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1

CHAPTER 1: INTRODUCTION

Within the domain of operations research (OR), deterministic mathematical modeling

is a branch of optimization that has been extensively employed for decision making in

real-world problems. In general, optimization involves �nding the best solution for an

objective function o�en limiting the search to a speci�c domain. While deterministic

models assume that the data and parameters that form the objective function and any

relevant constraints are known, real-world applications almost invariably include some

‘unknown’ parameters. �e presence of this uncertainty can make the optimal solution

of a deterministic model infeasible or sub-optimal to the decision making problem.

When the parameters are known within certain bounds, an approach to tackling such

problems is robust optimization. On the other hand, stochastic programming allows the

parameters and coe�cients to be unknown and assumes that probability distributions

governing the data are known or can be estimated. Stochastic programming can involve

uncertainties in the objective function and/or constraints. O�en, the goal is to �nd some

policy or solution that is reasonably feasible for possible data instances and maximizes

the expectation of some function of the decisions and the random variables [66].

More generally, such models are formulated, solved analytically or numerically, and

analyzed in order to provide useful information to a decision-maker. Stochastic program-

ming is seeing a growing range of applications in manufacturing production planning,

machine scheduling, dairy farm expansion planning, asset liability management, tra�c

management, and automobile dealership inventory management that involve uncertainty

in decision making. For a good overview, see Wallace & Ziemba [73], Uryasev & Pardalos

[71].

In spite of the recognition that real-world problems o�en entail uncertainty, the OR

literature is predominantly focused on deterministic optimization. �ere are several rea-
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sons for this, including: 1) Simplicity and be�er computational tractability of deterministic

models, 2) Readily available commercial and open-source so�ware, and 3) Inconvenience

in terms of e�ort involved in characterizing uncertainties for stochastic programming.

As noted by OR pioneer R.L. Acko� [5], OR has devolved from “its original focus as a

market-oriented profession … to its current status as largely input-oriented” profession,

and that “this descent has taken the profession away from the most important needs of

the organizations it could serve.” Meaning, OR has lost its way and shi�ed its focus from

producing solutions to real and important problems to methodology development [27].

In an a�empt to improve the practicality of mathematical programming models and

contribute to their adoption in the real-world, this dissertation contributes two original

essays highlighting the contribution that stochastic programming can o�er in solving im-

portant practical problems of interest to operations research. �e �rst essay studies a

strategic problem in transportation industry and the target customer is planning agen-

cies, and the second essay investigates a tactical problem in healthcare industry and the

target customer is clinic administrators. We do this with the recognition that stochas-

tic programming, in considering uncertainty in mathematical modeling, o�en leads to

large-scale programming problems. However, advances made in recent decades by algo-

rithms in optimization so�ware combined with advances in computing hardware allow

us to tackle problems of greater complexity to provide meaningful solutions and decision

support for the real-world.

�e most widely used stochastic programming approach involves the ‘two-stage’ stochas-

tic programming model. In this model, �rst-stage decision variables are determined before

observing the realization of uncertainties and second-stage decision variables are selected

a�er exposing �rst-stage variables to the uncertainties. �e goal is to determine the value

of �rst-stage decisions in a way to maximize (minimize) the expected value of second-

stage objective function. We employ the two-stage stochastic programming approach for
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tackling two important problems of OR. �e �rst problem entails the task of designing a

community-aware charging station network for electric vehicles and is more of a strategic

problem. �e second problem involves the development of e�ective scheduling policies

for managing appointments to primary care clinics.

1.1 Motivation for Designing Community-Aware Charging Net-

work for Electric Vehicles

Electric vehicles (EVs) are a�racting more and more a�ention these days due to in-

crease concern about global warming and future shortage of fossil fuels. �ese vehicles

have potential to reduce greenhouse gas emissions, improve public health condition by

reducing air pollution and improving sustainability, and address diversi�cation of trans-

portation energy feedstock.

Governments and policy makers have proposed two types of policy incentives in order

to encourage consumers to buy an EV: direct incentives and indirect incentives. Direct

incentives are those that have direct monetary value to consumers and include purchase

subsidies, license tax/fee reductions, Electric Vehicle Supply Equipment (EVSE) �nanc-

ing, free electricity, free parking and emission test exemptions. On the other hand, indi-

rect incentives are the ones that do not have direct monetary value and consist of high-

occupancy vehicle access, emissions testing exemption time savings, and public charger

availability. Lack of access to public charging network is a major barrier in adoption of

EVs [39]. Access to public charging infrastructure will provide con�dence for EV owners

to drive longer distances without going out of charge and encourage EV ownership in the

community.

�e current challenge for policy makers and city planners in installing public charging

infrastructure is determining the location of these charging service stations, number of

required stations and level of charging since the technology is still in its infancy and the
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installation cost is high. Since recharging of EV ba�ery takes more time than refueling

conventional vehicles, parking lots and garages are considered as potential locations for

installing charging stations. �e aim of this research is to develop a mathematical pro-

gramming model to �nd the optimal locations with potentially high utilization rate for

installing community-aware public EV charging infrastructure in order to improve acces-

sibility to charging service and community livability metrics. In designing this charging

network, uncertainties such as EV market share, state of ba�ery charge at the time of

arrival, driver’s willingness to charge EV away from home, arrival time to to the com-

munity, driver’s activity duration (parking duration), and driver’s walking distance pref-

erence play major role. By incorporating these uncertainties in the model, we propose

a two-stage stochastic programming approach to determine the location and capacity of

public EV charging network in a community.

1.2 Motivation for Managing Access to Primary Care Clinics

Patient access to care along with healthcare e�ciency and quality of service are di-

mensions of health system performance measurement [1]. Improving access to primary

care is a major step of having a high-performing healthcare system. However, many pa-

tients are struggling to get an in-time appointment with their own primary care provider

(PCP). Even two years a�er health insurance coverage was expanded, new patients have

to wait 82% longer to get an internal-medicine appointment. A national survey shows that

percentage of patients that need urgent care and could not get an appointment increased

from 53% to 57% between 2006 and 2011 [31]. �is delay may negatively impact patient

health status and may even lead to death. Patients that cannot get an appointment with

their PCP may seek care with other providers or in emergency departments which will

decrease continuity of care and increase total cost of health system.

�e main issue behind access problem is the imbalance between provider capacity and
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patient demand. While provider panel size is already large, the shortage in primary care

providers and the increase in number of patients mean that providers have to increase

their panel size and serve more patients which will potentially lead to lower access to

primary care. �e ratio of adult primary care providers to population is expected to drop

by 9% between 2005 and 2020 [12].

Moreover, patient �ow analysis can increase e�ciency of healthcare system and qual-

ity of health service by increasing patient and provider satisfaction through be�er re-

source allocation and utilization [40]. E�ective resource allocation will smooth patient

�ow and reduce waste which will in turn results in be�er access to care.

One way to control patient �ow in clinic is managing provider capacity through ap-

pointment scheduling system. A well-designed appointment scheduling system can de-

crease appointment delay and waiting time in clinic for patients and idle time and/or over-

time for provider simultaneously and increase their satisfaction. Appointment scheduling

requires to make a balance between patient needs and facility resources [13].

�e purpose of this study is to develop appointment scheduling models using two-

stage stochastic programming in order to improve access to care while maintaining high

levels of provider capacity utilization and improving patient �ow in clinic by leveraging

uncertainties in patient demand volume, patient no-show, nurse service time and provider

service time.
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CHAPTER 2: DESIGNING COMMUNITY-AWARE
CHARGING NETWORKS FOR ELECTRIC VEHICLES

2.1 Introduction

Electric vehicles (EVs) hold much promise including diversi�cation of the transporta-

tion energy feedstock, reduction of greenhouse gas and other emissions, and improved

public health by improving local air quality. In general, widespread adoption of EVs is

in alignment with sustainable transportation objectives due to its social, economic, and

environmental perspectives. It is estimated that an EV that draws its power from the U.S.

electrical grid emits at least 30% less CO2 than comparable gasoline or diesel-fueled ve-

hicles [9]. As EV usage for daily commute increases, the consideration for the ability to

recharge these vehicles away from home will become even more important. Ever-growing

need to recharge EVs away from home necessitates designing e�ective networks of charg-

ing stations. Using multiple linear regression, Sierzchula et al. [67] examined the e�ect of

consumer �nancial incentives and several socio-economic factors on national EV market

shares of 30 countries for the year 2012. �e analysis shows that installing one charging

station (per 100,000 residents) could have twice the impact on EV adoption rate compared

to a $1,000 �nancial incentive.

Many studies have been done on locating charging stations for EVs. However, ma-

jority of them concentrated on large-scale state-wide networks and only a few articles

have investigated design of public charging station network in an urban area. Existing

papers on charging station location problem o�en assume that demands for charging ser-

vice are deterministic and known to the decision makers, while in reality, the tra�c �ows

are stochastic in nature (varying by hour of day, weekday, weekend, commute purpose,

destination etc) and carry signi�cant uncertainty. �e optimal solution of a determin-

istic model might become infeasible and/or signi�cantly sub-optimal in the presence of
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these uncertainties. �is paper adds to the growing �eld of designing EV charging station

network by proposing a two-stage stochastic programming model to determine location

and size of charging stations for a community. Considering uncertainties in charging pat-

tern, demand, and drivers’ behavior, the proposed stochastic model provides more robust

charging network design decisions and thus access to charging service can be improved.

However, a two-stage stochastic programming model o�en needs a large number of sce-

narios for good representation of uncertainties. We use sample average approximation

(SAA) method as this will asymptotically converge to an optimal solution for a two-stage

stochastic problem. SAA is a Monte Carlo simulation-based sampling technique in which

we approximate the expected value of the objective function using a �nite sample of sce-

narios. Since SAA can only solve small size problems within reasonable amount of time

in general, an e�ective heuristic is also proposed for large-scale instances. �e two-stage

model and solution approach are evaluated by a case study constructed using the data

representing Detroit midtown area in Michigan, U.S. In summary, the major contribu-

tions of this paper include: (1) formulation of a two-stage stochastic programming model

to determine the location and capacity of public EV charging stations in an urban area

to maximize access; (2) incorporation of uncertainties in EV demand �ows, EV drivers’

charging pa�erns, arrival and departure time, purpose of arrival to a community, and

preferred walking distance; (3) adoption of SAA to solve the two-stage model; (4) an ef-

fective heuristic that provides near optimal solutions for large-scale instances; and (5) a

case study representing public charging network planning in Detroit midtown area and

a post-analysis framework to analyze the outputs of the two-stage model on accessibility

and utilization of charging service. �e remainder of this paper is organized as follows:

A review of related literature is presented in Section 2.2. Section 2.3 provides problem

description and the uncertainties considered in our model. Model formulation and the

solution methodology are presented in Section 2.4. Section 2.5 presents the case study,
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scenario construction, computational experiments and evaluations of results. Finally, con-

clusion and directions for future studies are provided in Section 2.6.

2.2 Literature review

During the last decade, many researchers have focused on optimally locating alternative-

fuel-vehicle refueling stations. However, most of them are focused on EV charging net-

work in large networks to cover demand between cities and metropolitan areas, and only

a few articles examined the design of charging network in a community or an urban area.

We review the existing literature related to design of an EV charging network and catego-

rize it into two major groups: (A) deterministic approach which assumes that all param-

eters and demand are known for charging station network problem, and (B) stochastic

approach that considers uncertainties regarding available budget for constructing charg-

ing network, type of charging stations, total short-term and long-term charging demand,

and charging behavior of EV drivers.

2.2.1 Deterministic approach

Upchurch et al. [70] introduced capacitated �ow refueling location model that con-

siders a limit on the tra�c �ow that any location can refuel to maximize vehicle miles

traveled by alternative-fuel vehicles. Frade et al. [29] proposed a maximal covering model

to �nd the optimal location of EV charging stations in an urban area by maximizing cov-

ered demand within a given distance. To deal with the computational burden of generat-

ing combinations of locations capable of serving the round trip on each route, a mixed-

binary-integer optimization model is developed [15]. Capar et al. [16] presented a more

computationally e�cient model for �ow-refueling location model to answer some strate-

gic questions such as what is the minimum number of charging stations required for re-

fueling a certain percentage of tra�c �ow; and what are the impacts of refueling demand

forecast on the location of fuel stations. A mixed-integer programming method to model
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capacitated multiple-recharging-station-location problem considering budget constraint

and vehicle routing behavior, and using the concepts of set coverage and maximum cov-

erage is proposed [75]. �e model in [7] �nds the optimal locations of charging stations

for EVs in an urban area while minimizing total costs, consisting the travel cost from de-

mand zones to charging locations and investment cost. Cavadas et al. [18] proposed a

mixed-integer programming model to locate slow-charging stations for EVs in an urban

environment considering the possibility that there might be several stops by each driver

during the day and the driver can only charge the vehicle at one of these locations. Since

tour-based network equilibrium model can precisely track the state-of-charge (SOC) of

the ba�ery and also consider the dwell time at each destination, model is proposed to op-

timally locate public charging stations for EVs considering recharging behavior of drivers

[35]. Huang and Zhou [37] developed an integer programming formulation to minimize

the lifetime cost of equipment, installations, and operations of charging stations for plug-

in EVs at workplaces by considering di�erent charging levels and demographics of em-

ployees. In order to maximize the amount of vehicle-miles-traveled for an EV, a model is

presented to select the optimal locations for public charging stations considering vehicle

travel pa�erns [65]. �e authors applied their model on vehicle trajectory data of taxi

�eet over a three week period in Beijing, China. A major limitation with all these studies

is that they assume a deterministic problem se�ing. As we con�rm through our experi-

ments, employing a stochastic formulation can lead to a signi�cant improvement in the

objective of the planners.

2.2.2 Stochastic approach

While planning under uncertainty has been addressed in many se�ings such as trans-

portation, energy, disaster planning, supply chain management and production planning,

the literature considering uncertainty in planning for EV charging network is limited. By
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considering both the transportation system and the power grid, Pan et al. [59] developed

a two-stage stochastic programming model to �nd the optimal locations for ba�ery ex-

change stations for plug-in hybrid electric vehicles (PHEV) accounting for uncertainty in

demand for ba�ery, loads, and generation capacity of renewable power sources. Tan and

Lin [68] formulated the EV charging problem as a �ow capturing location-allocation prob-

lem. �ey compared a deterministic case where charging demand is �xed over time to a

stochastic one where consumer demand for charging service is random, and concluded

that stochastic programming provides more realistic results. Hosseini and MirHassani

[36] proposed a two-stage stochastic program to locate permanent and portable charg-

ing stations with and without considering capacities to maximize the served tra�c �ows.

A stochastic �ow-capturing location model is also developed to locate a predetermined

number of fast EV-charging stations within a given region considering uncertainties in

EV �ows [77].

To e�ciently assist city planners and policy makers in planning for public EV charging

network within a community, we need to adequately capture uncertainties that exists in

demand for public charging service. To the best of our knowledge, this is the �rst study

to address the problem of locating public EV charging stations for a community using a

two-stage stochastic programming approach while accounting for uncertainties in total

customer demand for public charging service, arrival and dwell time, ba�ery SOC at the

time of arrival, preference for charging away from home and willingness to walk pa�erns

of EV drivers.

2.3 Problem description and uncertainties

Unlike a conventional vehicle, an EV must o�en be parked for several hours to be

recharged. Hence, public parking facilities are considered as potential locations for in-

stalling charging stations, which can in turn improve access to EVs as well as their adop-
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tion. Maximum number of installable charging stations depends on the total capacity of a

parking lot. Without loss of generality, we assume that all charging point terminal types

are semi-rapid charging ones (level 2 type charging stations) that are typically recom-

mended for public and private parking lots, and provide 10 to 20 miles range per hour

of charging. Also, a driver’s walking distance to �nal destination is considered as the

decisive contributing factor in choosing a parking lot [8]. Based on a driver’s walking

distance preference, we determine a possible set of parking lots that a driver can park the

EV and then driver is randomly assigned to one of them. If charging stations are installed

in any of parking lots that are within a driver’s walking distance preference, driver will

be a�racted to one of those parking lots depending on the availability of a charging sta-

tion at the time of arrival. If there is no parking lot within the maximum distance that a

driver is willing to walk, we assume that driver will park the car on street, and since it is

di�cult to track the walking distance to �nal destination in this case, this demand is not

considered in our analysis. It is also assumed that once a driver starts using a charging

station, vehicle would not be unplugged until driver’s activity is �nished.

Designing a public EV charging network entails estimation of demand for charging

service. Like facility location models, we assume that demand occurs at �xed points on

a network. Demand will be a�racted to di�erent parking lots based on drivers’ willing-

ness to walk to use charging stations. Scenarios representing demand uncertainty in the

two-stage model will represent time and purpose of arrival to the community, EV’s bat-

tery SOC at the time of arrival, duration of activity, drivers’ preference for charging away

from home and willingness to walk based on demographics, community size and season-

ality factors. �e following uncertainties are considered to a�ect demand for public EV

charging stations:
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2.3.1 State of charge

A recent study analyzing two years of data from January 2011 to December 2013 of

charging events that occurred away from home concluded that Nissan Leaf (pure ba�ery

electric vehicle, BEV) drivers prefer to charge their vehicles before their ba�ery SOC drops

to lower levels while Chevrolet Volt (a plug-in hybrid electric vehicle, PHEV) drivers tend

to start recharging when there is a li�le charge in the ba�ery since they rely on both

electric motor and internal combustion engine [14]. Fig. 1 compares the probability of

recharging for di�erent values of ba�ery SOC at the time of arrival for Nissan Leaf and

Chevrolet Volt.
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Figure 1: Probability of recharging as a function of the ba�ery SOC at arrival time; Source:
[14].

2.3.2 Dwell time

We de�ne six di�erent destination categories based on NHTS (National Household

Travel Survey) data: Work, Social, Family, Meal, Study, and Shopping. Fig. 2 shows aver-

age time that people tend to park their vehicles based on their activity type [43]. Zhong et

al. [82] concluded that Weibull, log-normal and log-logistic distributions are the best dis-

tributions for modeling duration of weekday and weekend activities. While their analysis
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shows that model type and parameters or both might be di�erent for an activity in week-

day versus weekend, they found Weibull distribution the most applicable one. In addition,

they found that certain activities such as social and shopping tend to last longer during

weekends. Weibull distribution is used in our analysis to estimate parking duration of EV

drivers considering average staying time, and we have also di�erentiated the durations of

all weekday and weekend activities except meal activity.
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Figure 2: Average dwell time for activity types; Source: [14].

2.3.3 Weekday vs. weekend

Demand pa�ern for public EV charging service can vary from day to day since people

tend to a�end social events, visit their families and go to shopping centers more during

weekends than weekdays, in which demand mostly consists of people traveling to work

or school. Fig. 3 con�rms that demand for charging stations depends on time and type

of day. During weekdays, maximum load occurs in morning when people are arriving at

work or school while maximum demand usually happens around noon during weekends

when people are going to shopping malls and social places. According to [58], the best

��ed distribution for arrival time to parking lot is a Weibull distribution. Hence, without

loss of generality, we recommend the use of two Weibull distributions to estimate the
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arrival time of EVs to parking lots during weekdays and weekends.
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Figure 3: �e expected breakdown of vehicle arrival percentages in A) weekdays and B)
weekends; Sources: [14] and [43].

2.3.4 Preference for charging away from home

Analysis by Idaho National Laboratory on data from 2012 and 2013 over 4,000 Leafs

and 1,800 Volts across the U.S. shows that 13% of Leaf drivers and 5% of Volt drivers only

charge their vehicles at home. �is indicates that vast majority of drivers intend to use

publicly accessible charging stations. �is analysis also shows that although many people

that drive more daily miles tend to charge their vehicles in places other than their homes,

the e�ect of daily miles traveled on the chance of charging away from home is small.

Hence, without loss of generality, we do not consider the e�ect of driving distance to

community as a factor that a�ects the chance of using EV charging stations.
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2.3.5 EV market penetration

�ere are many social, environmental and economic factors that can signi�cantly con-

tribute to the increasing market share of di�erent types of EVs. �e survey in [17] about

adult drivers in large U.S. cities in fall 2011 comprehended factors a�ecting the purchase

of a plug-in EV. Besides demographic variables that can strongly predict intent of pur-

chase, their results show that the presence of a charging station inside the community is

the only awareness variable that has a signi�cant e�ect on intent of purchase. Environ-

mental Protection Agency estimated that 3.5% of the vehicle �eet will be BEV or PHEV in

the 2022-2025 time frame [4].

2.3.6 Willingness to walk

�e drivers’ willingness to walk can be a�ected by their socio-demographic charac-

teristics such as age, gender, education level and occupation. Many researchers have used

distance decay function that shows the willingness to walk or bike as a distance towards

di�erent types of destinations. �e parameter of this decay function depends on the ac-

tivity type. Estimation results from [79] con�rm that negative exponential distribution

can be�er describe walking trips over short distances than other distributions such as

Gaussian. �ey specify the distance decay function as

P (d) = e−β×d (1)

which shows the percentage of people willing to walk d or longer distances than d. �ey

used 2009 NHTS data to estimate the decay parameter β for di�erent groups and trip

purposes. �eir analysis shows that people are more willing to walk for recreation, so-

cial events and work activities rather than for studying, shopping or eating meal. Table 1

shows the parameters of distance decay function in�uenced by variations in natural and

built environment factors. �e e�ects of season, region and community size on willing-

ness to walk pa�erns are considered as well.
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Table 1: Estimated parameter for distance decay function

Factor Category β

Season

Winter (Dec to Feb) 1.88
Spring (Mar to May) 1.68
Summer (Jun to Aug) 1.64
Autumn (Sep to Nov) 1.7

Region

Northeast 1.85
Midwest 1.65

South 1.76
West 1.65

Community
Town and country 1.68

Suburban 1.63
Urban and second city 1.78
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Our research aims at maximizing coverage of demand for public EV charging net-

work in a community by proposing a two-stage stochastic programming model consid-

ering uncertainties in EV total �ow, arrival and departure time, ba�ery SOC at arrival

time, preference for charging EV away from home, and walking preference pa�erns in

the community.

2.4 Model formulation and solution approach

2.4.1 Model formulation

Two-stage stochastic programming is a common approach for modeling problems that

involve uncertainty in decision making. First-stage decision variables represent ‘here-

and-now’ decisions which are determined before the realization of randomness, and the

second-stage decisions are determined a�er scenarios representing uncertainties are pre-

sented. �rough two-stage stochastic programming model, we aim at maximizing ex-

pected accessibility of EV owners to public charging service considering all uncertainties

in demand for charging stations. In our model, binary variables in the �rst-stage de-

termine the parking lots, and number of charging station installations for the selected

parking lots. In the second-stage, a recourse decision is made on assigning EV drivers to

one of their preferred parking lots based on their willingness to walk so that the expected

access of EV drivers to public charging network is maximized.

We �rst de�ne the following model sets, parameters and variables:

• Sets

– S: Set of parking lots, indexed by s ∈ S.

– Ls: Set of number of charging stations in a parking lot s, indexed by l ∈ Ls.

– B: Set of buildings, indexed by b ∈ B.

– T : Set of time slots, indexed by t ∈ T .
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– Γ: Set of arrival and departure times, indexed by γ(t) ∈ Γ containing time slot

t ∈ T .

– Ω: Set of scenarios, indexed by ω ∈ Ω.

• Model Parameters

– p: Number of parking lots to be considered for installing charging stations.

– ml: Number of charging stations, l ∈ Ls.

– dγ(t),b,s(ω): Demand with arrival and departure time set of γ(t) ∈ Γ for a

given t ∈ T for building b that are willing to park their vehicle in parking lot

s ∈ S ′, S ′ ⊂ S in a scenario ω ∈ Ω.

• First Stage Decision Variables

– xs: 1, if parking lot s ∈ S is considered for installing charging stations; 0,

otherwise.

– zl,s: 1, if l ∈ Ls charging stations are installed in parking lot s ∈ S.

• Second Stage Decision Variables

– yγ(t),b,s(ω): Proportion of demand with arrival and departure time set of γ(t) ∈

Γ for building b willing to charge their vehicle in parking lot s ∈ S ′, S ′ ⊂ S

in a scenario ω ∈ Ω.
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First-stage problem can be presented as follows:

Max EΩ[ϕ(x, z, ω̃)] (2)

s.t.∑
s∈S

xs = p (3)

zl,s ≤ xs ∀s ∈ S, l ∈ Ls (4)∑
l∈Ls

zl,s ≤ 1 ∀s ∈ S (5)

xs, zl,s ∈ {0, 1} ∀s ∈ S, l ∈ Ls (6)

where ϕ(x, ω̃) is the solution of the following second-stage problem:

Max ϕ(x, z, ω)

=
∑
t∈T

∑
γ(t)∈Γ

∑
b∈B

∑
s∈S

yγ(t),b,s(ω)dγ(t),b,s(ω) (7)

s.t.∑
γ(t)∈Γ

∑
b∈B

yγ(t),b,s(ω)dγ(t),b,s(ω) ≤
∑
l∈Ls

mlzl,s

∀s ∈ S, t ∈ T (8)∑
s∈S

yγ(t),b,s(ω) ≤ 1 ∀t ∈ T, γ(t) ∈ Γ, b ∈ B (9)

0 ≤ yγ(t),b,s(ω) ≤ 1 ∀t ∈ T, γ(t) ∈ Γ, b ∈ B, s ∈ S (10)

In this model, �rst-stage decisions are made regarding the locations of charging sta-

tions and charging capacity in each location. �e �rst-stage objective function maxi-

mizes the expected access, and EΩ is an expectation operator, and EΩ[ϕ(x, z, ω)] rep-

resents
∑

ω∈Ω pωϕ(x, z, ω), where pω is probability of occurrence for scenario ω, and∑
ω∈Ω pω = 1. Constraint (3) ensures that p parking lots are selected to install EV charg-

ing stations. Constraints (4) and (5) determine charging capacity in any parking lot that is
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selected for providing EV charging service. Constraints (6) de�ne the feasible set for the

binary �rst-stage variables. In the second-stage, recourse decisions are made to maximize

the coverage of potential EV tra�c �ows based on the decisions chosen in the �rst-stage

and a realization ω ∈ Ω. Constraints (8) describe the supply-demand balance restrictions.

�ey ensure that demand that has arrival and departure time set of γ(t) and are assigned

to parking lot s for EV charging does not exceed the charging capacity in parking lot

s. Constraints (9) state that demand with arrival and departure time set of γ(t) can be

assigned to at most one parking lot for EV charging. Constraint set (10) are the non-

negativity constraints. �ough we have not considered any budgetary restrictions, such

constraints can be added to the �rst-stage model if appropriate.

2.4.2 Sample average approximation

According to [53], unless there are small number of scenarios that can represent uncer-

tainties in a problem, it is usually impossible to solve a stochastic programming problem.

�ey showed that optimal solution of stochastic programming can be approximated by a

sample of scenarios much smaller than the actual size of scenarios and this approximation

monotonically improves as we increase the number of scenarios. SAA is also an e�ective

approach when su�cient number of scenarios to estimate optimal solution is unknown.

SAA was proposed by [53] and for the sake of completeness, we provide the procedure

for sample average approximation method as follows:

1. Estimating an upper bound for the optimal solution:

• GenerateM independent sample sets of scenarios each of sizeN , i.e., (ω1
j , ω

2
j , ..., ω

N
j )

for j = 1, 2, ...,M

• For each sample set j = 1, 2, ...,M , �nd the optimal solution:

vjN =
1

N

N∑
i=1

ϕ(x, z, ωij). (11)



21

• Compute the followings:

vN,M =
1

M

M∑
j=1

vjN (12)

σ2
vN,M

=
1

M(M − 1)

M∑
j=1

(vjN − vN,M)2. (13)

�e expected value of vN is greater than or equal to the optimal value v∗. Since

the sample average vN,M is an unbiased estimation of the expected value of vN ,

vN,M provides an upper statistical bound for the optimal solution.

2. Estimating a lower bound for the optimal solution:

• If (x, z) is a feasible solution for the �rst-stage problem, then f(x, z) ≤ v∗.

Hence, choosing any feasible solution of the �rst-stage problem will provide

a lower statistical bound for the optimal value.

• Choose a sample of sizeN ′ of scenarios, much larger thanN , i.e., (ω1, ω2, ..., ωN
′)

and independent of samples to �nd the upper limit and estimate the objective

function:

f(x, z) =
1

N ′

N ′∑
i=1

ϕ(x, z, ωi) (14)

• Compute the variance for this estimation:

σ2
N ′(x, z) =

1

N ′(N ′ − 1)

N ′∑
i=1

(ϕ(x, z, ωi)

−f(x, z))2. (15)

3. Estimating the optimality gap:

• Use the upper bound and the lower bound that are computed in previous steps

to estimate the optimality gap:

gapM,N,N ′(x, z) = vN,M − f(x, z). (16)
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4. Checking the quality of the estimated optimality gap:

• Variance of the estimated optimality gap can be found by

σ2
gap = σ2

vN,M
+ σ2

N ′(x, z) (17)

2.4.3 Heuristic

SAA requires high computational resources, hence we developed a heuristic to solve

large-scale problems e�ciently. �is heuristic is inspired by a score measure introduced

by [69]. �e score incorporates charging capacity of each parking lot as well as its distance

to other parking lots. �e heuristic consists of a construction phase during which we build

an initial solution, and an improvement phase where we employ local search moves to �nd

a be�er solution. �e pseudo-code of the heuristic is presented as follows:

Algorithm 1 Pseudo-code of the heuristic
1: bestsolution← ∅.
2: for s← 1 to NumberofParkingLots do:
3: Compute score measure rs.
4: end for
5: Construction phase:
6: initialsolution← ∅
7: Compute a�ractiveness ratio ρs for all parking lots.
8: Add parking lots to the initial solution in decreasing order of the a�ractiveness ratio

until p parking lots are selected.
9: Improvement phase:

10: currentsolution← initialsolution
11: while f(currentsolution) can be improved do
12: remove-insert(currentsolution)
13: end while
14: Store best solution found so far.

In the construction phase, a score measure for each parking lot as a potential location

for installing charging stations is calculated as:

rs =
∑

s,s′∈S,s′ 6=s

cse
−βds,s′ (18)
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where β is a user parameter. �e score is measured as an incentive for the charging

capacity (cs) of each parking lot, and distance (ds,s′) to other parking lots as a cost. If

a parking lot has more capacity for installing charging stations and is nearer to other

parking lots, its score would be higher.

To consider randomness in constructing the initial solution, we use a set of sample

scenarios to get the probability of parking lot s being chosen as one of the optimal loca-

tions for installing charging stations. �is estimated probability for parking lot s, qs, is

computed based on the fraction of scenarios in which parking lot s is among the optimal

locations. �e a�ractiveness measure of parking lot s, ρs, is computed by multiplying this

probability to the corresponding score measure:

ρs = rsqs (19)

Parking lots will be added to the initial solution in a decreasing order of a�ractiveness

measure until p parking lots are selected. In the improvement step, we use local search

method of remove-insert procedure. For every parking lot that is already in the initial

solution, we replace it with one of the parking lots that has not been selected based on

a parking lot that has the highest a�ractiveness measure. �is process is continued until

there is no improvement in the objective function. We repeat this procedure for all parking

lots that are selected in the initial solution and store the best value found for the objective

function.

2.5 Case study and computational experiments

To demonstrate the e�cacy of the proposed approach, our case study investigates the

community area data of Detroit midtown area in Michigan, U.S. �ere is a wide range of

employment types (type of �nal destinations) in this area, it a�racts a lot of tra�c, and

is characterized by an urban university, commercial o�ces, hospitals, and museums. �is

area includes 135 buildings among which 67 are o�ce buildings, 12 are social places, 5 are
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family related buildings, 4 are restaurants, 44 are schools buildings and 3 are shopping

places. �ere are 32 parking lots that are considered as potential locations for installing

EV charging stations. We assume that parking lots are open between 6am and 6pm, and

have di�erent capacities for installing charging stations. �e center of each parking lot

is considered as our candidate for installing a charging station, and Euclidean distance is

used to measure distance between any two points in the community. Data from South-

east Michigan Council of Governments shows that average annual daily tra�c of Detroit

midtown area is approximately between 10,000 and 20,000 and like [16], we assume that

total daily tra�c of this community follows a uniform probability distribution.

Figure 5: Part of Detroit midtown area used for our analysis.

Based on Environmental Protection Agency (EPA) analysis, we examine cases in which

EVs constitute 3% and 5% of the light-duty vehicle �eet. According to [72], weather/climate

is positively correlated with BEV market share. Since our case study is done in an area

with low winter temperatures, BEV market share is considered lower than PHEV market
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share. Two cases are constructed for our computational experiments. In the �rst case,

we assume that the market share is 1% and 2% for BEVs and PHEVs, respectively. In the

second case, these market shares are assumed to be 2% and 3%, respectively.

In this study, negative exponential distribution functions estimated by [79] are used

to describe willingness to walk pa�erns for various activity types which considers the

e�ects of season and community size in U.S. Drivers are randomly assigned to a parking

lot that is within their walking distance preference. In both cases of EV market share,

13% of total demand is not considered in our model since there is no parking lot within

their walking distance preference, and also it is di�cult to track their walking distance to

their �nal destination if they use other EV charging sources placed in streets, etc. Four

di�erent values (2,4,6 and 8) for number of parking lots (p) to install charging stations are

considered. �e optimization models for SAA and heuristic were implemented in Python

2.7 using Gurobi 6.5.1 so�ware for solving optimization problems. All the computations

were performed using a system with Intel (R) Xeon(R) CPU 3.10 GHz and 24GB RAM.

2.5.1 Scenario construction

For the two-stage model, uncertainties are modeled by use case scenarios. A scenario

represents a single day of public EV charging service and is in�uenced by short-term

(weekday vs. weekend) and long-term (seasonal) variations, and total number of EVs ar-

riving to the community. �e probability of occurrence for a scenario is based on a uniform

probability distribution. Without loss of generality, we assume that any given scenario

day can belong to winter, spring, summer, and autumn seasons with equal probability.

In each scenario, a random number from U(0, 1) determines type of each vehicle in

a community, and if the random number is less than BEV market share, between BEV

market share and sum of BEV and PHEV market shares, or greater than sum of BEV and

PHEV market shares, then the vehicle is assumed to be a BEV, a PHEV or an ICE (internal
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Table 2: Weibull distribution parameters for activity duration

Type of day Work Social Family Meal School Shopping
Weekday (5.89,10) (1.89,10) (1.05,10) (0.79,2) (3.61,2) (0.56,2)
Weekend (6.04,6) (2.03,2) (1.13,2) (0.79,2) (3.36,10) (0.25,0.5)

combustion engine), respectively. If it is an EV, Weibull distributions with parameters

(8,3) and (13,4) are used to determine arrival time of EV drivers to the community in a

weekday and weekend day, respectively. As explained in the earlier section, the purpose

of arrival for a driver is determined based on arrival time and distributions. Furthermore,

Weibull distribution is used to estimate duration of various types of weekday and weekend

activities. Table 2 represents the parameters for this distribution based on type of activity.

In this table, the �rst and second numbers represent the shape parameter and the scale

parameter, respectively.

For a �nal destination, each EV driver is randomly assigned to a target destination/building

using a uniform distribution based on a driver’s purpose of arrival to the community. A

random number is generated from exponential distribution as shown in Fig. 4 to deter-

mine each EV driver’s willingness to walk distance based on his/her purpose of arrival,

and also, community size and type of region are considered in willingness to walk distri-

butions. If there is no parking lot within a driver’s willingness to walk distance, then this

demand is not considered in our model. In order to incorporate charging preference of EV

drivers, uniform distributionU(0, 1) is used. If the random number is greater than 13% for

BEV or 5% for PHEV, a driver’s willingness to charge away from home is decided. Consis-

tent with recommendations from [23] and [51], without loss of generality, we assume that

the initial ba�ery SOC for vehicles arriving at the charging stations follows a normal dis-

tributionN(0.3, 0.1) with a mean 0.3 and standard variation 0.1. Based on ba�ery SOC at

arrival time, uniform distribution U(0, 1) is used to determine each EV driver’s willing to

charge EV at public charging stations. �is is further compared with associated probabil-
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ity of recharge based on type of EV discussed in SOC section earlier. If the random number

is less than or equal to the probability of recharge, that EV is considered as demand for

EV charging network in the community. Similarly, multiple scenarios are constructed for

the two-stage stochastic programming model to simulate the arrival pa�ern, ba�ery SOC,

dwell time, charging preference and willingness to walk in the community.

2.5.2 SAA settings

To estimate an upper bound for expected accessibility to public EV charging stations,

N = 30, 50 and 100 scenarios are used and this is repeated M = 20 times. �e average

of these 20 runs is an estimate of upper bound on the accessibility. A sample of N ′ =

1,000 scenarios, which are separate from those that were used to get the upper bound,

is used to estimate a lower bound for the optimal solution. Computation times for each

test problem along with the heuristic performance are summarized in Tables 3 and 4. �e

computation times show that the optimization model using SAA method is able to solve

problems with eight optimal locations in less than �ve hours. In these tables, UB (%) and

LB (%) represent upper and lower bounds for expected accessibility to public EV charging

service using SAA method. Gap (%) and gap SD indicate the di�erences between upper

and lower bounds and standard deviation, respectively. Opt(s) is the running time of SAA.

�e best solution found by our heuristic for upper bound of the objective function and its

running time are shown as Heuristic (%) and Heuristic (s).

2.5.3 Heuristic settings

In our heuristic, we consider β = 0.0001 since we found that this number gives be�er

results in our se�ing. In order to consider the e�ect of uncertainties in our heuristic, we

also use 10 pre-sampled scenarios to measure the a�ractiveness of each parking lot for

installing charging stations. A�er computing a�ractiveness measures, we add parking

lots to the initial solution in a decreasing order until we have p parking lots in the solu-
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Table 3: SAA performance when (M,N ′) = (20,1,000) and (BEV,PHEV) = (1%,2%)

p N UB (%) LB (%) gap (%) gap SD Opt (s) Heuristic (%) Heuristic (s)

2
30 57.98 56.59 2.39 0.0064 397 57.98 68
50 58.70 58.25 0.77 0.0062 1,226 58.70 74
100 58.56 58.54 0.02 0.0055 4,564 58.56 93

4
30 73.89 73.42 0.63 0.0056 720 73.88 114
50 74.61 73.85 1.02 0.0041 1,759 74.61 131
100 74.59 73.74 1.14 0.0040 7,406 74.59 193

6
30 83.97 83.62 0.35 0.0039 1,071 83.21 160
50 84.11 83.80 0.31 0.0034 2,173 83.17 186
100 83.40 83.30 0.10 0.0031 9,572 82.86 303

8
30 91.16 90.61 0.61 0.0026 1,124 90.28 185
50 91.13 90.78 0.38 0.0021 3,099 90.18 245
100 90.87 90.86 0.02 0.0018 12,832 90.11 414

Table 4: SAA performance when (M,N ′) = (20,1,000) and (BEV,PHEV) = (2%,3%)

p N UB (%) LB (%) gap (%) gap SD Opt (s) Heuristic (%) Heuristic (s)

2
30 50.42 50.00 0.85 0.0056 462 50.42 82
50 50.91 50.10 1.58 0.0054 1,141 50.91 87
100 50.91 50.31 1.17 0.0048 4,761 50.91 106

4
30 63.35 63.16 0.30 0.0064 1,595 63.33 169
50 63.19 63.11 0.13 0.0063 3,644 63.19 211
100 63.46 63.42 0.07 0.0057 16,656 63.41 317

6
30 72.56 71.55 1.39 0.0071 1,663 72.34 208
50 72.04 71.46 0.81 0.0059 3,246 71.84 273
100 71.82 71.40 0.58 0.0050 12,165 71.73 474

8
30 78.91 78.49 0.52 0.0048 1,494 78.53 273
50 79.44 78.92 0.66 0.0045 2,908 79.01 374
100 79.12 78.69 0.54 0.0044 12,248 78.70 667
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tion. Using local search moves, we try to improve this initial solution. To evaluate the

performance of our heuristic, we compare 5 di�erent runs of exact optimization and the

heuristic results for 4 di�erent number of scenarios. Tables 5 and 6 show the performance

of the proposed heuristic in terms of running time and solution quality.

Table 5: Heuristic performance when (BEV,PHEV) = (1%,2%) when p = 6

Scenarios Exact (%) Exact (s) Heuristic (%) Heuristic (s) gap (%)

50

73.09 203 72.48 12 0.84
69.74 281 69.71 14 0.04
71.72 96 71.72 16 0.00
69.88 131 69.87 13 0.02
71.13 86 71.13 15 0.00

100

72.00 409 72.00 23 0.00
72.77 555 72.75 22 0.02
71.31 747 71.31 25 0.00
72.80 1,014 72.80 21 0.00
70.23 588 70.23 24 0.00

150

71.72 2,312 71.71 36 0.01
71.05 929 70.79 30 0.37
70.31 813 70.31 33 0.00
73.35 2,655 73.32 27 0.04
71.57 1,294 71.56 35 0.01

200

73.09 5,280 73.04 45 0.06
70.96 1,945 70.44 36 0.74
71.35 3,904 71.35 40 0.00
71.76 3,481 71.74 44 0.03
71.44 1,680 71.44 40 0.00

As shown in Tables 5 and 6, the average running time for the heuristic algorithm was

much less than the average running time of the exact algorithm (27 seconds versus 1420

seconds for p = 6 and 41 seconds versus 1336 seconds for p = 8). In addition, the results

indicate that the heuristic is capable of producing good quality solution in all cases. �e

gap of feasible solution obtained from the proposed heuristic is on average 0.11% for p = 6

and 0.51% for p = 8.
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Table 6: Heuristic performance when (BEV,PHEV) = (1%,2%) when p = 8

Scenarios Exact (%) Exact (s) Heuristic (%) Heuristic (s) gap (%)

50

77.44 259 77.37 196 0.08
78.30 133 78.09 20 0.27
81.42 113 80.77 17 0.80
79.04 201 78.65 18 0.49
81.45 116 80.54 15 1.12

100

78.74 546 78.31 32 0.54
76.99 810 76.99 38 0.00
78.97 1,083 78.67 33 0.38
81.73 413 80.69 33 1.27
78.15 534 78.13 31 0.02

150

78.62 1,276 78.37 48 0.31
79.14 909 78.80 44 0.42
79.71 1,958 79.15 48 0.71
78.50 1,194 78.34 53 0.20
79.63 803 79.11 54 0.65

200

78.41 1,784 78.16 67 0.32
79.14 2,710 78.75 67 0.50
80.01 3,873 79.44 70 0.72
79.43 4,128 78.93 67 0.63
79.44 3,876 78.78 62 0.84
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Figure 6: Comparison of exact running time vs. heuristic running time for a) p = 4 and
b) p = 8 cases when (BEV,PHEV) = (1%,2%).

2.5.4 Performance measures

Number of public chargers per capita could have a signi�cant e�ect on both BEV

market share and PHEV market share. In terms of monetary bene�ts for EV consumers,

the average of total bene�ts across 25 major metropolitan areas is around $2,800 per BEV

and $1,600 per PHEV [52]. In order to deal with uncertainties in demand for public EV

charging service and simulate the expected output measures with di�erent number of

chargers in the community, a set of 50 scenarios are generated and used for our analysis.

We study two di�erent cases for willingness to walk pa�ern in the community to generate

optimistic and pessimistic bounds for level of walking in people that have access to public

EV charging network. In the optimistic case, we assume that people are willing to walk

long distances and will always choose the farthest available charging station to their �nal

destination whereas in the pessimistic case people are willing to walk short distances and
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always choose the nearest available station to their building. Five di�erent indicators

are used to measure the performance of public EV charging placement: accessibility, lost

demand, charging utilization, total walking distance, and walking distance per capita.

Access is de�ned as the percentage of EV drivers that could charge their vehicles in public

charging stations in the community, and lost demand is the percentage of EV drivers that

are willing to use public EV network but there is not enough capacity to serve them.

Charging utilization is the percentage of time that a charging station is being used by an

EV. To assess walking pa�erns among people before network and a�er installing pubic EV

charging stations, we use total walking distance and walking distance per capita measures.

As shown in Figs. 7 and 8, accessibility to public charging service increases in both

cases of EV market share as more charging stations are installed in the community but

utilization level of these stations reduces simultaneously. Increase in EV market share

can reduce accessibility to public charging network up to 32% in both optimistic and pes-

simistic cases. However, this increase in demand will increase utilization level up to 41%

and lost demand up to 68%.

Figs. 9 and 10 compare the average percentage of hourly utilization level of charging

stations in weekdays versus weekends in an optimistic case of willingness to walk, and

indicate a di�erence in utilization pa�ern from weekday to weekend. Utilization peaks

around 8 in the morning during a weekday while it is around noon during weekend. �ese

pa�erns match the expected arrival pa�ern of people to the community in weekdays and

weekends. �ese plots also indicate that charging stations would not be fully utilized

as more charging stations are available for EV drivers. �is is important from revenue

perspective since utilization level is among the major drivers of pro�tability of investment

on public EV charging stations [22].

An important measure of livability analysis via transportation is increasing the travel

options so that people can meet at least a part of their travel needs through walking and
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Figure 7: Percentage of accessibility, lost demand and charging utilization in A) optimistic
and B) pessimistic cases when (BEV,PHEV) market shares are (1%,2%).
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Figure 8: Percentage of accessibility, lost demand and charging utilization in A) optimistic
and B) pessimistic cases when (BEV,PHEV) market shares are (2%,3%).



34

0

25

50

75

100

6A
M

7A
M

8A
M

9A
M

10
A

M

11
A

M

12
P

M

1P
M

2P
M

3P
M

4P
M

5P
M

Time

U
til

iz
at

io
n 

(%
)

Parking
3
7

A

0

25

50

75

100

6A
M

7A
M

8A
M

9A
M

10
A

M

11
A

M

12
P

M

1P
M

2P
M

3P
M

4P
M

5P
M

Time

U
til

iz
at

io
n 

(%
)

Parking
3
7

B

Figure 9: Average percentage of hourly utilization in A) weekdays and B) weekends in an
optimistic case when p = 2 and (BEV,PHEV) market shares are (1%,2%).
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Figure 10: Average percentage of hourly utilization in A) weekdays and B) weekends in
an optimistic case when p = 6 and (BEV,PHEV) market shares are (1%,2%).
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biking, and improve their health condition [54]. It has been estimated that a shi� from

driving to walking can save the average approximately 25c per vehicle-mile traveled and

50c under urban-peak condition, when emission and parking costs are high, in external

costs such as tra�c congestion, noise and air pollution [46]. Design of an e�ective EV

charging network can also provide opportunities for people in a community to increase

their level of physical activity.

Figs. 11 and 12 compare total walking distance and walking distance per capita among

people that have access to public EV charging service in the community before and a�er

installing charging stations. As mentioned earlier, two cases are evaluated, an optimistic

case where we assume that people will always choose the farthest available parking lot

and a pessimistic case where people will always choose the nearest available parking

lot for EV charging. �ese plots show that increasing number of charging stations in the

community can raise total walking distance and walking distance per capita among people

that have access to public EV charging stations up to 40% in an optimistic case. However,

the rate of increase in total walking distance and walking distance per capita decreases as

more charging stations are installed in the community. �is happens as people get closer

to the charging stations and their need to walk is reduced.

Another interesting aspect is the relationship between willingness to walk pa�ern and

access to charging stations as young and old communities are expected to have a di�erent

level of willingness to walk. Young people tend to walk more while elderly people are

not willing to walk long distances. Fig. 13 shows that if the average walking distance

preference drops to half, accessibility to public EV charging stations will reduce by 4.23%

and 1.32% when p = 4 and p = 6, respectively. However, if the average of willingness to

walk distribution is doubled, accessibility increases by 2.86% and 2.43% when p = 4 and

p = 6, respectively. �is provides an additional perspective for policy makers, and also

indicates the robustness of the model toward any change in willingness to walk pa�ern
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Figure 11: A) Total walking distance and B) walking distance per capita for people that
have access to public EV charging service when (BEV,PHEV) market shares are (1%,2%).
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Figure 12: A) Total walking distance and B) walking distance per capita for people that
have access to public EV charging service when (BEV,PHEV) market shares are (2%,3%).
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Figure 13: Accessibility for di�erent average of willingness to walk distribution when
(BEV,PHEV) market shares are (1%,2%).

in a community.

2.5.5 Value of stochastic solution

Value of stochastic solution was �rst introduced by [11], and is a standard means to

quantify the usefulness of stochastic programming approach. Let the objective value of

recourse problem be given as RP = EΩ[ϕ(x, z, ω)], and the expected value problem is

obtained by replacing all random variables in scenarios with their expected values, EV =

ϕ(x, z, ω̄), where ω̄ for the demand parameter will be
∑

ω∈Ω pωdγ(t),b,s(ω), pω representing

probability of occurrence for a scenario ω, and
∑

ω∈Ω pω = 1. Let x̄, z̄ represent solutions

for EV problem, then the expected result of using expected value solution (x̄, z̄), is given

as EEV = EΩ[ϕ(x̄, z̄, ω)]. �en, value of stochastic solution can be de�ned as V SS =

RP −EEV . For obtaining VSS, we used the same number of scenarios as in SAA results.

Based on �ve di�erent runs, Fig. 14 shows that using stochastic programming brings up

to 10.56% and 7.69% improvements in accessibility to public EV charging network when

EV market share is 3% and 5%, respectively.

2.6 Conclusion

In this paper, we have presented a two-stage stochastic programming model for pub-

lic EV charging station network design problem in a community. We considered several
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uncertainties such as total EV �ows, arrival time, dwell time, ba�ery SOC at the time of

arrival, charging preference of EV drivers and willingness to walk pa�erns in estimating

demand for public EV charging service. We used sample average approximation method,

and for be�er computational performance, we proposed an e�ective heuristic that can

solve large-scale problems and produce near optimal solutions. On a post analysis, our

model presented a number of insights about the design of public EV charging network in

an urban/community area. �e results show that increasing number of charging stations

in the community will improve accessibility to charging service for EV owners but will

reduce the utilization level of these stations. Although all charging stations have similar

demand pa�erns but increasing number of charging stations will increase the di�erence

among stations in terms of utilization. While having more charging stations in the com-

munity can potentially increase total walking distance and walking distance per capita

but the rate of increase in these measures decreases as we install more charging stations.

Our model also shows robustness toward any change in willingness to walk pa�ern of

community in the future. We suppose these analogies will provide be�er insights for a

policy maker. �ough we have used expected value function for the two-stage model,

it will be interesting to see the use of risk-measures for these strategic decisions in the

future.
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CHAPTER 3: MANAGING ACCESS TO PRIMARY
CARE CLINICS

3.1 Introduction

Today, one of the most important challenges confronting healthcare facilities is the

e�ective management of access for patients to outpatient care, especially primary care.

American Academy of Family physicians de�nes primary care as “the care provided by

physicians that are trained for comprehensive �rst contact and continuing care for pa-

tients with any undiagnosed sign, symptom, or health concern”. �ere is strong evidence

that patients in the U.S. o�en experience long waiting times to get appointments with

their primary care providers. �e average appointment delay to see a family physician

ranged from a relatively healthy average of 5 days in Dallas to 66 days in Boston during

2014 [3]. Figure 15 reports aggregate access to care for returning patients from all pri-

mary care clinics a�liated with each VA medical facility across the U.S. for the calendar

year 2013 as a function of realized appointment slot utilization. Slot utilization is de�ned

here as the percentage of provider appointment slots actually used for providing care as a

function of total number of available slots. Each data point in Figure 15 corresponds to a

single facility and reports annual average access to patients served by all the primary care

clinics a�liated with the facility. At the time, VA de�ned access as a binary measure based

on whether or not a returning patient has been provided an appointment within 14 days

of the patient’s ‘desired’ appointment date (for new patients, the time window starts with

call date). �is plot clearly shows that there is a wide variation in access among facilities.

�is is in spite of the fact that the reported measure is an aggregate measure across all

the primary care clinics of the facility, with some facilities carrying 20 to 25 primary care

clinics. At the same time, the slot utilization is less than 60% for vast majority of the facil-

ities. �e plot clearly suggests that access is not poor due to high slot utilization. Further
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investigation of these facilities and clinics by our team revealed that the reasons for poor

access can be a�ributed to poor and inconsistent appointment scheduling practices, high

patient “no show” rates, appointment cancellations by patients/clinics etc.
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Figure 15: Access to primary care for returning patients vs. slot utilization at VA facilities
nationwide in 2013. Color-coding refers to number of primary care patients cared for by
each facility.

Access to primary care is expected to improve patient health outcomes, reduce overall

healthcare costs, and increase health equality between population groups [2]. Analysis of

facility level data from 89 VA medical centers merged with patient level data from geriatric

outpatient clinics by Prentice et al. [61] revealed that long access delay has a signi�cant

impact on negative health outcomes such as mortality. Fahmy et al. [26] also found that

experiencing delay in ge�ing treatment is associated with adverse health outcomes in

patients with bladder cancer. Appointment delay can also lead to patient a�rition and

lost opportunity for e�ective treatment in patients with mental health condition [60].

On the other hand, access to care, quality of care and health service e�ciency are

interrelated as dimensions of healthcare system performance [1]. One approach to im-

proving the quality of health delivery process is to use patient �ow analysis [24]. Patient

�ow analysis typically involves measuring patient waiting times within the clinic as well
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as utilization for sta� and other resources. �e amount of time a patient waits to get an

appointment is generally referred to as ‘indirect’ waiting time and the amount of waiting

time experienced by the patient on the day of the appointment within the clinic to receive

care from the provider is referred to as ‘direct’ waiting time [33]. To some extent, one

can improve indirect waiting time by compromising direct waiting time (and vice versa)

by increasing slot utilization, employing over booking strategies (where multiple patients

are assigned to same appointment slots), and reducing appointment slot lengths.

Study by Wellstood et al. [76] con�rms that patient waiting time in primary care

clinic is the most important barrier in access to care for di�erent groups of patients. A

recent survey by So�ware Advice shows that more than 40% of patients are willing to

visit another physician to experience shorter wait times in the clinic. �is study also

shows that while 45% of the patients experience less than 15 minutes of direct waiting

time for the provider, some 15% of the patients are experiencing more than 30 minutes of

direct waiting time in the clinic [49]. Another study by Anderson et al. [6] shows that

around 25% of patients are experiencing more than 30 minutes of direct waiting time for

primary care. �eir results demonstrate that longer direct waiting times were associated

with lower patient satisfaction but it is moderated by service time with provider.

Institute of Medicine considers mismatched supply and demand as one of the causes

of delay in access to healthcare [38]. While demand for healthcare is expected to increase

by 29% from 2005 to 2025 due to population growth and aging, the number of adult pri-

mary care practitioners is estimated to grow only between 2% and 7% during the same

period [12]. Balancing supply and demand in healthcare environment is usually done

through appointment scheduling system. Appointment scheduling has been discussed ex-

tensively in the literature. However, prior research on outpatient appointment scheduling

has mostly focused on managing patient �ow inside the clinic through minimizing patient

direct waiting time and provider idle time and/or overtime. Very few articles studied the
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indirect waiting time that patients experience in ge�ing an appointment with their pri-

mary care provider [47]. Moreover, while most articles in the literature assume that pa-

tients call on the day that they want an appointment, data shows that many patients call

well in advance to make an appointment. �ese patients are called ‘routine’ as opposed

to patients that ask for ‘urgent’ or same day appointments. Figure 16 shows how soon

patients call and ask for an appointment within three di�erent VA primary care clinics in

the U.S. Midwest. Data from VA primary care clinics also shows that number of patients

that call during any particular day is stochastic in nature. Factors such as stochastic nurse

and provider service time by patient type, patient preference toward day and time of the

appointment, patient (un)punctuality, patient no-shows, and appointment cancellations

(by patient or clinic) bring about more uncertainties into appointment scheduling prob-

lem. Ignoring these uncertainties will result in scheduling policies that are sub-optimal

or infeasible in real clinical se�ings.
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Figure 16: Time (in days) between call date and desired date for patients in three di�erent
VA primary care clinics. Clinic names are coded.

�e main goal of this research is to address the gap between appointment scheduling

and patient �ow in primary care clinics to jointly improve both direct and indirect waiting
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times for patients. We propose a two-stage stochastic programming model that incorpo-

rates uncertainties in demand volume, patient call date, patient desired date, and patient

no-show in appointment scheduling to minimize indirect waiting time of patients while

accounting for clinic patient �ow objectives. In particular, the goal is to produce optimal

appointment scheduling ‘templates’ to be shared with the “call center” for scheduling of

patients. In most healthcare facilities, it is the call center that is responsible for taking

calls from patients seeking appointments and actual appointment scheduling. �e tem-

plates can be for a day or a week or a month and so on. �e call center is expected to

follow the guidance provided by the template in providing actual appointments. For ex-

ample, the template might suggest patients seeking annual ‘physical’ appointments be

given appointments between 8-10AM on any day of the week.

�e overall process is iterative. First, the two-stage stochastic programming model

employs a rolling planning/booking horizon and yields a scheduling template using the

supplied input parameters regarding supply and demand. As noted earlier, this template

determines the allocation of arising demand into di�erent days and appointment slots

based on “patient or appointment types” and resource availability during the booking

horizon. �e performance of the template in terms of clinic patient �ow is evaluated

through simulation (termed “short-term simulated feedback”; simulations here assume

that the scheduling template is fully populated with appointments). If the patient �ow

metrics are not satisfactory, additional constraints are added to the optimization model to

avoid certain (sub-)sequences within the optimal template and we re-optimize the model.

�e process is repeated until patient �ow metrics are satis�ed and the resulting template

is passed on to the call center for patient scheduling.

Over time, given the non-stationary nature of primary care (due to seasonal factors

and others), demand and supply processes can change. If so, these input parameters (e.g.,

appointment request call volumes, mix of appointment types etc) are updated at regular
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Figure 17: Appointment scheduling template optimization process

intervals or as necessary and the scheduling template is re-optimized. In addition, the

feedback from the simulated clinic patient �ow may not be fully representative of the

true patient �ow performance being achieved within the clinic. For this reason, the true

performance feedback from the clinic is also fed back (termed “true feedback”) to the

optimization model for improved performance over time. Figure 17 gives an overview of

this proposed approach to optimize the appointment scheduling template.

Main contributions of this study are as follows: 1) We propose a two-stage stochastic

programming approach to develop scheduling policies/templates for patients in primary

care by minimizing their indirect waiting time; 2) we employ simulation modeling to man-

age patient �ow in clinic by introducing sequencing rules that control patient waiting time

and provider idle time and/or overtime in clinic; 3) An index policy is proposed for ap-

pointment scheduling in call center considering several factors such as patient preference

for date and time of the appointment, and patient and clinic appointment cancellation.

�e proposed method is validated using data informed by the literature, VA clinics, as

well as synthetic experiments.
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3.2 Literature review

�ere is a rich body of health care operations management literature on outpatient

appointment scheduling and several methodologies such as operations research, queuing

theory and simulation have been used to solve these problems. However, most of prior

research has focused on proposing appointment scheduling systems to manage patient

�ow in clinic, and very few researchers addressed the problem of indirect waiting time of

patients.

3.2.1 Clinic patient �ow

Vast majority of articles in the literature have focused on minimizing patient direct

waiting time, provider idle time and/or overtime work in clinic.

Patient �ow measures: Muthuraman et al. [56] proposed a stochastic overbooking

model to optimize appointment scheduling in an outpatient clinic where patients have dif-

ferent probability of not showing up for their appointments based on their history. �eir

objective function captures patient waiting time, provider overtime and idle time. Zeng

et al. [81] formulated appointment scheduling to maximize clinic’s expected pro�t, con-

sisting of revenue from patients as well as cost of patient waiting and physician overtime

and idle time, when patients have di�erent no-show probabilities. �ey observed that per-

formance of scheduling practices using homogeneous overbooking models by the mean

value of show-up probabilities is not good enough. Chakraborty et al. [21] developed a

sequential scheduling algorithm to minimize total expected cost resulting from patient

waiting time and physician out-of-regular hour work. In their study, service time of each

patient is randomly distributed and every scheduled patient has a chance of not showing

up for the appointment. �ey showed that their model leads to higher pro�ts and less

overtime than the policies considering service periods pre-divided into slots.

No-show and overbooking: A major challenge that outpatient facilities are dealing
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with is the patient no-show problem. To mitigate the negative impact of no-shows on

scheduling practice, Laganga et al. [44] developed an appointment scheduling approach

considering overbooking to make a balance between patient waiting time and clinic over-

time. �ey concluded that it is impossible to draw general conclusions about constructing

overbooking schedules. Zacharias et al. [80] proposed an overbooking model to mitigate

the negative impact of patient no-show on clinic performance when patients have dif-

ferent no-show probabilities. �ey studied static and dynamic scheduling problems and

showed that no-show rate and patients’ heterogeneity in terms of not showing up have a

great negative impact on the scheduling process.

Patient choice: Among papers that studied appointment scheduling in outpatient

clinics, some have considered patient preferences in their modeling. � et al. [63] pro-

posed a Markov chain model to optimize appointment scheduling while considering pa-

tient choice. �ey assume that patients independently request appointments and when

their desired clinic is fully booked, they independently decide to make an appointment

later or seek care in other clinics. �ey also examined the e�ect of patient choice on physi-

cian productivity. Yan et al. [78] proposed sequential appointment scheduling policies to

balance clinic e�ciency and patient satisfaction considering patient choice and service

fairness. �eir objective is to maximize clinic pro�t that consists revenues from patients

and costs of patient waiting time and provider idle time and overtime.

What arises from all these studies is that they only considered patient �ow in outpa-

tient clinic. However in real applications, provider has to make a decision on the percent-

age of appointments in every day that is assigned to each patient type considering the

fact that many patients call and ask for an appointment well in advance while some other

ask for same-day appointments.
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3.2.2 Indirect waiting time

On the other hand, very few researchers have studied the patient indirect waiting time

problem in outpatient clinics.

Advanced access scheduling: Today, an increasing number of clinics are using ad-

vanced access or open-access system to reduce the indirect waiting time in primary care.

�e idea behind this policy is doing today’s work today, which means that patients are

given appointments in or near the day in which they want an appointment. Taking into

account that patients may cancel their appointment or do not show up for their visit, Liu

et al. [48] proposed a dynamic scheduling policy in an outpatient clinic. �eir �nding

shows that open access scheduling policy is performing be�er when demand rate is rela-

tively low. Dobson et al. [25] examined the e�ect of keeping some slots open for same-day

demand on two quality measures in primary care clinics: average number of same-day de-

mand that is not served during normal working hours and average number of non-urgent

patients in the queue. �ey demonstrated that encouraging non-urgent patients to call for

same-day appointment is an important factor in implementing advanced-access schedul-

ing system in primary care facilities. � et al. [62] demonstrated the percentage selection

for open appointments in an open access appointment system by using a mean-variance

approach. �eir results indicate that when both demand rate and no-show rate are high

for appointments reserved for routine patients, there are one or more Pareto optimal per-

centages of open appointments that decrease the variability in the number of patients

seen. Lee et al. [45] compared open-access scheduling policy with overbooking methods

in primary care facilities in terms of sta� overtime, patient waiting time, proportion of un-

met demand and capacity utilization. �ey concluded that although it has been reported

that open-access is performing well when supply and demand are in balance, overbook-

ing performs even be�er. In addition, if same-day demand is high, over 80%, overbooking
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outperforms open-access approach.

Patient choice: Patient choice is also important from indirect waiting time point of

view. Rubin et al. [64] investigated patient preference when making an appointment with

a general practitioner to describe the relationship between ge�ing an appointment sooner

and choice of time. �ey found that speed of access is of limited importance compared to

patient choice of appointment time and this is much true for patients who are employed.

Gupta et al. [34] developed a Markov decision process to manage access to appointment

slots when patients have di�erent choices between accepting a same-day appointment

and a future one. �ey provided optimal solutions in two cases in which clinic is ei-

ther a single-physician or multiple-physician one. Wang et al. [74] studied appointment

scheduling to optimize clinic revenue by �nding the optimal balance between number of

slots that should be remained for same-day demand and number of slots that can be �lled

by routine patients considering patient preferences toward physician of choice and time

of the appointment. �eir model is limited because they did the scheduling only for one

day and did not consider the interactions between multiple scheduling days.

Our work is more close to the research of Luo et al. [50] in which they developed a

Tandem �eue model to study the relationship between appointment queue and service

queue. �ey obtained various system performance measures such as server utilization and

long-run average appointment delay and service delay. �e main research question that

we are trying to address in this study is that how can primary care practices schedule pa-

tients so that patients experience minimum delay in ge�ing an appointment while patient

�ow in clinic is as smooth as possible? Our work is di�erent from above studies in several

important ways. First, we take into account indirect waiting time of patients that may call

in advance to book an appointment or ask for same-day appointment over planning hori-

zon T . Second, some patient �ow measures such as patient direct waiting time, provider

overtime and amount of lunch time that provider spends with patients resulted from the
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optimal sequence are being analyzed and considered in the optimization model. �e other

distinguishing feature of our study is that we explicitly consider patient no-show rate and

use overbooking to mitigate its negative impact on indirect waiting time of patients while

accounting for workload of primary care provider in terms of patient complexity in every

appointment slot and every scheduling session. We also include patient choice toward

appointment date and time in our call center simulation.

3.3 Problem description

A well-established appointment scheduling system will have direct positive e�ect on

patient satisfaction. In this research, without loss of generality, we study a primary care

outpatient clinic that is being managed by a single provider and capacity over the plan-

ning horizon is predetermined. In this clinic, there are 8 appointment slots with equal

length of 60 minutes every day and 40 di�erent sessions of length 4 hours in each month,

with 10 sessions per week (Monday through Friday, morning and a�ernoon). We focus on

single-day templates and the method can be readily extended to weekly and other tem-

plate se�ings. Patients may call in advance to book an appointment or ask for a same-day

appointment. Patients are only scheduled with their own primary care provider (PCP) so

that continuity of care, rate of patients within a panel that visit their own PCP, is ensured.

We assume that the available provider time could be divided into di�erent sets for di�er-

ent types of patients. Providing appropriate ratios of appointments to di�erent patient

types will ensure fairness among patients in terms of access to care.

Clinic might cancel appointments due to the lab result delay or absence of the provider.

However, these cancellations should be managed since it will increase patient dissatisfac-

tion, and sta� workload in the future. Patients may also cancel their appointment or

simply not show up for their visit. Overbooking is a means to mitigate the negative e�ect

of patient no-show on provider’s slot utilization. In this way, provider becomes certain
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that there is always a patient to visit. However, scheduling system should consider the

available resources, from exam rooms to number of sta�, in pu�ing several patients in

one appointment since overbooking several patients can increase patient direct waiting

time.

In this study, we assume that patient’s request cannot be denied. Otherwise, patient

will seek care in specialty care or emergency department that are more costly than pri-

mary care. Since the excess capacity that providers can add to the available capacity

through overtime is limited, our model needs to moderate the e�ect of capacity shortage

due to competing responsibilities of the provider, holidays and emergency closures on pa-

tient indirect waiting time. Complexity of our model also stems from the fact that patients

have di�erent preferences toward day of the appointment. �ere is always uncertainty

regarding number of patients that call every day in the planning horizon and their desired

date.

Our goal is to minimize indirect waiting time of patients by considering all avail-

able days in booking horizon of length T while accounting for patient �ow in clinic and

provider workload in every appointment slot and every scheduling session in terms of pa-

tient complexity. �ere is an in�nite time horizon, but a �nite rolling scheduling horizon.

We represent this problem as a two-stage stochastic programming where �rst-stage deci-

sion variables are determined before realization of uncertainties and second-stage decision

variables are determined a�er presenting scenarios that are representing uncertainties.

3.4 Model formulation

To formulate the access to care problem, we introduce a two-stage stochastic program-

ming model. We will consider uncertainties in demand volume, patient call date, patient

desired date and patient no-show rate in our model. First-stage decisions are made on the

number of di�erent patient types that can be scheduled in each appointment slot based
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on maximum tolerable patient complexity by provider in each appointment slot and each

scheduling session, and these decisions are exposed to uncertainties in the second-stage.

In the second-stage, patient allocation decisions are made in order to minimize total indi-

rect waiting time of patients to visit the primary care provider. �e output of two-stage

stochastic programming is a daily scheduling template for the booking horizon. Table 7

shows the notations that are used for the two-stage stochastic programming model.
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Table 7: Model Notation

Symbol Description
Sets:
R Set of patient types, indexed by r ∈ R
A Set of appointment slots, indexed by a ∈ A
S Set of sessions, indexed by s ∈ S
G Set of sequences in which patient �ow requirements are not met,

indexed by g ∈ G
D Set of days in the booking horizon, indexed by d ∈ D
Lr Set of number of patient type r that can be scheduled in every ap-

pointment slot, indexed by l ∈ Lr
Ω Set of scenarios, indexed by ω ∈ Ω
Model Parameters:
cr Average complexity of patient type r
κ Maximum acceptable patient complexity for each appointment slot
η Maximum acceptable patient complexity for each scheduling ses-

sion
pr Average no-show probability of patient type r
mr,l: Number of patients of type r, l ∈ Lr
ξr,a Number of scheduled patients of type r in appointment slot a
fr,d(ω) Number of patients of type r that asked for an appointment in day

d in scenario ω
First-stage Variables:
xr,a Number of patients of type r that can be scheduled in appointment

slot a
zr,a,l 1 if l patients of type r can be scheduled in appointment slot a; 0

otherwise;
Second-stage Variables:
yr,d,d′(ω) Percentage of patients of type r that asked for an appointment in

day d and are scheduled in day d′ in scenario ω
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First-stage problem can be presented as follows:

Min f(x, z) = E[ϕ(x, z, ω̃)] (20)

s.t.
∑
r∈R

crxr,a ≤ κ ∀a ∈ A (21)

∑
r∈R

∑
a∈s

crxr,a ≤ η ∀s ∈ S (22)

xr,a ≥ ξr,a ∀r ∈ R, a ∈ A (23)

xr,a =
∑
l∈Lr

mr,lzr,a,l ∀r ∈ R, a ∈ A (24)

∑
l∈Lr

zr,a,l = 1 ∀r ∈ R, a ∈ A (25)

∑
r,a,l∈g

zr,a,l ≤ |g| − 1 ∀g ∈ G (26)

xr,a ∈ Z+ ∀r ∈ R, a ∈ A, zr,a,l ∈ {0, 1} ∀r ∈ R, a ∈ A, l ∈ Lr (27)

where ϕ(x, z, ω̃) is the solution of the following second-stage problem:

Min ϕ(x, z, w) =
∑
r∈R

∑
d∈D

∑
d′∈D:d≤d′

wryr,d,d′(ω)fr,d(ω)[(d′ − d)(1+ε)] (28)

s.t.
∑

d∈D:d≤d′
(1− pr)yr,d,d′(ω)fr,d(ω) ≤

∑
a∈d′

xr,a(ω) ∀r ∈ R, d′ ∈ D (29)

∑
d′∈D:d≤d′

yr,d,d′(ω) = 1 ∀r ∈ R, d ∈ D (30)

yr,d,d′(ω) ≥ 0 ∀r ∈ R, d, d′ ∈ D : d ≤ d′ (31)

�e objective function minimizes expected delay of patients to get an appointment

with their own primary care provider. We de�ne the di�erence between desired date and

appointment date as a super-linear to consider fairness in assigning delays to di�erent

patients. First-stage decision variable xr,a determines the number of patients of type r

that can be scheduled in appointment slot a. Second-stage decision variable yr,d,d′ assigns

patients of type r that ask for an appointment in day d to day d′.
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Every primary care provider has a certain threshold in terms of patient complexity

that can be handled in every appointment slot and every scheduling session. Constraints

(21) and (22) make sure that total complexity of patients that are scheduled in every ap-

pointment slot and every session does not exceed the maximum patient complexity that

provider can handle in an appointment slot and a session, respectively. Constraints (23)

aims at keeping the template according to the number of each patient type that has already

been scheduled in every appointment slot. Constraints (24), (25) and (26) are sequencing

rule constraints that are added dynamically to the optimization model once clinic patient

�ow simulation �nds a certain sequence that does not meet patient �ow requirements.

Constraints (27) are non-negativity constraints. Constraints (29) make sure that there is

enough capacity in each day in the booking horizon for every patient type and constraints

(30) con�rm that no patient request is denied.

3.4.1 Clinic patient �ow simulation

�e proposed solution for appointment scheduling may have limited success in reality

if we only emphasize indirect waiting time and not considering patient �ow in clinic.

Simulation helps to include more complexities into the model. Patient direct waiting time,

amount of service spillover to provider lunch time, and provider overtime at the end of the

day are measured by patient �ow simulation inside the primary care clinic (as illustrated

in Figure 17). �e model assumes that nurse and provider are ready before start time of the

day. Without loss of generality, we model the patient �ow inside the clinic as consisting

of two stages: time with the nurse and time with the provider. Once patient walks into the

clinic, he/she will wait in the lobby for the nurse to become available. A�er being visited

by the nurse, patient waits in the exam room to meet the provider once the provider

is available. We assume that patients that are scheduled for a particular day have to be

served by the end of that day even if the provider has to work overtime to serve all patients.
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Patients are assumed not to leave the exam room until provider �nishes all required tasks.

Patients may arrive late for their appointments. By arriving late to the clinic, patients

may increase provider idle time and cause waiting time for succeeding patients to increase.

We assume that patients are called in the order of their arrival time. If patient arrives

on time, waiting time to visit the nurse is measured from actual scheduled time but if

the patient arrives late, waiting time to see the nurse would be measured from patient’s

arrival time.

3.4.2 Call center simulation

In the absence of an opportunity to implement the proposed method at primary care

clinics, we rely on simulated experiments to test the performance of the proposed method.

We simulate the call center where patients call and ask for an appointment or cancel

their current scheduled appointment. �e scheduler might also cancel an appointment on

behalf of the clinic.

We propose an index policy to simulate patient scheduling in call center. When a

patient requests an appointment, scheduler �nds patient’s desired date and calculates the

following index for each appointment slot from patient’s desired date on:

Ij = sj (32)

where sj is the remaining capacity in appointment slot j. �en, scheduler ranks appoint-

ment slots based on their index and starts o�ering patient an appointment until patient

accepts one. We simulate this process by generating a random number from U(0, 1) and

comparing it to an acceptance threshold. If the random number is higher than this thresh-

old, patient accepts the corresponding appointment slot. We repeat this process until pa-

tient accepts an appointment. Once the appointment is scheduled, it will not be changed

in the future.

Appointment cancellations are also handled in call center simulation. When a patient
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is scheduled, a random number is generated from U(0, 1) and if the random number is

less than the cancellation rate of the clinic, patient or clinic will cancel the appointment

before the appointment date. To determine the cancellation date, we generate a random

number between patient’s call date and actual appointment date. Once the cancellation

date arrives, appointment becomes canceled and patient is removed from the scheduling

grid.

3.4.3 Practical considerations

Unlike the literature, we used a be�er patient categorization process that represents

e�ectively the amount of time that provider needs to spend with each patient type. Since

provider service time follows a random distribution, we used average patient complexity

in order to schedule patients in an appointment slot based on maximum patient complex-

ity that provider can handle in one appointment slot and a scheduling session. In this

way, we make sure that complex visits are evenly distributed across the day (or by limit-

ing number of patients assigned to a slot) and provider has a balanced workload in every

appointment slot and every scheduling session. We also considered a reserved bu�er in

each scheduling session that could be used for administrative tasks or accommodating

urgent or walk-in visits.

In two-stage stochastic programming, patients could be assigned to appointment slots

or appointment days in the second-stage. Assigning patients into appointment slots has

this de�ciency that many demand parameters become one patient and having a continu-

ous assignment variable in the second-stage does not make sense. Since second-stage of

two-stage stochastic programming is more of a tactical planning, we combined demand

parameters for days so that we do not have continuous assignment problem anymore.

In clinic patient �ow simulation, we realized that if patients that are assigned one

appointment are scheduled to come at the same time, patient waiting time will arti�cially
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become higher. �erefore, we staggered visits by breaking each one hour slot into three

20 minute intervals (assuming 3 patients will be assigned to the slot). In addition, there are

two di�erent policies according which patients can be called in clinic. One policy is calling

patients based on their scheduled time and the other one is calling patients based on their

arrival time. Since simulation did not show any signi�cant di�erence between these two

policies, we assume that patients are being called based on their arrival time for visit.

Another important factor that has not been studied in the literature is that some providers

may ask for scheduling patients with lower complexity before the break between two

sessions so that they could have enough time for lunch. So in addition to common patient

�ow metrics, we considered the amount of time that provider spends with patients during

lunch break as a patient �ow indicator.

3.5 Performance measures

We study a wide range of performance measures in order to show the impact of our

appointment scheduling approach on patient and provider experience.

3.5.1 Indirect waiting time measures

�e main performance measures for patient indirect waiting time are indirect waiting

time distribution for all patients and each patient type and standard deviation of indirect

waiting time for all patients and each patient type. We report all quartiles of indirect wait-

ing time distribution in order to get a be�er picture of how much delay patients experience

to get an appointment with their provider. As suggested by Cayirli et al. [20], we use the

standard deviation of indirect waiting time as the fairness measure among patients.

3.5.2 Patient �ow measures

In order to represent the relationship between appointment scheduling and patient

�ow inside the clinic, we use three common performance measures. One performance

measure for patient �ow in clinic is patient direct waiting time. Patient direct waiting time
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includes waiting time in the lobby to see the nurse and waiting time in the exam room

to visit the provider. Other performance measures are service spillover to provider lunch

time and overtime work of the provider. Since we are using overbooking to both deal with

patient no-show problem and to provide service to more patients in a day, provider may

need to work overtime during lunch time and/or a�er regular hours to serve all scheduled

patients.

3.6 Numerical study

We performed a computational study to evaluate the performance of our proposed

two-stage stochastic programming model in patient appointment scheduling. Because

many factors play major role in real appointment scheduling se�ing, we chose a reasonable-

sized problem in order to provide insight for clinic operations and process improvement.

�e parameters for our base problem are represented in Table 8.

Table 8: Base problem parameters and se�ings

Maximum patient complexity that provider can handle in an appointment slot = 1
Maximum patient complexity that provider can handle in a session = 3.28
�reshold for patient acceptance of o�ered appointment slot = 0.2
Average no-show rate for all patient types = 18%
Average cancellation rate for all patient types = 16%
�reshold for patient direct waiting time = 30 minutes
�reshold for spillover amount to provider lunch time = 30 minutes
�reshold for provider overtime = 45 minutes
Percentile of patient �ow metric distributions in clinic patient �ow simulation = 80%
Number of weekly requests = Triangular distribution with parameters (70,85,100)
Patient arriving time distribution = N (−16.62, 27)
Booking horizon = 40 days
Planning horizon = 220 days

We used real data from a VA primary care clinic to estimate the number of weekly

requests, patient no-show probability, appointment cancellation probability, patient call

day (Monday through Friday) distribution, patient desired day (Monday through Friday)
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distribution and time between call date and desired date distribution.

By analyzing the National Ambulatory Medical Care Survey (NAMCS) for 2003, Yarnall

et al. [42] determined the distribution of time that family physicians spend to provide ser-

vice for di�erent types of patients: acute, chronic and preventive. Table 9 reports service

time with nurse and provider for each patient type along with the percentage of each

patient type in provider panel. Average complexity of each patient type is computed by

dividing average provider service time over the length of an appointment slot. We used

the empirical study by Oh et al. [57] to proportionate the amount of time that nurse

spends with patients of each type. As in Cayirli et al. [19], we assume that service time

with nurse and provider for each patient type follows a log-normal distribution.

Table 9: Service time with nurse and primary care provider

Visit Type (%) of Total Visits Time with Nurse (minutes) Time with Provider (minutes)
Acute 49.3 11.3 (8.3) 17.3 (8.7)

Chronic 36.1 12.6 (8.8) 19.3 (9.2)
Preventive 14.6 13.9 (11.3) 21.4 (11.8)

Patient unpunctuality for appointment is prevalent in outpatient clinics. By collect-

ing data from a primary health care clinic in New York metropolitan hospital and using

Kolmogorov-Smirnov test, Cayirli et al. [19] showed that a Gaussian distribution with

a mean of −16.62 minutes and standard deviation 27.07 minutes �ts the empirical dis-

tribution of patient arriving time to the clinic. Negative average means that patients on

average arrive earlier than the starting time of their appointment.

In our proposed appointment scheduling process, we consider three patient �ow met-

rics including patient direct waiting time, provider overtime at the end of the day and

amount of spillover into provider’s lunch hour and study their relationship with patient

indirect waiting time. Practices have di�erent standards for these performance measures.

As considered in Michael et al. [55], 30 minutes of direct waiting time is an acceptable
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threshold for patients in the clinic. �e thresholds for overtime and spillover are assumed

to be 45 and 30 minutes, respectively. In clinic patient �ow simulation, we �nd the dis-

tribution of patient direct waiting time, provider overtime and amount of spillover to

provider lunch time and if a certain quantile of any of these distributions become larger

than the speci�ed threshold, we add the corresponding constraints of the patient sequence

to the two-stage stochastic programming and re-optimize the model.

�e computational study is in four parts. In the �rst part, our aim is to show the trade-

o� between indirect waiting time and patient �ow in outpatient primary care clinic. �e

proposed model is solved considering various thresholds for patient �ow measures. In the

second part, we show how indirect waiting time changes if patients become more sensitive

to appointment delay and their show up probability reduces as they wait longer to visit

the provider. In the third part, we show the value of overbooking patients and how this

policy can impact on both indirect waiting time and patient �ow measures. �e fourth

part compares the cases where patients have di�erent thresholds to accept appointment

days and times that are being o�ered to them by the scheduler.

In order to show the e�ectiveness of the optimal sequence proposed by our appoint-

ment scheduling approach, we use two major sequencing rules that are proposed in the

literature. �e �rst rule is called SPT in which patients are scheduled in increasing or-

der of mean service times. LCVB is the second rule in which patients are scheduled in

increasing order of service time variability (low CV, σ/µ, in the beginning of the day)

[10].

�e model runs for 220 days and since the scheduling template is empty at the begin-

ning, all performance measures will be reported between day 100 and day 180 to make

sure that the system has reached a su�cient steady state. All computational studies were

implemented using Gurobi 6.5 as the solver on a computer running Windows 7 with 2.6

GHz of processing speed and 80 GB of RAM.
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Since su�cient number of scenarios to represent uncertainties in appointment schedul-

ing problem is unknown, we use Sample Average Approximation (SAA) method to �nd

this number. Because this problem is solved on a rolling horizon basis, we use SAA on

various days to �nd the most reliable number of scenarios. Figure 18 compares the gap

percentage between estimated upper bound and lower bound for three di�erent days in

the planning horizon. Since gap between upper and lower bounds is less than 5% for

all three days when the number of scenarios are 30, we select 30 scenarios as su�cient

number of scenarios for our analysis.
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Figure 18: Gap percentage between estimated upper and lower bounds of optimal objec-
tive value in the three di�erent days within planning horizon.

3.6.1 Trade-o� between indirect waiting time and patient �ow

By considering three di�erent quantiles, α of 75, 80 and 85% for patient �ow metric

distributions, Figure 19 compares the indirect waiting time distribution of our scheduling

approach with the same distribution of heuristic sequencing rules. �e higher the quan-

tile of patient �ow performance measure distributions, the more the clinic manager is

concerned about patient �ow in clinic. We expect that as practitioner becomes more con-

cerned about patient �ow, patients experience longer delays to get an appointment. �is

hypothesis is con�rmed by �gure 19 in which indirect waiting time distribution skews

to the le� as α increases. �is plot also shows the e�ectiveness of our scheduling ap-
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proach compared to the heuristic policies in which patients have to wait longer to get an

appointment.
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Figure 19: Indirect waiting time distribution for di�erent quantiles of patient �ow metrics.
62%, 60%, 58%, 21% and 20% of patients have no appointment delay with α of 75%, 80%,
85%, LCVB heuristic and SPT heuristic cases, respectively.

Table 10 represents the optimal daily templates under di�erent values of α for pa-

tient �ow metrics resulted from the two-stage stochastic programming and the heuristic

scheduling templates. In this template, ’A’, ’C’ and ’P’ stand for acute, chronic and pre-

ventive patient types, respectively.

Table 10: Optimal and heuristic daily templates

Slot α = 75% α = 80% α = 85% SPT LCVB
1 A,C,P A,C,P A,C,P A,A,A C,C,C
2 A,C,P A,C,P C,P A,A,A C,C,C
3 A,C,P A,C,P A,A,C A,A,A A,C
4 A P A,C C,A A,A,A
5 A,C,P A,A,C A,C,P C,C,C A,A,A
6 A,C A,A,C A,C,P C,C,C A,A,A
7 A,A,C A,C A,C P,P P,P
8 A,C A,C A,A P P

Figures 20, 22 and 23 represent the patient �ow metrics as level of concern about
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patient �ow in clinic changes. Although di�erence between patient direct waiting time,

amount of spillover to provider lunch time and provider overtime distributions is not

signi�cant for di�erent values of α in Figures 20, 22 and 23, these distributions are very

di�erent from the ones resulted from heuristic scheduling approach. �ese plots show

that patients will experience lower appointment delay and direct waiting time under our

appointment scheduling approach. Amount of spillover to provider lunch time would be

lower and provider needs less amount of time to work beyond regular hours to serve all

patients in a day.
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Figure 20: Direct waiting time distribution for di�erent quantiles of patient �ow metrics.
64%, 61%, 64%, 49% and 47% of patients do not wait in clinic in α of 75%, 80%, 85%, LCVB
heuristic and SPT heuristic cases, respectively.

Another performance measure for appointment delay is the standard deviation of de-

lay among patients. Standard deviation of appointment delay shows how fair the schedul-

ing system treats patients in assigning appointment to them based on their desired date.

Figure 21 shows that our appointment scheduling policy treats fairer than heuristics in

assigning delay to patients.
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Figure 21: Standard deviation of indirect waiting time for di�erent scheduling approaches.
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Figure 22: Amount of spillover to provider lunch hour distribution for di�erent quantiles
of patient �ow metrics. In 84%, 92%, 82%, 46% and 70% of days, provider does not need to
work during lunch time in α of 75%, 80%, 85%, LCVB heuristic and SPT heuristic cases,
respectively.
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Figure 23: Provider overtime work distribution for di�erent quantiles of patient �ow met-
rics. In 89%, 70%, 74%, 87% and 87% of days, provider does not need to work overtime in
α of 75%, 80%, 85%, LCVB heuristic and SPT heuristic cases, respectively.

3.6.2 No-show behavior

Researchers o�en assume that patient no-show probability remains constant and does

not depend on patient appointment delay. However, evidence suggest that there is higher

chance that patient does not show up if appointment delay becomes longer [28] [30].

�ree di�erent functions are proposed in the literature by Kopach et al. [41], Galluci

et al. [30] and Green and Savin [32] to show the relationship between appointment delay

and patient show-up probability:

pj =


1− p ∗ (1− 0.5 ∗ e−0.017j)

1− (0.51− 0.36 ∗ e−j/9)

1− (0.31− 0.3 ∗ e−j/50)

where j represents appointment delay and p is the estimated patient no-show probability

in the function proposed by Kopach et al. [41]. We assume that p is equal to the average

no-show probability in our study. Figure 24 shows the sensitivity of patients to appoint-

ment delay under these functions. �is plot clearly shows that patients are more sensitive
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to appointment delay under function proposed by Galluci et al. [30] and there is lower

chance that they show up for their appointment. Figure 25 shows that as patients become

more sensitive to appointment delay and their show-up probability reduces faster, the

model tries to schedule patients near their desired date in order to lower their appoint-

ment delay.
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Figure 24: Patient show up probabilities
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Figure 25: Indirect waiting time distribution under three di�erent delay-dependent no-
show function.

Table 11 compares the optimal scheduling templates under di�erent behavior of pa-

tients to appointment delay.
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Table 11: Optimal daily templates under di�erent delay sensitivity of patient show-up
probability

Slot Kopach et al. [41] Galluci et al. [30] Green and Savin [32]
1 A,C,P A,C,P A,C,P
2 A,C A,C,P A,C,P
3 A,A,C C,P C,P
4 A,P A,C A,C
5 A,C,P A,A,P A,C
6 A,C A,C A,A,P
7 C,C,P A,A,C A,C
8 A,A A,C A,A,C

3.6.3 Value of overbooking

We have considered a maximum patient complexity that provider can handle in ev-

ery appointment slot and every scheduling session. In this way, provider will have a

balanced workload for the entire working day. Not using all provider capacity in every

scheduling session will provide this opportunity to schedule some urgent walk-in patients

between scheduled ones or do any administrative task during the idle time. On the other

hand, scheduling more patients in a session will give this opportunity to patients to get

an appointment sooner but it may result in higher patient direct waiting time, amount of

spillover to provider lunch time and overtime work of the provider in clinic. Table 12 pro-

vides the optimal daily sequencing rules under di�erent policies for overbooking patients

in a session.

As Figure 26 shows, scheduling more complex patients in a session, even when the

maximum slot complexity remains constant, can have signi�cant e�ect on patient ap-

pointment delay. Figures 27 and 28 show that this increase in session maximum complex-

ity will not change patient direct waiting time and spillover amount to provider lunch

time but according to Figure 29, it will cost the provider to work more a�er regular hours

to serve all scheduled patients.
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Table 12: Optimal daily templates for di�erent values of slot and session maximum com-
plexity

Slot (Slot = 1, Session = 2.7) (Slot = 1, Session = 3) (Slot = 1, Session = 3.28)
1 C,P A,A,C A,C,P
2 C,P A,A,A A,C,P
3 A,P A,P A,C,P
4 A,C A,A P
5 A,A,C C,P A,A,C
6 A,A C,C,P A,A,C
7 A,C C,C A,C
8 A,C C,P A,C
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Figure 26: Indirect waiting time distribution for di�erent values of maximum slot and
session complexity.
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Figure 27: Direct waiting time distribution for di�erent values of maximum slot and ses-
sion complexity. 67%, 62% and 61% of patients do not wait in clinic in (1,2.7), (1,3) and
(1,3.28) of appointment slot and scheduling session complexities, respectively.
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Figure 28: Amount of spillover to provider lunch hour distribution for di�erent values of
maximum slot and session complexity. In 81%, 82% and 94% days, provider does not need
to work during lunch time in (1,2.7), (1,3) and (1,3.28) of appointment slot and scheduling
session complexities, respectively.
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Figure 29: Provider overtime work distribution for di�erent values of maximum slot and
session complexity. In 77%, 95% and 70% of days, provider does not need to work over-
time in (1,2.7), (1,3) and (1,3.28) of appointment slot and scheduling session complexities,
respectively.

3.6.4 Patient ‘toughness’ with appointment slot timing

Patients might show di�erent behavior when they are in contact with the scheduler

to make an appointment. Once the scheduler realizes patient’s desired date, she will start

o�ering di�erent appointment slots to patient. Some reasons such as employment or need

for certain transportation might make patients more concerned about time and day of the

appointment.

As expected, Figure 30 shows that if patients become tougher in accepting an appoint-

ment that is o�ered by the scheduler, appointment delay becomes longer for patients in

the panel. However, our model, as well as heuristic sequences, shows a robust perfor-

mance in terms of patient indirect waiting time distribution when patients show di�erent

behavior in appointment acceptance. Table 13 represents the optimal daily templates un-

der di�erent patient appointment acceptance thresholds.
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Figure 30: Indirect waiting time distribution for 0.2 (le�), 0.4 (middle) and 0.6 (right) as
appointment acceptance threshold.

Table 13: Optimal daily templates under di�erent values of patient appointment accep-
tance threshold

Slot Acceptance �reshold = 0.2 Acceptance �reshold = 0.4 Acceptance �reshold = 0.6
1 A,C,P A,C,P A,C
2 A,C,P A,A,C A,C,P
3 A,C,P A,C A,A,C
4 P C,P C,P
5 A,A,C A,A,C A,A
6 A,A,C A,P A,C,P
7 A,C A,C,P A,C
8 A,C A,C A,C,P
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3.7 Conclusion

Although primary care is considered as the �rst contact point of patients with health-

care system, patients o�en have to wait long to visit their provider. A well established

appointment scheduling system could help clinics to reduce patient indirect waiting time

and improve patient �ow in clinic.

Clinic managers have to handle multiple issues in patient appointment scheduling.

While patients have di�erent intentions to see the primary care provider and could have

di�erent complexities, they are also di�erent in terms of call date and desired date and

may not show up for their scheduled appointment. Some patients may call in advance to

book an appointment whereas others ask for same-day one. �is study examines the ap-

pointment scheduling problem by proposing a two-stage stochastic programming model

in order to minimize patient indirect waiting time in ge�ing an appointment while main-

taining patient �ow as smooth as possible inside clinic.

�e numerical study shows the superiority of our proposed approach over heuristic

approaches in patient appointment scheduling and lowering patient indirect waiting time

as well as smoothing patient �ow in clinic. Our model also shows a be�er performance in

various cases when patient no-show is sensitive to appointment delay, patients become

tougher in accepting appointment slots and provider is able to see more complex patients

in every scheduling session.

While the two-stage stochastic programming model is o�ering a daily scheduling tem-

plate, it could sometimes perform in favor of one patient type and result in longer appoint-

ment delay for other patient types. So an important direction for future research would

be studying more �exible scheduling templates such as weekly or monthly template and

comparing their performance with optimal daily scheduling template. Currently, opti-

mal scheduling template only guides the scheduler on the number of patients of each
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patient type that could be scheduled in every appointment slot. An important question

that could be answered in future research is that when should the scheduler start o�ering

every open appointment slot to each patient type? We also studied the expected value of

patient indirect waiting time in this research. However, some patients may still experi-

ence long appointment delay in this se�ing. It would be interesting to see how including

risk-measures in the objective function will perform in terms of patient indirect waiting

time and clinic patient �ow.
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CHAPTER 4: CONCLUSION AND FUTURE RESEARCH

As state in the introduction, in an a�empt to improve the practicality of mathematical

programming models and contribute to their adoption in the real-world, this dissertation

contributes two original essays highlighting the contribution that stochastic program-

ming can o�er in solving important practical problems of interest to operations research.

We do this with the recognition that stochastic programming, in considering uncertainty

in mathematical modeling, o�en leads to large-scale programming problems. However,

advances made in recent decades by algorithms in optimization so�ware combined with

advances in computing hardware allow us to tackle problems of greater complexity to

provide meaningful solutions and decision support for the real-world.

We now present a summary of our research along with contributions and discuss di-

rections of future research.

4.1 Summary

4.1.1 Designing Community-Aware Charging Network for Electric Vehicles

We studied the problem of designing a public charging infrastructure for electric vehi-

cles in a community. Evidence shows that providing more charging service will increase

EV owner’s con�dence in driving long distances with an EV and help promoting EV mar-

ket share in the community. �e presence of uncertainties in EV market share, daily

arriving demand, arrival time to the community, state of ba�ery charge at the time of ar-

rival, dwell time at �nal destination, driver’s preference to use public charging service and

willingness to walk of driver bring complexities in designing this network. Incorporating

these uncertainties, we proposed a two-stage stochastic programming model in order to

�nd the location, number of chargers and level of charge for installing public EV charg-

ing stations. We adopted sample average approximation method to solve the two-stage
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stochastic model and developed an e�ective heuristic to solve large-scale problems.

Our model showed the interaction between access to EV charging service, utilization

rate of charging stations and amount of change in walking distance of people in commu-

nity for di�erent number of charging stations in the community. We also showed that the

model is robust towards any change in willingness to walk among people in the commu-

nity.

4.1.2 Managing Access to Primary Care Clinics

We studied the problem of patient appointment scheduling in an outpatient primary

care clinic se�ing in order to improve patient appointment delay while maintaining high

utilization rate of sta� and resources and considering patient �ow in clinic. Uncertainties

in demand volume, patient call date, patient desired date, patient no-show and patient

service time with nurse and provide bring complexities to appointment scheduling prob-

lem. We proposed a two-stage stochastic programming model in order to provide a daily

scheduling template that minimizes patient indirect waiting time in primary care clinics

while maintain a smooth patient �ow inside clinic and high utilization rate of provider

capacity. We suggested an index policy to simulate patient appointment scheduling in

call center by considering patient preference for day and time of the appointment and

appointment cancellation by patient and by clinic.

Our numerical study showed the superior performance of our appointment schedul-

ing approach over heuristic scheduling in terms of patient indirect waiting time and pa-

tient �ow measures including patient direct waiting time, amount of time that provider

spends with patients during lunch hour and amount of provider overtime work a�er reg-

ular hours. �e study showed that if patients become more sensitive to appointment delay

and their show up probability reduces as appointment delay increases, the model tries to

schedule patients near to their desired date. Value of overbooking more patients in every
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scheduling session was investigated through assigning di�erent values to maximum pa-

tient complexity that provider can handle in a session. Our model also illustrated a robust

performance in appointment scheduling as patients show di�erent behavior in accepting

appointment slots.

4.2 Future research

In the case of the EV charging network design problem, the solution might not be

implementable due to the assumption of centralized decision making. However, its solu-

tion serves as a reference point for evaluating existing and future network designs. More

importantly, our model could be used to design incentive mechanism for charging station

operators to make their location decision. In future research, we will develop an incentive

allocation model which will optimize the allocation of incentive resources across multiple

charging stations to in�uence their locations to come as close as possible to that of the

centralized solution. Another avenue for future research is the inclusion of multi-modal

transportation in the model and studying its impact on the optimal design of EV charging

network.

While our appointment scheduling approach performs very well in reducing patient

indirect waiting time and maintaining smooth patient �ow, there are some important

questions that can be answered in future research. Currently, we run the optimization

model every day to �nd the optimal scheduling template but daily updating scheduling

template might not be optimal. Finding the optimal time to re-optimizing the two-stage

stochastic programming model is an important avenue of research. Moreover, while the

two-stage stochastic programming model provides guidance on the number of patient for

each patient type that can be scheduled in every appointment slot, it does not say any-

thing about the optimal time of o�ering every open appointment slot to di�erent patient

types. Finding this optimal time could also result in be�er performance in patient indirect
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waiting time. Behavioral aspects of providing care by physician at di�erent times of a day

to di�erent patient types and also the behavior of call center scheduler in o�ering open

slots to patients seeking an appointment are other issues that can be incorporated in the

appointment scheduling model.

In both studies, we only considered expected value of the objective function. An-

other avenue for future research is including risk-measures such CVaR and absolute semi-

deviation in the objective function of two-stage stochastic programming.
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Deterministic mathematical modeling is a branch of optimization that deals with de-

cision making in real-world problems. While deterministic models assume that data and

parameters are known, these numbers are o�en unknown in the real world applications.

�e presence of uncertainty in decision making can make the optimal solution of a deter-

ministic model infeasible or sub-optimal. On the other hand, stochastic programming ap-

proach assumes that parameters and coe�cients are unknown and only their probability

distribution can be estimated. Stochastic programming can include uncertainties in objec-

tive function of random variables and/or constraints. Stochastic programming has seen a

growing range of applications in manufacturing production planning, machine schedul-

ing, dairy farm expansion planning, asset liability management, tra�c management, and

automobile dealership inventory management that involve uncertainty in decision mak-

ing. �e most widely used stochastic programming approach is the two-stage stochastic
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programming models. In this model, �rst-stage decision variables are determined be-

fore observing the realization of uncertainties and second-stage decision variables are se-

lected a�er exposing �rst-stage variables into the uncertainties. �e goal is to determine

the value of �rst-stage decisions in a way to maximize (minimize) the expected value of

second-stage objective function. In an a�empt to improve the practicality of mathematical

programming models and contribute to their adoption in the real-world, this dissertation

contributes two original essays highlighting the contribution that stochastic program-

ming can o�er in solving important practical problems of interest to operations research.

In the �rst essay, We study the problem of designing a charging infrastructure for

electric vehicles in an urban area. Electric vehicles (EVs) are a�racting more and more

a�entions these days due to increase concern about global warming and future shortage

of fossil fuels. �ese vehicles have potential to reduce greenhouse gas emissions, improve

public health condition by reducing air pollution and improving sustainability, and ad-

dress diversi�cation of transportation energy feedstock.

Governments and policy makers have proposed two types of policy incentives in order

to encourage consumers to buy an EV: direct incentives and indirect incentives. Direct

incentives are those that have direct monetary value to consumers and include purchase

subsidies, license tax/fee reductions, Electric Vehicle Supply Equipment (EVSE) �nanc-

ing, free electricity, free parking and emission test exemptions. On the other hand, indi-

rect incentives are the ones that do not have direct monetary value and consist of high-

occupancy vehicle access, emissions testing exemption time savings, and public charger
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availability. Lack of access to public charging network is a major barrier in adoption of

EVs. Access to public charging infrastructure will provide con�dence for EV owners to

drive longer distances without going out of charge and encourage EV ownership in the

community.

�e current challenge for policy makers and city planners in installing public charging

infrastructure is determining the location of these charging service stations, number of

required stations and level of charging since the technology is still in its infancy and the

installation cost is high. Since recharging of EV ba�ery takes more time than refueling

conventional vehicles, parking lots and garages are considered as potential locations for

installing charging stations. �e aim of this research is to develop a mathematical pro-

gramming model to �nd the optimal locations with potentially high utilization rate for

installing community-aware public EV charging infrastructure in order to improve acces-

sibility to charging service and community livability metrics. In designing this charging

network, uncertainties such as EV market share, state of ba�ery charge at the time of ar-

rival, driver’s willingness to charge EV away from home, arrival time to �nal destination,

driver’s activity duration (parking duration), and driver’s walking distance preference

play major role. Incorporating these uncertainties in the model, we propose a two-stage

stochastic programming approach to determine the location and capacity of public EV

charging network in a community.

In the second essay, We study access to care problem in outpatient primary care clinics.

Patient access to care along with healthcare e�ciency and quality of service are dimen-
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sions of health system performance measurement. Improving access to primary care is a

major step of having a high-performing healthcare system. However, many patients are

struggling to get an in-time appointment with their own primary care provider (PCP).

Even two years a�er health insurance coverage was expanded, new patients have to wait

82% longer to get an internal-medicine appointment. A national survey shows that per-

centage of patients that need urgent care and could not get an appointment increased from

53% to 57% between 2006 and 2011. �is delay may negatively impact patient health sta-

tus and may even lead to death. Patients that cannot get an appointment with their PCP

may seek care with other providers or in emergency departments which will decrease

continuity of care and increase total cost of health system.

�e main issue behind access problem is the imbalance between provider capacity

and patient demand. While provider panel size is already large, the shortage in primary

care providers and increasing number of patients mean that providers have to increase

their panel size and serve more patients which will potentially lead to lower access to

primary care. �e ratio of adult primary care providers to population is expected to drop

by 9% between 2005 and 2020. Moreover, patient �ow analysis can increase e�ciency of

healthcare system and quality of health service by increasing patient and provider sat-

isfaction through be�er resource allocation and utilization. E�ective resource allocation

will smooth patient �ow and reduce waste which will in turn result in be�er access to

care.

One way to control patient �ow in clinic is managing appointment supply through
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appointment scheduling system. A well-designed appointment scheduling system can de-

crease appointment delay and waiting time in clinic for patients and idle time and/or over-

time for provider simultaneously and increase their satisfaction. Appointment scheduling

requires to make a balance between patient needs and facility resources. �e purpose of

this study is to develop appointment scheduling model using two-stage stochastic pro-

gramming to improve access to care while maintaining high levels of provider capacity

utilization and improving patient �ow in clinic by leveraging uncertainties in patient de-

mand volume, patient no-show, nurse service time and provider service time.
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