
Wayne State University

Wayne State University Dissertations

1-1-2017

Synthesis Of Discrete Transition Metal (ni, Fe, Co,
Mn) Phosphide Nanoparticles: Compositional
Effect On Catalytic And Magnetic Properties
Da Li
Wayne State University,

Follow this and additional works at: https://digitalcommons.wayne.edu/oa_dissertations

Part of the Chemistry Commons, and the Materials Science and Engineering Commons

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in
Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Li, Da, "Synthesis Of Discrete Transition Metal (ni, Fe, Co, Mn) Phosphide Nanoparticles: Compositional Effect On Catalytic And
Magnetic Properties" (2017). Wayne State University Dissertations. 1835.
https://digitalcommons.wayne.edu/oa_dissertations/1835

http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1835&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1835&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1835&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1835&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/131?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1835&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/285?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1835&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/oa_dissertations/1835?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1835&utm_medium=PDF&utm_campaign=PDFCoverPages


SYNTHESIS OF DISCRETE TRANSITION METAL  
 (Ni, Co, Fe, Mn) PHOSPHIDE NANOPARTICLES: 
COMPOSITIONAL EFFECT ON CATALYTIC AND 

MAGNETIC PROPERTIES  
by 

DA LI 

DISSERTATION 

Submitted to Graduate School 

of Wayne State University, 

Detroit, Michigan 

in partial fulfillment of the requirements  

for the degree of  

DOCTOR OF PHILOSOPHY 

2017 

                                                             MAJOR: CHEMISTRY (Inorganic) 

              Approved By: 

                                                        _________________________________                                                                      
                                                            Advisor                                                Date 

                                                        _________________________________ 

                                                        _________________________________ 

                                                        _________________________________ 

                                                       _________________________________ 

 



 

 

 

 

 

 

 

© COPYRIGHT BY 

DA LI 

2017 

All Rights Reserved 

 
  



	 ii	

DEDICATION 

 

 

 

 

To Yan Chen and Huaiming Li 

 

 

  



	 iii	

ACKNOWLEDGEMENTS 

First and foremost, I would like to express my deepest appreciation and 

thanks to my advisor Dr. Stephanie L. Brock. It has been an honor to be one of 

her Ph.D. students. She has always been extraordinarily patient and supportive 

in mentoring me to become an independent and creative scientist. Her 

enthusiasm for research has always motivated me. She provided me the best 

opportunities and experiences I could ever ask for.  

I want to thank my undergraduate advisor, Jinku Liu, who brought my interest 

into the “Nano” world. He has been encouraging me all these years and always 

has faith in me. Without him, I would not even have the opportunity to pursue a 

career as scientist in the US. 

I would like to thank my committee members, Dr. Stanislav Groysman, Dr. 

Jennifer L. Stockdill, and Dr. Eranda Nikolla.�They have provided numerous 

brilliant comments and feedback, which make this dissertation work in a better 

shape.  

I have had pleasure of working with many talented collaborators, Dr. Claudio 

Verani and Habib Baydoun, Dr. Eranda Nikolla and Ayad Nacy, Dr. Gavin Lawes 

and Maheshika Palihawadana. They offered me numerous intellectual ideas. 

I would like to thank my colleagues and my friends, Habib and Ruchira.  You 

all have provided selfless support and sincere friendship over these years. I want 

to thank my other lab mates, Lathansa, Roshini, Derak, Jessica, Indika, Malsha, 

Sam, Tepora, Lakmini, Lalani, Krista, Bogdan, Kody and Mikaylah. I’m so lucky 

to work and be around with them. 



	 iv	

I would like to thank staff members in the Lumigen Instrument Center. Thank 

Dr. Zhi Mei (Mike) for helping me to use TEM and SEM, Dr. Philip Martin for his 

help with PXRD. My gratitude is also extended to Dr. Munk for guiding me in 

teaching. It has been so inspiring and cheerful to work with her. I also want to 

thank Melissa and Bernie for giving tremendous help no matter what task or 

circumstance I brought to them. 

I would like to thank National Science Foundation and Wayne State University 

for supporting my PhD study financially (CHE-1361741, DMR-1631470, Thomas 

C. Rumble Fellowship, summer dissertation fellowship) and providing me the 

chance to fully focus on my research study. 

Last but not the least, I would like to thank my parents, Yan Chen and 

Huaiming Li. Their unconditional support and endless love is always my 

strongest motivation. I would like to thank my aunt Xin Li and her family for giving 

me a second home in the United States. I would also like to thank my girlfriend, 

Shirley. Her encouragement, quiet patience and unwavering love were extremely 

important for the past four years of my life. 

 

	  



	 v	

PREFACE 

This dissertation is based closely on the following refereed publications: 

Chapter 3: Li, D., Senevirathne, K., Aquilina, L., Brock, S. L. Inorganic 

Chemistry, 2015, 54, 7968-7975. 

Chapter 4: Li, D., Perera, M., Kulikowski, B., Lawes, G., Seda, T., Brock, S. L. 

Chemistry of Materials, 2016, 28, 3920-3927. 

Chapter 5: Li, D., Baydoun, H., Verani, C. N., Brock, S. L. Journal of the 

American Chemical Society, 2016, 138, 4006-4009. 

Chapter 6: Li, D., Baydoun, H., Kulikowski, B., Brock, S. L. Chemistry of 

Materials, 2017, 29, 3048-3054. 

Chapter 7:	 Li, D., Whisnant K. G., Brock, S. L. “Visible Light Induced 

Photocatalytic Hydrogen Evolution Using a Ni2P-CdS Hybrid Aerogel System.” In 

preparation. 

  



	 vi	

TABLE OF CONTENTS 

Dedication  ........................................................................................................... ii 

Acknowledgements ............................................................................................ iii 

Preface ................................................................................................................. v 

List of Schemes ................................................................................................ xiii 

List of Tables .................................................................................................... xiv 

List of Figures .................................................................................................... xv 

List of Abbreviations ....................................................................................... xxii 

Chapter 1: Introduction ....................................................................................... 1�

1.1 Solution-phase Arrested Precipitation Synthesis of Nanomaterials .............. 2�

1.2 Transition Metal Phosphides ........................................................................ 5�

1.2.1 Synthesis of Binary Transition Metal Phosphides: Ni, Co, Fe, Mn ....... 5 

1.2.1.1 Nickel Phosphide ...................................................................... 5 

1.2.1.2 Iron Phosphide .......................................................................... 7 

1.2.1.3 Cobalt Phosphide ...................................................................... 8�

1.2.1.4 Manganese Phosphide ............................................................. 8�

1.2.2 Synthesis of Ternary Transition Metal Phosphides .............................. 9 

1.2.2.1 Nickel Iron Phosphide ............................................................... 9 

1.2.2.2 Cobalt Iron Phosphide ............................................................... 9 

1.2.2.3 Manganese Iron Phosphide .................................................... 10�

1.3 Magnetism .................................................................................................. 10 

1.3.1 Diamagnetism .................................................................................... 11 

1.3.2 Paramagnetism .................................................................................. 13 

1.3.3 Anti-ferromagnetism ........................................................................... 13 



	 vii	

1.3.4 Ferromagnetism ................................................................................. 13 

1.3.5 Ferrimagnetism .................................................................................. 15 

1.4 Magnetic Behavior of Nanomaterials .......................................................... 15�

1.5 Oxygen Evolution Electrocatalysis .............................................................. 20 

1.6 Hydrogen Evolution Photocatalysis ............................................................ 20�

1.7 Thesis Statement ........................................................................................ 22 

1.7.1 Traditional Materials for Water Splitting and Magnetic Refrigeration . 23 

1.7.2 New Materials and the Motivation for Their Study .............................. 23 

1.7.3 Transition Metal Phosphides for Water Splitting and Magnetic 
Refrigeration ...................................................................................... 24 

1.7.4 Goals and Dissertation Outline ........................................................... 25�

Chapter 2: Material Characterization Techniques .......................................... 27 

2.1 Materials ..................................................................................................... 27�

2.1.1 Metal Precursors ................................................................................ 27�

2.1.2 Solvents .............................................................................................. 27 

2.2 Experimental Techniques ........................................................................... 28�

2.2.1 Schlenk Line Techniques ................................................................... 28�

2.2.2 Tube Furnace ..................................................................................... 29 

2.3 Characterization Techniques ...................................................................... 29 

2.3.1 Powder X-Ray Diffraction ................................................................... 29�

2.3.2 Transmission Electron Microscopy ..................................................... 35�

2.3.3 Energy Dispersive Spectroscopy (EDS) ............................................. 40�

2.3.4 Scanning Transmission Electron Microscopy ..................................... 41 

2.3.5 X-ray Photoelectron Spectroscopy ..................................................... 41�

2.3.6 Inductively Coupled Plasma-Mass Spectrometry ............................... 43�



	 viii	

2.3.7 Infrared Spectroscopy ........................................................................ 43�

2.3.8 Cyclic Voltammetry ............................................................................. 44�

Chapter 3: Effect of Synthetic Levers on Nickel Phosphide Nanoparticle 
Formation: Ni5P4 And NiP2 ................................................................................ 46 

3.1 Introduction ................................................................................................. 48�

3.2 Experimental ............................................................................................... 49�

3.2.1 Synthesis of Nickel Phosphide Nanoparticles .................................... 49 

3.2.2 Characterization ................................................................................. 50 

3.3 Results and Discussion .............................................................................. 51 

3.3.1 Effect of precursor ratio, temperature and time: Route 1 ................... 51�

3.3.2 Probing the intermediate heating step ................................................ 53�

3.3.3 Obtaining phase-pure Ni5P4 by Route 2 ............................................. 56�

3.3.4 Obtaining phase-pure NiP2 by Route 2 .............................................. 57 

3.3.5 Obtaining pure-phase Ni2P by Route 2 .............................................. 58 

3.3.6 Effect of the nickel precursor on targeted phase ................................ 59�

3.3.7 Role of Oleylamine: Route 3 .............................................................. 60�

3.4 Conclusion .................................................................................................. 64 

Chapter 4: Control of Composition and Size in Discrete CoxFe2-XP Nanoparticles: 
Consequences for Magnetic Properties ............................................................... 64 

4.1 Introduction ................................................................................................. 66�

4.2 Experimental ............................................................................................... 67�

4.2.1 Synthesis of Nickel Phosphide Nanoparticles .................................... 67�

4.2.2 Characterization ................................................................................. 68 

4.3 Results and Discussion .............................................................................. 68 

4.3.1 Synthesis of CoxFe2-xP nanoparticles and their structural and 
morphological changes with composition .......................................... 70�



	 ix	

4.3.2 Mechanistic studies on particle formation .......................................... 75�

4.3.3 Size control of the ternary phase ........................................................ 79�

4.3.4 Magnetic Properties of CoxFe2-xP Nanoparticles ................................ 81 

4.4 Conclusion .................................................................................................. 89 

Chapter 5: Efficient Water Oxidation Using CoMNP Nanoparticles ............. 91 

5.1 Introduction ................................................................................................. 92�

5.2 Experimental ............................................................................................... 93�

5.2.1 Synthesis of CoMnP Nanoparticles .................................................... 93�

5.2.2 Synthesis of MnP Nanoparticles ........................................................ 92 

5.2.3 Synthesis of Co2P Nanoparticles ....................................................... 92�

5.2.4 Synthesis of CoMnO2 Nanoparticles .................................................. 94�

5.2.5 Characterization ................................................................................. 94 

5.2.6 Electrochemical Characterization ....................................................... 94 

5.3 Results and Discussion .............................................................................. 95 

5.3.1 Synthesis and Characterization of CoMnP Nanoparticles .................. 96�

5.3.2 Water Oxidation Catalysis .................................................................. 98�

5.4 Conclusions .............................................................................................. 104 

Chapter 6: Boosting the Cataytic Performance of Iron Phosphide Nanorods 
for the Oxygen Evolution Reaction by Incorporation of Manganese ......... 106 

6.1 Introduction ............................................................................................... 107�

6.2 Experimental ............................................................................................. 108�

6.2.1 Synthesis of Fe2P nanorods ............................................................. 109�

6.2.2 Synthesis of Fe2-xMnxP nanorods (x � 0.7) ..................................... 109 

6.2.3 Synthesis of Fe1.1Mn0.9P nanorods ................................................... 109�

6.2.4 Size selective isolation process ........................................................ 110�



	 x	

6.2.5 Post-deposition annealing ................................................................ 110 

6.2.6 Characterization ............................................................................... 110 

6.2.7 Electrochemical measurements ....................................................... 110 

6.3 Results and Discussion ............................................................................ 110 

6.3.1 Synthesis and Characterization of Fe2-xMnxP Nanorods (x � 0.7) .. 111�

6.3.2 Electrocatalytic Water Oxidation by Fe2-xMnxP Nanorods (x � 0.7) 119�

6.3.3 Synthesis and Characterization of Fe2-xMnxP Nanorods (x =0.9) ..... 119 

6.3.4 Effect of Mn Concentration and Annealing on Electro-catalytic 
Performance of Fe2-xMnxP nanorods ............................................... 121�

6.3.5 Stability Testing of Fe2-xMnxP (x = 0.9) nanorods for Electro-Catalytic 
Water Splitting .................................................................................. 124�

6.4 Conclusions .............................................................................................. 127 

Chapter 7: Visible Light Induced Photocatalytic Hydrogen Evolution Using 
a Ni2P-CdS Hybrid Aerogel System ............................................................... 128 

7.1 Introduction ............................................................................................... 129�

7.2 Experimental ............................................................................................. 131�

7.2.1 Synthesis of CdS nanoparticles ....................................................... 132�

7.2.2 Synthesis of Ni2P nanoparticles ....................................................... 132 

7.2.3 Ligand Exchange .............................................................................. 132 

7.2.3.1 Separate Ligand Exchange of CdS and Ni2P nanoparticles . 132 

7.2.3.2 Combined Ligand Exchange of CdS and Ni2P nanoparticles 133 

7.2.4 Gel Formation & Aerogel Preparation .............................................. 133�

7.2.5 Photocatalytic Hydrogen Evolution ................................................... 134 

7.2.6 Characterization ............................................................................... 134 

7.2.6.1 Surface Area Analysis ........................................................... 134 

7.2.6.2 UV-vis Diffuse Reflectance Spectroscopy ............................. 135 



	 xi	

7.3 Results and Discussion ............................................................................ 135 

7.3.1 Preparation of Ni2P-CdS hybrid aerogels ......................................... 135�

7.3.2 Visible light-induced HER ................................................................. 141�

7.3.3 Morphology of Ni2P-CdS hybrid aerogels ......................................... 143 

7.3.4 Surface area measurements of Ni2P-CdS hybrid aerogels .............. 145�

7.3.5 Optical properties of Ni2P-CdS hybrid aerogels ............................... 146 

7.3.6 Bonding Possibilities ........................................................................ 147�

7.4 Conclusions .............................................................................................. 149 

Chapter 8: Conclusion and Prospectus ........................................................ 151 

8.1 Conclusions .............................................................................................. 151 

8.1.1 Establishing Synthetic Methods of Transition Metal Phosphides ..... 152�

8.1.2 Catalytic Behavior of new TMP nanoparticles .................................. 153�

8.2 Prospectus ................................................................................................ 154 

8.2.1 Application of Synthetic Methods to New More Metal Phosphides .. 155�

8.2.2 Improving OER Activity of Transition Metal Phosphide  
 Nanomaterials .................................................................................. 155�

8.2.3 Exploiting Our Tool Box for Hybrid Aerogel Catalyst Formation ...... 158�

Appendix A: Comparison of the OER Activities of the CoMnP Catalysts with 
Recently Published Results ........................................................................... 160 

Appendix B: TEM Images, PXRD Patterns, and Electrocatalytic OER 
Properties of Different Compositions of Co2-xMnxP Nanoparticles ............ 161 

Appendix C: Comparison of the OER Activities of the Fe1.1Mn0.9P Catalysts 
with Recently Published Results ................................................................... 163 

Appendix D: Permission/License Agreement for Copyright Materials  ..... 164 

Bibliography  .................................................................................................... 168 

Abstract  ........................................................................................................... 187 



	 xii	

Autobiographical Statement  .......................................................................... 189 



	 xiii	

LIST OF SCHEMES 

Scheme 1.1: Process for photocatalytic hydrogen evolution half reaction ...... 22   

Scheme 3.1: Synthesis of nickel phosphide nanoparticles ............................. 49 

Scheme 3.2: Illustration of the roles played by various synthetic levers in 
controlling the phase in nickel phosphide nanoparticles. The 
crystal structures shown inside correspond to Ni2P (hexagonal), 
Ni5P4 (hexagonal) and NiP2 (cubic) as determined from XRD ... 64 

Scheme 4.1: Synthesis of CoxFe2-xP (0 � x � 2) nanoparticles ................... 68 

Scheme 4.2: Reaction parameters when Co(acac)2 and Fe(CO)5 were used as 
metal precursors to prepare CoxFe2-xP nanoparticles ............... 69 

Scheme 7.1: Scheme showing the main steps involved in formation of CdS 
aerogels from thiolate capped-CdS NCs ................................. 137 

Scheme 7.2: Illustration of possible pathways of co-gelation of two 
nanoparticle components ......................................................... 138 

 

 

 

 

 

 

 

 

 

 



	 xiv	

LIST OF TABLES 

Table 2.1: Signals generated when a sample is bombarded with a high-
energy electron beam and their applications for materials 
characterization ......................................................................... 36 

Table 3.1: Reaction parameters and final product phase from Route 3 ..... 63 

Table 4.1: Targeted and actual compositions (from EDS and ICP analysis) 
of CoxFe2-xP nanoparticles ......................................................... 73 

Table 4.2: Reaction parameters and final product phase from Route 3 ..... 83 

Table 4.3: Fe site occupancies (%) and fractional compositions (Fe(1) + Co(1) = 
Fe(2) + Co(2) = 1) for CoxFe1-xP as determined from 57Fe Mössbauer.  
The enhanced Fe content in the Fe-rich sample (x = 0.3) that gives rise 
to an apparent site occupancy >1.0 is due to broadening of the peak, 
ascribed to an impurity phase.  M(1) is the tetrahedral site and M(2) the 
square pyramidal site. (* Indicates a fixed parameter) ..................... 88 

Table 5.1: ICP-MS data of solution before and after a fifteen-hour CPE 
experiment ............................................................................... 104 

Table 6.1: Target compositions and product compositions (from EDS) of 
Fe2-xMnxP nanoparticles after 2 h reaction .............................. 114 

Table 6.2: Target compositions and product compositions (from EDS) of 
Fe2-xMnxP nanoparticles after 2 h reaction .............................. 115 

Table 6.3: ICP-MS data of the electrolyte solution before and after a fifteen-
hour controlled potential electrolysis (CPE) experiment, which 
was carried out in 1.0 M KOH, by applying a constant potential of 
1.58 V (vs RHE) ............................................................ 127 

Table 7.1: Targeted and actual compositions (from EDS) of Ni2P-CdS 
hybrid aerogels ........................................................................ 141 

 

 

 



	 xv	

LIST OF FIGURES 

Figure 1.1: Schematic illustration of La Mer’s model for nucleation and growth.4 

Figure 1.2: Illustration of (a) magnetic moment orientation in different types of 
magnetism. Typical curves of (b) magnetization (M) as a function of 
applied magnetic field (H) and (c) magnetic susceptibility (χ) as a 
function of temperature (T) ............................................................ 12   

Figure 1.3: �Magnetic moment alignments of bulk and nano ferromagnetic 
materials ........................................................................................ 17 

Figure 1.4: �Comparison of the magnetization (M) vs. applied magnetic field (H) 
curves of (a) ferromagnetic and (b) superparamagnetic materials 17 

Figure 1.5: �Magnetization as a function of temperature measured for ZFC and 
FC for superparamagnetic nanoparticles ....................................... 19 

Figure 2.1: Schematic illustration of a filament X-ray tube ............................... 30 

Figure 2.2: Illustration of Cu Kα X-ray generation ............................................ 31 

Figure 2.3: Illustration of Bragg's law ............................................................... 32 

Figure 2.4: Illustration of diffraction from a powdered sample ......................... 33 

Figure 2.5: PXRD pattern of Ni2P nanoparticles .............................................. 34 

Figure 2.6: Signals generated when a sample is bombarded with a high-energy 
electron beam ................................................................................ 36 

Figure 2.7: Illustration of a comparison between light microscopy and 
transmission electron microscopy .................................................. 38 

Figure 2.8: Basic imaging modes of TEM (a) bright field mode and (b) dark field 
mode .............................................................................................. 39 

Figure 2.9: EDS spectrum of a CoMnP nanoparticle sample .......................... 41 

Figure 2.10: Schematic illustration of a XPS system ......................................... 42 

Figure 2.11: A standard three electrode system ................................................ 45 



	 xvi	

Figure 3.1: PXRD patterns of the product from Route 1 (Scheme 3.1) as a 
function of TOP quantity; reactions were carried out at 370 °C for 
24 h with 2 mmol Ni(acac)2 and 3 mmol OAm ............................... 52 

Figure 3.2: PXRD patterns of the products from Route 1 (Scheme 3.1) with 2 
mmol Ni(acac)2 and 33.6 mmol TOP (P/Ni=16.8): (a) As a function 
of heating temperature for 24 h; (b) as a function of heating time at 
370°C ............................................................................................. 53 

Figure 3.3: a) PXRD and patterns (b) TEM images of intermediate NixPy 
particles prepared at different heating times at 230 °C (P/Ni = 16.8)  
 ...................................................................................................... 54 

Figure 3.4: TEM images of Ni2P nanoparticles (a) before and (b) after reaction 
with TOP; (c) HRTEM of a selected area in (b). (d) PXRD patterns 
of Ni2P particles before (top) and after (bottom) reaction with TOP 
at 380°C for 24 hrs ......................................................................... 56 

Figure 3.5: PXRD pattern of Ni5P4 particles from Route 2. (b), (c) TEM images 
of Ni5P4 particles (inset: HRTEM showing lattice fringes) ............ 57 

Figure 3.6: (a) PXRD patterns and (b) TEM images of NiP2 particles prepared 
from Route 2. ................................................................................. 58 

Figure 3.7: (a) PXRD patterns and (b), (c) TEM images of Ni2P prepared with 
or without the 230°C intermediate step, respectively ..................... 59 

Figure 3.8: PXRD patterns of the product from Route 2 (Scheme 1) using 
different Ni precursors: (a) Ni(OAc)2•4H2O; (b) Ni(COD)2 and (c) 
Ni(acac)2 ........................................................................................ 60 

Figure 3.9: PXRD patterns of the products from Route 3 (Scheme 3.1) as a 
function of OAm/TOP ratio; reactions were carried out at 370 °C for 
24 h with 0.73 mmol Ni(acac)2 ....................................................... 61 

Figure 3.10: PXRD patterns of the product from Route 3 (a) as a function of 
heating temperature (370, 385 °C), P:Ni ratio (30.8, 61.6) and 
heating time (10, 24 h); (b) as a function of heating time (1, 48 h) at 
370 °C ............................................................................................ 62 

Figure 4.1: (a) PXRD patterns and (b) TEM image of product obtained using 
Co(acac)2 and Fe(CO)5 as metal precursors prepared by Scheme 
4.2 .................................................................................................. 69 



	 xvii	

Figure 4.2: (a) PXRD patterns of different compositions of CoxFe2-xP prepared 
with the conditions shown in Scheme 4.1. Reference patterns for 
Co2P (PDF # 32-0306) and Fe2P (PDF # 85-1727) are shown; 
droplines correspond to expected peak position for Co2P. (b) 
Hexagonal Fe2P structure-type (left) and orthorhombic Co2P type 
(right) .............................................................................................. 71 

Figure 4.3: TEM images of different compositions of CoxFe2-xP prepared by 
Scheme 4.1 (inset: HRTEM images, scale bars equal 10 nm) ...... 72 

Figure 4.4: Histograms for the particle size distribution (measured from TEM) 
for different compositions of CoxFe2-xP prepared by Scheme 4.1 .. 73 

Figure 4.5: (a) HAADF image (left) and STEM elemental mapping data (right) 
corresponding to the rectangular region outlined in the HAADF 
image for a CoFeP sample. (b) Line scan for one CoFeP 
nanoparticle. In the plot of intensity versus point number, Fe is 
shown in green, Co in red, and P in blue ....................................... 74 

Figure 4.6: PXRD patterns of the samples A-D; the insets show the 
corresponding TEM images (M:P ratios were acquired from EDS 
spectra). The scale bar (20 nm) is the same for all micrographs ... 78 

Figure 4.7: (a) HAADF image (left) and STEM elemental mapping data (right) 
and (b) EDS spectra for CoFe alloy nanoparticles (sample A). (c) 
Line scan for one CoFe alloy nanoparticle. In the plot of intensity 
versus point number, Fe is shown in green, Co in red .................. 79 

Figure 4.8: PXRD patterns of the CoFeP nanoparticles from Scheme 4.1 as a 
function of TOP/metal ratio: (a) TOP/metal = 0.75 (b) TOP/metal = 
0.45 ................................................................................................ 80 

Figure 4.9: TEM images of Co2P and Fe2P nanoparticles prepared in Scheme 
4.1 as a function of OAm ............................................................... 81 

Figure 4.11: ZFC and FC plots of CoxFe2-xP nanoparticles (x = 1.7, 1.4, 1.0, 0.7, 
0.2) ................................................................................................. 83 

Figure 4.12: Arrot plots of different compositions CoxFe2-xP nanoparticles. The 
Tc for Co0.7Fe1.3P appears to be greater than the Tc for CoFeP, 
based on the greater deviation from linearity in the former for the 
340 K data ..................................................................................... 84 



	 xviii	

Figure 4.13: TC value of CoxFe2-xP nanoparticles (triangle) and bulk samples 
(circle, reported in ref63) as a function of x. The Tc for nanoscale 
Fe2P was taken from ref6.  The open triangles correspond to the 
upper limit of the instrument.  The arrows reflect the relative 
magnitude as a function of x based on qualitative analysis of Arrott 
plots (Figure 4.12) .......................................................................... 85 

Figure 4.14: 57Fe Mössbauer data and fitting for CoxFe2-xP (x = 1.7, 1.4, 1, 0.7, 
0.3) nanoparticles. For the samples x = 0.7 and 0.3, G is fixed to 
compensate for a Fe-containing impurity that becomes more 
prevalent at low x and results in unrealistic values for site 
occupation (see Table 4.3) ............................................................ 87 

Figure 5.1: (a) Powder XRD pattern and (b) TEM image of MnP nanorods; (c) 
CV scans of MnP measured in 1 M KOH with a sweep rate of 10 
mV s−1. The reference XRD pattern for MnP (PDF # 75-1040) is 
shown in panel (a). ........................................................................ 96 

Figure 5.2: Powder XRD (a) and TEM (b) of CoMnP nanoparticles. The 
reference pattern for CoMnP (PDF # 42-0932) is shown. (c) 
Histogram for the particle size distribution (measured from TEM) for 
CoMnP nanoparticles .................................................................... 97 

Figure 5.3: STEM image and elemental mapping data (a), and line scan 
compositional data (b) of CoMnP nanoparticles. Co is shown in red, 
Mn in green, and P in blue. ............................................................ 98 

Figure 5.4: (a), (c) Powder XRD patterns and (b), (d) TEM images of CoMnO2 
and Co2P nanoparticles, respectively ............................................ 99 

Figure 5.5: (a) Polarization curves for nanoparticles of CoMnP, CoMnO2 and 
Co2P in 1.0 M KOH; (b) Tafel plots derived from the polarization 
curves .......................................................................................... 100 

Figure 5.6: Faradaic efficiency: experimental vs. theoretical amount of O2 
produced ...................................................................................... 101 

Figure 5.7: Polarization curves for CoMnP nanoparticles, in 1.0 M KOH initially 
(black), after 200 (red) and 500 CV sweeps (blue) vs. RHE. Inset: 
Tafel plots derived from the cycling experiments ......................... 102 

Figure 5.8: High-resolution XPS patterns for CoMnP nanoparticles before (top) 
and after (bottom) electrolysis for 10 h: (a) Co (2p3/2), (b) Mn (2p3/2), 
and (c) P (2p3/2) ............................................................................ 104 



	 xix	

Figure 5.9: High-resolution XPS patterns for CoMnP nanoparticles before (top) 
and after (bottom) electrolysis for 10 h: (a) Co (2p3/2), (b) Mn (2p3/2), 
and (c) P (2p3/2) ............................................................................ 104 

Figure 6.1: (a) TEM image, (b) HR-TEM image showing lattice fringes attributed to 
(111) and (002) planes, (c) HAADF image (d) PXRD pattern and (f) 
HAADF image and its corresponding STEM elemental mapping data of 
Fe1.5Mn0.5P nanorods obtained from targeting the composition 
Fe0.75Mn1.25P at a 2 h reaction time. (e) Top-down view of the Fe2P (002) 
surface .......................................................................................... 113 

Figure 6.2: (a) TEM images of Fe2-xMnxP nanorods as a function of time (targeted 
ratio Fe/Mn = 0.75/1.25). (b) Histograms for the rod length and width 
distribution (measured from TEM) for different compositions of Fe2-xMnxP. 
The Mn composition indicated was determined by ICP-MS (Table 6.1) 114 

Figure 6.3: (a) Mn uptake in Fe2-xMnxP as a function of reaction time; (b) polarization 
curves as a function of composition, x, in 1.0 M KOH; (c) overpotentials 
required at j = 10 mA/cm2 .............................................................................................................. 116 

Figure 6.4: a) TEM image and (b) PXRD pattern of the product after 10 h reaction 
(grey) and the product after size-selective precipitation (red). (c) TEM 
image of the product after size-selective precipitation to remove the small, 
spherical MnO nanoparticles. ............................................................... 117 

Figure 6.5: PXRD pattern of different compositions of Fe2-xMnxP nanorods .......... 118 

Figure 6.6: PXRD pattern of Fe1.3Mn0.7P nanorods. Reference patterns are for 
hexagonal Fe2P (PDF # 85-1727) and orthorhombic Fe1.3Mn0.7P 
(simulated).63 ................................................................................. 118 

Figure 6.7: (a) TEM image (inset: HRTEM image) of Fe1.1Mn0.9P nanorods; (b) HR-
HAADF image of a portion of one Fe1.1Mn0.9P nanorod (inset: structural 
model of the Fe1.1Mn0.9P nanorods); (c) HAADF image and its 
corresponding STEM elemental mapping data for Fe1.1Mn0.9P nanorods; 
(d) line scan for one Fe1.1Mn0.9P nanorod ......................................... 120 

Figure 6.8: Electrocatalytic oxygen evolution properties of Fe2-xMnxP nanorods. 
(a) Polarization curves of the Fe2-xMnxP nanorods in 1.0 M KOH; (b) 
overpotentials required at j = 10 mA/cm2; (c) the corresponding 
Tafel plots of the polarization curves of Fe2-xMnxP; (d) plot of Tafel 
slopes as a function of x .............................................................. 121 

Figure 6.9: (a) FT-IR spectra of oleylamine and Fe1.1Mn0.9P/C nanorods, 
revealing the existence of both oleylamine ligand and phosphate on 



	 xx	

the surface of FeMnP nanorods (C-H stretch: 2852 and 2924 cm-1; 
C-N stretch: 1385 cm-1; N-H stretch: 3250-3450 cm-1; P=O stretch: 
1000-1050 cm-1); (b) TEM images (element ratios measured from 
EDS) and (c) XRD patterns of Fe1.1Mn0.9P/C nanorods before and 
after annealing. The low-contrast curved features in the annealed 
sample (b) are ascribed to residual carbon black ........................ 123 

Figure 6.10: Electrocatalytic oxygen evolution properties of Fe2-xMnxP nanorods 
vs. RuO2. (a) Polarization curves of the Fe1.5Mn0.5P, Fe1.1Mn0.9P 
nanorods after annealing, and RuO2 in 1.0 M KOH; (b) controlled 
potential electrolysis on the Fe1.1Mn0.9P nanorods in 1.0 M KOH at 
1.58 V (vs. RHE) over 20 hours ................................................... 124 

Figure 6.11: High-resolution XPS patterns for Fe1.1Mn0.9P nanorods before (top) 
and after (bottom) electrolysis for 2 h: Fe (2p3/2), Mn (2p3/2), and 
P (2p) ........................................................................................... 126 

Figure 6.12: TEM images of Fe1.1Mn0.9P nanorods before and after CPE ....... 127 

Figure 7.1: (a) PXRD pattern and (b) TEM image of Ni2P nanoparticles. (c) 
PXRD pattern and (d) TEM image of CdS nanoparticles ............ 136 

Figure 7.2: (a) Photographs of aerogels with different loadings of Ni2P 
throughout the formation process and (b) PXRD patterns of CdS 
nanoparticles and aerogels with different loadings of Ni2P .......... 137 

Figure 7.3: TEM images of sols of CdS and Ni2P nanoparticles ligand-
exchanged separately (a) and together (d), their corresponding 
aerogel before (b), (e) and after annealing (c), (f), respectively .. 140 

Figure 7.4: PXRD patterns of 5.0% Ni2P-CdS aerogel before and after 
annealing ..................................................................................... 141 

Figure 7.5: (a) Images taken during the generation of hydrogen bubbles from 
the photocatalysis. (b) Representation of the photocatalytic activity 
occurring within the system. (c) The H2 evolution rate of the hybrid 
aerogels loaded with different amounts of Ni2P at room temperature 
under visible light irradiation. (d) Cycling runs for photocatalytic 
hydrogen evolution using 0.5% Ni2P-CdS aerogels. The system 
contains 0.2 mg of catalyst immersed in a 20-mL aqueous solution 
containing 0.75 M Na2S and 1.05 M Na2SO3 ............................... 143 

Figure 7.6: (a), (b) TEM images and (c) HRTEM image of a 0.5% Ni2P-CdS 
aerogel (inset: FFT of the selected area ...................................... 145 



	 xxi	

Figure 7.7: (a) N2 physisorption isotherms of a CdS aerogel, 0.5% Ni2P-CdS 
aerogel, and CdS nanoparticles. (b) Pore size distribution of (top to 
bottom) CdS nanoparticles, CdS aerogel, and 0.5% Ni2P-CdS 
aerogel ......................................................................................... 146 

Figure 7.8: (a) UV-vis diffuse reflectance spectra of 0.5% Ni2P-CdS aerogel 
and CdS aerogel. (b) Photoluminescence spectra of CdS aerogel 
and 0.5% Ni2P-CdS aerogel ........................................................ 147 

Figure 7.9: (a) Illustration of two bonding possibilities (b) optical images for sols 
of 4-fluorothiophenol capped CdS nanoparticles (left), 30% Ni2P 
and CdS nanoparticles (right) before (top) and after (bottom) adding 
3% TNM solution.......................................................................... 149 

  



	 xxii	

LIST OF ABBREVIATIONS 

SPAP solution-phase arrested-precipitation 

MPs Metal phosphides 

TOP Trioctylphosphine  

TOPO Trioctylphosphine oxide 

OE octyl either 

ODE octadecene 

OAm oleylamine 

TEM transmission electron microscopy   

HRTEM high solution transmission electron microscopy   

FFT fast Fourier transform 

EDS energy dispersive spectroscopy 

STEM     scanning transmission electron microscopy 

HAADF high angle annular dark field 

ICP-MS inductively coupled plasma-mass spectrometry 

IR infrared   

DFS diffuse reflectance spectroscopy 

CV   cyclic voltammetry 

BET Brunauer-Emmett-Teller 

BJH Barrett-Joyner-Halenda 

FC field-cooled 

ZFC zero-field-cooled 

RDE   rotating disc electrode 

OER oxygen evolution reaction �



	 xxiii	

HER hydrogen evolution reaction  

ICP-MS  inductively coupled plasma mass  

XPS                     X-Ray photoelectron spectroscopy 

PECVD               plasma enhanced chemical vapor deposition 

RHE                    reversible hydrogen electrode 

HDS               hydrodesulfurization		

HDO                 � hydrodeoxygenation 

PCET proton-coupled electron transfer 

CPE controlled potential electrolysis 

 



1	
	

CHAPTER 1. INTRODUCTION 
 

Solid materials that have one or more dimensions within 1-100 nm range are 

defined as nanomaterials. The dimensions within this range are usually composed 

of 10-500 atoms closely arranging to each other. Due to the limited number of 

atoms, nanomaterials can have unique magnetic, optical, or electronic properties 

when compared to their relative bulk phases, such as the quantum confinement in 

quantum dots, the superparamagnetism of iron oxide nanoparticles, and the 

surface plasmon resonance of gold nanoparticles. Moreover, because 

nanomaterials have large surface to volume ratios, they are highly surface activate. 

Therefore, nanomaterials are considering as promising candidates for catalytic, 

photovoltaics, drug delivery and many other new technological applications. 

Due to the wide range of unique magnetic, redox and catalytic properties 

exhibited by transition metal phosphides, the development of methods for their 

production on the nanoscale with control of size, shape and composition, is an 

important endeavor.1-4,5-9 Over the last 15 years, the Brock group has developed 

various methods to prepare different binary transition metal pnictide and 

chalcogenide nanomaterials with fine control over size, shape and composition for 

applications such as hydrodesulfurization (HDS) and hydrodeoxygenation (HDO), 

magnetic refrigeration, and thermoelectric devices. Recently, ternary metal 

phosphides have attracted enormous attention due to the superior catalytic 

performance over the binary phases. Therefore, the Brock group are now focusing 

on establishing the synthetic factors that enable access to different phase-pure 
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ternary transition metal phosphides and studying the synergetic interaction or 

electronic modulation between the two metals. 

In this dissertation, the research is focused on: (1) optimizing the synthesis of 

nanoscale phase-pure Ni5P4 and NiP2 by establishing the relationship between 

critical synthetic parameters and the phase of nickel phosphide produced; (2) 

Synthesizing CoxFe2-xP nanoparticles with different compositions, establishing the 

mechanism of nanoscale ternary phosphide formation and studying the magnetic 

properties of CoxFe2-xP nanoparticles as a function of composition (3) Synthesizing 

M2-xMnxP (M = Co, Fe) nanoparticles with different compositions, establishing the 

mechanism of nanoscale ternary phosphide formation and studying the oxygen 

evolution reaction activity from water using M2-xMnxP (M = Co, Fe) nanoparticles 

as electro-catalysts; (4) Combining metal chalcogenide semiconductor aerogel 

with Ni2P nanoparticles to achieve efficient photocatalytic hydrogen evolution 

reaction (HER) from water splitting. 

The relevant background Information of solution phase synthesis of binary and 

ternary transition metal phosphides, magnetism, electrocatalytic oxygen evolution, 

and photocatalytic hydrogen evolution catalysis are described in this chapter. 

1.1 Solution-phase Arrested Precipitation Synthesis of Nanomaterials  

The solution-phase arrested-precipitation (SPAP) method was employed for 

synthesizing all nanomaterials in this dissertation. Typically, for the synthesis of 

metal phosphide nanoparticles using this method it involves the decomposition of 

organometallic reagents in mixtures of high boiling solvents/coordinating ligands 

and subsequent reaction of the generated metallic species with phosphines to 
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generate transition metal phosphides. As shown in Figure 1.1, La Mer’s model of 

nucleation and growth can be used to explain the formation of highly monodisperse 

nanocrystals. When injecting the precursors rapidly into a hot solvent, monomers 

form due to the thermal decomposition of precursors (Figure 1.1a). The 

concentration of monomers keeps increasing until reaching a critical concentration 

known as the nucleation threshold and monomers start being consumed through 

the nucleation (Figure 1.1b). With the nucleation process going on, the 

concentration of monomers saturates due to the equilibrium between the monomer 

generation and consumption (Figure 1.1c). After this point, the monomer 

consumption rate becomes higher than the generation rate, causing the decrease 

of monomers concentration. When the concentration of monomers becomes lower 

than the nucleation threshold, formation of new nuclei ceases and the addition of 

monomers to existing nuclei becomes more favorable (Figure 1.1d). When the 

concentration of monomer is further decreased, particle growth takes place with 

Ostwald ripening (Figure 1.1e). In Ostwald ripening, smaller particles with higher 

surface energy are dissolved by larger particles. The longer the reaction time, the 

longer Ostwald ripening will remain, which results in bigger average particle size. 

While the metal precursors are decomposed in the presence of coordinating 

ligands, these ligands can bond to the surface of newly formed particles and thus 

control particle growth. Longer chain ligands can limit particle growth and minimize 

particle aggregation. Crystals prefer to grow on the facet that bonded with less 

ligands and result in 1D or 2D materials. The selection of precursor reagents is 

also important, because the monomer generation rate can be varied by using 
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precursors with different chemical activities and result in different final particle sizes. 

In general, the control over the synthesis of nanoparticles can be achieved by 

changing a variety of reaction conditions in the SPAP method.  

 

 

Figure 1.1. Schematic illustration of La Mer’s model for nucleation and growth.
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1.2 Transition Metal Phosphides 

Metal phosphides (MPs) nanomaterials show a wide range of properties and 

are attracting enormous attention. Metal-rich nickel phosphides such as Ni2P are 

potent hydrotreating catalysts1, 2, 5, 8, 10-12 while the more phosphorus-rich phases 

such Ni5P4 and NiP2 are promising candidates for lithium ion battery electrode 

materials, due to their high gravimetric and volumetric capacity.13, 14 Furthermore, 

all of these phases show considerable potential to be used in hydrogen evolution 

catalysis.15-17 Ternary phosphides of formula Ni2-xCoxP and Ni2-xFexP have shown 

improved hydrodesulfurization (HDS) activity relative to the best of the binary 

phases (Ni2P) for low concentrations of Co and Fe (x ≤ 0.1). Transition metal 

phosphide nanoparticles are also emerging as a new class of water oxidation 

catalysts with reports of high activity in binary metal phosphides such as Ni2P,18-20 

Co2P,21, 22 and CoP.23-25 Recently, the ternary metal phosphides CoFeP, NiCoP, 

and NiFeP have shown improved OER activity over the binary phases (Co2P, Fe2P 

or Ni2P), attributed to synergism between the two metals.22, 26-29 a phenomenon 

also observed in for CoMnP.28 Because the magnetic and catalytic properties of 

transition metal phosphides depend on the size and shape (in the nano regime) as 

well as the composition,5-9 there has been considerable effort made to synthesize 

transition metal phosphide nanomaterials as described below. 

1.2.1 Synthesis of Binary Transition Metal Phosphides: Ni, Co, Fe, Mn 

1.2.1.1 Nickel Phosphide 

Nanoparticles of metal-rich nickel phosphides can be synthesized by the 

decomposition of organometallic species, or decomplexation of metal complexes, 
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to generate active nickel species, and their subsequent reaction with alkyl 

phosphines (e.g. trioctylphosphine TOP).30 While the reactive form of P is not 

known, PH3 generated from alkene elimination steps has been purported to be the 

active species in nickel phosphide formation. Thus, TOP acts as both a 

coordinating solvent and a reactant and is used as a nonstoichiometric precursor 

(in large excess), making it difficult to control the evolution between different 

phases. The Schaak Group first reported the synthesis of discrete Ni2P 

nanoparticles by injecting a mixture of Ni(acac)2 and TOP into a hot solution. In 

this method, Ni nanoparticles first formed and then be converted into Ni2P hollow 

nanoparticles by TOP.31 Later in the same year, the Brock group reported on the 

formation of solid spherical Ni2P nanoparticles prepared by the reaction of bis(1,5-

cyclooctadiene)-nickel(0) and TOP at 345 °C in trioctylphosphine oxide (TOPO).8 

Another study by the Brock group, in which nickel acetylacetonate was used as 

the nickel source, established the role of reaction parameters, such as reactant 

concentration, time, temperature and co-solvent (oleylamine), in determining the 

final stoichiometric phase: Ni12P5 vs Ni2P and the degree to which hollow particles 

formed due to the Kirkendall effect.32 This study and others showed that precursor 

particles, which serve as templates for the final crystalline phosphide product, form 

when the reactants are first heated at 230 °C.32 For P/Ni ratios larger than 2.24, 

heating the Ni source and TOP at 230 °C will form relatively small (< 10 nm) 

amorphous NixPy nanoparticles, whereas at lower ratios, relatively large  (> 20 nm) 

crystalline Ni nanoparticles are formed as the templating intermediates. Increasing 

TOP quantity, reaction temperature and reaction time favors the transformation of 
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the intermediate particles to the Ni2P phase in lieu of the more metal-rich Ni12P5 

phase. In contrast, increasing the oleylamine (OAm), which served as both 

reducing agent and surfactant, to nickel ratio results in a more metal-rich phase 

and reduces the Kirkendall effect, resulting in a reduction in the size of hollows in 

particles prepared from large crystalline Ni nanoparticle templates.32 

Despite considerable attention on metal-rich phosphides, little research on the 

synthesis of phosphorus-rich nickel phosphides nanoparticles has been 

published.14, 33 The Tatsumisago group reported a synthetic method for phase-

pure Ni5P4 and NiP2, with the phase selectivity achieved by using different Ni 

precursors (nickel acetylacetonate and nickel acetate tetrahydrate) in combination 

with TOP in TOPO, but the mechanism of phase control and the key factors that 

underscore selectivity were not presented.14 

1.2.1.2 Iron Phosphide 

The first synthesis of FeP nanoparticles was reported by our group, in which 

iron acetylacetonate was treated with highly reactive tristrimethysilyl phosphine 

(P(SiMe3)3) at temperatures in the range 240-320 °C using TOPO as solvent.34 

Phase-pure FeP nanoparticles with an average size of 4.65 nm were prepared. 

Hyeon and coworkers reported the formation of Fe2P nanorods by injecting iron 

pentacarbonyl (Fe(CO)5) in TOP into a mixture of octylether and oleylamine at 300 

°C.35 In this case, slower injection rates and additional injection of iron precursor 

favored longer nanorods. Later, a work addressing the roles of the different 

synthetic levers in determing the phases of iron phosphides was reported by Brock 

and coworkers. Fe2P and FeP nanoparticles were synthesized by reacting Fe 
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nanoparticles (prepared by decomposing Fe(CO)5 in a mixture of OAm and 

octadecene at 200 °C) with TOP at temperatures in the region of 350-385 °C, in 

which shorter reaction and lower temperatures favored the more metal-rich phase 

Fe2P.6   

1.2.1.3 Cobalt Phosphide 

The Robinson group studied the diffusion processes that occur during the 

phase transformation of Co to Co2P to CoP nanoparticles from reaction with 

TOP.36 Co nanoparticles were synthesized by injecting Co2(CO)8 into 180 °C 1,2-

dichlorobenzene, in which TOPO was used as a stabilizing agent. Reacting Co 

nanoparticles with TOP generated Co2P nanoparticles and further reacting Co2P 

nanoparticles with TOP generated CoP nanoparticles. However, in this case, the 

Co2P nanoparticles are not highly uniform (they exist as both hollow big particles 

and small dense particles). 

The Robinson group also reported that reacting Co(oleate)2 with 

trioctylphosphine oxide (TOPO), normally a coordinating solvent in other systems, 

leads to Co2P hyperbranched nanocrystals. In this study, TOPO is found to be not 

only the coordinating solvent but also as the P source at the first time. The final 

morphology of Co2P can be controlled from hexagonal symmetric structures to 

sheaflike structures by varying the concentration of the surfactant. 

1.2.1.4 Manganese Phosphide 

Nanoparticles of manganese phosphides are notoriously difficult to make. The 

synthesis of manganese phosphide nanoparticles was first reported by our group 

using manganese carbonyl (Mn2(CO)10) and P(SiMe3)3 at a reaction temperature 
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higher then 220 °C.37 TOP was also used as P source by our group to prepare 

MnP nanorods, in which a mixture of Mn2(CO)10 and TOP was injected into a hot 

TOPO solution.38 Nanoparticles of the metal rich Mn2P phase have 

 not been reported, presumably due to the highly oxophilic nature of 

manganese. 

1.2.2 Synthesis of Ternary Transition Metal Phosphides. 

For ternary phosphide nanomaterials, NixCo2-xP nanoparticles were prepared 

by substituting Ni(acac)2 with Co(acac)2 for the corresponding Co metal amount.39 

For this ternary phosphide, phase-pure compositions were prepared up to x=1.7. 

For Ni rich compositions, solid spherical particles were observed while with 

increasing the amount of Co, hollow particles appeared, indicative of the higher 

mobility of Co metal in the phosphide lattice. From a detailed mechanistic study for 

Ni:Co=1:1 composition, it was determined that the particle sizes and morphology 

could be controlled by varying the initial M:P ratio. 

1.2.2.1 Nickel Iron Phosphide 

A protocol for synthesizing NixFe2-xP nanoparticles was reported by our 

group.40 By introducing Fe(CO)5 into the NixPy solution (prepared by heating 

Ni(acac)2, TOP, oleylamine, and octyl ether at 230 ºC), Fe is diffused into the NixPy 

forming a Ni-Fe-P alloy and this alloy was crystallized to form the final ternary 

phosphide at high temperatures. Using this approach, phase pure Ni2-xFexP 

nanoparticles were prepared over the whole composition range (0≤x≥2). In these 

ternary phosphide particles, the spherical morphology observed in Ni-rich 

compositions shifted to nanorods in Fe-rich compositions.  
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1.2.2.2 Cobalt Iron Phosphide 

The Han group reported the synthesis of anisotropic cobalt-iron phosphide 

nanocrystals using Co and Fe oleate precursors in the presence of oleylamine 

(OAm) and trioctylphosphine (TOP).36 However, they only reported two 

compositions, both at the Co-rich end of the solid solution, Co1.5Fe0.5P and 

Co1.7Fe0.3P. Subsequently, the Sun group reported an approach to synthesize 

CoxFe2-xP over all x using Fe and Co acetylacetonate precursors.26 In this case, 

Co-Fe-O is prepared first and then converted into Co-Fe-P by reaction with TOP 

at high temperature. However, the need for a two-step synthesis and the 

unpredictable metal ratio change from mixed-metal oxides to ternary metal 

phosphides ((Co0.08Fe0.92)3O4, (Co0.38Fe0.62)3O4 and (Co0.66Fe0.33)3O4 produced 

(Co0.16Fe0.84)2P, (Co0.47Fe0.53)2P and (Co0.79Fe0.21)2P, respectively) increases the 

complexity of targeting desired compositions. Moreover, the average size of the 

final products in CoxFe2-xP particles prepared to date are more than 100 nm in 

diameter and the methods lack the ability to control size.  

1.2.2.3 Manganese Iron Phosphide 

Whitmire and coworkers reported a synthesis of Fe-rich Fe2-xMnxP 

nanoparticles using FeMn(CO)8(μ-PH2) as a single-source molecular precursor.41 

However, the need to prepare the single molecule precursor increased the 

complexity of this synthesis and Mn incorporation was limited and unpredictable. 

1.3 Magnetism 

All materials exhibit magnetism and show different responses to external 

magnetic fields due to the orientation of their magnetic moments. Depending on 
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the structure of materials, the orientation of their magnetic moments, and their 

responses to the external applied magnetic field, materials can be classified into 5 

types as shown in Figure 1.2. Magnetic susceptibility (χ) is defined as the ratio 

between magnetization (M) and the applied field (H).  

1.3.1 Diamagnetism 

Diamagnetic materials don’t have unpaired electrons and their net magnetic 

moment is zero. They are repelled by an external magnetic field because their 

magnetic susceptibility (χ) values are negative and very small (~-10-5). As shown 

in Figure 1.2b, the response of magnetization as a function of applied field for 

diamagnetic materials is linear and reversible with a negative slope. Diamagnetism 

occurs in all materials. However, this weak effect is overcome by other magnetism 

if unpaired electrons exist in the material. 
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Figure 1.2. Illustration of (a) magnetic moment orientation in different types of 
magnetism. Typical curves of (b) magnetization (M) as a function of applied 
magnetic field (H) and (c) magnetic susceptibility (χ) as a function of 
temperature (T). 
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1.3.2 Paramagnetism 

when unpaired electrons exist and magnetic moments are oriented randomly 

in a material (Figure 1.2a), the material is classified as paramagnetic material. The 

net magnetic moment in this material is positive no matter whether an external field 

is applied or not. When an external field is applied, the magnetic moments align 

parallel with the field direction. The susceptibility for a paramagnetic material is 

small but positive (10-3 – 10-5) and the magnetization increases linearly with 

increasing applied magnetic field (Figure 1.2b). In addition, the susceptibilities of 

paramagnetic materials are inversely proportional to their temperature as shown 

in Equation 1.1 and Figure 1.2c, in which C is the Curie constant,	a property that 

relates a material's magnetic susceptibility to its temperature, and T is temperature. 

χ = C/T                                           Equation 1.1 

1.3.3 Anti-ferromagnetism 

When unpaired electrons exist and neighboring magnetic moments with the 

same magnetization point in opposite directions, it results in a cancelation (Figure 

1.2a) and anti-ferromagnetism occurs. The magnetization of anti-ferromagnetic 

materials increase linearly with increasing applied field. The susceptibility of this 

type material is small, positive (0 – 10-2), and temperature dependent. As shown 

in Figure 1.2c, the susceptibility first increases with increasing temperature and 

then decreases after a certain point. The temperature at this point is called Nèel 

temperature (TN). When the temperature is above TN, anti-ferromagnets behave 

similarly to paramagnets.  

1.3.4 Ferromagnetism 
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when unpaired electrons exist and magnetic moments align parallel in the same 

direction, resulting a large net magnetization without the applied magnetic field 

(Figure 1.2a), ferromagnetism occurs. Ferromagnetic materials are the most 

important class of magnetic materials as they can be utilized in various applications 

such as data storage, magnetic refrigeration, and transformers. The magnetic 

susceptibilities of ferromagnetic materials are large, positive (>> 1), and 

temperature dependent. As shown in (Figure 1.2a), the susceptibility first 

increases with increasing temperature until the transition temperature, which is 

known as Curie temperature (TC), is reached. When the temperature is above TC, 

the magnetic moments no longer align parallel in the same direction, which causes 

the decrement of the susceptibility. Because of the disordered alignment of the 

magnetic moments, the material becomes paramagnetic.  

The magnetization of a ferromagnetic material first increases with the steadily 

increasing applied magnetic field until it reaches a saturation. The magnetization 

at this saturation point is called saturation magnetization (MS) and this first curve 

is the virgin curve (VC, Figure 1.2b). When the magnetization saturates, all the 

magnetic moments align in the same direction with the applied field. When the 

applied field steadily decreases to zero, the magnetization decreases, but not to 

zero, resulting in hysteresis. This indicates that partial magnetization remains even 

after removing the applied magnetic field, which is a typical trait of ferromagnetic 

materials. The remaining magnetization remained is called the remnant 

magnetization (MR). When the applied field starts increasing steadily in the 

opposite direction, the magnetization can be reduced to zero and the magnitude 
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of the applied field at this point is called the coercivity (HC). When the applied field 

continues increasing steadily, the magnetization will saturate again. The values of 

MS and HC are important parameters when ferromagnetic materials are used as 

practical applications. For example, materials that have relatively high HC are 

preferred for data storage applications, while magnetic refrigeration candidates 

should have low HC values.  

1.3.5 Ferrimagnetism 

When unpaired electrons exist and neighboring magnetic moments with 

different magnitudes align antiparallel, a net magnetization without the applied 

magnetic field results (Figure 1.2a) and ferrimagnetism occurs. Ferrimagnetic 

materials exhibit similar behavior to ferromagnetic materials and have all the 

typical traits of ferromagnetic materials (hysteresis, TC, remnant magnetization, 

Figure 1.2c) except they have a smaller magnetic moment.   

1.4 Magnetic Behavior of Nanomaterials 

Regions known as magnetic domains exist in all ferromagnetic materials. In 

this region, all magnetic moments align in the same direction and produce a net 

magnetic moment (Figure 1.3a). However, a material can have multiple magnetic 

domains that are separated by domain walls. These magnetic domains have 

different orientations and thus affect the net magnetic field produced. When an 

external magnetic field is applied, magnetic domains that align in the same 

direction with the field start growing at the expense of other domains (Figure 1.3a) 

by migrating domain walls. With the decrease in particle size, the formation of 

domain walls is no longer energetically favorable and thus each particle only has 
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one magnetic domain. Once the particle size drops below a critical diameter (DC), 

the reversal of magnetization occurs through coherent rotation instead of domain 

wall migration (Figure 1.3b). The coherent rotation requires a higher energy and 

thus results in higher coercivity values of nanoparticles than those of bulk 

materials. However, when the size is sufficiently small, the magnetic moments in 

nanoparticles can be affected by thermal fluctuations and nanoparticles exhibit 

superparamagnetism. Superparamagnetic materials can be magnetized to a 

saturated state by an external field and hysteresis is no longer observed (Figure 

1.4b). 
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Figure 1.3. Magnetic moment alignments of bulk and nano ferromagnetic 
materials. 

 

Figure 1.4. Comparison of the magnetization (M) vs. applied magnetic field (H) 
curves of (a) ferromagnetic and (b) superparamagnetic materials.
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When the temperature is sufficiently low, thermal fluctuations are weak so 

magnetic moments become blocked. This temperature is called the blocking 

temperature (Tb). When above the Tb, the magnetism will transit from 

ferromagnetic to superparamagnetic.  

As shown in Figure 1.5, the Tb of superparamagnetic nanoparticles can be 

determined by employing zero-field-cooled (ZFC) and field-cooled (FC) 

magnetization vs. temperature experiments in a low field (on the order of 100 Oe). 

During ZFC measurement, the nanoparticles are cooled in a zero-magnetic field, 

freezing the magnetic moments in random orientations. An external magnetic field 

is applied and the temperature is slowly ramped up. Thermal motion enables 

alignment of magnetic moments with the field through coherent spin rotation, 

causing the increase of the magnetization. At Tb, when thermal fluctuations are 

strong enough to re-orient spins randomly, the magnetization saturates. FC plots 

are collected by cooling nanoparticles in an applied field and then ramping the 

temperature up gradually in the presence of an applied magnetic field. When 

nanoparticles are cooled in a magnetic field, the magnetic moments are frozen and 

pointing in the same direction with the applied field. The magnetization remains 

constant regardless of the increasing temperature until Tb is approached, at which 

point the moments randomize and a decrease in magnetization occur. Above Tb, 

both ZFC and FC curves show paramagnetic behavior and the magnetization 

decreases with the increasing temperature. Tb is normally determined from the 

peak of the ZFC curve (Figure 1.5). The TC of nanoparticles can be estimated from 

the first derivation of ZFC and FC curves. A more accurate TC determination of 
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nanoparticles can be obtained by carrying out M vs. H measurements at different 

temperatures close to the TC estimated from ZFC and FC curves. These so-called 

Arrott plots are obtained by plotting M2 vs. H/M at different temperatures. At TC, a 

linear curve that passes through the origin is observed in Arrott plots. 

 

Figure 1.5. Magnetization as a function of temperature measured for ZFC and 
FC for superparamagnetic nanoparticles. 
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1.5 Oxygen Evolution Electrocatalysis 

Due to increasing global energy demand and the climate change impact of CO2 

emission from traditional energy resources, it is essential to find an abundant and 

renewable energy system to supplement (or supplant) current resources. Splitting 

water utilizing electricity or visible light is a promising and appealing pathway 

because water is a clean and renewable energy source. Water splitting (OER, 

Equation 1.2) is composed of two half reactions: the oxygen evolution reaction 

(OER, Equation 1.3) and the hydrogen evolution reaction (HER, Equation 1.4).  

2H2O → O2 + 2H2                                                       Equation 1.2 

2H2O → O2 + 4H+ + 4e−                    Equation 1.3 

2H+ + 2e− → H2                         Equation 1.4 

The Oxygen evolution reaction is critical in the water splitting process to create 

clean H2 fuel. It is the first step in the overall water splitting reaction and has a high 

activation barrier, requiring the transfer of four electrons and four protons. In order 

to improve the efficiency of OER, electrocatalysts can be used. Ruthenium and 

iridium oxides are well-known catalysts, but their widespread application in industry 

has been limited by their scarcity in nature. Recently, the synthesis of novel 

catalyst materials composed of inexpensive, earth-abundant, yet comparatively 

active metals (e.g., transition metal based oxides and phosphates) have been 

extensively explored for large-scale OER applications. 

1.6 Hydrogen Evolution Photocatalysis 

Converting solar energy into chemically stored energy through photosynthesis is 

another effective method to generate renewable energy. A general strategy to 
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produce H2 fuel via photocatalytic water splitting is to use solar energy for the water 

oxidation half-reaction to O2 and the proton reduction half-reaction to H2. For the 

hydrogen evolution reaction (HER), a co-catalyst is usually combined with a 

photosensitizer to construct a multi-component photocatalytic system. An electron 

source is usually needed in order to only study the reductive half-reaction, the 

focus of the present investigation. A general scheme for photocatalytic HER is 

shown in Scheme 1.1. The first step is absorption of photons. A photosensitizer is 

usually a semiconductor, in which electrons and holes can be generated at the 

conduction band and valence band, respectively, if the energy of incident light is 

larger than the band gap. The second step is charge separation and migration. In 

this step, the photogenerated electrons and holes can migrate to the active sites 

on surface and be utilized for surface chemical reactions (the third step). This 

process can be enhanced by decreasing electron hole recombination possibility 

through shortening migration distance or lowering the number of defects. However, 

if the photosensitizer does not have enough active sites on the surface, the 

photogenerated electrons and holes will recombine with each other and lower 

catalysis efficiency. Therefore, a co-catalyst is usually loaded on the surface of the 

photosensitizer to increase the active sites. Finally, the electrons can reduce 

protons in the water to form hydrogen and the holes can oxidize electron donors 

or hole scavengers such as alcohol or sulfide ion.
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Scheme 1.1. Main process for photocatalytic hydrogen evolution half reaction.  

 

The loading of co-catalysts onto the photosensitizer can both boost the 

photoexcited electron–hole pair separation and reduce the activation potentials for 

HER, which results in the enhancement of the photocatalytic activities. As for the 

OER electro-catalyst, the reported cocatalysts are normally precious metals, such 

as Ru or Pt, which limits their practical application due to their scarcity and high 

cost. Efficient catalysts made of earth-abundant materials are desirable. 

1.7 Thesis Statement 

In order to meet growing global energy demand and reduce CO2 emission from 

traditional energy resources, great efforts have been made to develop new 

systems that produce clean energy or utilize energy more efficiently. Photocatalytic 

evolution of hydrogen from water utilizing visible light is a promising and appealing 

pathway because water is a clean and renewable energy source. Magnetic 
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refrigeration, on the other hand, is a cooling technology based on the 

magnetocaloric effect that consumes 30% less energy than traditional gas-

compression refrigeration and requires no refrigerant, eliminating emissions of 

refrigerant gases and associated environmental consequence. 

1.7.1 Traditional Materials for Water Splitting and Magnetic Refrigeration 

Ruthenium and iridium oxides are well-known water splitting catalysts.42, 43 

Nevertheless, the scarcity of Ru and Ir pose serious limitations to the widespread 

adoption of water splitting as a green approach to renewable energy. On the other 

hand, gadolinium and gadolinium-based salts (e.g., Gd5(Si2Ge2)) are commonly 

used in magnetic refrigeration due to their large magnetic entropy. However, 

commercial use is limited due to the high cost of Gd. Therefore, great efforts have 

been spent on developing potential candidate materials composed of stable, Earth-

abundant metals for these applications. 

1.7.2 New Materials and the Motivation for Their Study 

Magnetocaloric materials based on magnetic 3d elements (Mn, Fe, Co, Ni) are 

much less expensive than those based on rare earth elements and have drawn 

increasing attention. Investigations have been especially focused on Mn based 

materials because of the high atomic moment that Mn can achieve (up to 4 μB per 

Mn atom).44 Also, inspired by the oxygen-evolving center of Photosystem II, 

manganese-based materials have garnered considerable attention for the oxygen 

evolution reaction, various works has been reported using manganese oxide and 

phosphate as water oxidation catalysts.45-49 
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1.7.3 Transition Metal Phosphides for Water Splitting and Magnetic 

Refrigeration  

Transition metal phosphides exhibit a wide range of unique magnetic, redox 

and catalytic properties. The Fe2-xMxP (M = Co, Mn) bulk materials have been 

widely studied as potential functional magnetocaloric materials.50-53 The magnetic 

properties can be altered from paramagnetic Co2P to ferromagnetic Fe2-xCoxP with 

a tunable Curie point close to or above room temperature,54 which makes these 

materials potentially suitable for magnetic imaging, therapies, refrigeration, or data 

storage.55-57 More importantly, it is expected that the cycling rate in magnetic 

refrigeration can be further improved by preparing these materials on the 

nanoscale due to the reduced thermal hysteresis.58 On the other hand, transition 

metal phosphide nanoparticles are also emerging as a new class of water splitting 

catalysts with reports of high activity in binary metal phosphides such as Ni2P, 

Co2P, and CoP. The OER and HER catalytic activities of metal phosphide 

materials can also be further improved by introduction of a second metal into binary 

metal phosphide systems. Recently, the ternary metal phosphides CoFeP, NiCoP, 

and NiFeP have shown improved OER activity over the binary phases (Co2P, Fe2P 

or Ni2P) attributed to synergism between the two metals.  

Despite their promise, comparatively little research has been done on ternary 

(relative to binary) nanoparticles of metal phosphides. There are two major 

challenges in the synthesis of ternary phosphide nanoparticles: the first is the 

possibility of phase segregation due to the different reactivities of the two metal 

precursors and the second is the difficulty in controlling the stoichiometric phases 
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of the final product because of the various oxidation states that the transition 

metals can adopt. 

1.7.4 Goals and Dissertation Outline 

This dissertation research was focused on four major goals. (1) The first goal 

was to study the effect of synthetic levers in metal phosphide nanoparticles 

formation and employ these levers to enable the control over compositions, 

morphology, and size of different ternary transition metal (Mn, Fe, Co) phosphides. 

(2) The second goal was to evaluate the composition-dependent magnetic 

properties of these ternary phosphide nanoparticles. (3) The third goal was to 

evaluate the composition-dependent catalytic properties of these ternary 

phosphide nanoparticles toward water oxidation and evaluate the synergistic 

effects between different metals. (4) The last goal was to combine metal phosphide 

nanomaterials with light absorbers to achieve efficient photocatalytic hydrogen 

evolution reaction (HER). 

The dissertation is laid out as follows: Chapter 2 presents a detailed description 

of the synthetic and characterization techniques used in this dissertation research. 

Chapter 3 discusses the role of synthetic levers on nickel phosphide nanoparticle 

formation. Chapter 4 describes the synthesis and characterization of discrete 

Co2-xFexP nanoparticles and their magnetic properties. Chapter 5 and Chapter 6 

describe the synthesis and characterization of M2-xMnxP nanoparticles (M = Co, 

Fe, respectively) and their catalytic properties toward electro-catalytic water 

oxidation. Chapter 7 describes the formation of Ni2P-CdS hybrid aerogels and the 

evaluation of their activity towards the photo-catalytic hydrogen evolution reaction. 
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Finally, Chapter 8 summarizes our work and proposes further research directions. 

Portions of the text in this chapter were reprinted with permission from: 

Chemistry of Materials, 2017, 29, 3048-3054, Chemistry of Materials, 2016, 28, 

3920-3927, Journal of the American Chemical Society, 2016, 138, 4006-4009, and 

Inorganic Chemistry, 2015, 54, 7968-7975.
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CHAPTER 2. MATERIAL CHARACTERIZATION TECHNIQUES 
 

Metal phosphide (Ni2P, Ni5P4, NiP2, CoxFe2-xP, Co2-xMnxP, Fe2-xMnxP) and 

chalcogenide (CdS) nanomaterials were synthesized using the solution-phase 

arrested-precipitation method under an inert gas (argon) atmosphere. The 

materials were characterized using Powder X-Ray Diffraction (PXRD), 

Transmission Electron Microscopy (TEM), Energy Dispersive Spectroscopy (EDS), 

Scanning Transmission Electron Microscope (STEM), X-Ray Photoelectron 

Spectroscopy (XPS), Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), 

Infrared Spectroscopy (IR) and Cyclic Voltammetry (CV). This chapter includes a 

detailed description of the synthetic and characterization techniques used in this 

dissertation research. 

2.1 Materials 

2.2.1 Metal Precursors 

Nickel acetylacetonate (Ni(acac)2, 95%) and bis(1,5-cyclooctadiene) nickel (0) 

(Ni(COD)2, 98%) were purchased from Alfa Aesar. Nickel(II) acetate tetrahydrate 

(Ni(OAc)2•4H2O, 99%), Iron pentacarbonyl (Fe(CO)5, 99.999%), dicobalt 

octacarbonyl (Co2(CO)8, >90%), dimanganesedecacarbonyl (Mn2(CO)10, 98%), 

and ruthenium oxide (RuO2, 99.9%) were purchased from Sigma-Aldrich. 

Cadmium oxide (99.999%) was purchased from Strem Chemicals. Co2(CO)8 was 

stored in a refrigerator maintained at -20 °C in a glovebox. 

2.2.2 Solvents 

Tri-n-octylphosphine (TOP, 97%) was purchased from STREM. n-octyl ether 

(OE) was purchased from TCI America. Oleylamine (OAm, C18 content 80−90%) 
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was purchased from ACROS. Bis(trimethylsilyl)sulfide (TMS), trioctylphosphine 

oxide (TOPO, 90%), tetranitromethane (TNM), 11-mercaptoundecanoic acid 95% 

(MUA), 1-tetradecylphosphonic acid (TDPA, 98%), tetramethylammonium 

hydroxide pentahydrate (TMAH, 97%), 4-fluorothiopheno (98%), 1-Octadecene 

(90% tech.) and isopropanol (99.5%) were purchased from Sigma Aldrich. 

Chloroform and hexane (Certified ACS grade) were purchased from Fisher 

Scientific. Ethanol (200 proof) was purchased from Decon Laboratories. Toluene, 

methanol, acetone and ethyl acetate were purchased from Mallinckrodt. Nafion 

(5%, LQ-1105) was purchased from Ion Power. Ultrapure water was used in all the 

manipulations (resistivity = 18.1 MΩ.cm-1). TOPO was distilled before use; all other 

chemicals were used as received.  

2.2 Experimental Techniques 

2.2.1 Schlenk Line Techniques 

Due to the air-sensitive nature of the chemicals or intermediates involved in the 

reactions, all nanomaterials in this dissertation were synthesized in solution phase 

using Schlenk line techniques. A Schlenk line is usually composed of two 

manifolds. One is connected to a vacuum pump by a cold trap, which can prevent 

solvents or chemical vapors from contaminating the pump, to create a vacuum. 

The other one is connected to an inert gas supply (Ar, N2, etc.) to create an inert 

atmosphere. Typically, the air-sensitive materials are placed into a Schlenk flask 

inside a glove box, which can provide an inert atmosphere. The Schlenk flask is 

then transferred to a fume hood and connected to Schlenk line. A heating mantle 
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connected to a programmable temperature controller is usually used as a heating 

source. 

2.2.2 Tube Furnace 

In some cases, a tube furnace, which is an electric heating device, is needed 

to perform an after-synthesis conversion or purification on as-prepared 

nanoparticles. A tube furnace consists of a quartz tube surrounded by heating coils 

that are embedded in a thermally insulating matrix. The temperature can be 

monitored and controlled by a thermocouple and a temperature controller, 

respectively. The temperature controller can be programmed to control the 

ramping rate and soaking time. A combustion boat is usually used to contain 

samples inside the tube. The tube can be connected to one or more gas resources, 

such as argon, hydrogen, or nitrogen, and flow controllers are used to control the 

flow rate of different gases. This allows the sample to be treated under the desired 

atmosphere. Multiple boats containing different chemicals can be added at the 

same time to achieve chemical conversion. For example, NiO nanoparticles (in 

one boat) can be converted into Ni2P by NaH2PO2 (in another boat) under active 

flow of 5% H2/Ar at 400 °C for 1 hour. In this dissertation, a tube furnace was used 

to remove surface ligands on FeMnP nanorods (see details in Chapter 6). 

2.3 Characterization Techniques 

2.3.1 Powder X-Ray Diffraction 

X-rays are produced as shown in Figure 2.1. First, a heated tungsten filament 

provides a continuous electron beam. Then the electrons strike a target (normally 
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Cu) on the anode after acceleration by a potential difference (30 - 60 kV) from 

which X-rays are emitted.  

 

Figure 2.1. Schematic illustration of a filament X-ray tube. 

As the incident electrons have been accelerated, they have sufficient energy 

and will ionize some 1s (K shell) electrons of Cu. As shown in Figure 2.2, the 

ionization creates a vacant hole in the K shell and an electron in an outer orbital 

(2p or 3p) will transit back to occupy the vacancy, releasing the energy that 

appears as X-radiation. The released energy has fixed values depending on which 

orbital the electron transited from. For Cu, the 2p to 1s transition is called Kα, which 

has a wavelength of 1.5418 Å, and the 3p to 1s is called Kβ with a wavelength of 

1.3922 Å. The Kα transition occurs more than other transitions, so the Kα radiation 

is more intense and is typically used in diffraction experiments. As the electrons in 

the 2p orbital have two spin states (2p1/2 and 2p3/2) with slightly different energies, 

the Kα transition is a doublet, Kα1=1.54051 Å and Kα2=1.54433 Å. Kβ radiation 

can be removed by applying a Ni filter, because the energy required to ionize the 

1s electrons of Ni corresponds to 1.488 Å, which is higher than 1.3922 Å (Kα of 

Cu) but lower than 1.5418 Å (Kβ of Cu).  
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Figure 2.2. Illustration of Cu Kα X-ray generation. 

When a wave is scattered by a periodic array with long rage order, it will 

produce constructive and destructive interference at specific angles resulting in 

diffraction. A crystalline solid is a material that has a highly-ordered structure with 

a distance between atoms (2-3 Å) similar to the wavelength of X-rays (~ 1 Å). 

Therefore, X-ray diffraction spectra can be used to elucidate the atomic 

arrangement of materials. 

Bragg’s Law can be used to illustrate X-ray diffraction by crystals. Two X-ray 

beams, a and b, interact with two adjacent atoms on two parallel planes that are 

separated by a distance d (Figure 2.3). Portions of the X-rays are reflected off the 

plane with an angle same as the incident angle (θ). However, the beam bb’ travels 

an extra distance of zxy (Equation 2.1) than the beam aa’. In order to achieve 

constructive interference between two beams, the distance xyz must equal an 

integral number of wavelengths (Equation 2.2, Bragg’s Law).   
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Figure 2.3. Illustration of Bragg's law (adapted from West).59  

zxy = 2� = 2dsin θ                                 Equation 2.1 

zxy = 2� = 2dsin θ = nλ (n = 1, 2, 3, ...n)              Equation 2.2 

Therefore, by measuring the Bragg angle θ, the d-spacing can be obtained and 

used to determine the size and shape of the unit cell.  

The principle of the powder X-ray diffraction experiment is shown in Figure 2.4. 

A finely powdered sample should have crystals randomly arranged in all 

orientations. Therefore, for each set of planes at least some crystals must be 

oriented at the Bragg angle relative to the incident beam. When the monochromatic 

X-rays hit the sample, diffraction occurs and the diffracted beams are detected by 

the detector. 
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Figure 2.4. Illustration of diffraction from a powdered sample (adapted from 
West).59 

A typical PXRD pattern is shown in Figure 2.5. Peaks at different θ angles 

correspond to different crystal planes with different d-spacings. By matching the 

experimental pattern with reference patterns, the structure of the sample can be 

determined. Broad peaks are normally observed in PXRD patterns of nanoparticles 

due to the limited number of crystalline planes, which leads to insufficient 

destructive interferences near the Bragg angle. Additionally, for anisotropic 

materials that prefer to grow along certain directions, the peaks corresponding to 

these directions are narrow and more intense than other peaks, reflecting the 

higher number of diffracting planes. 
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Figure 2.5. PXRD pattern of Ni2P nanoparticles. 

The breadth of the peaks can be used to calculate the crystallite size (t) using 

the Scherrer equation (Equation 2.3), in which λ is the X-ray wavelength, k is the 

shape factor (0.9 for spherical particles), β is the full width half maximum of the 

peak (FWHM), and θ is the Bragg angle. 

t = kλ/βcosθ                                 Equation 2.3 

The ionization energy of 1s electrons for Co corresponds to 1.6081 Å, so 1s 

electrons of Co can be knocked out by the X-ray generated by a Cu anode 

(Kα1=1.54051 Å). An outer shell electron in Co will then refill the empty 1s vacancy 

and release X-ray radiation that causes a fluorescent background, lowering the 

signal to noise ratio. This fluorescence issue usually occurs in samples that contain 

Co or Fe species and can be solved by either a discriminator or using another X-

ray anode material such as Mo (Kα1=0.7093).  

In this dissertation, a Bruker D2 Phaser X-ray diffractometer with Cu Kα 

radiation operated at 30 kV and 10 mA was used to measure all PXRD patterns. 

A zero-background quartz holder was used to deposit samples on and data was 

acquired in the 2θ range 30-70° with a step size of 0.02° at a scan rate of 1 s per 
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step. PXRD patterns were processed using Jade 5.0 software and compared to 

powder diffraction files (PDFs) from the ICDD database. 

2.3.2 Transmission Electron Microscopy 

When an object is too small to be observed by the naked eye, a microscope is 

used. A microscope usually contains one or more optical lenses that can provide 

an enlarged image of the sample of interest. As shown in Equation 2.4, the 

resolution of a microscope depends on the wavelength of the radiation. Therefore, 

due to the large wavelength of visible light (> 400 nm), the resolution of an optical 

microscope can only reach hundreds of nanometers, making it difficult for 

observing materials in nanoscale.  

δ = 0.61λ/µsinβ                                  Equation 2.4 

        δ = resolution 

        λ = wavelength 

        µ = refractive index of the viewing medium 

        β = semi-angle of collection of the magnifying lens 

Louis de Broglie first demonstrated that electrons have wave-like properties in 

1925, which provided the foundation for the development of electron microscopy. 

Electrons have extremely small wavelengths which can be controlled by applying 

different voltages (Equation 2.5). For electron microscopy operated at a voltage 

of 100 kV, a resolution as high as 0.24 nm can be reached. 

λ = h/(2m0eV)1/2                                 Equation 2.5 

        h = Planck’s constant 

        V = accelerating voltage 
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        m0 = mass of electron 

Figure 2.6 shows the signals generated when a sample is bombarded with a 

high-energy electron beam. Among these processes, the direct beam (transmitted 

electrons) is primarily used in transmission electron microscopy (TEM). Other 

processes and their applications are listed in Table 2.1.  

 

Figure 2.6. Signals generated when a sample is bombarded with a high-energy 
electron beam (adapted from Williams).60 

Table 2.1. Signals generated when a sample is bombarded with a high-energy 
electron beam and their applications for materials characterization. 

Type of signal Applications 

Auger electrons Auger Electron Spectroscopy 
Backscattered electrons Scanning Electron Microscopy 

Secondary electrons Scanning Electron Microscopy 
Characteristic X-rays Energy Dispersive Spectroscopy 

Inelastically scattered electrons Electron Diffraction 

Elastically scattered electrons 
Scanning Transmission Electron 

Microscopy / Electron Energy Loss 
spectroscopy 
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Figure 2.7 shows a comparison between light microscopy and TEM. TEM uses 

electron beams, which are produced by an electron gun through the application of 

a high voltage (100 kV to 400 kV), instead of visible light for forming highly 

magnified images. Similar to light microscopy, condenser lenses are used in order 

to control the intensity and angular aperture of the produced electron beam before 

interacting with the sample. Objective lenses focus the beam coming through the 

specimen while the intermediate projective lenses expand the beam on the viewing 

screen. However, these lenses are all made of electromagnets instead of glass, 

which provide the ability to adjust the pathway of electron beams due to the 

negative charge on electrons. The final image of the sample can be observed on 

a fluorescent screen and captured by a camera. 

In nanotechnology, electron microscopy is an important characterization tool 

used to analyze size, morphology, chemical composition, and crystallinity of 

materials. In this dissertation research, TEM, energy dispersive spectroscopy 

(EDS), and scanning transmission microscopy (STEM) were mainly used and will 

be discussed in detail in Sections 2.3.2, 2.3.3, and 2.3.4. 
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Figure 2.7. Illustration of a comparison between light microscopy and 
transmission electron microscopy. 

In this dissertation research, the nanoparticles are supported on a copper grid 

coated with a thin carbon film. Since TEM imaging is based on the transmitted 

radiation, the contrast of the image depends on the atomic number of the elements 

and the thickness of the sample. To obtain a high-quality image, the sample 

deposited should be uniform and sufficiently thin (<1000 Å). 

TEM has two basic imaging modes: dark field mode and bright field mode. In 

the bright field mode (Figure 2.8a), the transmitted electrons get weakened by 

interacting with the sample. Thicker areas or regions of higher atomic number 

block more electrons and result in a dark area in the final image. While thinner 
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areas or regions with lower atomic number will appear bright. The background is 

bright because no electrons were blocked by the sample. An objective aperture 

blocks the diffracted beams and only the direct beam reaches the screen. In the 

dark field mode (Figure 2.8b) only the diffracted beams reach the screen and the 

direct beam is blocked by an objective aperture. In these images the crystalline 

region of the material appears bright in a dark background. Normally the bright field 

mode is used to observe the morphology and size of samples whicle the dark field 

mode is used to acquire the information regarding crystals and defects. 

 

Figure 2.8. Basic imaging modes of TEM (a) bright field mode and (b) dark 
field mode (adapted from Williams).60 

In this dissertation, TEM was performed using a JEOL 2010 electron 

microscope operated at a voltage of 200 kV and a beam current of 107-108 μA 

with a coupled EDS detector (EDAX Inc.). The images were captured using 

Amtv600 software provided by the Advanced Microscopy Techniques Corporation. 

Samples for TEM analysis were prepared by depositing a drop of chloroform 
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nanoparticle dispersion onto a carbon-coated 200 mesh Cu grid, followed by air-

drying. 

2.3.3 Energy Dispersive Spectroscopy (EDS) 

As shown in Figure 2.5, X-rays can be generated when a sample is bombarded 

with high energy electrons. The energy of the generated X-rays is characteristic of 

the bombarded element due to the unique electron configuration, as discussed in 

section 2.3.1. Therefore, the energies and intensities of generated X-rays can be 

used to identify elements and their relative concentrations. As shown in Figure 2.6, 

an EDS unit is usually coupled with a TEM or a SEM.  

The typical spectrum is a plot of X-ray counts (intensity) vs. energy as shown 

by the representative plot of CoMnP nanoparticles in Figure 2.9. EDS is a semi-

quantitative method. Normally, only peaks which have high signal to noise ratio (> 

3) should be considered for identification while ones exhibiting no overlap with 

other peaks can be used for quantification.  

In this dissertation, EDS data was collected using an EDS detector (EDAX Inc.) 

coupled to the JEOL 2010 TEM instrument.  
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Figure 2.9. EDS spectrum of a CoMnP nanoparticle sample.  

2.3.4 Scanning Transmission Electron Microscopy 

Scanning transmission electron microscopy (STEM) is one type of TEM, but 

instead of passing electron beams through a sample and forming an image as in 

TEM, STEM uses a finely focused beam of electrons to scan through a sample in 

a raster pattern. STEM can be equipped with different detectors to provide various 

analytical techniques such as annular dark-field imaging, EDS elemental mapping, 

or electron energy loss spectroscopy (EELS), which are vital to study the 

homogeneity and structure at atomic level of a sample. 

In this dissertation, STEM and EDS elemental maps were collected using an 

FEI Titan 80−300 scanning transmission electron microscope (STEM) with 

ChemiSTEM technology operated at 200 kV. This instrument is housed at North 

Carolina State University and data were acquired by Y. Liu. 

2.3.5 X-ray Photoelectron Spectroscopy 

X-ray photoelectron spectroscopy (XPS) is a technique that measures the 

chemical environment and oxidation states of elements on the surface (0-10 nm) 
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of a material. This technique uses X-rays, normally produced by a Mg or Al source, 

to irradiate the sample of interest. Under irradiation with X-rays, electrons at core 

levels will adsorb the photon energy and be ejected. The kinetic energy (EK) and 

number of ejected electrons are measured by the instrument (Figure 2.10). 

Equation 2.5 shows the relationship between EK and the binding energy (EB) of 

an ejected electron, with EP and ϕ representing the photon energy and the work 

function of the instrument, respectively.  

EB = EP – (EK + ϕ)                               Equation 2.5 

As EP depends on the metal source used for X-ray (EP-Mg-Kα = 1253.6 eV and 

EP-Al-Kα = 1486.6 eV) and EK is measured by the instrument, EB can be calculated 

by Equation 2.5. The binding energy of the electron ejected is element-specific 

and varies with the electron configuration of the element, so it can be used to 

identify the element and its oxidation state or binding environment.  

 

Figure 2.10. Schematic illustration of a XPS system. 

In this dissertation study, a Kratos Axis Ultra XPS was used to carry out XPS 

measurements. Binding energies (BE) were determined using the C 1s peak at 
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284.8 eV as a charge reference. XPSpeak software was used to analyze the high-

resolution spectra. 

2.3.6 Inductively Coupled Plasma-Mass Spectrometry 

As mentioned in Section 2.3.3, EDS is a semi-quantitative method and was 

used to determine only the approximate composition of the materials. Inductively 

coupled plasma-mass spectrometry (ICP-MS) is an analytical technique consisting 

of an ICP coupled to a mass spectrometer. It has low detection limits (parts per 

billion, ppb), high accuracy, high selectivity, and low interference between different 

elements, which makes it an ideal technique for elemental analysis. In the 

operation of ICP-MS, an Ar plasma is first formed inside the instrument. The 

sample is then exposed to the ICP torch as an aerosol to enable a conversion into 

gaseous atoms that are further ionized towards the end of the plasma. Ions that 

are generated are then sorted within the mass spectrometer based on the mass-

to-charge ratio prior to reaching the detector. 

In this dissertation, an Agilent 7700 ICP-MS instrument was used to determine 

the elemental compositions. The samples were digested in concentrated nitric acid 

and diluted with ultra-pure water. A series of external standards were used for 

calibration over the relevant concentration range.  

2.3.7 Infrared Spectroscopy 

Infrared (IR) spectroscopy is a tool mainly used to detect the interaction of 

infrared radiation with a molecule. It is normally used to identify functional groups 

by measuring the vibrational frequency of a bond, which is affected by the mode 

of vibration, bond strength, and mass of atoms. For an IR active vibration, the 
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dipole moment changes with the vibration. Typically, IR spectra are collected within 

a range of 4000-400 cm-1. 

In this dissertation, A Bruker Tensor 27 FTIR spectrometer was used to probe 

surface ligand groups. A powder of nanoparticles was ground with KBr to yield a 

uniform mixture and pressed into a transparent pellet by applying 2000 psi 

pressure using a Carver Hydraulic pellet press. 

2.3.8 Cyclic Voltammetry 

Cyclic Voltammetry (CV) is a technique that measures the electrochemical 

properties of the sample of interest. Normally, a CV is performed by cycling the 

potential and measuring the resulting current in a standard three electrode system. 

A standard three electrode system consists of a working electrode, reference 

electrode, and counter electrode (Figure 2.11). The working electrode, which 

directly touches the analyte, is normally used to apply a potential to the analyte. 

The reference electrode is a half cell with a known reduction potential and acts as 

reference in controlling and measuring the potential applied to the working 

electrode. The counter electrode balances the current observed at the working 

electrode by passing any current needed. In this way, both potential and current 

can be monitored to measure the electrochemical behavior of the analyte.  
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Figure 2.11. A standard three electrode system. 

In this dissertation, all the cyclic voltammograms were recorded using an EC 

epsilon potentiostat equipped with a rotating disc electrode (RDE). In a typical 

experiment, a standard three electrode setup was employed using a Ag/AgCl 

reference electrode, Pt wire auxiliary electrode, and glassy carbon working 

electrode.  

Portions of the text in this chapter were reprinted with permission from: 

Chemistry of Materials, 2017, 29, 3048-3054, Chemistry of Materials, 2016, 28, 

3920-3927, Journal of the American Chemical Society, 2016, 138, 4006-4009, and 

Inorganic Chemistry, 2015, 54, 7968-7975. 
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CHAPTER 3. EFFECT OF SYNTHETIC LEVERS ON NICKEL 
PHOSPHIDE NANOPARTICLE FORMATION: NI5P4 AND NIP2 
 

ABSTRACT 

Due to their unique catalytic, electronic, and redox processes, Ni5P4 and NiP2 

nanoparticles are of interest for a wide-range of applications from the hydrogen 

evolution reaction to energy storage (batteries); yet synthetic approaches to these 

materials are limited.  In the present work, a phase-control strategy enabling the 

arrested-precipitation synthesis of nanoparticles of Ni5P4 and NiP2 as phase-pure 

samples using different Ni organometallic precursors and trioctylphosphine (TOP) 

is described. The composition and purity of the product can be tuned by changing 

key synthetic levers, including the Ni precursor, the oleylamine (OAm) and TOP 

concentrations, temperature, time and the presence or absence of a moderate 

temperature soak step to facilitate formation of Ni and/or Ni-P amorphous 

nanoparticle intermediates. Notably, the 230 °C intermediate step favors the 

ultimate formation of Ni2P and hinders further phosphidation to form Ni5P4 or NiP2 

as phase-pure products. In the absence of this step, increasing the P/Ni ratio (13-

20), reaction temperature (350-385 °C) and time (10-48 h) favors more P-rich 

phases, and these parameters can be adjusted to generate either Ni5P4 or NiP2. 

The phase of the obtained particles can also be tuned between pure Ni2P to Ni5P4 

and NiP2 by simply decreasing the OAm/TOP ratio and/or changing the nickel 

precursor (nickel acetylacetonate, nickel acetate tetrahydrate or 

Bis(cyclooctadiene)nickel).  However, at high concentrations of OAm, the product 

formed is the same regardless of Ni precursor, suggesting formation of a uniform 
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Ni intermediate (an Ni-oleylamine complex) under these conditions that is 

responsible for product distribution. Intriguingly, under the extreme phosphidation 

conditions required to favor Ni5P4 and NiP2 over Ni2P (large excess of TOP), the 

20-30 nm crystallites assemble into supraparticles with diameters of 100-500 nm.  

These factors are discussed in light of a comprehensive synthetic utilized to control 

P incorporation in nickel phosphides. 

 

Li, D., Senevirathne, K., Aquilina, L., Brock, S. L. Inorganic Chemistry, 2015, 54, 

7968-7975. Reprinted with permission from Copyright (2015) American Chemical 

Society.  
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3.1 Introduction 

Due to the wide range of unique magnetic, redox and catalytic properties 

exhibited by transition metal phosphides, the development of methods for their 

production on the nanoscale with control of size, shape and composition, is an 

important endeavor.1-4 Because the magnetic and catalytic properties of transition 

metal phosphides depend on the size and shape (in the nano regime) as well as 

the composition,5-9 it is important to establish the synthetic factors that enable 

access to different phase-pure transition metal phosphides. Metal-rich nickel 

phosphides such as Ni2P are potent hydrotreating catalysts1, 2, 5, 8, 10-12 while the 

more phosphorus-rich phases such Ni5P4 and NiP2 are promising candidates for 

lithium ion battery electrode materials, due to their high gravimetric and volumetric 

capacity.13, 14 Furthermore, all of these phases show considerable potential to be 

used in hydrogen evolution catalysis.15-17 In order to be able to target desired 

phases on the more phosphorus-rich side of the Ni-P phase diagram, a detailed 

study of the parameters that govern phase formation is needed.  

This chapter discusses a successful phase control strategy used for the more 

phosphorus-rich phases, Ni5P4-NiP2. The role of the key synthetic levers on the 

phase-purity and morphology of the product, including the Ni precursor, the OAm 

and TOP concentrations, temperature, time and the explicit formation of 

Ni/amorphous Ni-P intermediate nanoparticles by a moderate temperature soak 

step are studied and a comprehensive synthetic scheme to control phosphorus 

incorporation in nickel phosphides prepared by arrested precipitation reaction is 

developed.  
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Early work was performed by Lance Aquilina and Keerthi Senevirathne to 

identify that Ni5P4 could be synthesized by standard arrested precipitation routes. 

I optimized the synthesis of Ni5P4 and NiP2, elucidated the roles of synthetic 

parameters, and carried out all the synthesis and characterization of the materials. 

3.2 Experimental 

All materials used in the synthesis of nickel phosphide nanoparticles are given 

in Chapter 2. 

3.2.1 Synthesis of Nickel Phosphide Nanoparticles 

Safety warning: this procedure involves the usage of air-sensitive, flammable 

TOP and the generation of PH3 as an intermediate product, all reactions should be 

carried out under an argon atmosphere using standard Schlenk line techniques in 

the fume hood following Scheme 3.1.  The flasks were heated in mantles insulated 

with quartz wool and the temperature was monitored using a probe adjacent to the 

flask, and within the mantle. 

Scheme 3.1. Synthesis of nickel phosphide nanoparticles. 

 

Route 1 and 2: The synthesis of Ni/NixPy precursor particles was performed by 

taking 0.514 g of Ni(acac)2 (2.0 mmol), 12.0 - 30.0 mL (26.9 - 67.2 mmol) of TOP, 

10.0 mL of octyl ether, and 1.0 mL of OAm (3.0 mmol) and heating at 230 °C for 

60 min. The system temperature was then raised to 350-385 °C, kept for 1 - 24 h, 
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and then allowed to cool naturally to room temperature. In route 2, the intermediate 

230 °C step was removed. 

When Ni(COD)2 or Ni(OAc)2·4H2O was used as metal precursor, all the reaction 

parameters were identical except using 0.550 g Ni(COD)2 (2.0 mmol) or 0.498 g 

Ni(OAc)2·4H2O (2.0 mmol). 

Route 3: A mixture of 0.172 g Ni(acac)2 (0.67 mmol), 1-20 mL TOP (2.24 - 44.8 

mmol) and 10 mL of a mixture of OAm and octyl ether ranging from 3.3% up to 

100% OAm (1.0 – 30.0 mmol) by volume, was directly heated at 330-385 °C for 1-

48 hours and then allowed to cool naturally to room temperature.  

When Ni(COD)2 or Ni(OAc)2·4H2O was used as metal precursor, all the reaction 

parameters were identical except using 0.183 g Ni(COD)2 (0.67 mmol) or 0.166 g 

Ni(OAc)2·4H2O (0.67 b mmol). 

The black precipitates from Routes 1-3 (nickel phosphide nanoparticles) were 

sonicated in chloroform and reprecipated by adding excess ethanol. This 

sonication-precipitation cycle was done at least three times to remove as much of 

the bound organics as possible from the system. The isolated black powder was 

then dried under vacuum. 

3.2.2 Characterization 

Transmission electron microscopy (TEM) and powder X-ray diffraction (PXRD) 

were operated as describe in Chapter 2. 

3.3 Results and Discussion 

At the outset, Ni(acac)2 was used as the metal source and TOP as the P source 

to prepare nickel phosphide nanoparticles. Our previous work on nanoscale iron 
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phosphides clearly indicated that the choice of P/M (phosphorus/metal) precursor 

ratio, reaction temperature and heating time are key factors that determine the 

stoichiometry of the product.6 A series of reactions were carried out following Route 

1 (Scheme 1) to establish the independent effects of TOP/Ni ratio, heating 

temperature and reaction time.  Relative to our prior work on Ni12P5 and Ni, we 

sought to use higher P/M ratios, temperatures and times in order to achieve 

increased phosphidation. 

3.3.1 Effect of precursor ratio, temperature and time: Route 1.  

Using a synthesis temperature of 370 °C and 3 mmol OAm, the ratio of P/Ni in 

the reaction was varied from 13.4 to 20.2 by changing the quantity of TOP (26.8 

mmol to 40.4 mmol) used in the synthesis.  As shown in Figure 3.1, when the P/Ni 

ratio was changed from 13.4 to 16.8, the phase of the final product changed from 

Ni2P to a mixture of Ni2P and Ni5P4. Further increasing the P/Ni ratio to 18.8 

resulted in a mixture of Ni2P, Ni5P4 and NiP2; whereas for a P/Ni ratio of 20.2, NiP2 

was the major phase (with Ni2P, NiP and Ni5P4 present as minor phases). These 

data suggest that higher concentration of TOP favors the incorporation of more P 

into the nickel phosphide nanoparticles. 
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Figure 3.1. PXRD patterns of the product from Route 1 (Scheme 3.1) as a 
function of TOP quantity; reactions were carried out at 370 °C for 24 h with 2 
mmol Ni(acac)2  and 3 mmol OAm. 

In order to assess how temperature affects the final phase, the intermediate 

P/Ni ratio (16.8) was chosen and the heating temperature was changed from 350 

to 370 to 385 °C. As shown in Figure 3.2a, increasing temperature resulted in a 

shift in the product phase from Ni2P (350 °C) to a mixture of Ni2P, Ni5P4 (370 °C) 

and ultimately to a mixture of Ni2P, Ni5P4, NiP2 (385 °). Thus, the increase of 

heating temperature correlates with the appearance of more P-rich phases; 

presumably, by increasing the concentration of active phosphorus as well as the 

kinetics of P incorporation. 

Finally, in order to assess how reaction time effects the final phase, the reaction 

time was varied from 10 to 24 to 48 h, holding the P/Ni ratio and heating 

temperature constant (16.8 and 370 °C, respectively). As shown in Figure 3.2b, 

the phase of the products changed from Ni2P at 10 h to a mixture of Ni2P and Ni5P4 
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at 24 h, and a mixture of Ni2P, Ni5P4, NiP, NiP2 at 48 h demonstrating that longer 

reaction times also facilitate P incorporation. 

 

Figure 3.2. PXRD patterns of the products from Route 1 (Scheme 3.1) with 2 
mmol Ni(acac)2 and 33.6 mmol TOP (P/Ni=16.8): (a) As a function of heating 
temperature for 24 h; (b) as a function of heating time at 370°C. 

The results clearly indicate that the higher P/Ni ratio, higher temperature, and 

the longer heating time favor the formation of P - rich phases. These observations 

are consistent with the behavior exhibited in the Ni12P5 – Ni2P case in our previous 

study, although in the present case the quantity of TOP used in the synthesis is 

much higher.32  However, despite a clear preference towards more P-rich phases, 

it was impossible to obtain phase pure products of Ni5P4 or NiP2 by this approach. 

We hypothesized that Ni2P, once formed, may be slow to convert and focused our 

study on the intermediate heating step. 

3.3.2 Probing the intermediate heating step.   

Previous studies showed that Ni(acac)2 can be reduced by OAm (0.1 ≤ Ni/OAm 

≤ 0.33) to Ni nanoparticles (without TOP or with low TOP/Ni ratio (P/Ni < 2.24)) or 

amorphous NixPy nanoparticles (P/Ni > 2.24) at 220-240 °C.32, 61, 62 These 

nanoparticles then serve as templates for the formation of crystalline nickel 



54	
	

phosphide nanoparticles at elevated temperatures.32, 63-65 As shown in Figure 3.3, 

we find that intermediate amorphous NixPy particles form in as little as 3 min at 230 

°C (ca. 5.1 ± 0.6 nm, Figure 3.3), which means that whether or not there is an 

intermediate 230 °C step, this fast amorphous particle formation process may 

always occur during temperature ramp-up. At 60 min, the material remains 

amorphous but the average particle size increases to 9.7 ± 1.6 nm. Intriguingly, 

heating for 24 hours yields crystalline Ni2P with a crystallite size diameter of 8.5 

nm (calculated by applying the Scherrer equation to the (111) reflection), 

superimposed over an amorphous hump. This suggests that Ni2P may be 

kinetically favored at lower T (230 °C), regardless of P/Ni ratio, and might be 

resistant to transformation to more P-rich phases, resulting in mixed phase 

products.  

 

Figure 3.3. (a) PXRD patterns and (b) TEM images of intermediate NixPy 
particles prepared at different heating times at 230 °C (P/Ni = 16.8). 

To test this premise, 0.5 mmol Ni2P nanoparticles (74.2 mg, 10 nm, Figure 

3.4a) were synthesized and reacted with a large excess of TOP (22.4 mmol) in 10 

mL octyl ether at high temperature (380 °C) for a long reaction time (24 hours). 

Ni2P was still the major phase of the final product along with some peaks attributed 

to Ni5P4 and NiP2 determined by PXRD data (Figure 3.4d bottom). The former 
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work done by the Sanchez group has shown that Ni2P is a favored phase on the 

nanoscale even at high P/Ni ratios.63 The formation of Ni2P in the intermediate step 

and the inaccessibility of the complete conversion from Ni2P to the more P-rich 

nickel phosphides suggest that increasing the duration of the intermediate step 

may facilitate crystallization of the amorphous particles, resulting in stabilizing the 

formation of Ni2P and hindering further phosphidation to achieve the more P-rich 

phases as single-phase products. The consequences of the extreme 

phosphidation conditions on the morphology are shown in Figure 3.4b, where the 

products are spherical clusters of 500 nm in diameter. High resolution TEM 

imaging of a selected area (Figure 3.4c) reveals that these clusters comprise a 

large amount of well crystallized 10 nm Ni2P nanoparticles. As will be shown below, 

the combination of high TOP amount and high temperature favors large 

aggregates of discrete nanoparticles, reminiscent of supraparticles.66  
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Figure 3.4. TEM images of Ni2P nanoparticles (a) before and (b) after reaction 
with TOP; (c) HRTEM of a selected area in (b). (d) PXRD patterns of Ni2P 
particles before (top) and after (bottom) reaction with TOP at 380°C for 24 
hours. 

3.3.3 Obtaining phase-pure Ni5P4 by Route 2. 

In order to avoid Ni2P formation at the intermediate step, the 230 °C step was 

eliminated as shown in Route 2 (Scheme 3.1). For a P/Ni ratio of 16.8, raising the 

reaction temperature directly to 370 °C for 24 h leads to a material wherein the 

detectable PXRD peaks could all be indexed to Ni5P4 (Figure 3.5a). Crystallite size 

calculated by applying the Scherrer equation to the (214) reflection of Ni5P4 

nanoparticles yielded an average diameter of 25.3 nm.  Transmission electron 

microscopy (TEM) images (Figure 3.5b and c) reveal that the Ni5P4 product forms 

as highly uniform spherical supraparticles of ca. 500 nm in diameter consisting of 

many small 20-30 nm nanocrystallites, similar to what was observed from forced 

phosphidation of Ni2P.  This phenomenon has also been observed in other 

systems with quite different chemistries, including Fe3O4, In2O3 and CdSe.67-69 The 
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primary particles are presumed to aggregate into supraparticles in order to 

minimize the surface energy.   

 

Figure 3.5. (a) PXRD pattern of Ni5P4 particles from Route 2. (b), (c) TEM 
images of Ni5P4 particles (inset: HRTEM showing lattice fringes) 

3.3.4 Obtaining phase-pure NiP2 by Route 2 

In order to target a more P-rich phase (NiP or NiP2), the P/Ni ratio and heating 

temperature were increased from 16.8 to 33.6 and 370 to 385 °C, respectively in 

Route 2 (without the 230 °C step). PXRD data acquired on the product is consistent 

with the formation of NiP2 (Figure 3.6). From the Scherrer equation, the crystallite 

size of these NiP2 particles is about 29.6 nm, whereas the particle size obtained 

from TEM micrographs is quite large (100’s of nm), suggesting that particle 

aggregation and supraparticle formation is again operable.  Intriguingly, these 

particles are less uniform than those obtained at 370 °C, suggesting that formation 

of discrete NiP2 particles and aggregation into supraparticles may not be 

temporally isolated in this case.  
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Figure 3.6. (a) PXRD patterns and (b) TEM images of NiP2 particles prepared 
from Route 2. 

3.3.5 Obtaining pure-phase Ni2P by Route 2 

We next tested whether the intermediate templating step was needed for 

routine Ni2P particle formation and whether it has any role in dictating particle size 

or polydispersity. We synthesized Ni2P nanoparticles according to both Route 1 

and Route 2 with identical reagent parameters except one had the intermediate 

step and the other did not. There is no obvious difference between the crystallite 

size from PXRD or the size/morphology from TEM of the phase-pure Ni2P 

nanoparticles prepared by these two routes (Figure 3.7). Therefore, for nanoscale 

nickel phosphide formation, the introduction of an explicit moderate temperature 

soak step to form intermediate precursor particles that template formation of the 

product is not necessary.  
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Figure 3.7. (a) PXRD patterns and (b), (c) TEM images of Ni2P prepared with 
or without the 230°C intermediate step, respectively. 

3.3.6 Effect of the nickel precursor on targeted phase 

Based on the prior work showing the Ni precursor can affect the targeted 

phases, Ni(acac)2, Ni(COD)2 and Ni(OAc)2•4H2O were used as Ni precursors in 

Route 2 targeting conditions for Ni5P4 formation (P/Ni ratio = 16.8, 370 °C, 24 h). 

As evidenced from PXRD, the final phases of the products were Ni5P4 (Ni(acac)2), 

a mixture of Ni5P4, Ni2P (Ni(COD)2) and Ni2P (Ni(OAc)2•4H2O) (Figure 3.8). We 

hypothesized that the precursor dependence may be due to the different Ni release 

rates, which will in turn affect the available Ni concentration. For the case of 

Ni(acac)2, the strong chelating effect will cause Ni be reduced and released slowly, 

leading to a high P/Ni ratio in the early stages of the reaction relative to the weaker, 

coordinate bonded, Ni(OAc)2•4H2O case. Therefore, the final product favors the 

more P-rich phase Ni5P4 for Ni(acac)2 whereas Ni(OAc)2•4H2O favors Ni2P. For 

the organometallic precursor Ni(COD)2, a combination of Ni5P4 and Ni2P  is 

produced, suggesting that this precursor is intermediate to Ni(acac)2 and 

Ni(OAc)2•4H2O in its rate of Ni release. Intriguingly our results are in direct contrast 

to those of the Tatsumisago group. In their study, when Ni(OAc)•4H2O was used 

as the precursor in the synthesis, the product favors the more P-rich product NiP2 
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compared with Ni2P produced by using Ni(acac)2 as the precursor. One key 

difference between our work and that of the Tatsumisago group is the inclusion of 

OAm in our method, thus a series of reactions were done to further investigate the 

role the OAm plays in the synthesis. 

 

Figure 3.8. PXRD patterns of the product from Route 2 (Scheme 1) using 
different Ni precursors: (a) Ni(OAc)2•4H2O; (b) Ni(COD)2 and (c) Ni(acac)2. 

3.3.7 Role of Oleylamine: Route 3 

As mentioned above, without the existence of OAm in the system the phase 

formation trend (Ni(OAc)2•4H2O favors the generation of NiP2 and Ni(acac)2 favors 

the generation of Ni2P) is in direct contrast to what acquired from the system with 

OAm. Reactions with varied OAm/TOP ratio were carried out in order to 

understand the effect of OAm on the synthesis (Route 3, Scheme 3.1). Starting 

from conditions known to favor NiP2, (i.e., a high TOP/Ni ratio (33.4) and low 

OAm/TOP ratio (0.045)) the amount of OAm was increased by replacing a portion 

of the octyl ether with OAm (decreasing a and increasing b, Route 3), thus 

increasing the ratio of OAm/TOP. When OAm/TOP is increased from 0.045 to 0.67 
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and 1.34, the product phase changed from NiP2 to a mixture of Ni5P4, NiP2 and 

then Ni5P4 (Figure 3.9a, b and 3.8c). For the OAm/TOP ratio of 1.34, there was 

no octyl ether in the system; OAm was thus acting not only as a surfactant but also 

the sole solvent (a=0, b=10). Changing the reaction time from 1 to 48 h, the heating 

temperature from 350 to 385 °C and the P/Ni ratio from 21.6 to 61.6 had no effect; 

the obtained phase in every case was Ni5P4 (Figure 3.8c and 3.10).  

 

Figure 3.9. PXRD patterns of the products from Route 3 (Scheme 3.1) as a 
function of OAm/TOP ratio; reactions were carried out at 370 °C for 24 h with 
0.73 mmol Ni(acac)2. 

We expect this observation reflects a balance between the high P/Ni ratio 

(>21.6) guaranteeing sufficient phosphidation of the final product to facilitate the 

formation of a P-rich phase, while at the same time, the high OAm/TOP ratio 

enables OAm to compete with TOP to bond with the particle surface, thereby 
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limiting the quantity of TOP participating in the reaction. The reducing nature of 

OAm may also be contributing to the balancing act.  Thus, the intermediate 

phosphided phase Ni5P4 is stable relative to NiP2, even when the P/Ni ratio reaches 

as high as 61.6. In contrast, Ni2P can be accessed by decreasing the TOP amount.  

Thus, when the the OAm/TOP ratio was increased from 1.34 to 8.93 and to 13.4, 

the product phase changed from Ni5P4, to a mixture of Ni5P4, Ni2P, and 

subsequently, Ni2P (Figure 3.9c, d, and e, Table 3.1c, d, and e). Accordingly, 

much lower P/Ni ratios are needed to favor Ni2P in Route 3 (high OAm/Ni; P/Ni = 

3.34, Figure 3.7a) whereas in Route 2, Ni2P is favored even at relatively large P/Ni 

ratios (lower OAm/Ni; P/Ni = 13.44, Figure 3.1a).  Intriguingly, under conditions 

where the OAm amount is high (a=0, b=10) in Route 3, varying the Ni precursor 

(Ni(acac)2, Ni(COD)2 and Ni(OAc)2•4H2O) has no effect on the outcome (Ni5P4), 

indicating that dissolving the different Ni sources in OAm may form a single 

precursor “Ni(OAm)”, which favors the formation of Ni5P4 (unless the TOP 

concentration is dramatically reduced).  

 

Figure 3.10 PXRD patterns of the product from Route 3 (a) as a function of 
heating temperature (370, 385 °C), P:Ni ratio (30.8, 61.6) and heating time (10, 
24 h); (b) as a function of heating time (1, 48 h) at 370 °C. 
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Table 3.1. Reaction parameters and final product phase from Route 3 

 OAm TOP OAm/TOP TOP/Ni Product phase 
a 1.0 mmol 22.4 mmol 0.045 33.4 NiP2 
b 15.0 mmol 22.4 mmol 0.67 33.4 NiP2, Ni5P4 
c 30.0 mmol 22.4 mmol 1.34 33.4 Ni5P4 
d 30.0 mmol 3.36 mmol 8.93 5.01 Ni5P4, Ni2P 
e 30.0 mmol 2.24 mmol 13.39 3.34 Ni2P 

 

3.4 Conclusions 

The various roles of reaction parameters on the extent of phosphidation of Ni 

to produce crystalline nanoparticles of Ni2P, Ni5P4 or NiP2 from reaction of nickel 

complexes with TOP in OAm solutions are depicted in Scheme 3.2. With or without 

the 230 °C intermediate step, for a constant concentration of Ni precursor in the 

system, increasing the TOP/OAm ratio, reaction temperature and time favors the 

formation of more P-rich phases. However, the use of an intermediate 230 °C soak 

step, common to metal phosphide nanoparticle syntheses, was found to have no 

effect on the synthesis of Ni2P nanoparticles, but dramatically reduced the extent 

of phosphidation possible, even at very high TOP/Ni ratios, producing Ni5P4 or NiP2 

samples that always had significant Ni2P impurities. Particles of Ni5P4 and NiP2 

could be obtained as phase-pure products when the intermediate 230°C step was 

removed. The OAm/TOP ratio also has a strong effect on the system, enabling 

tuning from pure Ni2P to Ni5P4 and NiP2 by decreasing the OAm/TOP ratio. 

Additionally, large concentrations of OAm attenuate the behavior of different Ni 

reagents (COD, acac, or OAc complexes), likely by formation of a common 

intermediate, leading preferentially to Ni5P4 unless the TOP/Ni ratio is dramatically 

reduced, favoring Ni2P. At low OAm/TOP ratio, the chelate complex Ni(acac)2 
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favors Ni5P4 (i.e., less Ni available in the reaction) and Ni(OAc)2 favors Ni2P.  Under 

the extreme phosphidation conditions required to favor Ni5P4 and NiP2 (large 

excess of TOP), the 20-30 nm crystallites assemble into supraparticles with 

diameters of 100-500 nm.  Overall, this work addresses a knowledge gap in the 

phase evolution for the P rich side of the Ni-P nanoparticle system. The strategy 

used to prepare more P-rich nickel phosphide nanoparticles should be applicable 

to other metal phosphide systems, thus facilitating the development of this 

important class of nanomaterials for energy storage and catalysis. 

Scheme 3.2. Illustration of the roles played by various synthetic levers in 
controlling the phase in nickel phosphide nanoparticles.  The crystal structures 
shown inside correspond to Ni2P (hexagonal), Ni5P4 (hexagonal) and NiP2 
(cubic) as determined from XRD. 
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CHAPTER 4. CONTROL OF COMPOSITION AND SIZE IN 
DISCRETE COXFE2-XP NANOPARTICLES: CONSEQUENCES FOR 

MAGNETIC PROPERTIES 
 

ABSTRACT 

In this work, a solution-phase method was developed for the synthesis of 

CoxFe2-xP nanoparticles over all x (0 ≤ x ≤ 2). The nanoparticles vary in size, 

ranging from 16.5 to 20 nm with standard deviations ≤14%. The synthesis involves 

preparation of CoFe alloy nanoparticles and high temperature conversion into 

crystalline ternary phosphide nanocrystals. The target composition can be 

controlled by the initial metal precursor ratio and the size of CoxFe2-xP (from 12-22 

nm) can be tuned by varying the OAm/metal ratio. Mössbauer data shows that Fe 

has a strong preference for the square pyramidal site over the tetrahedral site. 

Magnetic measurements on CoxFe2-xP nanoparticles showed a strong 

compositional dependence of the Curie temperature (TC); CoFeP and Co0.7Fe0.3P 

have TCs > 340 K and are superparamagnetic at room temperature. 

 

Li, D., Perera, M., Kulikowski, B., Lawes, G., Seda, T., Brock, S. L. Chemistry of 

Materials, 2016, 28, 3920-3927. Reprinted with permission from Copyright (2016) 

American Chemical Society. 
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4.1 Introduction 

Nanostructured ternary transition metal phosphides have drawn increasing 

attention due to their catalytic and magnetic properties, which can be modified by 

changing the particle composition, structure, and size.26, 70-73  

Due to the catalytic properties of cobalt phosphide and iron phosphide,74-77 

CoxFe2-xP may not only be a highly effective OER catalyst but also a promising 

catalyst candidate for the hydrogen evolution reaction (HER). Indeed, the more P-

rich phase Co0.5Fe0.5P has already been demonstrated as an effective HER 

catalyst.73 Moreover, by changing the amount of iron in cobalt phosphide bulk 

materials, the magnetic properties can be altered from paramagnetic Co2P to 

ferromagnetic CoxFe2-xP with a tunable Curie point close to or above room 

temperature,54 which makes this material potentially suitable for magnetic imaging, 

therapies, refrigeration, or data storage.55-57 

Despite their promise, comparatively little research has been done on ternary 

(relative to binary) nanoparticles of metal phosphides, including CoxFe2-xP.26, 36 

There are two major challenges in the synthesis of ternary phosphide 

nanoparticles: the first is the possibility of phase segregation due to the different 

reactivities of the two metal precursors and the second is the difficulty in controlling 

the stoichiometric phases of the final product because of the various oxidation 

states that the transition metals can adopt. Accordingly, to establish the 

comprehensive evolution of magnetic and catalytic properties for nanoparticles of 

CoxFe2-xP, a protocol that can control size and morphology over all compositions 

is needed. 
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In this chapter, a single-pot protocol to synthesize CoxFe2-xP nanoparticles with 

different compositions (0 ≤ x ≤ 2), size and morphology is established and the 

mechanism of the nanoscale ternary phosphide formation process is ascertained. 

The composition dependent magnetic properties of CoxFe2-xP nanoparticles are 

studied, with iron-rich samples exhibiting room-temperature superparamagnetism 

not previously realized in phosphide nanoparticles. 

The synthesis and characterization of CoxFe2-xP nanoparticles were carried out 

by myself and an undergraduate student I mentored, Bogdan Kulikowsiki at Wayne 

State University. Magnetic property measurements were carried out by Maheshika 

Perera (the Lawes Group) in the Department of Physics and Astronomy at Wayne 

State University. Mȍssbauer spectroscopy measurements were collected and the 

data was interpreted by Prof. Takele Seda in the Department of Physics and 

Astronomy at Western Washington University. 

4.2 Experimental 

All materials used in the synthesis of cobalt iron phosphide nanoparticles are 

given in Chapter 2. 

4.2.1 Synthesis of Nickel Phosphide Nanoparticles 

The synthesis is outlined in Scheme 4.1 and comprises the synthesis of CoFe 

alloy nanoparticles and their in-situ conversion into phosphides by reacting them 

with TOP. First, 15.0 mL of octadecene was combined with 3.0 mL oleylamine in 

a 200 mL Schlenk flask with a condenser. The system was degassed at 120 °C for 

20 min to remove any moisture or oxygen, followed by purging with argon for 30 

min. The temperature was then increased to 200 °C. CoFe nanoparticles were 



68	
	

prepared by injecting a mixture of Co2(CO)8 and Fe(CO)5 dissolved in 5.0 mL 

octadecene into the system. After 20 min aging, TOP was injected followed by 

aging at a temperature of 330 or 350 °C for 1.5 or 3 h (x ≥ 0.3: T = 330 °C, t = 1.5 

h; x < 0.3: T = 350 °C, t = 2.5 h). The black precipitate was sonicated in chloroform 

and reprecipitated by adding excess ethanol. This sonication-precipitation cycle 

was done at least three times to remove as much of the bound organics as possible 

from the system. The isolated black powder was then dried under vacuum. 

Scheme 4.1. Synthesis of CoxFe2-xP (0 � x � 2) nanoparticles. 

 

4.2.2 Characterization  

Transmission electron microscopy (TEM), energy dispersive spectroscopy 

(EDS), scanning transmission microscopy (STEM) and powder X-ray diffraction 

(PXRD) were operated as describe in Chapter 2. 

4.3 Results and Discussion 

Based on our recent reports of NixM2-xP (M = Co, Fe) nanoparticle syntheses 

employing acetylacetonate and carbonyl complexes,70, 78 Co(acac)2 and Fe(CO)5 

were chosen as metal precursors and a similar approach (inject Fe(CO)5 into a Co-

P solution at the intermediate 230 °C step followed by heating at 330 °C) was used 

to target CoxFe2-xP nanoparticles (Scheme 4.2). However, CoO is present as a 

major secondary phase to CoxFe2-xP (Figure 4.1), thus reducing the ability to 
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control the final phase and composition. The formation of oxide is attributed to the 

cleavage of the C-O bond in the actylacetonate ligand of Co(acac)2.
79 Therefore, a 

new protocol was investigated to synthesize phase-pure CoxFe2-xP without 

employing acac ligands.  

Scheme 4.2. Reaction parameters when Co(acac)2 and Fe(CO)5 were used as 
metal precursors to prepare CoxFe2-xP nanoparticles. 

 

 

 

Figure 4.1 (a) PXRD patterns and (b) TEM image of product obtained using 
Co(acac)2 and Fe(CO)5 as metal precursors prepared by Scheme 4.2. 

 

In order to develop a new approach to CoxFe2-xP (0 ≤ x ≤ 2) nanoparticles, we 

opted to establish a set of reaction conditions under which both end points could 

be prepared. As Co2(CO)8 is expected to be more compatible with Fe(CO)5, and it 

has also been used as a precursor to prepare cobalt phosphide,9 we turned our 

(a)                                            (b)           
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hand to this precursor. A protocol, developed by our group to synthesize Fe2P 

phase pure nanoparticles,6 was refined, as shown in Scheme 4.1, and enables the 

full range of compositions, CoxFe2-xP, to be synthesized, as discussed more fully 

below. 

4.3.1 Synthesis of CoxFe2-xP nanoparticles and their structural and 

morphological changes with composition.  

A series of reactions was performed targeting a range of compositions by using 

different ratios of the metal precursors in the conditions shown in Scheme 4.1. At 

the Co-rich end of the spectrum (x ≥ 0.3), formation of crystalline phases is attained 

at 330 °C, whereas a higher temperature (350 °C) is required for the most Fe-rich 

phases.  The isolated particles were analyzed by PXRD to identify the phase 

(Figure 4.2a). Fe2P and Co2P adopt the hexagonal Fe2P and orthorhombic Co2P 

structure-types, respectively. Both have two metal sites, M(1) and M(2), with 

tetrahedral and square pyramidal geometries, respectively. However, the two 

structures differ in the packing of rhombohedral subcells containing M(1) and M(2) 

sites within the crystal (Figure 4.2b). As shown in Figure 1a, the patterns matched 

the expected line diagram for Co2P or Fe2P and no additional reflections were 

observed, suggesting an absence of significant (> 5%) crystalline impurities. The 

crystal structure of bulk CoxFe2-xP transforms from orthorhombic Co2P type (x > 

0.3) to hexagonal Fe2P type (x ≤ 0.3).54 However, due to the broad peaks 

associated with nanoscale crystalline dimensions, it is difficult to distinguish 

between Fe2P and Co2P structure types in these samples.  Notably, the peaks in 

Co2P around 40.7° and 55.6° are slightly shifted toward lower 2 theta values as 
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the content of the bigger volume atom Fe increased (Figure 4.2b), indicative of 

solid-solution formation.  

 

Figure 4.2. (a) PXRD patterns of different compositions of CoxFe2-xP prepared 
with the conditions shown in Scheme 4.1. Reference patterns for Co2P (PDF # 
32-0306) and Fe2P (PDF # 85-1727) are shown; droplines correspond to 
expected peak position for Co2P. (b) Hexagonal Fe2P structure-type (left) and 
orthorhombic Co2P type (right). 

As assessed by TEM (Figure 4.3), the particle diameters are in the range of 

17-20 nm with ± 9.6-14% standard deviations (histograms shown in Figure 4.4). 

This is considerably smaller than particles produced by other methods4 ,15 (~100’s 

of nm) and theoretically results in a significant increase in external surface area.  
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From the EDS and ICP-MS analysis the compositions of the materials were 

calculated and the metal ratio was found to be close to the ratio employed in the 

synthesis, as shown in Table 4.1. The formation of hollow spheres (Figure 4.3 

inset) may be attributed to the different diffusion rates between metal ions and P 

ions according to the Kirkendall effect.80  

 

Figure 4.3. TEM images of different compositions of CoxFe2-xP prepared by 
Scheme 4.1 (inset: HRTEM images, scale bars equal 10 nm). 

x = 1.7     16.5 ± 1.6 nm x = 1.4    17.0 ± 1.9 nm 

x = 1        17.6 ± 1.7 nm x = 0.7     17.3 ± 2.0 nm 

x = 0.4     20.1 ± 2.4 nm x = 0.2    18.5 ± 2.6 nm 

100 nm 
10 nm 

100 nm 

100 nm 100 nm 

100 nm 100 nm 
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Figure 4.4. Histograms for the particle size distribution (measured from TEM) 
for different compositions of CoxFe2-xP prepared by Scheme 4.1. 

Table 4.1. Targeted and actual compositions (from EDS and ICP analysis) of 
CoxFe2-xP nanoparticles. 

Target ratio 
(Co : Fe) 

Actual ratio from 
EDS (Co : Fe)  

Actual ratio from 
ICP (Co : Fe) 

1.70 : 0.30 1.72 : 0.28 1.69 : 0.31 
1.45 : 0.55 1.40 : 0.60 1.41 : 0.59 
1.00 : 1.00 1.04 : 0.96 1.03 : 0.97 
0.75 : 1.25 0.71 : 1.29 0.70 : 1.30 
0.30 : 1.70 0.33 : 1.67 0.33 : 1.67 
0.20 : 1.80 0.22 : 1.78 0.21 : 1.79 

 

STEM images and elemental mapping data for CoFeP nanoparticles are 

consistent with solid-solution formation (Figure 4.5a). The two metals (Co and Fe) 

are homogeneously distributed within each particle, suggesting phase-segregation 

is not occurring. It should be noted that while other compositions were not studied, 

we expect that they are similarly homogeneous based upon the bulk phase 

diagram, and the magnetic behavior of the materials (vide infra). The line scan 

(Figure 4.5b) confirms the low contrast region in the center of the particles is due 
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to hollow formation, as all three elements dip together. Moreover, the low contrast 

shell also has equal representation of all three elements, which suggests formation 

of an amorphous phosphate or phosphite layer due to surface oxidation. Overall 

the developed protocol is ideal to synthesize CoxFe2-xP nanoparticles over the 

composition range (0 ≤ x ≤ 2).  Samples prepared from ≥ 5 independently reactions 

all have similar morphologies and sizes with compositional variation limited to ± 

5%, revealing the reproducibility of the synthetic method. 

 

Figure 4.5. (a) HAADF image (left) and STEM elemental mapping data (right) 
corresponding to the rectangular region outlined in the HAADF image for a 
CoFeP sample. (b) Line scan for one CoFeP nanoparticle. In the plot of 
intensity versus point number, Fe is shown in green, Co in red, and P in blue. 

As shown in the TEM micrographs (Figure 4.3), at both the Co-rich and Fe-rich 

end, the shape of the CoxFe2-xP nanoparticles is spherical, which can be explained 
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by previous studies that showed that the final metal phosphide nanoparticles adopt 

a similar spherical shape and size to the metal nanoparticles that formed at the 

intermediate step of the reaction. Thus, the spherical metal particles act as 

templates for further growth.9, 32 Intriguingly, the middle range (0.8 < x < 1.4) 

CoxFe2-xP nanoparticles are roughly spherical but have a scalloped edge, 

reminiscent of many small particles aggregating in the course of phosphidation.  

We hypothesize that the precursor particles for intermediate compositions may be 

smaller than those of the end-products and that the higher surface energy 

associated with the small size leads to aggregation and the aggregate serves as 

a template for the final phosphide. A series of reactions was conducted to study 

the mechanism of particle formation in order to ascertain the validity of this 

hypothesis. 

4.3.2 Mechanistic studies on particle formation.  

The mechanism of the CoxFe2-xP nanoparticle formation process was 

investigated by TEM and XRD analysis of products obtained at different points in 

the reaction (Scheme 4.1, A, B, C and D). CoFeP was chosen as a representative 

composition. XRD data of sample A (Figure 4.6, diffractogram A) indicated the 

formation of CoFe alloy nanoparticles (ANPs) after injecting the mixture of Fe(CO)5 

and Co2(CO)8 dissolved in octadecene into a degassed mixture of octadecene and 

OAm maintained at 200 ̊C.  These irregular shaped CoFe ANPs have an average 

size of 5.2 ± 1.3 nm (Figure 4.6, micrograph A) with the two metals distributed 

homogeneously within each particle (Figure 4.7) and are strongly attracted to the 

magnetic stir bar, consistent with the formation of a ferromagnetic phase. 
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Compared with single metal precursors (Co nanoparticle: 12 nm,9 Fe nanoparticle: 

15 nm6), these alloy nanoparticles have a much smaller size, presumably due to 

more facile nucleation. This may reflect a greater reactivity between Fe and Co 

relative to reactivity between Fe-Fe or Co-Co. Sample B was collected after 

injecting 3.36 mmol TOP into CoFe ANPs and increasing the reaction temperature 

to 330 ̊C. In diffractogram B (Figure 4.6), the CoFe alloy is still the majority phase. 

The peak at 44.6° becomes broader, suggesting the crystallinity of the ANP 

decreased, presumably due to a reaction with the injected TOP. Additionally, a 

shoulder at 41° was observed, which corresponds to the (112) reflection of Co2P 

type CoFeP. While the average size of particles in sample B increased to 13.0 ± 

2.2 nm (Figure 4.6, micrograph B) and the shape became irregular, suggesting 

several CoFe ANPs fusing together to form relatively large (CoFe)xPy nanoparticles 

upon injection of TOP and increase of temperature. After heating for 0.5 hour at 

330 ̊C, this shoulder at 41° evolved into the most intense peak and two additional 

peaks at 52° and 56° emerged, indicating that a significant portion of (CoFe)xPy 

has converted into CoFeP (Figure 4.6, diffractogram C). Nanoparticles with an 

average size of 14.8 ± 4.0 nm are evident in the corresponding micrograph. Some 

hollow structures started to appear in the center of the nanoparticles, which may 

be attributed to the diffusion rate differences between metal ions moving out and 

P diffusing inside, indicating the ongoing progression of the Kirkendall effect. 

Finally, at the completion of the reaction, the XRD pattern of D (Figure 4.6, 

diffractogram D) matches that for Co2P, suggesting formation of CoFeP is 

complete. Nanoparticles in sample D adopt a completely hollow structure. The 
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crystallite size of CoFeP nanoparticles, as determined by application of the 

Scherrer equation to the (112) reflection, is 9.2 nm, consistent with what is 

observed by TEM when the void space is accounted for (17.6 ± 1.7 nm with avoid 

diameter of ~ 8 nm), suggesting well-crystallized particles. The particles are not 

spherical, but have a scalloped edge, which is a consequence of nanoparticle 

aggregation during the initial state of phosphidation, presumably a consequence 

of surface energy minimization. Note that the scalloped edge increases the 

theoretical surface area relative to a sphere, potentially enhancing surface-

dependent properties such as catalytic activity. 
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Figure 4.6. PXRD patterns of the samples A-D; the insets show the 
corresponding TEM images (M:P ratios were acquired from EDS spectra). The 
scale bar (20 nm) is the same for all micrographs. 
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Figure 4.7. (a) HAADF image (left) and STEM elemental mapping data (right) 
and (b) EDS spectra for CoFe alloy nanoparticles (sample A). (c) Line scan for 
one CoFe alloy nanoparticle. In the plot of intensity versus point number, Fe is 
shown in green, Co in red. 

4.3.3 Size control of the ternary phase.  

Previous studies showed that the distribution of metal in M(1) and M(2) sites 

may be sensitive to the size of the phosphide nanoparticles,81 which will influence 

the magnetic and catalytic properties of metal phosphides.70, 81 Thus, it is 

advantageous to control the size of CoxFe2-xP nanoparticles. It is known that 

generally increasing the initial TOP/metal ratio favors the formation of smaller sized 

metal phosphide nanoparticles.32, 78 However, as shown in Figure 4.8, in the 

CoFeP case, either increasing or decreasing the P/M ratio (changing the quantity 

of TOP added into the system) leads to impurities (incompletely converted CoFe 

or overreacted CoP-type CoFeP2) generated as the final product. In order to 
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control the size, and in the meantime maintain the phase purity of the final product, 

different quantities of OAm were used in the synthesis.  

 

Figure 4.8. PXRD patterns of the CoFeP nanoparticles from Scheme 4.1 as a 
function of TOP/metal ratio: (a) TOP/metal = 0.75 (b) TOP/metal = 0.45. 

The reactions were carried out under conditions optimized for Co2P, Fe2P and 

CoFeP (P:M = 0.56, 1.5 h; 330 °C for Co2P and CoFeP, 350 °C for Fe2P). The ratio 

of OAm/metal used in the reaction was varied from 0.25 to 3. As shown in Figure 

4.9, the average size of Co2P and Fe2P nanoparticles changed from 14.0 ± 2.1 to 

17.7 ± 2.2 and 13.0 ± 1.5 nm to 24.9 ± 3.5 nm, respectively when the OAm/metal 

ratio changed from 1.5 to 3. Correspondingly, for ternary phase CoFeP 

nanoparticles, the average size changed from 12.2 ± 1.7 to 17.5 ± 1.7 to 21.4 ± 

2.6 nm when the OAm/metal ratio increased from 0.5 to 1.5 to 3 (Figure 4.10). 

This is consistent with what is observed in the nickel and nickel phosphide 

nanoparticle system (Chapter 3): the presence of excess OAm favors formation 

of larger nanocrystals.5, 61, 82 Presumably, the increasing amount of oleylamine 

decreases the binding ability and reaction rate of TOP with the alloy precursor 

nanoparticles.83 This slows the generation of metal-P nuclei and results in larger 

particle formation (fewer nuclei can grow larger due to the excess growth reagent). 
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Figure 4.9. TEM images of Co2P and Fe2P nanoparticles prepared in Scheme 
4.1 as a function of OAm. 

 

Figure 4.10. TEM images of CoFeP nanoparticles prepared in Scheme 1 as a 
function of OAm. 

4.3.4 Magnetic Properties of CoxFe2-xP Nanoparticles.  

Fe2P is ferromagnetic and exhibits a weak first-order magnetoelastic phase 

transition associated with the Curie transition at TC = 217 K. It is well-established 
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that TC can be driven up to 459 K with the incorporation of Co into Fe2P system (x 

= 0.76, Co0.76Fe1.24P) in the bulk.54 Due to the partial antiferromagnetic coupling 

caused by the overlap of the bottom of the β-spin band with the top of the α-spin 

band at the Fermi level, Fe2P has a moment that is suppressed below the expected 

value. Similar to what happens when Ni is substituted into the Fe2P series,70 

substitution of Co raises the ordering temperature and strengthens ferromagnetic 

ordering due to the addition of β-spin electrons to σ-bond orbitals, which eliminates 

the antiferromagnetic component.54, 84, 85 With an increase of Co in the system, the 

moment at the Fe(2) atoms increases first (0.32 < x < 0.8) and saturates for x > 

0.8 while the moment at the Fe(1) atoms increase slowly without saturating. 

Initially, Co atoms prefer to occupy the M(1) sites and thus the overall moment and 

TC increase to the maximum value due to the boost of the moment at Fe(2) atoms 

(0.32 < x < 0.8). With further addition of Co, more Co atom occupation of M(2) 

sites, along with the moment saturation of Fe(2) atoms, results in an overall 

moment decrease and consequently, a drop in TC (x > 0.8). 84 

Motivated by the composition dependent TC of CoxFe2-xP shown in the bulk 

(first increasing to a maximum of 459 K for x = 0.76, followed by a decrease to 219 

K at x = 0), and the possibility of achieving room temperature superparamagnetic 

or ferromagnetic nanoparticles, CoxFe2-xP nanoparticles with different 

compositions (x=0.2, 0.7, 1, 1.4, 1.7) and similar sizes (18 - 20 nm) were studied. 

The temperature (T) dependence of the magnetization (M) was determined under 

zero-field-cooled (ZFC) and field-cooled (FC) conditions in the temperature range 

10-350 K under an applied magnetic field of 100 Oe. All samples showed maxima 
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in their ZFC curves near the intersection of the FC with the ZFC, corresponding to 

their blocking temperature (TB), which occurred between 30 and 235 K (Figure 

4.11 and Table 4.2). 

 

Figure 4.11. ZFC and FC plots of CoxFe2-xP nanoparticles (x = 1.7, 1.4, 1.0, 
0.7, 0.2). 

Table 4.2. Reaction parameters and final product phase from Route 3 

Sample composition Size (nm) TB (K) TC (K) TC bulk (K) 
Co1.7Fe0.3P 17.34±2.91 30 145 140 
Co1.4Fe0.6P 16.22±2.47 50 230 275 

CoFeP 18.51±2.22 179 >340 425 
Co0.7Fe1.3P 19.38±2.06 210 >340 458 
Co0.2Fe1.8P 21.79±3.58 235 285 365 

 

To determine the exact Curie temperature (TC) of the CoxFe2-xP samples, Arrott 

plots (M2 vs. H/M, Figure 4.12) were collected at temperatures around the 

expected TC. Arrott plots yield a set of parallel lines with the curve corresponding 

to T = TC passing through the origin. For x = 1 and 0.7 there is no curve passing 

through the origin below 340 K, indicating that the Tc for CoFeP and Co0.7Fe1.3P 
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are above 340 K (the limit of the instrument). However, the 340 K plot for CoFeP 

is much closer to linearity than Co0.7Fe1.3P, suggesting that the latter will have a 

higher Tc than the former, in line with predictions based on bulk phases. The Tc’s 

of different compositions of CoxFe2-xP nanoparticles are shown in Table 4.2 and 

the TC plot of both bulk materials and nanoparticles are shown in Figure 4.13.  The 

CoxFe2-xP nanoparticles and bulk materials exhibit a similar compositional 

dependence of TC: the TC increases with the increasing incorporation of Fe at the 

Co-rich side while at the Fe-rich side, the TC decreases with the increasing 

incorporation of Fe amount. For bulk materials, the TC exhibits the highest value of 

459 K for x = 0.76. 

 

Figure 4.12. Arrot plots of different compositions CoxFe2-xP nanoparticles. The 
Tc for Co0.7Fe1.3P appears to be greater than the Tc for CoFeP, based on the 
greater deviation from linearity in the former for the 340 K data.    
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Figure 4.13. TC value of CoxFe2-xP nanoparticles (triangle) and bulk samples 
(circle, reported in ref54) as a function of x. The Tc for nanoscale Fe2P was 
taken from ref6.  The open triangles correspond to the upper limit of the 
instrument.  The arrows reflect the relative magnitude as a function of x based 
on qualitative analysis of Arrott plots (Figure 4.12). 

Our related study of FexNi2-xP revealed that the strong site-preferences 

obtained in the bulk-phase were less pronounced at the nanoscale, and we 

observed an anomalous trend in the TC as a function of composition, with the 

maximum of the observed value at x=1.8 ~250 K instead of ~350 K as obtained in 

bulk.70  Likewise, x – 1.4 had a higher than expected TC of 265 K.  We hypothesized 

that the nanoscale preparation may result in weaker preferences, and thus a more 

random distribution of metals.  Accordingly, we performed Mössbauer studies on 

CoxFe2-xP nanoparticles to ascertain whether the relaxation of site preferences is 

a general phenomenon for these systems. 
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Mössbauer data collected on the CoxFe2-xP nanoparticles (Figure 4.14) shows 

that Fe has a strong preference for the M(2) site and occupation of the M(1) site 

does not become apparent until the M(2) site is nearly full. Likewise, the Co atoms 

initially occupy the M(1) site, and only start occupying M(2) sites when x is close 

to 1.0. When x = 1.0, ~12% of Co atoms occupy the M(2) sites, which is in 

agreement with the findings of Fruchart et al. for the bulk phase.54 Interpretation of 

Mössbauer data for Fe-rich samples proved problematic due to the presence of an 

Fe-containing impurity. The identity of this impurity remains unknown, as no 

unindexed peaks are present in the PXRD data. However, given the small 

crystallite sizes and the limitations of the XRD technique, it is not surprising that it 

is not detected.6 Overall, the strong M(2) preference for Fe is consistent with what 

is observed in the bulk CoxFe2-xP system, that the less d-electron rich Fe atom 

would normally prefer the larger site M(2) (243 pm vs. M(1) 223 pm).54, 86  Thus, 

as the distribution of Fe and Co on the two sites is not affected by formation on the 

nanoscale, the parallels between the bulk and nanoparticle magnetic data are 

perhaps not surprising.   
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Figure 4.14. 57Fe Mössbauer data and fitting for CoxFe2-xP (x = 1.7, 1.4, 1, 0.7, 
0.3) nanoparticles. For the samples x = 0.7 and 0.3, G is fixed to compensate 
for a Fe-containing impurity that becomes more prevalent at low x and results 
in unrealistic values for site occupation (see Table 4.3).
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Table 4.3. Fe site occupancies (%) and fractional compositions (Fe(1) + Co(1) 
= Fe(2) + Co(2) = 1) for CoxFe1-xP as determined from 57Fe Mössbauer.  The 
enhanced Fe content in the Fe-rich sample (x = 0.3) that gives rise to an 
apparent site occupancy >1.0 is due to broadening of the peak, ascribed to an 
impurity phase.  M(1) is the tetrahedral site and M(2) the square pyramidal site. 
(* Indicates a fixed parameter) 

Sample d 
(mm/s) 

DEQ 
(mm/s) 

G 
(mm/s) 

Fe site 
occupancy 

(%) 
Assignment Fe Co 

Co1.7Fe0.3P 0.05(2) 
0.527(2) 

0.27(2) 
0.869(4) 

0.17(3) 
0.418(5) 

4.9 
95.1 

M(1) 
M(2) 

0.015 
0.285 

0.985 
0.715 

Co1.4Fe0.6P 0.05(3) 
0.539(3) 

0.25(6) 
0.860(7) 

0.32(6) 
0.424(6) 

8.2 
91.8 

M(1) 
M(2) 

0.049 
0.551 

0.951 
0.449 

Co1.0Fe1.0P 0.04(1) 
0.522(2) 

0.25(1) 
0.839(4) 

0.44(4) 
0.471(8) 

11.2 
88.8 

M(1) 
M(2) 

0.112 
0.888 

0.888 
0.112 

Co0.7Fe1.3P 0.24(8) 
0.44(4) 

0.5(2) 
0.89(8) 

0.73(5) 
0.78* 

25.5 
74.5 

M(1) 
M(2) 

0.332 
0.969 

0.668 
0.031 

Co0.3Fe1.7P 0.482(5) 
0.251(6) 

0.88(1) 
0.56(1) 

0.60* 
0.87* 

31.6 
68.4 

M(1) 
M(2) 

0.537 
1.163 

0.393  
0 

 

All of the nanoparticles produced here exhibit superparamagnetism below TC 

and above the blocking temperature (TB).  TB depends on the time-scale of the 

experiment and represents the temperature above which the oriented spins can 

flip during measurement due to thermal fluctuations.  As such, it is a sensitive 

function of particle volume, extrinsic (shape) anisotropy, intrinsic 

(magnetocrystalline) anisotropy and TC (TB<TC).  As the particle sizes and shapes 

are similar for the samples presented here, the dominant effects are the 

magnetocrystalline anisotropy and the strength of the ferromagnetic ordering (with 

the latter reflected in TC).  As Co atoms do not contribute to the moment, Co-rich 

phases have lower TC’s and the magnetocrystalline anisotropy is diluted, as 

reflected in the low TB values (30-50 K).  The more Fe-rich phases have 

considerably higher TB’s (179-235K) reflecting in part the strength of the 
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ferromagnetic interactions.  Thanks to the high TC values for CoFeP and 

Co0.7Fe1.3P, these nanoparticles exhibit superparamagnetism at room 

temperature, a phenomenon commonly realized in iron oxides or metal alloys, but 

not (to our knowledge) previously realized in phosphides. 

4.4 Conclusions 

A synthetic route for CoxFe2-xP nanoparticles enabling synthesis over the entire 

composition range as low-polydispersity samples with diameter tunability between 

10-25 nm is established.  The method employs CoFe alloy particles as precursors 

that are phosphided with TOP, and the resultant nanoparticles are hollow due to 

diffusion differences between the metal and phosphorus (Kirkendall effect). At 

intermediate x, the mechanism involves the fusion of small alloy particles into a 

larger particle, which then acts as a template for the further phosphidation, giving 

rise to particles with scalloped edges. The target composition is controlled by the 

initial metal precursor ratio and the size of CoxFe2-xP can be tuned by varying 

OAm/metal ratio. The Curie temperature of CoxFe2-xP nanoparticles shows a clear 

composition dependence that is reflective of the behavior of the bulk: it first 

increases and then decreases with the increase of Fe substitution. The high TC 

attained in CoFeP and Co0.7Fe1.3P render these nanoparticles superparamagnetic 

at room temperature enabling consideration of transition metal phosphides for 

applications including magnetic imaging, and therapies.  The ability to control 

composition in CoxFe2-xP is further expected to contribute to the development of 

phosphides for catalysis, given the promise already demonstrated by their binary 

end-products.  Moreover, the fact that alloy particles prepared from mixed-metal 
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carbonyl are also amenable to conversion to oxides suggests that these,30 and 

other metal alloy nanoparticles, may serve as flexible synthons for a range of 

nanoparticle materials beyond oxides and phosphides, including chalcogenides 

and heavier pnictides. 
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CHAPTER 5. EFFICIENT WATER OXIDATION USING COMNP 
NANOPARTICLES 

 

ABSTRACT 

The development of efficient water oxidation catalysts based on inexpensive 

and Earth-abundant materials is a prerequisite to enabling water splitting as a 

feasible source of alternative energy. In this work, we report the synthesis of 

ternary cobalt manganese phosphide nanoparticles from the solution-phase 

reaction of manganese and cobalt carbonyl complexes with trioctylphosphine. The 

CoMnP nanoparticles (ca. 5 nm in diameter) are nearly monodisperse and 

homogenous in nature. These CoMnP nanoparticles are capable of catalyzing 

water oxidation at an overpotential of 0.33 V with a 96% Faradaic efficiency when 

deposited as an ink with carbon black and Nafion. A slight decrease in activity is 

observed after five hundred cycles, which is ascribed to the etching of P into 

solution as well as the oxidation of the surface of the nanoparticles. Manganese-

based ternary phosphides represent a promising new system to explore for water 

oxidation catalysis. 

 

Li, D., Baydoun, H., Verani, C. N., Brock, S. L. Journal of the American Chemical 
Society, 2016, 138, 4006-4009. Reprinted with permission from Copyright (2016) 
American Chemical Society.  
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5.1 Introduction 

Splitting water into hydrogen and oxygen represents an ideal source of clean 

renewable energy.87 However, water oxidation (2H2O → O2 + 4H+ + 4e−), the first 

step in the overall water splitting reaction, has a high activation barrier that, 

coupled with the need for transfer of four electrons and four protons, presents a 

bottleneck in the transformation of water into O2 and H2.  

Ruthenium and iridium oxides are well-known water oxidation catalysts.42, 43 

Nevertheless, the scarcity of Ru and Ir pose serious limitations to the widespread 

adoption of water splitting as a green approach to renewable energy. In order to 

address this problem, research has focused on the synthesis of novel materials 

composed of stable, Earth-abundant metals capable of efficient catalytic water 

oxidation. Inspired by the oxygen-evolving center of Photosystem II, manganese-

based materials (oxides and phosphates) have garnered considerable attention as 

water oxidation catalysts. 45-49 

At the same time, transition metal phosphide nanoparticles are emerging as a 

new class of water oxidation catalysts with reports of high activity in Ni2P,19, 88 

CoP,24, 25, 89-91 and CoFeP.92, 93 While manganese-based phosphides may be 

natural catalyst candidates, such materials have yet to be investigated. This gap 

is at least in part due to a lack of synthetic methodologies for manganese 

phosphide nanoparticles. 

This chapter describes the synthesis of nearly monodisperse ternary cobalt 

manganese phosphide nanoparticles from the solution-phase reaction. The 

catalytic OER activity of CoMnP nanoparticles is also evaluated. I performed all 
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the synthesis and characterization of the discussed materials. The electrochemical 

measurements were performed and interpreted by Habib Baydoun (the Verani 

Group) in the Department of Chemistry at Wayne State University and myself. 

5.2 Experimental 

All materials used in the synthesis of manganese based phosphide 

nanoparticles are given in Chapter 2. 

5.2.1 Synthesis of CoMnP Nanoparticles 

0.75 mmol Co2(CO)8 (0.257 g) and 0.75 mmol Mn2(CO)10 (0.292 g) were 

dissolved in 5 mL octadecene and then injected into a degassed system 

comprising 10.0 mL of octadecene and 1.5 mL OAm at 200 °C. After 20 min aging, 

TOP was injected, followed by aging at 350 °C for 3 h. The black precipitate was 

sonicated in hexane to remove organics bound to the surface of the nanoparticles 

and reprecipitated by adding excess ethanol. This sonication-precipitation cycle 

was done at least three times to remove as much of the bound organics as possible 

from the system. The isolated black powder is then dried under vacuum. 

5.2.2 Synthesis of MnP Nanoparticles 

MnP was synthesized by modification of a published procedure.38 1.5 mmol 

Mn2(CO)10 (0.584 g) was dissolved in 5 mL octadecene and then injected into a 

degassed system comprising 10.0 mL of octadecene and 1.5 mL OAm at 200 °C. 

After 20 min aging, TOP was injected, followed by aging at 350 °C for 10 h. The 

nanoparticles were isolated as described for CoMnP. 

5.2.3 Synthesis of Co2P Nanoparticles 
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Co2P was synthesized by modification of a published procedure.94 1.5 mmol 

Co2(CO)8 (0.514 g) was dissolved in 5 mL octadecene and then injected into a 

degassed system comprising 10.0 mL of octadecene and 1.5 mL OAm at 200 °C. 

After 20 min aging, TOP was injected, followed by aging at 350 °C for 1.5 h. The 

nanoparticles were isolated as described for CoMnP. 

5.2.4 Synthesis of CoMnO2 Nanoparticles 

0.75 mmol Co2(CO)8 (0.257 g) and 0.75 mmol Mn2(CO)10 (0.292 g) were 

dissolved in 5 mL octadecene and then injected into a degassed system 

comprising 10.0 mL of octadecene and 1.5 mL OAm at 200 °C. After 20 min aging, 

the system is raised to 280 °C under slow and steady air flow and maintained at 

that temperature for 3 h. The nanoparticles were isolated as described for CoMnP. 

5.2.5 Characterization  

Transmission electron microscopy (TEM), energy dispersive spectroscopy 

(EDS), scanning transmission microscopy (STEM) and powder X-ray diffraction 

(PXRD) were operated as describe in Chapter 2. 

5.2.6 Electrochemical Characterization  

Ink Preparation: The as synthesized nanoparticles (NPs, 100 mg) were mixed 

with Ketjen-300J carbon (C) (mass ratio, 1:1) in hexane and ultrasonicated for 30 

min. The C-NPs were washed with hexane and reprecipitated by adding excess 

ethanol. 20 mg of C-NPs and 1 mL 5 wt% Nafion solution were dispersed in a 

mixture of 2 mL ethanol, 1 mL isopropanol, and 1 mL nanopure water, followed by 

sonicating for at least 30 min.  10 μL of the catalyst ink was deposited on the glass 

carbon working electrode (loading:  0.284 mg/cm2) and dried at room temperature. 
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Electrochemical Measurements: An EC epsilon potentiostat equipped with 

an RDE2 rotating disc electrode was used to record all the cyclic voltammograms. 

In a typical experiment a standard three electrode setup was employed using an 

Ag/AgCl reference electrode, a Pt wire auxiliary electrode, and a glassy carbon 

working electrode (surface area = 0.07 cm2) using a 1 mol·L-1 KOH solution as the 

solvent. The surface of the glassy carbon electrode was modified by depositing 10 

µL of nanoparticle ink onto the surface and followed by drying under an infrared 

heat lamp for five minutes. The cyclic voltammograms were measured at a scan 

rate of 10 mV/S and 1600 rpm. The potentials were measured versus Ag/AgCl and 

converted to the reversible hydrogen electrode (RHE) by using equation 5.1. The 

resistivity of the solution was determined using the iR compensation feature of the 

epsilon software and corrections were performed manually according to equation 

5.2. 

ERHE = EAg/AgCl + 0.197 + 0.059*pH             Equation 5.1 

ERHE = EAg/AgCl + 0.197 + 0.059*pH – iR          Equation 5.2 

5.3 Results and Discussion 

We have previously reported the synthesis of MnP nanoparticles.38 However, 

attempts to use these particles as water oxidation catalysts revealed that MnP is 

not stable under oxidizing conditions, which we attribute to the highly oxophilic 

nature of manganese. As shown in Figure 5.1, the presence of a broad irreversible 

preoxidation peak at ~1.4 VRHE is observed in the first oxidation sweep. The 

following sweeps revealed a large drop in the current density consistent with an 

irreversible oxidative transformation of MnP during water oxidation. Accordingly, 
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we sought to moderate the activity of Mn by the inclusion of a second metal, 

namely, cobalt.  

 

Figure 5.1. (a) Powder XRD pattern and (b) TEM image of MnP nanorods; (c) 
CV scans of MnP measured in 1 M KOH with a sweep rate of 10 mV s−1. The 
reference XRD pattern for MnP (PDF # 75-1040) is shown in panel (a). 

5.3.1 Synthesis and Characterization of CoMnP Nanoparticles 

The initial target of our investigation was the phase Co0.5Mn0.5P, which we 

expected to be feasibly attained as discrete nanoparticles based on the facts that 

(1) MnP and CoP are isostructural and (2) it is possible to synthesize the entire 

solid solution by solid-state methods in the bulk phase.95-97 Adapting known 

methods for MnP and CoP nanoparticle synthesis, Co2(CO)8 and Mn2(CO)10 were 
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injected into a solution of hot 1-octadecene and oleylamine, followed by injection 

of trioctylphosphine (TOP) and elevation of the solution temperature to 350 °C. 

However, the X-ray diffraction (XRD) pattern of the product showed that the peaks 

correspond to orthorhombic CoMnP and not the expected Co0.5Mn0.5P phase 

(Figure 5.2a). Intriguingly, we have not been successful preparing the Mn2P phase 

(the Mn end-product of Co1-xMnxP); producing only MnP or no isolable product. We 

hypothesize that incorporating Co favors the inclusion of low-valent Mn, thus 

facilitating the formation of the “M2P” phase. Transmission electron microscopy 

(TEM) images reveal the formation of spherical nanoparticles with an average 

diameter of 4.59 ± 0.76 nm (Figure 5.2b, c). The corresponding energy dispersive 

X-ray spectrum indicates that the atomic ratio of Co, Mn and P is close to 1:1:1.3. 

The composition of the nanoparticles was further confirmed from ICP-MS 

measurements which show a ratio of Co:Mn:P of 1:1:1.1. The slight excess of P is 

attributed to the presence of residual TOP as surface binding groups. 

 

Figure 5.2. Powder XRD (a) and TEM (b) of CoMnP nanoparticles. The 
reference pattern for CoMnP (PDF # 42-0932) is shown. (c) Histogram for the 
particle size distribution (measured from TEM) for CoMnP nanoparticles. 

The homogenous nature of the synthesized nanoparticles was verified by 

performing scanning transmission electron microscopy (STEM) measurements 
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combined with elemental mapping and line scans (Figure 5.3). The data show that 

Co, Mn and P are homogeneously distributed within the nanoparticles, thus 

suggesting the formation of a solid solution.  

 

Figure 5.3. STEM image and elemental mapping data (a), and line scan 
compositional data (b) of CoMnP nanoparticles. Co is shown in red, Mn in 
green, and P in blue. 

5.3.2 Water Oxidation Catalysis 

Based on prior work with CoFeP, which exhibits higher activity than the 

corresponding ternary oxide or the binary Co or Fe phosphide materials,92 CoMnO2 

and Co2P nanoparticles were prepared for comparison to CoMnP (loading: 0.284 

mg/cm2, Figure 5.4). The catalytic behavior of the different nanoparticles was 

determined by preparing an ink composed of the nanoparticles, carbon black and 

Nafion. The overpotential, defined as the potential by which the current density 

reaches 10 mA/cm2, is commonly used as a figure of merit for heterogeneous 

water oxidation catalysts.42, 98 For CoMnP the overpotential was 0.33 V at a current 

density of 10 mA/cm2
 (Figure 5.5). This overpotential places this CoMnP catalyst 

among the top tier of water oxidation catalysts, and on par with iridium oxide 

(APPENDIX A, Table A1).19, 24, 25, 42, 49, 88-90, 92, 93, 99, 100 For comparison, Co2P 
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nanoparticles showed a higher overpotential of 0.37 V and the overpotential of 

CoMnO2 was higher still at 0.39 V.  The Tafel plots in Figure 5.5b are derived from 

the polarization curves and they show the plots of overpotential vs. the log of the 

current density. While CoMnO2 and Co2P have a Tafel slope of 95 and 128 mV/dec, 

respectively; CoMnP has a slope of 61 mV/dec, close to the ideal value of 59 

mV/dec (equivalent to 2.3 x RT/F) associated with a one-electron transfer prior to 

the rate-limiting step.101, 102  

 

Figure 5.4. (a), (c) Powder XRD patterns and (b), (d) TEM images of CoMnO2 
and Co2P nanoparticles, respectively. 
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Figure 5.5. (a) Polarization curves for nanoparticles of CoMnP, CoMnO2 and 
Co2P in 1.0 M KOH; (b) Tafel plots derived from the polarization curves. 

 

The decrease in overpotential for CoMnP relative to Co2P is associated with 

synergism between the two metal centers.  It has been suggested that the insertion 

of a second metal may help lower the thermodynamic barrier of a proton-coupled 

electron transfer (PCET) pre-equilibrium while facilitating O-O bond formation, 

leading to enhanced catalytic activity.101 Most proposed mechanisms for CoOx 

species suggest the need to form vicinal high-valent oxo species.101, 103-105 While 

the formation of Co=O is energetically demanding and the product is unstable, the 

formation of Mn=O species is relatively facile.106 As such it is expected that the 

presence of an Mn center in close proximity to a Co center would lower the 

activation barrier needed for catalysis, thus explaining the decrease in 

overpotential in CoMnP compared to Co2P. Likewise, we posit that the high 

oxophilicity of Mn is moderated by Co, facilitating catalyst turnover.  The lower 

activation barrier of phosphides over oxides is likely due to the intrinsic electric 

conductivity of the phosphides relative to corresponding oxides.  The consequence 

of these reaction barrier variations appears to be distinct mechanisms in the three 
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materials, as reflected in the widely different Tafel slopes.  Further investigation will 

be necessary to ascertain the validity of these suggestions. 

The Faradaic efficiency was determined by performing a controlled potential 

electrolysis (CPE) experiment using an airtight H-type cell, and analyzing the head 

space gas by gas chromatography (Figure 5.6). The experimentally determined 

oxygen quantity was compared to the expected amount of oxygen based on the 

charge consumed. The Faradaic efficiency reached 96 % after ten hours of 

catalysis.   

 

Figure 5.6. Faradaic efficiency: experimental vs. theoretical amount of O2 
produced. 

The stability of the materials under catalytic conditions was determined by 

collecting polarization curves between 1.03 and 2.23 V (vs RHE) over 500 cycles. 

Upon cycling, an increase in the overpotential was observed from 0.33 to 0.37 V 

(Figure 5.7). Interestingly, after intermediate cycling (200 cycles) the overpotential 

increased to 0.35 V, which was accompanied by a nominal increase in the Tafel 
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slope (Figure 5.7, inset). However, after continued cycling (Figure 5.7) the Tafel 

slope increased to 76 mV/dec. These observations suggest that as the catalyst is 

cycled, the nature of the catalyst, and consequently the mechanism of operation, 

is changing. 

 

Figure 5.7. Polarization curves for CoMnP nanoparticles, in 1.0 M KOH initially 
(black), after 200 (red) and 500 CV sweeps (blue) vs. RHE. Inset: Tafel plots 
derived from the cycling experiments. 

In an effort to understand the deactivation, we performed X-ray photoelectron 

spectroscopy (XPS) analysis on the samples before and after a ten-hour CPE 

experiment (Figure 5.8). Before catalysis the high resolution XPS spectrum of Co 

(2p3/2) comprises a peak at 777.8 eV assigned to the binding energy of Co in 

Co2P,107 the Co2+ peaks at 780.9 eV, as well as a satellite peak (787.1 eV), 

corresponding to CoO, which presumably formed due to surface oxidation.  The 

XPS spectrum of Mn (2p3/2) exhibited a peak at 641.0 eV, corresponding to 

oxidized manganese species such as MnO or Mn2O3. The absence of low-valent 

Mn peaks in the spectrum is attributed to the high oxophicility of Mn, resulting in 

surface oxide formation.72 The XPS spectrum of P (2p3/2) showed two peaks 
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assigned to phosphide at 129.7 eV and phosphate or phosphite (POx or P-O 

species) at 133.4 eV. In contrast, the high-resolution XPS patterns of Co, Mn, and 

P after catalytic cycling show the disappearance of low energy peaks of Co (777.8 

eV) and P (129.7 eV), as well as a shift towards higher binding energies for Mn 

(from 641.0 eV to 641.9 eV). These observations are in accordance with 

nanoparticle surface oxidation during the catalytic process to form MPOx and MOx 

species and are in line with a recent report in which Ni2P nanomaterials were 

oxidized during the course of the water oxidation reaction to form NiOx and 

phosphate species.19, 88 Moreover, the P signal after catalytic cycling appears very 

weak (barely discernible above the noise, Figure 5.8), suggesting that the surface-

bound phosphates are being etched. In order to probe the possibility of leaching 

during catalysis ICP-MS analysis was performed on a solution following a fifteen-

hour CPE experiment (Figure 5.9, Table 5.1). The results show the presence of 

Co, Mn, and P in solution with a ratio of 1:7:234 thus suggesting that P is leaching 

into solution at a significant rate, whereas metal leaching is marginal, with Mn 

dominating Co. Because surface-bound phosphates have been reported to 

mediate water oxidation via proton-coupled electron transfer,46 the loss of surface 

phosphate combined with metal oxidation may account for the decrease in activity 

and shift in the mechanism. 
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Figure 5.8. High-resolution XPS patterns for CoMnP nanoparticles before (top) 
and after (bottom) electrolysis for 10 h: (a) Co (2p3/2), (b) Mn (2p3/2), and (c) P 
(2p3/2). 

 

 

Figure 5.9. High-resolution XPS patterns for CoMnP nanoparticles before (top) 
and after (bottom) electrolysis for 10 h: (a) Co (2p3/2), (b) Mn (2p3/2), and (c) P 
(2p3/2). 

Table 5.1. ICP-MS data of solution before and after a fifteen-hour CPE 
experiment. 

Element Before (5 h soak) 
Concentration (ppb) 

After CPE 
Concentration (ppb) 

After CPE 
(Mole ratio x : Co) 

P K 2.26 327.39 234 
Mn K 0.01 17.32 7 
Co K 0.13 2.66 1 

 

5.4 Conclusions 

We have reported the successful synthesis of homogenous, nearly 

monodisperse CoMnP nanoparticles. This new material is an active and efficient 
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water oxidation catalyst that can operate at an overpotential of 0.33 V and 96% 

Faradaic efficiency.  After five hundred cycles, the overpotential for catalysis 

increased to 0.37 V, likely due to surface oxidation and phosphorus etching from 

the nanoparticles. In addition, the TEM images, PXRD patterns, and compositional 

dependent electrocatalytic oxygen evolution properties of Co2-xMnxP nanoparticles 

are included in Appendix B.   



106	
	

CHAPTER 6. BOOSTING THE CATAYTIC PERFORMANCE OF 
IRON PHOSPHIDE NANORODS FOR THE OXYGEN EVOLUTION 

REACTION BY INCORPORATION OF MANGANESE 
 

ABSTRACT 

The lack of efficient and stable oxygen evolution reaction (OER) catalysts 

comprising inexpensive Earth-abundant materials limits the viability of water 

splitting as a clean and renewable source of energy. In this work, we report the 

synthesis of homogenous ternary Fe2-xMnxP nanorods with control of Mn 

incorporation (0 ≤ x ≤ 0.9) from the solution-phase reaction of manganese and iron 

carbonyl complexes with trioctylphosphine. The OER activity of Fe2-xMnxP 

nanorods dramatically increases with the incorporation of Mn (overpotential as low 

as 0.44V at 10 mA/cm2 for x = 0.9) and the overpotential can be further decreased 

(by nearly 0.1 V) by post-deposition annealing. The enhanced OER activity and 

stability, along with the abundance and availability of Fe and Mn, make bimetallic 

manganese-iron phosphides a promising class of materials for more cost-effective 

and efficient water oxidation catalysis. 

 

Li, D., Baydoun, H., Kulikowski, B., Brock, S. L. Chemistry of Materials, 2017, 29, 

3048-3054. Reprinted with permission from Copyright (2017) American Chemical 

Society.  
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6.1 Introduction 

Due to the high activation barrier and the need to transfer four electrons and 

four protons, the oxygen evolution reaction (OER) is considered to be the rate 

limiting step for the entire water splitting reaction. Therefore, the development of 

efficient materials capable of catalyzing the OER remains one of the major hurdles 

to overcome before water splitting can be utilized as a practical source of 

renewable energy.87, 108 Some of the more efficient OER catalysts are based on 

noble metals such as iridium and ruthenium.42, 109, 110 However, as a result of the 

scarcity and the expense of these metals, recent efforts have focused on the 

development of catalysts based on Earth-abundant metals.  

Transition metal phosphide nanoparticles are emerging as a new class of water 

oxidation catalysts with reports of high activity in binary metal phosphides such as 

Ni2P,18-20 Co2P,21, 22 and CoP.23-25 Recently, the ternary metal phosphides CoFeP, 

NiCoP, and NiFeP have shown improved OER activity over the binary phases 

(Co2P, Fe2P or Ni2P), attributed to synergism between the two metals.22, 26-29 

Inspired by the oxygen-evolving tetra-manganese cluster of Photosystem II, 

manganese-based materials such as oxides and phosphates have been studied 

for water oxidation in both neutral and alkaline solution.48, 111 Naturally, the interest 

in manganese-based materials has moved to phosphides. Our group reported 

CoMnP nanoparticles as efficient water oxidation catalysts, demonstrating a 

decrease in overpotential from 0.37 for Co2P to 0.33 V (at 10 mA/cm2) for CoMnP 

(Chapter 5).112 However, after prolonged stability testing, the overpotential of 

CoMnP was observed to increase to 0.37 V, correlated to surface oxidation and 
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phosphorus etching from the nanoparticles. Here we investigate the synergism 

between Fe and Mn in Fe2-xMnxP towards oxygen evolution catalysis with an eye 

to enhance stability without compromising activity. Notably, due to the abundance 

and availability of Fe and Mn compared to Ir, Ru or even Co, catalyst preparation 

becomes more cost-effective. 

While the Fe2-xMnxP bulk materials have been widely studied as potential 

functional magnetocaloric materials,50-53 only one report has emerged on the 

synthesis of nanoscale FeMnP. Whitmire and coworkers reported a synthesis of 

Fe-rich Fe2-xMnxP nanoparticles using FeMn(CO)8(μ-PH2) as a single-source 

molecular precursor.113 However, the need to prepare the single molecule 

precursor increased the complexity of this synthesis and Mn incorporation was 

limited and unpredictable.  The potential of nanoscale Fe2-xMnxP for catalytic 

processes, such as water splitting, emphasizes the need for a protocol that 

enables access to more Mn-rich phases and with greater control over final product 

composition.  

The synthesis and characterization of Fe2-xMnxP nanorods were carried out by 

myself and an undergraduate student I mentored, Bogdan Kulikowsiki at Wayne 

State University. The electrochemical measurements were performed and 

interpreted by Habib Baydoun (the Verani Group) in the Department of Chemistry 

at Wayne State University and myself. 

6.2 Experimental 

All materials used in the synthesis of manganese based phosphide 

nanoparticles are given in Chapter 2. 
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6.2.1 Synthesis of Fe2P nanorods 

Fe(CO)5 (2 mmol) was dissolved in 5 mL TOP at 90 °C for 1 h. At the same 

time, 10.0 mL of oleylamine was placed in a 200 mL Schlenk flask with a condenser. 

The system was degassed at 120 °C for 20 min to remove any moisture or oxygen, 

followed by purging with argon for 30 min. The temperature was then increased to 

320 °C and the mixture of iron carbonyl in TOP was injected into the system. The 

system was maintained at 320 °C for 2 h and cooled down naturally. The black 

precipitate was sonicated in hexane and reprecipitated with ethanol. This 

sonication-precipitation cycle was done at least two times to remove as much the 

bound organics as possible from the system. The isolated black powder was then 

dried under vacuum. 

6.2.2 Synthesis of Fe2-xMnxP nanorods (x ≤ 0.7) 

A mixture of Fe(CO)5 (1.5 mmol) and Mn2(CO)10 (1.25 mmol Fe/Mn = 0.75/1.25) 

was dissolved in 5 mL TOP at 90 °C for 1 h. At the same time, 10.0 mL of 

oleylamine was placed in a 200 mL Schlenk flask with a condenser. The system 

was degassed at 120 °C for 20 min to remove any moisture or oxygen, followed 

by purging with argon for 30 min. The temperature was then increased to 320 °C 

and the mixture of metal carbonyls in TOP was injected into the system. The 

system was maintained at 320 °C for y (0.5 ≤ y ≤ 10) h and cooled down naturally. 

Specific values of y are indicated in Table 6.1. The product was isolated as 

described for Fe2P. For a fixed reaction time of 2 h, ratios of Fe/Mn were changed 

to values indicated in Table 6.2. 

6.2.3 Synthesis of Fe1.1Mn0.9P nanorods  
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The synthesis was performed as described above, except after 3 h, a second 

mixture of Mn2(CO)10 (0.77 mmol) and TOP (3 mL) was injected.  The system was 

maintained at 320 °C for another 2 hours. Isolation of nanorods was performed as 

described previously. 

6.2.4 Size selective isolation process  

To separate the nanorods from small, spherical MnO nanoparticles evident in 

10 h samples, the product was dispersed in hexane and centrifuged.  The 

supernatant containing MnO nanoparticles was discarded. 

6.2.5 Post-deposition annealing  

Carbon-nanorods (mass ratio, 1:1) were dried under vacuum and then in a 

furnace under active flow of 5% H2/Ar at 673 K for 1 h. 

6.2.6 Characterization  

Transmission electron microscopy (TEM), energy dispersive spectroscopy 

(EDS), scanning transmission microscopy (STEM) and powder X-ray diffraction 

(PXRD) were operated as describe in Chapter 2. 

6.2.7 Electrochemical measurements  

All electrochemical measurements operated in this section are same as 

described in section 5.2.4. 

6.3 Results and Discussion 

Despite our inability to access Mn2P as discrete, crystalline nanoparticles by 

arrested precipitation reaction,20, 37, 114 we found that up to 45% Mn can be 

incorporated into Fe2P (Fe1.1Mn0.9P) by a single-pot solution-phase synthesis. The 

discrete, uniform Fe2-xMnxP nanorods (0 ≤ x ≤ 0.9) were evaluated as OER 
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catalysts and the activity was found to dramatically increase with the incorporation 

of Mn into the system. Notably, the overpotential can be further decreased (by 

nearly 0.1 V) by post-deposition annealing.  

6.3.1 Synthesis and Characterization of Fe2-xMnxP Nanorods (x ≤ 0.7) 

Initially, the more Mn-rich end of the phase diagram was targeted, Fe0.75Mn1.25P.  

A mixture of dimanganese decacarbonyl (1.25 mmol), iron pentacarbonyl (0.75 

mmol), and trioctylphosphine (TOP) was injected into a degassed system of 

oleylamine (OAm) at 325 °C. Within a few seconds, the solution changed from 

orange to black, indicating the start of nucleation. After maintaining the solution at 

325 °C for 2 hours, the solution was cooled to room temperature and the final 

product was isolated by dispersing in hexane and precipitating with ethanol. 

Transmission electron microscopy (TEM) (Figure 6.1a) indicated the sample 

consisted of rod-shape particles with a composition determined by the energy-

dispersive X-ray spectroscopy (EDS) and inductively coupled plasma-mass 

spectrometry (ICP-MS) to be Fe1.5Mn0.5P (Table 6.1, 2h), suggesting Mn 

incorporation is limited. The average length of the rods was 74.7 ± 10.0 nm and 

the average width was 5.5 ± 0.4 nm (Figure 6.2, 2h). High-resolution TEM 

(HRTEM) images (Figure 6.1b) of single rods revealed them to be single 

crystalline, exhibiting lattice fringes of 1.73 and 2.24 Å, corresponding to the (002) 

and (111) planes of hexagonal Fe2P (Figure 6.1d), respectively. The orientation 

of these fringes relative to the long axis, along with the sharpness of PXRD 

reflections with l components relative to hk0 reflections, suggests that the 

nanorods grow along the c direction (Figure 6.1d and e). The high angle annular 
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dark field (HAADF) image (Figure 6.1c) is consistent with highly-crystalline 

products, as evidenced by high diffraction contrast. Elemental mapping data for 

these Fe1.5Mn0.5P nanorods are consistent with solid solution formation (Figure 

6.1f); the three elements (Fe, Mn, and P) are homogeneously distributed within 

each rod, suggesting phase segregation is not occurring.
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Figure 6.1. (a) TEM image, (b) HR-TEM image showing lattice fringes 
attributed to (111) and (002) planes, (c) HAADF image (d) PXRD pattern and 
(f) HAADF image and its corresponding STEM elemental mapping data of 
Fe1.5Mn0.5P nanorods obtained from targeting the composition Fe0.75Mn1.25P at 
a 2 h reaction time. (e) Top-down view of the Fe2P (002) surface. 
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Table 6.1. Target compositions and product compositions (from EDS) of 
Fe2-xMnxP nanoparticles after 2 h reaction. 

Reaction time 
(h) 

Actual ratio from 
EDS (Mn : Fe)  

Actual ratio from 
ICP (Mn : Fe) 

0.5 0.21 : 1.79 0.20 : 1.80 
1 0.31 : 1.69 0.32 : 1.68 
2 0.48 : 1.52 0.49 : 1.51 
3 0.70 : 1.30 0.71 : 1.29 
6 0.71 : 1.29 0.73 : 1.27 

10 0.69 : 1.31 0.71 : 1.29 
5 (2nd injection) 

 

0.92 : 1.08 0.91 : 1.09 
 
 

 
Figure 6.2. (a) TEM images of Fe2-xMnxP nanorods as a function of time 

(targeted ratio Fe/Mn = 0.75/1.25). (b) Histograms for the rod length and width 
distribution (measured from TEM) for different compositions of Fe2-xMnxP. The 
Mn composition indicated was determined by ICP-MS (Table 6.1). 
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In an attempt to augment Mn incorporation, the initial ratio of Fe/Mn was 

decreased from 0.75/1.25 to 0.5/1.5, but only a marginal increase in Mn uptake 

was obtained (Table 6.2). Indeed, for a range of ratios evaluated, the Mn 

incorporation did not exceed 40% of the target (Table 6.2). The Whitmire group 

observed the same phenomenon, and suggested preferential removal of 

manganese atoms by solvent was occurring.113 Intriguingly, when only injecting 

Mn2(CO)10 into the system, it takes nearly 3 hours for the solution to change color 

from yellow to black, indicating a slow reaction rate for manganese alone with 

phosphorus. Thus, we hypothesized that after injecting a mixed metal precursor 

into the solution, the majority of the manganese monomer may still remain in the 

solution, and manganese monomer incorporation into the rods would increase as 

a function of time.  

Table 6.2. Target compositions and product compositions (from EDS) of 
Fe2-xMnxP nanoparticles after 2 h reaction. 

Starting ratio   
(Mn : Fe)  

Actual ratio from 
EDS (Mn : Fe) 

1.0 : 1.0 0.36 : 1.64 
1.25 : 0.75 0.48 : 1.52 

1.4 : 0.6 0.48 : 1.52 
1.5 : 0.5 0.55 : 1.45 

 

In order to determine the validity of this hypothesis, we isolated and 

characterized the product using the same initial metal precursor ratio (Fe/ Mn = 

0.75/ 1.25, x = 1.25) but at different reaction times (t = 0.5, 1, 2, 3, 6, and 10 h).  

TEM images show that these nanorods have similar sizes (Figure 6.2), but the 

composition varies from x = 0.2 to x = 0.7 when the reaction time is increased from 
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0.5 to 3 h (Figure 6.3a), thus indicating the incorporation of Mn into nanorods is 

increasing with time. Nonetheless, when the reaction time increases beyond 3 h, 

the Mn incorporation does not increase further but remains saturated. The fate of 

the excess Mn is discerned by TEM and XRD of the 10 h product, which indicates 

that small, spherical MnO nanoparticles are being formed along with Fe2-xMnxP 

nanorods (Figure 6.4a and b). The XRD peaks corresponding to MnO, as well as 

the spherical nanoparticles, disappear after size-selective precipitation leaving 

Fe1.3Mn0.7P nanorods as single–phase product (Figure 6.4b and c). As we 

ascertained above, the majority of manganese monomers remain in solution and 

the quantity that incorporates into the rods can be increased as a function of time. 

However, because of the highly oxophilic nature of manganese, some manganese 

monomers may react with adventitious oxygen in the system to form oxide,58 which 

cannot be converted into phosphide.115 Thus saturation is attributed to competition 

between manganese incorporation and manganese oxidation, with the latter 

serving to remove monomers from the reaction.  

 

Figure 6.3. (a) Mn uptake in Fe2-xMnxP as a function of reaction time; (b) 
polarization curves as a function of composition, x, in 1.0 M KOH; (c) 
overpotentials required at j = 10 mA/cm2. 
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Figure 6.4. (a) TEM image and (b) PXRD pattern of the product after 10 h 

reaction (grey) and the product after size-selective precipitation (red). (c) TEM 
image of the product after size-selective precipitation to remove the small, 
spherical MnO nanoparticles. 

The incorporation of Mn is reflected in the PXRD patterns (Figure 6.5) where 

peaks (most obviously, the (111)) shift to lower 2θ with increasing Mn content, 

reflecting the larger size of Mn relative to Fe.  Intriguingly, the structure in all cases 

appears to be hexagonal Fe2P-type, despite the fact that the crystal structure of 

bulk Fe2-xMnxP adopts an orthorhombic structure in the range 0.62 ≤ x ≤ 1.24 (and 

the hexagonal Fe2P-type structure for all other x).53 We compared simulated 

orthorhombic and hexagonal structures to the observed diffraction pattern for the 

x = 0.7 phase (Figure 6.6) and the latter appears to be a better match.  Thus, 

consistent with what the Whitmire group reported,113 nanoscale Fe1.3Mn0.7P adopts 

a metastable structure. This is likely due to the relatively gentle methods, such as 

the low reaction temperature, or more active precursors used.116-120 
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Figure 6.5. PXRD pattern of different compositions of Fe2-xMnxP nanorods, 
revealing a shift in the (111) reflection (ca 40° 2θ) to lower angle with increasing 
x. 

 

Figure 6.6. PXRD pattern of Fe1.3Mn0.7P nanorods. Reference patterns are 
for hexagonal Fe2P (PDF # 85-1727) and orthorhombic Fe1.3Mn0.7P 
(simulated).54 
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6.3.2 Electrocatalytic Water Oxidation by Fe2-xMnxP Nanorods (x ≤ 0.7) 

The catalytic behavior of the synthesized materials towards OER in an alkaline 

medium was tested by preparing an ink containing the as-prepared Fe2-xMnxP 

nanorods and carbon black suspended in Nafion, ethanol, isopropanol, and water. 

When first adding manganese (x = 0.2), the overpotential slightly increased from 

0.59 V (Fe2P) to 0.62 V. However, there was a significant improvement in the 

catalytic performance when x ≥ 0.2, exhibited by a decrease in overpotential for 

water oxidation from 0.62 V for Fe1.8Mn0.2P to 0.48 V for Fe1.3Mn0.7P at a current 

density of 10 mA/cm2 (Figure 6.3b and c). The origin of the increase in 

overpotential for x = 0.2 is not clear, but may be a function of the morphological 

changes that ensue when Mn is introduced (i.e., Fe2P nanorods are twice as long 

as Fe2-xMnxP nanorods) rather than an electronic effect.  

6.3.3 Synthesis and Characterization of Fe2-xMnxP Nanorods (x =0.9) 

In an effort to increase catalytic efficiency, we attempted to increase Mn loading 

in the sample. Introducing more manganese precursor after saturation can shift 

the equilibrium toward incorporation and result in a more Mn-rich phase. Therefore, 

we introduced a second injection of Mn2(CO)10 into the system after 3 h of reaction. 

This allowed us to achieve x=0.9, Fe1.1Mn0.9P (from EDS and ICP-MS, Table 6.1). 

TEM images (Figure 6.7a) show the Fe1.1Mn0.9P nanorods have the same width 

but have undergone a decrease in average length to 48.9 ± 7.3 nm, relative to 

lower values of x (ca 75 nm in length). High-resolution STEM imaging shows the 

rod is growing along (002) direction (observed lattice fringes have 1.74 Å spacing 

corresponding to the (002) plane of hexagonal Fe2P), as expected. The 
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homogenous nature of the synthesized nanorods was verified by performing an 

elemental mapping and a line scan (Figure 6.7c, d). The data show that Mn, Fe 

and P are homogeneously distributed within the nanorods. XRD data (Figure 6.5) 

shows the formation of the metastable hexagonal phase for Fe1.1Mn0.9P, in lieu of 

the thermodynamic orthorhombic phase that is expected for this composition. As 

predicted, the increase in x did lead to a further reduction in overpotential by 40 

mV, to 0.44 V (Figure 6.8a, b) 

 

Figure 6.7. (a) TEM image (inset: HRTEM image) of Fe1.1Mn0.9P nanorods; 
(b) HR-HAADF image of a portion of one Fe1.1Mn0.9P nanorod (inset: structural 
model of the Fe1.1Mn0.9P nanorods); (c) HAADF image and its corresponding 
STEM elemental mapping data for Fe1.1Mn0.9P nanorods; (d) line scan for one 
Fe1.1Mn0.9P nanorod. 
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Figure 6.8. Electrocatalytic oxygen evolution properties of Fe2-xMnxP 
nanorods. (a) Polarization curves of the Fe2-xMnxP nanorods in 1.0 M KOH; (b) 
overpotentials required at j = 10 mA/cm2; (c) the corresponding Tafel plots of 
the polarization curves of Fe2-xMnxP; (d) plot of Tafel slopes as a function of x.
  

6.3.4 Effect of Mn Concentration and Annealing on Electro-catalytic 

Performance of Fe2-xMnxP nanorods 

Interestingly, depending on the Mn loading in the sample, we observe different 

Tafel slopes (Figure 6.8c, d). For Fe1.75Mn0.25P we observe a Tafel slope equal to 

100 mV/dec. However, when the Mn loading was increased to x = 0.3 or 0.5, the 

Tafel slope decreased to 81 mv/dec; for Mn0.7 the Tafel slope decreased to 53 

mV/dec; and for x = 0.9 the Tafel slope is 39 mV/dec. These results suggest that 

changing the manganese loading greatly influences the mechanism by which the 

OER reaction proceeds. These results are in line with our recent observations, 

which have shown that the inclusion of manganese into cobalt phosphide materials 

decreases the overpotential and Tafel slope. This may be attributed to a decrease 
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in the energy barrier for the proton coupled electron transfer processes and the 

facilitation of O-O bond formation process due to synergism between Mn and Fe 

sites.101, 103 

IR spectroscopy (Figure 6.9a) suggests that the nanorod surfaces are ligand-

coated, with clear signals indicative of oleylamine, which can block active sites and 

thus lower the OER activity of Fe2-xMnxP nanorods. In an attempt to further reduce 

the overpotential, we hypothesized that removing the surface bound ligands can 

facilitate oxygen evolution. Therefore, samples of x = 0.5 and x = 0.9 were 

annealed in the presence of carbon black under a reducing atmosphere (5% H2 in 

Ar), to yield a product with a similar morphology, composition and crystallite size 

to the unannealed samples (Figure 6.9b and c). However, the FTIR spectrum 

shows the disappearance of the peaks associated with oleylamine (Figure 6.9a). 

After annealing, the overpotentials for Fe1.5Mn0.5P and Fe1.1Mn0.9P decreased from 

0.52 to 0.43 V and 0.44 to 0.35 V, respectively (Figure 6.10), with the latter having 

comparable performance to CoMnP and other non-noble metal phosphide 

materials before deactivation (APPENDIX C, Table C1).19-21, 23, 25, 26, 42, 121-124 

Moreover�it is lower than a commercially available RuO2 specimen run under 

similar experimental conditions (0.37 V, Figure 6.10). The Faradaic efficiency of 

Fe1.1Mn0.9P nanorods was also measured and was found to reach 95% after 2 h 

of catalysis, suggesting that the catalyst is highly selective towards the oxygen 

evolution reaction. Therefore, Fe1.1Mn0.9P nanorods can be considered among the 

more active catalysts reported in the literature for water oxidation. 



123	
	

 

Figure 6.9. (a) FT-IR spectra of oleylamine and Fe1.1Mn0.9P/C nanorods, 
revealing the existence of both oleylamine ligand and phosphate on the surface 
of FeMnP nanorods (C-H stretch: 2852 and 2924 cm-1; C-N stretch: 1385 cm-

1; N-H stretch: 3250-3450 cm-1; P=O stretch: 1000-1050 cm-1); (b) TEM images 
(element ratios measured from EDS) and (c) XRD patterns of Fe1.1Mn0.9P/C 
nanorods before and after annealing. The low-contrast curved features in the 
annealed sample (b) are ascribed to residual carbon black. 
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Figure 6.10. Electrocatalytic oxygen evolution properties of Fe2-xMnxP 
nanorods vs. RuO2. (a) Polarization curves of the Fe1.5Mn0.5P, Fe1.1Mn0.9P 
nanorods after annealing, and RuO2 in 1.0 M KOH; (b) controlled potential 
electrolysis on the Fe1.1Mn0.9P nanorods in 1.0 M KOH at 1.58 V (vs. RHE) over 
20 hours. 

 

6.3.5 Stability Testing of Fe2-xMnxP (x = 0.9) nanorods for Electro-Catalytic 

Water Splitting 

In order to evaluate the stability of the Fe2-xMnxP catalysts, controlled potential 

electrolysis (CPE) was carried out on annealed Fe1.1Mn0.9P samples in 1.0 M KOH, 

by applying a constant potential of 1.58 V (vs RHE). After 20 hours, the current 

density was relatively stable and 91% of the initial value was retained (Figure 
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6.10b).  This new class of metal phosphides shows enhanced stability compared 

to CoMnP, where only 80% of the initial current density was retained (Chapter 5).  

To better understand the nature of the catalyst, X-ray photoelectron 

spectroscopy (XPS) analyses were performed on the samples before and after a 

2 h CPE experiment (Figure 6.11). Before catalysis, the high resolution XPS 

spectrum of Fe exhibited two peaks assigned to reduced Fe in Fe2P (706.9 eV) 

and Fe2+ (710.4 eV),125, 126 with the latter ascribed to surface oxidation. The XPS 

spectra of Mn showed a peak at 641.0 eV, which is corresponding to Mn2+, 

indicating that the surface Mn atoms were predominately oxidized due to the high 

oxophicility of Mn.20, 113 The XPS spectra of P showed two peaks, one assigned to 

phosphide (resolved doublet: 2p2/3 at 129.6 eV and 2p1/2 at 130.4 eV) and 

phosphate or phosphite (unresolved doublet centered at 133.5 eV).125 The 

presence of phosphate in these samples is also evident in FT-IR spectra (Figure 

6.9a). After 2 h CPE, the intensity of the low energy peaks of Fe (706.9 eV) and P 

(129.7 eV) had signficantly decreased in intensity and the peaks corresponding to 

oxidized Mn and Fe species shifted to higher binding energies (Mn: from 641.0 eV 

to 642.0 eV, Fe: from 710.4 eV to 711.2 eV), indicating that further surface 

oxidation occurred resulting in the formation of M3+ species (M = Fe or Mn) such 

as M2O3, M(O)OH or MPO4 during catalysis.127-130 Consistent with this 

interpretation, post-CPE TEM images of Fe1.1Mn0.9P nanorods (Figure 6.12a) 

reveal an amorphous layer has formed around the crystalline rod, likely composed 

of metal phosphate and hydroxide/oxo-hydroxide moieties generated in-situ on the 

surface under OER catalytic conditions as previously noted for other 
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phosphides.19-21, 88, 122, 131, 132 These moieties are expected to be highly active 

species toward water oxidation catalysis. 

 

Figure 6.11. High-resolution XPS patterns for Fe1.1Mn0.9P nanorods before 
(top) and after (bottom) electrolysis for 2 h: Fe (2p3/2), Mn (2p3/2), and P (2p). 

EDX studies (Figure 6.12b) showed Mn, Fe, and P remain in nanorods after 

the CPE study, but with a significant decrease in P content when compared to the 

nanorods before catalysis. Loss of phosphorus was confirmed by the analysis of 

the electrolyte post-CPE by ICP-MS (Table 6.3), suggesting that P is being 

leached from the catalyst into the electrolyte, likely as phosphate, over time, 

whereas the metal leaching rate is much lower (by a factor of 10) and roughly 

equivalent for Fe and Mn. As surface phosphates have been reported to assist in 

water oxidation catalysis via proton coupled electron transfer,20, 21, 46, 101, 122 the 

decrease in activity over time may be ascribed to the surface-bound phosphate 

loss. 
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Figure 6.12. TEM images of Fe1.1Mn0.9P nanorods before and after CPE. 

Table 6.3. ICP-MS data of the electrolyte solution before and after a fifteen-
hour controlled potential electrolysis (CPE) experiment, which was carried out 
in 1.0 M KOH, by applying a constant potential of 1.58 V (vs RHE). 

Element Before (5 h soak) 
Concentration (ppb) 

After CPE 
Concentration 

(ppb) 

After CPE 
(Mole change ratio x : Mn) 

P K 11.60 208.84 24.27 

Mn K 2.08 16.50 1.00 

Fe K 22.32 42.51 1.38 

 

6.4 Conclusions 

The synthesis of homogenous Fe2-xMnxP nanorods with control of Mn 

incorporation has been demonstrated. Under OER catalytic condition, an oxidative 

transformation occurred on the surface of these nanorods and the in-situ 

generated oxidized species are likely responsible for the high activity toward water 

oxidation catalysis. After an initial increase between x = 0 (Fe2P) and x = 0.2, the 

OER overpotential decreases with the incorporation of Mn into the system, up to 

the highest value of x prepared (x = 0.9). These data suggest the stoichiometry of 

bimetallic phosphides is a key determiner of activity, either reflecting electronic 

modulation of the active site or the participation of multiple metal sites to achieve 

water oxidation and O2 formation/release. Augmented access to the surface 
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(perhaps accompanied by surface reconstruction) via annealing to remove surface 

ligands is shown to further decrease the overpotential by nearly 0.1 V, resulting in 

overpotentials as low as 0.35 V.  Modest decreases in activity occur over time, 

ascribed to loss of phosphate from the catalyst surface.  
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CHAPTER 7. VISIBLE LIGHT INDUCED PHOTOCATALYTIC 
HYDROGEN EVOLUTION USING A NI2P-CDS HYBRID AEROGEL 

SYSTEM 
 
 

 

Due to the increasing global energy demand and the climate change impact of 

CO2 from energy production, it is essential to construct clean energy production 

and storage systems. Photocatalytic evolution of hydrogen from water utilizing 

visible light is a promising and appealing pathway. CdS nanoparticles are good 

visible light absorbers but not efficient hydrogen evolution catalysts, while Ni2P is 

shown to be an outstanding electrocatalyst for the hydrogen evolution reaction 

(HER). Integration of CdS nanoparticles with Ni2P nanoparticles using a sol-gel 

approach is expected to yield a hybrid system in which photo generated carriers 

on CdS are transferred to catalytically active Ni2P sites. In this work, the assembly 

of preformed nanoparticles to make Ni2P-CdS hybrid aerogels will be described 

and photocatalytic HER data will be presented. The performance of these novel 

architectures will be compared to CdS nanoparticles and CdS aerogels and the 

role of interparticle coupling, porosity, and surface passivation on catalytic 

efficiency will be discussed.  

 

 

Li, D., Whisnant K. G., Brock, S. L. “Visible Light Induced Photocatalytic Hydrogen 

Evolution Using a Ni2P-CdS Hybrid Aerogel System.” In preparation   
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7.1 Introduction 

In order to meet growing global energy demand and reduce CO2 emission from 

traditional energy resources, it is essential to find an abundant and renewable 

energy system to supplement (or supplant) current resources. Splitting water 

utilizing visible light is a promising and appealing pathway because it can provide 

chemically stored energy from solar energy. As an ultra-clean and renewable 

energy source, hydrogen (H2) obtainable from water through the reduction half 

reaction serves as a feasible source of alternative energy.  

Cadmium sulfide (CdS), due to the correspondence of its band gap to visible 

light, is considered to be one of the promising candidates for visible light driven 

photocatalytic water splitting. However, CdS alone doesn’t exhibit high 

photocatalytic activity due to its fast electron–hole recombination and 

photocorrosion. Therefore, CdS is generally paired with a co-catalyst on the 

surface to improve photoactivity and stability.133 Nickel phosphide (Ni2P) 

nanoparticles are not active photocatalysts, but have emerged as stable 

electrocatalysts for hydrogen evolution, capable of lowering the activation barrier 

of the hydrogen evolution reaction due to their ability to bond with hydrogen 

reversibly.134-136 Moreover, both CdS and Ni2P are noble-metal-free materials, 

which can lower the cost of catalyst preparations and facilitate their practical 

applications compared to previous systems that utilize noble-metal catalysts for H2 

evolution.137  

Accordingly, different systems based on CdS and Ni2P materials have been 

constructed to achieve efficient performance for the photocatalytic hydrogen 
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evolution reaction (HER). The Fu group combined Ni2P particles with CdS 

nanorods in a lactic acid solution and achieved efficient light-driven hydrogen 

evolution activity with an initial turnover frequency (TOF) of 2110.138 Sun and his 

coworkers reported a method, in which Ni2P nanoparticles were deposited on CdS 

rods though solvothermal reactions, achieving a H2 evolution rate of 553.7 μmol*h-

1*mg-1
.
137 However, the light harvesting compound CdS are relatively large (~1 μm 

rods), limiting catalytically active site availability. 

Aerogels composed of semiconductors that absorb visible light are 

appealing materials for catalytic applications because of their high specific surface 

areas (100– 300 m2/g) and interconnected pore structures. The high surface area 

increases the accessibility of reactive sites, while the continuous 

meso/macroporous structure enables fast transfer of reactants to, and products 

from, the reactive sites.139 Previous photocatalytic studies of organic dye 

degradation, as well as photocurrent studies proved that by assembling 

semiconductor nanoparticles into a highly porous network via dichalcogenide 

bonding facilitates the charge carrier separation, which in turn reduces the 

electron-hole recombination and enhances catalytic performance.140, 141 In this 

work, we established a protocol for assembly of preformed nanoparticles to form 

Ni2P-CdS hybrid aerogels for photocatalytic HER. Under optimal conditions, the H2 

evolution rate of the hybrid aerogel can reach as high as 778.2 μmol*h-1*mg-1 with 

a TOF of 23090 based on per mole of Ni2P, indicating the superior photocatalytic 

activity for HER.  

7.2 Experimental 
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All materials used are given in Chapter 2. 

7.2.1 Synthesis of CdS nanoparticles 

A mixture of 0.06 g cadmium oxide (CdO), 0.23 g tetradecylphosphonic acid 

(TDPA), and 3.0 g trioctylphosphonic oxide (TOPO) was first heated to 150 °C 

under vacuum. The solution was then heated to 320 °C under argon flow until it 

become colorless. 2.0 mL trioctylphosphine (TOP) was injected and the resultant 

solution was heated to 370 °C. At 370 °C, a solution of 2.3 mL TOP and 90 µL bis 

trimethylsilane (TMS) was injected. The yellow precipitate was sonicated in toluene 

and reprecipitated with ethanol. This sonication-precipitation cycle was done at 

least two times to remove as much the bound organics as possible from the system. 

7.2.2 Synthesis of Ni2P nanoparticles 

A mixture of 0.514 g of nickel (II) acetylacetonate (Ni(acac)2) and 5.0 mL n-

octyl ether was heated to 110 °C under argon flow. The solution was then injected 

into a degassed solution containing 5.0 mL n-octyl ether, 2.0 mL oleylamine, and 

12 mL TOP heated at 350 °C. The combined solution was then held at 350 °C for 

1 hour. The black precipitate was sonicated in chloroform and reprecipitated with 

ethanol. This sonication-precipitation cycle was done at least two times to remove 

as much the bound organics as possible from the system. 

7.2.3 Ligand Exchange 

1.6 mmol of MUA (0.3678 g) or thioglycolic acid (0.11 mL) was dissolved in 10 

mL of methanol. Tetramethylammonium hydroxide (TMAH) was added until the pH 

of the solution reached 10.  

7.2.3.1 Separate Ligand Exchange of CdS and Ni2P nanoparticles  
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As-prepared CdS and Ni2P nanoparticles were dispersed in the ligand 

exchange solution, precipitated with ethyl acetate, and centrifuged to remove the 

original organic solvents and ligands. Excess thiolate ligands were removed by 

washing with ethyl acetate. 2 mL methanol was added to disperse the thiolate 

capped nanoparticles creating the sols. CdS and Ni2P sols were then mixed 

proportionally and sonicated, creating the mixed sol for gelation. 

7.2.3.2 Combined Ligand Exchange of CdS and Ni2P nanoparticles 

80 mg Ni2P nanoparticles were first dispersed in 5 mL methanol to prepare a 

stock solution. A fraction of the Ni2P stock solution (volume depends on the target 

composition) was then added to CdS nanoparticles. The mixed solution was 

sonicated for 10 min and then added into the ligand exchange solution. The 

resultant solution was sonicated for 20 min, then precipitated with ethyl acetate, 

and centrifuged to remove the original organic solvents and ligands. Excess 

thiolate ligands were removed by washing with ethyl acetate. 2 mL methanol was 

added to disperse the thiolate capped nanoparticles, creating the sol for gelation. 

7.2.4 Gel Formation & Aerogel Preparation 

Wet gels of Ni2P-CdS were formed thorough the oxidative induced gelation 

method142 by adding 30 µL 3.0% tetranitromethane (TNM) solution containing 30 

µL TNM and 1.0 mL acetone into the sol. Following the addition of 3.0% TNM, the 

solutions were left to age for 1 week under ambient conditions to form opaque 

uniform wet gels. Wet gel solvent was exchanged 6-8 times with acetone over 3-4 

days to remove the byproducts from oxidation. The resulting gels were washed 

with acetone and dried through a critical point process as described previously.142  
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7.2.5 Photocatalytic Hydrogen Evolution 

The photocatalytic hydrogen evolution experiments were carried out in a 20 mL 

vial with stirring at ambient temperature using a 300 W xenon lamp equipped with 

a UV cut-off filter. Monolithic aerogels were crushed to from a powder. 0.2 mg of 

the photocatalyst was dispersed in 10 mL of aqueous solution containing Na2S and 

Na2SO3 as sacrificial reagents, and then the suspension was stirred and purged 

with nitrogen for 20 min to remove air. Hydrogen gas was measured by gas 

chromatography using a thermal conductivity detector (TCD). The hydrogen 

evolution rate was calculated based on the mass of photocatalysts. The turnover 

frequency (TOF) was calculated by using the following equations: 

TON = moles of H2/moles of Ni2P on photocatalyst 

TOF = TON/reaction time (hours) 

7.2.6 Characterization 

Transmission electron microscopy (TEM), energy dispersive spectroscopy 

(EDS) and powder X-ray diffraction (PXRD) were perfomed as describe in Chapter 

2. 

7.2.6.1 Surface Area Analysis 

The surface area of samples was determined by obtaining nitrogen 

physisorption isotherms on samples at 77 K by using a Micromeritics TriStar II 

3020 surface area analyzer. All samples were degassed for 24 h at 423 K under 

N2 flow before the analysis. The Brunauer-Emmett-Teller (BET) multimolecular 

adsorption method was used to calculate surface areas and Barrett-Joyner-

Halenda (BJH) method was used to measure pore size distributions.  
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7.2.6.2 UV-vis Diffuse Reflectance Spectroscopy  

A JASCO V-570 UV/VIS/NIR Spectrometer with integrating sphere was used 

to measure the UV-vis diffuse reflectance spectra. The solid samples were mixed 

with barium sulfate to form homogeneous solids. The mixture was then placed in 

the sample holder. 

7.3 Results and Discussion 

7.3.1 Preparation of Ni2P-CdS hybrid aerogels 

Nearly monodisperse Ni2P and CdS nanoparticles were synthesized through 

solution-phase arrested-precipitation reactions by reacting Ni(acac)2 with tri-

octylphosphine (TOP) and CdO with Bis(trimethylsilyl)sulfide (TMS), respectively. 

Power X-ray diffraction patterns (Figure 7.1a and c) show that Ni2P and CdS both 

exhibit hexagonal structures, characteristic of their respective structure. No 

additional reflections were observed, suggesting an absence of significant (> 5%) 

crystalline impurities. Transmission electron microscopy (TEM) images (Figure 

7.1b and d) indicate CdS and Ni2P nanoparticles are both spherical with an 

average size of 4.8 nm and 6.1 nm, respectively. 
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Figure 7.1 (a) PXRD pattern and (b) TEM image of Ni2P nanoparticles. (c) 
PXRD pattern and (d) TEM image of CdS nanoparticles. 

Following synthesis, CdS and Ni2P nanoparticles were isolated and capped 

with thioglycolic acid (details in section 7.2.3) separately. The resultant thiolate-

capped nanoparticles were dispersed in methanol and then mixed different 

proportions to generate a hybrid sol for gelation. Tetranitromethane (TNM), an 

oxidizing agent, was used to achieve controlled surface oxidation that could lead 

to gelation. Scheme 7.1 describes the gelation process where thiolate ligands are 

oxidatively removed from the particles’ surface by TNM yielding as disulfides, RS-

SR. Subsequently, TNM further oxidizes the exposed surface sulfide, leading to 

formation of inter-particle disulfide (S-S2-) bonding and assembly of nanoparticles. 

The formed wet gel was aged and solvent-exchanged with acetone to remove the 

byproducts from oxidation. Ni2P-CdS wet gels were then dried using a CO2 

supercritical dryer, enabling a process that avoided pore collapse and maintained 

the integrity of the gel. The resulting Ni2P-CdS aerogels (Figure 7.2a), showed a 
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minimum volume loss (5-10%) when compared to the wet gels prior to supercritical 

drying.  

Scheme 7.1Scheme showing the main steps involved in formation of CdS 
aerogels from thiolate capped-CdS NCs 

 

 

Figure 7.2 (a) Photographs of sols, gels, and aerogels with different loadings 
of Ni2P throughout the formation process and (b) PXRD patterns of CdS 
nanoparticles and aerogels with different loadings of Ni2P. Reference spectra 
for CdS and Ni2P are shown as stick diagrams at the bottom and top, 
respectively. 
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Figure 7.2b shows the PXRD patterns for hybrid aerogels with different 

compositions. When the Ni2P loading is smaller than 20%, no obvious diffraction 

peak corresponding to the Ni2P phase is observed due to the small amount of Ni2P 

and the strong diffraction peaks from CdS. For a Ni2P loading of more than 30%, 

peaks that correspond to Ni2P and CdS are observed. These peaks are nearly 

identical to ones observed before gelation (Figure 7.1), indicating neither the size 

nor the structure of the two components has changed significantly. 

Scheme 2 shows the two possible processes that may occur during co-gelation. 

In the top pathway, a phase separation between two components occurs, while in 

the bottom pathway, the two components are well-mixed to form a well-dispersed 

system. For photocatalytic HER, a good dispersion of co-catalyst on light 

absorbers (Scheme 2, bottom pathway) is desired because it provides a rapid 

charge injection from photo-absorbs to co-catalyst.  

Scheme 7.2 Illustration of possible pathways of co-gelation of two nanoparticle 
components 

 

As shown in Figure 7.2a, with the increasing loading of Ni2P nanoparticles, the 

color of the final aerogels changed from bright yellow (0%) to yellow (0.5%), to 

black-yellow (5%), and to black (30%, 60%). The color is consistent through the 

entire aerogel (top, bottom, inside core, and outside layer), indicating a likely good 
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dispersion of Ni2P nanoparticles. However, the TEM images of the hybrid aerogels 

(Figure 7.3b, 5% Ni2P-CdS was chosen as a representative composition) showed 

that Ni2P nanoparticles are more likely embedded inside the aerogel network as 

aggregations, which may cause poor interactions between Ni2P (co-catalyst) and 

CdS (light absorber) nanoparticles and limit the number of accessible active sites. 

Moreover, aerogels with these Ni2P clusters have poor thermal stability. The Ni2P 

nanoparticles sintered (Figure 7.3c) when applying a thermal treatment 

(Ar@250 °C, 1 hour) for extra organic surfactant removal, which would further 

decrease the activity of a catalyst.143 As mentioned above, ligand exchange was 

operated separately for Ni2P and CdS nanoparticles with thioglycolic acid. 

Thioglycolic acid was selected because of its short length which provides efficient 

removal of surface ligands and easy accessibility to the particle surface, resulting 

in a better catalytic performance.140 However, a dilemma presented as this short 

chain thiol may lead to Ni2P nanoparticles’ insufficient surface stabilization and 

cause aggregation of Ni2P before gelation and incorporation into the CdS porous 

matrix (Figure 7.3a). The issue can be resolved by simultaneously conducting 

ligand exchange for Ni2P and CdS nanoparticles (section 7.2.3.2). As shown in 

Figure 7.3d, the existence of CdS nanoparticles during ligand exchange can 

prevent Ni2P nanoparticles from aggregation. Ni2P nanoparticles (slightly bigger 

and darker particles) dispersed uniformly in the hybrid aerogel before and after the 

thermal treatment (Figure 7.3e and f). This is consistent with what was observed 

from the PXRD data (Figure 7.4) that no obvious change in peak breadths was 

observed before and after annealing, suggesting a good thermal stability. The final 
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Ni2P loadings in different hybrid aerogels were evaluated by energy dispersive 

spectroscopy (EDS) (Table 7.1). The close values of the target and actual Ni2P 

loadings indicate a good control over compositions can be achieved using this 

protocol. Accordingly, hybrid aerogels with different Ni2P loadings were prepared 

from nanoparticles ligand-exchanged together, following by annealed to remove 

extra surface ligands, and testing to evaluate the catalytic activities of visible light-

induced HER. 

 

Figure 7.3 TEM images of sols of CdS and Ni2P nanoparticles ligand-
exchanged separately (a) and together (d), their corresponding aerogel before 
(b), (e) and after annealing (c), (f), respectively. 
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Figure 7.4 PXRD patterns of a 5.0% Ni2P-CdS aerogel before and after 
annealing 

Table 7.1 Targeted and actual compositions (from EDS) of Ni2P-CdS hybrid 
aerogels 

Target Ni2P 
loading (wt. %) 

Actual Ni2P loading from 
EDS (wt. %) 

0.5 0.5 
1 1.1 
5 4.9 

30 33.3 
60 57.8 

 

7.3.2 Visible light-induced HER 

The light-induced HER activity of the hybrid aerogels was evaluated under 

visible light irradiation (λ > 420 nm) using Na2S/Na2SO3 as the hole scavenger. 

Figure 7.5a shows the optical images taken during the generation of hydrogen 

bubbles from the photocatalysis of 0.5% Ni2P-CdS aerogel. Once the hydrogen 

bubbles started being generated, they can carry the aerogels flowing around in the 

solution. The photocatalytic activity occurring within the system is modeled in 

Figure 7.5b. Following the absorption of photons from light, the CdS nanoparticles 

generate electron-hole pairs. The photo-generated electrons are transported to the 
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catalytically active Ni2P sites, where available water molecules are reduced to 

hydrogen bubbles, while the photo-generated holes react with the hole scavengers. 

Figure 7.5c shows the hydrogen evolution rates of CdS nanoparticles and CdS 

aerogels with different loadings of Ni2P. The pure CdS nanoparticles afforded the 

lowest rate (21.2 μmol*h-1*mg-1) while the pure CdS aerogels doubled the activity 

(43.6 μmol*h-1*mg-1). When 0.1% Ni2P was loaded into the CdS aerogel, the 

activity was dramatically improved to a value of 271.0 μmol*h-1*mg-1. The CdS 

aerogel with a Ni2P loading of 0.5% showed the best rate of hydrogen evolution 

(778.2 μmol*h-1*mg-1) with a TOF of 23090 per mole of Ni2P, which places the 0.5% 

Ni2P-CdS hybrid aerogel among the top tier of visible light-induced HER catalysts. 

Further increasing the Ni2P loading resulted in a decrease in the hydrogen 

evolution rate, likely due to the excess light absorption of Ni2P. The stability of the 

0.5% Ni2P-CdS aerogel is shown in Figure 7.5d. The system was evacuated every 

hour and the process was repeated for 5 times. The hydrogen evolution rate of the 

0.5% Ni2P-CdS aerogel remained within 770-810 μmol*hr-1*mg-1, indicating a good 

stability for visible light-induced HER. 



143	
	

 

Figure 7.5 (a) Images taken during the generation of hydrogen bubbles from 
the photocatalysis. (b) Representation of the photocatalytic activity occurring 
within the system. (c) The H2 evolution rate of the hybrid aerogels loaded with 
different amounts of Ni2P at room temperature under visible light irradiation. (d) 
Cycling runs for photocatalytic hydrogen evolution using 0.5% Ni2P-CdS 
aerogels. The system contains 0.2 mg of catalyst immersed in a 20-mL 
aqueous solution containing 0.75 M Na2S and 1.05 M Na2SO3. 

In order to study the rational factors that lead to the superior photocatalytic HER 

performance of the hybrid aerogel, a serious of studies were carried out. 

7.3.3 Morphology of Ni2P-CdS hybrid aerogels 

TEM images (Figure 7.6) reveal the morphology of the 0.5% Ni2P-CdS hybrid 

aerogels which exhibit a 3-D porous network in which Ni2P nanoparticles are 

dispersed uniformly. High-resolution TEM shows both Ni2P and CdS maintain the 

small spherical shape of the initial nanoparticles. The distance between ordered 

lattice planes of 0.286 nm in a bigger particle can be assigned to the (101) plane 

of hexagonal Ni2P, while 0.190 nm in a smaller particle corresponds the (201) 
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plane of hexagonal CdS. The fast Fourier transform (FFT) of the HRTEM images 

show ordered diffraction spots (inset of Figure 7.6c), which confirms that both Ni2P 

and CdS nanoparticles are single crystalline with high quality. The intimate mixing 

of the two components, combine with the small size and high crystallinity of CdS 

and Ni2P nanoparticles are important for visible light-induced HER because they 

greatly shorten the distance that photogenerated electrons and holes have to travel 

to reaction sites and thus reduce the likelihood of electron-hole recombination. 
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Figure 7.6 (a), (b) TEM images and (c) HRTEM image of a 0.5% Ni2P-CdS 
aerogel (inset: FFT of the selected areas). 

7.3.4 Surface area measurements of Ni2P-CdS hybrid aerogels 

The 3-D porous structure was confirmed by surface area measurements 

(Figure 7.7). The surface areas of CdS nanoparticles and aerogels were 

determined by appying of the Brunauer-Emmett-Teller (BET) model. The pore-size 

distribution and average pore diameter were determined using the Barrett-Joyner-

Halenda (BJH) model. CdS nanoparticles exhibit a mesoporous structure (2-50 nm 

pore diameter) that has a surface area of 27.73 m2/g, while the CdS and Ni2P-CdS 

aerogels both exhibit a combination of mesoporous and macroporous structure (2-

200 nm pore diameter) with a surface area of 174.19 and 173.98 m2/g, respectively. 

The surface area of nanoparticles is much lower than the theoretical value 248.00 

m2/g, presumably due to the aggregation and overlap of particles. However, by 

assembling nanoparticles into aerogels, the accessible surface area increased by 

more than 6 times, which is much closer to the theoretical value. The adsorption-

desorption isotherms of the CdS and Ni2P-CdS aerogel are almost identical, 

indicating that the hybrid aerogel successfully retained the porous structure from 

its native. More importantly, the wider size distribution of the aerogels (2-200 nm) 
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compared to that of the nanoparticles (2-50 nm) enables efficient transport of both 

reactants to and products from active sites in the system.139 Additionally, materials 

with high surface areas can absorb and internally scatter light effectively, improving 

photon harvesting. The large surface area can also facilitate the adsorption of 

sacrificial reagents/hole scavengers and thus increase the consumption rate of 

photo-generated holes, surpassing electron-hole recombination, which ultimately 

enhances catalytic efficiency.  

 

Figure 7.7 (a) N2 physisorption isotherms of a CdS aerogel, 0.5% Ni2P-CdS 
aerogel, and CdS nanoparticles. (b) Pore size distribution of (top to bottom) 
CdS nanoparticles, CdS aerogel, and 0.5% Ni2P-CdS aerogel. 

7.3.5 Optical properties of Ni2P-CdS hybrid aerogels 

UV-vis diffuse reflectance spectroscopy (UV-vis DRS) was used to access the 

optical properties of both the CdS aerogel and 0.5% Ni2P-CdS hybrid aerogel as 

shown in Figure 7.8a. The absorption edge of the CdS aerogel was not shifted 

after incorporating of Ni2P, revealing that the incorporation of Ni2P does not impact 

the visible-light-suited band gap of the CdS.  
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The photoluminescence spectra with an excitation wavelength of 405 nm 

provided in Figure 7.8b shows that the CdS aerogel has two emission bands at 

460 and 560 nm, corresponding to the band-edge emission and surface trap 

states.142 Following Ni2P loading, the emission peaks of the CdS aerogel were 

quenched, likely due to the fast rate at which electrons are transferred from CdS 

to Ni2P, suppressing the electron-hole recombination and enhancing the 

photocatalytic activity.  

 

Figure 7.8 (a) UV-vis diffuse reflectance spectra of 0.5% Ni2P-CdS aerogel 
and CdS aerogel. (b) Photoluminescence spectra of CdS aerogel and 0.5% 
Ni2P-CdS aerogel. 

7.3.6 Bonding Possibilities 

It is well established that CdS aerogels are formed via disulfide (S–S2−) bonding, 

while the bonding between the CdS and Ni2P nanoparticles remains unclear. CdS 

and Ni2P particles could be connected by S-P bonds that are produced by oxidizing 

surface S and P species with TNM (Figure 7.9a, top), or crosslinked by 

carboxylate terminal groups on the thiol ligand with metal cations (Figure 7.9a, 

bottom). One major difference between these two possibilities is that the latter 

requires a carboxylate group present in the capping ligands, while the former does 



148	
	

not. In order to differentiate between these two scenarios, 4-fluorothiophenol was 

used to replace thioglycolic acid as the capping ligand. Sols of 4-

fluorothiophenolate capped CdS nanoparticles, and both 4-fluorothiophenolate 

capped CdS and Ni2P nanoparticles were prepared (Figure 7.9b top).  After 

adding a solution of 3% TNM, the CdS wet gel was still formed (Figure 7.9b bottom 

left), while the hybrid Ni2P-CdS wet gel was no longer formed (Figure 7.9b bottom 

right). A phase separation occurred instead, in which yellow CdS nanoparticles 

remained dispersed in the solution while black Ni2P nanoparticles precipitated at 

the bottom (Figure 7.9b bottom right), indicating that the metal ion cross-linking is 

responsible for the bonding between CdS and Ni2P. Indeed, the gel formation due 

to metal ion cross-linking was observed in Ni2P aerogels,144 in which the TNM 

etched Ni2+ ions from the surface. These Ni2+ ions subsequently linked together 

carboxylates (thiolates) in adjoining particles. Accordingly, we hypothesize that in 

a Ni2P-CdS hybrid aerogel, CdS nanoparticles are connected via disulfide (S–S2−) 

bonding, while CdS and Ni2P nanoparticles are connected by crosslinking the 

terminal carboxylate group with metal cations at surface. This enables the 

interactions between one Ni2P nanoparticle with multiple CdS nanoparticles at the 

same time (Figure 7.5b), providing quick and powerful electron injections. 

However, this needs to be verified by further surface analysis study such as XPS.  
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Figure 7.9 (a) Illustration of two bonding possibilities (b) optical images for sols 
of 4-fluorothiophenol capped CdS nanoparticles (left), 30% Ni2P and CdS 
nanoparticles (right) before (top) and after (bottom) adding 3% TNM solution. 

 

7.4 Conclusions 

Ni2P-CdS aerogels with different compositions were successfully prepared 

from discrete CdS and Ni2P nanoparticles using oxidative gelation processes 

followed by supercritical drying. The nanoparticle components remained crystalline 

and the aerogel exhibited a meso/macroporous structure with a high specific 

surface area. Hybrid aerogels were shown to have enhanced performances 

towards photocatalytic hydrogen evolution. with the 0.5% Ni2P-CdS aerogel 

showing a H2 evolution rate of 778.2 mol·h-1mg-1 under visible light irradiation. This 

superior photocatalytic performance, compared to a CdS aerogel (43.6 µmol*h-

1*mg-1) or CdS nanoparticles (3 µmol*h-1*mg-1), is attributed to (1) the small size of 

CdS and Ni2P nanoparticles, and their intimate mixing, which can greatly shorten 

the distance that photogenerated electrons and holes have to travel to surface 

reaction sites and thus reduce the likelihood of electron-hole recombination; (2) 
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the meso/macroporous structure, which allows for efficient absorption and internal 

scattering of light (enhanced light harvesting) and enables rapid flux of reactants 

to, and products from, those sites; and (3) the fast charge separation at the 

CdS/Ni2P interface, which again reduces the possibility of electron-hole 

recombination and improves the catalytic activity.  



151	
	

CHAPTER 8. CONCLUSIONS AND PROSPECTUS 
 

8.1 Conclusions 

Due to the increasing global energy demand and the climate change impact of 

CO2 from energy production, great efforts have been made to develop new 

systems that produce clean energy or utilize energy more efficiently. Producing 

hydrogen from water utilizing visible light or electricity is a promising and appealing 

pathway because water is a clean and renewable energy source. While Magnetic 

refrigeration is a cooling technology based on the magnetocaloric effect that it 

consumes 30% less energy than traditional gas-compression refrigeration and 

requires no refrigerant. Potential candidate materials for these applications have 

drawn increasing attention. 

Transition metal phosphides exhibit a wide range of unique magnetic, redox 

and catalytic properties. For example, the magnetic properties can be altered from 

paramagnetic Co2P to ferromagnetic CoxFe2-xP with a tunable Curie point close to 

or above room temperature,54 which makes this material potentially suitable for 

magnetic imaging, therapies, refrigeration, or data storage.55-57 On the other hand, 

transition metal phosphide nanoparticles are also emerging as a new class of 

water splitting electro-catalysts with reported high activity in binary metal 

phosphides such as Ni2P, Co2P, and CoP. The OER and HER catalytic activities 

of metal phosphide materials can also be further improved by introduction of a 

second metal into binary metal phosphide systems. Recently, the ternary metal 

phosphides CoFeP, NiCoP, and NiFeP have shown improved OER activity over 

the binary phases (Co2P, Fe2P or Ni2P), attributed to synergism between the two 
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metals. However, despite their promise, comparatively little research has been 

done on ternary (relative to binary) nanoparticles of metal phosphides. 

8.1.1 Establishing Synthetic Methods of Transition Metal Phosphides 

In this dissertation research, we first systemically studied the effects of 

synthetic levers on nickel phosphide nanoparticle formation. A phase-control 

strategy enabling the arrested-precipitation synthesis of nanoparticles of Ni5P4 and 

NiP2 as phase-pure samples using different Ni organometallic precursors and 

trioctylphosphine (TOP) was described. The composition and purity of the product 

can be tuned by changing reaction parameters, including the Ni precursor, the 

oleylamine (OAm) and TOP concentrations, temperature, time and the presence 

or absence of a moderate temperature soak step to facilitate formation of Ni and/or 

Ni-P amorphous nanoparticle intermediates. Notably, the 230 °C intermediate step 

favors the ultimate formation of Ni2P and hinders further phosphidation to form 

Ni5P4 or NiP2 as phase-pure products. In the absence of this step, increasing the 

P/Ni ratio (13-20), reaction temperature (350-385 °C) and time (10-48 h) favors 

more P-rich phases, and these parameters can be adjusted to generate either 

Ni5P4 or NiP2. This part successfully addressed a knowledge gap in the phase 

evolution for the P rich side of the Ni-P nanoparticle system and elucidate different 

key synthetic levers.  

Then we applied these synthetic levers to the synthesis of different ternary 

metal phosphide nanomaterials with control of phase and composition. The entire 

solid solution of CoxFe2-xP nanoparticles can by prepared by using Fe(CO)5, 

Co2(CO)8, and TOP in an arrested precipitation reaction. The method employs 
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CoFe alloy particles as precursors that are phosphided with TOP, and the resultant 

nanoparticles are hollow due to diffusion differences between the metal and 

phosphorus (Kirkendall effect). At intermediate x, the mechanism involves the 

fusion of small alloy particles into a larger particle, which then acts as a template 

for the further phosphidation, giving rise to particles with scalloped edges. The 

target composition is controlled by the initial metal precursor ratio and the size of 

CoxFe2-xP can be tuned by varying OAm/metal ratio (16.5 to 20 nm with standard 

deviations ≤14%). The Curie temperature of CoxFe2-xP nanoparticles shows a clear 

composition dependence that is reflective of the behavior of the bulk: it first 

increases and then decreases with the increase of Fe substitution. The high TC 

attained in CoFeP and Co0.7Fe1.3P render these nanoparticles superparamagnetic 

at room temperature, enabling consideration of transition metal phosphides for 

applications including magnetic, imaging, and hyperthermia therapies. 

Similarly, new phases Co2-xMnxP (0 ≤ x ≤ 1.2) can be prepared by injecting 

Co2(CO)8 and Mn2(CO)10 into a solution of hot 1-octadecene and oleylamine, 

followed by injection of TOP and elevation of the solution temperature to 350 °C. 

While no synthetic method of nanoparticles of “M2P” phase manganese 

phosphides has been reported due to the highly oxophilic nature of manganese, 

we hypothesize that incorporating Co into the system can stabilize Mn in a low-

valent state and thus favors the formation of the “M2P” phase. The CoMnP 

nanoparticles (ca. 5 nm in diameter) are nearly monodisperse and homogenous in 

nature. The composition can also be controlled by varying the initial metal 

precursor ratio.  
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We also demonstrated the synthesis of Fe2-xMnxP (0 ≤ x ≤ 0.9) nanorods with 

control of Mn incorporation from the solution-phase by reacting manganese and 

iron carbonyl complexes with TOP. The resultant nanorods are homogeneous in 

nature and have average lengths of 74.7 ± 10.0 nm (0 ≤ x ≤ 0.7) and 48.9 ± 7.3 

nm (x = 0.9). However, in this case, the final composition cannot be controlled 

precisely by changing the starting metal precursor ratio due to the formation of 

MnO with adventitious oxygen as a competing factor. An alternative method using 

long reaction times and multiple injections of Mn-precursors was developed 

enabling a Mn uptake to 0.9.  

8.1.2 Catalytic Behavior of new TMP nanoparticles 

The new manganese-based phosphide materials are active and efficient water 

oxidation catalysts. Co2-xMnxP exhibit compositional dependent OER properties, in 

which the lowest overpotential (0.33 V) with a Faradaic efficiency of 96% can be 

achieved at x = 1. For Fe2-xMnxP nanorods, after an initial increase between x = 0 

(Fe2P) and x = 0.2, the OER overpotential decreases with the incorporation of Mn 

into the system, up to the highest value of x prepared (x = 0.9). These data suggest 

the stoichiometry of bimetallic phosphides is a key determiner of activity, either 

reflecting electronic modulation of the active site or the participation of multiple 

metal sites to achieve water oxidation and O2 formation/release. Moreover, 

augmented access to the surface (perhaps accompanied by surface 

reconstruction) via annealing to remove surface ligands is shown to further 

decrease the overpotential in Fe2-xMnxP by nearly 0.1 V, resulting in overpotentials 

as low as 0.35 V.   
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The surface of metal phosphides can be oxidized and generate metal 

phosphate and hydroxide/oxo-hydroxide moieties in-situ under the OER catalytic 

conditions, which are expected to be highly active species toward water oxidation 

catalysis. However, after a long reaction time, both catalysts showed modest 

decreases in activities, ascribed to loss of phosphate from the catalyst surface and 

surface overoxidation. 

Finally, we successfully assembled a series of hybrid aerogels, containing 

preformed Ni2P nanoparticles and CdS nanoparticles, for HER photocatalysis. The 

nanoparticle components remained their original crystal structure and the resultant 

aerogels exhibit a meso/macroporous structure with a high specific surface area. 

The 0.5% Ni2P/CdS hybrid aerogel has a H2 evolution rate of 778 µmol·h-1mg-1 

under visible light irradiation. This superior photocatalytic HER performance of the 

hybrid aerogel is attributed to (1) the small size of CdS and Ni2P nanoparticles, 

and their intimate mixing, which can greatly shorten the distance that 

photogenerated electrons and holes have to travel to surface reaction sites and 

thus reduce the likelihood of electron-hole recombination; (2) the 

meso/macroporous structure, which allows for efficient absorption and internal 

scattering of light (enhanced light harvesting) and enables rapid flux of reactants 

to, and products from, those sites; and (3) the fast charge separation at the 

CdS/Ni2P interface, which again reduces the possibility of electron-hole 

recombination and improves the catalytic activity. 

8.2 Prospectus 

8.2.1 Application of Synthetic Methods to New More Metal Phosphides 
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For HER catalysis, P can act as proton acceptor on the surface and thus 

facilitate the H2 generation.75 While for lithium-ion battery materials, a P-rich 

system is expected to have a higher capacity than a metal-rich system.14 So the 

strategy developed in the dissertation research (high temperature, extended 

reaction time, high TOP/OAm ratio etc.) to prepare more P-rich nickel phosphide 

nanoparticles should be applicable to other metal phosphide systems (both binary 

and ternary phases), thus facilitating the development of this important class of 

nanomaterials for energy storage and catalysis.  

In the case of synthesizing Fe2-xMnxP, an extra injection of Mn-precursor 

successfully increase the Mn incorporation from 0.7 to 0.9, because it provides 

more Mn precursor available in solution. Therefore, increasing the injection amount 

of Mn or performing multiple injection is expected to yield more Mn-rich phases. 

Co2-xMnxP and Fe2-xMnxP nanoparticles have been synthesized through 

decomposition of metal carbonyl species in a hot solution, followed by reaction 

with TOP into relative phosphides. It is anticipated that Ni2-xMnxP may be able to 

accessed through similar method. Because Ni(CO)4 has a low boiling point (43 ºC) 

and ix extremely toxic, which makes it difficult to handle, Ni(COD)2 should be used 

as a suitable zero-valent Ni precursor. 

8.2.2 Improving OER Activity of Transition Metal Phosphide 

Nanomaterials 

Both Co2-xMnxP and Fe2-xMnxP show composition-dependent OER activities, 

but there are also other factors that affect OER activity, such as particle size, 

morphology, site occupancy (tetrahedral vs. square pyramidal), surface area, and 
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corrosion. Modification of particle size and morphology is expected to expose more 

active facets on the surface and increase the electroactive surface area. The 

electronic characteristics will depend on distributions of the two-metal site 

occupancy. Addressing these factors is expected to yield better-performing 

transition metal phosphide materials for OER catalysis. 

In the case of Co2-xFexP nanoparticles, the smaller particle size can be 

achieved by decreasing the OAm/metal ratio, increasing the surface area. 

Morphology can be controlled by using a different intermediate step: converting 

CoFe alloy to CoFeP results in a particle with scalloped edges while CoFeO2 to 

CoFeP results in large particles adopting the shape of a sea urchin. Low 

temperature synthesis method or electro-deposition techniques can be used to 

prepare amorphous materials form which different heating profiles will lead to 

materials with varied crystallinity. The metastable phases may exhibit site 

occupancies that differ from the thermodynamically dictated distribution in bulk 

materials (monitored by Mossbauer in Fe-containing phases), enabling further 

tuning of properties. 

An alternative approach to increase surface area is to create porous electrode 

assemblies. Metal phosphide nanoparticles can be assembled through metal 

cation crosslinking or oxidation-induced gelation method,144, 145 resulting in 

aerogels with high intrinsic surface areas, transforming a planar 2-D electrode into 

an accessible 3-D electrode.  which is desired for the OER/HER electrocatalysis.  

Corrosion plays an important role in activity. The surface of metal phosphides 

oxidizes, generating metal phosphate and hydroxide/oxo-hydroxide moieties in-
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situ under the OER catalytic condition, which are expected to be highly active 

species toward water oxidation catalysis. Thus, phosphide aerogels prepared by 

the oxidation-induced gelation method will have particles with oxidized surfaces 

that are connected by phosphate species, which makes it an interesting material 

for the OER catalysis. The pre-oxidized surface may preempt the activation 

process, or the phosphate “bridge” may act as a proton acceptor; either will result 

in an enhanced catalytic activity. 

The corrosion process is, nevertheless, deleterious over time. Metal phosphide 

nanoparticles showed modest decreases in the OER activities with time, ascribed 

to the loss of phosphate species from the catalyst surface. Therefore, using a 

phosphate buffer should be explored as a means to slow the leaching rate of 

phosphate into solution, resulting in an enhanced stability. 

8.2.3 Exploiting Our Tool Box for Hybrid Aerogel Catalyst Formation 

In the dissertation research, a protocol was established for the assembly of 

CdS and Ni2P nanoparticles into a hybrid aerogel system with high surface area 

and photocatalytic hydrogen evolution activity. It should be straightforward to swap 

out the component in this system to further increase the HER activity or generate 

catalysts for other applications. For example, replacing Ni2P with CoFeP 

nanoparticles is expected to result in an enhanced HER activity (based on the 

relative electrocatalytic performances of Ni2P and CoFeP for HER) while replacing 

CdS with TiO2 and Ni2P with M2-xMnxP may result in a system for efficient OER 

photocatalysis. In addition, by changing gelation parameters, such as surface 
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ligand or oxidant concentration, the kinetics of gelation can be altered to modify 

surface area and pore characteristics and thus affects the HER catalytic activity.
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APPENDIX A. COMPARISON OF THE OER ACTIVITIES OF THE 
COMNP CATALYSTS WITH RECENTLY PUBLISHED RESULTS 

(CHAPTER 5) 
Table A1. Comparison of the OER activities of the CoMnP catalysts reported here 
in alkaline conditions with recently published results 

Materials 
Overpotential at 

10 mA cm-2 
(mV) 

Electrolyte 
Main Paper 
Reference SI 

reference 

IrO2 320 1 M KOH 2146 
IrO2 320 1 M KOH 1189 
NiOx 360 0.5 M KOH 23147 

MnCo2O4/N-rmGO 
(∼0.24 mg/cm2) 

340 1 M KOH 8148 

CoP nanorods/C 
(0.71 mg/cm2) 340 1 M KOH 114 

CoP nanoparticles/C 
(0.71 mg/cm2) 320 1 M KOH 114 

Ni2P nanowires 
(∼0.10 mg/cm2) 

400 1 M KOH 919 

Ni2P nanoparticles 
(∼0.10 mg/cm2) 

500 1 M KOH 919 

CoFeP 
(∼0.57 mg/cm2) 

370 0.1 M KOH 1626 

CoP/C 
(0.40 mg/cm2) 360 0.1 M KOH 24100 

CoP hollow 
polyhedrons 

(~0.10 mg/cm2) 
400 1 M KOH 1325 

Ni2P/Ni foam 
(0.14 mg/cm2) 290 1 M KOH 1088 

CoP nanoparticles/C 
nanotubes 

(0.29 mg/cm2) 
330 0.1 M NaOH 1424 

CoMnP nanoparticles 
(0.28 mg/cm2) 330 1 M KOH This work 
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 APPENDIX B. TEM IMAGES, PXRD PATTERNS, AND 
ELECTROCATALYTIC OXYGEN EVOLUTION PROPERTIES OF 
DIFFERENT COMPOSITIONS OF CO2-XMNXP NANOPARTICLES 

(CHAPTER 5) 
 
 
 

 

Figure B1 TEM images of different compositions of Co2-xMnxP nanoparticles.  

 

Figure B2 PXRD patterns of different compositions of Co2-xMnxP nanoparticles.  
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Figure B3 Electrocatalytic oxygen evolution properties of Co2-xMnxP 
nanoparticles: (a) Polarization curves of the Co2-xMnxP nanorods in 1.0 M KOH; 
(b) overpotentials required at j = 10 mA/cm2. 

 

Figure B1 shows TEM images of different compositions of Co2-xMnxP 

nanoparticles, the average size changed from 17.7 to 6.1 to 4.1 to 3.2 nm when 

the x changed from 0 to 0.5 to 1 to 1.4. The peaks in Co2P around 40.7° and is 

slightly shifted toward lower 2 theta values as the content of the bigger volume 

atom Mn increased (Figure B2), indicative of solid-solution formation. Figure B3 

shows the composition dependent properties of the OER catalysis. 
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APPENDIX C. COMPARISON OF THE OER ACTIVITIES OF THE 
FE1.1MN0.9P CATALYST WITH RECENTLY PUBLISHED RESULTS 

(CHAPTER 6) 
Table C1. Comparison of the OER activities of the Fe1.1Mn0.9P catalysts reported 
here in alkaline conditions with recently published results 

Materials Overpotential at 
10 mA cm-2 (mV) Electrolyte 

Main Paper 
ReferenceSI 

reference 

IrO2 320 1 M KOH 342 

IrO2 360 1 M KOH 921 

IrO2 470 0.1 M KOH 37121 

CoP nanorods/C 
(0.71 mg/cm2) 

340 1 M KOH 1189 

CoP nanoparticles/C 
(0.71 mg/cm2) 

320 1 M KOH 1189 

Ni2P nanowires/FTO 
(∼0.10 mg/cm2) 

400 1 M KOH 719 

Ni2P nanoparticles/FTO 
(∼0.10 mg/cm2) 

500 1 M KOH 719 

FeP@Au nanoparticles 
(0.2 mg/cm2) 

320 1 M KOH 39123 

NiCoP/rGO hybrids 
(0.15 mg/cm2) 

270 1 M KOH 40124 

CoFeP 
(∼0.57 mg/cm2) 

370 0.1 M KOH 1426 

CoP/C 
(0.40 mg/cm2) 

360 0.1 M KOH 38100 

CoP hollow polyhedrons 
(~0.10 mg/cm2) 

400 1 M KOH 1325 

Fe1.1Mn0.9P nanoparticles 
(0.28 mg/cm2) 

350 1 M KOH This work 
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This dissertation research is focused on the synthesis, characterization of 

binary and ternary transition metal (Ni, Co, Fe, Mn) phosphide nanomaterials and 

their catalytic and magnetic properties.  

A phase-control strategy enabling the arrested-precipitation synthesis of 

nanoparticles of Ni5P4 and NiP2 is presented. The composition and purity of the 

product can be tuned by changing key synthetic levers, including the metal 

precursor, the oleylamine (OAm) and Trioctylphosphine (TOP) concentrations, 

temperature, time and the presence or absence of a moderate temperature soak 

step to facilitate formation of Ni and/or Ni-P amorphous nanoparticle intermediates.  

New CoxFe2-xP nanoparticles (0 ≤ x ≤ 2), Co2-xMnxP nanoparticles (0 ≤ x ≤ 1.4), 

and Fe2-xMnxP nanorods (0 ≤ x ≤ 0.9) are synthesized with control of size, 

morphology, and composition. The CoxFe2-xP nanoparticles exhibit composition 

dependent magnetic properties, while M2-xMnxP (M = Co, Fe) nanomaterials are 

capable of catalyzing water oxidation at low overpotentials with high Faradaic 
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efficiency. A new protocol is established to combine metal chalcogenide 

semiconductor aerogels with Ni2P nanoparticles. The resulting hybrid aerogels are 

photocatalytically active for the hydrogen evolution reaction (HER). 
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