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CHAPTER 1 INTRODUCTION

1.1 Motivation for this Thesis

Here is the table of contents for this section on motivation for this thesis.

1.1.1 Motivic wn-periodicity . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Towards the Construction of the Fields K(wn) : The Cofiber of τ . . 4

1.1.3 The Cofiber of τ as an E∞ Ring Spectrum . . . . . . . . . . . . . . . 5

1.1.4 The Category of Cτ -Modules and Examples . . . . . . . . . . . . . . 7

1.1.5 The Structure of the Category of Cτ -Modules . . . . . . . . . . . . . 8

1.1.6 Motivic Thick Subcategories . . . . . . . . . . . . . . . . . . . . . . . 10

1.1.7 Detecting Motivic Nilpotence and Periodicity . . . . . . . . . . . . . 13

The chromatic approach to classical homotopy theory is a very powerful organizational

tool to study the homotopy category of (p-local) finite CW-complexes. In particular, given a

p-local finite CW-complex X, the chromatic approach provides an algorithm for computing

its homotopy groups π∗(X). This algorithm relies heavily on the existence of the chromatic

filtration on π∗(X). This is an increasing filtration indexed by non-negative integers n ∈ N0,

where we say that an element f ∈ π∗(X) in the nth filtration has height n. Experience shows

that the complexity of the height n part grows exponentially as n increases linearly. For

example for the sphere S(p), the height 0 elements are exactly the elements in π0, the height

1 elements correspond to im j, and the height 2 elements are associated with tmf. Following

[48], determining the chromatic filtration of an element f ∈ π∗(X) can be done by a recursive

algorithm that is based on the following steps.

Step 1: Find a non-nilpotent self-map v on X, not necessarily of degree 0.
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Step 2: Since v acts on π∗(X) by post-composition, we can use it to break π∗(X) into a

v-periodic part and a (power of) v-torsion part.

Step 3: If the element f is v-periodic, then it will be detected in some cohomology theory,

and we are done. If not, then it lifts to the cofiber of some power of v, and we repeat

this process by replacing X with this cofiber. This process increases the height of

f by 1.

The execution and good behavior of this algorithm require the following ingredients:

(1) the existence of a non-nilpotent self-map v on every finite complex,

(2) some sort of uniqueness for such a self-map v,

(3) computable cohomology theories detecting v-periodicity.

The first two points are exactly the content of one of the deepest theorems in chromatic

homotopy theory called the Periodicity Theorem of Devinatz-Hopkins-Smith. Given any

finite complex X, this theorem says that there is an essentially unique non-nilpotent self-

map on X called a vn-self-map. Finally, the last point is taken care of by the existence of

the Morava K-theories K(n) [38] which are field spectra1 and detect exactly vn-periodicity.

One of the main goals of this thesis is to discuss the story of motivic periodicities. As we

will see, the vn-operators have a motivic analogue, but this is only a fraction of the whole

story.

1.1.1 Motivic wn-periodicity

This section is extracted from the introduction of our paper [15], which we refer to for

more details about wn-periodicity.

Even over very nice base schemes (for example algebraically closed fields of characteristic

1and thus admit a Künneth isomorphism, i.e., are computable.



3

0), the above chromatic algorithm does not apply in the category of motivic spectra. Motivic

Morava K-theories detecting vn-periodicity have been constructed in [8] and [23], and even

though they are not quite field spectra2, they are computable over nice base schemes. The

main issue comes from the lack of a Periodicity Theorem, and the fact that there is more

periodicity to consider than just vn-periodicity. One goal of this thesis is to try to explain this

phenomenon in the easiest case: for 2-local cellular motivic spectra over SpecC. Denote by

S the 2-local motivic sphere spectrum over SpecC. The first step in the chromatic approach

to compute π∗,∗(S) already fails, as there are two very different non-nilpotent self-maps

S
2

GGA S and S1,1
η

GGA S.

This means that the process has to be refined, and that the linear ordering of periodicities

has to be replaced by a more complex lattice. It turns out that in the same way that there

is a vn-periodicity story starting with v0 = 2, Haynes Miller suggested that there could be a

similar story starting with w0 = η. The first evidence is provided by Andrews in [1], where

he also pins down the notation of wn-periodicity. Even though no precise definition is given,

he shows that in the same way that S/v0 admits a v4
1-self-map, the motivic 2-cell complex

S/w0 also admits a w4
1 self-map. The main goal of Chapter 4 is to give a precise definition of

wn-periodicity, as well as construct motivic field spectra K(wn) that detect wn-periodicity.

We refer to Theorem 4.26 for more details.

2they are however what could be called principal ideal domains spectra.



4

1.1.2 Towards the Construction of the Fields K(wn) : The Cofiber of τ

The spectra K(wn) will not be constructed merely as motivic spectra, but as modules

over some motivic E∞ ring spectrum. By the end of this section, we will explain which ring

spectrum that is, and why it is easier to construct the K(wn)’s there.

The mod 2 cohomology of the motivic sphere spectrum S0,0 over SpecC was computed

by Voevodsky in [60], and is given by

HF2
∗,∗(S0,0) ∼= F2[τ ] where |τ | = (0, 1).

The element τ is sometimes denoted the Tate twist. One can run the motivic Adams spectral

sequence

ExtAC(F2[τ ],F2[τ ]) =⇒ π∗,∗
(
(S0,0)∧2

)
,

as constructed in [39], [13], [22], and it is easy to see that the element ·τ ∈ Ext0 survives to

the E∞-page. It therefore detects a map

S0,−1
τ

GGA (S0,0)∧2 ,

i.e., an element in the homotopy groups (of the 2-completed motivic sphere), whose Hurewicz

image is the element τ ∈ HF2∗,∗((S
0,0)∧2 ).

Consider now the first wn-periodic operator w0 = η, and its associated field K(w0). There

is a relation 0 = τη4 in the homotopy groups of (S0,0)∧2 , which thus holds in the homotopy

groups of any motivic 2-completed spectrum. Similarly with the fact that the Morava K-
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theories K(n) are naturally 2-completed3, i.e., are (S0,0)∧2 -modules, the same occurs for the

motivic spectra K(wn). In particular, since K(w0) contains η±1 in its homotopy, this forces

τ to act by zero on it. One can quotient by τ on the level of spectra, and the motivic

spectrum S0,0/τ is naturally a highly structured ring spectrum. Moreover, it turns out that

τ acts as zero on all the fields K(wn), and that in this case, this is sufficient to naturally turn

them into S0,0/τ -modules. This means that once this category of modules is in place, one

can construct K(wn) in this category, which has the advantage of being much easier than

constructing them as only motivic spectra.

1.1.3 The Cofiber of τ as an E∞ Ring Spectrum

This section is extracted from the introduction of our paper [14], which we refer to for

more details about the motivic spectrum Cτ = S0,0/τ .

As we will explain later in diagram (2.4), the map

S0,−1
τ

GGA (S0,0)∧2 ,

does not exist if we don’t 2-complete the target. We will thus work 2-completed, and denote

the 2-completed sphere and the smash product in 2-completed motivic spectra simply by

S0,0 and − ∧−. Consider the cofiber sequence

S0,−1
τ

GGA S0,0
GGA Cτ GGA S1,−1,

where we denote the cofiber of the map τ by Cτ = S0,0/τ . This 2-cell complex already

3except for K(0) ' HQ.
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appeared in [24], where it is studied via its motivic Adams-Novikov spectral sequence. More

precisely, it is proven that its Adams-Novikov spectral sequence collapses at the E2-page,

providing a surprising isomorphism

Ext∗,∗BP∗BP (BP∗, BP∗) ∼= π∗,∗(Cτ). (1.1)

The left hand side is the cohomology of the classical (non-motivic) Hopf algebroid (BP∗, BP∗BP )

and is very important in chromatic homotopy theory. Notice that since it is the cohomology

of a dga, namely the cobar complex associated to (BP∗, BP∗BP ), it admits products and

higher Massey products. All this algebraic structure gets transferred to the motivic homo-

topy groups π∗,∗(Cτ), formally endowing it with a (higher) ring structure. One can thus

hope that this algebraic ring structure can be lifted to a topological ring structure on Cτ .

The following is the main result of Chapter 3.

Theorem 1.1. There exists a unique E∞ ring structure on Cτ .

This improves the above isomorphism, and we can show that the algebraic structure on

π∗,∗(Cτ) does come from Cτ .

Proposition 1.2. The isomorphism (1.1)

π∗,∗(Cτ) ∼= Ext∗,∗BP∗BP (BP∗, BP∗)

is an isomorphism of rings which sends Toda brackets in π∗,∗ to Massey products in Ext, and

vice-versa.

Let’s point out that the additive version of this theorem was already exploited by Isaksen
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in [24] to gain knowledge about the classical Adams-Novikov E2-page. The idea is to compute

π∗,∗(Cτ) in a range using its motivic Adams spectral sequence and the knowledge of π∗,∗(S
0,0)

in this range. Having a multiplicative structure available improves the correspondence in an

obvious manner.

1.1.4 The Category of Cτ-Modules and Examples

With an E∞ ring structure on Cτ , there is an associated symmetric monoidal∞-category

of Cτ -modules, and a free-forget adjunction

SptC
−∧Cτ
GGA⊥
GDGG CτMod, (1.2)

between motivic spectra and Cτ -modules. In Lemma 3.30 we show that the Betti realization

of any Cτ -module is contractible, which means that the category of Cτ -modules lies in the

kernel of the Betti realization

SptC
ReC
GGA Spt.

This explains in some sense why the motivic spectra K(wn) should be constructed in Cτ -

modules, since they do not have a classical analogue.

Given a spectrum X, we call the induced Cτ -module X := X ∧ Cτ a Cτ -induced spec-

trum. This is in some sense the spectrum X/τ , which is the analogue of X in the category

of Cτ -modules. It turns out that Cτ -induced spectra X are easy to understand for many

usual motivic spectra X, and admit many interesting properties. We now cite a few results

that we show at the end of Chapter 3.

Start with the 2-completed motivic mod 2 Moore spectrum S0,0/2. The Toda bracket
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〈2, η, 2〉 3 τη2 is the obstruction to both endowing it with a left unital multiplication, and

to a v1
1-self map. In Theorem 3.37, we will prove the following results about the Cτ -induced

Moore spectrum, which we denote by S/(2, τ).

Theorem 1.3. The Cτ -induced motivic mod 2 Moore spectrum S/(2, τ) admits a unique

structure of an E∞ Cτ -algebra.

Proposition 1.4. The Cτ -induced motivic mod 2 Moore spectrum S/(2, τ) admits a v1
1-self

map

Σ2,1S/(2, τ)
v1

GGA S/(2, τ).

Another interesting spectrum to consider is the 2-completed connective4 hermitian K-

theory spectrum kq.

Proposition 1.5. The Cτ -induced connective hermitian K-theory spectrum kq has homo-

topy groups

π∗,∗(kq) ∼= Ẑ2[v2
1, η]

/
2η .

Recall that the homotopy of the motivic spectrum kq contains the 8-fold Bott periodicity

element v4
1, but does not contain v2

1. In chromatic motivic language, up to the v0-extensions

this can be rewritten as F2[v0, v
2
1, w0]

/
v0w0

. The relation v0w0 = 0 is clear as it is already

existent in π∗,∗(S
0,0), but this shows that v2

1 and w0 can coexist without any relation between

them.

1.1.5 The Structure of the Category of Cτ-Modules

The results of this section are joint with Zhouli Xu and Guozhen Wang, and appear both

in Chapter 5 and in the first part of the paper [17].

4in the sense of [25, Definiton 4.9 and 4.11].



9

One strength of the category CτMod is that it is relatively easy to work with Cτ -modules.

One first observes this phenomenon during the process of proving that Cτ admits an E∞

ring structure, and for example also trough studying the Cτ -induces spectra S/(2, τ) and

kq. In Chapter 5, we offer an explanation for these phenomena.

Recall the isomorphism of equation (1.1)

π∗,∗(Cτ) ∼= ExtMGL∗,∗MGL(MGL∗,∗,MGL∗,∗),

which is a highly structured isomorphism by Proposition 1.2. This isomorphism hints to the

fact that the motivic 2-cell complex Cτ is of algebraic nature, and one can ask how far this

comparison can go. In Chapter 5, we will show that some category CτCellcomp of cellular

Cτ -modules is equivalent the derived bounded category of its heart

Db(MU∗M̂UComod)
∼=

GGGA CτCellcomp,

providing a surprising equivalence between modules over a motivic 2-cell complex, and de-

rived modules over a ring. The spectrum M̂U is the 2-completion of the complex cobordism

(non-motivic) spectrum MU .

This equivalence of categories implies that the homotopy category of cellular (complete)

Cτ -modules is algebraic in the sense of [54]. This gives a reason as to why it feels eas-

ier to manipulate motivic spectra living in CτMod, since algebraic categories are usually

better behaved than topological categories. For example, algebraic categories admit a D(Z)-

enrichment which implies many pleasant properties.
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1.1.6 Motivic Thick Subcategories

With the category of Cτ -modules in place and reasonably well understood, we construct

in Chapter 4 the motivic fields K(wn) ∈ CτMod. In fact, the spectra K(wn) are also

directly related to the structure of the category of finite 2-local motivic spectra. From the

Periodicity Theorem, one can rewind back to one of the deepest and pioneering theorems in

chromatic homotopy theory : the Thick Subcategory Theorem proved by Devinatz-Hopkins-

Smith in [11]. This theorem is equivalent to the Nilpotence Theorem, and in fact implies the

Periodicity Theorem. In some sense it is a more global way of understanding the chromatic

filtration, without zooming in on a specific object. This theorem describes a filtration

∗ = C−1 ( C0 ( C1 ( · · · ( C∞ = FinSpt(p)

by height, on the whole category FinSpt(p) of finite p-local spectra. The category Cn is the

subcategory of acyclics for the Morava K-theory spectrum K(n) of height n. This filtration

is exhaustive, Hausdorff, and admits no refinement by any thick subcategory. In fact, the

subcategories Cn turn out to further be prime ideals, i.e., this filtration gives a complete

description of the Balmer spectrum of FinSpt(p). Although it is not true in a general tensor

triangulated category that all prime ideals come from field spectra, this happens to be the

case for FinSpt(p).

Motivically, the study of thick subcategories started with the work in [27]. In that paper

some thick subcategories of FinSptC were constructed, with the feeling that this is a very

hard problem. In fact, even the Balmer spectrum (i.e., just the thick prime ideals) of the

category of finite p-local motivic spectra has not been computed over any base scheme. A
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slightly easier problem that we will consider is the Balmer spectrum of the category of cellular

finite p-local spectra. Denote this category (over the base SpecC) by FinCellC. Since the

spectra K(wn) are new motivic fields, it is now clear that the Balmer spectrum of FinCellC

is more complicated than the one of FinSpt. Morel showed [40] that if the base scheme is

a perfect field k of characteristic different than 2, then

π−(∗,∗)S
0,0 ∼= KMW

∗ (k)

is the Milnor-Witt K-theory of k, which contains the Grothendieck-Witt group KMW
0 (k) =

GW(k) in degree 0. In [3], Balmer considers a natural map

ρ : Spc(FinCellk) GGA Spec(GW(k))

from the spectrum of finite motivic cellular spectra. This maps send a thick prime ideal p to

the prime ideal of elements f ∈ GW(k) = [S0,0, S0,0] such that Cf /∈ p, where Cf denotes

the 2-cell complex given by the cofiber of the map f . He shows by general methods that in

this case, the map ρ is surjective. In the case when k is either C or a finite field Fq, the only

non-trivial prime ideals of GW(k) are given by (p), and the surjectivity of ρ was already

known since the motivic vn-story covers these ideals. In [28] for the case of finite fields, and

more generally in [18], it is shown that Balmer’s map ρ factors further through the surjective

map ρ• as in
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Spc(FinCellk) Spech(KMW
∗ (k))

Spec(GW(k)),

ρ•

ρ

where Spech denotes the space of homogeneous prime ideals. The space Spech(KMW
∗ (k)) has

been computed in [56], the remaining task for understanding the thick prime ideals of finite

cellular motivic spectra is thus to identify the fibers of this map. However, this is no easy

task, even in what is considered to be the easiest case, i.e., over SpecC. In this case, the

lattice of homogeneous prime ideals of Spech(KMW
∗ (C)) is given by

(2, η) (3, η) (5, η) · · · .

Spech(KMW
∗ (C)) (2) (η)

Some explicit thick prime ideals have been constructed in [18] in the case when the base field

k admits an embedding k ↪GGA C. For simplicity, let’s from now on only work over SpecC.

Recall that there is an adjunction

Real : SptC GGA⊥
GDGG

Spt : Sing,

where Real is the Betti realization functor induced by taking C-points. In [18], Heller-Ormsby

show that the thick prime ideal Real−1(Cn) is the subcategory of acyclics for the motivic field

spectrum Sing(K(n)). The thick prime ideal generated by Sing(K(0)) sits over (η), while

Sing(K(n)) for n > 0 sits over (p, η) for the appropriate prime, very much like the classical

picture except that (0) becomes (η). In the cellular case, being a motivic field is a weaker

condition, since in particular it is implied by the coefficients being a graded field. In this
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case, the paper [18] constructs a motivic field from the spectrum KT of [20] representing

(higher) Witt groups. This cellular motivic field generates another thick prime ideal and

lives over the ideal (2).

In Theorem 4.26 we construct more cellular motivic fields K(wn) for every n ∈ N0. Since

w0 = η, the spectrum K(w0) agrees on homotopy groups with the cellular field of [18]. These

new motivic fields sit above Spech(KMW
∗ (C)) as is shown in the diagram

Spc(FinCellC)
...

...
...

... . .
.

K(w2) K(2) K(2) K(2) · · ·

K(w1) K(1) K(1) K(1) · · ·

K(w0) K(0)

(2, η) (3, η) (5, η) · · · ,

Spech(KMW
∗ (C)) (2) (η)

where the symbol K(n) in fact stands for the motivic field Sing(K(n)). From this picture,

it is tempting to conjecture that the containment of the thick ideals generated by K(wn)

is similar to the K(n) story (the above dotted lines are only conjectural and represent this

containment), and that these fields only exist at p = 2. In any case, our methods employed to

detect wn-periodicity and to construct K(wn) in Section 4.2 do not generalize in an obvious

way to odd primes. Work in progress of Barthel-Heard-Krause investigate such fields at odd

primes.

1.1.7 Detecting Motivic Nilpotence and Periodicity

Having motivic fields K(wn) that detect wn-periodicity is a first step towards detecting

motivic nilpotence, in the sense explained below (as in [11]). Similarly to the situation in
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classical homotopy theory, it is desirable to also have a more global spectrum containing all

the wi and detecting them all at once. In classical chromatic homotopy theory, the Brown-

Peterson spectrum BP is necessary to enunciate the Nilpotence Theorem. This theorem

states that given any p-local finite complex X, a self-map Σ∗X GGA X is nilpotent if and

only if it is nilpotent in BP -homology. For example in the case of a single cell X = S(p), this

theorem recovers Nishida’s Theorem since BP∗ is torsion-free. Motivically, it is easy to see

that the natural motivic analogue BPGL does not detect nilpotence. We already pointed

out that the Hopf map η : S1,1
GGA S is not nilpotent. Moreover, by construction, the

algebraic cobordism spectrum MGL does not detect η, and thus neither does the spectrum

BPGL. In Section 4.3 we construct an E∞ ring spectrum wBP with homotopy groups

π∗,∗(wBP ) ∼= F2[w0, w1, . . .],

with the hope that BPGL together with wBP detect nilpotence. Unfortunately, this turns

out to not be the case. More precisely, there is an element d1 ∈ π32,18(Ŝ2) which is non-

nilpotent by work of [24], and which is not detected by either BPGL or wBP . At this

point we should mention current work in progress of Barthel-Heard-Krause, which organizes

wn-periodicity in a bigger framework. Their idea is to rewind back to the E1-page of the May

spectral sequence, and consider all the periodicity that can occur from May’s elements hij. In

their work, they constructed a cellular motivic ring spectrum that detects the element d1, as

well as more motivic spectra (which are neither ring nor fields) detecting more hij-periodicity.

One can hope that their additional spectra provide all the tools to detect nilpotence in the

motivic setting.
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1.2 Organization

Here is a brief organization of this thesis.

Chapter 2. This chapter contains some background material (as well as references) to un-

derstand this thesis. In particular, it contains a very brief introduction to motivic homotopy

theory, as well as the first computational tools over SpecC, such as motivic Eilenberg-

Maclane spectra, the motivic Steenrod algebra and the motivic Adams spectral sequence.

Finally, we introduce the motivic element τ and explain how it gives rise to the motivic

spectrum Cτ .

Chapter 3. In this chapter we show that the motivic spectrum Cτ admits an E∞ ring

structure. We then compute the Cτ -linear HF2 Steenrod algebra and its dual, that will be

necessary in Chapter 4. We end the chapter with some results about various Cτ -induced

motivic spectra such as S/(2, τ), kgl and kq.

Chapter 4. In this chapter we construct the motivic fields K(wn), as well as associated

spectra such as connective versions k(wn) and an analogue of the Brown-Peterson spectrum

wBP .

Chapter 5. This chapter is concerned with the equivalence of categories

Db(MU∗M̂UComod)
∼=

GGGA CτCellcomp,

providing an algebraic model for the category of Cτ -modules. Along the way, we will show
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another equivalence of categories

Db(MGL∗,∗
Mod)

∼=
GGGA MGLCellb,

which is a required ingredient in showing the first equivalence.

1.3 The Choice of Prime p = 2

This thesis is written in a p-completed setting, where we exclusively restrict to the prime

p = 2. However, some results generalize in a straightforward way to odd primes as well.

Before indicating which of those results generalize to odd primes, let’s explain the reason

why we restrict to p = 2. For odd primes p, the motivic story is somehow easier since it

is more closely related to the classical story. In particular, in the case of odd primes, the

motivic Steenrod algebra (and its dual) are isomorphic as Hopf algebras to the classical

Steenrod algebra (and its dual) adjoined a primitive formal variable τ . This is not the case

for p = 2, for example because of the relation τ 2
i = τξi+1 in the dual motivic Steenrod

algebra.

Let now p be an arbitrary prime. The HFp-based motivic Adams spectral sequence

produces the map

S0,−1
τ

GGA (S0,0)∧p ,

after p-completing the target for any prime p. Denote again its cofiber by Cτ , where the

prime p does not appear in the notation. The isomorphism

Ext∗,∗BP∗BP (BP∗, BP∗) ∼= π∗,∗(Cτ)
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still holds for any prime, producing the same vanishing regions in the homotopy of Cτ , and

thus endowing Cτ with an E∞ ring structure. The calculations from the end of Chapter

3 are specific to p = 2, so we will skip those results. Similarly, Chapter 4 is specific to

p = 2, and the story of motivic periodicity for odd primes is somehow more complicated.

However, all the results of Chapter 5 apply to odd primes verbatim, and will be written in

this generality in [17].
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CHAPTER 2 BACKGROUND IN MOTIVIC HOMOTOPY
THEORY

In this section we give some brief background on the setting of this thesis, which is motivic

homotopy theory over SpecC. For a more detailed introduction to motivic homotopy theory

we refer the reader to [41], [42]. Most of our notation agrees with and is taken from [24].

2.1 Motivic Spaces and Spectra over SpecC
Denote by SpcC the category of (pointed) motivic spaces over SpecC as defined in [42].

This is roughly obtained by starting with C-schemes and

(1) freely adding (homotopy) colimits to allow gluing constructions (attaching cells, suspen-

sions, etc),

(2) restoring some desired geometric colimits by Bousfield localizations,

(3) forcing the affine line A1 to play the role of the interval I and be contractible.

This category is endowed with a well-behaved A1-invariant homotopy theory, for example in

the form of a closed symmetric monoidal, proper, simplicial and cellular model structure. The

paper [46, Chapter 2] is a good source for a careful construction of these model structures.

There is a realization functor

SpcC
ReC

GGGGA Top,

from motivic spaces over SpecC to topological spaces called Betti realization. This functor

is for example constructed in [13, 2.6], [45, Appendix A.7] or [27, Chapter 4], and is induced

by taking C-points of the involved C-schemes. It is a strict symmetric monoidal left Quillen

functor, whose right adjoint is usually denoted by Sing. In the same spirit as equivariant

homotopy theory, motivic homotopy theory has two different types of spheres. Here are 3 of

them:

• the simplicial spheres that appear during the homotopy cocompletion process, they are

constant presheaves that have nothing to do with algebraic geometry,

• the geometric sphere that is the (Yoneda image of the) multiplicative group scheme Gm,

• the (Yoneda image of the) projective line P1.
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The 1-dimensional simplicial sphere will be denoted by S1,0. It Betti realizes to the 1-

dimensional sphere S1 and is the sphere that appears in the triangulated structure with shift

functor Σ = S1,0 ∧ −. We will denote the geometric sphere Gm by S1,1, where the first

coordinate indicates its topological dimension (since Gm realizes to Gm(C) = C − {0} '

S1), while the second coordinate indicates its weight, or Tate twist. Since A1 was made

contractible, the pushout square

Gm A1

A1 P1

x ' ∗

x−1

∗ '

exhibits an equivalence of motivic spaces P1 ' ΣGm. In the above notation we get the

equation

P1 ' S1,0 ∧ S1,1 ' S2,1, (2.1)

i.e., the homotopy type of the projective line P1 is obtained as the smash product of a

simplicial sphere and a geometric (twisted) sphere.

With spheres at hand, we can now construct the category of motivic spectra SptC over

SpecC in the exact same way that is done in topology: by stabilizing with respect to some

sphere. Using the above equation (2.1) we observe that inverting the smash product −∧ P1

is a good idea as it inverts both smashing with the simplicial − ∧ S1,0 and the geometric

sphere −∧S1,1. For any n,m ∈ Z, there is therefore a sphere of topological dimension n and

weight m that breaks uniquely in terms of simplicial and geometric spheres as

Sn,m =
(
S1,1

)∧m ∧ (S1,0
)∧n−m

.

This provides a bigraded suspension functor that we denote by Σn,m = − ∧ Sn,m. As

noted above, smashing with the simplicial sphere Σ1,0 = − ∧ S1,0 corresponds to the shift

functor associated with the triangulated structure on the homotopy category. The category
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of motivic spectra SptC also supports good model structures which, in particular, are closed

symmetric monoidal with respect to the smash product − ∧ −, proper, simplicial, cellular,

. . . , see [46, Chapter 2] for more details. Moreover, the realization pair stabilizes to a Quillen

adjunction5

SptC
ReC
GGA⊥
GDGG

Sing
Spt,

where the Betti functor ReC is strict symmetric monoidal, see for example [45, A.45].

Given two spectra X, Y ∈ SptC, the closed symmetric monoidal structure provides a

function motivic spectrum that we denote by F (X, Y ) ∈ SptC. When X = Y , we will

usually write End(X) = F (X,X). As usual, we will denote the abelian group of homotopy

classes of maps between X and Y by [X, Y ]. When the source spectrum is a sphere X = Ss,w,

the abelian group

πs,w(Y ) := [Ss,w, Y ]

is called the homotopy group of Y in stem s and weight w. The relation between the two is

given by the usual adjunction between the smash product and the function spectrum. After

taking homotopy, this becomes the equation

πs,w(F (X, Y )) ∼= [Σs,wX, Y ].

2.2 The Motivic Steenrod Algebra and the Adams Spectral Se-
quence

Denote by HZ Voevodsky’s motivic Eilenberg-Maclane spectrum representing integral

motivic cohomology on smooth schemes [59, Section 6.1]. Denote by HF2 the cofiber of

multiplication by 2 on HZ, which sits in the cofiber sequence

HZ
·2

GGGA HZ GGA HF2.

5Since the Betti realization of P1 is the topological sphere P1(C) ' S2, taking C-points lands in the
category of S2-spectra, i.e., spectra with bonding maps S2 ∧Xn GGA Xn+1. This is also a model for stable
homotopy theory, see [27, Section 4.1] for more details.
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The spectrum HF2 represents mod 2 motivic cohomology on smooth schemes. The coeffi-

cients of this spectrum were computed in [60] by Voevodsky, and are given by

HF2∗,∗(S
0,0) ∼= F2[τ ] for |τ | = (0,−1).

Dually, the motivic cohomology of a point is

HF2
∗,∗(S0,0) ∼= F2[τ ] for |τ | = (0, 1),

where we abuse notation and use the same symbol τ to denote the Tate twist element in

homology and its dual in cohomology. We use the same notation as in [24] for the coefficients

M2 := HF2
∗,∗(S0,0) ∼= F2[τ ] and M

∨

2 := HF2∗,∗(S
0,0) ∼= F2[τ ].

We write AC for the mod 2 motivic Steenrod algebra, i.e., the ring of stable cohomology

operations on the motivic spectrum HF2. Its structure has been computed by Voevodsky in

[61], [62] : it is the bigraded Hopf algebra over M2 given by

AC ∼= M2〈Sq1, Sq2, . . .〉 /Adem relations .

Observe that as in topology, it is generated by the Steenrod squares Sqn with the Adem

relations between them. The Tate twist τ ∈ M2 has bidegree |τ | = (0, 1), and the Steenrod

squares have bidegrees |Sq2n| = (2n, n) and |Sq2n+1| = (2n + 1, n). Since we work at p = 2,

the first square Sq1 = β is again the usual Bockstein operation coming from the short exact

sequence of abelian groups

0 GGA Z/2
·2

GGA Z/4 GGA Z/2 GGA 0.
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The dual motivic Steenrod algebra

A
∨

C
∼= M

∨

2[ξ1, ξ2, . . . , τ0, τ1, . . .]
/
τξi+1 = τ 2

i
, (2.2)

was also computed by Voevodsky in [61]. Because we are now in homology, the Tate twist

τ ∈ M
∨

2 has bidegree |τ | = (0,−1). The ξi’s and τi’s have bidegrees |ξi| = (2i+1 − 2, 2i − 1)

and |τi| = (2i+1 − 1, 2i − 1). The coproduct is given by the formulas

∆(ξn) =
∑

ξ2k

n−k ⊗ ξk and ∆(τn) = τn ⊗ 1 +
∑

ξ2k

n−k ⊗ τk.

One can now run the motivic Adams spectral sequence

ExtAC(M2,M2) =⇒ π∗,∗((S
0,0)∧2 )

constructed in [39], [13], [22], that converges to the homotopy groups of the 2-completed

motivic sphere (S0,0)∧2 . The AC-module map

M2

·τ
GGA M2

is an element in Hom = Ext0 of Adams filtration 0 as τ is central in AC. This element

survives to the E∞-page as it cannot be involved with any differential for degree reasons.

Therefore, it detects a map

S0,−1
τ

GGA (S0,0)∧2 , (2.3)

whose Hurewicz image is the element τ ∈ HF2∗,∗((S
0,0)∧2 ).

Unfortunately, the map of equation (2.3) does not lift to a map before 2-completing the
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target. The situation can be summarized by the following commutative diagram

S0,−1

HF2 (S0,0)∧2

HZ S0,0.

τ

@

∃ τ

(2.4)

The top dotted arrow corresponds to the element (2.3) constructed by the motivic Adams

spectral sequence, and the non-existence of the bottom dotted arrow shows that τ does not lift

to a map S0,−1
GGA S0,0. In fact, a map S0,−1

GGA HZ corresponds to a cohomology class in

the groupH0,1
mot(SpecC;Z), which vanishes. Here is another argument to explain the existence

of the map (2.3), that was kindly suggested by the referee during the publication of [14].

This element comes from the Tor spectral sequence for the 2-completed sphere, whenever

there is an infinitely 2-divisible element in the Milnor-Witt K-theory KMW
1 (SpecC), i.e.,

when the base field has all 2-power roots of unity.

It is crucial for us that this element τ exists in the homotopy groups of the motivic

sphere spectrum, and thus acts on the homotopy of any motivic spectrum. Recall that

2-completion is given by the E-Bousfield localization at either the Moore spectrum S0,0/2

or the Eilenberg-Maclane spectrum HF2. In particular, the 2-completed sphere (S0,0)∧2 is

also an E∞ ring spectrum and admits a good category of (2-completed) modules. Denote

temporarily its category of modules by ŜptC. The ring map S0,0
GGA (S0,0)∧2 induces a

forgetful functor

SptC ŜptC

from 2-completed motivic spectra to motivic spectra. As explained in [46, Section 2.8],

this forgetful functor creates a symmetric monoidal model structure on ŜptC. Moreover, as
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indicated in the diagram

SptC ŜptC,

− ∧ (S0,0)∧2

F
(
(S0,0)∧2 ,−

)

it is both a left and right Quillen functor via the usual adjunctions. It follows that the

forgetful functor preserves all categorical constructions in ŜptC, i.e., the underlying spec-

trum of any (co)limit is computed in the underlying category of motivic spectra SptC. On

finite spectra, 2-completing and smashing with the 2-completed sphere (S0,0)∧2 are equivalent

functors. In this thesis, we will only be concerned with finite spectra, and will from now on

exclusively work in ŜptC without further mention, and drop the completion symbol from

the notation. For example, we will denote this category by SptC, the 2-completed motivic

sphere spectrum by S0,0, the smash product over the 2-completed sphere by − ∧ −, . . . etc.

With this notation, the motivic Adams spectral sequence produces a non-trivial map

S0,−1
τ

GGA S0,0,

which we can see as being an element in the homotopy groups π0,−1(S0,0).
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CHAPTER 3 THE COFIBER OF τ

This chapter contains the first important result of this thesis, namely the fact that the

motivic 2-cell complex Cτ admits an essentially unique E∞ ring structure. This has many

consequences, such as giving more structure to the isomorphism of Proposition 3.1, or more

importantly, exhibiting the existence of its category of modules CτMod as a symmetric

monoidal ∞-category.

Moreover, this chapter is a requirement for the following two chapters 4 and 5. In Chapter

4 we will construct some motivic spectra detecting a new form of motivic periodicity, called

wn-periodicity. It turns out that these motivic spectra are naturally Cτ -modules, and thus it

is easier more efficient to construct them in the category CτMod, rather than in SptC, and

further endowing them with the structure of a Cτ -module. The computations of Sections 3.3

and 3.4 will be necessary in Chapter 4. In Chapter 5, we will further identify the category

CτCell of cellular Cτ -modules with the derived category of an abelian category, explain the

algebraic nature of the motivic 2-cell complex Cτ .

We refer to the Introduction for more motivation about the spectrum Cτ . Finally, let’s

mention that this chapter appears as a separate paper, in [14].

Organization

Here is the organization of this chapter.

Section 3.1. This Section first introduces the spectrum Cτ , as well as some vanishing results

both in its homotopy groups π∗,∗(Cτ) and in the homotopy classes of self-maps [Cτ,Cτ ]∗,∗.

These results will be mostly used to endow Cτ with an E∞ ring structure.

Section 3.2. We first explain the notion of motivic A∞ and E∞ ring spectra that we will

use in this thesis, and adapt Robinson’s obstruction theory [51] to the motivic setting. We

then apply this obstruction theory to endow the spectrum Cτ with an E∞ ring structure.

Section 3.3. In this Section we compute the homotopy types of the E∞ ring spectrum

Cτ ∧ Cτ and of the A∞ ring spectrum End(Cτ).
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Section 3.4. This Section is about the symmetric monoidal category CτMod. We start

by showing some generalities on Cτ -modules. We then analyze more precisely a few specific

Cτ -induced spectra:

(1) We compute the Steenrod algebra of operations and co-operations on the Cτ -induced

mod 2 Eilenberg-Maclane spectrum HF2 ∧ Cτ .

(2) We show that the Cτ -induced mod 2 Moore spectrum S/(2, τ) admits a unique E∞

structure as a Cτ -algebra, and that it admits a v1
1-self map.

(3) We compute the homotopy groups of the Cτ -induced connective algebraic and hermitian

K-theories kgl ∧Cτ and kq ∧Cτ . In particular, a hidden extension shows that kq ∧Cτ

contains a 4-fold periodicity by the element v2
1, which is the square root of the usual

8-fold Bott periodicity observed in kq.

3.1 The Spectrum Cτ and its Homotopy

In this Section we will introduce the main object of this thesis, the motivic spectrum Cτ .

Recall that we work in a 2-completed setting. Define the 2-cell complex Cτ by the cofiber

sequence

S0,−1
τ

GGA S0,0
i

GGA Cτ
p

GGA S1,−1, (3.1)

where τ denotes the map from equation (2.3), i denotes the inclusion of the bottom cell

and p the projection on the top cell. Recall from [13, Section 2.6] that the Betti realization

functor SptC GGA Spt sends the map τ to the identity id, as shown in the diagram

(
S0,−1

τ
GGA S0,0

)
[GGA

(
S0

id
GGA S0

)
.

Moreover, it is a left Quillen functor and thus preserves cofiber sequences. This implies that it

sends Cτ to a contractible spectrum ∗ ∈ Top and thus that Cτ is a purely motivic spectrum

living in the kernel of Betti realization. Nonetheless, the motivic spectrum Cτ has very

tight connections to classical (non-motivic) homotopy theory. Surprisingly, a computation

of Hu-Kriz-Ormsby in [23], allows Isaksen in [24] to express the homotopy groups of this
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2-cell complex π∗,∗(Cτ) in terms of the classical Adams-Novikov spectral sequence. Denote

by Exts,tBP∗BP (BP∗, BP∗) the E2-page of the classical (2-completed) Adams-Novikov spectral

sequence for the topological sphere S0, where as usual s is the Adams filtration and t is the

internal degree.

Proposition 3.1 ([24, Proposition 6.2.5]). The homotopy groups of Cτ are given by

πs,w(Cτ) ∼= Ext2w−s,2w
BP∗BP

(BP∗, BP∗) for any s, w ∈ Z.

Remark 3.2. Proposition 3.1 is surprising as it is saying that the homotopy groups of a

motivic 2-cell complex, which are in principle as complicated to compute as π∗,∗(S
0,0), are

completely algebraic. More precisely, they are given by the cohomology of the Hopf algebroid

(BP∗, BP∗BP ), which is a very important object in classical chromatic homotopy theory.

This bridge allows computations to travel between the classical and the motivic world. See

[24, Chapter 5 and 6] for examples where motivic computations of π∗,∗(Cτ) are used to

deduce new information about the classical object Ext∗,∗BP∗BP (BP∗, BP∗).

Remark 3.3. Since Ext∗,∗BP∗BP (BP∗, BP∗) admits a natural ring structure, the isomorphism

of Proposition 3.1 induces an artificial ring structure on the motivic homotopy groups

π∗,∗(Cτ). The starting point of this project was to ask if this induced ring structure of

π∗,∗(Cτ) can be realized by a topological ring structure on the spectrum Cτ . Even further,

the cohomology groups Ext∗,∗BP∗BP (BP∗, BP∗) admit higher structure (Massey products, al-

gebraic squaring operations, . . . ) and one can hope that this is the shadow of a highly

structured ring multiplication on Cτ . We will prove in Section 3.2 that Cτ supports an E∞

ring structure and that the isomorphism

π∗,∗(Cτ) ∼= Ext∗,∗BP∗BP (BP∗, BP∗)

preserves higher products (Toda brackets in homotopy and Massey products in algebra). In

other words, the E2-page of the classical Adams-Novikov spectral sequence can be realized
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with its higher structure as the homotopy of a motivic spectrum.

The ring structure mentioned in Remark 3.3 will be constructed by obstruction theory.

To prepare the computations, we will now deduce some Corollaries about π∗,∗(Cτ) and

π∗,∗(End(Cτ)).

Corollary 3.4 ([16]). The group πs,w(Cτ) is zero when either w > s, or w ≤ 1
2
s, or s < 0,

except that π0,0(Cτ) ∼= Ẑ2. This is sketched in Figure 1.

Proof. The vanishing regions in π∗,∗(Cτ) come from the vanishing regions of Ext∗,∗BP∗BP (BP∗, BP∗)

via the isomorphism

πs,w(Cτ) ∼= Ext2w−s,2w
BP∗BP

(BP∗, BP∗)

of Proposition 3.1. The region w > s corresponds to the vanishing region above the line

t − s = s of slope 1 on the E2-page of the Adams-Novikov spectral sequence, the region

w ≤ 1
2
s corresponds to the E2-page being 0 in negative Adams filtation s ≤ 0, and finally

s < 0 corresponds to E2-page being zero in negative stems t− s < 0. �

w

s

w = s

non-vanishing homotopy

w = 1
2
s

zero

zero zero

zero

zero

Figure 1: Vanishing regions of the homotopy groups πs,w(Cτ).

Corollary 3.5. The group [Σs,wCτ,Cτ ] is zero if either w > s + 2, or w ≤ 1
2
s, or s < −1,

except that [Cτ,Cτ ] ∼= Ẑ2 in degree (0, 0). This is sketched in Figure 2.

Proof. Using the cofiber sequence

Ss,w
i

GGA Σs,wCτ
p

GGA Ss+1,w−1,
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we get a long exact sequence

· · · GDGG [Ss,w, Cτ ]
i∗

GDGG [Σs,wCτ,Cτ ]
p∗

GDGG

[
Ss+1,w−1, Cτ

]
GDGG · · · ,

after mapping into Cτ . The result follows by noticing that the hypothesis of this Corollary

force both homotopy groups πs,w (Cτ) and πs+1,w−1 (Cτ) to be 0 by the previous Corollary

3.4.

w

s

w = s+ 2

non-vanishing region

w = 1
2
s

zero

zero zero

zero

zero

Figure 2: Vanishing regions of the abelian group [Σs,wCτ,Cτ ].

�

Remark 3.6. This result is not sharp and one can slightly improve the non-vanishing region

by being careful about choosing which of the 3 conditions of Corollary 3.4 to use. For

example, the group [Σ−1,0Cτ,Cτ ] is zero as it sits in a long exact sequence

· · · GDGG π−1,0 (Cτ)
i∗

GDGG

[
Σ−1,0Cτ,Cτ

] p∗

GDGG π0,−1 (Cτ) GDGG · · · ,

and both homotopy groups surrounding it are zero. However, none of the 3 conditions of

Corollary 3.5 are satisfied for the pair (s, w) = (−1, 0) and thus we cannot use it to deduce

that [Σ−1,0Cτ,Cτ ] is zero.

The vanishing of the following groups of homotopy classes of maps will often be used in

this document.

Corollary 3.7. The following groups of homotopy classes of maps are zero

(1) [Σ0,−1Cτ,Cτ ] = 0,
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(2) [Σ1,0Cτ,Cτ ] = 0,

(3) [Σ1,−1Cτ,Cτ ] = 0,

(4) [Σn,−nCτ,Cτ ] = 0 for any n ≥ 1.

3.2 The E∞ Ring Structure on Cτ

In this Section we construct the E∞ ring structure on the motivic spectrum Cτ . We start

by endowing Cτ with a homotopy unital, homotopy associative and homotopy commutative

multiplication using elementary techniques with triangulated categories. The E∞ coherences

of such a multiplication cannot be constructed by hand via similar techniques and requires

some machinery. We will use a version of Robinson’s obstruction theory from [51], that we

adapt to the motivic setting in Section 3.2.1.

3.2.1 Motivic A∞ and E∞ Operads and Obstruction Theory

Consider a simplicial symmetric monoidal model category presenting SptC, with smash

product − ∧ −6, and denote the simplicial mapping space by Map(X, Y ). Given a motivic

spectrumX, denote its endomorphism operad in simplicial sets by End(X), where End(X)n is

the simplicial set Map(X∧n, X). If F (−,−) denotes the internal (motivic) function spectrum,

then we recover

πn (End(X)m) ∼= πn,0 (F (X∧m, X)) , (3.2)

only exploiting the weight zero homotopy groups of the function spectrum. Fix an A∞ or

E∞ operad Θ in simplicial sets. A Θ-algebra structure on a motivic spectrum X is a map of

operads

Θ GGA End(X).

Equivalently, one can see Θ as an operad in motivic spaces via the constant functor and

define a Θ-algebra via the motivic enrichment, which might seem more natural and internal

to motivic homotopy theory. Because of this reason, classical (simplicial) operads transported

into the motivic world are sometimes called constant operads.

6For example Jardine’s model of motivic symmetric spectra [26].
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In this chapter, we will produce A∞ and E∞ structures by obstruction theory. The

obstruction theory forA∞ algebras is well-known, for example [2, Theorem 3.1] (itself inspired

by [50]) exhibits an obstruction class in a certain abelian group. In all our cases, we will

show that all the relevant abelian groups for the obstruction theory are zero. The obstruction

theory for E∞ algebras is less well-known. We will here briefly recap the work done in [51]

and adapt it to our motivic situation.

We will consider the simplicial E∞ operad T defined in [51, Section 5]. This operad is

the product of a combinatorially defined cofibrant simplicial operad with the Barratt-Eccles

E∞ (simplicial) operad EΣ•. It inherits both properties and is thus a cofibrant E∞ operad.

The cofibrancy roughly means that the operadic composition maps

Tn × Tm
◦i

GGGA Tm+n−1 (3.3)

are injective and that their images intersect in fairly small and regular subcomplexes. We

refer to [52, Section 1.5] for more details. The injectivity of these maps is a key property that

will be used for inductive arguments, since a map out of Tm+n−1 is thus already determined

on the image of all these composition maps. The bar filtration on the Barrat-Eccles operad

induces a filtration on T , where the nth-filtration space of Tm is denoted by T nm ⊆ Tm. In

particular T nm = ∅ if n < 0. Consider now the diagonal filtration ∇•T which is the sum of

the bar filtration from the Barratt-Eccles operad and the filtration by operadic subspaces.

More precisely, the nth-graded piece ∇nT ⊂ T has mth-space given by ∇nTm = T n−mm . If

m > n, then by definition we have ∇nTm = ∅. In particular, observe that ∇nT is not a

suboperad as it does not contain m-ary operations for m > n.

Robinson defines an n-stage for an E∞ structure on X to consist in a map ∇nT GGA

End(X) satisfying some obvious coherences. More precisely, this is the data of Σm-equivariant

maps

T n−mm GGA End(X)m
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for 0 ≤ m ≤ n, which on their restricted domain of definition satisfy the requirements for a

morphism of operads. Since the operad T is non-unital and thus T0 = T1 = ∅, we only need

to specify these maps for 2 ≤ m ≤ n. From the definition of the diagonal filtration one can

identify that

• a 2-stage is the data of a map T 0
2 GGA End(X)2, i.e., specifying a map µ : X∧X GGA X,

• a 3-stage is the data of a 2-stage with the extra structure of an associative and commu-

tative homotopy for the multiplication µ,

• a 4-stage is the data of a 3-stage with the extra structure of homotopies for the well-

known pentagonal and hexagonal axioms [33], as well as a homotopy saying that the

commutativity homotopy itself is homotopy commutative,

• an ∞-stage are the coherences of an E∞ ring structure on X with multiplication µ.

An n-stage determines an (n − 1)-stage by restriction, and an (n − 1)-stage determines an

n-stage on the boundary ∂∇nT by injectivity of the composition maps of equation (3.3). We

refer to [51, Section 5.2] for more details. Therefore, given an (n− 1)-stage, the data of an

n-stage extending the underlying (n− 1)-stage consists precisely in the data of extensions

∂∇nTm ∇nTm

End(X)m

for every 0 ≤ m ≤ n. The cofibrancy of the operad T is used again to show that for any m,

the map

∂∇nTm �GA ∇nTm

is a principal Σm-equivariant cofibration, whose cofiber is a wedge of spheres Sn+2 indexed

over a set with free Σm-action. This allows us to formulate the following result.

Proposition 3.8. Let X be a motivic spectrum with a given (n − 1)-stage for an E∞ ring

structure.
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(1) If the homotopy groups πn−3(End(X)m) are zero for every 2 ≤ m ≤ n, the given (n− 1)-

stage lifts to an n-stage.

(2) If in addition the homotopy groups πn−2(End(X)m) are zero for every 2 ≤ m ≤ n, the

extension is (essentially) unique.

Proof. The fact that ∂∇nTm �GA ∇nTm is a principal cofibration allows us to rotate it one

step to the left, producing the unstable cofiber sequence of simplicial sets

∨Sn−3
GGA ∂∇nTm �GA ∇nTm GGA ∨Sn−2.

An (n− 1)-stage produces a map ∂∇nTm GGA End(X)m, which extends as in the diagram

∨Sn−3 ∂∇nTm ∇nTm ∨Sn−2

End(X)m

if and only if the relevant composite is zero in the abelian group

[
∨Sn−3, End(X)m

] ∼= ⊕πn−3(End(X)m).

Moreover, if [Sn−2, End(X)m] = 0 then the extension is unique up to homotopy. �

By using equation (3.2) and the fact that a 3-stage is equivalent to a unital, associative

and commutative monoid in the homotopy category, we get the following Corollary.

Corollary 3.9. Let X be a motivic spectrum with a map µ : X∧X GGA X that is homotopy

unital, homotopy associative and homotopy commutative.

(1) If the homotopy groups πn−3,0(F (X∧m, X)) are zero for every n ≥ 4 and 2 ≤ m ≤ n,

then µ can be extended to an E∞ ring structure on X.

(2) If in addition the homotopy groups πn−2,0(F (X∧m, X)) are zero for every n ≥ 4 and

2 ≤ m ≤ n, then µ can be extended to an E∞ ring structure on X in essentially a unique

way.
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Remark 3.10. These results are extracted from Robinson’s work in [51], even though they

do not explicitly appear in this form in his paper. The reason is because this is not a powerful

result when applied to the topological setting for the following reason. Fix a (topological)

spectrum X ∈ Spt. To apply this E∞ obstruction theory to X, its endomorphism operad

End(X) has to satisfy the conditions of Proposition 3.8, which require the homotopy groups

End(X)m to vanish for all n ≥ 4 and 2 ≤ m ≤ n. In particular, for any fixed m the space

End(X)m needs to have vanishing homotopy groups in degrees n ≥ m. The paper [51]

proceeds to study what happens during an extension of an (n − 1)-stage to an n-stage if

one allows to perturb underlying stages. This reduces the size of the obstruction groups and

gives a constraint between n and m, reducing the number of obstruction groups to check.

In our motivic setting the obstructions live in the groups πn−3,0(End(X)m), which are only

a small fraction of all homotopy groups πs,w. Corollary 3.9 will be sufficient to prove our

result.

Remark 3.11. We should point out that, in analogy with the genuine G-equivariant E∞

operads in [6] (called N∞ operads), there ought to be a notion of motivic A∞ and E∞ operads.

An algebra over such a motivic operad would have a lot more structure than an algebra over

a constant operad, such as transfers upon changing the base scheme. It is possible that such

algebras are exactly the objects corresponding to strict commutative ring spectra. However,

for the purpose of this thesis, constant A∞ and E∞ operads suffice. We will therefore drop

the word ”constant” and refer to those just as A∞ and E∞ operads.

3.2.2 The Homotopy Ring Structure on Cτ

In this Section we construct a ring structure on Cτ up to homotopy. More precisely, we

show that Cτ is a unital, associative and commutative monoid in the homotopy category

Ho(SptC). Recall that this is a 3-stage in Robinson’s obstruction theory, which can be seen

as the initial input to start the obstruction theory. In this Section, we will exclusively work

in the stable triangulated category Ho(SptC), without further mentioning it.
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Lemma 3.12. There exists a unique left unital multiplication

Cτ ∧ Cτ
µ

GGA Cτ.

Proof. The equation (3.1) gives an exact triangle

S0,−1
τ

GGA S0,0
i

GGA Cτ
p

GGA S1,−1,

where i denotes the inclusion of the bottom cell and p denotes the projection on the top cell.

By smashing it with − ∧ Cτ , we get another triangle

S0,−1 ∧ Cτ
τ

GGA S0,0 ∧ Cτ
iL

GGA Cτ ∧ Cτ
pL

GGA S1,−1 ∧ Cτ,

where iL denotes a left unit and pL the projection on the top cell of the left factor. Since

the abelian group of maps [Σ0,−1Cτ,Cτ ] = 0 by Corollary 3.7, the map τ ∈ [Σ0,−1Cτ,Cτ ] is

zero on Cτ . This produces a left unital multiplication µ on Cτ as shown in the diagram

S0,−1 ∧ Cτ S0,0 ∧ Cτ Cτ ∧ Cτ S1,−1 ∧ Cτ

Cτ.

τ iL pL

' ∃ µ

Moreover, since [Σ1,−1Cτ,Cτ ] = 0 by Corollary 3.7, there is no choice for such a map which

is unique. �

Before studying the properties of this multiplication map µ, we show a fundamental

equivalence that will be used throughout the document.

Lemma 3.13. There is a canonical isomorphism

Cτ ∧ Cτ ∼= Cτ ∨ Σ1,−1Cτ.
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Proof. Recall that since [Σ0,−1Cτ,Cτ ] = 0, the map τ is zero on Cτ . The exact triangle

S0,−1 ∧ Cτ
τ

GGA S0,0 ∧ Cτ
iL

GGA Cτ ∧ Cτ
pL

GGA S1,−1 ∧ Cτ,

is thus split, giving both a retraction µ and a section s, as in the diagram

S0,−1 ∧ Cτ S0,0 ∧ Cτ Cτ ∧ Cτ S1,−1 ∧ Cτ · · · .
τ = 0 iL pL τ = 0

∃! µ ∃! s

As it is the case for µ, the section s is unique since [Σ1,−1Cτ,Cτ ] = 0 by Corollary 3.7.

Moreover, the relation µ ◦ s ∼= 0 is forced since the composite lives in the zero group

[Σ1,−1Cτ,Cτ ] = 0. This gives a canonical identification

Cτ ∧ Cτ ∼= Cτ ∨ Σ1,−1Cτ,

via the inverse maps

Cτ ∧ Cτ
(µ,pL)

GGGGA Cτ ∨ Σ1,−1Cτ and Cτ ∨ Σ1,−1Cτ
iL+s

GGGGA Cτ ∧ Cτ.

�

Corollary 3.14. For any n ≥ 2, there is a canonical isomorphism

Cτ∧n ∼=
n−1∨
i=0

(
n− 1

i

)
Σi,−iCτ,

where we use
(
n−1
i

)
Σi,−iCτ to indicate a wedge sum of

(
n−1
i

)
terms of the spectrum Σi,−iCτ .

We will use the identification of Lemma 3.13 to show that µ endows Cτ with a unital,

associative and commutative monoid structure in Ho(SptC). We first compute the relevant

maps on Cτ ∨ Σ1,−1Cτ after composing with this identification.

Lemma 3.15. After the canonical identification Cτ ∧ Cτ ∼= Cτ ∨ Σ1,−1Cτ of Lemma 3.13
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(1) the multiplication map Cτ ∧ Cτ
µ

GGA Cτ is given by the matrix

Cτ ∨ Σ1,−1Cτ
[ id 0 ]

GGGA Cτ,

i.e., by the canonical projection onto the first factor,

(2) the factor swap map Cτ ∧ Cτ
χ

GGA Cτ ∧ Cτ is given by the matrix

Cτ ∨ Σ1,−1Cτ

[
id 0
i◦p − id

]
GGGGA Cτ ∨ Σ1,−1Cτ.

Proof.

(1) The composite

Cτ ∨ Σ1,−1Cτ
iL+s

GGGGA Cτ ∧ Cτ
µ

GGA Cτ

restricts to the identity on Cτ since µ is a retraction of iL, and to zero on Σ1,−1Cτ since

s ◦ µ = 0 by Lemma 3.13.

(2) We claim that the following diagram

Cτ ∧ Cτ Cτ ∧ Cτ

Cτ ∨ Σ1,−1Cτ Cτ ∨ Σ1,−1Cτ

χ

iL + s (µ, pL)[
id 0
i◦p − id

]

commutes. First observe that the top right entry is forced to be zero since [Σ1,−1Cτ,Cτ ] =

0 by Corollary 3.7. The bottom left entry can be computed explicitly by a simple diagram

chase. It is

S0,0 ∧ Cτ
i∧id

GGGGA Cτ ∧ Cτ
χ

GGGGA Cτ ∧ Cτ
p∧id

GGGGA S1,−1 ∧ Cτ,

which is homotopic to the composite

S0,0 ∧ Cτ
χ

GGA Cτ ∧ S0,0
id∧i

GGGGA Cτ ∧ Cτ
p∧id

GGGGA S1,−1 ∧ Cτ.
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By commuting id∧i and p ∧ id and using the canonical equivalences S0,0 ∧ Cτ = Cτ =

Cτ ∧ S0,0 we can rewrite it as

Cτ
p

GGA S1,−1
i

GGA Σ1,−1Cτ.

For the diagonal entries, recall that [Cτ,Cτ ] ∼= Ẑ2 and that the matrix has to be an

involution since χ is. This forces the diagonal entries to be + id and − id. One could

conclude by arguing that the top left entry arises by commuting Cτ with S0,0, and thus

should be + id, while the bottom right entry arises by commuting Cτ with S1,−1, and

thus should be − id. More precisely, consider the diagram

S0,0 ∧ S0,0 Cτ ∧ Cτ

S0,0 Cτ.

i ∧ i

∼= µ

i

By factoring the map i ∧ i as id∧i followed by iL = i ∧ id, and using that µ ◦ iL = id,

one sees that the diagram commutes up to the usual canonical equivalences of smashing

with S0,0. By factoring it the other way now, as i ∧ id followed by id∧i, we get that

µ ◦ (id∧i) = id. This shows that the top left entry of the matrix is id. The bottom right

entry is thus forced to be − id since the matrix is an involution. �

Proposition 3.16. The unique left unital multiplication map Cτ ∧ Cτ
µ

GGA Cτ turns Cτ

into a unital, associative and commutative monoid in Ho(SptC).

Proof. Consider the diagram

Cτ ∧ Cτ Cτ ∧ Cτ

Cτ Cτ,

Cτ ∨ Σ1,−1Cτ Cτ ∨ Σ1,−1Cτ

iL

χ

µ

(µ, p ∧ id) iL + s

[
id 0
i◦p − id

]
[ id 0 ]

(3.4)
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which is commutative by Lemma 3.15. Since µ is left unital and since p ◦ i = 0, the dashed

arrow is given by the canonical inclusion. It follows that the composite µ ◦ χ ◦ iL is simply

given by the matrix multiplication

[ id 0 ] ·
[

id 0
i◦p − id

]
· [ id

0 ] = id .

Since the right unit is given by χ ◦ iL, this shows that µ is right unital. To show that µ is

commutative, we have to compute the composite

Cτ ∧ Cτ
χ

GGA Cτ ∧ Cτ
µ

GGA Cτ.

We can again read it from diagram (3.4), where it is given by the matrix multiplication

[ id 0 ] ·
[

id 0
i◦p − id

]
·
[ µ
p∧id

]
= µ,

showing that µ is commutative. To see that µ is associative, we will show that the map

Cτ ∧ Cτ ∧ Cτ
µ◦(1∧µ−µ∧1)

GGGGGGGGA Cτ

is zero. By left and right unitatlity it restricts to zero on the subspectrum

(
S0,0 ∧ Cτ ∧ Cτ

)
∨
(
Cτ ∧ S0,0 ∧ Cτ

)
∨
(
Cτ ∧ Cτ ∧ S0,0

)
↪GGA Cτ ∧ Cτ ∧ Cτ. (3.5)

By [55, Lemma 3.6], there is a bijection between maps Cτ ∧Cτ ∧Cτ GGA Cτ that restrict

to zero on the subspectrum of equation (3.5), and maps

S3,−3 = S1,−1 ∧ S1,−1 ∧ S1,−1
GGA Cτ.

Here S1,−1 appears because it is the cofiber of the unit map S0,0
GGA Cτ . By Corollary 3.4,
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we have that π3,−3(Cτ) = 0, which shows that there is a unique such map. Since the zero

map Cτ ∧Cτ ∧Cτ GGA Cτ restricts to zero on the subspectrum of equation (3.5), it is the

unique such map. This shows that µ ◦ (1 ∧ µ− µ ∧ 1) is zero, i.e., that µ is associative. �

3.2.3 The E∞ Ring Structure on Cτ

In this Section, we will use Robinson’s obstruction theory from Section 3.2.1 to construct

the E∞ ring structure on Cτ . In the previous Section 3.2.2 we endowed Cτ with a unital,

associative and commutative monoid structure in the the homotopy category Ho(SptC).

Recall that this to a 3-stage in Robinson’s obstruction theory. We will now use Corollary

3.9 to rigidify this multiplication to an E∞ ring structure in SptC. Although not needed for

the E∞ ring structure, as a warm-up, we first show in Proposition 3.17 that Cτ admits a

unique A∞ ring structure.

Proposition 3.17. The multiplication µ on Cτ can be uniquely extended to an A∞ multi-

plication.

Proof. An A2 structure corresponds to unital homotopies (left and right), and an A3 structure

adds an associative homotopy. We constructed both structures in Proposition 3.16. The A∞

obstruction theory originated in [50] exhibits obstruction classes to extend an An−1 structure

to an An structure. In more modern language, [2, Theorem 3.1] exhibits the obstruction to

go from An−1 structure to an An structure as an element in the abelian group

[
Σn−3,0Sn,−n, Cτ

] ∼= [S2n−3,−n, Cτ
]

= π2n−3,−n(Cτ). (3.6)

Corollary 3.4 shows that these groups are zero for any n (we really just need n ≥ 4), which

shows that µ can be extended to an A∞ structure. Furthermore, given that an An−1 structure

extends to An structure, the possible extensions are in bijection with the abelian group

[
Σn−2,0Sn,−n, Cτ

] ∼= π2n−2,−n(Cτ).

This group is also zero for any n, showing that µ can be uniquely extended to an A∞
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structure. �

Remark 3.18. For the case n = 3, i.e., to endow Cτ with an A3 structure, the obstruction

group from equation (3.6) is π3,−3(Cτ). Observe that this is the exact same group that

appears in Proposition 3.16, where we show with elementary techniques that Cτ admits an

A3 structure.

Remark 3.19. Mahowald conjectured that no non-trivial topological 2-cell complex posses

an A∞ structure. There are 2 trivial cases to exclude which are the cofiber of the zero map

and the cofiber of the identity map, as shown in the cofiber sequences

S0
0

GGA S0
GGA S1 ∨ S0 and S0

id
GGA S0

GGA ∗.

Since motivic spheres Betti realize to topological spheres, motivic 2-cell complexes Betti

realize to topological 2-cell complexes. Moreover, since we are using simplicial (constant)

operads, motivic algebras over An or En operads realize to classical algebras over the same An

or En operads. However, the fact that Cτ admits an A∞ ring structure does not contradict

Mahowald’s conjecture, as the map S0,−1
τ

GGA S0,0 realizes to the identity map S0
id

GGA S0.

Theorem 3.20. The multiplication µ on Cτ can be uniquely extended to an E∞ multiplica-

tion.

Proof. We showed in Proposition 3.16 that Cτ is a unital, associative and commutative

monoid in the homotopy category Ho(SptC). This corresponds to a 3-stage in Robinson’s

obstruction theory. By Corollary 3.9, the obstructions of extending this 3-stage to an E∞

ring structure live in

πn−3,0(F (Cτ∧m, Cτ)) ∼=
[
Σn−3,0Cτ∧m, Cτ

]
for n ≥ 4 and 2 ≤ m ≤ n. Recall from Corollary 3.5 that [Σs,wCτ,Cτ ] has in particular a

vanishing region for s ≥ 0 and 2w ≤ s. We now show that all obstruction groups live in this
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vanishing area. By the equivalence

[Cτ∧m, Cτ ] ∼=
m−1⊕
i=0

(
m− 1

i

)[
Σi,−iCτ,Cτ

]
of Corollary 3.14, we have

πn−3,0(F (Cτ∧m, Cτ)) ∼=
[
Σn−3,0Cτ∧m, Cτ

] ∼= m−1⊕
i=0

(
m− 1

i

)[
Σn−3+i,−iCτ,Cτ

]
.

In particular, all the obstructions live in groups of the form [Σs,wCτ,Cτ ] where the s-

coordinate satisfies

s = n− 3 + i ≥ 4− 3 + i ≥ 1

while the w-coordinate satisfies both

w = −i ≤ 0 and w = −i = n− s− 3 ≥ 1− s.

This corresponds to the region bounded by s ≥ 1 and 1 − s ≤ w ≤ s, which lies entirely

in the vanishing area described above. The situation is summarized in Figure 3. Similarly,

recall from Corollary 3.9 that the obstructions for uniqueness of such an E∞ ring structure

live in groups of the form

πn−2,0(F (Cτ∧m, Cτ)) ∼=
[
Σn−2,0Cτ∧m, Cτ

]
.

A similar analysis shows that all obstruction groups again live in the vanishing region, as

described in Figure 3. This shows that Cτ admits a unique E∞ ring structure. �

Corollary 3.21. There is an isomorphism of rings

π∗,∗(Cτ) ∼= Ext∗,∗BP∗BP (BP∗, BP∗),
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Figure 3: Chart of [Σs,wCτ,Cτ ] where all obstruction groups live in the vanishing region.

which sends Massey products in Ext to Toda brackets in π∗,∗, and vice-versa.

Proof. Since Cτ is an E∞ ring spectrum, its motivic Adams-Novikov spectral sequence is

multiplicative and converges to an associated graded of the ring π∗,∗(Cτ). Recall from

Proposition 3.1 that the spectral sequence collapses at E2 with no possible hidden extensions

as a module over the spectral sequence for S0,0. For the exact same reason, there are no

possible hidden extensions as a multiplicative spectral sequence. By the Moss Convergence

Theorem [43], we get a highly structured bigraded isomorphism

ExtBPGL∗,∗BPGL(BPGL∗,∗, BPGL∗,∗/τ) ∼= π∗,∗(Cτ), (3.7)

between the E2-page and the output of the spectral sequence. More precisely, Massey prod-

ucts computed in Ext converge to Toda brackets computed in π∗,∗(Cτ).

Until the end of the proof, denote the motivic Brown-Peterson spectrum BPGL by B.

To finish the proof, we have to show that there is a highly structured ring isomorphism

ExtB∗,∗B/τ (B∗,∗/τ, B∗,∗/τ) ∼= ExtB∗,∗B(B∗,∗, B∗,∗/τ).

These are Ext-groups computed in comodules and since the first variable is projective (even

free) over the base ring, both of those Ext terms can be computed from their cobar complex

[47, Corollary A1.2.12]. Moreover, since the cobar complex also controls the Massey products
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in the Ext-ring, this will give an isomorphism preserving this structure. The cobar complex

of the left Ext-group is given by

B∗,∗/τ⊗B∗,∗/τB∗,∗B/τ⊗B∗,∗/τB∗,∗/τ GGA B∗,∗/τ⊗B∗,∗/τB∗,∗B/τ⊗B∗,∗/τB∗,∗B/τ⊗B∗,∗/τB∗,∗/τ GGA · · · ,

while the cobar complex of the right term is given by

B∗,∗ ⊗B∗,∗ B∗,∗B ⊗B∗,∗ B∗,∗/τ GGA B∗,∗ ⊗B∗,∗ B∗,∗B ⊗B∗,∗ B∗,∗B ⊗B∗,∗ B∗,∗/τ GGA · · · .

By iterating the ring isomorphism

B∗,∗/τ ⊗B∗,∗/τ B∗,∗B/τ ∼= B∗,∗ ⊗B∗,∗ B∗,∗/τ ,

these cobar complexes are isomorphic as dga’s. By taking cohomology, we get an isomorphism

ExtB∗,∗B(B∗,∗, B∗,∗/τ) ∼= ExtB∗,∗B/τ (B∗,∗/τ, B∗,∗/τ) (3.8)

that preserves Massey products. The trigraded Ext-term ExtB∗,∗B/τ (B∗,∗/τ, B∗,∗/τ) is really

bigraded because of the relation t = 2w between the internal degree t and the weight w.

Therefore, when working mod τ , we can regrade everything in sight by keeping the internal

degree and forgetting the weight. With this convention, the degree of vn ∈ B∗/τ is the single

number 2n+1 − 2 and thus there is an isomorphism of Hopf algebroids B∗B/τ ∼= BP∗BP .

This provides the (higher) ring isomorphism

ExtB∗B/τ (B∗/τ, B∗/τ) ∼= ExtBP∗BP (BP∗, BP∗). (3.9)

By combining the isomorphisms of equation (3.7), (3.8) and (3.9), we get an isomorphism

π∗,∗(Cτ) ∼= ExtBP∗BP (BP∗, BP∗)
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of higher rings, that sends Toda brackets to Massey products and vice-versa. �

3.3 (Co-)operations on Cτ

In this Section we describe the homotopy types of Cτ ∧Cτ and End(Cτ) as ring spectra.

Understanding their homotopy types is crucial for the computation of the Steenrod algebra

of the spectrum HF2 ∧ Cτ in Section 3.4.2. Most proofs are done by diagram chasing and

identifying composites of maps.

3.3.1 The Spectrum Cτ ∧ Cτ

The E∞ ring structure on Cτ induces an E∞ ring structure on the smash product Cτ∧Cτ

via the multiplication

µCτ∧Cτ : (Cτ ∧ Cτ) ∧ (Cτ ∧ Cτ)
1∧χ∧1
GGGGA Cτ ∧ Cτ ∧ Cτ ∧ Cτ

µ∧µ
GGGA Cτ ∧ Cτ.

Here µ denotes the multiplication map on Cτ and χ denotes the factor swap map. Recall

from Lemma 3.13 that there is a canonical equivalence

Cτ ∧ Cτ ' Cτ ∨ Σ1,−1Cτ,

describing the additive homotopy type of Cτ ∧ Cτ . The next lemma describes its ring

structure.

Lemma 3.22. Under the canonical vertical identifications given by

(Cτ ∧ Cτ) ∧ (Cτ ∧ Cτ) Cτ ∧ Cτ

(Cτ ∨ Σ1,−1Cτ) ∧ (Cτ ∨ Σ1,−1Cτ) Cτ ∨ Σ1,−1Cτ

(Cτ ∧ Cτ) ∨ (Σ1,−1Cτ ∧ Cτ) ∨ (Cτ ∧ Σ1,−1Cτ) ∨ (Σ1,−1Cτ ∧ Σ1,−1Cτ) Cτ ∨ Σ1,−1Cτ,

µCτ∧Cτ

' '

= =
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the multiplication on Cτ ∧ Cτ is given by the maps

Cτ ∧ Cτ
(µ,0)

GGGGA Cτ ∨ Σ1,−1Cτ

Σ1,−1Cτ ∧ Cτ
(0,µ)

GGGGA Cτ ∨ Σ1,−1Cτ

Cτ ∧ Σ1,−1Cτ
(0,µ)

GGGGA Cτ ∨ Σ1,−1Cτ

Σ1,−1Cτ ∧ Σ1,−1Cτ
(0,0)

GGGGA Cτ ∨ Σ1,−1Cτ.

Proof. These four maps are given by a simple diagram chase, where we only have to be

careful with the identifications. For simplicity, let’s denote the sphere spectrum S0,0 by S,

and ignore or denote by 1 some identity maps id in the following diagrams. Recall the cofiber

sequence

S0,−1
τ

GGA S0,0
i

GGA Cτ
p

GGA S1,−1

from equation (3.1). The first map Cτ∧Cτ GGA Cτ∨Σ1,−1Cτ corresponds to the composite

(µ, p ∧ 1) ◦ (µ ∧ µ) ◦ (1 ∧ χ ∧ 1) ◦ (i ∧ i),

which is embedded in the commutative diagram

(Cτ ∧ Cτ) ∧ (Cτ ∧ Cτ) Cτ ∧ Cτ ∧ Cτ ∧ Cτ Cτ ∧ Cτ Cτ ∨ Σ1,−1Cτ

(S ∧ Cτ) ∧ (S ∧ Cτ) S ∧ S ∧ Cτ ∧ Cτ S ∧ Cτ ∧ Cτ.

1 ∧ χ ∧ 1 µ ∧ µ (µ, p ∧ 1)

i ∧ i i ∧ i i ∧ µ
' '

We can compute by the other path, where we use that the map

S ∧ Cτ ∧ Cτ
i∧µ

GGGGA Cτ ∧ Cτ
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decomposes as

S ∧ Cτ ∧ Cτ
1∧µ

GGGGA S ∧ Cτ
i∧1

GGGA Cτ ∧ Cτ,

and by using that p ◦ i = 0 and µ ◦ (i ∧ 1) = id. For the second map, the canonical splitting

of Lemma 3.13 induces a splitting

Σ1,−1Cτ ∧ Cτ ' Σ1,−1Cτ ∨ Σ2,−2Cτ.

By Corollary 3.7 we have [Σ1,−1Cτ,Cτ ] = [Σ2,−2Cτ,Cτ ] = 0, and thus the second map

Σ1,−1Cτ ∧ Cτ GGA Cτ ∨ Σ1,−1Cτ

corestricts to zero on Cτ . To compute the other part, recall first from Lemma 3.13 that the

map p ∧ 1 admits a canonical section s, as shown in the cofiber sequence

S0,−1 ∧ Cτ S ∧ Cτ Cτ ∧ Cτ S1,−1 ∧ Cτ · · · .
τ = 0 iL pL τ = 0

∃! µ ∃! s

The second map is the composite in the commutative diagram

(Cτ ∧ Cτ) ∧ (Cτ ∧ Cτ) Cτ ∧ Cτ ∧ Cτ ∧ Cτ Cτ ∧ Cτ Σ1,−1Cτ

(S1,−1 ∧ Cτ) ∧ (S ∧ Cτ) Cτ ∧ Cτ ∧ S ∧ Cτ Cτ ∧ S ∧ Cτ ∧ Cτ.

1 ∧ χ ∧ 1 µ ∧ µ p ∧ 1

s ∧ (i ∧ 1) 1 ∧ µ

s ∧ (1 ∧ 1)

'
i i

We again compute it by following the other path

(p ∧ 1) ◦ (1 ∧ µ) ◦ (s ∧ (1 ∧ 1)).

The result follows by noticing that the last two maps p ∧ 1 and 1 ∧ µ commute with each

other, together with the fact that s is a section of p∧ 1. For the third map, we can either do
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a similar diagram chase, or use the fact that Cτ ∧ Cτ is an E∞ ring spectrum, and so the

third map is homotopic to the second map we just computed. The last map is forced to be

nullhomotopic since

Σ1,−1Cτ ∧ Σ1,−1Cτ ' Σ3,−3Cτ ∨ Σ2,−2Cτ

and there are no non-trivial maps to both Cτ and Σ1,−1Cτ by Corollary 3.5. �

The additive splitting Cτ ∧ Cτ ' Cτ ∨ Σ1,−1Cτ gives the isomorphism

π∗,∗(Cτ ∧ Cτ) ∼= π∗,∗(Cτ)⊕ βτ · π∗,∗(Cτ).

The class βτ has degree |βτ | = (1,−1), and is the unit element of the shifted copy given by

the composite

S1,−1 ' S1,−1 ∧ S0,0
1∧i

GGGA S1,−1 ∧ Cτ
s

GGA Cτ ∧ Cτ.

We call it βτ because it induces a τ -Bockstein operations in HF2 ∧ Cτ -(co)homology, as we

show in Propositions 3.33 and 3.34. Lemma 3.22 gives the following multiplicative description

of the homotopy groups π∗,∗(Cτ ∧ Cτ).

Corollary 3.23. The E∞ ring spectrum Cτ ∧ Cτ has homotopy ring

π∗,∗ (Cτ ∧ Cτ) ∼= π∗,∗ (Cτ) [βτ ]
/
β2
τ
,

where |βτ | = (1,−1).

3.3.2 The Endomorphism Spectrum End(Cτ)

In this Section we explicitly describe the homotopy type of End(Cτ) as a ring spectrum

and give a presentation of its homotopy ring π∗,∗(End(Cτ)), in the same way that we did for

Cτ ∧ Cτ . However, the endomorphism spectrum End(Cτ) is a little harder to understand

than Cτ ∧Cτ . First, it is only an associative A∞ spectrum, whereas Cτ ∧Cτ is E∞. Second,

its multiplication comes from composition of morphisms and has nothing to do with the fact
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that Cτ is a ring object, whereas the multiplication on Cτ ∧Cτ is easy to describe in terms

of the multiplication of Cτ . Finally, it turns out that out of the eight maps that assemble

together to give the multiplication on End(Cτ), only three are forced to be nullhomotopic

for degree reasons, whereas five where forced to be nullhomotopic for Cτ ∧ Cτ .

An important tool that we use is Spanier-Whitehead duality, adapted to the motivic

setting from the categorical treatment in [31, Chapter 3]. We briefly recall some notation

and elementary results from both [31, Chapter 3] and [32, Sections 4.6-7]. Consider two

motivic spectra X and Y . If X is dualizable, its Spanier-Whitehead dual is defined to be

the motivic spectrum

DX := F (X,S0,0).

In particular, finite cell complexes are dualizable. For spheres, there is a canonical identifi-

cation

DSm,n = F (Sm,n, S0,0) ' F (S0,0, S−m,−n) ' S−m,−n. (3.10)

Given a map f : X GGA Y between dualizable motivic spectra, denote its Spanier-Whitehead

dual by

Df := F (f, S0,0) : DY GGA DX.

If X is dualizable, the smashing morphism F (X,S0,0)∧X
∧

GGA F (X,S0,0 ∧X) is an equiv-

alence, giving the equivalence

DX ∧X = F (X,S0,0) ∧X
'

GGA F (X,S0,0 ∧X) = End(X). (3.11)

Denote the evaluation map that is adjoint to the identity map on F (X,S0,0) by

DX ∧X = F (X,S0,0) ∧X
ev

GGA S0,0.

The endomorphism spectrum End(X) is always a motivic A∞ ring spectrum with multipli-
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cation map given by the composite µEnd(X) in the diagram

End(X) ∧ End(X) End(X)

DX ∧X ∧DX ∧X DX ∧DX ∧X ∧X DX ∧ S0,0 ∧X.
1 ∧ χ ∧ 1 1 ∧ ev∧1

can. can.

µEnd(X)

(3.12)

The spectrum Cτ is dualizable since it is a 2-cell complex. The A∞ ring structure on

End(Cτ) can thus be understood in terms of Spanier-Whitehead duality. For this, we have to

compute the homotopy type of the Spanier-Whitehead dual DCτ and identify the evaluation

map DCτ ∧ Cτ
ev

GGA S0,0.

Proposition 3.24. We have the following identifications.

(1) The Spanier-Whitehead dual of S0,−1
τ

GGA S0,0 is Dτ ' τ : S0,0
GGA S0,1.

(2) The Spanier-Whitehead dual of the cofiber sequence

S0,−1
τ

GGA S0,0
i

GGA Cτ
p

GGA S1,−1

is the cofiber sequence

S0,1
τ

GDGG S0,0
p

GDGG Σ−1,1Cτ
i

GDGG S−1,1.

In particular we have Di ' p and Dp ' i, and a canonical (up to homotopy) identification

DCτ ' Σ−1,1Cτ. (3.13)

Proof.

(1) Start with the map S0,−1
τ

GGA S0,0. The functor D = F (−, S0,0) and the canonical

identification of equation (3.10) gives a map S0,0
Dτ
GGA S0,1, which by definition, sends

1 to τ on π0,0. Since it lives in the group [S0,0, S0,1] ∼= Ẑ2 generated by τ , we get that
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Dτ ' τ .

(2) Since the dualization functor D preserves cofiber sequences, we get the cofiber sequence

DS0,−1
Dτ
GDGG DS0,0

Di
GDGG DCτ

Dp
GDGG DS1,−1.

To understand it, we use the canonical equivalences of equation (3.10) and embed it in

the diagram

DS0,−1 DS0,0 DCτ DS1,−1

S0,1 S0,0 Σ−1,1Cτ S−1,1.

Dτ Di Dp

τ p i
can. can. can.

By the 5-lemma, the map Σ−1,1Cτ GGA DCτ is an equivalence. Moreover, given two

such equivalences, their difference would factor trough the map p and thus trough S0,0.

It follows that this equivalence is canonical up to homotopy, since by Corollary 3.4 we

have

π0,0(DCτ) ∼= π0,0(Σ−1,1Cτ) ∼= π1,−1(Cτ) = 0.

�

Lemma 3.25. Up to sign, the evaluation map DCτ ∧Cτ
ev

GGA S0,0 is given by the commu-

tative diagram

DCτ ∧ Cτ S0,0

Σ−1,1Cτ ∧ Cτ Σ−1,1Cτ.

ev

µ

p' can.

Proof. We compute the abelian group of homotopy classes of maps [DCτ ∧ Cτ, S0,0]. We

have
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[DCτ ∧ Cτ, S0,0] ∼= [Σ−1,1Cτ ∧ Cτ, S0,0] by equation (3.13)

∼= [Σ−1,1Cτ ∨ Cτ, S0,0] by Lemma 3.13

∼= [Σ−1,1Cτ, S0,0]⊕ [Cτ, S0,0]

∼= [S0,0, S0,0]⊕ 0 via Σ−1,1Cτ
p

GGA S0,0

∼= Ẑ2

which is generated by the identity. This means that [DCτ ∧ Cτ, S0,0] is generated by the

composite

DCτ ∧ Cτ ' Σ−1,1Cτ ∧ Cτ
µ

GGGA Σ−1,1Cτ
p

GGA S0,0.

On the other side, by adjunction we have an isomorphism

[DCτ,DCτ ] ∼=
[
DCτ ∧ Cτ, S0,0

]
,

which sends the identity map to the evaluation map (by definition of the evaluation map).

This shows that ev is also one of the two units ±1 ∈ Ẑ2, finishing the proof. �

Lemma 3.26. Under the vertical identifications given by

End(Cτ) ∧ End(Cτ) End(Cτ)

(Σ−1,1Cτ ∨ Cτ) ∧ (Σ−1,1Cτ ∨ Cτ) Σ−1,1Cτ ∨ Cτ

(Σ−1,1Cτ ∧ Σ−1,1Cτ) ∨ (Σ−1,1Cτ ∧ Cτ) ∨ (Cτ ∧ Σ−1,1Cτ) ∨ (Cτ ∧ Cτ) Σ−1,1Cτ ∨ Cτ,

µEnd(Cτ)

' '

= =

the multiplication on End(Cτ) is given by the maps

Σ−1,1Cτ ∧ Σ−1,1Cτ
(p∧1,0)

GGGGA Σ−1,1Cτ ∨ Cτ

Σ−1,1Cτ ∧ Cτ
(µ,0)

GGGGA Σ−1,1Cτ ∨ Cτ

Cτ ∧ Σ−1,1Cτ
(µ,p∧1)

GGGGA Σ−1,1Cτ ∨ Cτ

Cτ ∧ Cτ
(0,µ)

GGGGA Σ−1,1Cτ ∨ Cτ.
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Sketch of proof. This proof is by tedious diagram chases, and is in the spirit as the proof of

Lemma 3.22. We will now briefly sketch the steps in the proof. The first part is to break

End(Cτ)∧End(Cτ) in more manageable summands via Spanier-Whitehead duality, and the

necessary identifications are done in Proposition 3.24. We then use the definition of the

multiplication map on End(Cτ) from diagram (3.12), as a composite of the factor swap map

and the evaluation map. The evaluation map was explicitly computed in Lemma 3.25. The

remainder of the proof consists on carefully identifying composites. �

The additive splitting End(Cτ) ' Cτ ∨ Σ−1,1Cτ gives the isomorphism

π∗,∗(End(Cτ)) ∼= π∗,∗(Cτ)⊕ βτ · π∗,∗(Cτ).

The class βτ has degree |βτ | = (−1, 1), and is the unit element of the shifted copy given by

the composite given by the composite

Cτ
p

GGA S1,−1
Σi

GGA Σ1,−1Cτ.

Lemma 3.26 gives the following multiplicative description of the homotopy groups π∗,∗(End(Cτ)).

Corollary 3.27. The A∞ ring spectrum End(Cτ) has homotopy ring

π∗,∗ (End(Cτ)) ∼= π∗,∗ (Cτ) 〈βτ 〉
/

αβτ − (−1)|α|βτα = i ◦ p(α)

β2
τ = 0

where βτ is a non-commutative variable and α span the elements of π∗,∗(Cτ).

Remark 3.28. The canonical inclusion Cτ GGA End(Cτ) is a map of A∞ ring spectra and

on homotopy is the inclusion of π∗,∗(Cτ) onto the non-shifted factor. We can also think of

the ring π∗,∗(End(Cτ)) as being the abelian group

π∗,∗(End(Cτ)) ∼= π∗,∗(Cτ)⊕ βτ · π∗,∗(Cτ)
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with ring structure given by the following multiplication table

α ◦ α′ = αα′

α ◦ βτα
′ = (−1)|α|βταα

′ + (i ◦ p(α))α′

βτα ◦ α
′ = βταα

′

βτα ◦ βτα
′ = βτ (i ◦ p(α))α′,

where α, α′ ∈ π∗,∗(Cτ) and βτα, βτα
′ ∈ βτ · π∗,∗(Σ−1,1Cτ).

Remark 3.29. Since S0,0
i

GGA Cτ is the ring map which induces the π∗,∗(S
0,0)-module

structure on π∗,∗(Cτ), we have the compatibility formula

i(α)α′ = αα′ for α ∈ π∗,∗(S0,0), α′ ∈ π∗,∗(Cτ).

The first multiplication uses the ring structure of Cτ while the second uses the S0,0-module

structure on Cτ . This simplifies some of the formulas of Corollary 3.27, for example by

βτα ◦ βτα
′ = βτp(α)α′ since p(α) is in the homotopy groups of the motivic sphere.

3.4 Examples of Cτ-Modules

Since the 2-cell complex Cτ is a (cofibrant) commutative ring spectrum, we can use

[46, Section 2.8] to endow the category CτMod with a closed symmetric monoidal model

structure. The closed monoidal structure is given by the the relative smash product −∧Cτ −

and the internal function spectrum FCτ (−,−). Moreover, the model structure is created by

the forgetful functor, and is thus part of the Quillen adjunction

SptC = S0,0Mod
−∧Cτ
GGA⊥
GDGG

U
CτMod. (3.14)

In this section we will first give some elementary lemmas about the category CτMod, and

then study some important spectra that are induced up from S0,0-modules by smashing with

− ∧ Cτ . We call such a spectrum a Cτ -induced spectrum.
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We start with the Cτ -induced Eilenberg-Maclane spectrumHF2∧Cτ which has homotopy

groups π∗,∗(HF2 ∧ Cτ) ∼= F2 in degree (0, 0). We will compute its Steenrod algebra of

operations (and its dual) as a Hopf algebra, both in SptC and CτMod. This computation is

used in future work [15] to construct Morava K-theories for the motivic wi periodic operators.

The first operator w1 was introduced in [1]. We then show that the Cτ -induced Moore

spectrum S/(2, τ) admits a unique structure of an E∞ algebra over Cτ . We also observe

that it admits a v1
1-self map, whereas S0,0/2 only admits a v4

1-self map. Finally, we compute

the homology and homotopy of the Cτ -induced connective algebraic and hermitian K-theory

spectra kgl and kq. Here again an interesting phenomenon arises in hermitian K-theory: an

obstruction is killed and we can see the element v2
1 in the homotopy of kq ∧Cτ , whereas we

only see its square v4
1 in kq.

3.4.1 Elementary Results on Cτ-Modules

Let X be a (left) Cτ -module with action map φX : Cτ ∧ X GGA X. The left unitality

condition says that the triangle in the diagram

S0,−1 ∧X S0,0 ∧X Cτ ∧X S1,−1 ∧X

X

τ i p

'
φX

commutes, i.e., that φX is a retraction of the unit. This produces a splitting

Cτ ∧X
(φX ,p)

GGGGA X ∨ Σ1,−1X (3.15)

up to homotopy, whose inverse map requires a choice of section of p. There is however a

canonical choice of section given by the composite

S1,−1 ∧X = S1,−1 ∧ S0,0 ∧X
id∧i∧id
GGGGA S1,−1 ∧ Cτ ∧X

s∧id
GGA Cτ ∧ Cτ ∧X

id∧φX
GGGA Cτ ∧X,
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by using the canonical section s : Σ1,−1Cτ GGA Cτ ∧ Cτ from Lemma 3.13. The Betti

realization functor SptC GGA Spt naturally extends to CτMod by composing with the

forget functor

CτMod GGA SptC
ReC
GGA Spt.

Lemma 3.30. Every Cτ -module realizes to a contractible spectrum in Top.

Proof. Consider a spectrum X ∈ SptC endowed with a structure of Cτ -module. Since

the Betti realization functor is (strict) symmetric monoidal and sends Cτ to a contractible

spectrum, we have

ReC(Cτ ∧X) ' ReC(Cτ) ∧ ReC(X) ' ∗.

It follows that ReC(X) ' ∗ as X is a retract of Cτ ∧X by equation (3.15). �

The next two elementary lemmas will often be used for studying Cτ -induced spectra.

Lemma 3.31. Let X be a spectrum with τ -free homotopy (resp. homology) groups, i.e.,

multiplication by τ is injective on π∗,∗(X) (resp. on HF2∗,∗(X)). Then the homotopy (resp.

homology) groups of the Cτ -induced spectrum X ∧ Cτ are given by

π∗,∗(X ∧ Cτ) ∼= π∗,∗(X) /τ (resp. HF2∗,∗(X ∧ Cτ) ∼= HF2∗,∗(X) /τ ).

Moreover if X is an E∞ ring spectrum, then this isomorphism is a ring isomorphism.

Proof. This follows by the long exact sequence induced from the cofiber sequence

Σ0,−1X
τ

GGA X
i

GGA Cτ ∧X

since multiplication by τ is injective. Moreover, if X is an E∞ ring spectrum, then the map

S0,0 ∧X
i∧id

GGGA Cτ ∧X

is a map of E∞ ring spectra as well. �
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Lemma 3.32. Let X be a spectrum with τ -free HF2-cohomology groups, i.e., multiplication

by τ is injective on HF2
∗,∗(X). Then the cohomology groups of the Cτ -induced spectrum

X ∧ Cτ are given by

HF2
∗,∗(X ∧ Cτ) ∼= HF2

∗,∗(Σ1,−1X) /τ .

Proof. Similarly to the proof of Lemma 3.31, this just follows by the long exact sequence

induced from the cofiber sequence

Cτ ∧X GGA Σ1,−1X
τ

GGA Σ1,0X

since multiplication by τ is injective. �

3.4.2 The Cτ-Induced Eilenberg-Maclane Spectrum

Consider the Cτ -induced Eilenberg-Maclane spectrum

H := HF2 ∧ Cτ,

which has homotopy π∗,∗(H) ∼= F2 concentrated in degree (0, 0) by Lemma 3.31. Unlike

HF2, this spectrum detects both cells of Cτ since

HF2
∗,∗(Cτ) ∼=


F2 if (∗, ∗) = (0, 0)

F2 if (∗, ∗) = (1,−1)

0 otherwise.

This spectrum plays an important role in the theory of motivic periodicities, as it is the

building block of the Morava K-theories K(wn) and of the Brown-Peterson spectrum wBP

that we construct in [15]. Denote the H-Steenrod algebra of operations in H-cohomology by

AC ∼= π−∗,−∗
(
F (H,H)

)
,
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and its dual algebra of co-operations in H-homology by

A
∨

C
∼= π∗,∗

(
H ∧H

)
.

The two main ingredients for these computations are our previous knowledge of the HF2-

Steenrod algebra AC, which we recalled in Section 2.2, and the descriptions of Cτ ∧Cτ and

End(Cτ) from Section 3.3. Since τ ∈M2 is an element of the base ring, there is an induced

Hopf algebra structure over M2/τ ∼= F2 on the quotients AC /τ and A
∨

C /τ .

Proposition 3.33. The dual H-Steenrod algebra A
∨

C has the following Hopf algebra structure

A
∨

C
∼= A

∨

C /τ ⊗ E(βτ ) ∼= F2[ξ1, ξ2, . . .]⊗ E(τ0, τ1, . . .)⊗ E(βτ )

where βτ is a τ -Bockstein in degree (1,−1) which is primitive in the coalgebra structure.

Proof. The dual H-Steenrod algebra is given by the homotopy groups of the E∞ ring spec-

trum

H ∧H = HF2 ∧ Cτ ∧HF2 ∧ Cτ ' HF2 ∧HF2 ∧ Cτ ∧ Cτ.

Since π∗,∗(H) ∼= F2, the left and right units of the Hopf algebroid π∗,∗
(
H ∧H

)
are flat

maps and they agree, turning it into a Hopf algebra. If we smash the canonical equivalence

Cτ ∧ Cτ ' Cτ ∨ Σ1,−1Cτ of Lemma 3.13 with HF2 ∧HF2, we get an additive splitting

H ∧H ' (HF2 ∧HF2 ∧ Cτ) ∨
(
Σ1,−1HF2 ∧HF2 ∧ Cτ

)
,

into two wedge summands that we can understand individually. Since the dual Steenrod

algebra A
∨

C is τ -free, Lemma 3.31 gives a ring description of the homotopy

π∗,∗(HF2 ∧HF2 ∧ Cτ) ∼= A
∨

C /τ ,

and thus the dual H-Steenrod algebra is a free module of rank 2 over A
∨

C. The first generator
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in degree (0, 0) is the unit given by the ring map

S0,0
i

GGGA H ∧H.

The second generator in degree (1,−1) that we call βτ is given by the map

βτ : S1,−1
i

GGA Σ1,−1Cτ
s

GGA Cτ ∧ Cτ
i∧i

GGA H ∧H,

where i denotes the inclusion of the bottom cell and s denotes the canonical section of µ, as

in Lemma 3.13. We choose the name βτ because its dual element in the H-Steenrod algebra

does behave like a τ -Bockstein in cohomology, as we explain in Proposition 3.34. To finish

the description of the ring structure of A
∨

C, we have to compute the product βτ · βτ which

lands in degree (2,−2). This product is the homotopy class of the composite

βτ · βτ : S1,−1 ∧ S1,−1
βτ∧βτ
GGGGA H ∧H ∧H ∧H

µ
GGA H ∧H

which is nullhomotopic since µCτ ◦s ' 0. This gives the ring structure as the tensor products

A
∨

C
∼= A

∨

C ⊗ E(βτ ) ∼= F2[ξ1, ξ2, . . .]⊗ E(τ0, τ1, . . .)⊗ E(βτ ).

For the coalgebra structure, the counit is forced as there is only a copy of F2 in degree (0, 0).

It thus only remains to compute the coproduct. The ring map

HF2

i
GGA H

induces the following map of Hopf algebras

A
∨

C
ψ

GGA A
∨

C
∼= A

∨

C/τ ⊗ E(βτ ) : a [GGA a⊗ 1,
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which can be factored as reduction modulo τ and then inclusion into the − ⊗ 1 factor. It

follows that the coproduct ∆(a ⊗ 1) can be computed by choosing a pre-image a of a ⊗ 1,

computing the coproduct in A
∨

C, and then pushing it back via ψ. Since the coproduct formula

on the ξi’s and τi’s in A
∨

C does not involve any τ -multiples, the exact same formula holds for

the coproduct of elements of the form a⊗ 1 ∈ A
∨

C. It only remains to compute the diagonal

on the element 1⊗ βτ . We show in the next Proposition 3.34 that its dual is exterior in the

algebra structure of AC, implying that 1⊗ βτ is primitive. �

Proposition 3.34. The H-Steenrod algebra AC has the following Hopf algebra structure

AC ∼= AC /τ ⊗ E(βτ )

where βτ is a τ -Bockstein in degree (1,−1) which is primitive in the coalgebra structure.

Proof. Since Cτ is dualizable we can rewrite

F (H,H) = F (HF2 ∧ Cτ,HF2 ∧ Cτ) ' F (HF2, HF2) ∧ Cτ ∧DCτ.

By the identification of Section 3.3.2 we further have

F (H,H) ' (F (HF2, HF2) ∧ Cτ) ∨
(
Σ−1,1F (HF2, HF2) ∧ Cτ

)
.

By Lemma 3.31 we get that AC is a free AC/τ -module of rank 2 with generators given by

the operations

id : H GGA H and βτ : H
p

GGA Σ1,−1HF2

i
GGA Σ1,−1H,

where p denotes the projection of Cτ on its top cell, while i denotes the inclusion of it bottom

cell. The definition of βτ explains why we call it a τ -Bockstein. Since the Steenrod algebra is

defined as negative homotopy groups of the endomorphism spectrum, the τ -Bockstein βτ is
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in degree (1,−1). This settles the additive structure of AC, and it remains to understand its

Hopf algebra structure. Since A
∨

C is a Hopf algebra of finite type, we can dualize its structure

from Proposition 3.33 to get the desired Hopf algebra structure of AC. Recall that we did not

yet finish the proof of Proposition 3.33, as we still have to show that βτ ∈ A
∨

C is primitive.

This is equivalent to βτ ∈ AC being exterior, which is clear since it is the composite

βτ ◦ βτ : H
p

GGA Σ1,−1HF2

i
GGA Σ1,−1H

p
GGA Σ1,−1HF2

i
GGA Σ1,−1H,

which is nullhomotopic as p ◦ i ' 0. �

Remark 3.35 (Cτ -linear H-homology and cohomology). We can define the Cτ -linear ho-

mology and cohomology of a Cτ -module X to be

H
Cτ

∗,∗(X) := π∗,∗(H ∧Cτ X) and H
∗,∗
Cτ (X) := π−∗,−∗

(
FCτ (X,H)

)
.

The relevant H-Steenrod algebra of Cτ -linear operations and co-operations are then

π−∗,−∗
(
FCτ (H,H)

)
and A

∨

C
∼= π∗,∗

(
H ∧Cτ H

)
.

Their computation follows from Lemmas 3.31 and 3.32, and the result is the usual motivic

Steenrod algebra and its dual, modulo τ . The only difference with the computations of

Propositions 3.33 and 3.34 is that the Cτ -linear Steenrod algebras do not contain the τ -

Bockstein element βτ . In particular, the dual Cτ -linear H-Steenrod algebra enjoys the nice

formula

F2[ξ1, ξ2, . . .]⊗ E(τ0, τ1, . . .)

that is very reminiscent of the odd-primary classical Steenrod algebra.

3.4.3 The Cτ-Induced Moore Spectrum

Denote by S0/2 the mod 2 Moore spectrum in the usual category of topological spectra

Spt. Recall that the classical Toda bracket 〈2, η, 2〉 = η2 implies that π2(S0/2) ∼= Z/4. This
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shows that multiplication by 2 is not a nullhomotopic map on S0/2, and thus that there is

no possible filler in the diagram

S0 ∧ S0/2 S0 ∧ S0/2 S0/2 ∧ S0/2 Σ1S0/2

S0/2.

2

' @ µ

This shows that there exists no left unital multiplication on S0/2.

Denote now the motivic mod 2 Moore spectrum by S0,0/2. Similarly, we can compute

the motivic homotopy group π2,0(S0,0/2) ∼= Z/4 via the same argument. More precisely, the

analoguous Toda bracket is 〈2, τη, 2〉 = τ 2η2, where η ∈ π1,1(S0,0) and thus τη ∈ π1,0(S0,0).

This again implies that there is no left unital multiplication on the Moore spectrum S0,0/2.

Observe that this could also have been noticed by the fact that a left unital multiplication

on S0,0/2 would induce one on S0/2 by Betti realization.

Denote the cofiber of multiplication by τ on S0,0/2 by S/(2, τ). This spectrum does admit

a left unital multiplication since

〈2, η, 2〉 = τη2 ≡ 0 modulo τ.

This does not imply that there is a ring structure on S/(2, τ) as this bracket is just one

possible obstruction (the obstruction to left unitality). In Theorem 3.37 we show that all

obstructions are of this type and that S/(2, τ) admits the structure of an E∞ algebra over

Cτ .

Since cofibers in Cτ -modules can be computed in the underlying category of motivic

spectra, it follows that the cofiber of 2 on Cτ has underlying spectrum S/(2, τ). Consider

now S/(2, τ) as a Cτ -module, for example as constructed in the category CτMod by the

cofiber sequence

Cτ
2

GGA Cτ
i

GGA S/(2, τ)
p

GGA Σ1,0Cτ. (3.16)
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To equip S/(2, τ) with an E∞ Cτ -algebra structure, we will proceed very similarly as in

Section 3.2, which we refer to for more details.

Proposition 3.36. There is a unique homotopy unital and homotopy commutative Cτ -

algebra structure on S/(2, τ).

Proof. The computation of [S/(2, τ), S/(2, τ)]Cτ
∼= Z/2 generated by the identity map shows

that ·2 is nullhomotopic on S/(2, τ), providing a left unital multiplication µ from the diagram

Cτ ∧Cτ S/(2, τ) Cτ ∧Cτ S/(2, τ) S/(2, τ) ∧Cτ S/(2, τ) Σ1,0Cτ ∧Cτ S/(2, τ)

S/(2, τ).

2 iL pL

' ∃ µ

The computation [Σ1,0Cτ ∧Cτ S/(2, τ), S/(2, τ)]Cτ = 0 shows that there is a unique left

unital multiplication up to homotopy on S/(2, τ). As in Lemma 3.13, it also implies that

there is a unique section s of pL, giving a canonical additive splitting

S/(2, τ) ∧Cτ S/(2, τ) ' S/(2, τ) ∨ Σ1,0S/(2, τ). (3.17)

The induced multiplication µ̃ after this identification is again just projection onto the first

factor, and the factor swap map χ is given by the following diagram

S/(2, τ) ∧Cτ S/(2, τ) S/(2, τ) ∧Cτ S/(2, τ)

S/(2, τ) ∨ Σ1,0S/(2, τ) S/(2, τ) ∨ Σ1,0S/(2, τ).

χ

iL + s (µ, pL)[
1 0
i◦p 1

]

The matrix can be completely determined since [S/(2, τ), S/(2, τ)]Cτ
∼= Z/2. By an easy

matrix multiplication as in Proposition 3.16, this shows that µ is right unital and homotopy

commutative. �

The next step is to show that this (unique) multiplication map µ on S/(2, τ) can be
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extended to an E∞ multiplication. We proceed in the exact same way as we did in Proposition

3.17 and Theorem 3.20.

Theorem 3.37. The Cτ -algebra structure on S/(2, τ) can be uniquely extended to an E∞

structure.

Proof. We first extend it to an A∞ structure as in Proposition 3.17, with obstructions living

in the abelian group

[
Σn−3,0(Σ1,0Cτ)∧n, S/(2, τ)

]
Cτ
∼=
[
Σ2n−3,0Cτ∧n, S/(2, τ)

]
Cτ

for n ≥ 3. Here we used Σ1,0Cτ since it is the cofiber of the unit map Cτ
i

GGA S/(2, τ). By

using the decomposition formula for Cτ∧n from Corollary (3.14), the obstructions live in the

group
n⊕
i=0

(
n

i

)[
Σ2n−3+i,−iCτ, S/(2, τ)

]
Cτ
.

By the free-forget adjunction these groups are

π2n−3+i,−i(S/(2, τ)).

For n ≥ 3 and for any 0 ≤ i ≤ n this homotopy group is zero, making the obstruction group

zero and allowing µ to extend to an A∞ structure. Similarly the obstructions for uniqueness

live in zero groups, showing that S/(2, τ) admits a unique A∞ algebra structure over Cτ .

The A3 structure gives an associative homotopy, and thus we now have a unital, asso-

ciative and commutative monoid in the homotopy category. This is a 3-stage in Robinsin’s

obstruction theory, so we can apply Corollary 3.9 to extend it to an E∞ ring structure. The

obstructions live in [
Σn−3,0S/(2, τ)∧m, S/(2, τ)

]
Cτ

for n ≥ 4 and 2 ≤ m ≤ n, where the smash product is over Cτ . As in the proof of Theorem

3.20, we first break the source in smaller pieces by recursively using equation (3.17). It is then
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easy to show that all of those groups are zero by using cofiber sequences in the first variable

to reduce it to homotopy groups of S/(2, τ). Similarly, the obstructions for uniqueness live

in [
Σn−2,0S/(2, τ)∧m, S/(2, τ)

]
Cτ

for n ≥ 4 and 2 ≤ m ≤ n. We show by the exact same method that all those groups are

zero, finishing the proof. �

Remark 3.38. The fact that multiplication by 2 is nullhomotopic on S/(2, τ) ' Cτ/2 is

not so surprising, as Cτ is of somehow of algebraic nature. In fact, multiplication by n on

X/n is always nullhomotopic in such algebraic categories, as explained in [54, Proposition

1].

Remark 3.39. The Toda bracket 〈2, η, 2〉 = η2 is also responsible for the non-existence of

a v1
1-self map on the topological Moore spectrum S0/2. This is illustrated in the diagram

S2/2 S2 S2

S0/2 S1 S1.

i 2

p 2

η∃ η̃
@

The map η̃ exists since 2η = 0, but there is no v1
1-self map as 2 · η̃ 6= 0. Motivically, the same

diagram has the same problem because of the non-vanishing of the bracket 〈2, η, 2〉 = τη2.

However, in Cτ -modules this bracket vanishes and the Cτ -induced Moore spectrum admits

a v1
1-self map. The diagram

Σ2,1S/(2, τ) Σ2,1Cτ Σ2,1Cτ

S/(2, τ) Σ1,0Cτ Σ1,0Cτ

i 2

p 2

η∃ η̃∃ v1

exhibits this v1-self map

Σ2,1S/(2, τ)
v1

GGA S/(2, τ).
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More precisely, this follows since the computation [Σ2,1Cτ, S/(2, τ)] ∼= Z/2 forces the relation

2 · η̃ ' 0.

3.4.4 The Cτ-Induced connective Algebraic and Hermitian K-Theory Spectra

Consider the motivic algebraic K-theory spectrum KGL constructed in [59]. This spec-

trum represents algebraic K-theory on schemes. More precisely, given any scheme X, the

KGL-cohomology of its stabilization Σ∞+X computes the algebraic K-theory of the scheme

X. Consider now its connective cover kgl as described in [25] over SpecC and in [44] over

more general basis. It is shown in [44] that both KGL and kgl admit a unique E∞ ring

structure. Recall that we work in the 2-completed category, and we use kgl to denote the

2-completed connective algebraic K-theory spectrum. Its coefficients and mod 2 homology

of kgl over SpecC are computed in [25] and given by

π∗,∗(kgl) ∼= Ẑ2[τ, v1] and HF2∗,∗(kgl) ∼= F2[τ ][ξ1, ξ2, . . .][τ2, τ3, . . .]
/
τ 2
i = τξi+1

,

where the element v1 is in degree (2, 1) and corresponds to the usual Bott periodicity. Its

homology is written as a subalgebra of the mod 2 homology of HF2 recalled in equation

(2.2).

Consider now the hermitian K-theory spectrum KQ defined in [20] and studied in [53].

The paper [25] defines its connective cover kq over SpecC, by taking appropriate C2-fixed

points (although it is denoted by ko in that paper). It also computes its coefficients and

mod 2 homology

π∗,∗(kq) ∼= Ẑ2[τ, η, a, b]
/

2η, τη3, aη, a2 = 4b

HF2∗,∗(kq) ∼= F2[τ ][ξ2
1 , ξ2, . . .][τ2, τ3, . . .]

/
τ 2
i = τξi+1

.

To explain the homotopy ring π∗,∗(kq), Figure 4 displays the E∞-page of the motivic Adams

spectral sequence computing π∗,∗(kq). The horizontal axis represents the stem, i.e., the s in

πs,w(kq), while the vertical axis represents the Adams filtration. As it is usually done with
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filtration

stem4 8

h0 h1

a = h0b20

a2

b = b220

means M2

means M2/τ ∼= F2

(stem, filtration, weight):

|τ | = (0, 0,−1)

h0 = 2 and |h0| = (0, 1, 0)

h1 = η and |h1| = (1, 1, 1)

|a| = (4, 3, 2)

|b| = (8, 4, 4)

Figure 4: The E∞-page of the Adams spectral sequence computing π∗,∗(kq).

motivic charts, the weight w in πs,w(kq) is suppressed from the chart and one can imagine

it on a third axis perpendicular to the page.

In this section we consider the Cτ -induced spectra that we denote by

kgl := kgl ∧ Cτ and kq := kq ∧ Cτ.

Both of them are Cτ -algebras, where kgl is an E∞ algebra as being the smash product of

two E∞ rings.

The case of algebraic K-theory kgl

The fact that both its homotopy and homology are τ -free makes the description of kgl

straightforward. Indeed, by Lemma 3.31 we immediately get

π∗,∗(kgl) ∼= Ẑ2[v1] and HF2∗,∗(kgl) ∼= F2[ξ1, ξ2, . . .]⊗ E(τ2, τ3, . . .).

The case of hermitian K-theory kq

Its homology is τ -free and so again we immediately get

HF2∗,∗(kq) ∼= F2[ξ2
1 , ξ2, . . .]⊗ E(τ2, τ3, . . .).
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Its homotopy is more interesting as it is not τ -free, and we will get contributions both from

the cokernel and kernel of multiplication by τ . Moreover, a surprising fact occurs as there is

a hidden extension which makes kq contain the periodicity element v2
1 in its homotopy.

Proposition 3.40. The homotopy ring π∗,∗(kq) has the presentation

π∗,∗(kq) ∼= Ẑ2[η, v2
1]
/

2η .

Proof. The usual cofiber sequence (3.1) for Cτ , smashed with kq gives the cofiber sequence

Σ0,−1kq
τ

GGA kq
i

GGA kq
p

GGA Σ1,−1kq.

Since the homology HF2∗,∗ (Σ0,−1kq) is τ -free, we ge the short exact sequence

0 GGA HF2∗,∗
(
Σ0,−1kq

) τ
GGA HF2∗,∗ (kq)

i
GGA HF2∗,∗

(
kq
)
GGA 0

in homology. For any motivic spectrum X, denote by Ext∗(X) the trigraded term

Ext∗,∗,∗
A
∨
C-comod

(HF2∗,∗(S
0,0), HF2∗,∗(X))

that represents the E2-page of the motivic Adams spectral sequence for X. We use the

indicated grading in Ext∗(X) to denote the homological degree in Ext, i.e., the Adams

filtration on the E2-page. From the above short exact sequence, we get a long exact sequence

in Ext-groups

· · ·
τ

GGA Ext∗(kq)
i∗

GGA Ext∗(kq)
p∗

GGA Ext∗+1(Σ0,−1kq)
τ

GGA · · · ,

i.e., a long exact sequence in E2-pages. This gives short exact sequences

0 GGA Ext∗(kq) /τ
i∗

GGA Ext∗(kq)
p∗

GGA τ Ext∗+1(Σ0,−1kq) GGA 0,
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where the left term is the cokernel of τ while the right term is the τ -torsion. Since i is a ring

map, the term Ext(kq)/τ includes as a subring of Ext(kq). However, this cokernel can act

non-trivially on the τ -torsion part, giving potential extension problems to solve. Since the

motivic Adams spectral sequence for kq collapses at the E2-page with no hidden extensions,

the term Ext(kq) is given by the Figure 4 on page 67. These two pieces assemble to give

the additive description of the E2-page of the motivic Adams spectral sequence for kq as

described in Figure 5. It still remains to solve the possible extension problems and possible

filtration

stem4 8

h0 h1

a

a2

b

h̃3
1

means M2/τ ∼= F2

(stem, filration, weight):

h0 = 2 and |h0| = (0, 1, 0)

h1 = η and |h1| = (1, 1, 1)
|a| = (4, 3, 2)

|b| = (8, 4, 4)

h̃3
1 = η̃3 and |h̃3

1| = (4, 2, 2)

Figure 5: The E2-page of the motivic Adams spectral sequence for kq as an F2-vector space.

Adams differentials. The only possible extension is whether or not 2 · h̃3
1 = a, as indicated

in Figure 5. Consider the Toda bracket 〈τ, η3, 2〉 as in the diagram

S3,2 S3,2 Σ0,−1kq kq

Σ−1,0kq

Σ−1,0kq,

2 η3
τ

p

i

η̃3

where we have that 2 · η̃3 ∈ i∗〈τ, η3, 2〉 by [24, Section 3.1.1]. We can compute this bracket

in the motivic May spectral sequence using May’s Convergence Theorem. See [35] for the

original reference, and [24, Theorem 2.2.3] for an exposition of the motivic version. More

precisely, we can compute it on the motivic May E3-page via the differential d3(b20) = τh3
1
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(since h0h1 is already zero). This bracket has no indeterminacy giving

〈τ, h3
1, h0〉 = {b20h0} .

Recall from Figure 4 that a = b20h0 giving that indeed, in π∗,∗(kq), there is an extension

2 · h̃3
1 = a. This h0-extension appears as the round dotted line on Figure 5. We now spell

out the ring structure of this E2-page. First observe that

4
(
h̃3

1

)2

=
(

2h̃3
1

)2

= a2 = 4b
2
,

and because there are no possible extensions in that column, we get that
(
h̃3

1

)2

= b. The

E2-page of the motivic Adams spectral sequence for kq has therefore the ring presentation

E2
∼= F

[
h0, h1, h̃3

1

] /
h0h1

.

There are no possible Adams differentials on these 3 generators, and thus Figure 5 also

represents the E∞-page of the Adams spectral sequence for kq. Except the h0-towers, there

are no possible hidden extensions, giving the multiplicative description

π∗,∗(kq) ∼= Ẑ2[η, h̃3
1]
/

2η .

Finally, we show that h̃3
1 detects the element v2

1. We can smash the cofiber sequence

Σ1,1kq
η

GGA kq
i

GGA kgl

with Cτ to obtain the cofiber sequence

Σ1,1kq
η

GGA kq
i

GGA kgl.



71

Since i is a ring map, then so is the induced map i. The ring map i sends the 8-fold Bott

periodicity element b =
(
h̃3

1

)2

to the 8-fold Bott periodicity element v4
1, which forces h̃3

1 to

be sent to v2
1. The E2-page of kq has therefore the ring presentation

π∗,∗(kq) ∼= Ẑ2[η, v2
1]
/

2η .�
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CHAPTER 4 EXOTIC MOTIVIC PERIODICITY

In this chapter, we explain what motivic wn-periodicity is, and construct the motivic

exotic fields K(wn). These fields are called exotic because our intuition from classical homo-

topy theory would lead us to believe that the only motivic fields of this form (i.e., associated

with periodic operators) are the usual Morava K-theories K(n).

We refer to the Introduction for more motivation about motivic wn-periodicity. Finally,

let’s mention that this chapter appears as a separate paper, in [15].

Organization

Here is the organization of this chapter.

Section 4.1. In this section we first describe the setting in which we work, which is the

category of cellular Cτ -modules. This includes the following : computing the relevant Steen-

rod algebra and its dual, deriving some important properties, and setting up an appropriate

Adams spectral sequence.

Section 4.2. This section contains the construction of the motivic fields K(wn). This

goes through first constructing connective versions k(wn), endowing them with an E∞ ring

structure, and finally inverting multiplication by wn.

Section 4.3. This section contains the construction of the spectrum wBP , and its trunca-

tions wBP 〈n〉.

4.1 Recollection on Cτ-Modules and its Steenrod Algebra

In this section we will describe the general framework in which all spectra will be con-

structed. We first start by recalling notation in 4.1.1, as well as set up the category CτCell of

cellular (2-completed) Cτ -modules. In 4.1.2 we recall from Section 3.4.2 the Cτ -induced mod

2 Eilenberg-Maclane spectrum H, and its Steenrod algebra of operations and co-operations.

This spectrum plays in CτCell the role that HF2 plays in SptC, and will serve as a building

block for the Postnikov tower constructions of Section 4.2. In 4.1.3 we further study this

Steenrod algebra and give the relevant definitions which lead to the definition of wn peri-
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odicity. Finally, in 4.1.4 we briefly describe the H-based Adams spectral sequence in the

category CτCell. This spectral sequence will be used in several places in Sections 4.2 and

4.3.

4.1.1 Cellular motivic spectra and Cτ-modules

Recall from [12] that a motivic spectrum is called cellular if it can be built out of spheres

Ss,w under filtered colimits. Denote by CellC the category of cellular motivic spectra over

SpecC, constructed as the right Bousfield localization at the set of spheres {Ss,w}s,w∈Z. The

weak equivalences in CellC are thus given by π∗,∗-isomorphisms. The Bousfield localization

is part of an adjunction

CellC ↪GGA⊥
GDGG

C
SptC,

where the unit is a weak equivalence in CellC, and the counit C(X) GGA X is a π∗,∗-

isomorphism. This discussion can be carried out both in the world of

• presentable, closed symmetric monoidal ∞-categories, following [49],

• cellular, closed symmetric monoidal model categories, via the motivic symmetric spectra

of [26], [46], and the theory of right Bousfield localization in that setting following [4].

In this chapter we will be working in CellC as all spectra constructed will be cellular. This

has in particular the advantages that a spectrum X ∈ CellC is contractible if and only if its

homotopy groups π∗,∗(X) vanish, and that our spectral sequences converge.

In Chapter 3, we considered the cofiber of τ ∈ π0,−1S
0,0

S0,−1
τ

GGA S0,0
i

GGA Cτ,

and shown that the motivic 2-cell complex Cτ admits a unique E∞ ring structure, producing

thus a closed symmetric monoidal category (CτMod,− ∧Cτ −) of Cτ -modules. The usual

adjunction from the ring map S0,0
GGA Cτ restricts to an adjunction

CellC
−∧Cτ
GGA⊥
GDGG CτCell
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on cellular objects. From now on, we will call an object X ∈ CτCell a Cτ -module, omitting

the word cellular.

Remark 4.1 (Working in Cτ -modules). Similarly with the fact that the Morava K-theories

K(n) are 2-completed7, the spectra K(wn) are naturally Cτ -modules. In the case of K(w0),

this can be seen from the relation 0 = τη4 ∈ π4,3(Ŝ2). Since K(w0) contains η−1, this forces

τ to act by zero on it, which in this case is sufficient to promote a spectrum to a Cτ -module.

We will therefore work in the category of CτCell in which we will construct the motivic fields

K(wn).

4.1.2 Cτ-linear H-(co)homology and its (co)operations

We will now exclusively be working in CτCell, i.e., with cellular Cτ -modules and with Cτ -

linear maps between them. Most invariants of the underlying spectrum of a Cτ -module X

can be rewritten in this category. For example, the usual adjunction describes its homotopy

groups by

πs,w(X) ∼= [Σs,wCτ,X]Cτ .

The analog of the mod 2 Eilenberg-Maclane spectrum in this category is the Cτ -induced

Eilenberg-Maclane spectrum H := HF2 ∧ Cτ . Recall from Section 3.4.2 that given a Cτ -

module X, we defined its Cτ -linear H-homology to be

H∗,∗(X) := π∗,∗(H ∧Cτ X),

and its Cτ -linear H-cohomology of X to be

H∗,∗(X) := π−∗,−∗(FCτ (X,Σ
−1,1H)).

As explained in Section 3.4.2, these are isomorphic to the H-homology and (shifted) coho-

mology of the underlying spectrum, and are naturally acted upon by the Cτ -linear operations

7except for K(0) ' HQ.
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AC := π−∗,−∗FCτ (H,H), and cooperations A
∨

C := π∗,∗(H ∧Cτ H). Recall the computation of

A
∨

C from Proposition 3.33.

Proposition 4.2. The Cτ -linear co-operations of H are given by the Hopf algebra

A
∨

C
∼= F2[ξ1, ξ2, . . .]⊗ E(τ0, τ1, . . .),

with bidegrees given by |ξn| = (2n+1 − 2, 2n − 1) and |τn| = (2n+1 − 1, 2n − 1), and coproduct

∆(ξn) =
n∑
i=0

ξ2i

n−i ⊗ ξi = ξn ⊗ 1 + ξ2
n−1 ⊗ ξ1 + · · ·+ ξ2i

n−i ⊗ ξi + · · ·+ 1⊗ ξn,

∆(τn) = τn ⊗ 1 +
n∑
i=0

ξ2i

n−i ⊗ τi = τn ⊗ 1 + ξn ⊗ τ0 + ξ2
n−1 ⊗ τ1 + · · ·+ ξ2i

n−i ⊗ τi + · · ·+ 1⊗ τn.

The advantage of working with the coaction of A
∨

C instead of A
∨

C is now apparent by

comparing Proposition 4.2 with Voevodsky’s formula (2.2). First, A
∨

C is smaller and more

regular, which will be convenient for computations. Second, since τ ∈ π0,−1S
0,0 is nullhomo-

topic on any Cτ -module X, it will act as zero on any algebraic invariant of X. Morally, it

is thus natural to expect that the coaction of A
∨

C on the homology HF2∗,∗(X) should factor

through the quotient A
∨

C /τ ∼= A
∨

C. Working with Cτ -linear H-homology is a way of making

this remark precise. The exact same remark applies to cohomology, where the computation

of the Cτ -linear Steenrod algebra AC follows from Proposition 3.34 and is given by the

quotient AC ∼= AC /τ .

Convention 4.3. Given a Cτ -module X, we will always consider its Cτ -linear H-homology

(i.e., its HF2-homology) endowed with the coaction of A
∨

C. Similarly, its Cτ -linear H-

cohomology will always be considered as an AC-module.

To state another crucial advantage of AC over AC we need the following definition.

Definition 4.4 (Chow degree). Let A∗,∗ be a bigraded abelian group. The Chow degree of

an element x ∈ As,w is given by the difference s − 2w. The bigraded group A∗,∗ splits as a

sum of its summands in a fixed Chow degree, which ranges through Z.
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Remark 4.5 (The Chow degree on motivic Steenrod algebras). Both AC and AC are gen-

erated as algebras (over F2[τ ] and F2 respectively) by the Steenrod squares Sqn. The even

squares Sq2n are in Chow degree 0, while the odd squares Sq2n+1 are in Chow degree 1. It

follows that the whole Steenrod algebra AC is concentrated in positive Chow degrees, i.e.,

is bounded below by 0. This in particular allows recursive arguments on the Chow degree.

On the other side, since in this cohomological setting |τ | = (0, 1) is in Chow degree −2, the

Steenrod algebra AC of Voevodsky is non-vanishing in all Chow degrees and does not allow

recursive arguments of this type.

Finally, let’s mention that H∗,∗-cohomology satisfies a Künneth formula.

Proposition 4.6. Given two Cτ -modules X and Y , there is a Künneth isomorphism

H∗,∗(X ∧ Y ) ∼= H∗,∗(X)⊗F2 H
∗,∗(Y )

of AC-modules, where the right hand side has the diagonal AC-module structure.

Proof. Consider the motivic Künneth spectral sequence from [12], [58]

Tors,t,w
H∗,∗

(
H∗,∗(X), H∗,∗(Y )

)
=⇒ H t−s,w(X ∧ Y ),

where s is the homological degree, and (t, w) are the usual two internal degrees. Since

H∗,∗ ∼= F2 is a field, this spectral sequence is concentrated in homological degree s = 0 and

thus collapses, giving the desired result. �

4.1.3 The Motivic Margolis elements P s
t

In this section we will set-up some notation and formulas in the Steenrod algebra AC.

These formulas are the motivic adaptation of classical formulas in Acl proven by Milnor, see

for example [10, Section 2]. There are two different ways of showing these formulas in the

motivic setting

(1) either by brute-force, by adapting the classical proof to the motivic setting, or

(2) by transporting them via a map between the classical and motivic Steenrod algebras.
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We chose to use the second option. Consider the injective map

Acl ↪GGA AC (4.1)

of Hopf algebras, defined in [24, Section 2.1.3], whereAcl denotes the mod 2 classical Steenrod

algebra. One can for example define it as the dual to the natural quotient map between dual

Steenrod algebras

A
∨

C = F2[ξ1, ξ2, . . .]⊗ E(τ0, τ1, . . .) GGA A
∨

cl = F2[ξ1, ξ2, . . .]. (4.2)

Remark 4.7. It is easy to see that both map are graded if the motivic bigraded object is

consider as simply graded by the weight. Restricting to the weight in the motivic setting

feels artificial, but turns out to be useful for the following reason.. Denote by c(−) the

conjugation map on both the classical and motivic Steenrod algebras (and their duals). By

analyzing the coproduct on A
∨

C, it is easy to see that the ring map (4.2) is in fact a graded

map of bialgebras over F2. Since both are connected Hopf algebras, the conjugation c(−) is

uniquely determined, and thus both maps (4.1) and (4.2) are maps of Hopf algebras.

Notation 4.8 (Margolis’ P s
t ). Denote by P s

t ∈ AC the element dual to ξ2s

t ∈ A
∨

C, by dualizing

in the canonical monomial basis.

Example 4.9. Since the motivic Steenrod algebra at p = 2 admits a slightly different

notation than the classical one, let’s look at low dimensional elements. When s = 0, these

elements are the sequence P1 = Sq2, P2 = [Sq2, Sq4], etc. Observe that Q0 = Sq1 does

not appear in this notation. The sequence {Pt} is a doubled version of the classical Milnor

sequence {Qt}.

Lemma 4.10. The element P s
t ∈ AC is exterior if and only if s < t. Moreover, the subalgebra

generated by the elements Pt is an exterior commutative algebra.

Proof. Let’s also denote by P s
t ∈ Acl the classical element dual to ξ2s

t . Since the map (4.2)

sends ξ2s

t to ξ2s

t , its dual map (4.1) sends P s
t to P s

t . It is proven in [34, Lemma 15.1.4] that
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the classical P s
t ’s are exterior if and only if s < t. The if part follows immediately and the

only if part follows by injectivity of the map (4.1).

In the classical setting, recall that the dual element to ξt ∈ A
∨

cl is the Milnor primitive

Qt−1 ∈ Acl. It follows that the map (4.1) sends Qt−1 to Pt. Since the Qt’s commute, then so

do the Pt’s, finishing the proof. �

Notation 4.11. Denote by E(Pt) the exterior algebra (in AC) generated by Pt, and by

E(P1, P2, . . .) the exterior algebra (in AC) generated by P1, P2, . . ..

Since Pt is exterior, one can consider Margolis homology with respect to Pt. Recall that

given an AC-module M , this is defined as the homology of the complex

M
·Pt

GGGA M
·Pt

GGGA M,

i.e., by the formula H(M ;Pt) = kerPt/ imPt. If H(M ;Pt) = 0, one says that Pt is exact on

M .

Corollary 4.12. For every t, the element Pt is primitive, exterior and exact on AC.

Proof. Notice that Pt is primitive since it is dual to the indecomposable element ξt, and that

it is exterior by Lemma 4.10 applied with s = 0.

To show the vanishing of the Pt-Margolis homology on AC, we use the same strategy as

in [34, Proposition 19.1.1]. First of all, it is easy to see by inspection that the subalgebra

E(P1, P2, . . .) has no Margolis homology for every Pt. By a theorem of Milnor-Moore [37], the

Hopf algebra AC is free over E(P1, P2, . . .), i.e., can be written as a direct sum ⊕E(P1, P2, . . .)

as an E(P1, P2, . . .)-module. It follows that AC has no Pt-Margolis homology, i.e., that Pt is

exact on AC. �

Remark 4.13 (The Steenrod algebra and wn-periodicity). There is a tight relation between

the periodic operator vn and the cohomology operation Qn. This can for example be seen

by the interplay between the homotopy and cohomology of the connective Morava K-theory
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spectrum k(n). In the classical setting, these invariants are

π∗(k(n)) ∼= F2[vn] and H∗(k(n);F2) ∼= Acl//E(Qn).

This can equivalently be seen in the Postnikov tower of k(n), whose layers are given by

Eilenberg-Maclane spectra HF2, which are attached via Qn. The same relation exists mo-

tivically for the motivic Morava K-theories. An intuition for wn-periodicity is that the

relation between wn and Margolis’ Pn is the exact same as the relation between vn and Qn.

4.1.4 The H-based Cτ-linear motivic Adams spectral sequence

In what follows, we will construct an H-based Adams spectral sequence in the category

of Cτ -modules. One can set it up as in [13, Section 7] by replacing motivic spectra with

Cτ -modules and HF2 with H. In this setting, an Adams resolution of a Cτ -module X is

given by a diagram of Cτ -modules

X X1 X2 · · ·

K0 K1 K2,

g0 g1 g2

f0 f1 f2

where Ki is a wedge of suspensions of H and fi is zero in H-(co)homology. Consider the fiber

sequence F
f

GGA Cτ
g

GGA H of Cτ -modules, where the map Cτ GGA H comes from the

unit S0,0
GGA HF2. Then we can form a canonical Adams resolution as usual by inductively

setting Ki ' X ∧Cτ F∧Cτ i ∧Cτ H and Xi ' X ∧Cτ F∧Cτ i, where fi and gi are induced from

f and g.

In [13, Section 7] Dugger-Isaksen define a category 〈S0,0〉HF2 for which the motivic Adams

spectral sequence converges. This is the full subcategory of SptC containing cellular spectra,

which is also closed by smashing with HF2. This last condition was necessary at that time

since it was not known that HF2 was cellular. It was later proved in [22] that the mod

2 motivic Eilenberg-Maclane spectrum HF2 is cellular, and thus that 〈S0,0〉HF2 is just the



80

category of motivic cellular spectra.

By copying [13, Section 7], we get a Cτ -linear H-based motivic Adams spectral sequence

with E2-term given by

E2
∼= ExtAC

(H∗,∗(X), H∗,∗(Cτ)) ∼= ExtAC
(H∗,∗(X),F2).

It remains to study what the E∞-page computes. Again by [13, Section 7], the E∞-page

computes the homotopy groups of the homotopy limit of the semi-cosimplicial spectrum

H ∧Cτ X H ∧Cτ H ∧Cτ X · · · (4.3)

where all cofaces are induced from Cτ GGA H. To compute this homotopy limit one can

compare it with the HF2-tower of the underlying spectrum of X

HF2 ∧X HF2 ∧HF2 ∧X · · · (4.4)

which we know totalizes to X by [13, Section 7], since X is already 2-complete. Since

H ∧Cτ Cτ ' HF2 ∧ S0,0, there are level-wise weak equivalences between these two towers8

which commute with the coface maps. Since forgetting the Cτ -module structure is a right

adjoint, it follows that the underlying spectrum of the totalization of the tower (4.3) is also

X. There is thus a convergent Cτ -linear H-based motivic Adams spectral sequence

Exts,t,wAC
(H∗,∗(X),F2) =⇒ πt−s,w(X). (4.5)

Remark 4.14. Even though both towers (4.3) and (4.4) have the same underlying spectrum,

they do not live in the same category and thus do not produce the same spectral sequence.

They converge to the same object, but the E2-term of the Adams spectral sequence coming

from (4.3) is smaller and more computable.

8more precisely between the underlying tower of (4.3) and the tower (4.4).
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4.2 The Motivic Fields K(wn)

The goal of this section is to construct motivic fields K(wn), that detect wn periodicity.

As explained in Remark 4.1, these spectra will be constructed in the category CτCell. We

will thus from now on exclusively work in the category CτCell and denote the smash product

over Cτ simply by − ∧ −, homotopy classes of Cτ -linear maps by [−,−], work with Cτ -

linear H-homology and cohomology, etc. The spectrum K(wn) should be a ring spectrum

with homotopy groups given by

π∗,∗(K(wn)) ∼= F2[w±1
n ].

The strategy is to first construct a connective version k(wn) with homotopy groups

π∗,∗(k(wn)) ∼= F2[wn],

endow it with a ring structure, and finally invert multiplication by wn to get K(wn). In

4.2.1 we will construct k(wn) and show that it has the correct homotopy, and appropriate

cohomology. The construction is done along an inverse tower, which can be seen as Postnikov

tower of k(wn) (in the stem direction, for example). From this tower one can easily compute

the homotopy and cohomology of k(wn) by the associated spectral sequences. In 4.2.2 we

will again use this tower to construct a ring map k(wn) ∧ k(wn) GGA k(wn). We will then

use Robinson’s obstruction theory to rigidify it to an E∞ ring structure, which allows the

definition of K(wn).

4.2.1 The construction of k(wn)

Fix an n ∈ N0 until the end of the section. We will now construct k(wn) via its Postnikov

tower, in the category of Cτ -modules. Recall that k(wn) should be a motivic ring spectrum

whose homotopy groups are given by the polynomial ring

π∗,∗(k(wn)) ∼= F2[wn],
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where wn is an element detected by the cohomology operation Pn. This suggests that k(wn)

could be constructed via a tower whose layers are copies of H, each of which is attached

by Pn. We will call this tower the Postnikov tower of k(wn), as the layers are becoming

more and more connected (in both the stem, and the weight). We proceed to explain this

construction now.

Construction 4.15 (The construction of k(wn)). Start the bottom of the tower with the

fiber sequence

H k(wn)〈0〉

∗ Σ1,0H,

i−1 = id

p−1

k−1 = 0

where k−1 denotes the −1st k-invariant. The Postnikov truncation k(wn)〈0〉 has thus homo-

topy groups π∗,∗(k(wn)〈0〉) ∼= π∗,∗(H) ∼= F2. We now want to attach the second copy of H

via the Steenrod operation Pn. This requires a k-invariant k0 that restricts to the operation

Pn on H as shown in the diagram

H k(wn)〈0〉 ΣrH

∗ Σ1,0H,

id

Pn

∃? k0

where we denote the bidegree of Pn by r = |Pn|. There is obviously a unique such filler up

to homotopy, which is k0 = Pn. The next step is to take the fiber of k0 to get the next stage

in the tower, which we denote by k(wn)〈1〉 as shown in
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Σr−(1,0)H k(wn)〈1〉 Σ2r−(1,0)H

H k(wn)〈0〉 ΣrH

∗ Σ1,0H.

i0

id

p0

k0

∃? k1

Pn

Pn

To continue the process, we need the existence of a k-invariant k1 that restricts to Pn on

Σr−(1,0)H. Equivalently, we are trying to extend Pn to k(wn)〈1〉 as in the diagram

Σ−1,0k(wn)〈0〉 Σr−(1,0)H k(wn)〈1〉 k(wn)〈0〉

Σ2r−(1,0)H.

k0 i0 p0

Pn
∃? k1

It follows that a k-invariant k1 exists if and only if the composite

Σ−1,0k(wn)〈0〉
k0

GGA Σr−(1,0)H
Pn

GGA Σ2r−(1,0)H

is nullhomotopic, which is equivalent to having the relation Pnk0 = 0 in the cohomology

H2r(k(wn)〈0〉). If such a k-invariant k1 exists, then the difference of two such extensions

would factor through the map p0, and so one can alter k1 up to homotopy by the group

of maps in
[
k(wn)〈0〉,Σ2r−(1,0)H

]
modulo k0-divisibles. In order to keep the outline of the

construction clear, we postpone the proof of the relation Pnk0 = 0, and the fact that the

moduli of such extensions is trivial to Proposition 4.17. These two facts show that there

exists a unique k-invariant k1 up to homotopy, so the homotopy type k(wn)〈1〉 is uniquely

defined and we can canonically continue to build the tower. We can now repeat the process

by taking the fiber of k1 as shown in the diagram
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Σ2r−(2,0)H k(wn)〈2〉 Σ3r−(2,0)H

Σr−(1,0)H k(wn)〈1〉 Σ2r−(1,0)H

H k(wn)〈0〉 ΣrH

∗ Σ1,0H.

i1

i0

id

p1

p0

k1

k0

∃? k2

Pn

Pn

Pn

Similarly, the k-invariant k2 exists if and only if the composite Pnk1 is nullhomotopic, and the

set of such extensions is given by a subset of homotopy classes of maps in [k(wn)〈1〉,Σ3r−(2,0)H].

As for the previous case, the existence of a unique k-invariant k2 will be shown in Proposition

4.17.

More generally, if the k-invariants k0, . . . , km exist, one can define k(wn)〈m+ 1〉 and ask

if we can continue building the tower, i.e., if the next k-invariant km+1 exists. The pattern

is clear and a k-invariant km+1 exists if and only if we have the relation

Pnkm = 0 ∈ H(m+2)r−(m,0)(k(wn)〈m〉). (4.6)

Once km+1 exists, one can alter it by the set of maps

[
k(wn)〈m〉,Σ(m+2)r−(m+1,0)H

] ∼= H(m+2)r−(m+1,0)(k(wn)〈m〉). (4.7)

We will show in Proposition 4.17 that at each step there exists a unique k-invariant km,

which in addition turns out to satisfy the relation Pnkm = 0, producing km+1. Having all

these k-invariants, we can define a motivic spectrum k(wn) as the homotopy limit of the

tower

k(wn) := holim
(
. . .

p2

GGA k(wn)〈1〉
p1

GGA k(wn)〈0〉
p0

GGA ∗
)
. (4.8)
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The map k(wn) GGA k(wn)〈0〉 = H will represent the element 1 in cohomology so we call it

the fundamental class. Since the choice of k-invariants km is canonical, this shows that there

is a unique homotopy type k(wn) whose Postnikov tower has layers H that are successively

attached via the cohomology operation Pn. �

Construction 4.15 contains the framework for the construction of the motivic spectrum

k(wn). However, as mentioned above, the formula (4.8) does not make sense until we show

the existence of the k-invariants k1, k2, . . ., which we do in Proposition 4.17. It is folklore

that the existence of these k-invariants is equivalent to showing that some specific Toda

brackets between Eilenberg-Maclane contain the element zero. Although we don’t pursue

this direction further, the following remark is meant to explain this folklore result.

Remark 4.16 (Existence of k-invariants from Toda brackets). The first k-invariant k1 exists

if and only if the relation Pnk0 = 0 holds in the H-cohomology of k(wn)〈0〉 = H. The second

k-invariant k2 exists if and only if Pnk1 = 0 in the cohomology of the 2-stage motivic spectrum

k(wn)〈1〉. The diagram

k(wn)〈0〉 = H ΣrH Σ2rH Σ3rH

Σ1,0k(wn)〈1〉

Σ1,0k(wn)〈0〉

Σr+(1,0)H

k0 = Pn Pn Pn

i0

p0

k0 = Pn

∃ k1

∃ 〈Pn, Pn, Pn〉

shows that the relation Pnk1 = 0 holds if and only if the Toda bracket 〈Pn, Pn, Pn〉 contains

an element that is Pn-divisible. Since the indeterminacy is also Pn-divisible, this is equivalent

to the bracket 〈Pn, Pn, Pn〉 containing zero. Moreover, the indeterminacy of the Toda bracket

corresponds to the choices of such extensions k2. This generalizes to higher Toda brackets
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for the higher ki’s, but we do not explore this direction, as we will show by other means that

Pnkm = 0.

In the following Proposition 4.17 we now show the existence of these k-invariants, as well

as their uniqueness up to homotopy.

Proposition 4.17. There exist unique k-invariants k0, k1, k2, . . . as described in Construc-

tion 4.15, defining a unique homotopy type k(wn) by equation (4.8).

Proof. Suppose that the tower has been constructed until the stage

Σ(m+1)r−(m+1,0)H k(wn)〈m+ 1〉 Σ(m+2)r−(m+1,0)H

Σmr−(m,0)H k(wn)〈m〉 Σ(m+1)r−(m,0)H,

...

im

im−1

pm

pm−1

km

∃? km+1

Pn

Pn

and we want to show that there is a unique possible k-invariant km+1. Note that in Con-

struction 4.15 we uniquely constructed the tower in the case m = 0 so we can start the

inductive process.

We will show in Lemma 4.18 below that if k(wn)〈m〉 exists (as assumed by the induction

hypothesis), then its cohomology H∗,∗(k(wn)〈m〉) vanishes in Chow degrees less than −m.

This implies that if a k-invariant km+1 exists then it is unique, since the set of choices from

equation (4.7) is a subset of the cohomology of k(wn)〈m〉 that is concentrated in Chow

degrees less than −m− 1, which vanishes since −m− 1 < −m.

To show existence, by equation (4.6) we have to show that Pnkm = 0. We will show

in Lemma 4.20 by induction that despite the group H(m+2)r−(m,0)(k(wn)〈m〉) not vanishing,

we still have the relation Pnkm = 0. By induction, this concludes the existence of unique

k-invariants k0, k1, . . . and allows us to define a unique homotopy type k(wn) by equation

(4.8). �

Lemma 4.18. Fix an m, and suppose that k(wn)〈0〉, k(wn)〈1〉, . . . , k(wn)〈m〉 are constructed
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as in Construction 4.15. Then H∗,∗(k(wn)〈m〉) vanishes in Chow degrees less than −m.

Proof. We show it by induction. For the initial case recall that k(wn)〈0〉 = H and thus

H∗,∗(k(wn)〈0〉) ∼= AC is the Steenrod algebra of operations of H. Recall from Remark 4.5

that it is concentrated in positive Chow degrees, showing the initial case.

Suppose that the Lemma is shown for k(wn)〈0〉, . . . , k(wn)〈s− 1〉. The cofiber sequence

Σsr−(s,0)H GGA k(wn)〈s〉 GGA k(wn)〈s− 1〉

induces a long exact sequence in cohomology

· · · GDGG A(a,b)−sr+(s,0)

C GDGG Ha,bk(wn)〈s〉 GDGG Ha,bk(wn)〈s− 1〉 GDGG · · · .

Fix a couple (a, b) in Chow degree less than −s, i.e., such that a − 2b < −s. Then

A(a,b)−sr+(s,0)

C = 0 by the initial case since it is in negative Chow degree, and Ha,bk(wn)〈s−

1〉 = 0 by the inductive hypothesis since it is in Chow degree less than −s, which is less than

−(s− 1). This implies that Ha,bk(wn)〈s〉 = 0, showing the inductive step and finishing the

proof. �

Remark 4.19. This bound is sharp for every m, as it can be seen by the long exact sequences

in cohomology that the groups H∗,∗(k(wn)〈m〉) do not vanish in Chow degree −m. The

composite Pnkm ∈ H(m+2)r−(m,0)(k(wn)〈m〉) lives in this non-zero group in Chow degree

−m, so we cannot use Lemma 4.18 to show that the product Pnkm is zero.

Lemma 4.20. Fix an m, and suppose that k(wn)〈0〉, k(wn)〈1〉, . . . , k(wn)〈m〉 are constructed

as in Construction 4.15. Then we have the relation

Pnkm = 0 ∈ H(m+2)r−(m,0)(k(wn)〈m〉).
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Proof. Consider the cofiber sequence

Σmr−(m,0)H GGA k(wn)〈m〉 GGA k(wn)〈m− 1〉.

The natural transformation H∗,∗
·Pn
GGA H(∗,∗)+r induces a map of long exact sequences, which

in bidegree (∗, ∗) = (m+ 1)r− (m, 0) becomes

· · · Ar

C H(m+1)r−(m,0)(k(wn)〈m〉) H(m+1)r−(m,0)(k(wn)〈m− 1〉) · · ·

· · · A2r

C H(m+2)r−(m,0)(k(wn)〈m〉) H(m+2)r−(m,0)(k(wn)〈m− 1〉) · · · .

Pn· Pn· Pn·

Both cohomology groups of k(wn)〈m−1〉 on the right of the above diagram are concentrated

in Chow degree −m, so they vanish by Lemma 4.18. We thus get the commutative square

Pn ∈ A
r

C H(m+1)r−(m,0)(k(wn)〈m〉) 3 km

PnPn ∈ A
2r

C H(m+2)r−(m,0)(k(wn)〈m〉) 3 Pnkm,

Pn· Pn·

with injective horizontal maps. The element km lives in the top right corner of the square,

and by definition is sent to Pn ∈ A
r

C along the top horizontal map. Since PnPn = 0 ∈ A2r

C

by Lemma 4.10, the product Pnkm is also sent to zero in A2r

C by the bottom horizontal map.

Since the bottom horizontal map is injective, it follows that Pnkm = 0. �

This finishes the construction started in 4.15, constructing a homotopy type k(wn) defined

by its Postnikov tower. From this tower, we will now compute its cohomology.

Proposition 4.21. The cohomology of k(wn) is given as an AC-module by

H∗,∗(k(wn)) ∼= AC//E(Pn). (4.9)

In particular, it is concentrated in non-negative Chow degrees.

Proof. Applying the contravariant functor H∗,∗ to the tower defining k(wn) gives an unrolled



89

exact couple and thus an associated spectral sequence as shown in Figure 6. The E∞-page

k(wn)

...
...

Σ2r−(2,0)AC · w2
n Σ2r−(2,0)H k(wn)〈2〉

Σr−(1,0)AC · w1
n Σr−(1,0)H k(wn)〈1〉

Σ0,0AC · w0
n H k(wn)〈0〉

∗

i1

i0

id

p1

p0
d1 = Pn

d1 = Pn

d1 = Pn

H∗,∗(−)

Pn◦

Pn◦

Figure 6: The spectral sequence computing the cohomology of k(wn) is drawn schematically
on the left-hand side.

of this spectral sequence computes the colimit

H∗,∗ := colim
(
H∗,∗(k(wn)〈0〉) GGA H∗,∗(k(wn)〈1〉) GGA · · ·

)
.

We will first show that the E∞-page is isomorphic to the quotient AC//E(Pn), and then

show that in this setting we have

H∗,∗ ∼= H∗,∗(k(wn)),

i.e., that the cohomology of this homotopy limit is computed by the colimit of the cohomolo-
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gies. We index the E1-page of this spectral sequence as

Es,t,w
1 = H t,w

(
Σs·(r−(1,0))H

)
,

where s is the homological degree, and (t, w) are the internal degrees. The first differential

d1 is the boundary map in the tower, which is multiplication by the cohomology operation

Pn. Since Pn is exact on AC by Corollary 4.12, the d1 differential wipes out everything in

homological degree s > 0, and leaves the quotient AC//E(Pn) in degree s = 0. It thus

follows that the spectral sequence collapses at E2 for degree reasons, with no possible hidden

extensions.

It remains to show that this colimit is isomorphic to H∗,∗(k(wn)). This is shown by a

standard technique which we explain for the reader’s convenience. Fix a bidegree (t, w) until

the end of the proof. Consider the diagram

· · · H t,w(k(wn)〈m〉) H t,w(k(wn)〈m+ 1〉) H t,w(k(wn)〈m+ 2〉) · · ·

H t,w(k(wn)),

where the vertical and diagonal maps are induced by the maps from the diagram defining

k(wn) as a homotopy limit. For m big enough, the maps in the diagram

H t,w(k(wn)〈m〉)
∼=

GGA H t,w(k(wn)〈m+ 1〉)
∼=

GGA · · ·
∼=

GGA Ht,w

are all isomorphisms since the successive fibers

Σmr−(m,0)H, Σ(m+1)r−(m+1,0)H, . . .

are suspended too much and have no cohomology in degree (t, w). Similarly, for m big enough

the fiber of k(wn) GGA k(wn)〈m〉 is too connected, and thus also has no cohomology. It
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follows that for m big enough, the maps in the diagram

· · · H t,w(k(wn)〈m〉) H t,w(k(wn)〈m+ 1〉) H t,w(k(wn)〈m+ 2〉) · · ·

H t,w(k(wn)),

∼= ∼= ∼=

∼= ∼= ∼=

become isomorphisms, and thus we have the required isomorphism

H t,w(k(wn))
∼=

GDGG Ht,w.

SinceAC is concentrated in non-negative Chow degrees by Remark 4.5, then so isH∗,∗(k(wn)) ∼=

AC//E(Pn). �

Corollary 4.22. The cohomology of the smash product k(wn) ∧ k(wn) is given by

H∗,∗ (k(wn) ∧ k(wn)) ∼= AC//E(Pn)⊗AC//E(Pn),

with the diagonal AC-module structure. More generally, for any m ≥ 1 we have

H∗,∗
(
k(wn)∧m

) ∼= (AC//E(Pn)
)⊗m

,

with the iterated diagonal AC-module structure. In particular, for any m the cohomology

H∗,∗
(
k(wn)∧m

)
is concentrated in positive Chow degrees.

Proof. The first part follows from the Künneth isomorphism of Proposition 4.6. An easy in-

duction computes the cohomology of the smash product k(wn)∧m. Finally, AC//E(Pn) is con-

centrated in positive Chow degrees since AC is (Remark 4.5), and thus so is
(
AC//E(Pn)

)⊗m
.

�

Remark 4.23 (Additive description of π∗,∗(k(wn))). It is easy to see from Construction 4.15
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that additively the homotopy groups of k(wn) are given by sparse copies of F2’s

πs,w(k(wn)) ∼=


F2 if (s, w) = m · r for some m ∈ N0

0 otherwise.

For example, one can compute π∗,∗(k(wn)) by Milnor’s lim1 short exact sequence, where the

lim1 term vanishes since pm is surjective in homotopy groups and thus the inverse sequence

satisfies the Mittag-Leffler condition. We will compute the ring structure on π∗,∗(k(wn)) via

the motivic H-based Adams spectral sequence in Theorem 4.26.

4.2.2 The E∞ ring structure and K(wn)

We will now endow the motivic spectrum k(wn) with an E∞ ring structure. The technique

is the same as in [14, Section 3] and is done in three steps. The first step is to construct a

ring map µ : k(wn) ∧ k(wn) GGA k(wn), which we do by lifting the fundamental class 1 ∈

H0,0
(
k(wn)∧2

)
along the Postnikov tower of k(wn). We will then show that this endows k(wn)

with a unital, associative and commutative monoid structure in the homotopy category. The

last step is to use Robinson’s obstruction theory [51] to extend it to an E∞ ring structure.

The following Lemma 4.24 provides a homotopy class of maps µ : k(wn) ∧ k(wn) GGA

k(wn), as well as some estimates necessary to apply Robinson’s obstruction theory.

Lemma 4.24. For any m ≥ 1 the abelian group of homotopy classes of maps satisfies

[
k(wn)∧m,Σt,wk(wn)

] ∼=

F2 if (t, w) = (0, 0)

0 if (t, w) is in negative Chow degree, i.e., t− 2w < 0.

Moreover, the non-trivial map k(wn)∧m GGA k(wn) preserves the fundamental class in H-

cohomology, i.e., sends 1 to 1⊗m.

Proof. Consider the Atiyah-Hirzebruch spectral sequence computing

[k(wn)∧m, k(wn)]∗,∗



93

given by applying the functor [k(wn)∧m,−] to the tower defining k(wn) in Construction 4.15.

We index the E1-page by

Es,t,w
1 =

[
k(wn)∧m,Σt,wΣsr−(s,0)H

] ∼= H(t,w)+sr−(s,0)
(
k(wn)∧m

)
,

where s ≥ 0 is the homological degree and (t, w) are the internal degrees. This is a first

quadrant spectral sequence (if plotted in the (s, t) plane) and thus converges to

Es,t,w
∞
∼=
[
k(wn)∧m,Σt,wk(wn)

]
.

Since the cohomology of the smash power k(wn)∧m is concentrated in non-negative Chow

degrees by Corollary 4.22, and since r is in Chow degree zero, the E1-page is concentrated

in degrees

t− 2w − s ≥ 0.

In particular, if t− 2w < 0, the spot Es,t,w
∞ is zero for any s and thus also

[
k(wn)∧m,Σt,wk(wn)

]
= 0.

In the case where (t, w) = (0, 0), then necessarily s = 0. The lth differential dl goes from

(s, t, w) to (s + l, t + 1, w), and there is thus no possible differential entering E0,0,0
1 . Since

dl reduces the quantity t − 2w − s by l − 1, the only possible differential exiting E0,0,0
1 is

a d1. As in Proposition 4.21, observe that the d1 differential is multiplication by Pn on

H∗,∗
(
k(wn)∧m

)
. Recall from Corollary 4.22 that

H∗,∗
(
k(wn)∧m

) ∼= (AC//E(Pn)
)⊗m

,

with H0,0
(
k(wn)∧m

) ∼= Z/2⊗m ∼= Z/2. Since Pn ∈ AC is primitive, it acts as zero on 1⊗· · ·⊗1.
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This shows that there is no possible differential on E0,0,0
1 and thus

[k(wn)∧m, k(wn)] ∼= E0,0,0
1 = H0,0

(
k(wn)∧m

) ∼= Z/2⊗m ∼= Z/2.

Let’s call a representative for the non-trivial class by µ : k(wn)∧m GGA k(wn). Unwinding

this chain of isomorphisms shows that µ start as the fundamental class 1⊗m = µ0 : k(wn)∧m GGA

H and can be uniquely lifted along the Postnikov tower as shown in the diagram

k(wn)

...

k(wn)〈2〉 Σ3r−(2,0)H

k(wn)〈1〉 Σ2r−(1,0)H

k(wn)∧m k(wn)〈0〉 ΣrH.

p1

p0

k2

k1

k0µ0 = 1

µ1

µ2

µ

This shows that µ sends the fundamental class 1 to the fundamental class 1⊗m in cohomology

since the vertical composite is non-trivial and thus 1 in cohomology. �

Proposition 4.25. The map k(wn)∧k(wn)
µ

GGA k(wn) is homotopy unital, associative and

commutative.

Proof. Since π0,0(k(wn)) ∼= F2 from Remark 4.23, the non-zero element

S0,0
i

GGA k(wn)

will be the unit of the ring structure on k(wn). The multiplication µ is homotopy left unital

if and only if the composite

S0,0 ∧ k(wn)
i∧id

GGGA k(wn) ∧ k(wn)
µ

GGA k(wn)
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is homotopy equivalent to the identity map on k(wn). By Corollary 4.22 the group of

homotopy classes of self-maps of degree (0, 0) on k(wn) is Z/2, so it suffices to show that

the above composite is not nullhomotopic. We can do so by embedding it in the following

commutative diagram

S0,0 ∧ k(wn) k(wn) ∧ k(wn) k(wn)

S0,0 ∧ S0,0 H ∧H H,

i ∧ id µ

id∧i 1 ∧ 1 1

i ∧ i µ

where both squares are seen to commute by Lemma 4.24 since the map 1 represents 1 in

the cohomology of k(wn). The top horizontal composite cannot be nullhomotopic since the

bottom horizontal composite is the unit of H and thus not nullhomotopic. This shows that

µ is left unital, and by a similar argument that µ is also right unital.

Recall from Corollary 4.22 that µ lives in the group [k(wn) ∧ k(wn), k(wn)] ∼= Z/2 · {µ}.

Precomposing with the factor swap map χ : k(wn)∧k(wn) GGA k(wn)∧k(wn) is an involution

on this group, which forces µ ◦ χ ∼= µ, i.e., showing that µ is homotopy commutative.

For associativity, we need to compare the two maps µ◦(µ∧ id) and µ◦(id∧µ) in the group

of homotopy classes of maps [k(wn) ∧ k(wn) ∧ k(wn), k(wn)]. Since µ is unital, precomposing

both maps with the units

S0,0 ∧ S0,0 ∧ S0,0
i∧i∧i

GGGGA k(wn) ∧ k(wn) ∧ k(wn)

gives the non-zero map S0,0
i

GGA k(wn). This means that both maps µ◦(µ∧id) and µ◦(id∧µ)

are not nullhomotopic, and since [k(wn) ∧ k(wn) ∧ k(wn), k(wn)] ∼= Z/2 by Corollary 4.22,

they are homotopic. �

Theorem 4.26. For any n, the motivic spectrum k(wn) ∈ CτCell admits an essentially

unique E∞ ring structure and satisfies

• H∗,∗(k(wn)) ∼= AC//E(Pn) as an AC-module,

• π∗,∗(k(wn)) ∼= F2[wn] as a ring.
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Proof. We start by rigidifying the homotopy ring structure on k(wn) to an E∞ ring structure

by using Robinson’s obstruction theory. This obstruction theory has been adapted to the

motivic setting in [14, Corollary 3.2]. More precisely, the multiplication µ extends to an E∞

ring structure if the groups [
k(wn)∧m,Σ3−m′,0k(wn)

]
are all zero for m′ ≥ 4 and 2 ≤ m ≤ m′. For a fixed m′ ≥ 4, observe that these groups are

in negative Chow degree for any m, and thus vanish by Lemma 4.24. This shows that the

multiplication map µ can be extended to an E∞ ring structure on k(wn). Furthermore, [14,

Corollary 3.2] shows that this E∞ ring structure is unique if

[
k(wn)∧m,Σ2−m′,0k(wn)

]

are all zero for m′ ≥ 4 and 2 ≤ m ≤ m′. Another application of Lemma 4.24 shows these

are zero and thus that k(wn) admits a unique E∞ ring structure.

Its cohomology has been computed in Proposition 4.21. For its homotopy, we already

know from remark 4.23 that π∗,∗(k(wn)) is given by a copy of F2 in every degree of the form

m · (r− (1, 0)) where m ≥ 0 and r− (1, 0) is the bidegree of the class wn. To show that the

ring structure is polynomial, one can for example consider the Cτ -linear H-based motivic

Adams spectral sequence

E2 = ExtAC

(
H∗,∗(k(wn)),F2

)
=⇒ π∗,∗(k(wn))

which is now multiplicative since k(wn) is a motivic ring spectrum. Since H∗,∗(k(wn)) ∼=

AC//E(Pn) we can apply the usual change of rings to the E2-page

E2
∼= ExtE(Pn)(F2,F2) ∼= F2[wn].

The spectral sequence collapses now at E2 with no possible hidden extensions. �
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Another relation between the homotopy element wn and the cohomology operation Pn is

given in the following proposition.

Proposition 4.27. For any n, there is a cofiber sequence

Σr−(1,0)k(wn)
wn

GGA k(wn)
1

GGA H
βn

GGA Σrk(wn),

where the boundary map βn is such that the composite

H
βn

GGA Σrk(wn)
1

GGA ΣrH

gives the cohomology operation Pn ∈ AC.

Proof. Consider the cofiber sequence

Σr−(1,0)k(wn)
wn

GGA k(wn) GGA C GGA Σrk(wn),

where we denote by C the cofiber of multiplication by wn. Comparing it with the cofiber

sequence coming from the beginning of the tower of k(wn) gives a diagram

Σr−(1,0)k(wn) k(wn) C Σrk(wn)

Σr−(1,0)H k(wn)〈1〉 k(wn)〈0〉 = H ΣrH,

wn q

1 Pn

1

where k(wn) GGA k(wn)〈1〉 is the natural map and 1 denotes the fundamental class. The

composite 1 ◦wn lives in the Chow degree −1 part of the cohomology of k(wn), which is zero

by Proposition 4.21. This implies that there exists a filler ψ

Σr−(1,0)k(wn) k(wn) C Σrk(wn) Σ1,0k(wn)

Σr−(1,0)H k(wn)〈1〉 k(wn)〈0〉 = H ΣrH Σ1,0k(wn)〈1〉

wn q wn

1 Pn

1 ∃ψ ∃! φ
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which itself implies that there is another filler φ making all squares commute. By the

long exact sequence in cohomology, it is easy to see that
[
C,H

] ∼= Z/2. Observe that ψ

is non-zero since k(wn) GGA k(wn)〈0〉 is non-zero, which implies that ψ is unique up to

homotopy and induces an isomorphism on homotopy groups. It follows that its cofiber is

contractible and thus that it is an equivalence. Observe that φ is unique up to homotopy

since
[
Σ1,0k(wn),ΣrH

]
= 0 by Proposition 4.21. Since

[
Σ1,0k(wn),ΣrH

] ∼= Z/2 and Pn 6= 0,

then φ is also non-zero, forcing it to be the fundamental class φ = 1. This gives the desired

cofiber sequence

Σr−(1,0)k(wn)
wn

GGA k(wn)
1

GGA H
βn

GGA Σrk(wn),

where we denote the composite q ◦ψ−1 by βn. The composite H
βn

GGA Σrk(wn)
1

GGA ΣrH is

the cohomology operation Pn by the above comparison of cofiber sequences. �

Corollary 4.28. For any n, there is a motivic E∞ graded field K(wn) with

π∗,∗(K(wn)) ∼= F2[w±1
n ].

Proof. As a module, define K(wn) as the homotopy colimit

K(wn) := hocolim
(
k(wn)

wn
GGA Σ−|wn|k(wn)

wn
GGA · · ·

)
.

By compactness of Ss,w, its homotopy groups are given by

π∗,∗(K(wn)) ∼= π∗,∗(k(wn))[w−1
n ] ∼= F2[w±1

n ].

It remains to show that this localization can be performed in motivic E∞ rings. For this,

one can apply the methods of [19]. We will now give a minimal argument to explain how

this applies to the motivic setting, and refer to [19, Section 3.1] for more details. Recall that

the motivic E∞ operad that we consider is the simplicial operad where EΣn is a constant

motivic space. In particular, this space admits a cellular filtration where the layers are
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spheres S∗,0 in weight zero. There is thus a spectral sequence computing the homotopy

groups of (EΣn)+ ∧Σn Z, which has as input the homotopy groups of various suspensions

Σ∗,0Z. One can now apply [19] since the acyclics form a localizing subcategory that is closed

under suspensions of the form Σ∗,0. �

4.3 The Motivic Spectrum wBP

In this section we will construct E∞ ring spectra wBP and wBP 〈n〉 with homotopy

groups given by

π∗,∗(wBP ) ∼= F2[w0, w1, . . .] and π∗,∗(wBP 〈n〉) ∼= F2[w0, w1, . . . , wn].

These spectra will be constructed for the property that

H∗,∗(wBP ) ∼= AC//E(P1, P2, . . .) and H∗,∗(wBP 〈n〉) ∼= AC//E(P1, . . . , Pn)

with the natural AC-module structure. As we did in Section 4.1.3 for k(wn), in Section 4.3.1

we derive some formulas in the Steenrod algebra AC and its dual A
∨

C. In Section 4.3.2 we

proceed to construct wBP , by using a version of Toda’s Realization Theorem [57, Lemma

3.1]. We finally endow it with an E∞ ring structure in Section 4.3.3.

4.3.1 More formulas in the H-Steenrod algebra

Recall from Proposition 4.2 that the Cτ -linear dual H-Steenrod algebra, i.e., the Hopf

algebra of Cτ -linear co-operations on H is given by

π∗,∗(H ∧Cτ H) = A
∨

C
∼= F2[ξ1, ξ2, . . .]⊗ E(τ0, τ1, . . .).

In this section we will need to work in Milnor’s basis, whose notation we recall.

Notation 4.29 (Milnor’s basis and the PR notation). Given a sequence R = (r1, r2, . . .) of

non-negative integers with only finitely many non-zero entries, denote by PR ∈ AC the dual
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element to ξr11 ξ
r2
2 · · · . The length of a sequence R is the non-negative number

l(R) = r1 + r2 + · · · .

Denote by ∆j the sequence of length 1 containing a 1 in position j, and thus we recover

P∆j = Pj. Given two sequences R and R′, denote by

PR−R′ =


dual to ξ

r1−r′1
1 ξ

r2−r′2
2 · · · if rj ≥ r′j for all j

0 if not.

A sequence R is called even if every ri is even. Given a sequence R, denote by P 2R the dual

to ξ2r1
1 ξ2r2

2 · · · , and thus P 2∆j is dual to ξ2
j .

Recall the ungraded injective map of Hopf algebras Acl ↪GGA AC from equation (4.1). By

using the same PR notation in the classical setting (and so in Acl we have Pj = Qj−1), this

map sends PR to PR and Pj = Qj−1 to Pj. Moreover, the classical formula c(Qj) = Qj ∈ Acl

implies that motivically c(Pj) = Pj ∈ AC.

We will construct wBP by assembling k(w0)’s, and since its cohomology is given by

H∗,∗(k(w0)) ∼= AC//E(P1), we need to derive some formulas in the Hopf algebra quotient

AC//E(P1).

Lemma 4.30. In AC//E(P1), the following relations hold

(1) Pj+1 = P1 · c(P 2∆j), for any j ≥ 2.

(2) P1 · c(P 2R) =
∑
j≥1

c(P 2R−2∆j) · P1 · c(P 2∆j), for any sequence R.

Proof. In [10, Section 2], it is shown that the following formula

P 2RQ0 +Q0P
2R =

∑
j≥1

QjP
2R−2∆j ∈ Acl

holds in the classical Steenrod algebra for any sequence R. We warn the reader that there

is a switch in notation between this formula and [10, Formula 2.5], as Brown and Peterson
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adopt a different notation in the case p = 2, where they let PR be the dual of ξ2r1
1 ξ2r2

2 · · · .

Through the map Acl ↪GGA AC, this relation gives the motivic formula

P1P
2R + P 2RP1 =

∑
j≥1

Pj+1P
2R−2∆j . (4.10)

When R = ∆j, this formula becomes

P1P
2∆j + P 2∆jP1 = Pj+1. (4.11)

Applying the anti-morphism c(−) and considering it in the quotient AC//E(P1) = AC⊗E(P1)

F2 gives the desired first formula Pj+1 = P1c(P
2∆j). By plugging equation (4.11) in (4.10)

we get

P1P
2R + P 2RP1 =

∑
j≥1

P1P
2∆jP 2R−2∆j + P 2∆jP1P

2R−2∆j .

Applying the anti-morphism c(−) and considering it in the quotient AC//E(P1) = AC⊗E(P1)

F2 gives the desired second formula

P1 · c(P 2R) =
∑
j≥1

c(P 2R−2∆j) · P1 · c(P 2∆j).

�

Remark 4.31. The formulas of Lemma 4.30 live in the quotient AC//E(P1) ∼= AC⊗E(P1)F2,

where the action of P1 on the right is reduced to zero. The first formula (4.11) is symmetric,

and the conjugation morphism c(−) is unnecessary for this formula alone. However, the

point of applying the conjugation c(−) is because the element Pj+1 is multiplied on the left in

equation (4.10). Without applying the anit-morphism c(−) there would be no simplification

after plugging-in (4.10) in (4.11) and the formulas would not be as nice. In fact, as we will

see in Proposition 4.32, topologically realizing the differential of the chain complex (4.16)

would not be possible without applying c(−).
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4.3.2 The construction of wBP

We will construct wBP via a certain tower, in the category of Cτ -modules. Recall that

we are trying to construct a motivic ring spectrum wBP whose homotopy groups are given

by the polynomial ring

π∗,∗(wBP ) ∼= F2[w0, w1, . . .],

where wn is an element detected by the cohomology operation Pn. Unlike the previous

section, the Postnikov tower approach is not tractable for wBP as it is hard to isolate the

monomials wn0
0 wn1

1 · · · of a given bidegree, and thus hard to describe the layers.

Observe however that as in the case of k(wn), it suffices to construct a motivic spectrum

with cohomology given by the Hopf algebra quotient AC//E(P1, P2, . . .). In fact, by a change

of rings theorem and a careful analysis of degrees, the Cτ -linear H-based Adams spectral se-

quence computing the homotopy of such a motivic spectrum collapses at E2
∼= F2[w0, w1, . . .].

We will construct such a motivic spectrum by following an idea of Toda from [57, Lemma

3.1], where Toda constructs classical spectra with given cohomology by attaching copies of

HF2 together. We also need to adapt and incorporate a trick which was used in [10] to

construct the classical Brown-Peterson spectrum BP . This trick is to construct wBP by

attaching together wedges of k(w0)’s, instead of wedges of H’s. This has the effect of reducing

the number of wedge summands in the layers, and also of reducing the complexity of some

computations, since these are included in the construction of k(w0) that was already done

in Theorem 4.26.

More precisely, we will construct an inverse tower of motivic spectra, whose associated

graded will be a topological realization of a resolution of AC//E(P1, P2, . . .). The following

proposition is the first step in doing so, by constructing this associated graded, i.e., the layers

of the desired tower.

Proposition 4.32. There exists a complex of motivic spectra kV0

δ0
GGA kV1

δ1
GGA · · · , where

(1) the composite of two consecutive maps is nullhomotopic,
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(2) each Xi is a locally finite wedge9 of suspensions of k(w0),

(3) the H-cohomology of this cochain complex is an AC//E(P1)-free resolution of AC//E(P1, P2, . . .).

Proof. For every j ≥ 2, consider the periodic bigraded E(Pj)-free resolution of Z/2 given by

0 GDGG Z/2 GDGG E(Pj)
Pj

GDGG Σ|Pj |E(Pj)
Pj

GDGG Σ2|Pj |E(Pj) GDGG · · · . (4.12)

For simplicity, we will denote the exterior subalgebra generated by P2, P3, . . . by

E := E(P1, P2, . . .)//E(P1) ∼= E(P2, P3, . . .).

By tensoring together these resolutions10 for every j ≥ 2, we get a bigraded E-free resolution

0 GDGG Z/2 GDGG E ⊗ V0

d0

GDGG E ⊗ V1

d1

GDGG E ⊗ V2 GDGG · · · , (4.13)

for some bigraded F2-vector space Vi. A preferred F2-basis of Vi is given by the set of

sequences

{eR | R = (r2, r3, . . .) satisfies l(R) = r2 + r3 + · · · = i} (4.14)

of length i. It follows that the bigrading on Vi is given by

|eR| =
∑
j≥2

rj · |Pj| =
∑
j≥2

rj · |ξj| =
∑
j≥2

rj · (2j+1 − 2, 2j − 1). (4.15)

In the notation E ⊗ Vi, the E-linear differential is given on this basis by

di(1⊗ eR) =
∑
j≥2

Pj ⊗ (eR−∆j
).

We can now tensor up the resolution of equation (4.13) via AC//E(P1)⊗E − to obtain the

9i.e., a possibly infinite wedge
∐
α∈A ΣrαXα with a finite number of wedge summands Xα’s in any given

(bi)-degree r.
10where the term Z/2 is not part of the resolution and E(Pj) is in homological degree 0.
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algebraic AC//E(P1)-free resolution

0 GDGG AC//E(P1, P2, . . .) GDGG AC//E(P1)⊗ V0

d0

GDGG AC//E(P1)⊗ V1

d1

GDGG · · · (4.16)

of AC//E(P1, P2, . . .). The goal is to now realize this resolution topologically. Since the

Vi are finite dimensional and the terms in (4.16) are free AC//E(P1)-modules, they are

realized by locally finite wedges of suspensions of k(w0) indexed over the same basis. For

simplicity, denote by kVi the bigraded wedge of suspensions of k(w0) indexed by the chosen

basis of Vi given by equation (4.14), which thus has the prescribed cohomology H∗,∗(kVi) ∼=

AC//E(P1)⊗Vi. Similarly, denote by HVi the bigraded wedge of suspensions of H indexed by

the same basis of Vi. To realize the differentials, observe that by Lemma 4.30, the differential

di in (4.16) can be simplified to the formula

di(1⊗ eR) =
∑
j≥2

Pj ⊗ (eR−∆j
) = P1 ·

∑
j≥2

c(P 2∆j−1)⊗ (eR−∆j
). (4.17)

The differential di can thus be realized by the composite

δi : kVi
1

GGA HVi

∐
c(P 2∆j )

GGGGGGGGA Σ−(2,1)HVi+1

β0

GGA kVi+1,

where β0 is the Bockstein from Proposition 4.27. The middle map is a locally finite matrix

with entries in AC, where for a given sequence R of length i, it is assembled from the maps

c(P 2∆j) : H{eR} GGA H{eR+∆j
} ↪GGA HVi+1.

The composite δi realizes the differential di since for a given sequence R of length i + 1 we

have
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kVi HVi Σ−(2,1)HVi+1 kVi+1

H{eR},

1
∐
c(P 2∆j) β0

1
P1

which recovers exactly formula (4.17) since 1 ◦ β0 = P1 by Proposition 4.27. We have thus

defined a sequence of motivic spectra

kV0

δ0
GGA kV1

δ1
GGA kV2

δ2
GGA · · · ,

in which each term is a locally finite wedge of suspensions of k(w0)’s, and which produces

an AC//E(P1)-free resolution of AC//E(P1, P2, . . .) after applying H-cohomology.

It remains to show that the composites δi+1 ◦ δi are nullhomotopic. This is accomplished

by the following commutative diagram

kVi HVi Σ−(2,1)HVi+1 kVi+1 HVi+1 HVi+2 kVi+2,
1

∐
c(P 2∆j) β0 1

∐
c(P 2∆j) β0

δi δi+1

P1

P1 ◦
∐
c(P 2R) ◦ 1

where the wedges
∐
c(P 2R) are taken over sequences R of length 2, and the composite

kVi GGA HVi+2 is identified from a sum over all such R’s of the equation

P1c(P
2R) =

∑
j≥1

c(P 2R−2∆j)P1c(P
2∆j) ∈ AC//E(P1)
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from lemma 4.30. The total composite

β0 ◦ P1 ◦
∐

c(P 2R) ◦ 1 = 0

is zero since β0 ◦P1 = β0 ◦ 1 ◦β0, and β0 ◦ 1 = 0 since they are consecutive maps in the cofiber

sequence of Proposition 4.27. �

The next step is to construct an inverse tower of motivic spectra, whose layers and

induced d1-differential are exactly the cochain complex of motivic spectra

kV0

δ0
GGA kV1

δ1
GGA kV2

δ2
GGA · · ·

from Proposition 4.32. The idea is that once we construct this tower, we can compute

the cohomology of its inverse limit by the spectral sequence emerging from applying the

cohomological functor H∗,∗(−). We will define wBP to be the inverse limit of this tower.

The E1-page of the associated spectral sequence is the cohomology of the layers, i.e., the

cohomology of the above cochain complex. We just showed in Proposition 4.32 that this

cohomology forms a resolution ofAC//E(P1, P2, . . .), and thus the spectral sequence collapses

at E2 = E∞ with output AC//E(P1, P2, . . .).

Construction 4.33 (Construction of wBP via Toda’s realization method). Recall that the

goal is now to construct a tower of motivic spectra

X−1 = ∗ GDGG X0 GDGG X1 GDGG · · · ,

with layers and induced d1-differential given by the cochain complex

kV0

δ0
GGA kV1

δ1
GGA kV2

δ2
GGA · · · .

The beginning of the tower is given by
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kV0

X−1 = ∗ X0 = kV0

Σ1,0kV0 kV1,

k−1

p−1

i−1 = idδ0

∃? k0

where the suspension by Σ1,0 of the first layer is a small adjustment to get the correct output.

Evidently, since i−1 = id, there is a unique filler k0 up to homotopy. We can thus set k0 = δ0,

denote its fiber by X1, and ask if the following filler k1 exists in the diagram

kV0 Σ−1,0kV1

X−1 = ∗ X0 = kV0 X1

Σ1,0kV0 kV1 Σ−1,0kV2.

k−1 k0 = δ0

p−1 p0

i−1 = id i0δ0 δ1

∃? k1

By taking the fiber of i0, this problem becomes an extension problem in the cofiber sequence

Σ−1,0X0 Σ−1,0kV1 X1 X0

Σ−1,0kV2,

k0 = δ0 i0 p0

δ1
∃? k1

where a filler k1 exists since the composite δ1δ0 is nullhomotopic by Propositon 4.32. The

choices of such extensions are parametrized by the quotient

[X0,Σ
−1,0kV2]

/
δ0-divisible elements.
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Recall that both X0 = kV0 and kV2 are locally finite wedges of suspension of k(w0)’s, and

we can read from equation (4.15) that the bidegrees of all suspensions are in Chow degree

0. The set of homotopy classes of maps [X0,Σ
−1,0kV2] is thus built out of self-maps of k(w0)

in Chow degree −1. This is zero by Lemma 4.24, and thus there exists a unique filler k1.

Getting this far was the base case for the inductive process. Suppose now that the tower

Σ−(n−1),0kVn−1 Σ−n,0kVn

· · · Xn−2 Xn−1 Xn

Σ−(n−2),0kVn−1 Σ−(n−1),0kVn Σ−n,0kVn+1,

kn−2 kn−1

pn−2 pn−1

in−2 in−1δn−1 δn

∃? kn

has been constructed for some n ≥ 2. As above, we can desuspend one step, and rewrite

this extension problem as

Σ−1,0Xn−1 Σ−n,0kVn Xn Xn−1

Σ−n,0kVn+1.

kn−1 in−1 pn−1

δn
∃? kn

We will now show that δnkn−1 = 0 and thus that a filler kn exists, and that [Xn−1,Σ
−n,0kVn+1] =

0 and thus that such a filler is unique.

Let’s first deal with the uniqueness part, as the statement we show will come up in

the existence part as well. A slightly more general result is true, namely that the k(w0)-

cohomology of any Xm vanishes in Chow degrees strictly smaller than −m. This is easy to

show by an induction on m (for all m less than n, so that Xm is already constructed), and is

completely analogous to Lemma 4.18. The base case is X0 = kV0, whose k(w0)-cohomology

vanishes in negative Chow degrees by Lemma 4.24. The induction is done by inspecting the



109

long exact sequence in cohomology of the cofiber sequence Σ−m,0kVm GGA Xm GGA Xm−1.

We refer to Lemma 4.18 for more details. We can now use this statement to show that

[Xn−1,Σ
−n,0kVn+1] = 0. In fact, this set of maps is made out of the part in Chow degree −n

of the k(w0)-cohomology of Xn−1, which vanishes since −n < −(n− 1).

For the existence part, consider the Σ−1,0-desuspension of the cofiber sequence

Σ−(n−1),0kVn−1

in−2

GGA Xn−1

pn−2

GGA Xn−2.

By applying the cohomological functor [−,Σ−n,0kVn+1], we get a long exact sequence

· · · GDGG

[
Σ−n,0kVn−1,Σ

−n,0kVn+1

] i∗n−2

GDGG

[
Σ−1,0Xn−1,Σ

−n,0kVn+1

] p∗n−2

GDGG

[
Σ−1,0Xn−2,Σ

−n,0kVn+1

]
GDGG · · · ,

which contains the composite δnkn−1 in its middle term. The right term
[
Xn−2,Σ

−(n−1),0kVn+1

]
vanishes since it is concentrated in the Chow degree −(n− 1) part of the k(w0)-cohomology

of Xn−2. This simplifies the long exact sequence to

[
Σ−n,0kVn−1,Σ

−n,0kVn+1

] i∗n−2

GDGG

[
Σ−1,0Xn−1,Σ

−n,0kVn+1

]
GDGG 0.

The image of δnkn−1 under the precomposition map i∗n−2 is

i∗n−2(δnkn−1) = δnkn−1in−2 = δnδn−1,

which is zero by Proposition 4.32. Since i∗n−2 is injective, it follows that δnkn−1 = 0 and thus

that kn exists. �

Definition 4.34. Define a motivic spectrum wBP ∈ CτCell as the inverse limit of the tower

wBP := holim
(
∗ = X−1 GDGG X0 GDGG X1 GDGG · · ·

)
(4.18)

from Construction 4.33.
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It remains to show that this spectrum has the correct cohomology. The situation is very

similar to the case of k(wn) in Section 4.2.

Proposition 4.35. The cohomology of wBP is given as an AC-module by the Hopf algebra

quotient

H∗,∗ (wBP ) ∼= AC//E(P1, P2, . . .).

Proof. This is analogous to Proposition 4.21, which we refer to for more details. Applying the

contravariant functor H∗,∗ to the tower defining wBP gives a spectral sequence computing

the algebraic colimit colimH∗,∗(Xi). The E1-page is given by the cohomology of the layers

kVi, which form a resolution of AC//E(P1, P2, . . .) by Proposition 4.32. The E2-page is

thus given by AC//E(P1, P2, . . .) concentrated in homological degree s = 0, and the spectral

sequence collapses with no possible hidden extensions. Observe that the layers Σ−(i−1),0kVi

are more and more connected. In fact, the element of lowest bidegree corresponds to the

sequence R = (r2 = i, 0, 0, . . .), and so Σ−(i−1),0kVi has no cohomology in degrees lower than

(5i+ 1, 3i). By using this bound, the exact same proof as in Proposition 4.21 shows that

H∗,∗(wBP )
∼=

GDGG colimH∗,∗(Xi) ∼= AC//E(P1, P2, . . .).

�

Corollary 4.36. For any m ≥ 1 we have an isomorphism of AC-modules

H∗,∗
(
wBP∧m

) ∼= (AC//E(P1, P2, . . .)
)⊗m

,

where the right hand side has the iterated diagonal AC-module structure. In particular, for

any m the cohomology H∗,∗
(
wBP∧m

)
is concentrated in positive Chow degrees.

Proof. This proof is similar to the proof of Corollary 4.22. �
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4.3.3 The E∞ ring structure on wBP , and wBP 〈n〉

Having constructed a motivic spectrum wBP ∈ CτCell with correct cohomology, we will

now follow the same methodology as we did for k(wn) in Section 4.2.2. We first construct

a ring map µ : wBP∧2
GGA wBP by understanding some parts of various groups of ho-

motopy classes of maps [wBP∧m, wBP ]∗,∗. We then show that µ turns wBP into a unital,

associative and commutative monoid in the homotopy category. Finally, the vanishing of

[wBP∧m, wBP ]∗,∗ in some particular degrees feeds Robinson’s obstruction theory [51] which

rigidifies µ to an E∞ ring structure on wBP . The Cτ -linear H-based motivic Adams spec-

tral sequence is now multiplicative and collapses at E2, showing that wBP has polynomial

homotopy in the periodicity elements w0, w1, . . ..

Most of these steps are very similar to the case of k(wn). We will only sketch the argu-

ments in these cases and refer to the appropriate proof in Section 4.2 for more details. Since

wBP is built out of a tower whose layers are wedges of suspensions of k(w0)’s, there is a spec-

tral sequence computing [wBP∧m, wBP ]∗,∗ whose layers are made out of [wBP∧m, k(w0)]∗,∗.

We first say something about these layers.

Lemma 4.37. For any m ≥ 1 we have

[
wBP∧m,Σt,wk(wn)

] ∼=

F2 if (t, w) = (0, 0)

0 if (t, w) is in negative Chow degree, i.e., t− 2w < 0.

Proof. The exact same proof as in Lemma 4.24 applies by changing k(w0) to wBP , since the

cohomology of the smash powers wBP∧m is also concentrated in non-negative Chow degrees,

with a copy of Z/2 in degree (0, 0). �

Lemma 4.38. For any m ≥ 1 we have

[
wBP∧m,Σt,wwBP

] ∼=

F2 if (t, w) = (0, 0)

0 if (t, w) is in negative Chow degree, i.e., t− 2w < 0.
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Moreover, the non-trivial map wBP∧m GGA wBP sends 1 to 1⊗m in cohomology.

Proof. As in Lemma 4.24 and Lemma 4.37, this is another Atiyah-Hirzebruch spectral se-

quence, by applying the functor [wBP∧m,−] to the inverse limit tower defining wBP . With

the indexing

Es,t,w
1 =

[
wBP∧m,Σt,wΣ−s,0kVs

] ∼= [wBP∧m,Σt−s,wkVs
]
,

this is a first quadrant spectral sequence in the (s, t) plane which converges to

Es,t,w
∞
∼=
[
wBP∧m,Σt,wwBP

]
.

Recall that each kVs is a locally finite wedge of suspensions of k(w0), where the suspensions

are in Chow degree 0. By Lemma 4.37, the k(w0)-cohomology of wBP is concentrated in

non-negative Chow degree, with only a Z/2 in degree (0, 0). The proof of Lemma 4.24 applies

by changing H to k(w0), and k(w0) to wBP . �

In the case m = 2, call a representative of the non-trivial class of maps by µ : wBP ∧

wBP GGA wBP . We are now ready to show that this map can be extended to an E∞ ring

structure on wBP .

Theorem 4.39. The motivic spectrum wBP ∈ CτCell admits an essentially unique E∞

ring structure and satisfies

• H∗,∗(wBP ) ∼= AC//E(P1, P2, . . .) as an AC-module,

• π∗,∗(wBP ) ∼= F2[w0, w1, . . .] as a ring.

Proof. First use the proof of Proposition 4.25 by changing k(w0) to wBP to show that µ

turns wBP into a unital, associative and commutative monoid in the homotopy category.

Similarly, by using the vanishing results of Lemma 4.38, the proof of Theorem 4.26 shows

that µ can be uniquely extended to an E∞ ring structure. Finally, the Cτ -linear H-based

motivic Adams spectral sequence

E2 = ExtAC

(
H∗,∗(wBP ),F2

)
=⇒ π∗,∗(wBP )
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is multiplicative since wBP is a ring spectrum. Since H∗,∗(wBP ) ∼= AC//E(P1, P2, . . .) we

can apply the usual change of rings to the E2-page

E2
∼= ExtE(P1,P2,...)(F2,F2) ∼= F2[w0, w1, . . .].

The spectral sequence collapses now at E2 with no possible hidden extensions. �

Corollary 4.40. For any n ≥ 0 there exists a motivic spectrum wBP 〈n〉 ∈ CτCell, which

admits an essentially unique E∞ ring structure and satisfies

• H∗,∗(wBP 〈n〉) ∼= AC//E(P1, P2, . . . , Pn+1) as an AC-module,

• π∗,∗(wBP 〈n〉) ∼= F2[w0, w1, . . . , wn] as a ring.

Proof. The whole proof is very similar to the case of wBP , so we will only indicate what

needs to be changed. Tensoring together for 2 ≤ j ≤ n+ 1 the resolutions of equation (4.12)

gives a resolution

0 GDGG Z/2 GDGG E ⊗ V0

d0

GDGG E ⊗ V1

d1

GDGG E ⊗ V2 GDGG · · · ,

where E = E(P2, P3, . . . , Pn+1) and where Vi is a finite dimensional bigraded F2-vector space

with basis given by the set of sequences

{R = (r2, r3, . . . , rn+1) | l(R) = r2 + r3 + · · ·+ rn+1 = i}.

Tensoring up to AC//E(P1)⊗E − gives the AC//E(P1)-free resolution

0 GDGG AC//E(P2, P3, . . . , Pn+1) GDGG AC//E(P1)⊗V0

d0

GDGG AC//E(P1)⊗V1

d1

GDGG GDGG · · · .

The differential is still given by

di(1⊗R) =
∑
j≥2

Pj ⊗ (R−∆j) = P1 ·
∑
j≥2

c(P 2∆j−1)⊗ (R−∆j),
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since the formula we use still lives in the quotient AC//E(P1). From here on, the rest of the

proof is a copy of the proof for wBP , with the advantage that the terms kVi are now finite

wedges of suspensions of copies of k(w0)’s. �

Remark 4.41. One can also construct the underlying spectrum of wBP 〈n〉 by taking the

quotient

wBP
/
wn+1, wn+2, . . . .

The fact that these quotients are E∞ rings requires some extra work from this point of view

though.
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CHAPTER 5 AN ALGEBRAIC MODEL FOR Cτ-MODULES

DISCLAIMER: We warn the reader that this chapter is currently wrong, and MGL

should be replaced by BPGL. The original version of this work was done with BPGL,

because this is how the traditional Adams-Novikov spectral sequence is considered. The

idea to switch to MGL was to bypass the issue that BP is potentially not E∞. However,

some lemmas true for BPGL are here wrong for MGL. This is however not crucial, and in

the end the main result is true as stated (because MGL and BPGL should have equivalent

categories of modules, as their associated stack of cooperations have the same cohomology).

In this chapter, we will show that some category CτCellcomp of cellular Cτ -modules is

equivalent the derived bounded category of its heart

Db(MU∗M̂UComod)
∼=

GGGA CτCellcomp,

where M̂U denotes the 2-completion of the complex cobordism spectrum MU . We will in

fact show that

Db(MGL∗,∗MGLComodev)
∼=

GGGA CτCellcomp,

where MGL is a version of the motivic spectrum of algebraic cobordism. This result is

hinted by the isomorphism

π∗,∗(Cτ) ∼= ExtMGL∗,∗MGL(MGL∗,∗,MGL∗,∗)

that is easily deduced from Proposition 3.1, which shows that the motivic 2-cell complex

Cτ is of algebraic nature. In the joint paper [17], we show an important application of this

result, by identifying two spectral sequences: the motivic Adams spectral sequence for Cτ ,

and the algebraic Novikov-spectral sequence for ExtBP∗BP . Another application would be

that the previous Chapter 4 could be entirely rewritten in algebraic language, via the bridge

of equation (5). Finally, work in progress of Barthel-Drew-Krause about further motivic
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periodicity is also relying on the equivalence of equation (5). We believe that the main

theorem of this chapter (corresponding to equation (5)) has many more future applications.

We refer to the Introduction for more application of this equivalence of categories. The

contents of this chapter will appear in joint work in preparation with Zhouli Xu and Guozhen

Wang in [17]. This chapter represents the part of the collaboration that was contributed by

the author of this thesis.

Organization

Here is the organization of this chapter.

Section 5.1. In this section we show a general result about t-structure on stable ∞-

categories in two different versions, one using injective objects, and one using projective

objects. Each version will be used exactly once in the remaining of the chapter, and provides

a strategy for proving the main Theorem.

Section 5.2. This section contains an easier version of our main Theorem, where we replace

Cτ -modules with MGL-modules. The main result of this section is interesting on its own,

but also necessary for proving our main Theorem.

Section 5.3. This section contains the main Theorem, i.e., the equivalence of categories

of equation (5). Along the way, we set-up a very general motivic Adams-Novikov spectral

sequence, which takes most of the section. The strategy of the proof of our main Theorem

mimics the proof of the main Theorem of Section 5.2, even though it uses results from there.

5.1 A Theorem on t-structures

In this section, we state a result about t-structures that will be used twice in this chapter,

once stated in its projective version in Proposition 5.1 and once it is injective version in

Proposition 5.2. Both versions follow rather directly from [32, Proposition 1.3.3.7], which

itself is inspired from a triangulated version in [5]. Before stating the Theorem, we will very

briefly recall some terminology and results about t-structures, and refer to [32, Chapter 1]

for more details.
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Let C be a stable ∞-category. Denote by hC its homotopy category, and by [−,−] the

group of homotopy classes of maps in C, i.e., the group of maps in hC. Recall that a t-

structure on C is the data of two full subcategories C≥0, C≤0 ⊂ C which are closed under

isomorphisms, and which satisfy the following three axioms

(1) for X ∈ C≥0 and Y ∈ Σ−1C≤0, we have [X, Y ] = 0,

(2) there is an inclusion ΣC≥0 ⊆ C≥0,

(3) for any X ∈ C, there exists a fiber sequence

X>0 GGA X GGA X≤0,

with X≤0 ∈ C≤0 and X>0 ∈ ΣC≥0.

Denote by C≥n and C≤n the categories ΣnC≥0 and ΣnC≤0 respectively. For every n ∈ Z, these

subcategories sit in adjunctions

C≥n GGA⊥
GDGG

τ≥n

C and C
τ≤n
GGA⊥
GDGG

C≤n,

where τ≥n and τ≤n are called the nth-truncation functors.

Denote the subcategories of left-bounded and right-bounded objects in C by

C+ := hocolim
(
C≤0 ↪GGA C≤1 ↪GGA . . .

)
and C− := hocolim

(
C≥0 ↪GGA C≥−1 ↪GGA . . .

)
,

and let Cb := C+ ∩ C− be the subcategory of bounded objects. We say that the t-structure is

left-bounded, right-bounded, or bounded, if the inclusion of C+, C− or Cb respectively, in C, is

an equivalence.

At the other extreme, define the left and right completions of the t-structure by

Ĉl := holim
(
· · ·

τ≤1

GGA C≤1

τ≤0

GGA C≤0

)
and Ĉr := holim

(
· · ·

τ≥−1

GGA C≥−1

τ≥0

GGA C≥0

)
.



118

We say that the t-structure is left-complete if the functor C GGA Ĉl is an equivalence, and

right-complete if C GGA Ĉr is an equivalence. The left and right completions are again stable

∞-categories and inherit a t-structure from C.

Finally, denote the intersection by C♥ = C≥0 ∩ C≤0 the heart of the t-structure, whose

homotopy category hC♥ is always an abelian category. The goal of this section is to determine

under what hypotheses we can reconstruct the whole category C from its heart.

Let’s thus start with an abelian category A with enough projective objects. There is

an associated right-bounded derived category D−(A) with objects classes of chain complexes

M∗ of projective objects in A such that Mn ' 0 for n small enough11. This is a stable

∞-category that admits a natural t-structure defined by

• D−(A)≥0 is the full∞-subcategory spanned by those complexes {Mn}n∈Z with vanishing

homology in negative degrees n < 0,

• D−(A)≤0 is the full∞-subcategory spanned by those complexes {Mn}n∈Z with vanishing

homology in positive degrees n > 0.

Moreover, this t-structure is left-complete and right-bounded.

Given a stable∞-category C with t-structure, one can ask what are necessary conditions

for C to be equivalent to some versions of the derived category of its heart hC♥. The derived

category is universal in the sense that there will always be a functor from it to C. Moreover,

the following result states that under mild conditions on the t-structure on C, this functor

is fullyfaithful with explicit image. The following proposition stated in its projective version

will be used below in Section 5.2.

Proposition 5.1. Let C be a stable ∞-category with a t-structure. Suppose that

(1) the abelian category hC♥ has enough projectives,

(2) for any objects X, Y ∈ hC♥ with X projective we have [X,ΣiY ] = 0 for all i > 0.

11The condition that A has enough projectives is necessary in order to define the derived category.
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Then there exists an essentially unique t-exact functor F making the diagram

C♥ Ĉl

D−(hC♥),

∃! F

commute. Moreover, its essential image is (Ĉl)−. If in addition the t-structure on C is

right-bounded, then F induces a t-exact equivalence of ∞-categories

F : Db(hC♥)
∼=

GGGA Cb.

Proof. The existence, essential uniqueness, and essential image of F are provided by [32,

Proposition 1.3.3.7] applied to the left-completion Ĉl. This gives a t-exact equivalence

F : D−(hC♥)
∼=

GGGA

(
Ĉl
)−

.

By taking left-bounded objects on both sides one obtains another equivalence

F : Db(hC♥)
∼=

GGGA

((
Ĉl
)−)+

.

The result follows by the zig-zag of equivalences

((
Ĉl
)−)+ ∼=

GGA

(
Ĉl
)+ ∼=

GDGG C+
∼=

GGA Cb,

where the first equivalence is true since the t-structure is right-bounded, the second equiv-

alence is from [32, Remark 1.2.1.18] and the last one again uses that the t-structure is

right-bounded. �

In Section 5.3, we will be dealing with comodule categories. These categories tend to
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not always have enough projective objectives, but rather enough injectives [47, Appendix

1]. We thus need a version of this result when the heart of the t-structure only has enough

injectives.

Let thus A be an abelian category with enough injective objects. In this case, there is a

left-bounded derived category D+(A) with objects classes of chain complexes M∗ of injective

objects in A such that Mn ' 0 for n large enough. This is again a stable ∞-category that

admits a natural t-structure defined by

• D+(A)≥0 is the full∞-subcategory spanned by those complexes {Mn}n∈Z with vanishing

homology in negative degrees n < 0,

• D+(A)≤0 is the full∞-subcategory spanned by those complexes {Mn}n∈Z with vanishing

homology in positive degrees n > 0.

Dual to the case of D−, this t-structure is now right-complete and left-bounded. Moreover,

one has a t-exact equivalence

D+(A)op ∼= D−(Aop) (5.1)

of ∞-categories, induced by the identity functor. We can now state the main result in its

injective version, that will be used below in Section 5.3.

Proposition 5.2. Let C be a stable ∞-category with a t-structure. Suppose that

(1) the abelian category hC♥ has enough injectives,

(2) for any objects X, Y ∈ hC♥ with Y injecitive we have [X,ΣiY ] = 0 for all i > 0,

(3) the t-structure is left-bounded.

Then there exists an essentially unique t-exact functor that induces a t-exact equivalence

Db(hC♥)
∼=

GGGA Cb

of ∞-categories.

Proof. By applying Proposition 5.1 with the opposite t-structure on Cop, we get a t-exact
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equivalence

F : Db
(
h(Cop)♥

) ∼=
GGGA (Cop)b .

Since the identity functor induces the equivalence h(Cop)♥ ∼=
(
hC♥

)op
as abelian categories,

it follows from equation (5.1) that the identity functor induces t-exact equivalences

Db
(
h(Cop)♥

) ∼= Db
((
hC♥

)op) ∼= Db
(
hC♥

)op
.

The identity functor induces another t-exact equivalence (Cop)b ∼=
(
Cb
)op

, and thus F induces

the t-exact equivalence

Db
(
hC♥

)op ∼=
GGGA

(
Cb
)op

.

The required equivalence follows by applying (−)op. �

5.2 Warm-up : An Algebraic Model for MGL-Modules

As its name indicates, this section is a warm-up for the equivalence of categories to be

proved in Section 5.3. As explained in more details underneath, in this section we will

provide an algebraic model for MGL-modules, which will be used in order to prove the main

result in Section 5.3.

5.2.1 The categories MGLCell and MGL∗,∗
Mod

Since Cτ is a cell complex, the usual adjunction from the ring map S0,0
GGA Cτ between

the categories of modules restricts to an adjunction

CellC
Cτ∧−
GGGA⊥
DGGGGG

U
CτCell, (5.2)

between cellular motivic spectra and cellular (left) Cτ -modules. The analogue of the alge-

braic cobordism spectrum in Cτ -modules is the tensored up spectrum MGL := Cτ ∧MGL.

This is a cellular E∞ Cτ -algebra since MGL is E∞ [45], and tensoring up with an E∞ ring

spectrum (here with Cτ) is symmetric monoidal [32, Remark 4.5.3.2], and thus preserves

E∞-algebras. We will sometimes see it as a right Cτ -module, by again using the fact that
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Cτ is commutative. Denote by MGLCell the category of cellular left MGL-modules, which

sits in the adjunction 12

CellC
−∧Cτ
GGGA⊥
DGGGGG

U
CτCell

−∧CτMGL
GGGA⊥
DGGGGG

U
MGLCell. (5.3)

Although the end goal of Chapter 5 is to study the category of CτCell by using the MGL-

based Adams-Novikov spectral sequence, we will now focus on the category MGLCell of

cellular MGL-modules. In fact, given a Cτ -module, the terms in its MGL-based Adams

resolution will be some injective MGL-modules with certain good properties. Similarly to

the situation in homological algebra, to construct such a resolution we need enough of those

injective objects. We will show the existence of those objects by better understanding the

category of MGL-modules, and in fact showing that it is equivalent to an algebraic category,

in which we know how to find injective objects.

Denote by [−,−]MGL the abelian group of homotopy classes of MGL-linear maps, and

by − ∧MGL − the relative smash product. We will compare the topological category of

MGL-modules with an algebraic category via the functor of homotopy groups

MGLCell
π∗,∗

GGGGA MGL∗,∗
Mod.

Before computing the homotopy groups of MGL, recall from Definition 4.4 that given a

bigraded abelian group M∗,∗, the Chow degree of an element x ∈Ms,w is the integer s− 2w.

Lemma 5.3. The homotopy groups of MGL are given as a ring by

MGL∗,∗ ∼= Ẑ2[x1, x2, . . .] ∼= π∗,∗(M̂GL2) /τ ,

where |xi| = (2i, i) are in Chow degree 0.

Proof. This follows immediately from Lemma 3.31. �
12the usual adjunction on modules restricts to one on cellular modules since MGL is a cellular Cτ -module.
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We now give the central definition that will lead to the t-structure on the topological

category MGLCellb.

Definition 5.4 (Chow degree in MGLCell). We say that an object X ∈ MGLCell is con-

centrated in Chow degrees [a, b] if its homotopy groups π∗,∗(X) are concentrated in Chow

degrees [a, b], i.e., if they satisfy

π2∗+k,∗(X) = 0 for any k /∈ [a, b].

We say that X has bounded Chow degree if it is concentrated in Chow degrees [a, b] for some

finite a, b 6= ±∞.

Notation 5.5. Denote by MGLCellb the full∞-subcategory spanned by objects with bounded

Chow degree. Denote by MGLCell≥0, MGLCell≤0 and MGLCell♥, the full ∞-subcategory of

MGLCellb spanned by objects concentrated in respectively non-negative, non-positive and

zero Chow degrees. Similarly, there are obvious generalizations to MGLCell≥n, MGLCell>n,

MGLCell≤n, MGLCell<n. We emphasize that all objects in these subcategories have in par-

ticular bounded Chow degree.

Remark 5.6. Even if we use the notation MGLCell♥ and call it the heart of the category

MGLCellb, we do not claim yet that the Chow degree on MGLCellb defines a t-structure.

In fact, showing that this forms a t-structure is the hardest part of the argument, as the

main result in this section, Theorem 5.13, will then follow by a straightforward application

of Proposition 5.2.

Observe that by definition of the Chow degree, the homotopy groups of objects in the

heart MGLCell♥ land in a smaller category than MGL∗,∗
Mod. This target category will be

important, so let’s give it a name.

Definition 5.7. Denote by MGL∗,∗
Modev the full subcategory of MGL∗,∗

Mod spanned by all

modules M concentrated in Chow degree 0, i.e., satisfying Ms,w = 0 whenever s 6= 2w.
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We thus have a commutative diagram

MGLCell MGL∗,∗
Mod

MGLCell♥ MGL∗,∗
Modev,

π∗,∗

π∗,∗

inc. inc.

and we will show that the restriction of π∗,∗ to the heart MGLCell♥ induces an equivalence

π∗,∗ : h
(
MGLCell♥

) ∼=
GGGA MGL∗,∗

Modev.

It is easy to see that

MGL∗,∗
Modev ∼= M̂U∗

Modev ∼= M̂U∗
Mod,

where M̂U∗ ∼= Ẑ2[x1, x2, . . .] for |xi| = 2i, are the homotopy groups of the 2-completed

spectrum MU , and where M̂U∗
Modev is the subcategory of M̂U∗

Mod spanned by modules

concentrated in even degrees.

Our main tool to compute homotopy classes of maps in the ∞-category MGLCellb will

be the Universal Coefficient spectral sequence constructed in [12].

Theorem 5.8 (Universal Coefficient spectral sequence). For any X, Y ∈ MGLCell, there is

a conditionally convergent spectral sequence

Exts,t,w
MGL∗,∗

(π∗,∗(X), π∗,∗(Y )) =⇒
[
Σ−t−s,−wX, Y

]
MGL

.

If X, Y have bounded Chow degree, then the spectral sequence is strongly convergent and

collapses at a finite page.

Proof. We refer to [12, Proposition 7.7] for the precise construction of the spectral sequence

and the statement about conditional convergence. However, to study the convergence in the

case where X and Y have bounded Chow degree, we need to briefly recall the construction
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and pay careful attention to degrees. Recall that this spectral sequence arises from an

MGL∗,∗-free resolution

0 GDGG π∗,∗(X) GDDGG π∗,∗(F0) GDGG π∗,∗(F1) GDGG · · · .

Since MGL∗,∗ is concentrated in Chow degree 0, if π∗,∗(X) is concentrated in Chow degrees

[a, b], then so is every π∗,∗(Fs), independently of the homological degree s. The E1-page is

given by

Es,t,w
1 := HomMGL∗,∗

(π∗,∗(Σ
−t,−wFs), π∗,∗(Y )),

and the E2-page is the cohomology of this chain complex, giving the claimed Ext groups.

Suppose that π∗,∗(Y ) is concentrated in Chow degrees [c, d]. Since π∗,∗(Σ
−t,−wFs) is concen-

trated in Chow degrees [a− (t− 2w), b− (t− 2w)], it follows that for a fixed weight w, the

group E1 is possibly non-zero only for

t ∈ [a− d+ 2w, b− c+ 2w].

Since Es,t,w
r is an iterated subquotient of Es,t,w

1 , it is also possibly non-zero only when t ∈

[a− d+ 2w, b− c+ 2w]. Recall that the dr-differential has the form

Es,t,w
r

dr
GGA Es+r,t−r+1,w

r .

In particular, if r− 1 > (b− c)− (a− d), the dr = 0 for degree reasons, that is, the spectral

sequence collapses at the Eb−a+d−c+2-page. �

5.2.2 Proof of the t-structure, the heart and the equivalence

As mentioned before, the main tool for computing homotopy classes of maps in the

category MGLCell will be the Universal Coefficient spectral sequence of Theorem 5.8. An

immediate Corollary of its proof is the following result.
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Corollary 5.9. The functor

π∗,∗ : h
(
MGLCell♥

)
GGGA MGL∗,∗

Modev

is fully faithful.

Proof. Pick two objects X, Y ∈ MGLCell♥. Since they are both concentrated in Chow degree

0, the end of the proof of Theorem 5.8 shows that the spectral sequence

Exts,t,w
MGL∗,∗

(π∗,∗(X), π∗,∗(Y )) =⇒
[
Σ−t−s,−wX, Y

]
MGL

is concentrated in t = 2w and collapses at the E2-page. Since there are also no possible

hidden extensions for degree reasons, it thus take the form of isomorphisms

Exts,2w,w
MGL∗,∗

(π∗,∗(X), π∗,∗(Y )) ∼=
[
Σ−2w−s,−wX, Y

]
MGL

.

In particular, in the case 2w + s = w = 0, we get s = 0 and the edge homomorphism

[X, Y ]MGL

π∗,∗
GGGA HomMGL∗,∗

(π∗,∗(X), π∗,∗(Y ))

is an isomorphism, showing the faithfullness of π∗,∗. �

We will now prove the essential surjectivity of π∗,∗ on MGLCell♥, identifying the heart of

the category MGLCellb.

Proposition 5.10. The functor

π∗,∗ : h
(
MGLCell♥

) ∼=
GGGA MGL∗,∗

Modev

is an equivalence of categories.

Proof. Pick a module M ∈ MGL∗,∗
Modev and let’s realize it topologically in MGLCell♥. If

M is a free MGL∗,∗-module, say M ∼= ⊕MGL∗,∗, then M is the homotopy groups of the
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wedge ∨MGL indexed by the same set in Chow degree zero.

For an arbitrary M , pick a free resolution

0 GDGG M GDGG F0

f1

GDGG F1

f2

GDGG F2 GDGG · · · (5.4)

in MGL∗,∗
Modev. By the above step, each Fi can be realized topologically by an MGL-

module Zi ∈ MGLCell♥, and by the previous Corollary 5.9, one can also realize the maps fi

by a tower

Z0 GDGG Z1 GDGG Z2 GDGG · · · .

We will now construct a tower

X1 GGA X2 GGA · · · ,

with the property that the homotopy groups of Xi are given by

π2∗+k,∗(Xi) =


M = coker f1 if k = 0

ker fi if k = i

0 if k 6= 0, i.

Let X1 = cof(Z1 GGA Z0), and it is easy to verify that it satisfies the required properties

from the long exact sequence in homotopy groups. Suppose now that the tower has been

constructed until Xi−1. Since MGL∗,∗ is concentrated in Chow degree 0, there is a splitting

π∗,∗(Xi−1) ∼= M ⊕ ker fi−1

as MGL∗,∗-modules. The homomorphism

π∗,∗(Zi) ∼= Fi GGAA im(fi+1) ∼= ker(fi−1) ↪GGA π∗,∗(Σ
1−i,0Xi−1)
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of MGL∗,∗-modules corresponds to a unique homotopy class of maps Zi GGA Σ1−i,0Xi−1 by

Corollary 5.9. Define Xi to be the cofiber of its Σi−1,0 suspension, as

Σi−1,0Zi GGA Xi−1 GGA Xi.

By the associated long exact sequence in homotopy groups, it is easy to show that Xi satisfies

the required properties. The homotopy colimit

X := hocolim (X1 GGA X2 GGA · · · )

realizes M since its homotopy groups are given by the colimit

π∗,∗(X) ∼= colim (π∗,∗(X1) GGA π∗,∗(X2) GGA · · · ) =

 M if k = 0

0 if k 6= 0.

�

We can now start showing the required axioms for the t-structure. We will use the

following Lemma several times in what follows.

Lemma 5.11. Given X ∈ MGLCell≥0 and Y ∈ MGLCell≤0, the group of homotopy classes

of maps of degree (0, 0) can be computed algebraically by

HomMGL∗,∗
(π∗,∗(X), π∗,∗(Y )) ∼= [X, Y ]MGL .

Proof. It is clear from the proof of Theorem 5.8 that the E2-page of the Universal Coefficient

spectral sequence

Es,t,w
2 = Exts,t,w

MGL∗,∗
(π∗,∗(X), π∗,∗(Y ))

is concentrated in s ≥ 0 and t − 2w ≥ 0. We are interested in understanding [X, Y ]MGL,

which is assembled from Es,t,w
∞ with s + t = 0 and w = 0. These conditions imply that
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s = t = w = 0, and thus that [X, Y ]MGL is a (possibly iterated) subquotient of

E0,0,0
2
∼= HomMGL∗,∗

(π∗,∗(X), π∗,∗(Y )).

Recall that the dr-differential has the form Es,t,w
r

dr
GGA Es+r,t−r+1,w

r . There are thus no

possible differentials entering E0,0,0
r since the homological degree has to be non-negative, and

the only possible differential exiting E0,0,0
r is a d1 since t−2w ≥ 0 implies that we must have

−r+1 ≥ 0. However, we already are at the E2-page and thus E0,0,0
2 survives to the E∞-page

giving the isomorphism

HomMGL∗,∗
(π∗,∗(X), π∗,∗(Y )) ∼= [X, Y ]MGL.

�

Proposition 5.12. The pair of subcategories (MGLCell≥0,MGLCell≤0) defines a t-structure

on MGLCellb, whose heart is given by the equivalence

π∗,∗ : h
(
MGLCell♥

) ∼=
GGGA MGL∗,∗

Modev.

Proof. The heart has been identified in Proposition 5.10. There are now three axioms to

show for the t-structure.

Given objects X ∈ MGLCell≥0 and Y ∈ MGLCell<0, the first axioms requires that

[X, Y ]MGL = 0. In particular observe that Y ∈ MGLCell≤0 and thus we have

[X, Y ]MGL
∼= HomMGL∗,∗

(π∗,∗(X), π∗,∗(Y ))

by Lemma 5.11. The right hand side is zero because this is a graded Hom-set, and π∗,∗(X) is

concentrated in non-negative Chow degrees while π∗,∗(Y ) is concentrated in negative Chow

degrees.
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The second axiom requires that if X ∈ MGLCell≥0, then Σ1,0X ∈ MGLCell≥1. This is

clear from the definition of these subcategories.

Finally, for any spectrum X ∈ MGLCellb, the last axiom asks for a fiber sequence

X≥0 GGA X GGA X<0

with X≥0 ∈ MGLCell≥0 and X<0 ∈ MGLCell<0. Since X, or more precisely π∗,∗(X) has

bounded Chow degree, denote by n the largest integer that bounds it below. If n is non-

negative then

X GGA X GGA ∗

is the desired fiber sequence since X ∈ MGLCell≥n ⊂ MGLCell≥0. If not, consider the

MGL∗,∗-module π2∗,∗(Σ
−n,0X) that is concentrated in Chow degree 0. By Proposition 5.10

there is a spectrum Xn ∈ MGLCell♥ with

π2∗,∗(Xn) ∼= π2∗,∗(Σ
−n,0X).

Moreover Σ−n,0X ∈ MGLCell≥0 since n is maximal, and so the algebraic map

π∗,∗(Σ
−n,0X) GGAA π2∗,∗(Σ

−n,0X) ∼= π2∗,∗(Xn)
∼=

↪GGA π∗,∗(Xn)

can be topologically realized by a map Σ−n,0X GGA Xn by Lemma 5.11. Denote by

X[n+1,m+1] the fiber of its Σn,0-suspension as in

X[n+1,m+1] GGA X GGA Σn,0Xn.

It is easy to see by the long exact sequence in homotopy groups thatX[n+1,m+1] is concentrated

in Chow degrees [n + 1,m + 1] as its name suggests, and that the map X[n+1,m+1] GGA X

induces an isomorphism in Chow degrees [n+1,m]. By re-iterating this process we construct
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a finite sequence of spectra

X[0,m−n] GGA X[−1,m−n−1] GGA · · · GGA X[n+1,m+1] GGA X,

where X[0,m−n] ∈ MGLCell≥0. By letting X≥0 := X[0,m−n], the cofiber of this composite gives

the desired cofiber sequence

X≥0 GGA X GGA X<0,

where X<0 ∈ MGLCell<0 since X≥0 GGA X induces an isomorphism in Chow degrees [0,m].

�

Having this t-structure on MGLCellb, the main result of this section follows from an easy

application of Proposition 5.1.

Theorem 5.13. There is a t-exact equivalence of ∞-categories

Db(MGL∗,∗
Mod)

∼=
GGGA MGLCellb.

Proof. We need to check the conditions of Proposition 5.1 for the t-structure on MGLCellb.

The t-structure is clearly right-bounded (it is even bounded), and its heart has enough pro-

jectives by Proposition 5.10 since module categories have enough projectives. It remains to

show that for any two motivic spectra X, Y ∈ MGLCell♥ with π∗,∗(X) a projective MGL∗,∗-

module, there are no non-trivial maps in [X,Σi,0Y ]MGL for any i > 0. We apply the Universal

Coefficient spectral sequence

Exts,t,w
MGL∗,∗

(π∗,∗(X), π∗,∗(Y )) =⇒ [Σ−s−t,−wX, Y ]MGL

of Theorem 5.8, and we are interested in the case −s− t = −i and w = 0. Since π∗,∗(X) is

a projective MGL∗,∗-module, the spectral sequence is concentrated on the line s = 0, and

thus t = i, and collapses at E2. Moreover, since both X and Y are concentrated in Chow

degree 0, it is clear from the proof of Theorem 5.8 that the E2-page is concentrated in degrees
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t − 2w = 0, and thus t = 0. It follows that in weight 0, there are only maps of bidegree

(0, 0), and thus [X,Σi,0Y ]MGL = 0 for i > 0. �

5.3 Main Result: An Algebraic Model for Cτ-Modules

In this section we will prove the main theorem of the chapter, by constructing an algebraic

model for the category of cellular Cτ -modules. The strategy is very similar to what we did

in Section 5.2. In Definition 5.14, we first define the main functor of interest from the

topological category CτCell to an algebraic category. The goal will then to put a t-structure

on CτCell (or rather CτCellcomp), whose heart will be isomorphic to that algebraic category.

As in Section 5.2, we will then need a tool which plays well with the t-structure to compute

homotopy classes of maps in CτCell. Unfortunately, as we explain more at the beginning of

Section 5.3.2, the Universal Coefficient spectral sequence in CτCell does not play well with

the notion of Chow degree in that category. We will thus have to construct a generalized

motivic Adams-Novikov spectral sequence in Section 5.3.2. This is the most difficult part of

the section, and the main difference with Section 5.2. However, the proof of the main result

in Section 5.3.3 is very similar to that of Section 5.2, by replacing the Universal Coefficient

spectral sequence with the motivic Adams-Novikov spectral sequence.

5.3.1 The categories CτCell and MGL∗,∗MGLComod

Recall the E∞ Cτ -algebra MGL = Cτ ∧MGL, with homotopy groups MGL∗,∗ ∼= Ẑ2[xi].

In this section we will use MGL-homology to study the category of Cτ -modules. As done

in Chapter 4, it is more efficient to consider the Cτ -linear MGL-homology for Cτ -modules,

which is isomorphic but admits more structure that the MGL-homology of the underlying

spectrum. We refer to section 4.1.2 for more details.

Definition 5.14 (Cτ -linear MGL-homology). Given a Cτ -module X, define its Cτ -linear

MGL-homology to be

MGL∗,∗(X) := π∗,∗(MGL ∧Cτ X).

As it was the case for its homotopy groups, the Cτ -linear cooperations of MGL are easy
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to deduce from the cooperations of MGL.

Lemma 5.15. The Cτ -linear cooperations of MGL are given as a Hopf algebroid by

MGL∗,∗(MGL) ∼= MGL∗,∗[t1, t2, . . .] ∼= MGL∗,∗M̂GL2 /τ

where |ti| = (2i, i) are in Chow degree 0.

Proof. The proof is similar to the proof of Proposition 3.33 and Remark 3.35, by replacing

H with MGL. �

Remark 5.16. Given a Cτ -module X, its Cτ -linear MGL-homology is isomorphic as an

abelian group to the MGL-homology of the underlying spectrum of X since

U(MGL ∧Cτ X) 'MGL ∧ Cτ ∧Cτ X 'MGL ∧X,

where U denotes the underlying spectrum from the adjunction (5.2). Moreover, the action

of MGL∗,∗ factors trough the action of MGL∗,∗, and the coaction of the Hopf algebroid of

cooperations of MGL factors trough the coaction of Cτ -linear cooperations of MGL. The

only difference is the simple fact that τ acts and coacts as zero on MGL∗,∗(X). This has

important consequences, for example since MGL∗,∗MGL is concentrated in Chow degree 0,

coacting by an element in MGL∗,∗MGL preserves the Chow degree, which is not true for

every element in MGL∗,∗MGL.

Definition 5.17. Denote by MGL∗,∗MGLComod the category of comodules over the Hopf al-

gebroidMGL∗,∗MGL. Denote by MGL∗,∗MGLComodev the full subcategory of MGL∗,∗MGLComod

spanned by all comodules M whose underlying MGL-module is in MGL∗,∗
Modev, i.e., is con-

centrated in Chow degree 0.

Recall that the adjunction between modules and comodules

U : MGL∗,∗MGLComod GGGA⊥
DGGGGG MGL∗,∗

Mod : −⊗MGL∗,∗
MGL∗,∗MGL, (5.5)
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is reverse from the usual situation for just module categories. In particular, the forgetful

functor is only a left adjoint, while the tensor-up functor itself admits another right adjoint.

We refer to [21, Section 1.1] for more details.

By using the ring map Cτ GGA MGL, we can form the commutative diagram

MGLCell MGL∗,∗
Modev

CτCell MGL∗,∗MGLComodev.

MGL ∧Cτ − forget

π∗,∗

MGL∗,∗

Recall that the algebraic identification of MGLCellb of Theorem 5.13 relies on a t-structure

on MGLCellb, such that the restriction of π∗,∗ on the heart is an equivalence. The proof of

the main Theorem 5.37 follows the exact same strategy, where the goal is to endow CτCellb

with a t-structure whose heart is isomorphic to the category MGL∗,∗MGLComodev. Proving

the axioms for this t-structure is significantly harder, and will actually use Theorem 5.13.

We can now make the fundamental definition that will lead to the t-structure, which is very

similar to that of Definition 5.4.

Definition 5.18 (Chow degree in CτCell). We say that an object X ∈ CτCell is concen-

trated in Chow degrees [a, b] if its MGL-homology MGL∗,∗(X) is concentrated in Chow

degrees [a, b], i.e., if it satisfies

MGL2∗+k,∗(X) = 0 for any k /∈ [a, b].

We say that X has bounded Chow degree if it is concentrated in Chow degrees [a, b] for some

finite numbers a, b 6= ±∞.

Notation 5.19. Denote by CτCellb the full subcategory of CτCell spanned by objects of

bounded Chow degree. We define CτCell♥, CτCell≥n, CτCell>n, CτCell≤n and CτCell<n as

the obvious subcategories of CτCellb, exactly as in Notation 5.5.
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The plan is now to show that this defines a t-structure on CτCellb, and that the bottom

horizontal arrow in the commutative diagram

CτCell MGL∗,∗MGLComod

CτCell♥ MGL∗,∗MGLComodev,

MGL∗,∗

MGL∗,∗

inc. inc.

induces the equivalence

π∗,∗ : h
(
CτCell♥

) ∼=
GGGA MGL∗,∗MGLComodev

of abelian categories. The main theorem will then follow from an obvious application of

Proposition 5.2.

5.3.2 The Cτ-linear Adams-Novikov spectral sequence

In the previous Section 5.2, the tool that we used to compute maps [X, Y ]MGL was the

Universal Coefficient spectral sequence of Theorem 5.8. This was a very convenient tool to use

since both the E2-page ExtMGL(π∗,∗(X), π∗,∗(Y )) and the t-structure were defined in terms

of homotopy groups. More precisely, bounds in the t-structure transferred to vanishing areas

in the spectral sequence, allowing us to prove what we need. In the category of Cτ -modules,

the t-structure is now defined in terms of MGL-homology, and so the Universal Coefficient

spectral sequence will not be of any use since being bounded for this t-structure does not

imply bounds in homotopy groups. We thus need a spectral sequence with MGL-homology

as input and Cτ -linear maps as output.

Recall the usual MGL-based Adams-Novikov spectral sequence

ExtMGL∗,∗MGL(MGL∗,∗(S
0,0),MGL∗,∗(Y )) =⇒ π∗,∗ ((Y )∧MGL)
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constructed in [13, Section 8] or [23]. We need a spectral sequence of the form

ExtMGL∗,∗MGL(MGL∗,∗(X),MGL∗,∗(Y )) =⇒
[
X, (Y )∧

MGL

]
Cτ
,

which is more general in two aspects. First, we do not want to compute maps of motivic

spectra, but Cτ -linear maps. This is easy to fix by working internally in the category of

Cτ -modules by using the relative smash product, Cτ -linear mapping spaces, etc. Second,

we need to allow more general spectra than the sphere (or Cτ in the Cτ -linear setting) for

the first variable X, as we do not only compute homotopy groups, but general maps. This

means that we cannot use a standard Adams-Novikov resolution for the second variable Y

as is done traditionally [47, Chapter 2] (or [13, Section 8], [23] in the motivic setting) to set

up this spectral sequence. In fact, such a resolution induces a resolution of MGL∗,∗(Y ) by

relative injective comodules, which allows to compute the E2 term as Ext-groups only when

the first variable MGL∗,∗(X) is projective as a module [47, Corollary A1.2.12]. Since our

first variable X is arbitrary, this will generally not be the case and we have no (useful) ways

of computing the E2-term.

The solution that we choose is to construct another Adams tower that produces a res-

olution of MGL∗,∗(Y ) by absolute injectives, rather than merely relative injectives. Since

absolute injective resolutions are not very popular13, we need some preparation before con-

structing the tower. The first step in Lemma 5.21 is to even produce enough Cτ -modules

whose MGL∗,∗-homology will be an injective comodule of a special form. This is done below

by using Theorem 5.8. The second step in Lemma 5.22 is to show that algebraically one

can resolve comodules in MGL∗,∗MGLComodev by the injective comodules arising from topol-

ogy. Before we show these two Lemmas, let’s point out a technical detail about injectives in

MGL∗,∗MGLComod.

Remark 5.20 (Monomorphisms in comodule categories). Since injective objects are defined

13in the case of Adams spectral sequences, it is more common to use either projective, or relative injective
resolutions.
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via (extensions along) monomorphisms, let’s briefly recall what those are in comodule cate-

gories. More generally, given such a category with a forget functor F to Set, injective maps

are monomorphisms if and only if F is fully faithfull, and monomorphisms are injective if

and only if F preserves pullbacks. In this case, the forget functor is faithfull and exact (but

does not preserve infinite products), and thus monomorphisms and injective maps agree. We

will thus use those two notions interchangeably.

Lemma 5.21. For any injective module I ∈ MGL∗,∗
Modev concentrated in Chow degree 0,

there is a Cτ -module Y ∈ CτCell♥ satisfying

(1) π∗,∗(Y ) ∼= I is an injective MGL∗,∗-module,

(2) MGL∗,∗(Y ) ∼= MGL∗,∗MGL⊗MGL∗,∗
I is an injective MGL∗,∗MGL-comodule,

(3) for any X ∈ CτCellb and any bidegree (t, w), we have isomorphisms

[X,Σt,wY ]Cτ ∼= HomMGL∗,∗
(MGL∗,∗(X), π∗,∗(Σ

t,wY )) ∼= HomMGL∗,∗MGL(MGL∗,∗(X),MGL∗,∗(Σ
t,wY )).

Proof. From the equivalence of Proposition, 5.10 there exists an essentially unique MGL-

module Z with the property that π∗,∗(Z) ∼= I as an MGL∗,∗-module. By using the free-forget

adjunction of equation (5.3), the underlying Cτ -module UZ will be the spectrum Y that we

look for. We now verify the conditions that UZ has to satisfy. First of all, its homotopy

groups are given by

π∗,∗(UZ) ∼= [Σ∗,∗Cτ, UZ]Cτ ∼= [Σ∗,∗MGL,Z]MGL
∼= π∗,∗(Z) ∼= I.

By using the equivalence UZ 'MGL∧MGLZ as (left) Cτ -modules, we have the equivalence

MGL ∧Cτ UZ 'MGL ∧Cτ
(
MGL ∧MGL Z

)
'
(
MGL ∧Cτ MGL

)
∧MGL Z.

The homotopy groups of the right term can be computed via the Tor-spectral sequence of
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[12, Proposition 7.7]

Tor
MGL∗,∗
s,t,w

(
MGL∗,∗MGL, π∗,∗(Z)

)
=⇒ πt+s,w

(
MGL ∧Cτ MGL ∧MGL Z

)
.

Since MGL∗,∗MGL is MGL∗,∗-free by Lemma 5.15, the spectral sequence is concentrated

on the line s = 0 and collapses at E2, giving the isomorphism of comodules

MGL∗,∗(UZ) ∼= MGL∗,∗MGL⊗MGL π∗,∗(Z).

It is well known (for example from [47, Lemma A1.2.2]) that comodules induced from injective

modules are injective as comodules, which shows that MGL∗,∗(UZ) is injective.

Finally, let X ∈ CτCellb. We want to understand the set of homotopy classes of maps

[X,Σt,wUZ]Cτ ∼= [MGL ∧Cτ X,Σt,wZ]MGL,

which can be computed by the Universal Coefficient spectral sequence of Theorem 5.8

Exts,t,w
MGL∗,∗

(MGL∗,∗(X), π∗,∗(Z)) =⇒ [Σ−s−t,−wMGL ∧Cτ X,Z]MGL,

since both Z and MGL ∧Cτ X live in MGLCellb. Since π∗,∗(Z) ∼= I is an injective MGL∗,∗-

module, the spectral sequence is concentrated on the line s = 0 and collapses at E2. This

gives the graded isomorphism

HomMGL∗,∗
(MGL∗,∗(X), π∗,∗(Σ

t,wZ)) ∼= [MGL ∧Cτ X,Σt,wZ]MGL
∼= [X,Σt,wUZ]Cτ .

Finally, the last isomorphism

HomMGL∗,∗
(MGL∗,∗(X), π∗,∗(Σ

t,wZ)) ∼= HomMGL∗,∗MGL(MGL∗,∗(X),MGL∗,∗(Σ
t,wZ))
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follows by adjunction since MGL∗,∗(Σ
t,wZ) ∼= MGL∗,∗MGL⊗MGL∗,∗

π∗,∗(Σ
t,wZ). �

This will be our source of motivic Cτ -modules whose MGL-homology is injective as a

comodule. We now show that these suffice to resolve any comodule in Chow degree 0.

Lemma 5.22. For any comodule M ∈ MGL∗,∗MGLComodev concentrated in Chow degree 0,

there exists a monomorphism into a comodule which

(1) is concentrated in Chow degree 0,

(2) is of the form MGL∗,∗MGL⊗MGL∗,∗
I for some injective module I ∈ MGL∗,∗

Modev.

Proof. This proof is the standard way of showing that an abelian category has enough injec-

tives, by inducing them from Z-modules (or Ẑ2 in our case). Start with the monomorphism

M ↪GGA
∏

x∈M\0

Σ|x|Q̂2/Ẑ2 (5.6)

of bigraded Ẑ2-modules, where the target is an injective Ẑ2-module that is concentrated in

Chow degree 0. By adjointing the above map trough the two adjunctions

MGL∗,∗MGLComod
res.

GGGA⊥
DGGGGG

ext.
MGLMod

res.
GGGA⊥
DGGGGG

coext.
Ẑ2

Mod,

we get the monomorphism

M ↪GGA Σ|x|MGL∗,∗MGL⊗MGL∗,∗
HomẐ2

(MGL∗,∗,
∏

x∈M\0

Q̂2/Ẑ2) (5.7)

of comodules. The target is injective since both forget functors (which are the left adjoints)

preserve injective maps, i.e., monomorphisms. To see that the map (5.7) is still injective,

observe that postcomposing it with the two counits recovers the injective map (5.6). �

Remark 5.23. We warn the reader that the underlying MGL∗,∗-module of

Σ|x|MGL∗,∗MGL⊗MGL∗,∗
HomẐ2

(MGL∗,∗,
∏

x∈M\0

Q̂2/Ẑ2)
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is isomorphic to

MGL∗,∗MGL⊗MGL∗,∗

∏
x∈M\0

Σ|x|HomẐ2
(MGL∗,∗, Q̂2/Ẑ2)

but not to ∏
x∈M\0

Σ|x|MGL∗,∗MGL⊗MGL∗,∗
HomẐ2

(MGL∗,∗, Q̂2/Ẑ2),

since the forgetful functor from comodules to modules is not a right adjoint and does not

commute with infinite products.

Having enough Cτ -modules at hand to handcraft injective resolutions in the category of

MGL∗,∗MGL-comodules, we can now construct an MGL-based Adams-Novikov tower.

Proposition 5.24. Any Y ∈ CτCellb admits a tower

Y = Y0 Y1 Y2 · · · ,

I0 I1

in CτCellb that we call an absolute Adams-Novikov tower for Y , where

(1) each map Ys GGA Ys−1 is zero in MGL-homology,

(2) each cofiber Is ∈ CτCell♥ is in the heart and satisfies the conditions of Lemma 5.21.

Moreover, any map f : X GGA Y ∈ CτCellb can be lifted to a map of such towers.

Proof. Since Y ∈ CτCellb, suppose that its homology MGL∗,∗(Y ) is concentrated in Chow

degree [a, b], that is

MGL∗,∗(Y ) ∼=
b⊕

k=a

MGL2∗+k,∗(Y ).

For every k ∈ [a, b], pick a monomorphism

MGL2∗+k,∗(Y ) ∼= MGL2∗,∗(Σ
−k,0Y ) ↪GGA MGL∗,∗MGL⊗MGL∗,∗

N0,k
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by Lemma 5.22, for some injective module N0,k. By Lemma 5.21, one can realize N0,k by

some spectrum I0,k ∈ CτCell♥ satisfying all the properties of Lemma 5.21. In particular, the

algebraic map

MGL2∗,∗(Σ
−k,0Y ) ↪GGA MGL∗,∗MGL⊗MGL∗,∗

N0,k
∼= MGL∗,∗(I0,k)

of comodules can be realized to a Cτ -linear map Σ−k,0Y GGA I0,k. Denote the product

I0 :=
∏

Σk,0I0,k, combine these maps into a unique map Y GGA I0, and denote its fiber by

Y1 as in the diagram

Y Y1.

I0

Since the vertical map is an injection in MGL-homology, the long exact sequence in MGL-

homology shows that Y1 GGA Y induces the zero map. This implies that Y1 is concentrated

in Chow degrees [a− 1, b− 1], so one can just repeat the procedure, producing a tower

Y Y1 Y2 · · ·

I0 I1

satisfying the desired properties.

To show the second claim, pick a map f : X GGA Y ∈ CτCellb. We may assume that

X and Y have MGL-homology bounded above and below by the same bounds. Denote the



142

first step of their tower by

X Y

I0 J0,

f = f0

where I0 and J0 are the products constructed above. Applying MGL-homology produces a

diagram of comodules

MGL∗,∗(X) MGL∗,∗(Y )

MGL∗,∗(I0) MGL∗,∗(J0),

f0

∃ φ0

which admits a filler φ0 by the universal property of injective objects. Since J0 satisfies the

properties of Lemma 5.21, the map φ0 is actually realized by a map g0 : I0 GGA J0, such

that the square

X Y

I0 J0

f = f0

g0

commutes up to homotopy. This induces a filler f1 as in

X X1 X2 · · ·

I0 I1

Y Y1 Y2 · · ·

J0 J1.

f0

g0

∃f1
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Iterating this process produces the desired map of towers. �

Every absolute injective tower gives raise to a Cτ -linear Adams-Novikov spectral se-

quence. In the following theorem, we show in addition that the spectral sequence does not

depend on the resolution, converges strongly, and we identify its E2 term as well as what it

converges to.

Theorem 5.25. For any X, Y ∈ CτCellb there is a strongly convergent MGL-based Adams-

Novikov spectral sequence

Exts,t,w
MGL∗,∗MGL

(
MGL∗,∗(X),MGL∗,∗(Y )

)
=⇒

[
Σt−s,wX, Y ∧

MGL

]
Cτ
,

with differential

dr : Es,t,w
r GGA Es+r,t+(r−1),w

r ,

where Y ∧
MGL

is the MGL-completion of Y . Moreover, this spectral sequence collapses at a

finite page.

Proof. Pick an absolute injective resolution of Y by Proposition 5.24

Y Y1 Y2 Y3 · · ·

I0 I1 I2.

d1

◦
d1

◦
(5.8)

By the construction of the tower, the cochain complex

MGL∗,∗(I0) GGA MGL∗,∗(Σ
1,0I1) GGA · · · (5.9)

is an (absolute) injective resolution of the comodule MGL∗,∗(Y ). Applying the functor

[X,−]Cτ to the tower (5.8) gives an exact couple that gives the desired Adams-Novikov
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spectral sequence. We grade the E1-page as

Es,t,w
1 := [Σt,wX,Σs,0Is],

and the d1 differential in the tower (5.8) gives the cochain complex

[X, I0]Cτ
d1

GGGA [X,Σ1,0I1]Cτ
d1

GGGA [X,Σ2,0I2]Cτ GGGA · · · .

The cohomology of this cochain complex gives the E2-page, which we now identify. Since

Ii satisfy the properties of Lemma 5.21, the terms in this cochain complex can be identified

with the terms in the complex obtained from applying HomMGL∗,∗MGL(MGL∗,∗(X),−) to

the injective resolution of (5.9). The differentials agree as well by standard methods [47,

Chapter 2], so the E2-page is given by

Es,t,w
2
∼= Exts,t,w

MGL∗,∗MGL
(MGL∗,∗(X),MGL∗,∗(Y )).

We will now show that the spectral sequence is strongly convergent under the hypotheses

that X and Y have bounded Chow degree. This is very similar to the argument given in

Theorem 5.8. Suppose that X has Chow degree bounded by [a, b], and Y has Chow degree

bounded by [c, d]. Recall that the E1-page is given by

Es,t,w
1
∼= [Σt,wX,Σs,0Is]Cτ ∼= HomMGL∗,∗MGL(MGL∗,∗(Σ

t,wX),MGL∗,∗(Σ
s,0Is)),

where Σt,wX is concentrated in Chow degree [a+ t− 2w, b+ t− 2w]. From the construction

of the tower (5.8) in Proposition 5.24, it follows that Σs,0Is has Chow degree bounded by

[c, d]. In particular, if Es,t,w
r 6= 0, then we must have

t ∈ [c− b+ 2w, d− a+ 2w].
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By chasing trough the tower, observe that the dr differential has the form

dr : Es,t,w
r GGA Es+r,t+(r−1),w

r .

In particular it increases t by r−1, and thus it is not possible for both Es,t,w
r and E

s+r,t+(r−1),w
r

to be non-zero when r−1 > d−a+2w−(c−b+2w). This implies that the spectral sequence

collapses when r > d− c+ b− a+ 1, i.e., at the Ed−c+b−a+2-page.

We will now show that the spectral sequence does not depend (from E2 onward) on the

absolute injective resolution. Consider two such resolutions {Ys, Is} and {Ỹs, Ĩs} for Y . The

identity map id: Y GGA Y produces by Proposition 5.24 a map of towers, and in particular

compatible maps gs : Is GGA Ĩs. These maps induce a lift of the identity map between the

two injective resolutions as illustrated in the diagram

0 MGL∗,∗(Y ) MGL∗,∗(I0) MGL∗,∗(I1) · · ·

0 MGL∗,∗(Y ) MGL∗,∗(Ĩ0) MGL∗,∗(Ĩ1) · · · .

id MGL∗,∗(g1) MGL∗,∗(g2)

The maps MGL∗,∗(gs) are thus unique up to homotopy by the Fundamental Theorem of

Homological Algebra. It follows that they induce an isomorphism on the E2-page, and thus

an isomorphism of spectral sequences by, for example, [7, Theorem 5.3]. We refer to [47,

Section 2.2] for more details.

It remains to identify what is computed by the E∞-page. By abstract non-sense, the

E∞-page is the associated graded on some filtration on the set of homotopy classes of maps

[X, Ŷ ]Cτ , for some Cτ -module Ŷ . We will show that Ŷ has the same homotopy groups

as the MGL-completion of Y (in the sense of Bousfield’s [9]), and this will be enough to

identify [X, Ŷ ]Cτ ∼= [X, Y ∧
MGL

]Cτ since X is cellular. To show this, set X = Cτ . Since

MGL∗,∗(Cτ) ∼= MGL∗,∗ is free as an MGL∗,∗-module, we can use the canonical cobar
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resolution [47, Definition 2.2.10] for Y in this case. One can apply the same procedure as

we did above to get a map from the canonical cobar resolution to any tower of Y , which

extends the identity map on Y . This gives a homomorphism from the usual (Cτ -linear)

motivic Adams-Novikov spectral sequence for Y to our Adams-Novikov spectral sequence.

Since this map extends the identity map on Y , one can argue as above to show that this map

induces an isomorphism of spectral sequences and thus a weak equivalence Ŷ
'

GGA Y ∧
MGL

.

Since any cellular Cτ -module X can be written in terms of filtered colimits and cofibers of

cells Cτ , there is an isomorphism

[X, Y ∧
MGL

]Cτ
∼=

GGGA [X, Ŷ ]Cτ ,

showing that our Adams-Novikov spectral sequence computes [X, Y ∧
MGL

]Cτ . �

Recall that we needed this motivic Adams-Novikov spectral sequence in order to compute

maps [X, Y ]Cτ and not merely maps [X, Y ∧
MGL

]Cτ into a completion of Y . We thus have to

restrict to those Cτ -modules that are already complete with respect to MGL. In fact, since

X is cellular, it is sufficient to restrict to those Cτ -modules whose completion map induces

an isomorphism on homotopy groups.

Definition 5.26 (π∗,∗-complete). A Cτ -module Y is called π∗,∗-complete (with respect to

MGL) if the natural map Y GGA Y ∧
MGL

is a weak equivalence, i.e., a π∗,∗-isomorphism.

Denote by CτCellcomp the full ∞-subcategory of CτCellb spanned by π∗,∗-complete objects.

Theorem 5.25 immediately implies that the homotopy groups of Y ∈ CτCellcomp can be

computed via the motivic Adams-Novikov spectral sequence. By passing to filtered colimits

in the first variable we get the following Corollary.

Corollary 5.27. For any X, Y ∈ CτCellcomp, there is a strongly convergent motivic Adams-

Novikov spectral sequence

Exts,t,w
MGL∗,∗MGL

(
MGL∗,∗(X),MGL∗,∗(Y )

)
=⇒

[
Σt−s,wX, Y

]
Cτ
.
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Moreover, this spectral sequence collapses at a finite page.

The following Corollary is easily deduced from the proof of Theorem 5.25 and from

Corollary 5.27, and will be of great use in what follows.

Corollary 5.28. If X, Y ∈ CτCell are each concentrated in a single Chow degree, and Y is

π∗,∗-complete, then there is an isomorphism

[Σt,wX, Y ]Cτ ∼= Ext2w−t,t,w
MGL∗,∗MGL

(MGL∗,∗(Σ
t,wX),MGL∗,∗(Y ))

for any bidegree (t, w).

Proof. We will show that the motivic Adams-Novikov spectral sequence collapses, by using

similar methods to those of Corollary 5.9, with minor changes in indexing. Since both X and

Y are concentrated in a single Chow degree, the end of the proof of Theorem 5.25, together

with the fact that Y is π∗,∗-complete shows that the spectral sequence

Exts,t,w
MGL∗,∗MGL

(
MGL∗,∗(X),MGL∗,∗(Y )

)
=⇒

[
Σt−s,wX, Y

]
Cτ

is concentrated in t = 2w and collapses at the E2-page. By re-indexing, and since no hidden

extensions are possible for degree reasons, we get the desired isomorphisms

Ext2w−t,t,w
MGL∗,∗MGL

(MGL∗,∗(X),MGL∗,∗(Y )) ∼=
[
Σt,wX, Y

]
Cτ
.

. �

Before moving on to endow CτCellcomp with its Chow t-structure, we prove a Lemma

about π∗,∗-complete Cτ -modules that we will need for identifying the heart.

Lemma 5.29. Let Yα be a filtered system in CτCell♥ such that each Yα is π∗,∗-complete.

Then hocolimYα is also π∗,∗-complete.
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Proof. Consider the motivic Adams-Novikov of Theorem 5.25

Exts,t,w
MGL∗,∗MGL

(
MGL∗,∗(Cτ),MGL∗,∗(Y )

)
=⇒

[
Σt−s,wCτ, Y ∧

MGL

]
Cτ
∼= πt−s,w(Y ∧

MGL
)

for Y := hocolimYα and X = Cτ . Since both Cτ and Y are in the heart, the spectral

sequence is concentrated in t = 2w and collapses at E2 with no possible hidden extensions

by Corollary 5.28. This gives isomorphisms

Exts,2w,w
MGL∗,∗MGL

(
MGL∗,∗(Cτ),MGL∗,∗(Y )

) ∼= π2w−s,w(Y ∧
MGL

) (5.10)

for any bidegrees. Since MGL∗,∗(Cτ) ∼= MGL∗,∗ is free over MGL∗,∗, one can use the cobar

complex [47, Corollary A1.2.12] (or [13], [23]) to set-up this motivic Adams-Novikov spectral

sequence. Since the cobar complex is functorial, the Fundamental Theorem of Homological

Algebra shows that the isomorphism

colimMGL∗,∗(Yα)
∼=

GGGA MGL∗,∗(Y )

induces an isomorphism

colim ExtMGL∗,∗MGL

(
MGL∗,∗,MGL∗,∗(Yα)

) ∼=
GGA ExtMGL∗,∗MGL

(
MGL∗,∗,MGL∗,∗(Y )

)
.

(5.11)

Since each Yα is concentrated in Chow degree 0 and is π∗,∗-complete, Corollary 5.28 gives

isomorphisms

Exts,2w,w
MGL∗,∗MGL

(
MGL∗,∗(Cτ),MGL∗,∗(Yα)

) ∼= π2w−s,w(Yα) (5.12)

for any bidegree and any α. By combining equations (5.10), (5.11), (5.12) with the fact that
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homotopy groups commute with filtered colimits, we get the desired isomorphism

π2w−s,w(Y )
∼=

GGGA π2w−s,w(Y ∧
MGL

)

for every bidegree. �

Remark 5.30. Lemma 5.29 can be generalized to the case where there is a uniform bound

[a, b] independent of α, such that each Yα is concentrated in Chow degree [a, b]. In this case,

more care has to be taken for ruling out hidden extensions.

5.3.3 Proof of the t-structure, the heart and the equivalence

This section mimics Section 5.2.2. Some proofs however require different techniques,

such as Landweber’s Filtration Theorem [29] [30]. The goal is to endow CτCellcomp with

a t-structure, identify its heart, and conclude by identifying the subcategory of t-bounded

objects with an algebraic category. As in Section 5.2.2, once the t-structure is in place, the

main result follows by a straightforward application of Proposition 5.2.

Definition 5.31 (Chow degree in CτCellcomp). We say that an object X ∈ CτCellcomp

is concentrated in Chow degrees [a, b], if it is so when seen in CτCellb, i.e., if its homol-

ogy MGL∗,∗(X) is concentrated in Chow degrees [a, b]. As in Notation 5.5, consider the

subcategories CτCellcomp,♥, CτCellcomp
≥0 , CτCellcomp

≤0 , etc.

These categories sit in a commutative diagram

CτCellcomp
MGL∗,∗MGLComod

CτCellcomp,♥
MGL∗,∗MGLComodev.

MGL∗,∗

MGL∗,∗

inc. inc.

We will first show that the bottom horizontal arrow induces an equivalence

MGL∗,∗ : h
(
CτCellcomp,♥

) ∼=
GGGA MGL∗,∗MGLComodev.
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As in Section 5.2.2, faithfullness is an easy Corollary of the construction of the spectral

sequence.

Corollary 5.32. The functor

π∗,∗ : h
(
CτCellcomp,♥

)
GGGA MGL∗,∗MGLComodev

is fully faithful.

Proof. Pick two objects X, Y ∈ CτCellcomp,♥. Since they are both concentrated in Chow

degree 0 and Y is π∗,∗-complete, Corollary 5.28 gives isomorphisms

Ext2w−t,t,w
MGL∗,∗MGL

(MGL∗,∗(X),MGL∗,∗(Y )) ∼=
[
Σt,wX, Y

]
Cτ

for any bidegree (t, w). The desired isomorphism follows by letting t = w = 0, which

moreover is realized by the edge homomorphism

MGL∗,∗ : [X, Y ]Cτ
∼=

GGGA HomMGL∗,∗MGL

(
MGL∗,∗(X),MGL∗,∗(Y )

)
.

�

We will now show the essential surjectivity of this functor, proving the equivalence of

categories. This result is proven in a different way than its analogous Proposition 5.10,

since we do not have free resolutions available. We will instead use Landweber’s Filtration

Theorem to realize all finitely presented comodules, and extend the result by filtered colimits.

We start with the following Lemma.

Lemma 5.33. Consider a short exact sequence

0 GGA M ′ f ′

GGA M
f ′′

GGA M ′′
GGA 0 (5.13)

in MGL∗,∗MGLComodev. If two of the three comodules are realizable in CτCellcomp,♥, then so
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is the third.

Proof. Suppose first that M ′ ∼= MGL∗,∗(X
′) and M ∼= MGL∗,∗(X) are realizable. The

algebraic map f ′ is also realizable to a homotopy class of maps by Corollary 5.32. Since

CτCellcomp,♥ is closed under fibers and cofibers, the cofiber of any representative realizes the

comodule M ′′. The case where M and M ′′ is similar by taking the fiber of any representative.

Finally suppose that M ′ ∼= MGL∗,∗(X
′) and M ′′ ∼= MGL∗,∗(X

′′) are realizable. The

short exact sequence (5.13) corresponds to an element in Ext1,0,0

MGL∗,∗MGL
(M ′′,M ′), which can

be realized by a homotopy class of maps Σ−1,0X ′′ GGA X ′ by Corollary 5.28. The cofiber of

this map realizes M . �

Proposition 5.34. The functor

MGL∗,∗ : h
(
CτCellcomp,♥

) ∼=
GGGA MGL∗,∗MGLComodev

is an equivalence of categories.

Proof. Recall from [29] [30] that there are elements vn ∈ M̂U∗ with v0 = 2, giving the

invariant prime ideals In = (v0, . . . , vn)�M̂U∗. Moreover, these elements satisfy the formula

ηR(vn) ≡ vn mod In−1,

and so M̂U∗/In is canonically an MU∗M̂U -comodule. This gives short exact sequences

0 GGA M̂U∗/In
·vn

GGA M̂U∗/In GGA M̂U∗/In+1 GGA 0

of comodules for every n ∈ N0. Landweber’s Filtration Theorem [29] [30] states that any

comodule M ∈ MU∗M̂UComod whose underlying M̂U∗-module is finitely presented, can be

reconstructed by finitely many extensions of suspensions of MU/Ini .
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All these results transfer to the category MGL∗,∗MGLComodev via the equivalences

MGL∗,∗MGLComodev ∼= MU∗M̂UComodev ∼= MU∗M̂UComod.

In particular, there are invariant prime ideals In �MGL∗,∗ and short exact sequences

0 GGA MGL∗,∗/In
·vn

GGA MGL∗,∗/In GGA MGL∗,∗/In+1 GGA 0

of comodules, where the quotients MGL∗,∗/In are naturally MGL∗,∗MGL-comodules. More-

over, any comodule M ∈ MGL∗,∗MGLComodev in Chow degree 0 and whose underlying

MGL∗,∗-module is finitely presented, can be constructed in finitely many extensions from

suspensions of various MGL/Ini . Finally, by mimicking the proof of [36, Lemma 2.11], or by

[21, Chapter 1], any MGL∗,∗MGL-comodule in Chow degree 0 can be written as a filtered

colimit of finitely presented ones.

Pick now an arbitrary M ∈ MGL∗,∗MGLComodev. By the above discussion, this can be

written as a filtered colimit M ∼= colimMα, where each Mα ∈ MGL∗,∗MGLComodev is finitely

presented as an MGL∗,∗-module. Since MGL∗,∗(Cτ) ∼= MGL∗,∗ is realizable, Lemma 5.33

shows that every quotient MGL/In can be realized in CτCellcomp,♥. Another application

of Lemma 5.33 shows that one can realize Mα
∼= MGL∗,∗(Xα) by Xα ∈ CτCellcomp,♥. By

Corollary 5.32, one can realize the whole filtered system {Mα} to a filtered system {Xα}.

The colimit X := hocolimXα realizes M since MGL∗,∗ commutes with filtered colimits.

Moreover, since the Xα are all concentrated in Chow degree 0, Lemma 5.29 shows that

X ∈ CτCellcomp,♥. This shows that the functor MGL∗,∗(−) is essentially surjective, and

that it is an equivalence of categories by combining this with Corollary 5.32. �

We will now show that the Chow degree induces a t-structure on the category CτCellcomp.

The following Lemma is the analogue of Lemma 5.11.

Lemma 5.35. Given X ∈ CτCellcomp
≥0 and Y ∈ CτCellcomp

≤0 , the group of homotopy classes
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of degree (0, 0) can be computed algebraically by

HomMGL∗,∗MGL(MGL∗,∗(X),MGL∗,∗(Y )) ∼= [X, Y ]Cτ .

Proof. The proof of Theorem 5.25 shows that for X in non-negative degrees and Y in non-

positive degrees, the E2-page of the motivic Adams-Novikov spectral sequence

Es,t,w
2 = Exts,t,w

MGL∗,∗MGL
(MGL∗,∗(X),MGL∗,∗(Y ))

is concentrated in degrees 2t−w ≤ 0 and s ≥ 0. We are interested in understanding [X, Y ]Cτ ,

which is assembled from Es,t,w
∞ with t−s = 0 and w = 0. These conditions imply that w = 0

and that s = t ≥ 0, and thus that [X, Y ]Cτ is a (possibly iterated) subquotient of

E0,0,0
2
∼= HomMGL∗,∗MGL(MGL∗,∗(X),MGL∗,∗(Y )).

Recall that the dr-differential has the form Es,t,w
r

dr
GGA Es+r,t+r−1,w

r . There are thus no

possible differentials entering E0,0,0
r since the homological degree has to be non-negative, and

the only possible differential exiting E0,0,0
r is a d1 since t−2w ≤ 0 implies that we must have

r − 1 ≤ 0. However, we are already at the E2-page and thus E0,0,0
2 survives to the E∞-page

giving the isomorphism

HomMGL∗,∗MGL(MGL∗,∗(X),MGL∗,∗(Y )) ∼= [X, Y ]Cτ .

�

We can finally show that the category CτCellcomp admits a t-structure.

Theorem 5.36 (t-structure on CτCellcomp). The pair of subcategories (CτCellcomp
≥0 , CτCellcomp

≤0 )

defines a t-structure on CτCellcomp, whose heart is given by the equivalence

MGL∗,∗ : h
(
CτCellcomp,♥

) ∼=
GGGA MGL∗,∗MGLComodev.
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Proof. There are three axioms to show for the t-structure, and we have already identified

the heart in Proposition 5.34. The proof is very similar to that of Proposition 5.12, which

we refer to for more details.

For the first axiom, consider objects X ∈ CτCellcomp
≥0 and Y ∈ CτCellcomp

<0 . One shows

that [X, Y ]Cτ = 0 as in Proposition 5.12 by using Lemma 5.35 instead of Lemma 5.11.

The second axiom requires that if X ∈ CτCellcomp
≥0 , then Σ1,0X ∈ CτCellcomp

≥1 . This is

clear from the definition of these subcategories.

Finally, for any spectrum X ∈ CτCellcomp, the last axiom asks for a fiber sequence

X≥0 GGA X GGA X<0

with X≥0 ∈ CτCellcomp
≥0 and X<0 ∈ CτCellcomp

<0 . This is again shown as in Proposition 5.12,

by using Proposition 5.34 and Lemma 5.35 instead of Proposition 5.10 and Lemma 5.11. �

We can now state and prove the main result of this chapter.

Theorem 5.37. There is a t-exact equivalence of ∞-categories

Db(MGL∗,∗MGLComodev)
∼=

GGGA CτCellcomp.

Proof. The proof is very similar to the proof Theorem 5.13. We need to check the con-

ditions of Proposition 5.2 for the t-structure on CτCellcomp. It is clearly right-bounded

(even bounded), and its heart has enough injectives by Proposition 5.34 since comodule cat-

egories have enough injectives. It remains to show that for objects X, Y ∈ CτCellcomp,♥

with MGL∗,∗(Y ) an injective MGL∗,∗MGL-comodule, there are no non-trivial maps in

[X,Σi,0Y ]Cτ for any i > 0. We will use the motivic Adams-Novikov spectral sequence of

Corollary 5.27

Exts,t,w
MGL∗,∗MGL

(
MGL∗,∗(X),MGL∗,∗(Y )

)
=⇒

[
Σt−s,wX, Y

]
Cτ
,
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and we are interested in the case t − s = −i and w = 0. Since MGL∗,∗(Y ) is an injective

MGL∗,∗MGL-comodule, the spectral sequence collapses at E2 and is concentrated on the

line s = 0, and thus t = −i. Moreover, since both X and Y are concentrated in Chow degree

0, it is clear from the proof of Theorem 5.25 that the E2-page is concentrated in degrees

t − 2w = 0, and thus t = 0. It follows that in weight 0, there are only maps of bidegree

(0, 0), and thus [X,Σi,0Y ]Cτ = 0 for i > 0. �

Corollary 5.38. There is a t-exact equivalence of ∞-categories

Db(MU∗M̂UComod)
∼=

GGGA CτCellcomp,

where M̂U denotes the 2-completion of the complex cobordism spectrum MU .

Proof. This follows from the equivalence of abelian categories

MGL∗,∗MGLComodev ∼= MU∗M̂UComodev ∼= MU∗M̂UComod.

�
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Consider the Tate twist τ ∈ H0,1(S0,0) in the mod 2 cohomology of the motivic sphere.

After 2-completion, the motivic Adams spectral sequence realizes this element as a map

τ : S0,−1
GGA S0,0. This thesis begins with the study of its cofiber, that we denote by Cτ .

We first show that this motivic 2-cell complex can be endowed with a unique E∞ ring

structure. This promotes the known isomorphism π∗,∗Cτ ∼= Ext∗,∗BP∗BP (BP∗, BP∗) to an

isomorphism of rings which also preserves higher products.

This structure allows us to consider its closed symmetric monoidal category of modules

(CτMod,− ∧Cτ −), which happens to live in the kernel of Betti realization. This category

has surprising applications, and moreover contains many interesting motivic spectra. In

particular, we construct exotic motivic fields K(wn), detecting motivic wn-periodicity. This

theory of motivic wn-periodicity can be roughly seen as perpendicular to the vn-periodicity

story, detected by the motivic Morava K-theories K(n).

Finally, we also explain why the category CτMod is so computable. The above isomor-

phism comes in a more structured version. In work that is joint with Zhouli Xu and Guozhen

Wang, we show that there is an equivalence of ∞-categories

Db(MGL∗,∗MGLComodev)
∼=

GGGA CτCellcomp

between an algebraic category, and the subcategory CτCellcomp of cellular Cτ -modules that

are complete with respect to a version of the algebraic cobordism spectrum MGL.
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