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1

CHAPTER 1: INTRODUCTION

1.1 The Strong Force and Quantum Chromodynamics

The theory of the strong force is described with Quantum ChromoDynamics (QCD). The

Lagrangian for QCD that describes the strong interactions is:

LQCD = −1

4
F a
µνF

aµν +
∑
q

(ψ̄qiiγ
µ[δij∂µ + ig(Aaµt

a)ij]ψqj −mqψ̄qiψqi). (1.1)

Where the indices µ and ν run from 0 to 3 over the dimensions of space-time, i and j run

from 1 to NC = 3 to denote the number of color charges quarks can carry, and a runs from

1 to N2
C − 1 = 8 denoting the 8 different color configurations for gluons. In this formulation,

F a
µν is the color field strength tensor, ψ is the quark field, g is the coupling of the color field,

ta are the Gell-Mann color matrices, and mq is the mass of quark flavor q.

The theory itself has a number of parallels to Quantum ElectroDynamics (QED). The

mediating gauge bosons of QCD are gluons, much like photons are for QED. Also, similar

to how QED has electric charge, QCD has color charge; however there are three of these,

called red, green, and blue with corresponding anticharges. These color charges are carried

by quarks, just as electrons carry electric charge. A significant difference between QCD and

QED is the fact that QCD is a non-abelian theory. Mathematically this means that the

description of QCD contains symmetry generators that do not commute (the ta in the QCD

Lagrangian). The QCD Lagrangian is invariant under a gauge transformation of the gluon

fields, shown here as:

taAaµ → taA′aµ = U(x)taAaµU
−1(x) +

1

g
(∂µU(x))U−1(x) (1.2)

This has the physical consequence that gluons carry color charge and can couple to each

other. This is in contrast to QED where photons are not charged and do not self-interact.

A comparison of the Feynman diagrams for the photon vertex in QED and two of the gluon
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vertices in QCD is shown in Fig. 1.1 (there is also a 4-gluon interaction that is not shown).

The new diagrams lead to a different beta function (which describes the dependence of the

coupling on the energy scale of a given process) for the strong coupling constant. This leads

to the following formula for the strong coupling constant:

αs(Q
2) =

4π

β0ln(Q2/Λ2
QCD)

, (1.3)

where ΛQCD is the QCD scale parameter and β0 = 11− 2
3
nf . According to the above equation,

at lower momentum transfers the coupling continues to grow, until all quarks and gluons are

bound within colorless hadrons. On the other hand, processes with high momentum transfer

have small coupling and QCD calculations for a portion of these processes can be carried

out with perturbation theory.

Figure 1.1: Feynman diagrams of QED and QCD vertices; note that while both photons in
QED and gluons in QCD couple to charged fermions, gluons can couple to gluons in contrast
to photons which cannot couple to other photons.

At low energies, the ever increasing coupling leads to color confinement. This color

confinement feature of QCD means that the only particles we can directly detect are bound

colorless states. The two simplest color combinations that can produce a net colorless state

are a color and it’s corresponding color anticharge carried by a quark and an antiquark, or a

combination of all three colors with each carried by a quark (or three anti-colors carried by

three antiquarks). Respectively, the hadrons that are formed in this way are called mesons
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and baryons. Attempting to remove a color charge from a net colorless state results in

sufficient energy present to materialize at least one quark antiquark pair. This will cause the

formation of multiple hadrons, each in a net colorless state. An illustration of this process is

shown in Fig. 1.2. With that stated, while a hadron is in a net colorless state it still contains

colored objects and is a composite particle. This description implies that there are only two

or three quarks present in a given hadron, like the simplistic view of the proton shown in

Fig. 1.3a, but there can be more. A hadron can be thought of as being a system of two or

three ”valence” quarks in a sea of quark antiquark pairs originating from fluctuations, shown

in a more realistic illustration of a proton in Fig. 1.3b. One description of the contents of a

hadron is in a Parton Distribution Function (PDF) where a parton is just any of the quarks

or gluons that can be found in said hadron. The PDF is the number density of partons with

a momentum fraction x = Pparton
Phadron

of the hadron’s total momentum at a particular energy

scale Q2, as shown in Figs. 1.4a and 1.4b.

Figure 1.2: An illustration of color confinement: the energy dumped into a sys-
tem when attempting to remove a colored object from a colorless object results
in the creation of a quark-antiquark pair causing the system to collapse into
two colorless objects. Taken from http://webific.ific.uv.es/web/en/content/

lattice-qcd-numerical-approach-strong-force.
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(a) The naive view of a proton composed
of three quarks bound by gluons. Taken
from https://commons.wikimedia.org/

w/index.php?curid=637353.

(b) A more accurate view of a proton
composed of 3 valence quarks, a number
of gluons, and a number of quark-
antiquark sea quarks. Taken from http:

//www.fnal.gov/pub/today/archive/

archive_2014/today14-12-18.html.

Figure 1.3: Visualizations of the composition of a proton with varying degrees of complexity.

This thesis describes the study of these bound states as well as unbound states of QCD.

Bound states are studied in proton-proton (p-p) and in proton-nucleus (p-A) collisions. To

study unbound states of QCD we turn to nucleus-nucleus (A-A) collisions.

1.2 Heavy-Ion Collisions and the Quark Gluon Plasma

A form of matter called the Quark Gluon Plasma (QGP) is created in high-energy heavy-

ion (A-A) collisions. The QGP existed during the early universe and by studying it we can

gain insight into the evolution of the universe at just microseconds after the big bang. The

QGP is characterized by deconfined color charged quarks and gluons, in analogy to an

electromagnetic plasma which contains free electrically charged particles. This is in contrast

to normal matter where the quarks and gluons are confined within hadrons, where the net

color charge is zero.

The bulk yield of hadrons in heavy-ion collisions both as a function of the transverse

momentum pT and azimuthal angle φ can be described using viscous fluid dynamics sim-



5

(a) A plot of the CTEQ6l [1] parton dis-
tribution function for a proton, showing
that the proton is composed of not only
gluons and light quarks but heavy quarks
as well.[12]

(b) A plot of the CTEQ6l [1] parton distri-
bution function for a proton showing that
large x partons tend to be valence quarks
and that the total light quark composi-
tion has large contributions from the sea
quarks, especially at low x.[12]

Figure 1.4: Plots of the CTEQ6l [1] parton distribution function for a proton.

ulations [13][14][15][16]. The yield as a function of azimuthal angle at a given pT can be

decomposed in Fourier harmonics:

d2N

dpTdφ
=
dN

dpT
(1 + 2v2 cos(2φ) + . . .). (1.4)

In the equation above, v2 represents the second Fourier harmonic of this expansion. Cal-

culations of v2 based on viscous hydro fluid dynamics require a viscosity to entropy density

ratio (η/s) close to the theoretical limit of 1/4π, obtained from the AdS/CFT correspon-

dence [17]. This can be seen in Fig. 1.5 where the elliptic flow v2 was fit for differing values

of η/s. The viscosity being inversely proportional to the scattering cross-section, suggests

that the QGP acts as a near perfect liquid [2]. The existence of this state lasts for about

10 fm/c or 10−23s in a heavy-ion collision, after which the quarks and gluons hadronize into

colorless states and free stream into detectors for measurement.

This is in contrast to p-p and p-A collisions where the densities required for the formation
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Figure 1.5: A plot of the elliptic flow v2 at differing centralities for differing values of η/s;
taken from [2]. The experimental data in this plot are from STAR [3] and ALICE [4].

Figure 1.6: An illustration of the different stages of a heavy-ion collision. Taken from
https://arxiv.org/pdf/1201.4264.

of the QGP are not expected to be reached. A rather straightforward means to classify p-p,

p-A, or A-A events, which reveals information regarding the expected density that will be
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Figure 1.7: An illustration showing non-interacting spectator nucleons escaping the collision
and the creation of a colored QGP from the participant nucleons. Taken from http://

alicematters.web.cern.ch/?q=town_meeting_062012.

Figure 1.8: A phase diagram for states of matter constrained by QCD. Taken from https:

//science.energy.gov/~/media/np/nsac/pdf/2015LRP/2015_LRPNS_091815.pdf.

produced, is by using the two measures of the number of binary nucleon-nucleon collisions

(Nbin) in the event and the number of nucleons that participate (Npart) in these collisions.

In a p-p or p-A event there are only a few (between 1 and 10) collisions and roughly the

same number of participants. In an A-A event, both Nbin and Npart can be on the order

of hundreds. This means that there is far more energy in the system during an A-A event
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compared to a p-p or p-A event. This higher energy leads to a higher temperature which is

required for the formation of the QGP.

The highest densities are expected in central heavy-ion collisions. The centrality is a

measure of the impact parameter, where central events are nearly head-on with large num-

bers of interacting nucleons and peripheral events tend to be glancing collisions with less

interactions present. In these systems, while a large number of the incoming partons in the

two nuclei simply pass through each other, a considerable fraction are stopped, leading to

energy deposited along the path of overlap between the two nuclei. Most of the stopped

energy has its origin in the soft gluon fields within each nucleon. As a result the matter

produced at mid-rapidity in collisions at RHIC and LHC tend to have almost vanishing net

baryon density. The rapidity is a relativistic measure of velocity that is additive under a

Lorentz boost and is defined as:

y =
1

2
ln

(
E + pz
E − pz

)
. (1.5)

The initial deposited energy at mid-rapidity, predominantly composed of gluons, is out

of equilibrium at the instant after the two Lorentz-contracted nuclei pass each other. This

“medium” equilibrates both kinetically and chemically to form the QGP. The QGP then

expands under its thermal pressure, cooling into an equilibrated hadronic plasma, which

eventually dilutes sufficiently such that the hadrons decouple from the medium and free

stream to the detectors. An illustration of this process is shown in Fig. 1.6 and an illustration

of the initial collision with attention paid to spectator nucleons (not in a central collision) is

shown in Fig. 1.7 where the Lorentz contraction of the nuclei are ignored.

Almost the entirety of the process described above can be quantified within the framework

of relativistic viscous fluid-dynamics [18][19][20][21][22][23]. Estimates of the start time from

fitting with experimental data on radial and elliptic flow indicate that the plasma must

thermalize within 1 fm/c. This extremely short formation time, is indicative of the extremely
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strong interaction in these systems. In current implementations, the equation of state is

determined from Lattice QCD simulations [24], and the hadronic phase is simulated using

a cascade [25][26]. A phase diagram for states of matter constrained by QCD, including the

QGP, is shown in Fig. 1.8.

The QGP thus exists for a very brief period, from about 1 fm/c to approximately 10 fm/c,

depending on the size of the system. As a result, studies of the internal structure of the QGP

require deep and penetrating probes of the medium. The extremely small viscosity to entropy

density, and the very short thermalization time are much shorter than estimates based on

perturbative QCD [27][28][29]. This indicates that the medium is strongly interacting, and

the degrees of freedom are not quasiparticle quarks and gluons but something else. All

estimates of the temperature reached, from both fits to fluid dynamical simulations and the

spectrum of photons [30][31] indicates that the temperatures reached in the medium are far

higher than the deconfinement transition temperature TC , as calculated in lattice QCD. As

a result, the QCD medium at temperatures from 1 - 3 times TC has an internal structure

that is so far ”undetermined”.

The leading probes of this medium fall under the category of hard and electromagnetic

probes. These include, jets and high pT hadrons, photons and dileptons, heavy quarks and

onia. Each of these is sensitive to different aspects of the plasma. Alternatively, one could

say that they sample different correlators of the medium, e.g., photons and dileptons sample

the (electric) current-current correlator < Jµ(x)Jν(0) >, while the suppression of onia in the

media is sensitive to the Debye screening length in the medium. Jets and high pT hadrons are

sensitive to the transverse and longitudinal diffusion and drag coefficients. For an on-shell
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massless quark or gluon, the transverse broadening transport coefficient q̂ is given as:

q̂(q−, T ) =

∫
d2k⊥

k2⊥|M|2

L−

= 4παS
CR

N2
c − 1

∫
d2k⊥
(2π)2

∫
dy−d2y⊥e

−i k
2
⊥

2q− y
−−i~k⊥·~y⊥

×
∑
n

e−En/T 〈n|Trcolor
[
F+µ(y−, ~y⊥)F+

µ (0, 0)
]
|n〉, (1.6)

where CR is the color Casimir (CA or CF ) depending on whether the parton is a quark

or a gluon. The equation above uses light-cone coordinates and momenta, where x± =

(x0 ± x3)/
√

2.

This is the mean squared transverse momentum incurred per unit length that the parton

travels through an equilibrated plasma at temperature T with a light cone momentum of

(q−, 0, 0, 0). For a heavy quark with mass M , momentum (q−, M
2

2q−
, 0, 0) the exponential term

changes to exp[−iy−(k2⊥ +M2)/2q−] leading to an altered spatial range y− for a given light

cone momentum. This is indicative of the observation that heavy quarks are sensitive to

different transport coefficients than light quarks, such as the elastic energy loss transport co-

efficient ê. Of these three penetrating probes, jets and high pT hadrons (from jets) constitute

the leading probes of the QGP today. There is a considerable amount of data available on

jets and jet quenching. In contrast to onia suppression, the application of perturbative QCD

to jet quenching is now on a rather firm footing. Unlike the case of dileptons and photons

there are several unmistakable signatures of the effect of the QGP on the modification of

the jet. In the remainder of this thesis jets and jet modification in cold and hot media are

discussed.

1.3 Jets and Leading Hadrons

One of the methods available to study quantum scale phenomena is via high-energy

scattering; influence the system with a probe and study the output. While the QGP doesn’t

last long enough to use an external probe, heavy-ion events will occasionally self-generate a
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high-energy probe which leads to the production of a jet. The theoretical definition of a jet

is a high transverse momentum pT ”hard” parton that fragments into a collimated spray of

particles. This is in contrast to the experimental definition where a jet is a specific collection

of particles in an event returned by a given jet algorithm. These jets are produced in both

heavy-ion collisions and in single proton-proton collisions that do not produce a QGP. This

allows for the modification of the jet in the QGP to be compared to a jet in vacuum. An

illustration of a dijet event where one of the jets interacts significantly with the QGP is

shown in Fig. 1.9.

Figure 1.9: A diagram of a dijet event where one jet has significant interaction with the
medium. Taken from https://arxiv.org/pdf/0902.2011.

In addition, the use of jets allows for the application of perturbative Quantum Chromo-

Dynamics (pQCD), since at the energy scale of the jet, the coupling of the strong nuclear

force is small enough to use perturbation theory. Jet production involves processes with
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small coupling due to the high energies involved as well as processes with large coupling.

The analytical calculation of jet observables can be performed by factorization[32][33][34]:

nonperturbative effects from the large coupling processes such as the production of the ini-

tial high-energy parton (from the parton distribution function) and the formation of hadrons

(such as protons, pions, kaons, etc.) are separated from the small coupling processes. The

nonperturbative parts can be fit to experimental data and the remaining perturbative parts

can be calculated.

One of the observables we have available to measure is the production of high pT hadrons.

The production of these leading hadrons is directly attributable to the presence of the high

pT partons in the jet. This gives one avenue to study the features of a given jet. Since

experimental measurement of the production of leading hadrons is more straightforward

than full jet production, as no jet algorithm choice is necessary, the associated observables

are simpler to directly compare to theoretical calculations.

The cross-section for the production of a hadron h in a general hadronic A+B collision

is given by:

E
dσ

d3p
(A+B → h+X; s, pT , θcm) =

1

π

∫ 1

xmina

dxa

∫ 1

xminb

dxbGA→a(xa, Q
2)GB→b(xb, Q

2)Dh
c (zc, Q

2)
1

zc

dσ̂

dt̂
(ab→ cd; ŝ, t̂). (1.7)

In which GA→a(xa, Q
2) is the parton distribution function that gives the probability of

having a parton a with fractional momentum xa of the hadron A at a momentum scale

Q and Dh
c (zc, Q

2) is the fragmentation function that gives the probability that parton c

fragments into a hadron h carrying a fraction zc of the parton’s initial momentum. The

limits xmina and xminb are found by taking zc = 1 in the constraint zc = x2
xb

+ x1
xa

to first find

xminb = xax2
xa−x1 then taking xb = 1 as well to find xmina = x1

1−x2 . For which, x1 = 1
2
2pT√
s

1

tan( θcm
2

)

and x2 = 1
2
2pT√
s
tan( θcm

2
).

There is an issue however, that arises during the calculation of this cross section. The
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production of leading hadrons is modified by collinear gluon splitting; it suffers from a

collinear divergence that must be removed to obtain meaningful results. This is performed

by using the fragmentation function to absorb and cancel this divergence, giving it the

dependence on Q2 as seen in equation 1.7.

In the calculation of a full-jet cross-section this issue does not necessarily arise. The

presence of a soft gluon should not alter the jet cross-section; it is collinear and IR safe.

This results of this calculation need to be compared to experimental results, which depend

on the particular jet algorithm used. There are two main types of jet algorithms; these are

termed cone and clustering. One of the earliest algorithms used was a cone-type algorithm

applied to e+e− collisions developed by Sterman and Weinerg [35]. The cross-section for jet

production in this formalism is:

σ(E, θ,Ω, ε, δ) = (dσ/dΩ)0 Ω[1− (g2E/3π
2)(3lnδ + 4 lnδ ln2ε+ π2/3− 5

2
)]. (1.8)

In this equation, ε is the is the small fraction of energy emitted outside of the two back-

to-back cones of half-angle δ that form the jets in the event, that are within two fixed cones

of solid angle Ω that are at an angle θ with respect to the beamline. The coupling gE is

this formalism is defined at a renormalization point with four-momenta of order E. The

cross-section (dσ/dΩ)0 is for the e+e− → qq̄ process in the Born approximation, and can be

expressed as: (
dσ

dΩ

)
0

=
α2

4E2
(1 + cos2θ)

∑
q

Q2 (1.9)

Looking at clustering algorithms, these attempt to combine particles in the event that

were likely to be part of the same jet in an event. Of note here are the kT [36] and anti-kT [37]

algorithms. These work by defining distances between particles (or pseudojets) in the event

dij, and distances for each particle (or pseudojet) relative to the beam diB. For a given step

of the algorithm, these are calculated and the minimum distance measure is found. These
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are calculated as:

dij = min(k2pT i, k
2p
Tj)

∆2
ij

R2
, (1.10)

diB = k2pT i, (1.11)

and ∆2
ij = (yi−yj)2+(φi−φj)2. In this formalism, kT i denotes the transverse momentum

of particle i, yi denotes the rapidity of particle i, and φi denotes the azimuthal angle of particle

i.

If the smallest distance is one of the dij’s calculated, then elements i and j are combined

into a pseudojet. Otherwise if the smallest distance is a diB then element i is taken to be

a reconstituted jet and is removed from the event. This procedure repeats until there are

no elements remaining. The main difference in this procedure between the kT and anti-kT

algorithms is that the distance measures in the kT algorithm depend on kT whereas for the

anti-kT algorithm they depend on 1/kT . In application, this means that the kT algorithm

starts with soft particles and combines until it reaches the high-pT particles at the end. This

is in contrast to the anti-kT algorithm which tends to cluster the soft particles only at the

end of the process. The effects of this are that the anti-kT algorithm tends to produce regular

consistent geometrically cone-like jets. For the rest of this thesis, the anti-kT algorithm is

used for analysis, unless otherwise stated.

In order to compare analytical approaches of jet modification to experimental data, a

Monte-Carlo event generator is extremely useful. This is due to the ability to directly simu-

late the physical process and to take effective measurements from the simulation, formulated

in very close analogy to experimental observables. By simulating events with such a gen-

erator, jet observables can be calculated event-by-event and tested against experimental

results.

In this work methods to use jet simulations to study both initial and final state effects

are outlined. The initial state of a heavy-ion collision was studied by using d(p)-A collisions.

These asymmetric collisions are not expected to produce a QGP and so have no final state;
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any effects seen are predominately initial state. Final state results were studied with A-A

collisions where a QGP is produced.
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CHAPTER 2: CENTRALITY DEPENDENT EFFECTS OF JET

PRODUCTION IN d(p)-A COLLISIONS

2.1 Introduction

In the context of hard processes in heavy-ion collisions, maximally asymmetric collisions,

such as d-Au at RHIC and p-Pb at the LHC, have served the purpose of baseline measure-

ments: Quantifying initial state nuclear effects without the presence of a hot-dense extended

final state. Early measurements of suppressed back-to-back hadron correlations, with mo-

menta perpendicular to the colliding nuclei, at the STAR detector at RHIC [38] for Au-Au

collisions, compared with a null effect in d-Au (compared with p-p) established jet quenching

as a final state effect that takes place primarily in the presence of an extended QGP. These

jets with momentum transverse to the incoming beams, were quenched in Au-Au, but were

minimally affected in d-Au collisions.

These were consistent with measurements of a lack of suppression in the expected yield of

high transverse momentum (leading) hadrons in d-Au collisions at the PHENIX detector [39].

In 2006 the PHENIX collaboration extended this analysis to centrality (the experimental

measure of impact parameter) dependent suppression [40, 41]. This data demonstrated an

odd enhancement in the yield of high momentum hadrons in peripheral d-Au events. While

nuclear effects which modify the dynamics of jet production, were expected in central events,

where nucleons from the deuteron encounter several collisions with the large nucleus, these

were not expected at all in peripheral events where the deuteron has fewer collisions with

the large nucleus.

Recently there have been a series of new measurements, both by PHENIX [41] at RHIC

and by ATLAS at the Large Hadron Collider (LHC), on the spectrum of high transverse

momentum (high pT ) jets produced in d-Au [42] and p-Pb [43] collisions. The measurements

plot the centrality dependent nuclear modification factor RdAu of high pT jets: A ratio of

the detected yield of jets to that expected based on an estimate of the number of nucleon-

nucleon collisions in one p(d)-A collision. In both cases, one notices an enhancement in the
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RdAu in peripheral events and a ”suppression” in central collisions. In a study of the rapidity

dependence of the reconstructed jet, by the ATLAS collaboration, it was observed that this

peripheral enhancement and central suppression was much more prevalent in the p going

direction and vanishing in the Pb direction.

These results are rather counterintuitive. Nuclear effects, in particular those that involve

jets and jet production, are expected to be dominant in central events where the initial state

engenders several nucleon-nucleon collisions, also the final out going partons have to traverse

a more extended medium. Similar arguments may be ascribed to the rapidity dependence of

hard particle production, with hard partons traversing longer distances in the nucleus going

direction than in the p or d going direction.

An explanation for the observed contradiction to this expectation is that events which

lead to the production of a hard jet, requiring an initial state parton with a considerable

value of x, have initial states with a fewer number of soft partons, due to the large amount

of energy that has been drawn away from the nucleon by the high-x parton. This effect

is most pronounced on the partons in the p(d) going direction, and much less on the A

going direction as the formation of a hard parton in a single nucleon (in a nucleus) does not

affect the soft parton distribution in the remaining nucleons. The higher the x required, the

more the suppression in the soft particle production. Thus reactions with very high energy

jet production probe the correlation between partons within a nucleon. This sensitivity to

multi-parton hard-soft correlations is unique to these experiments, which probe a hitherto

unmeasured facet of nucleon structure: Is there a strong correlation between the x values

of the leading partons in a given event and the total number of partons in the nucleon in

that event. The term ”strong” is implying something more than the trivial correlation due

to straightforward energy conservation: Is there a kind of color transparency in the initial

state, for events with a hard jet in the final state? These calculations do not provide a clear

answer to this second question. Beyond this, another goal of this work is to provide a reliable

parameter free event generator which may be used, with certain caveats, to reproduce at least
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some portion of these new data on p(d)-A collisions with jet production. The results of this

work will provide detailed input to a more dedicated event generator that will have to be

constructed to study such collisions in greater detail.

Continuing, the model is described and how soft particle production is affected by the

production of a hard jet is shown. To make direct connection to experiments the PYTHIA

event generator [44], which is used extensively to model p-p collisions, was modified. To

date there have been several approaches which have attempted to describe this new striking

physics result. In Ref. [45], the authors have proposed a similar mechanism of enhancement

in peripheral events and suppression in central events but not incorporated it in an event

generator framework. In Ref. [46], the authors have proposed that the wave-function of the

proton is considerably modified in the presence of a hard parton. In Ref. [47], the authors

have attempted to understand the effect of the energy depletion due to jet formation using

the HIJING event generator [48, 49]. In none of these calculations, could the authors achieve

widespread agreement with the data. This work has been constructed entirely within the

PYTHIA event generator, by modifying it. As such, this construction suffers from several

constraints which are inbuilt within this particular event generator. The HIJING event

generator as in Ref. [47] was not used. The primary reason being due to the resampling of the

parton distribution function between collisions; this has the effect of the proton (or nucleon

in d-Au collisions) changing its parton distribution function between successive collisions

which changes the distribution of soft partons that arise after the hard parton has been

extracted.

In the subsequent section we describe the event generator that samples the location of the

nucleons in the two incoming nuclei and outline the changes introduced into the PYTHIA

event generator. In Sec. 2.3 we present comparisons with experimental data at RHIC and

LHC. The conclusions are presented in Sec. 2.4.
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2.2 Simulation Details

2.2.1 Sampling the nuclear distribution

Maximally asymmetric collisions such as p-Pb or d-Au represent cases where the experi-

mentally determined centrality of the event appears to be influenced by the production of a

hard jet. In order to simulate jet production in such systems, the PYTHIA event generator

was modified and extensively used. This modification of the event generator depended on

the number of nucleon-nucleon collisions in a given p(d)-A event. This number of collisions

was determined using several methods. These methods are described in this section.

Along with a description of this setup, the most näıve explanation of the observed corre-

lation between jet production and centrality is explored and eliminated: That the deuteron

due to its large size, often has the proton and neutron far apart and thus cases where a jet

is most likely to be produced, when either nucleon strikes the densest part of the oncoming

nucleus may coincide with cases where the other nucleon simply escapes without interaction

leading to reduced soft particle production. It should be pointed out, in passing, that such a

scenario is immediately ruled out by an almost identical correlation between jet production

and centrality in LHC collisions, where there is only one proton colliding with the large

nucleus.

2.2.1.1 The Deuteron:

Collisions at the LHC always involve a proton colliding with a Pb nucleus. However, at

top RHIC energies the collisions are usually that of a deuteron (d) on a Au nucleus. The

deuteron is an extremely well studied state in low energy nuclear physics. The wave-function

of the deuteron is given by the Hulthén form [50]:

ψH(r) =
e−ar − e−br

r
, (2.1)

where, a = 0.228 fm−1, b = 1.18 fm−1. The probability distribution of a nucleon within
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a deuteron is given as,

ρ(r) = |ψH(r)|2. (2.2)

This distribution is sampled to obtain the positions of the two nucleons.

As is well known, the Hulthén wave-function leads to a rather wide nuclear distribution.

This is illustrated in Fig. 2.1, where three representative events are plotted, with both the Au

nucleus and the deuteron distributions projected on the z-axis which is the axis of momentum

of the two nuclei. As can be seen from Fig. 2.1. the nucleons in the deuteron may be close

together, as well as, a gold radius apart. Due to the large separation between the nucleons,

excluded volume corrections were unnecessary but were still included.

Figure 2.1: The sampled Hulthén distribution for two nucleons in a deuteron.

2.2.1.2 The Large Nucleus (Au or Pb)

Moving to the nuclear state, there are several methods that may be used to simulate

the fluctuating initial state represented by the large nucleus. Only a Au or Pb nucleus was
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Figure 2.2: The sampled Woods-Saxon distribution for a large nucleus (in this case Au with
an A = 192.)

considered, as these are studied experimentally. In most cases, the Woods-Saxon density

distribution was used, given at a radial distance r as:

ρ(r) =
ρ0

1 + e(r−R)/a
, (2.3)

where ρ0 is a constant related to the density at the center of the nucleus, R is the radius

of the nucleus, and a is the skin depth. These parameters are chosen to match those used by

the experiments at RHIC and LHC (for Au, a = 0.535 fm, R = 6.38 fm; for Pb, a = 0.546 fm,

R = 6.62 fm). The Woods-Saxon distribution of Eq. (2.3) is a single particle distribution.

On top of this a nucleon-nucleon correlation is introduced by hand: The excluded volume

correction. This is done similar to the method of Ref. [51], where a set of 3 random numbers is

generated to isolate the location of a nucleon. If this location is within an exclusion distance

of d = 2Rp (twice the proton radius) of another nucleon, then this location is abandoned

and another generated. The process is continued until all A nucleons have been included.
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Figure 2.3: Three separate events in d-Au collisions. Nucleon distributions are projected
onto the x-y plane.
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At the end of this process the center-of-mass of the nucleus is calculated and the nucleus is

re-centered.

While only the Hulthén form is used for the deuteron, several probability distributions

beyond Woods-Saxon were tried for the nucleon distribution in a large nucleus. These include

distributions based on shell-model wave-functions both with and without a modified delta

interaction to account for the short range repulsion between nucleons in a nucleus [52] (simple

excluded volume). However, none of these enhancements led to any noticeable changes in the

final results as compared to the Woods-Saxon distribution with a simple excluded volume. It

should be pointed out that for this work solely p-A and d-A collisions have been considered,

which only sample the single and two-nucleon distribution within a nucleus. It is entirely

possible that the collision of nuclei larger than a deuterium with nuclei smaller than Au may

lead to the greater role for multi-particle correlations within a nucleus. There is very little

information in nuclear structure on such multi particle correlations. We will not discuss

this issue further and only focus on simulations using the Woods-Saxon distribution with an

excluded volume.

2.2.1.3 Transverse Size of Nucleons and Binary Collisions:

The nuclear Monte-Carlo generator samples nucleons from the Au (or Pb) side and from

the d side and then projects these on the x-y plane as shown in Fig. 2.3. In this work, the

transverse size of the nucleons has not been modified with the energy of the collision. The

inelastic cross section for nucleon-nucleon scattering is known to grow with collision energy.

While centrality selection at the nuclear level is one of the major issues dealt with in this

effort, no centrality selection is imposed on the individual nucleon-nucleon encounters. As a

result, when a proton from the d overlaps with another from the Au side, no matter how small

the overlap, the entire parton distribution function (PDF) of either nucleon is enacted in the

collision, i.e., nucleon-nucleon collisions are not expected to have any centrality dependence.

In a future effort, an impact parameter in nucleon-nucleon collisions will be used to generate

particle production in events where the two nucleons do not overlap completely.
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Glancing at Fig. 2.3, it becomes clear that if the transverse size of the nucleons is increased

with increasing energy then this will lead to an increase in the number of binary collisions

and that will lead to an artificial excess enhancement of the particle production from each

individual nucleon-nucleon collision. In this work, the event generator PYTHIA was used to

simulate nucleon-nucleon collisions. Within the PYTHIA event generator the cross section

increases with energy. To counter the possible artificial increase in particle production with

energy, the full cross section generated by PYTHIA is used with no change in the geometric

size of the nucleon with the energy of the nuclear collision.

Once both nuclei have been generated, and centers of mass determined, the impact

parameter b is simulated with a probability distribution dP/db2 = 1/b2Max, and the angle

of the impact parameter is determined randomly between 0 and 2π. The maximal impact

parameter bMax is chosen such that no dependence is observed in minor changes of this

quantity. There is no further reorienting of the nuclei. The number of binary collisions can

now be determined by simply counting the number of nucleons in the Au side, whose centers

are within a transverse distance d = 2Rp of a nucleon in the deuteron. There arise events

where not a single collision takes place, these events are dropped from the analysis.

Based on the above considerations, the results of the nuclear Monte-Carlo simulations

for a d-Au collisions are shown in Fig. 2.4. In Fig. 2.4, the distribution of events as a

function of the number of binary collisions is presented. Following this, events are divided

into 4 bins (0-20%, 20-40%, 40-60%, 60-88%) based on the fraction of the total number

of events contained in these bins. These bins also correspond to the bins used by the

PHENIX experiment. Each of these bins in the number of collisions represents a range of

overlapping impact parameters. While this represents the standard method of determining

centrality in theoretical calculations or simulations, We will show, in a later section, that

this method of determining the centrality of the event leads to results that are not consistent

with experimental results for high transverse momentum (high-pT ) pion, charged particle,

and jet production at both RHIC and LHC energies.
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In this section the focus was mostly on d-Au collisions where both incoming nuclei have

to be simulated. In subsequent sections results for p-Pb collisions are shown, where only one

nucleus needs to be simulated. There are no other considerations concerning p-Pb that need

to be made other than the location of the p is set by the impact parameter b. As pointed

out above, no explicit change in the transverse size with energy has been used in this first

attempt to understand the behavior of jets in p(d)-A collisions. It should also be mentioned

that in all simulations, the isospin of the nucleons has been accounted for.
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Figure 2.4: The event distribution in d-Au collisions as a function of the number of binary
collisions and the division of events in the four different centrality bins.

2.2.2 The Modified Parton Distribution Function

Using the nuclear collision event generator, the number of nucleon-nucleon collisions in

each event may be determined. Each nucleon in the deuteron, in a d-Au collision at RHIC,

or the proton in p-Pb collisions at the LHC, will potentially engender several collisions with

nucleons in the large nucleus. At RHIC the relativistic γ factor is about a 100 while it is

close to 2750 at the LHC. At such large boosts, the parton distribution function within the
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nucleon is time dilated to distances well beyond the length of the large nucleus. As a result,

the parton distribution of the nucleons in deuteron (in a d-Au) collision, or that in the proton

in p-Pb collisions is ”static” (frozen) as it progresses through the large nucleus. The word

static is used to indicate that the parton distribution, though being continuously depleted

by collisions with partons in the nucleons from the large nucleus, is itself not undergoing any

intrinsic fluctuation in the course of its passage through the large nucleus.

This brings the discussion to the primary point of this section: Consider the case, where,

in the course of fluctuations of the PDF, the proton in p-Pb (or one of the nucleons in d-Au)

has focused a large amount of energy within a single parton. This parton, in a collision with

a similar parton in the oncoming nucleus will produce back to back jets at mid-rapidity.

The presence of a parton with such a large energy will lead to less energy being available for

the production of other softer partons. As a result, there will be a depletion in the number

of soft partons in the proton in p-Pb (or projectile nucleon in d-Au) collisions. A similar

situation will occur in one of the nucleons within the large nucleus. As a result, an event

with a jet will lead to the production of fewer charged particles.

To simulate this effect, the collision of the p (or any of the nucleons in d) is treated as a

string of n nucleons in the large nucleus as a single collision between a nucleon and an object

with a larger (modified) PDF. As a result, the PDF of the projectile nucleon is sampled only

once. To be clear, there are several methods to carry this out, but for this work only focus

on the most expeditious method. In the remainder of this thesis, the collection of n nucleons

struck as a single entity by the projectile nucleon will be referred to as a ”super”-nucleon.

As a first step to simulate the super-nucleon, the PDF of one of the incoming nucleons is

enhanced as FS(x) = npFp(x) + nnFn(x). Where, np and nn are the number of protons and

neutrons struck by the projectile nucleon. Along with this the energy of the super-nucleon is

also enhanced as ES = (np+nn)E, where E is the energy of the projectile nucleon in the lab

frame. This prescription turns out to produce a very faithful description of the soft particle

production in d-Au (or p-Pb) collisions. This is illustrated by the increase in the yield of
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soft particles with increasing enhancement of the super-proton shown in Fig. 2.5. One notes

both an increase in the mean value of charged particle production, as well as an increase in

the event-by-event fluctuation in charged particle production, as expected.
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Figure 2.5: The multiplicity of charged particles in a simulated d-Au collision with the Au
side simulated as a super-nucleon with a parton distribution function given as FS(x) =
npFp(x) + nnFn(x), and energy enhanced as ES = (np + nn)E. In the above plot np = 10,
and nn = 10.

Yet another feature of this formula for the super-nucleon is that it also gives a rather

faithful representation of the pseudo-rapidity distribution of the produced charged particles.

This distribution for minimum bias events, plotted in Fig. 2.6, shows the ”classic” asym-

metric double humped structure of the pseudo-rapidity distribution for d-Au collisions at

RHIC energies. The overall normalization is less than that measured in actual experiments.

However, one should recall that this is generated by modifying PYTHIA where only the

interactions between the projectile nucleon and the column of struck nucleons is included.

No re-interaction of the produced particles with the remainder of the nucleus is included,

and this leads to an obvious depletion in overall particle production. The assumption being
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made in comparing these results to experimental data is that even though the overall number

of charged particles (or transverse energy) produced is not matched between the simulations

and the experiment, the relative distribution between centrality bins will be the same as in

the experiment.
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Figure 2.6: The pseudo-rapidity distribution of charged particles in a simulated d-Au collision
with the Au side simulated as a super-nucleon with a parton distribution function given as
FS(x) = npFp(x) + nnFn(x), and energy enhanced as ES = (np + nn)E.

In spite of the success in soft particle production using the prescription of enhancing

both the PDF and the energy of a nucleon in the target nucleus, this procedure leads to

an uncontrollable modification to the high momentum (large-x) portion of the PDF (see

Fig. 2.7). This is to be expected, as the super-nucleon now has n = np+nn times the energy

of a single nucleon, and can thus produce hard partons of higher energy (higher even than

the kinematic bound of 100 GeV at RHIC, or 2.75 TeV at the LHC) without the penalty of

a rapidly falling PDF. As an illustration of this effect, the ratio of a gluon spectrum from

a super-nucleon to that from a regular nucleon was plotted as a function of the ratio of the

energy of the gluon to that of the projectile nucleon (un-enhanced nucleon).
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Figure 2.7: The ratio of the gluon distribution in a super-nucleon to that in a nucleon as a
function of x, the energy fraction of the gluon, relative to the projectile nucleon.

It is interesting to note that the soft gluon (x < 0.1) production is enhanced in the

super-nucleon as a function of the total enhancement coefficient n = np + nn. There is no

enhancement for intermediate energy gluons x ∼ 0.1, and then an almost n independent

enhancement for higher energy gluon with x > 0.1. Note that this will of course be broken

as one moves past the x ≥ n, however, since the denominator of the ratio plotted in Fig. 2.7

will vanish, this cannot be plotted in the manner of Fig. 2.7.

Due to this large enhancement in the hard portion of the PDF, this straightforward

enhancement of the PDF for a super-nucleon cannot be used. Since the primary focus of these

simulations has to do with jet production and its ensuing effect on soft particle production

due to energy conservation, We insist on keeping the jet production cross section as close

to the reality as possible, and not enhance the energy of the super-nucleon. For comparison

with experiment, a more sophisticated enhancement formula for the super-nucleon is used,

where the soft portion of the PDF is modified by a shadowing function, and an enhancement
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by the number of collisions n = np +nn, but no energy enhancement. A shadowing function

was also used to modify the super-nucleon PDF event-by-event, depending on the number

of nucleons struck by the projectile nucleon. In the case of a d-Au collision, both nucleons

may strike multiple nucleons and thus both collisions would be modeled as a nucleon super-

nucleon collision. The formula use for this is given as,

S(x) = 1 + (R(x)− 1)
Ncoll

〈Ncoll〉
, (2.4)

where Ncoll ≡ n = np +nn is the number of collisions with protons and neutrons encoun-

tered by a single projectile nucleon as it passes through the target nucleus in a given event.

The mean number of collisions per projectile nucleon is given as 〈Ncoll〉. The shadowing

factor of R(x) which depends on x and the mass number of the target nucleus A, is taken

from Ref. [53]. For the case of a quark it has a rather involved form:

RA
q = 1 + 1.19 log1/6A(x3 − 1.2x2 + 0.21x) (2.5)

− 0.1(A1/3 − 1)0.6(1− 3.5
√
x) exp(−x2/0.01). (2.6)

In Fig. 2.8 the change of the gluon shadowing function is plotted with respect to the

number of collisions Ncoll. As demonstrated in the plot the PDF increases slightly, leading

to the enhancement of the number of particles produced in the collision. The plots are

normalized with an n dependent constant Cn so that the momentum carried by the gluons

in the proton remains the same, i.e.,

Cn

∫ 1

0

dxxRA
g (x, n)fg(x) =

∫
dxxfg(x). (2.7)

This constant is introduced for illustration purposes, to visually demonstrate the en-

hanced number of partons at x & 0.1. In PYTHIA simulations (see Ref. [54] for details),

a PDF is repeatedly sampled to obtain a series of forward momentum fractions xi with
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Figure 2.8: The ratio of the shadowed gluon distribution in a super nucleon to that in a
regular nucleon as a function of the number of collisions Ncoll (See Eq. (2.4)). The normal-
ization of each line is adjusted to reflect the function that is sampled by the PYTHIA event
generator, which continues to sample distributions until the momentum of the nucleon is
exhausted.
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0 < i < N . Strict energy conservation is enforced by sampling the PDF at the shifted

fraction,

x′i =
xi

1−
∑i−1

j=1 xj
. (2.8)

The process continues until x′N → 1, generating N partons. As a result, the numerical

sampling is insensitive to any overall constants. However, the number of partons in a given

momentum range is sensitive to any changes in the shape of the PDF. As a result, the

samplings produce more partons at x & 0.1.

The PYTHIA event generator has two sources of soft particle production: Beam remnants

and hard scattering. In this work, the hard scattering component is modified by introducing

an Ncoll dependent shadowing function [Eq. (2.4)]. This shadowing function enhances the

number of hard partons sampled in the x & 0.1 region. This increases the amount of multi-

particle interactions. This leads to more particle production. It should be pointed out that

the super-nucleon, in the remainder of this work, has no enhancement in energy and as a

result the total energy of the partons sampled in the super nucleon equals the energy of one

nucleon.

Without the enhancement in energy of the super-nucleon one does not get the asymmetric

distribution of produced charged particles as shown in Fig. 2.6. However, there is still an

enhancement in the production of charged particles with increasing number of collisions.

While this is somewhat unphysical, the goal of this work is to study the effect of energy

conservation on the production of soft particles leading to centrality selection, in conjunction

with a hard jet. The production of soft particles is illustrated for p-Pb collisions in Fig. 2.9

where the distribution of the number of charged particles per event is plotted for different

number of collisions encountered by the proton. This plot is shown for p-Pb at LHC energies.

The effect of the modifications to the super-nucleon PDF has a smaller effect at these energies;

the enhancement with increasing Ncoll is larger at RHIC energies.
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Figure 2.9: The distribution of charged particles produced in a p-Pb collision, as a function
of the number of collisions suffered by the projectile proton.
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Figure 2.10: The distribution of the number of charged particles produced and the division
of the events in the four different centrality bins.
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No doubt, this enhancement is proportionately less than that in Fig. 2.5, however, it

is sufficient to allow us to bin in centrality. It bears pointing out once again, that in this

process of simulating d-Au collisions at RHIC energies, or p-Pb collisions at LHC energies,

the soft particle production is in no way commensurate with that in a real d-Au or p-Pb

collision. This exercise was performed to demonstrate the effect of a shift in centrality due to

the production of a hard jet. We insist on the jet production cross section being unchanged

in PYTHIA, while assuming that the reduced soft particle production in this model, as

a function of the deduced centrality, is proportional to the particle production in a real

collision.

To illustrate this issue, the distribution of the number of events was plotted as a function

of the number of produced charged particles in these simulations for d-Au collisions at RHIC

energies. As is clearly demonstrated by this figure, there are clear, non-vanishing ranges of

particle production, which can be clearly demarcated as centrality bins. These simulations

are all done using the Hard-QCD switch of PYTHIA. This is the case both for the particle

production in general and for particle production in addition to the production of a hard

jet. This is done so that the mechanisms that lead to soft particle production both in the

presence and absence of a hard jet remain the same in the simulation.

In what follows, jet and leading hadron production at high-pT is considered and the

effects of this on soft particle production are observed. This will be done both for RHIC

and LHC energies, for jet production at central rapidities. Charged particle detection, which

leads to a centrality determination, will be carried out at all rapidities, i.e., over the entire

collision. In actual experiments, charged particles are detected at rapidities far from where

the jets are produced, in an effort to remove any correlation between the two processes.

Since, in these simulated collisions, the number of particles produced is far fewer than an

actual experiment, charged particles at all rapidities are collected, to allow to distinguish

between different centralities with higher statistics.
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2.3 Results and Experimental Comparison

In the preceding sections, the model used to simulate jet (and high pT particle) production

as a function of centrality in d-Au collisions at RHIC and p-Pb collisions at the LHC,

was described in detail. As stated before, the primary goal is two fold: To set up an

event generator that may be used to faithfully represent the experimental data on hard soft

correlations in asymmetric collisions, albeit with some caveats, as well as to understand the

underlying cause of the startling results in such correlations using this new event generator.
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Figure 2.11: The nuclear modification factor for neutral pions for minimum bias d-Au colli-
sions at RHIC. Experimental data are taken from Ref. [5]

Viewed in the lab or center-of-mass frame, it became clear that the nucleon PDF from

both the projectile and the target are time dilated, and as such, cannot fluctuate in the

short duration of the collision. This necessitated abandoning HIJING [48, 49], and design a

new event generator by modifying the PDF of one of the nucleons in a PYTHIA nucleon-

nucleon collision. The effects of different modifications within PYTHIA and the overarching

nuclear event generator were highlighted in the preceding sections. In the following, the
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successes and shortcomings of this new event generator is shown when compared against

actual experimental data.
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Figure 2.12: The nuclear modification factor for neutral pions for 0 - 20% most central d-
Au collisions at RHIC. The simulation is carried out by binning in centrality according to
the number of binary collisions (prescription A: see text for details). Simulations include
shadowing and no energy loss. Experimental data are taken from Ref. [5]

The first comparisons are carried out for d-Au collisions at RHIC energies. These exper-

imental results were also historically the first to show the odd effect of an enhancement in

peripheral events and a mild suppression in central collisions. The data in question are the

centrality, pT and rapidity (or pseudo-rapidity) dependent nuclear modification factor RdAu,

defined as,

RdAu =

bmax∫
bmin

d2b d4NdAu
d2pT dyd2b

〈Nbin(bmin, bmax)〉 d
3Npp

d2pT dy

, (2.9)

where N denotes the yield of leading hadrons or jets, binned in transverse momentum, and
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rapidity. In the numerator of the above formula, one also integrates over a range of impact

parameter b, which in d-Au refers to the 2-D vector from the center of mass of the large

nucleus to the center of mass of the deuteron (in Fig. 2.3 for example). The 〈Nbin(bmin, bmax)〉

in the above formula refers to the mean number of binary nucleon-nucleon collisions per

nuclear collision.
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Figure 2.13: Same as Fig. 2.12, except for 20-40% centrality.

As a first step in studying the results of the current simulation in comparison with

experimental data, the nuclear modification factor was plotted for minimum bias collisions

in Fig. 2.11. Here no division in centrality bins is carried out and thus there is no discussion

of determining centrality by number of binary collisions or number of charged particles

produced. This serves as a first test of the simulation, which performs extremely well in

comparison to the data. The experimental data have been taken from Ref. [5]. Both the

simulation and the experimental data show a similar trend: A pT independent near lack

of modification, with the possibility for a minor enhancement between 4 and 16 GeV. This

is entirely to be expected, high energy jets are mostly unmodified in cold nuclear matter,
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and the minor enhancement can be attributed to the anti-shadowing peak (near x ' 0.1). It

should additionally be stated that in the case of a large centrality dependent modification, as

is the case in this model (as well as seen in the experimental data), an unmodified minimum

bias RdA is by no means a trivial outcome. This is the first hint that the enhancement in

peripheral events is being balanced by the suppression in central events.
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Figure 2.14: Same as Fig. 2.12, except for 40-60% centrality.

The next step is to bin in centrality. This first attempt will follow convention and utilize

the number of binary nucleon-nucleon collisions as an indicator of centrality. One runs the

nuclear event generator, and collects events, classifying them according to the number of

binary collisions. One then bins the event according to where Nbin lies in Fig. 2.4. One

should point out that while, on average, an increasing b(≡ |~b|) leads to an decrease in Nbin,

any value of b corresponds to a range of binary collisions. This also modifies the numerator
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of Eq. (2.9), to

NA=
∑
Nbin

d2NdAu

d2pTdy
θ(Nbin−Nmin

bin )θ(Nmax
bin −Nbin), (2.10)

where, Nmin
bin and Nmax

bin are set by the centrality bin that we are interested in. The factor of

〈Nbin(bmin, bmax)〉 is simply replaced by 〈Nbin〉 for the bin in question, and can be calculated

from Fig. 2.4. This is referred to as prescription A for numerically realizing the numerator

of Eq. (2.9).
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Figure 2.15: Same as Fig. 2.12, except for 60-88% centrality.

An alternate prescription is to classify events according to the number of produced

charged particles, utilizing Fig. 2.10 to divide events into different centrality bins. In this

case the numerator is replaced with,

NB=
∑
Nch

d2NdAu

d2pTdy
θ(Nch −Nmin

ch )θ(Nmax
ch −Nch), (2.11)
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where, Nmin
ch and Nmax

ch are the minimum and maximum values for charged particles pro-

duced, set by the centrality bin that we are interested in. The factor of 〈Nbin〉 in the

denominator of Eq. (2.9), now has to be calculated from the collection of events that con-

stitute each centrality bin. This method of calculating the RdA is denoted as prescription

B.
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Figure 2.16: The nuclear modification factor for neutral pions for 0 - 20% most central d-
Au collisions at RHIC. The simulation is carried out by binning in centrality according to
the number of charged particles produced (prescription B: see text for details). Simulations
include shadowing and no energy loss. Experimental data are taken from Ref. [5].

Prescription A is the usual theoretical method of calculating the centrality dependence of

the nuclear modification factor, whereas prescription B is closer to the experimental method

of determining centrality. Here, the results of simulating the centrality dependence of the

pion RdA are first shown using prescription A or using the number of binary collisions.

In Fig. 2.12, the RdA for the top 0-20% most central collisions are plotted. One immedi-

ately notes an enhancement in the simulation, but no such enhancement in the experimental

data, which seem to be consistent with unity. The simulation does not explain the experi-
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Figure 2.17: Same as Fig. 2.16, except for 20-40% centrality.

mental data. The enhancement in central events such as demonstrated by the simulation,

is entirely expected based on the shadowing function that has been used to generate events.

Within this framework, the complete lack of any modification in the experimental data is

rather surprising; central event should present the maximal nuclear modification.

As one moves up in centrality, from most central to peripheral events, the enhancement

seen in the simulation tends to reduce progressively. There is less enhancement in the 20-

40% events, even less in the 40-60% simulations, with no modification at all in the 60-88%

events, as shown in Figs. 2.13 - 2.15. This behavior of the simulation is entirely expected,

moving from cases with the largest expected nuclear density modification to cases with little

density and hence no modification at all in the RdA. The experimental data however, show

an entirely different trend: With no modification in the central event and the RdA rising with

centrality from most central to most peripheral events. The fact that the simulation results

with prescription A match some of those from the experiment is entirely coincidental. The

simulation for the RdA drops as one transitions from central to peripheral while the data
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Figure 2.18: Same as Fig. 2.16, except for 40-60% centrality.

trend in the opposite direction.

The experimental results for RdA in d-Au collisions are rather unexpected. The largest

modification is seen in the most peripheral bin, which by all accounts should resemble p-p

most closely. Continuing, the RdA is calculated using prescription B, i.e., using the simu-

lated number of charged particles produced to bin in centrality. The charged particles are

gathered over all rapidities, in events that contain a high-pT π
0 and then compared with the

outlined division in Fig. 2.10. Using this prescription, an excellent agreement is obtained

with experimental data on the nuclear modification factor of high pT neutral pion produc-

tion. One notes that for central collisions, the RdA is consistent with one and continues to

rise as one moves towards more peripheral collisions.

To understand the reason behind the positive comparison between simulation and ex-

periment, We focus on how the events with jets are binned in different centrality bins. In

particular, observing how the number of events within each bin change as we transition from

binning according to the number of binary collisions to binning according to the number of
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Figure 2.19: Same as Fig. 2.16, except for 60-88% centrality.

charged particles produced. To determine this effect, We focus on events with a high pT

pion and isolate the number of events captured in each centrality bin defined by the num-

ber of charged particles produced (prescription B), subtracted from the number of events

captured in the same bin defined by the number of binary collisions (prescription A). This

difference is then expressed as a fraction of the number of events captured using prescription

A. This is plotted as a function of the pT of the pion in Fig. 2.20. It is seen that central

and the number of semi-central (20-40%) events when binned in terms of produced charged

particles are suppressed compared to the case when they binned according to the number of

binary collisions. These lost events show up in the more peripheral collisions, and lead to

an enhancement in those collisions. This is the reason that peripheral events as measured

in experiment are enhanced compared to binary scaled p-p. Central collisions, compared to

binary scaled p-p are slightly enhanced due to shadowing. These lose events to peripheral

collisions and as such the yield is reduced, leading to the ratio of central collisions to binary

scale p-p to be close to unity.
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Figure 2.20: The fraction of events that shift in or out from each centrality bin as the
definition of centrality is changed from binary collisions to number of charged particles
produced. The fractional bin shift is plotted as a percentage of the number of events in the
original definition with number of binary collisions, as a function of the transverse energy of
the detected pion.
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Figure 2.21: The ratio of the nuclear modification factor of jets produced in d-Au collisions
at RHIC. Experimental data are taken from Ref. [6].

This “movement” of events from central to less central to peripheral collisions, leads to

an enhancement over the expected yield in more peripheral collisions, and a suppression over

the expected enhancement in central events. This is mostly an initial state effect. In events

with a high pT π
0, there has to be a high-x parton in the initial state of at least one nucleon

in both the d and the Au nuclei. The presence of a large-x parton in a nucleon of the d

depletes the amount of energy available to produce several additional soft partons and as

such the collisions of this nucleon with nucleons in the Au leads to the production of fewer

charged hadrons. This in turn leads to this event being binned as a more peripheral event.

In addition to further illustrate these effects, a correlation plot of Nchg vs. Nbin was

generated for dAu events with no hard pT cut and with a rather high hard pT cut. This was

done to show how the distribution of charged particle production changes for a given Nbin

for events with a jet present. The narrowing of this distribution and shift towards smaller

values of Nchg should be especially apparent between the two presented plots. This is a
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Figure 2.22: A correlation plot for Nchg vs. Nbin for dAu events with no hard pT cut.

Figure 2.23: A correlation plot for Nchg vs. Nbin for dAu events with a hard pT cut of 50-55
GeV.
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consequence of the reduced Nchg production for events with jet production. These plots are

shown in Fig. 2.22 for events with no hard pT cut, and thus no jets, and in Fig. 2.23 for

events with a hard pT cut of 50-55 GeV.

To test this concept further, the jet RCP , the ratio of the jet spectrum in central to

peripheral events, is plotted both scaled by the number of expected binary collisions, as a

function of pT in Fig. 2.21. The results of these simulations are consistent with experimental

results if the error bars are accounted for. There is some concern with the 0-20% central

data as it does not appear to be consistent between jet and pion measurements, therefore

it was omitted from the plot. In addition, the differences in the methods to determine

centrality (the experimental results were produced by determining centrality by the charge

deposited in the Au-going forward detector whereas this simulation determined centrality

by charged particle production over the entire event) as well as in reproducing jets between

this simulation and experiment (the jets in the experimental results were reconstructed by

applying the anti-kT algorithm to both electromagnetic clusters and charged particle tracks

while rejecting clusters arising from the same particle as a reconstructed track as stated in

Ref. [6]) could account for the observed separation. The RCP is suppressed compared to

unity as events move out of more central bins towards more peripheral events. This same

effect is transferred via fragmentation to the π0 and manifests in the RdA as discussed earlier.

The primary question at this point is if this effect is solely driven by energy conservation:

Is the reduced energy available for the production of small-x partons the only reason for the

reduction in the charged particle production, or is there a multi-particle correlation which

leads to fluctuation with fewer hard partons, versus fluctuations to several soft partons.

In the standard language of pQCD these would be considered as higher-twist multi-parton

distribution functions. In an alternative formalism, is this being caused due to an initial

state color transparency [55, 56, 57]: The fluctuation of the nucleon to a smaller state with

fewer hard partons. In order to study this question further, the modification of this process

is considered with energy of the collision and with the energy of the jet. The higher the
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Figure 2.24: The ratio of the nuclear modification factor of jets produced in p-Pb collisions
at the LHC. Experimental data are taken from Ref. [7].

energy of the jet, the larger the Q2 of the process, and as a result, the smaller the size of the

fluctuations will be in the proton. This should lead to a more pronounced effect in similar

observables at LHC energies with jets or leading hadrons at much higher energies.

In Fig. 2.24, the RCP of jets in central p-Pb collisions is plotted at mid-rapidity, measured

by the ATLAS collaboration at the LHC. This represents the ratio of the nuclear modification

factor in central events (0-10%) to that in peripheral events (60-90%). At high energies,

where the effect of energy conservation should become important, this simulation once again

compares very well with the data. In Fig. 2.25, the RCP for charged particles is plotted in a

similar range of centrality between central and peripheral collisions. In this case, while the

magnitude of the suppression is obtained, the shape of the experimental RCP data is not.

Given that on the jet side, the agreement between simulation and experiment starts around

60 GeV, the disagreement between the simulation and data for the RCP of charged particles

below a 100 GeV is somewhat puzzling. It should be pointed out that in these cases, there
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Figure 2.25: The ratio of the nuclear modification factor of charged particles produced in
p-Pb collisions at the LHC. Experimental data are taken from Ref. [8].

are a larger number of partons produced, all of which are color correlated. The effect of this

on the fragmentation of the leading parton has not been studied in this effort. The effects

of color correlation on jet hadronization have been studied in Ref. [58]. As a result, on the

basis of these results, whether or not color transparency plays a role in these measurements

cannot be stated.

At the risk of repetition, We point out again that our simulations do not in any way

contain rescattering and secondary particle production. In the interest of keeping the hard

particle production as close to reality as possible (without the need for artificial shadowing),

We have abandoned the energy enhanced PDF for the partons in the struck nucleus. There

are thus many points of departure between these simulations and the experimental data on

soft particle production. The goal in this effort was to point out that events with a hard

jet have a lower soft particle production rate, which leads to binning in a more peripheral

bin. While this goal is now firmly established, this work should, by no means, be considered
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definitive, as these efforts to determine whether color transparency plays a role in these

collisions, beyond energy conservation, has not yielded a clear response. These and other

topics will be discussed at length in the subsequent section.

2.4 Discussion

In this work, new experimental results from both RHIC and LHC on jet production in

extremely asymmetric systems have been discussed. At both the energy scales of RHIC and

LHC, similar results were discovered: Events that contained a jet or a high energy particle,

seemed to show an enhancement over binary scaled p-p in peripheral events and a suppression

compared to the expectation of shadowing and binary scaling enhanced central collisions.

The goals in this effort were two fold: The first goal was to set up a reliable event generator

that could be used to reproduce some portion of the observed experimental data from such

collisions. Based on the success of this event generator, the second goal was to determine

if the observed behavior can solely be explained by energy conservation or if it requires the

incorporation of correlations similar to that of color transparency.

The designed parameter free event generator consisted of two parts: A nuclear Monte-

Carlo to determine the positions of the nucleons within the nucleus, and a modified version

of PYTHIA, with an event-by-event shadowing and PDF enhancement to account for the

collision of a nucleon from the p(d) with a column of nucleons within the larger nucleus.

The results from these simulations, manage to correctly predict the behavior in both the jet

RCP and leading particle RdA at RHIC, and the jet RCP at the LHC. The simulation also

correctly predicts the magnitude of the suppression in the leading particle RCP at the LHC,

though it does not reproduce the shape of the curve. This is a considerable success for such

an endeavor. The event generator presented in this effort cannot be considered as complete;

there remain several soft observables that, with the given setup of not containing an energy

enhanced PDF and without rescattering corrections, cannot be explained. In spite of these,

the above study will greatly inform the design of future event generators which will have to

be set up to explain these striking experimental data. While this simulation was built on top
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of the p-p generator PYTHIA, future generators that incorporate all of the above insights

will have to be built as a more original effort.

The goal of setting up the current generator (as well as future generators) was to use

it to extract the physics underlying these new observations. These simulations have now

established the notion that the enhancement in peripheral events and suppression in central

events is entirely due to suppression in soft parton production in a nucleon with a large-x

parton. A large portion of this is entirely due to the reduced energy available for soft parton

production. Is there any further correlation due to color transparency like effects? The fact

that the Q2 independent shadowing led to a successful description of the jet RCP at the LHC

would seem to rule out such an effect. However, the simulation did not manage to explain

the shape of the leading particle RCP . Note that both the leading particle RdA and the jet

RCP at RHIC energies were mostly accounted for by the simulation. In order to study such

a correlation in greater detail, one needs to devise an event generator which will incorporate

an energy enhanced PDF, with a far more sophisticated shadowing set up to reproduce the

large-x behavior of the PDF within a single nucleon. The set up of such an event generator

is left for a future effort. Alternatively, a mechanism will have to be set up where the PDF

of the nucleon (or nucleons) from the projectile will have to be sampled once in a p(d)-A

collision.

Beyond the study of such initial state color transparency effects, a future more advanced

event generator for asymmetric collisions such as d-Au or He3-Au will also allow for a

deeper understanding of the quantum correlation between nucleons in a nucleus. In this

current work, We have explored excluded volume corrections in a Woods-Saxon distribution,

as well as Gaussian perturbations in a shell model based distribution. Experimental data,

coupled with theory uncertainties at the partonic level do not allow to distinguish between

the different correlations between nucleons. However, these can be studied systematically,

once the partonic component is settled via p-A collisions. This will allow an extension of

nuclear structure which has so far not been extensively studied.
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Extremely asymmetric nuclear collisions with a hard interaction provide a new window

into a large variety of correlation phenomena at multiple scales. Future studies with more

accurate experimental data, as well as a more sophisticated event generator, will reveal new

information regarding the correlation between partons within a single nucleon, as well as

correlations between nucleons in large nuclei. The current work represents a bench mark

in this direction, providing a glimpse of the insights that may be gained by such a research

program as well as highlighting the ingredients and framework required for future efforts.
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CHAPTER 3: EVENT-BY-EVENT SIMULATIONS OF JET MOD-

IFICATION IN A-A COLLISIONS

3.1 Introduction

This chapter details the study of full A-A events and the effects of the Quark Gluon

Plasma (QGP) on jet production; the study of final-state nuclear effects. The ultimate goal

of studying heavy-ion collisions is to examine the properties of the QGP. As stated in the

introduction chapter, the QGP is a form of matter characterized by deconfined quarks and

gluons that appear in these collisions. One of the methods available to study the QGP is

by determining the modification of jets due to the presence of this medium. A jet, for the

purpose of this section, is a collection of particles defined by some type of jet algorithm

originating from a high transverse momentum (pT ) parton.

In order to compare analytical approaches of jet modification to experimental data,

a Monte-Carlo event generator is extremely useful due to the ability to directly simu-

late the physical process and to make ”measurements” from the simulation, formulated

in very close analogy to experimental observables. There are several other preexisting simu-

lations; Q-PYTHIA [59] which is based on the Armesto-Salgado-Wiedemann (ASW) scheme

[60][61][62][63][64] and MARTINI [65] which is based on the Arnold-Moore-Yaffe (AMY)

scheme [66][67][68][31][69][70] in addition to formalisms used to directly calculate observ-

ables such as the Gyulassy-Levai-Vitev (GLV) scheme [71][72][73][74][75][76]. There are also

a number of event generators that are not strictly based on analytical models, including

JEWEL [77][78], YaJEM [79][80], and PYQUEN [81] which include medium effects by man-

ually modifying various matrix elements. Generally, these simulations have handled the

inclusion of a medium by taking a vacuum event generator and to either add the modifica-

tion of the jet due to the medium on top of a full vacuum shower, or to alter the vacuum

shower generation in such a way that both vacuum radiation and medium induced radiation

are performed concurrently.

However, in addition to the technical construction of including a medium, there are two
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issues that should be considered when adding medium effects to a simulation. The first of

which is constructing the space-time structure of the shower since the medium itself has a

space-time structure. The second is a modification of hadronization; the shower partons

can potentially recombine with partons from the thermal medium. These two issues are not

addressed in a copacetic fashion in the schemes mentioned previously, though it should be

noted that YaJEM has phenomenologically incorporated fluctuations in space-time structure

[82].

The event generator presented here is based on the Higher-Twist scheme [83][84][85][86][87].

There is also attempt here to include a consistent space-time structure with fluctuations

within the simulation. The Higher-Twist scheme itself is applicable to high energy, high vir-

tuality partons, in contrast to the other schemes (AMY and ASW) that are more applicable

to lower virtuality (though still high energy) partons. This simulation is constructed with

PYTHIA [44] to sample the initial high pT parton, the OSU (Ohio State University) hydro-

dynamic simulation iEBE-VISHNU [19] to provide the thermal medium, and the MATTER

event generator [88] for jet quenching. In the remainder of this chapter, We will briefly

discuss the Higher-Twist model, discuss details of this event generator, and present some

preliminary results from the simulation compared to experimental data.

3.2 Theory of Jet Energy Loss

A brief discussion of the theoretical framework used in this event generator begins with

the work performed by Guo and Wang [89][90]. For the deep inelastic scattering (DIS)

process

e(L1) + A(p)→ e(L2) + h(lh) +X , (3.1)

L1 is the four momentum of the incoming electron, L2 is the same for the outgoing electron,

p is the momentum of a nucleon in nucleus A, and lh is the momentum of the outgoing

hadron. Working in the infinite momentum frame, the momentum of the virtual photon and
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the nucleon are:

q = [−Q2/2q−, q−, 0, 0] (3.2)

p = [p+, 0, 0, 0] . (3.3)

The virtual photon γ∗ has momentum q = L2−L1 and zh =
l−h
l−q

is the momentum fraction

carried by a produced hadron. Also, the Bjorken variable xB is taken as xB = Q2/2p+q−.

The cross section for this process can be stated as:

EL2Elh
dσhDIS
d3L2d3lh

=
α2
em

2πs

1

Q4
LµνElh

dW µν

d3lh
, (3.4)

where s = (p+L1)
2 is the invariant mass of the system. Lµν is the leptonic tensor and it is:

Lµν =
1

2
Tr[γ · L1γµγ · L2γν ] . (3.5)

For DIS, the leading twist contributions at lowest order come from a single hard γ∗ + q

scattering. In this case, the semi-inclusive hadronic tensor dWµν

dzh
at leading twist can be

expressed as [91]:

dW
S(0)
µν

dzh
=
∑
q

∫
dxfAq (x)H(0)

µν (x, p, q)Dq→h(zh) . (3.6)

In this equation, fAq (x)f is the quark distribution function:

fAq (x) =

∫
dy−

2π
eixp

+y− 1

2
< A|ψ̄q(0)γ+ψq(y

−)|A > . (3.7)

Also, the quark fragmentation function Dq→h(zh) is:

Dq→h(zh) =
z3h
4l−h

Tr[γ−d̂q→h(zh, lh)] . (3.8)
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Which, in this equation, d̂q→h(zh, lh) is:

d̂αβq→h(zh, lh) =
∑
S

l−h
z2h

∫
dy+

2π
e−il

−
h y

+/zh < 0|ψβq (0)|h, S >< h, S|ψ̄αq (y+)|0 > . (3.9)

The hard part of the γ∗ + q partonic scattering is:

H(0)
µν = 4πe2q

[
xBe

L
µν −

1

2
eTµν
]
δ(x− xB) (3.10)

where the transverse tensor is defined as

eTµν = gµν −
qµqν
q2

, (3.11)

and the longitudinal tensor is defined as

eLµν =
1

p · q
[pµ −

p · q
q2

qµ][pν −
p · q
q2

qν ] . (3.12)

For higher twist calculations, the hadronic tensor can be expressed as

dW µν

dzh
=
∑
q

∫ 1

zh

dz

z
Dq→h(zh/z)fq(xB)

∫
dY −

∫
dδy−

4

l4T

×
∫
d2lT

αs
2π
CA

1 + z2

1− z
2παs
NC

H(0)
µν e

−i(xL+xD)p+δy−

× (1− e−i(xL+
xd
1−z )p

+(Y −− δy
−
2

))(1− ei(xL+
xd
1−z )p

+(Y −− δy
−
2

))

× < A|F+
σ (Y − +

δy−

2
)F+σ(Y − − δy−

2
)|A > . (3.13)

Where

xL =
l2T

2p+q−z(1− z)
,

xD =
k2T − 2~kT ·~lT

2p+q−z
, (3.14)
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lT is the transverse momentum of the radiated gluon, kT is the initial quark’s transverse

momentum, and z = l−q /q
− is the momentum fraction of the outgoing quark. Also, CA is the

color factor associated with gluon emission from a gluon and NC is the number of colors.

The terms in the third line of eq. 3.13,

(1− e−i(xL+
xd
1−z )p

+(Y −− δy
−
2

))(1− ei(xL+
xd
1−z )p

+(Y −− δy
−
2

)), (3.15)

after taking xL + xD
1−z ' xL since xD � xL, simplify to 2− 2cos(xLP

+Y −).

Then defining

q̂(Y −) =

∫
dδy−

2π

4παs
NC

e−i(xL+xD)p+δy− < A|F+
σ (Y − +

δy−

2
)F+σ(Y − − δy−

2
)|A > . (3.16)

The hadronic tensor then becomes

dW µν

dz
=
∑
q

∫
dzh
z
Dq→h(zh/z)fq(xB)P (

zh
z
, z). (3.17)

In this equation, P ( zh
z
, z) represents the probability of the quark dropping to a momen-

tum fraction in the range of z and z + δz and afterwards fragmenting into a hadron with

momentum fraction between y and δy. In this case, y = zh/z.

The expression for P ( zh
z
, z) is then

P (
zh
z
, z) =

∫
dY −q̂(Y −)

∫
dl2T

αs
2π
CA

1 + z2

1− z
H(0)
µν

4

l4T
(2− 2cos(xLP

+Y −). (3.18)

The energy lost to the emitted gluon is then q−(1 − z)P (z)dz in the single scattering

single emission regime.

To calculate energy loss in the multiple scattering single emission regime, the single scat-

tering single emission kernel was iterated [83] using a Dokshitzer-Gribov-Lipatov-Altarelli-

Parisi (DGLAP) equation [92][93][94][95].
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In the absence of a medium [96],

δDh
q (z,Q2)

δln(Q2)
=
αs(Q

2)

2π

∫ 1

z

dy

y
Pq→i(y)Dh

i (
z

y
,Q2). (3.19)

With medium corrections included [96],

δDh
q (z,Q2, q−)|ξfξi
δln(Q2)

=
αs
2π

∫ 1

z

dy

y

∫ ξf

ξi

dξP̃ (y)Kq−,Q2(y, ξ)Dh
q (
z

y
,Q2, q−, y)|ξfξ (3.20)

where the scattering kernel Kq−,M2(y, ξ) is

Kq−,M2(y, ξ) =
2παsρ(ξ)

NC

[
2− 2cos

{
M2(ξ − ξi)
2q−y(1− y)

}]
. (3.21)

In Eqs. 3.20 and 3.21 ξ denotes the location of the scattering vertex of the hard parton

off the medium and ρ(ξ) is the gluon density at ξ in the medium.

This formulation is used in the MATTER event generator code to perform jet energy

loss, described in the next section.

3.3 Phenomenology of Jet Energy Loss

The initial state of the simulation begins in two parts: PYTHIA and the OSU hy-

drodynamic simulation iEBE-VISHNU. The hard parton from PYTHIA and the medium

from the hydrodynamic simulation were then read by the MATTER event generator for

jet showering. The MATTER event generator was used to simulate jet showering in both

vacuum and in medium. While the parton showers generated by MATTER could be be

used with a hadronization scheme, such as the recombination code from Texas A&M [97][98]

for hadronic results, the majority of the results presented in further sections were instead

performed by generating partonic spectra and using the Kniehl-Kramer-Potter (KKP) frag-

mentation function[99] to generate leading hadron spectra. Some earlier analyses used the

earlier Binnewies-Kniehl-Kramer (BKK) fragmentation function [100][101], however all of

these were redone using the later KKP fragmentation function. In addition, FastJet[102][103]
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Figure 3.1: Code flowchart showing data input/output for each code set

was run over the generated partonic showers to generate full jets using the anti-kT algorithm

with an R = 0.4 for analysis. A general flowchart of this simulation is shown in Fig. 3.1.

3.3.1 Generating the Initiating Hard Parton using PYTHIA

PYTHIA was used to generate the initial hard parton for the shower. Nuclear shadowing

was not included, but is a planned future modification. PYTHIA was setup with the center-

of-mass energy of the collision and the pT bounds for the hard process as well as turning

off final state radiation and all hadron level processes. For each of the produced events,

the leading two partons at midrapidity (y ≤ ±0.25) were used for jet quenching. Multiple

hard-pT bins were used to enhance statistics for high pT values (≥ 5GeV ) to compensate

for the falling jet spectrum. An example of this is shown in Fig. 3.2 where the spectrum for

charged hadrons from a p-p collision is shown for LHC energies. The cross-section for each

of these bins was recorded from PYTHIA for use in the subsequent calculations to determine

simulation results.

3.3.2 Hydrodynamic Simulation of the QGP

The OSU hydrodynamic code ”iEBE-VISHNU” (Event-By-Event Viscous Israel Stewart

Hydrodynamics aNd UrQMD) is an event-by-event 2+1d hydrodynamic simulation of the

QGP in relativistic heavy-ion collisions with fluctuating initial conditions. This package

performs this simulation utilizing the Israel-Stewart formulation [104][105][106]; this partic-

ular formulation explicitly includes causality as opposed to the previous attempts using the

Navier-Stokes equation [107] [108] which were not successfully applied to relativistic systems.
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Figure 3.2: Plot showing the output spectra of quarks and gluons from PYTHIA for a LHC
p-p event, performed using the procedure described in section 3.3.1.

Figure 3.3: Plot showing the contributions of each hard pT bin to the sum of produced
charged hadrons in a LHC p-p event.
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Figure 3.4: An example event produced from the OSU iEBE-VISHNU hydrodynamic simu-
lation (Taken from https://u.osu.edu/vishnu/physics/).

Also, this simulation includes the UrQMD (Ultrarelativistic Quantum Molecular Dynamics)

model [25][26]; though the hadrons produced from this model, while an integral part of the

hydrodynamic code package, were not used in this study. This simulation is used to model

the collision after thermal equilibrium is established, whereas work has been done to study

the effects in the pre-equilibrium state in [18][109][110][111], though these effects have not

been incorporated in this study. It was used to generate both a medium for jet quenching

(an evolving entropy density profile) and to report the initial density profile TAA(x, y) for

sampling the hard parton’s initial location. While it could have been used to generate ther-

mal partons and/or hadrons for the background of the jet, this was not performed for this

analysis though it is a planned future endeavor. An example of the evolution of an event is

shown in Fig 3.4.

3.3.3 The MATTER Event Generator

The jet quenching portion of the simulation was performed with the MATTER++ (Mod-

ular All Twist Transverse scattering based Energy-loss Routines in C++) event generator

[88]. It is based on the Higher-Twist formalism [88] and as such it is primarily applicable to

the high energy, high virtuality portion of a particular jet in the ’few’ scatterings (meaning

zero to one) per emission limit. In this regime, light quark modification is sensitive to the

high Q2, low-x part of the in-medium gluon distribution. In order to introduce space-time

into the shower, the notion that the uncertainty in the momentum is conjugate to the posi-
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tion (and likewise, that the uncertainty in the position is conjugate to the momentum) was

used. For a reasonable uncertainty, it is asserted that δq+ << q+. Then there is an assumed

Gaussian distribution around q+ and it is insisted that

< τ >= 2q−/Q2. (3.22)

Then to obtain the z− a δq+ distribution is assumed. Thus, it is obtained that:

ρ(δq+) =
exp

[
− (δq+)2

2[2(q+)/π]

]
√

2π[2(q+)2/π]
. (3.23)

The off-shell quark will have momentum q = [q−, q+, 0, 0]. This allows for the parton’s

travel length to the next split to be determined.

Before the length traversed for the current parton can be calculated however, its virtuality

must first be determined. This is done by sampling the Sudakov form factor to obtain the

maximum virtuality µ2 (which is also the running scale) of the splitting parton, which is

constructed as:

Sξ(Q
2
0, Q

2) = exp

[ ∫ Q2

2Q2
0

dµ2

µ2

αs(µ
2)

2π
·
∫ 1−Q0/Q

Q0/Q

dyPqg(y)

{
1 +

∫ ξ−i +τ−

ξ−i

dξKp−,µ2

}]
. (3.24)

The Sudakov itself gives the probability of the parton having no emission from initial

virtuality 2Q0 to final virtuality Q. Pqg(y) is the splitting function for a quark to split into

a quark and a gluon where the final quark carries momentum yq− and the gluon carries

momentum (1− y)q−. The single emission, multiple scattering kernel K as a function of the

momentum fraction y and the location of the parton ξ starting from location ξi is:

Kp−,µ2(y, ξ) =
2q̂

µ2

[
2− 2cos

{
µ2(ξ − ξi)

2p−y(1− y)

}]
, (3.25)

where q̂ is the jet transport coefficient [112][113]. This kernel was discussed in the previous
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section 3.2 where it was derived by Guo and Wang [89][90]. Another formula for the kernel

was derived by Aurenche, Zakharov, and Zaraket [114][115] which includes additional terms

that were ignored by Guo and Wang. This kernel could have been used instead, but the

results generated in this study used the Guo and Wang kernel.

Since this simulation is based on the Higher-Twist scheme, multiple emissions are or-

dered in pT . These ordered multiple emissions are only considered when the multiple soft

scatterings mildly effect the virtuality of the parent parton. For partons where the virtuality

has become too low, this calculation is no longer applicable. This means that this procedure

is only valid while:

q̂τ

µ2
. 1 . (3.26)

With this, the code can read in a high-pT parton, that was generated using PYTHIA, and

begin to generate the shower. In order to do so the entropy density of the medium is read in

from the pre-run hydrodynamic simulation. This is used to modify q̂ in the Sudakov form

factor. The Sudakov is sampled to return the largest virtuality allowable for the process. This

virtuality is then used to determine the distance traveled by the parton before it splits. The

splitting function is sampled to determine the momentum fraction y of one of the outgoing

partons. This process is repeated over the outgoing partons for each iteration until all the

generated partons have a virtuality at or less than 1 GeV2, beyond which the Higher Twist

formalism is no longer applicable.

The final partons in the shower are then checked to determine if they are able to escape

the medium; this is done by removing any parton that is further than 1 fm from the edge

of the medium. This can remove high energy but low virtuality partons, though this is a

rare occurrence; instead a planned method to deal with these partons is by handing them

off to an event generator that includes a multiple scatterings per emission treatment, such

as MARTINI [65]. The low energy, low virtuality partons that were removed are planned to

be used to generate source terms for a medium response to the jet. The partons that escape

the medium are then taken as the final generated shower from the MATTER code.
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3.4 Results and Experimental Comparison

With the model described in the earlier sections constructed to simulate jet production in

heavy-ion events, results were generated to compare to expected and experimental results.

Events were simulated over a range of hard pT bins: 2.5-52.5 GeV in 5 GeV wide bins

for Au+Au collisions and 2.5-227.5 GeV for Pb+Pb collisions. The partons produced in the

shower after the MATTER event generator was used to simulate the jet were then either used

to perform jet analyses with FastJet, or used directly to construct quark and gluon spectra.

To determine the nuclear modification factor RAA, the calculation started by taking each of

these hard pT bins, weighting it by its corresponding p-p cross-section, then summing over

all the aforementioned hard pT bins to get the total spectra for either quarks and gluons or

for jets. The nuclear modification factor RAA is defined as

RAA =

bmax∫
bmin

d2b d4NAA
d2pT dyd2b

〈Nbin(bmin, bmax)〉 d
3Npp

d2pT dy

, (3.27)

where N is the yield of jets or leading hadrons binned in pT and rapidity. The numerator

in the preceding formula also includes an integral over a range of the impact parameter b

to construct bins in centrality. The factor 〈Nbin(bmin, bmax)〉 is the mean number of binary

nucleon-nucleon collisions Nbin of a nuclear collision from a given centrality bin for bmin <

b < bmax. This gives a method of quantifying nuclear effects, as it allows for a comparison

of heavy-ion data where the QGP was created to p-p events where we do not expect the

presence of the QGP or other nuclear influences such as initial state cold nuclear matter

effects.

The A-A cross-section in this case is just Nbin multiplied by the previous p-p cross-section.

The KKP fragmentation function was applied to partonic spectra to obtain leading hadron

(or pion) spectra, which were then used to calculate RAA as mentioned above. The results of

these calculations are given in Figs 3.5, 3.6, and 3.7. These results use a q̂0 = 2.4GeV 2/fm
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except for leading hadron data from Au+Au collisions; q̂0 is the value of q̂ at the center of

an averaged 0-5% centrality bin Au+Au collision.

Figure 3.5: Leading pion RAA for 200 GeV Au+Au compared to PHENIX data [9] for varying
q̂0

While v2 measurements were not calculated, an in-plane vs. out-of-plane simulation was

carried out for a medium with a smooth, static density profile, as a first step in determining

the effects of an anisotropic medium. These were plotted for a medium representative of

the ”average” medium for 20-30% centrality Au+Au events with a hard pT bin of 12.5-17.5

GeV at the parton level (for both quarks and gluons) in Fig. 3.8. Strictly speaking this is

not an RAA as it was only determined for a single hard pT bin, but should be indicative of a

complete in-plane vs. out-of-plane RAA calculation. This plot is shown in Fig. 3.8. It should

be noted that the observed behavior of the out-of-plane ratio being more suppressed than

the in-plane ratio is consistent with naive expectation, and the magnitude of the effect of

approximately 0.3-0.5 is entirely reasonable considering the somewhat unrealistic medium.
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Figure 3.6: Leading hadron RAA for 2.76 TeV Pb+Pb 0-5% centrality compared to CMS
data [10] with q̂0 = 2.4GeV 2/fm

3.4.1 Integration of the Texas A&M Recombination Code

While there were no results calculated using the Texas A&M recombination code that

were compared to experiment, there has been some work done in order to integrate it with

the simulation as a whole. The dN/dpT histogram was calculated for a 100 GeV quark jet

both in vacuum and in a 4 fm brick. The KKP fragmentation function was applied to the

quark and gluon histograms, while the recombination code was used on an event-by-event

basis to generate pions from the partons in the event to be histogrammed. The results

of this procedure are shown in Fig. 3.9 for both the KKP fragmentation function and the

recombination code in addition to the raw quark and gluon histograms.

Also, to compare the two methods of calculating hadron spectra, pion spectra from both

the KKP fragmentation function and the recombination code were calculated. The medium

used was generated using the OSU hydrodynamic simulation of a 0-5% Au+Au collision. The

data from the KKP fragmentation function were calculated in the same way as described in
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Figure 3.7: Jet RAA for 2.76 TeV Pb+Pb 0-5% centrality compared to CMS data [11] with
q̂0 = 2.4GeV 2/fm

the above text, whereas the data using the recombination code were generated by applying

the recombination code over each of the events produced for each of the hard pT bins. The

hadrons produced were then histogrammed and the calculation to determine the spectra

proceeded similarly to the parton spectra before. The spectra, and RAA calculated from

these spectra, were determined for pion production, and the results are given in Figs. 3.10

and 3.11.

3.5 Discussion

In this work the development of a Monte-Carlo event generator for jet quenching based

on the HT scheme was discussed. The designed event generator was constructed in several

sections. The initial state of the heavy-ion collision was built using PYTHIA to generate

the hard parton and the OSU Hydrodynamic simulation to generate the medium. The jet

shower was simulated using the MATTER event generator. This shower was then used for

subsequent calculations; using either the KKP fragmentation function for hadronic results
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Figure 3.8: A plot of the ratio of the in-medium to vacuum production of quarks in gluons
in a smooth static medium representative of Au+Au collisions for in-plane vs. out-of-plane
results.

or FastJet running with the anti-kT algorithm to construct partonic jet observables.

The results produced from these simulations are consistent with RAA hadronic experimen-

tal data at both RHIC and the LHC. The agreement between the simulated and experimental

data indicates a measure of success in the construction of this event generator. In addition

some future feature implementations were tested in the form of preliminary analyses (in the

form of in-plane vs. out-of-plane results) and inclusion of the Texas A&M recombination

code results and comparisons to the current method of calculating hadron production both

were shown to behave as anticipated. This fact bodes well for future enhancements of this

work. The analysis is by no means exhaustive as there a number of analyses possible that

have not yet been completed and there are a number of improvements that yet remain to be

added.

In the future, we intend to further refine the presented results. We also plan to present

further analyses including v2 and jet shapes. Further refinements include a method of han-



69

0 2 0 4 0 6 0 8 0 1 0 0
1 0 0

1 0 1

1 0 2

1 0 3

1 0 4

1 0 5

1 0 6

1 0 7

dN
/dp

T

p T  ( G e V )

 G l u  v a c      G l u  b r i
 Q r k  v a c      Q r k  b r i
 R e c o  v a c    R e c o  b r i
 K K P  v a c     K K P  b r i

H i s t o g r a m  o f  p r o d u c e d  p a r t i c l e s  ( q , g , p + / - )  f r o m  a  1 0 0 G e V
   q u a r k  j e t  i n  v a c u u m  a n d  i n  a  4 f m  q = 1 . 0 G e V 2 / f m  b r i c k

Figure 3.9: A dN/dpT histogram plotted for a 100 GeV quark jet in vacuum and in a 4 fm
q̂ = 1.0GeV 2/fm brick for pion production determined by the KKP fragmentation function
and the Texas A&M recombination code, as well as for raw quark and gluon production.

dling partons with a virtuality of 1 GeV or less, incorporating medium response via a source

term, including thermal hadrons, further incorporating the Texas A&M recombination code,

and including thermal-shower recombination hadrons. With the execution of these plans

there is hope to see even better agreement with experimental data, to compare to more

experimental data, and to predict a number of future experimental results.

This development of the event generator constructed in this work has allowed for the

simulation of jet observables based on the HT scheme to be compared to experimental data.

Future studies with this event generator, as well as planned future enhancements to it,

will hopefully reveal new information about heavy-ion collisions in general, and the QGP

specifically. The current work represents a step in this direction, giving insight into the

potential knowledge to be gained in this pursuit.
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Figure 3.10: A plot of pion spectra generated using the KKP fragmentation function and the
Texas A&M recombination code for vacuum jets and for 0-5% 200 GeV Au+Au collisions.
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Figure 3.11: Leading pion RAA for 0-5% 200 GeV Au+Au events, generated by using the
KKP fragmentation function and by using the Texas A&M recombination code.
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CHAPTER 4: SUMMARY AND DISCUSSION

4.1 Summary

In this work, Monte-Carlo event generators were developed to study nuclear effects in

heavy-ion collisions. Initial state effects were studied in d(p)-A collisions and simulations

where the production of a QGP is not expected, and final state effects were studied in A-A

collisions and simulations where the QGP is expected to be produced. These effects were

studied via jet modification within the systems of interest.

The d(p)-A simulation was used to study centrality dependent jet modification with in-

teresting behavior seen with experimental results from both RHIC and the LHC. Specifically,

the naive expectation is for jet production in central events to show maximal nuclear mod-

ification and for production in peripheral events to show minimal modification. In essence,

peripheral events are expected to behave as a superposition of p-p events, whereas if any

nuclear effects are present they are expected to show predominantly in central events. How-

ever, the experimental results seemed to indicate the exact opposite; jet production in central

events were behaving as if they were just a superposition of p-p events and production in

peripheral events were showing significant nuclear effects.

The construction of the simulation was built on an altered version of PYTHIA, which has

widespread use as a p-p event generator. These alterations involved the modification of the

PDF calls within the PYTHIA code in order to run proton-superproton events, so that a p-A

collision could be simulated in such a manner that the event was run without resampling the

PDF. Current event generators treat these events by running N p-p events, however, this is

an unphysical method as the PDF in the impacting nucleon is time dilated to the extent that

it’s PDF does not fluctuate over the event. When events with jet production are observed,

the PDF must preexist in a configuration with a high x ”hard” parton. This means that

there is less energy available in the nucleon to produce low x ”soft” partons, and thus soft

hadron production is suppressed in these events. Since, experimentally, events are binned in

centrality by soft particle production (Nchg deposited in the forward detector), this leads to
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those events being placed in more peripheral bins than if they could have been binned by

the number of binary collisions Nbin. In the simulation, however, both the Nbin and Nchg for

a given event is available. This allowed for the binning of events by either. Binning by Nbin

showed results that were inconsistent with experimental results, but did conform to naive

expectations. Binning by Nchg on the other hand showed results that were consistent with

experimental results at both RHIC and the LHC.

The construction of an A-A simulation was used to study jet modification in full heavy-

ion collisions. Specifically, the study of jet suppression due to the presence of the QGP. There

are a number of preexisting simulations, but this particular construction is one of the first

to include a space-time structure of the shower that interacts with a space-time dependent

medium on an event-by-event basis. The simulation was constructed in several parts; the

p-p event generator PYTHIA, the OSU hydrodynamic simulation iEBE-VISHNU, and the

MATTER++ jet showering event generator being the primary components. PYTHIA was

used to generate the initial high pT hard parton to start the jet shower. iEBE-VISHNU was

used to generate the medium of the collision, as well as to provide an initial density profile

for that event to sample for the jet starting location within the event. The MATTER event

generator used the initiating partons produced using PYTHIA and generated the jet shower

within the medium profile produced using iEBE-VISHNU, in addition to producing showers

without a medium for vacuum results. The parton showers produced using MATTER could

be used as direct input to calculate partonic observables. One could also calculate hadronic

observables using either the KKP fragmentation function or the Texas A&M recombination

code.

The output of these procedures was used for several calculations of interest, including

spectra and ultimately RAA. Experimental comparisons were performed with the KKP frag-

mentation function and the RAA calculated from the simulation shows strong agreement

with the experimental results at both RHIC and the LHC. In addition, a plot of the angular

dependence of the ratio of in-medium to vacuum production of quarks and gluons showed
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expected behavior. Also, the implementation of the Texas A&M recombination code showed

reasonable and anticipated results when compared to the results using the KKP fragmenta-

tion function for pion production in a brick with a fixed initial parton energy, pion spectra

at RHIC energies, and RAA at RHIC energies.

4.2 Discussion

The simulations constructed were used to examine both initial state and final state nuclear

effects. The p-A events provide a baseline for the full A-A events so that any effects due

to the QGP can be isolated. The results generated by both simulations exhibited effects

that were either physically expected or were outright consistent with experimental results

at both RHIC and the LHC. In d(p)-A collisions, an interesting centrality dependent jet

production effect was explained with energy conservation; events that produce a jet have

less energy available for soft particle production. Thus when an event is binned in centrality

by soft charged particle production, events with a jet tend to fall into more peripheral

bins since those events produce less charged particles than would have been present in the

event if there had not been a jet. In A-A collisions, the simulation was able to generate

RAA consistent with experimental measurements at both RHIC and the LHC, showing the

practicality of this event generator. In addition, results were also produced for a smooth

static medium representative of a 20-30% centrality Au-Au collision where the ratio of in-

medium to vacuum jet production showed reasonable angular dependence. Also, comparisons

were generated using the KKP fragmentation function (which had been used to generate

all hadronic results for experimental comparison) and the Texas A&M recombination code,

which showed reasonable agreement. As this recombination code is expected to be integrated

into the simulation proper, this agreement is indicative of a successful inclusion of this code

and the expectation of the generation of accurate future results.

While there is remarkable agreement for most experimental data compared to from these

simulations, there are a few caveats that need to be addressed. For the d(p)-A simulation,

there is concern with the shape of the charged hadron RCP data compared to the experi-
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ment; while the magnitude of the suppression was captured for large pT the shape was not.

This discrepancy could be due to the increased color connections available to the produced

hard parton in this formulation as compared to what it would actually have in practice; in

this formulation the parton is able to form color connections to any of the nucleons in the

”superproton” whereas in actuality it should only have a color connection to the generating

nucleon only. We did not study this effect, but it’s influence could explain the shape of

the simulation results. Also, in this simulation the production of soft hadrons is different

than in experiment; the production of these should be performed with an energy-enhanced

PDF, however this leads to a severe overproduction of high-x partons. This lead to just a

’number of nucleons present’ enhancement of the ”superproton” PDF in order to preserve

the jet production cross-section. For the A-A simulation, there are a number of experimental

results yet to be compared such as jet v2, and a number of physics effects that need to be

included. The simulation needs a method of handing partons that have a virtuality less

than 1 GeV, it needs the inclusion of a medium response to the jet, it needs the inclusion of

thermal partons, and the complete integration of the Texas A&M recombination code into

the simulation itself needs to be done.

Future work with these simulations involves the mitigation if not correction of these

issues. The d(p)-A event generator needs a revamped PDF sampling routine which will

likely not be able to be performed using PYTHIA. The A-A event generator is slated to

incorporate a number of physics features including a method of handing low virtuality (≤

1 GeV) high-energy partons, the incorporation of a medium response via a source term

in the hydrodynamic simulation, the inclusion of thermal partons from the hydro, and the

integration of the Texas A&M recombination code. The incorporation of these fixes will allow

for more experimental comparisons to be performed, and to be done with better accuracy.

While the implementation of these fixes and enhancements represents a large undertaking,

the current work presented here is a marked step in the direction of gaining new insight into

constructing Monte-Carlo event generators to simulate heavy-ion collisions. Both in the
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fact that this work has shown the feasibility of incorporating novel approaches to simulating

heavy-ion collisions and the success in reproducing experimental results, but also in providing

information as to the construction necessary for future event generators. The work presented

here demonstrates a study in these simulations that quantify nuclear effects, ranging from

effects due to the nuclear initial state in d(p)-A collisions to studying the final state in A-A

collisions with the presence of the QGP. These simulations represent a new tool to examine

features in heavy-ion collisions and provides a potential base for the development of future,

more sophisticated, event generators.
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This work outlines methods to use jet simulations to study both initial and final state

nuclear effects in heavy-ion collisions. To study the initial state of heavy-ion collisions,

the production of jets and high momentum hadrons from jets, produced in deuteron (d)-

Au collisions at the Relativistic Heavy-Ion Collider (RHIC) and proton (p)-Pb collisions

at the Large Hadron Collider (LHC) are studied as a function of centrality, a measure of

the impact parameter of the collision. A modified version of the event generator PYTHIA,

widely used to simulate p-p collisions, is used in conjunction with a nuclear Monte-Carlo

event generator which simulates the locations of the nucleons within a large nucleus. It is

demonstrated how events with a hard jet may be simulated, in such a way that the parton

distribution function of the projectile is frozen during its interaction with the extended

nucleus. Using this approach, it is demonstrated that the puzzling enhancement seen in

peripheral events at RHIC and the LHC, as well as the suppression seen in central events at

the LHC are mainly due to mis-binning of central and semi-central events, containing a jet,

as peripheral events. This occurs due to the suppression of soft particle production away

from the jet, caused by the depletion of energy available in a nucleon of the deuteron (in

d-Au at RHIC) or in the proton (in p-Pb at LHC), after the production of a hard jet. In

conclusion, partonic correlations built out of simple energy conservation are responsible for

such an effect, though these are sampled at the hard scale of jet production and, as such,
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represent smaller states. To study final state nuclear effects, the modification of hard jets in

the Quark Gluon Plasma (QGP) is simulated using the Modular All Twist Transverse and

Elastic scattering and Radiation (MATTER) event generator. Based on the higher twist

formalism of energy loss, the MATTER event generator simulates the evolution of highly

virtual partons through a medium. These partons sampled from an underlying PYTHIA

kernel undergo splitting through a combination of vacuum and medium induced emission.

The momentum exchange with the medium is simulated via the jet transport coefficient q̂,

which is assumed to scale with the entropy density at a given location in the medium. The

entropy density is obtained from a relativistic viscous fluid dynamics simulation (VISH2+1D)

in 2+1 space time dimensions. Results for jet and hadron observables are presented using

an independent fragmentation model.
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