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A ‘useful’ fuzzy measure of order α and type β is developed. Its validity established with 

a numerical example. 

 

Keywords: Shannon's entropy, fuzzy set, fuzzy entropy, ‘useful’ information measure 

 

Introduction 

Zadeh (1965) presented fuzzy set theory. The degree of fuzziness in a fuzzy set is 

measured by using the concept of entropy. Ebanks (1983) and Pal and Bezdek 

(1994) called it fuzzy entropy, which is an important concept for measuring fuzzy 

information. It has a vital role in fuzzy systems such as neural networks, pattern 

recognition, decision making, knowledge base, communication, etc. This led to 

further developments, such as Kaufmann (1975), Pal and Pal (1989), Parkash and 

Sharma (2002, 2004), Bhat and Baig (2016a, b), Bhat, Baig, and Salam (2016), and 

Bhat, Bhat, et al. (2017). 

Let X = {x1, x2,…, xn} be a universal set defined in the universe of discourse. 

A fuzzy subset ‘A’ in ‘X’ is defined as A = {(xi, μA(xi)): xi ∈ X, μA(xi) ∈ [0, 1]} 

where μA(xi) is a membership function which is defined as 

 

 ( )

0 if  and there is no ambiguity,

μ 0.5 if there is maximum ambiguity whether  or ,

1 if  and there is no ambiguity

A i

x A

x x A x A

x A




=  
 

  

 

Some important concepts related to fuzzy sets are given below: 
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• Sum of A and B (A + B) is given as 

 

 ( ) ( ) ( ) ( ) ( )μ μ μ μ μ ,A B i A i B i A i B i ix x x x x x X+ = + −   ;  

 

• Product of A and B (AB) is given as 

 

 ( ) ( ) ( )μ μ μ ,AB i A i B i ix x x x X=   ;  

 

• Equality of A and B (A = B) is given as 

 

 ( ) ( )μ μ ,A i B i ix x x X=   ;  

 

• Containment of A and B (A ⊂ B) is given as 

 

 ( ) ( )μ μ ,A i B i ix x x X   ;  

 

• Complement of A (A′) is defined as 

 

 ( ) ( )μ 1 μ ,A i A i ix x x X = −   ;  

 

• Union of A and B (A ∪ B) is defined as 

 

 ( ) ( ) ( ) μ Max μ ,μ ,A B i A i B i ix x x x X =   ;  

 

• Intersection of A and B (A ∩ B) is defined as: 

 

 ( ) ( ) ( ) μ Min μ ,μ ,A B i A i B i ix x x x X =     

 

where A and B are two fuzzy subsets of X with membership functions μA(xi) and 

μB(xi), respectively. 
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Shannon’s Entropy 

Let X = (x1, x2,…, xn) be a discrete random variable with probability distribution 

P = (p1, p2,…, pn) such that pi ≥ 0 ∀ i = 1, 2,…, n and 
1

1
n

ii
p

=
= . Then the 

Shannon’s information measure, called entropy, is defined as (Shannon, 1948) 

 

 ( )
1

H log
n

i D i

i

P p p
=

= − .  (1) 

 

Corresponding to Shannon’s measure of entropy, De Luca and Termini 

(1972) gave a measure of fuzzy entropy given as 

 

 ( ) ( ) ( ) ( )( ) ( )( )
1

H μ logμ 1 μ log 1 μ
n

A i A i A i A i

i

A x x x x
=

 = − + − −  .  (2) 

 

The fuzzy entropy measure should satisfy the following four properties, given by 

De Luca and Termini (1972): 

 

1. Sharpness: H(A) is minimum if and only if A is a crisp set. 

2. Maximality: H(A) is maximum if and only if A is most fuzzy set. 

3. Resolution: H(A) ≥ H(A*), where A* is sharpened version of A. 

4. Symmetry: H(A) = H(A′), where A′ is the complement of A. 

‘Useful’ Fuzzy Information Measure 

Let U = (u1, u2,…, un) be a set of non-negative numbers such that ui > 0 and ui 

represents the utility of the occurrence of element xi. In general, utility is 

independent of probability pi. The information scheme given by 

 

 

1 2

1 2

1

1 2

; 0, 0& 1

n n

n i i i

i

n

x x x

p p p u p p

u u u
=

 
 

=   =
 
  

U   (3) 

 

is called as utility information scheme. Corresponding to the scheme (3), Belis and 

Guiasu (1968) gave the following measure of information: 
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 ( )
1

H ; log
n

i i D i

i

P u p p
=

= −U .  (4) 

 

The measure defined in (4) is called ‘useful’ entropy. This measure can be taken as 

a satisfactory measure for the average quantity of ‘useful’ information provided by 

the information scheme (3). 

For any fuzzy set A, the ‘useful’ fuzzy entropy is defined as 

 

 ( ) ( ) ( ) ( )( ) ( )( ) 
1

H ; μ log μ 1 μ log 1 μ
n

i A i D A i A i D A i

i

A u x x x x
=

= − + − −U .  (5) 

Proposed ‘Useful’ Fuzzy Information Measure and Its 
Properties 

The proposed ‘useful’ fuzzy information measure is 

 

 
( )

( ) ( ) ( )( )
( ) 11

1

1

μ 1 μ
H ; log ;

1

0 1,0 1, , 0

n

i A i A ii

D n

ii

i

u x x
A

u

u

  









   

−−

=

=

 + −
 

=  −
 
 

     




U

  (6) 

 

For (6) to be a valid ‘useful’ fuzzy information measure, it should satisfy the four 

properties given by De Luca and Termini (1972). 

 

Sharpness. ( )H ;A

 U  is minimum if and only if A is a crisp set i.e., 

( )H ; 0A

 =U  iff μA(xi) = 0 or 1 ∀ i = 1, 2,…, n. 

 

Proof. Suppose ( )H ; 0A

 =U , i.e., 

 

 

( ) ( ) ( )( )
( ) 11

1

1

μ 1 μ
log 0

1

n

i A i A ii

D n

ii

u x x

u

  





−−

=

=

 + −
 

= −
 
 




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( ) ( ) ( )( )
( ) 11

1

1

μ 1 μ
log 0

n

i A i A ii

D n

ii

u x x

u

   −−

=

=

 + −
 

 = 
 
 




  

 

 ( ) ( ) ( )( )
( ) 11

1 1
μ 1 μ

n n

i A i A i ii i
u x x u

   −−

= =
 + − =    (7) 

 

Because 0 < α < 1, 0 < β ≤ 1, and ui > 0, (7) will hold when either μA(xi) = 1 or 

μA(xi) = 0 ∀ i = 1, 2,…, n. 

Conversely, suppose 

 

 

( ) ( ) ( )( )
( ) 11

1

1

μ 1 μ
log 0

n

i A i A ii

D n

ii

u x x

u

   −−

=

=

 + −
 

= 
 
 




.  (8) 

 

Multiplying both sides of equation (8) by β / (1 – α), 

 

 

( ) ( ) ( )( )
( ) 

( )

11

1

1

μ 1 μ
log 0

1

H ; 0

n

i A i A ii

D n

ii

u x x

u

A

  









−−

=

=

 + −
 

= −
 
 

 =





U

  

 

Hence, ( )H ; 0A

 =U  if and only if A is a crisp set. 

 

Maximality. ( )H ;A

 U  is maximum if and only if A is most fuzzy set. 

 

Proof. We have 

 

 
( )

( ) ( ) ( )( )
( ) 11

1

1

μ 1 μ
H ; log ;

1

0 1,0 1, , 0

n

i A i A ii

D n

ii

i

u x x
A

u

u

  









   

−−

=

=

 + −
 

=  −
 
 

     




U

  (9) 
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Now, differentiating equation (9) with respect to μA(xi), 

 

 
( )

( )

( ) ( ) ( )( )
( ) 

( ) ( ) ( )( )
( ) 

1 11 1

2

11

1

μ 1 μH ;

μ μ 1 μ

i A i A i

n
A i

i A i A ii

u x xA

x u x x

  




  


− −− −

−−

=

 − −  
=   + − 

 


U
.  

 

Let 0 ≤ μA(xi) < 0.5; then 

 

 
( )

( )

H ;
0; 0 1,0 1, , 0

μ
i

A i

A
u

x



    


      


U
.  

 

Hence, ( )H ;A

 U  is an increasing function of μA(xi) whenever 0 ≤ μA(xi) < 0.5. 

Similarly, for 0.5 < μA(xi) ≤ 1, 

 

 
( )

( )

H ;
0; 0 1,0 1, , 0

μ
i

A i

A
u

x



    


      


U
.  

 

Hence, ( )H ;A

 U  is a decreasing function of μA(xi) whenever 0.5 < μA(xi) ≤ 1, and 

for μA(xi) = 0.5, 

 

 
( )

( )

H ;
0; 0 1,0 1, , 0

μ
i

A i

A
u

x



    


=      


U
.  

 

Thus, ( )H ;A

 U  is a concave function which has a global maximum at μA(xi) = 0.5. 

This implies ( )H ;A

 U  is maximum iff A is most fuzzy set, that is, μA(xi) = 0.5 

∀ i = 1, 2,…, n. 

 

Resolution. ( ) ( )H ; H ;A A 

 

U U , where A* is sharpened version of A. 

 

Proof. : Because ( )H ;A

 U  is an increasing function of μA(xi) whenever 

0 ≤ μA(xi) < 0.5 and is a decreasing function of μA(xi) whenever 0.5 < μA(xi) ≤ 1, 
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( ) ( )

( ) ( )  )

μ μ

H ; H ;  in 0,0.5

i A iA
x x

A A 

 







 U U
  (10) 

 

Also, 

 

 
( ) ( )

( ) ( ) ( 

μ μ

H ; H ;  in 0.5,1

i A iA
x x

A A 

 







 U U
  (11) 

 

Taking equation (10) and (11) together, ( ) ( )H ; H ;A A 

 

U U . 

 

Symmetry. ( ) ( )H ; H ;A A 

 
=U U , where A′ is the compliment of A. 

 

Proof. From the definition of ( )H ;A

 U  and μA′(xi) = 1 – μA(xi) ∀ xi ∈ X, we 

conclude that ( ) ( )H ; H ;A A 

 
=U U . 

Because the proposed measure ( )H ;A

 U  satisfies all the four properties of 

fuzzy information measure, thus it is a valid measure of ‘useful’ fuzzy information. 

Illustration 

Sharpness 

From Table 1, conclude A is minimum (i.e., ( )H ; 0A

 =U ) iff A is a crisp set (i.e., 

when μA(xi) = 0 or μA(xi) = 1). 
 
 

Table 1. Behavior of ( )H ;
β

α
A U  when μA(xi) = 1 and μA(xi) = 0 with respect to α and β 

 

α β ui μA(xi) 
( )H ;U

β

α
A  μA(xi) 

( )H ;U
β

α
A  

0.1 0.2 4 1 0 0 0 
  3 1 0 0 0 

  2 1 0 0 0 

  1 1 0 0 0 
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Maximality 

From Table 2, conclude ( )H ;A

 U  is an increasing function of μA(xi) (i.e. 

( ) ( )( )H ; μ 0A iA x

  U ) whenever 0 ≤ μA(xi) < 0.5. 

From Table 3, conclude ( )H ;A

 U  is a decreasing function of μA(xi) (i.e. 

( ) ( )( )H ; μ 0A iA x

  U ) whenever 0.5 < μA(xi) ≤ 1. For μA(xi) = 0.5, α = 0.1, 

and β = 0.2, 

 

 
( )

( )

H ;
0

μA i

A

x




=



U
  (12) 

 

Thus, from Tables 2 and 3 and equation (12), conclude ( )H ;A

 U  is a 

concave function with global maximum at μA(xi) = 0.5. 
 
 
Table 2. At 0 ≤ μA(xi) < 0.5 and with respect to α and β 
 

α β ui μA(xi) 

( )

( )





H ;U

μ

β

α

A i

A

x
 

0.1 0.2 1 0.00 ∞ 
  2 0.13 0.0202 

  3 0.27 0.0118 

  4 0.43 0.0039 

 
 
Table 3. 0.5 < μA(xi) ≤ 1 and with respect to α and β 
 

α β ui μA(xi) 

( )

( )





H ;U

μ

β

α

A i

A

x
 

0.1 0.2 1 0.55 –0.000810 
  2 0.70 –0.007520 

  3 0.85 –0.030181 

  4 1.00 –∞ 
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Resolution 

From Table 4, conclude ( ) ( )H ; H ;A A 

 

 U U  whenever ( ) ( )μ μA i iA
x x  in 

[0, 0.5). 

From Table 5, conclude ( ) ( )H ; H ;A A 

 

 U U  whenever ( ) ( )μ μA i iA
x x  

in (0.5, 1]. 

Thus, from Tables 4 and 5, conclude ( ) ( )H ; H ;A A 

 

 U U , where A* is 

sharpened version of A. 
 
 

Table 4. At [0, 0.5) and with ( ) ( ) *μ μ
A i iA

x x  

 

α β ui μA(xi) 
( )H ;U

β

α
A  ( )

*
μ

A i
x  ( )H ;U

β

α
A*  

0.2 0.6 1 0.12 0.2539 0.00 0.2306 
  2 0.23  0.15  

  3 0.36  0.31  

  4 0.49  0.44  

 
 

Table 5. At (0.5, 1] and with ( ) ( ) *μ μ
A i iA

x x  

 

α β ui μA(xi) 
( )H ;U

β

α
A  ( )

*
μ

A i
x  ( )H ;U

β

α
A*  

0.2 0.6 1 0.65 0.1823 0.70 0.1226 
  2 0.83  0.83  

  3 0.89  0.94  

  4 0.96  1.00  

Symmetry 

From Table 6, conclude that ( ) ( )H ; H ;A A 

 
=U U , where A′ is the compliment 

of A. 
 
 
Table 6. Verification of symmetry property 
 

α β ui μA(xi) 
( )H ;U

β

α
A  1 – μA(xi) 

( )H ;U
β

α
A  

0.2 0.6 1 0.65 0.1858 0.35 0.1858 
  2 0.78  0.22  

  3 0.89  0.11  

  4 0.96  0.04  
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Behavior of Proposed ‘Useful’ Fuzzy Information Measure 
of Order α and Type β 

In order to study the behavior of the proposed ‘useful’ fuzzy information measure, 

fix β and observe the behavior of ( )H ;A

 U  at different values of α and vice-versa. 

Consider the membership function μA(xi) = {0.11, 0.45, 0.23, 0.65, 0.82, 0.31, 0.72, 

0.56, 0.92} with the utilities ui = {1, 2, 3, 4, 5, 6, 7, 8, 9}. 
 
 

Table 7. Behavior ( )H ;
β

α
A U  of at different values of α and β = 1 

 
α 0.15 0.29 0.36 0.40 0.53 0.61 0.70 0.85 0.90 

( )1
H ;
α

A U  0.0978 0.2340 0.3278 0.3923 0.6858 0.9714 1.4846 3.7597 6.0577 

 
 

 
 

Figure 1. Behavior ( )H ;
β

α
A U  of at different values of α and β = 1 

 

 
 

Table 8. Behavior ( )H ;
β

α
A U  of at different values of β and α = 0.2 

 
β 0.29 0.36 0.40 0.53 0.61 0.70 0.85 0.90 0.92 

( )
0.2

H ;
β

A U  0.1804 0.2045 0.2151 0.2348 0.2363 0.2288 0.1962 0.1800 0.1729 
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Figure 2. Behavior ( )H ;
β

α
A U  of at different values of β and α = 0.2 

 

 

On observing the behavior of ( )H ;A

 U  at different values of β and fixed α, 

( )H ;A

 U  increases up to α = 0.59 and after this value ( )H ;A

 U  starts decreasing. 

Conclusion 

The present communication introduces a new ‘useful’ fuzzy information measure 

i.e., ( )H ;A

 U , of order α and type β. The properties of ( )H ;A

 U  were considered 

via hypothetical data. Further, the behavior of ( )H ;A

 U  at different values of α 

and β were studied. 
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