 40C, right).  

The 21 mer primer used in the 9Cy3mm DNA construct supports the 5’-DNA 

slippage mechanism, which is thoroughly explained in Xu et al [105]. Hence, it is 

possible that modified dG is looped out by allowing terminal dT to base pair with the dA 

which is the 5’ to the modified dG. The Dpo4 binding conformations in the B[a]P 

modified 9Cy3 binary complex show FRET states similar to the unmodified DNA (Figure 

41). The normal, unstrained nature of the DNA after the adduct would be the reason for 

the similar Dpo4 conformation after the adduct. Furthermore, Dpo4 tends to be highly 

error prone again in the modified DNA, similar to the unmodified DNA (Figure 43A). 

However, the Dpo4 shows the greatest stabilization again for the dT and dA 

incorporation having the lowest dissociation rate constants in the unembodied and 

modified DNA, respectively (Figure 43C).   

According to the proposed mechanistic pathway (Figure 44), the primer 

extension is inhibited by intercalated (+)-trans-B[a]P-N2-dG in the IBC1, so only IBC2 

can proceed to the next step for dNTP incorporation. Dpo4 shows a major pause before 

the adduct during replication (Figure 36) possibly due to the interconversion of all these 

conformations until it forms IBC2. Our data shows a strong support for the adduct-



100 
 

 

lopped-out, Dpo4’s 5’ slippage mechanism. The Dpo4 successfully incorporates dTTP 

bypassing the (+)-trans-B[a]P-N2-dG adduct to from the IBC3 using the 5’ slippage 

mechanism. Though IBC3 is in equilibrium with PIBC3, only the IBC3 can continue with 

DNA synthesis. 
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CHAPTER 5: CONCLUSIONS 

 

Understanding the relationship between the exogenous chemicals and cancer is 

an important step in cancer prevention [126]. B[a]P is a well-known environmental 

carcinogen which is known to produce DNA adducts that blocks the DNA synthesis by 

high fidelity, replicative polymerases. Hence, low fidelity Y-family polymerases are 

recruited to the damage site to bypass bulky, B[a]P adducts, and to restore DNA 

synthesis. In this study, we use Sulfolobus solfataricus DNA polymerase IV (Dpo4) as a 

model Y-family polymerase which is used extensively to understand the B[a]P bypass 

mechanism. We carried out primer extension assays and the smFRET experiments to 

study Dpo4 conformational dynamics during bypassing two isomers of B[a]P DNA 

adducts, (+)-cis-B[a]P-N2-dG and (+)-trans-B[a]P-N2-dG. 

The use of smFRET technique in studying Dpo4-DNA interactions was first 

developed by Alfonso Brenlla in our lab. This method was successfully applied to study 

our system, Dpo4-B[a]P modified DNA, to provide mechanistic insights into the Dpo4’s 

trans lesion mechanism. First we made the B[a]P modified DNA template using the 

protocol which was used by Tom Christian in 2009. Though we were able to 

successfully separate all four B[a]P isomeric product by HPLC, we decided to continue 

experiments with (+)-cis-B[a]P-N2-dG and (+)-trans-B[a]P-N2-dG adducts because they 

are the most abundant isomeric products in nature.  

It has been seen previously that the B[a]P adducts can change their 

conformations between the solvent exposed/outside and the intercalated/inside. The 

exposed conformation can be stabilized in two ways. First one is the stabilization of the 

B[a]P hydrophobic ring system between the structural gap, little finger and core domain, 
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in the Dpo4 [18]. If the B[a]P adduct stereochemistry does not support for it to locate in 

the structural gap, the hydrophobic adduct is forced to stay in the intercalated/inside 

conformation unless its solvent exposed conformation is stabilized by the 

microenvironment around the adduct. 

In our study, the (+)-cis-B[a]P-N2-dG adduct completely blocks the DNA 

synthesis by Dpo4. Presumably the structural properties of the adduct does not allow it 

to be positioned and stabilized in the structural gap of the Dpo4 (there is no crystal 

structure for (+)-cis-B[a]P-N2-dG and Dpo4).  Therefore, in the second way, the adduct 

exposed conformation must be stabilized by other factors, which are not known 

specifically, presumably water soluble macro molecules, metabolites, molecular 

crowding around the adduct and other proteins assist in TLS for bypassing DNA adduct 

in vivo. Therefore, we used DMSO to mimic the cytosolic hydrophobic properties in our 

experiments.  

Most importantly, Dpo4 binding conformation was changed as we decreased the 

solvent polarity by adding DMSO to the binding buffer, and Dpo4 was able to synthesize 

DNA past the adduct in the presence of DMSO. These observations confirm the change 

of adduct conformation during successful DNA synthesis, and our results elucidate the 

possible mechanistic pathway how Dpo4 bypass the (+)-cis-B[a]P-N2-dG adduct in vivo.   

We were able to reproduce the single molecule results of the Dpo4-DNA interactions 

which was published in Brenlla et al. for the unmodified DNA template. Dpo4 showed 

rather different binding conformation in the modified template due to the distortion 

imposed by the adduct. The nucleotide incorporation assay with single nucleotide 

showed that Dpo4 predominantly inserts dG across the (+)-cis-B[a]P-N2-dG adduct 



103 
 

 

forming an unusual G:G mismatch. We fully characterized all these Dpo4 binding 

conformations of the (+)-cis-B[a]P-N2-dG adduct with the Dpo4 bypass mechanism 

proposing a possible model as shown in Figure 35.  

 We were fortunate to start a collaboration with Prof. Andrés Cisneros to study our 

system computationally. Their lab did some computational calculations and MD 

simulations on the Dpo4-DNA system in the presence and absence of DMSO. Our 

biochemical and single molecule results were strongly supported by their computational 

results. The stabilization of the solvent exposed conformation of the adduct in the 

presence of DMSO was one of the interesting computational results that we obtained 

comparable to our experimental data. The correlation analysis with and without DMSO 

also generated a very promising data that are nicely align with experimental data.  

In contrast, the (+)-trans-B[a]P-N2-dG adduct conformation on the DNA does not 

completely blocks the DNA synthesis by Dpo4, but it prefers to incorporate nucleotides 

across the adduct not complimentary to the modified base, but to the base 5’ to the 

modified dG, which is dA in our template. The Dpo4 bypass mechanism follows the -1 

frameshift mutation while pushing out the (+)-trans-B[a]P-N2-dG adduct to the structural 

gap between the little finger and thumb domains as seen in the crystal structure. The 

smFRET experimental results show four possible Dpo4 binding conformations (IBC1, 

IBC2, PIBC1, PIBC2) for the binary complex (Figure 45). However, we were able to 

capture only two of them due to the resolution limit of the smFRET experiments, and/or 

fast transition between these complexes (IBC1 and IBC2). As we seen in the smFRET 

experiments, Dpo4 predominantly binds to a low FRET conformation where (+)-trans-

B[a]P-N2-dG adduct is in the exposed conformation stabilizing between the structural 
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gap. These conformational dynamics reveal that modified DNA bound Dpo4 is restricted 

to conformation limiting its freedom to move around the primer-template junction. Dpo4 

shows a greater stabilization in the ternary complex binding conformation for the 

nucleotides that are being incorporated during DNA synthesis. Our results provide a 

mechanistic basis for the stepwise process by which a Y-family polymerase extends 

across and past a bulky adduct in DNA.  
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A1. Copyright permission for figure 4-7. 
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A2. Copyright permission for figure 8. 
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A3. Copyright permission for figure 9. 
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A4. Copyright permission for figure 13. 
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A5. Copyright permission for figure 14. 
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REAL-TIME INVESTIGATION OF BULKY LESION BYPASS BY Y-FAMILY DNA 
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 DNA is constantly exposed to various DNA damaging agents that are generated 

by various internal and external sources. Some of this damage may not be able to be 

repaired by cellular machineries causing DNA replication to be blocked. Once the 

replication fork is blocked by a DNA adduct, damage tolerance DNA polymerases, 

mainly Y-family, are able to restore the DNA replication by synthesizing past the DNA 

adduct. Benzo[a]pyrene (B[a]P) is one of the most studied environmental carcinogens. It 

is known to make covalent DNA adducts after metabolic activation and the bulkiness of 

the B[a]P adducts impose a strong barrier to high-fidelity polymerases. However, many 

Y-family polymerases are able to bypass these adducts. In this study, we used a model 

Y-family polymerase isolated from Sulfolobus solfataricus called DNA polymerase IV 

(Dpo4), to study the B[a]P modified DNA bypass mechanism using single molecule 

FRET (smFRET). The B[a]P reaction with DNA produces four different isomeric 

products and we selected the most abundant of them, (+)-cis-B[a]P-N2-dG and (+)-

trans-B[a]P-N2-dG, to study.  
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 Our data show that (+)-cis-B[a]P-N2-dG adduct blocks the DNA replication when 

it is in the intercalated conformation in the DNA. Use of DMSO in the reaction buffer 

supports for the stabilization of the adduct solvent exposed conformation which 

removes the obstacle in the Dpo4 active site for DNA synthesis. In contrast, (+)-trans-

B[a]P-N2-dG adduct does not completely block the DNA replication, but instead causes 

frame-shift mutation leading to a -1 deletions in the DNA product. Consistence with the 

previously published studies, Dpo4 moves between two conformations in the binary 

complex, but single conformation is formed in the ternary complex. However, Dpo4 

binding conformations in the normal DNA and modified DNA are clearly different 

indicating its competence in translesion synthesis. 
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