
Wayne State University

Wayne State University Dissertations

1-1-2017

Data Placement And Task Mapping Optimization
For Big Data Workflows In The Cloud
Mahdi Ebrahimi
Wayne State University,

Follow this and additional works at: https://digitalcommons.wayne.edu/oa_dissertations

Part of the Computer Engineering Commons

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in
Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Ebrahimi, Mahdi, "Data Placement And Task Mapping Optimization For Big Data Workflows In The Cloud" (2017). Wayne State
University Dissertations. 1799.
https://digitalcommons.wayne.edu/oa_dissertations/1799

http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1799&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1799&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1799&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1799&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1799&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/oa_dissertations/1799?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1799&utm_medium=PDF&utm_campaign=PDFCoverPages

DATA PLACEMENT AND TASK MAPPING OPTIMIZATION
FOR BIG DATA WORKFLOWS IN THE CLOUD

by

MAHDI EBRAHIMI

DISSERTATION

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

 2017

 MAJOR: COMPUTER ENGINEERING

 Approved By:

Advisor Date

©COPYRIGHT BY

MAHDI EBRAHIMI

2017

All Rights Reserved

ii

ACKNOWLEDGEMENTS
First and foremost, I would like to express my gratitude to Allah (God) for

providing me the blessings to complete my Ph.D. studies. I would also like to

express my deepest sense of gratitude to my advisors Dr. Shiyong Lu and Dr. Song

Jiang. My sincere thanks goes to Dr. Lu for his patient supervision, generous

encouragement and excellent advice throughout my years at Wayne State

University. I have also benefited tremendously from his wisdom towards life in

general. His guidance helped me in all the time of research and teaching. I could

not have imagined having a better advisor and mentor for my Ph.D. studies.

Besides my advisors, I would like to thank the rest of my dissertation

committee members: Dr. Alexander Kotov, Dr. Fengwei Zhang and Dr. Caisheng

Wang, for providing their insightful comments, suggestions and encouragements.

I would also like to thank Dr. Farshad Fotouhi, Dr. Loren Schwiebert and

Dr. Robert Reynolds for their encouragements and supports during my Ph.D.

studies. I would also like to thank the Testing, Evaluation and Research Services

Office at Wayne State University for providing me the Graduate Student Assistant

position and finically supporting me to continue my education toward Ph.D. I

would also like to thank my bright colleagues from the Big Data Research

Laboratory. I would like to express my deep appreciation to Dr. Aravind Mohan

for the strong collaboration and friendship that has resulted in several research

publications. It is great privilege to work with Dr. Mohan, as he leaded the

implementation of the DATAVIEW big data workflow management system.

iii

Further, our collaboration has helped me to develop this dissertation work.

I am especially thankful to my lovely wife who has been incredibly

supportive throughout my studies. My deep gratitude goes to my loving parents,

my sister, my brothers and my entire family in Iran.

iv

TABLE OF CONTENTS
ACKNOWLEDGEMENTS ... II

1 INTRODUCTION .. 1

2 RELATED WORK ... 6

2.1 Big Data .. 6

2.2 Data-centric Workflows vs. Business Workflows 8

2.3 Big Data Workflows ... 10

2.4 Data and Task Placement in Workflows ... 13

2.5 Workflow Scheduling ... 16

3 DATA PLACEMENT IN BIG DATA WORKFLOWS................................ 19

3.1 Introduction ... 19

3.2 Workflow Data Placement Model... 20

3.3 Workflow Data Placement Algorithm-BDAP .. 31

3.4 Experiments and Discussion ... 35

3.4.1 Simulation Setting ... 36

3.4.2 Results ... 38

3.5 Data Placement Algorithm in DATAVIEW ... 41

4 TASK PLACEMENT IN BIG DATA WORKFLOWS 44

4.1 Introduction ... 44

4.2 Workflow Task Placement Model .. 47

v

4.3 Workflow Task Placement Algorithm-TPS .. 53

4.4 Experiment and Case Study .. 55

4.4.1 Case Study ... 55

4.4.2 Implementation .. 58

4.4.3 Results ... 60

5 TASK SCHEDULING IN BIG DATA WORKFLOWS 62

5.1 Introduction ... 62

5.2 System Model ... 64

5.3 The BORRIS Algorithm ... 72

5.4 Experimental Results .. 78

5.4.1 Performance Evaluation .. 78

5.4.2 Results and Analysis .. 80

6 CONCLUSIONS AND FUTURE WORK.. 83

APPENDIX A: SUPPORT VECTOR MACHINE (SVM) P-WORKFLOW 88

Workflow Specification.. 88

Workflow Java Source Code .. 89

APPENDIX B: RANDOM FOREST P-WORKFLOW ... 92

Workflow Specification.. 92

Workflow Java Source Code .. 93

APPENDIX C: BAYESIAN NETWORK P-WORKFLOW.................................. 96

vi

Workflow Specification.. 96

Workflow Java Source Code .. 97

REFERENCES ... 99

ABSTRACT .. 114

AUTOBIOGRAPHICAL STATEMENT .. 116

vii

LIST OF TABLES
Table 3-1 Symbols and notations. ... 25

Table 3-2 Description of dataset and virtual machine of the experiment. 38

Table 3-3 Default setting for the BDAP algorithm. .. 38

Table 3-4 Some results of the BDAP running. ... 43

Table 4-1 Description of Task and virtual machine of the experiment. 57

Table 4-2 Default setting for the TPS algorithm. ... 57

Table 4-3 Some results of applying the TPS for the execution of workflow in Example1.
... 59

Table 4-4 OpenXC workflow of one car driver running in DATAVIEW. 60

Table 5-1 a) Cloud resource catoulge, b) Task computation cost c) Data communication
cost, d) Initial budget allocation and e) Final budget allocation. 75

Table 5-2 Workload details for OpenXC workflow. .. 80

viii

LIST OF FIGURES
Figure 2-1 Five V’s of Big Data. .. 7

Figure 2-2 Architecture for DATAVIEW as a Big Data Workflow Management
System. .. 11

Figure 3-1 A workflow with five tasks t1, t2, t3, t4, t5 and five datasets
d1, d2, d3, d4, d5. The output of task ti is denoted by d’i. The input datasets of task t1
are d1, d3, t2 are d′1, d2, d3, t3 are d′1, d2, d4, t4 are d′2, d′3, d2, d4, d5 and t5are
d′4, d5. .. 22

Figure 3-2 A virtual machine configuration in the Cloud with three virtual machines for
workflow of Example I. Datasets d1, d3 and tasks t1, t2 were placed and assigned in
VM1. Datasets d2, d4 and tasks t3, t4 were placed and assigned in VM2. Similarly,
dataset d5 and tasks t5 was placed and assigned in VM3. .. 24

Figure 3-3 Flowchart of BDAP. .. 32

Figure 3-4 The structure of five realistic data-centric workflows [48]. 37

Figure 3-5 Workflow Communication Cost by varying the number of datasets. 39

Figure 3-6 Workflow Communication Cost by varying the number of virtual
machines………………………………………………………………………...……40

Figure 3-7 Workflow Communication Cost by varying the percentages of fixed-
location datasets and for fixed number of workflow nodes, 1000, and datacenters, 50..41

Figure 4-1 a) Workflow of Example 1 b) Data placement c) Task placement. 46

Figure 4-2 OpenXC Workflow for Comparing Three Car Drivers. 58

Figure 4-3 Workflow Communication Cost (hours) by varying the number of workflow
tasks…………………………………………………………………………………..61

Figure 4-4 Workflow Communication Cost (hours) by varying the number of virtual
machines……………………………………………………………………………...61

Figure 5-1 BORRIS flowchart. ... 72

Figure 5-2 Workflow example with seven tasks and ten data dependencies. 74

Figure 5-3 a) Resource utilization; b) Execution cost minimization. 81

1

1 INTRODUCTION
A workflow loosely use to define a sequence of connected either single-

step or multiple-step tasks as long with their dependencies to model and

computerize business processes. Workflow task is a description of the activity of

an individual person or team within an organization or independently. Task

dependency illustrates the flow of product or file that is transferred from one task

to another task to complete the process. Although workflow technology rooted

back to 1970s and mostly used for business processes, data-centric workflow

proposed by Vouk et al., in 1996 [1] for solving scientific research problems by

applying workflow techniques. Since then and with the advancement of IT

technology and e-science, data-centric workflow turns into an essential

technology for scientists and researchers to explore and test their hypothesis.

Data-centric workflows are formal description of scientific processes to

represents and computerizes the scientific computational steps that scientists

design to verify their scientific hypothesis [2, 3]. Data-centric workflows have

been extensively employed in various data-intensive scientific areas such as

bioinformatics, physics, astronomy, ecology and earthquake science [4]. They

are usually modeled as directed acyclic graphs (DAGs) such that workflow tasks

are represented by graph nodes and the data flow among tasks are represented

by graph vertices. The direction of vertices shows the flow of the data among

tasks. Scientists typically required modeling their hypothesis and analysis it with

various collected data. They usually design a model of their initial hypothesis

2

and then try to refine it by repeatedly re-using the model against their collected

data. Therefore, reproducibility is a key requirement of data-centric workflow

management systems.

Due to applying data-centric workflows to formalize and structure the

complex scientific research problems, they are potentially very large and

comprise of thousands or hundreds of complex tasks and big datasets [5, 6]. They

are naturally data-intensive application which the amounts of data used by the

tasks are huge and moving the huge data among tasks incredibly increases the

execution time of the data-centric workflows. Therefore, this type of applications

can benefit from distributed high performance computing (HPC) infrastructures

like cluster, grid or cloud computing.

The concept of Could Computing rooted back in 2007 [7] and has been

studied as the next generation architecture of IT enterprise by providing cost-

effective, scalable, on-demand and elastic provisioning distributed computing

infrastructure over the web [8-10] and has been applied in many domains [11-

14]. Executing data-centric workflows in the Cloud is a challenging problem as

the data-centric workflow tasks and datasets are required to partition, distribute

and assign to the execution sites (virtual machines). The advantages of using

cloud computing for data-centric workflows are summarized as follows [15-17]:

1) providing large amount of storage space and computing resources; 2)

improving resource utilization by allocation the resource accordingly with the

number of workflow nodes at each stage; 3) providing a much larger room for

3

the trade-off between performance and cost.

Although data-centric workflows have been applied extensively to

structure complex scientific data analysis processes, they fail to address the big

data challenges as well as leverage the capability of dynamic resource

provisioning in the Cloud. To address such limitations, the concept of big data

workflows is proposed by our research group as the next generation of data-

centric workflow technologies.

Besides theoretical, experimental and computational science, the data

intensive computing is now viewed as the “fourth paradigm” in scientific

research area [18]. According to Brewer's C.A.P. (Consistency, Availability and

Fault tolerance) theorem [19, 20], a distributed system like Cloud Computing

cannot satisfy Consistency, High-Availability and Partition-tolerance of dataset

inside cloud datacenter simultaneously. So by having all the advantages and

opportunities of cloud computing for executing data-centric workflows, several

challenges raise such as managing required big dataset of workflows in a

consistent and scalable way is a challenging problem [21].

Data management is typically more critical than the other resource

management in Cloud Computing Infrastructure such that separate nodes

allocate for just data storage [22]. As scientific applications, become more and

more data intensive, managing data in large distributed systems like cloud

computing needs to come up with an efficient data and task placement strategy.

The Placement strategy needs to maximize data locality and minimize data

4

movement among virtual machines in the Cloud. Such that once the workflow

tasks are partitioned and assigned to a virtual machine, its most required datasets

are already stored at the same virtual machine.

In big data workflows, it is practically impossible to store all of the

required dataset of tasks in one virtual machine due to the storage capacity

limitation of virtual machines and the dataset movement is inevitable to execute

big data workflows in the Cloud. Beside the storage limitation of individual

virtual machine, there is a need to have multiple machines to enable parallel

computing and exploit more computing power. In addition, it reduces the cost of

the computation by using a network of commodity machines instead of a

supercomputer.

In the topic of data management of workflows, the assumption is that it is

often more efficient to migrate the computation job, workflow task, closer to

where the data is located rather than moving the data to where the application is

running. Therefore, the main goal of data and workflow task placement should

be to minimize the total data movement as “moving computation to data is often

cheaper than moving data to computation” [21, 23, 24].

As discussed above, task and data placement strategy plays a critical role

in the successful execution of big data workflows. My dissertation goals are

developing rebuts data and workflow task placement strategies for big data

workflow running in the Cloud. This is required to come up with a strategy to

find an optimal workflow execution plan. I have achieved the following

5

progresses toward my dissertation research goals:

 We formalized both data and workflow task placement problems

in big data workflows.

 We proposed a new data placement strategy that considers both

source input dataset and generated intermediate datasets obtained during

workflow run.

 We proposed a task placement strategy that considers placement

of workflow tasks before workflow execution. Our proposed workflow tasks

placement into the available virtual machines is based on their required placed

datasets.

 We proposed a workflow scheduling strategy that maps the

workflow tasks into cloud virtual machines in design time. We considered one

sub-problem of the general big data workflow scheduling problem, in which a

deadline D is given for a workflow W, and the goal is to minimize the monetary

cost of running W in the cloud while satisfying the given deadline.

The dissertation is organized as follows: Chapter 2 introduces the related

work about data placement, task mapping optimization and workflow scheduling

of big data workflows in the Cloud. Chapter 3 presents our work on data

placement in big data workflows. Chapter 4 presents our work on task placement

in big data workflows. Chapter 5 presents our work on workflow scheduling.

Finally, Chapter 6 concludes the dissertation and presents the future works.

6

2 RELATED WORK

2.1 Big Data

The National Institute of Standards and Technology (NIST) [25], which

is leading the development of a Big Data technology roadmap, has proposed the

first version of definition of Big Data as follows [26]:

 “Big Data refers to digital data volume, velocity and/or variety,

veracity that:

 Enable novel approaches to frontier questions previously

inaccessible or impractical using current or conventional methods; and/or

 Exceed the capacity or capability of current or conventional

methods and systems.”

Although the above definition is not completed yet we can describe that

Big Data loosely applies for complex and huge datasets which are difficult to be

managed by using traditional data management tools such as Relational Database

Management Systems (RDBMS). Big Data are naturally distributed and placed

on different sources over the Internet. These data need to be collected, distributed

and/or replicated therefore it requires extended and particular strategies and

requirements[27].

Data-centric workflow typically models and analyzes complex scientific

research experiments, which normally contain huge volume of datasets.

Therefore, Big Data technologies are becoming a main focus in scientific

7

computing research. Big Data can be defined by 5 characteristics, called 5 V’s,

as illustrated in Figure 2-1[28].

The description of 5V’s is as follows:

 Volume: The most important feature of Big Data is volume which

is about large volume of datasets including terabytes records, transactions, tables

or files. Based on IBM research [29] about 800,000 petabytes (PB) of data were

stored in the year 2000 over the word and they expect this amount to reach

around 35 zettabytes (ZB) by 2020. For example, Twitter generates more than 7

terabytes (TB) of data every day and Facebook 10 TB.

 Value: Value is about derived value from data. New advancements

in IT technology bring the capability of collecting and accessing huge amounts

of information and datasets not only by human beings, but also by computers and

machines. So, getting meaningful values form collected big data is a main

Figure 2-1 Five V’s of Big Data.

8

concern for scientists.

 Velocity: Velocity applies to the enormous volume of data that

comes in/out with high speed from different sources. This type of generated data

regularly need to be processed in real-time, or in batch or as a stream.

 Variety: Variety is about integrating different data formats and

large number of diverse data sources. This is result in data collected as structured

like relational table or unstructured like images and videos or semi-structured

like html pages and text or mixed data. Data can origin from a different number

of sources and/or devices such as online/offline social media, mobile, satellite,

sensors, cameras, TV etc.

 Veracity: Veracity is related to data consistency/certainty and data

trustworthiness that can be applied to various stages of data management like

data searching stage, data collecting stage and data processing stage. This feature

of Big Data guarantees the trustworthiness, authentication and protection of

collected datasets against unauthorized data accesses and manipulations.

Our study is about the volume aspect of big data and how it operates to

partition, distribute and place huge size of datasets including tables and files into

cloud datacenters.

2.2 Data-centric Workflows vs. Business Workflows

Workflows have been intensively applied to business organizations to

analyze and model their business processes from 1970s. After that, data-centric

workflows were proposed to analyze and model scientific hypotheses and

9

improve scientific experiments to get scientific principles. Although business

and data-centric workflows have the same origin to model and execute business/

scientific processes, they also have much dissimilarity. Their differences are in

their requirements, characteristics, and life cycles. The differences can be

categorized as follows:

 Scientific goal vs. Business goal: The goal of data-centric

workflows is to increase the speed of unpredictable scientific discovery and

therefore reduce human and computation costs. On the other hand, the goal of

business workflows is increasing revenue and profit of the enterprise and

therefore reducing human resources.

 Dataflow oriented vs. Control flow oriented: Data-centric

workflows are naturally data-flow oriented and the control dependency of tasks

is not a concern. But business workflows are often control-flow oriented and the

control dependency and the coordination of tasks is the main concern.

 Reproducible vs. Non-reproducible: Data-centric workflows

required to be reproducible as they can be used by scientists to test their scientific

ideas. Therefore, it is critical that other scientists be able to reproduce the same

workflow to verify the correctness of their hypothesis. But, business workflows

do not need to be reproducible as they model well-formed business processes.

 Mutable vs. Immutable: Data-centric workflows naturally

require to be modified frequently as they are used in trial manner by scientists.

The reason is that the scientific ideas and hypothesis are changed frequently.

10

However, business workflows rarely need to be changed, since the business

processes are consistent and well-defined in most cases.

2.3 Big Data Workflows

Big Data Workflows have been recently proposed as the next generation

of data-centric workflows to address the challenges of big data analytics

including volume, value, velocity, variety and veracity as well as execution

challenges in the Cloud [30, 31].

Big Data workflows mainly can use the beneficiary of cloud computing

and execute by different number of virtual machines in parallel and therefore big

data can be horizontally scalable. It means we are able to add more virtual

machines into the pool of resources once there is a need to have more resources

to manage and analyze datasets. In the despite, data management is vertically

scalable in big data workflows that mean adding more power and computation

(CPU, RAM and …) to the server of executing workflows.

Horizontal-scaling is through partitioning and vertical-scaling is through

multi-core support [32]. In term of data storage layer of big data workflows,

horizontal-scaling is based on partitioning of the datasets such that each virtual

machine hosts only portion of the datasets, in vertical-scaling the datasets resides

on a single node (server) and scaling is achieved through multi-core i.e.

spreading the load between the CPU and RAM resources of that machine. For

example Apache Cassandra [33], MongoDB [34] apply horizontal scaling and

MySQL-Amazon RDS (The cloud version of MySQL) applies vertical scaling

11

by switching from small to bigger virtual machines. In the remains of this

section, we introduce our proposed concept, big data workflow, as the next

generation of data-centric workflow.

Several data-centric workflow management systems have been proposed

within using cloud computing environment; however, they are not generic and

domain-independent. Some of them are developed in a specific domain like

bioinformatics [35, 36] or astronomy [37], some are designed with applying

different type of QoS constrains [38] and the others are a particular type of

workflows like workflows with data parallelism [39]. Our research group has

been proposing a generic and implementation-independency big data workflow

called DATAVIEW as depicted in Figure 2-2 [30].

Figure 2-2 Architecture for DATAVIEW as a Big Data Workflow Management
System.

12

Our proposed big data workflow, DATAVIEW, contains four layers as

follows:

 Presentation Layer. This layer is the client-side of DATAVIEW

and includes two major components:

o Workflow Design and Configuration that provides graphical user

interface (GUI) utility for the end users to design manipulate and save their

workflows. In addition, workflow configuration offers capability to the

scientists to specify the settings related to the Cloud as the execution

environment. Cloud settings like selection the cloud providers (e.g.,

OpenStack Cloud Software [40], Amazon AWS EC2 [41] , FutureSystems

[42]), specifying the number of virtual machines to execute the workflow.

 Workflow Management Layer. This layer contains two

subsystems.

o Workflow engine which is the core component of workflows. It

executes the workflows and orchestrates the movement of the data flow

between tasks within different virtual machines. Figure 2-2 shows its main

components.

o Workflow Monitoring. It is applied to keep track of each workflow

entities like takes and data products within workflow execution.

 Task Management Layer. This layer is built on the top of the

Infrastructure layer (Cloud Services layer) to collaborate and execute of

workflow tasks in the Cloud. It contains four major components as follows:

13

o Task Management. It provides utilities to execute individual

workflow tasks. Workflow tasks can be heterogeneous that means can be a

built-in, web service, a script and so on.

o Data Product Management. It manages both source and generated

intermediate data products.

o Provenance Management. Provenance is the history information

about workflow data products in details within executing the workflow to

allow reproducibility. Provenance management provides utilities to store

browse and query workflow provenance.

o Cloud Resource Management. This component offers cloud

resource allocation, provisioning, mapping, discovery, configuring,

estimation and terminating.

 Infrastructure Layer. The Infrastructure Layer contains the

underlying Infrastructure as a Service (IaaS) cloud platforms where workflows

are submitted to execute. DATAVIEW applies the “all-in-the-cloud” approach

[15] to run Big Data Workflow Management System.

2.4 Data and Task Placement in Workflows

Previous research studies for distributed computing environment have

been mainly focused on the performance and optimization of job scheduling and

task allocation. But due to the rapid increase in the size of available data over the

internet and the emerging field of Big Data, data placement becomes a

fundamental spot in the Cloud recently. Kosar et al., [6, 43] proposed a

14

framework for distributed computing systems which considered the data

placement subsystem as an independent module along with computation

subsystem. In their proposed model data placement jobs can be queued,

scheduled, monitored, managed and even checkpointed. Kayyoor et al., [44]

considered the data placement and replication problems together for the

distributed environments. They claimed minimizing of query latencies is not a

critical issue in many scenarios of analytical workloads and so they tried to

minimize the average number of using computation nodes by grouping the most

interdependent data together based on their occurrences of the common query

accesses. Chervenak et al., [45] explored the advantages of separation of data

placement as a service from workflow management systems. By applying an

autonomous data placement service along with data replication service, they

evaluate and display the benefits of pre-staging data compare to the data stage in

and out strategies of Pegasus workflow management systems. However, none of

the above studies decreasing the data movement among cloud virtual machines.

By advent of cloud computing, new data management systems are

developed. For instances Google File System (GFS) [46] and Hadoop

Distributed File System (HDFS) [47] are developed to provide of data access on

remote servers by means of huge clusters of commodity hardware. GFS is

developed by Google for its engine search but HDF is more general which has

been used by many companies like Facebook and Amazon. The data placement

in HDFS is straightforward as once it is pushed a file into HDFS, it splits the file

15

into one or more chunks and stores them in a set of distributed datanodes

randomly. HDFS also applies replication technique to improve the performance.

In addition, some of the workflow management systems have been extended to

execute data-centric workflow in clouds. Pegasus [48-50] is designed to execute

data-centric workflows on number of distributed resources such as local

machines, clusters or cloud. Nimbus [51] is an integrated set of tools which

allows scientific users to deploy a cluster into infrastructure clouds to execute

their data-centric workflows. Eucalyptus [52] is an open source cloud

management software to create on-demand, self-service private cloud resources.

In Catalyurek et al., [53] workflows were modeled by hypergraph concept

and a hypergraph portioning technique, k-way partitioning, is applied to

minimize the cutsize. In that way, they cluster the workflow tasks as well as their

required data in the same execution site. One of the closet works to our data

placement strategy is Yuan et al., [22] which they applied a greedy binary

clustering to precluster datasets; then they greedily assigned the workflow tasks

to an execution site that contains the most of the input datasets. At the end once

an intermediate dataset was generated, they placed it to the execution site which

has the most interdependent dataset. Although their approach placed the most

interdependent dataset together and can reduce data movement, the algorithm is

greedy and it clustered the data dependency matrix into two parts in each

iteration and so their clustering technique was sensitive to the selection point in

any iteration.

16

The other close work to our study is Er-Dun et al., [54] in which they

applied genetic algorithm to find their data placement solution along with load

balancing factor. Their approach reduced data movement however they did not

consider data interdependency between datacenters and also they did not

consider task assignment. In addition, they used mean measurement for the load

balancing factor but harmonic mean is a more accurate measurement for the load

balancing factor.

2.5 Workflow Scheduling

Big data workflows are resource-intensive applications as they naturally

consist of a large number of tasks and produce massive datasets. The efficient

workflow scheduling strategies can have significant impact on workflow

performance. There has been extensive research on the workflow scheduling

problem in the distributed computing community. These studies have been

focusing on different aspects of the scheduling problem based on the various

QoS requirements. One of the most recent work is [55] in which the authors

proposed a workflow scheduler that minimizes the execution cost while meeting

a specified deadline. In their approach, they apply unbounded knapsack problem

(UKP) to find an optimal schedule for bags of homogenous tasks. Although they

are able to schedule a workflow into different cloud resources types efficiently

they did not consider heterogeneous tasks. In addition, they did not use any run

time sub-deadline adjustments. In [56-58] some other scheduling algorithms

were proposed to minimize the execution cost with deadline constraints for the

17

Grid utility systems. In [59, 60] the authors considered both budget and

makespan as the QoS constraints, but did not use an objective function to

minimize them.

Lin et al. [61, 62] proposed an elastic scheduling algorithm to schedule

the workflow dynamically in the cloud with the goal of makespan minimization.

However, they do not consider any QoS constraints. In list-based workflow

scheduling algorithms [63-66], the workflow tasks are ranked and sorted based

on their start times and execution times and then the tasks are executed

sequentially. In clustering-based approaches [67-69], tasks are first clustered in

terms of maximum execution time or size of data movement. Then assign them

on to possibly the same resource to minimize the data movement based upon

these clusters.

Workflow scheduling in cloud computing is known as NP-hard problem.

The reason is that there is usually a large search space of solutions and it takes a

long time to find an optimal solution. Therefore, there is no scheduling algorithm

to produce optimal solution within polynomial time. In big data workflow

domain, it is sometimes preferable to find a suboptimal solution, but in a short

period of time. To achieve near optimal scheduling solutions within reasonable

time, Metaheuristic-based approaches have been proposed [70-74]. Some of the

popular meta-heuristic techniques are Genetic Algorithm (GA), Ant Colony

Optimization (ACO), and Particle Swarm Optimization (PSO).

In our previous works [75-77], we proposed data and task placement

18

strategies for optimal workflow data and task placement in the cloud by

considering the data and task interdependencies to cluster the most dependent

data and tasks together. These clusters were used to assign onto the same

resource in order to minimize time taken for data movement. The limitation of

our previous strategies is that we did not consider any QoS constraints. In one of

our recent work [78], we propose a new big data workflow scheduler under

budget constraint (BARENTS) that supports high-performance workflow

scheduling in a heterogeneous cloud computing environment with a single

objective to minimize the workflow makespan under a provided budget

constraint.

19

3 DATA PLACEMENT IN BIG DATA
WORKFLOWS

3.1 Introduction

The makespan of a data-centric workflow [79-81] is the time elapsed

between the start of the first task and the completion of the last task in the

workflow, including the delivery of the final data product to the desired place.

In big data workflows, makespan vary greatly depending on how the tasks and

datasets are allocated in the distributed computing environment like Clouds.

Incorporating a data and task allocation strategy to minimize the makespan in a

big data workflow can deliver significant benefits to users in getting their results

in time [76].

This dissertation provides a formal definition of the data movement

minimization problem of big data workflows running in a distributed

environment and proposes efficient data and workflow tasks placement

strategies, BDAP and TPS.

Regarding to data placement in big data workflows, we propose BDAP,

an evolutionary algorithm (EA) which is a generic population-based

metaheuristic optimization strategy [82]. The main goal is to minimize the

dataset movement between virtual machines during the execution of a workflow

under the constraint of virtual machine storage capacity

Example 1. Let’s consider an example to show how a workflow can be

20

executed in a cloud computing environment. Figure 3-1 illustrates a sample

workflow with five tasks, five original datasets and five generated intermediate

datasets [23]. Figure 3-2 shows an instance of its virtual machines configuration

in the Cloud. In this example, tasks t1 and t2 as well as datasets, d1 and d3 were

assigned to virtual machine 1, VM1. Similarly, tasks t3 and t4 were assigned to

VM2 as well as datasets, d2 and d4. Once we execute the workflow, tasks t2 needs

transferring dataset d2 from VM2 to VM1 to complete its process. However, there

is no need to move any other original datasets from other virtual machine to VM2

to run task t3 because all its required original datasets, d2 and d4 are already

placed in VM2. Furthermore, t3 only required transferring the output of task t1,

d1 from VM1 to VM2 in the run-time stage.

Please note that the workflow scheduling [83-87] is out of the scope of

this dissertation proposal. BDAP does not apply any specific strategy for the

order (either sequential or parallel) execution of workflow tasks. BDAP can be

used by any current workflow scheduling algorithms to improve the workflow

throughput. In this dissertation, we simply execute workflow tasks in a sequential

order to evaluate BDAP.

3.2 Workflow Data Placement Model

To model cloud computing environment, we consider I distributed virtual

machines in the Cloud as the execution sites. Each virtual machine can be

provided by different Cloud Computing Providers (CCP) such as Amazon EC2,

Google App Engine [88], and Microsoft Azure [89]. Although CCPs normally

21

have their own data and computation placement strategy to store data and assign

computation jobs to proper virtual machines, sometimes users (e.g., scientists)

have concerns about their own datasets (e.g., data security or too large data or

requirement for specific data processing utilities and equipment). Such users

prefer to keep and store their data in a particular virtual machine and not allowed

to move their data to the other virtual machines. This type of dataset is called

fixed-location datasets.

For addressing these scientific user’s concerns and managing fixed-

location datasets, users need to have private execution sites or to be able to add

their own local computation facilities as virtual machines. In that way, we need

to apply a new data placement strategy to address the fixed-location datasets and

minimize the total data movement across dedicated virtual machines in the

Cloud.

To minimize data movement between virtual machines in the Cloud, we

cluster the virtual machines such that the placed datasets have the highest data

interdependency within each virtual machine as well as the lowest data

interdependency between virtual machines. In the rest of this section, we model

our data placement solution in detail. Table 3-1 summarizes all the used symbols

and notations in this dissertation.

Big data workflows are executed in Clouds as the execution environment.

A Cloud computing environment is modeled as follows:

22

Definition 3.1 (Cloud Computing Environment C). A Cloud

computing environment C is a 3-tuple C = (VM, SC, DTR), where

 VM is a set of virtual machine in the Cloud vm୧ (i = 1, 2, … , I)

 SC: VM → Rା is a storage capacity function. SC (vm୧), vm୧ ∈

VM gives the maximum available storage capacity of virtual machine vm୧ in the

 Cloud computing environment C. It is measured in some pre-

determined unit such as mega-bytes, giga-bytes or tera-bytes. Rା is the set of

positive real number.

 DTR: VM×VM → Q
ା is the data transfer rate function.

DTR(vm୧ଵ, vm୧ଶ), vm୧ଵ, vm୧ଶ ∈ VM gives the data transfer rate between two

Figure 3-1 A workflow with five tasks {tଵ, tଶ, tଷ, tସ, tହ} and five datasets
{dଵ, dଶ, dଷ, dସ, dହ}. The output of task ti is denoted by d’i. The input datasets of task tଵ

are {dଵ, dଷ}, tଶ are {d′ଵ, dଶ, dଷ}, tଷ are {d′ଵ, dଶ, dସ}, tସ are {d′ଶ, d′ଷ, dଶ, dସ, dହ} and
tହare {d′ସ, dହ}.

23

virtual machines vm୧ଵand vm୧ଶ. It is measured in some pre-determined unit such

as mega-bytes, giga-bytes per second. Q
ା is the set of positive rational number.

For solving the complex scientific problems, scientists are able to create

and run their own workflows simultaneously. Each individual workflow contains

a set of tasks that consume various datasets and may produce intermediate

datasets as well. Those produced datasets will be sent to other tasks as their

inputs by following the data flow logic. A big data workflow is formalized as

follows:

Definition 3.2 (Big Data Workflow W). A big data workflow W can be

modeled formally as a 6-tuple that consists of three sets and two functions as

follows:

W = (𝑇, 𝐷, 𝐷ᇱ, 𝑆, 𝑇𝑆, 𝐷𝑆)

 T is the set of workflow tasks. Each individual task is denoted by

t୩, T = {tଵ, tଶ, tଷ, … , t}.

 D is the set of input datasets for workflow W. Each individual

dataset is denoted by d୨, D = ൛dଵ, dଶ, … , dൟ.

 D′ is the set of output datasets for workflow W. The total number

of output datasets is equal to the total number of workflow tasks as each

workflow task, t୩ generates one output dataset, d୩ which can flow to the other

tasks as the input dataset. Each individual output dataset is denoted by d′୩, D′ =

{d′ଵ, d′ଶ, … , d′}.

 S: D ∪ D′ → Rା is the dataset size function. S(d୨), d୨ ∈ D ∪ D′

24

returns the size of original or generated dataset d୨. The size of a dataset is defined

in some pre-determined unit such as mega-bytes, giga-bytes or tera-bytes. Rା is

the set of positive real number.

 TS: D ∪ Dᇱ → T is the dataset-task function. TS൫d୨൯, d୨ ∈ D ⋃ D′

returns the set of workflow tasks that consume d୨ as their input.

 DS: T → D ∪ Dᇱ is the task-dataset function. DS(t୩), t୩ ∈ T

returns the set of datasets that are consumed by t୩ as its input. The datasets can

be either original or generated datasets.

To evaluate and compare BDAP with the others proposed algorithms

Workflow Communication Cost is defined as follows [61, 62]:

Figure 3-2 A virtual machine configuration in the Cloud with three virtual machines
for workflow of Example I. Datasets {dଵ, dଷ} and tasks {tଵ, tଶ} were placed and

assigned in VM1. Datasets {dଶ, dସ} and tasks {tଷ, tସ} were placed and assigned in
VM2. Similarly, dataset {dହ} and tasks {tହ} was placed and assigned in VM3.

25

Notations Description

𝑽𝑴 The set of virtual machines

𝒗𝒎𝒊 The ith virtual machine in VM

𝑺𝑪(𝒗𝒎𝒊) The storage capacity of virtual machine vm୧

𝑫 The set of datasets

𝑫𝒇𝒊𝒙𝒆𝒅 The set of fixed datasets, D୧୶ୣୢ ⊆ D

𝒅𝒋 The jth dataset in D

𝑺(𝒅𝒋) The size of dataset d୨

𝑻 The set of Tasks

𝑫𝑺(𝒕𝒌) The set of datasets as the input of task t୩

𝑻𝑺(𝒅𝒋) The set of tasks which get dataset d୨ as the input

𝑫𝑻𝑹(𝒗𝒎𝒊𝟏, 𝒗𝒎𝒊𝟐) The data transfer rate between two virtual
machines, vm୧ଵand vm୧ଶ

𝒅𝒑(𝒅𝒋𝟏, 𝒅 𝒋𝟐) The data interdependency between datasets d୨ଵ and d୨ଶ

𝒕𝒑(𝒕𝒌𝟏, 𝒕𝒌𝟐) The task interdependency between tasks t୩ଵ and t୩ଶ

𝑫𝑷 The data interdependency matrix of D

𝑻𝑷 The task interdependency matrix of D

𝜳 The J-element vector of datasets placement scheme which J is the
number of workflow datasets.

𝜳(𝒅𝒋) The virtual machine to which dataset d୨ is assigned in the
placement scheme Ψ

𝚽 The K-element vector of tasks placement scheme which K is the
number of workflow tasks.

𝚽(𝒕𝒌) The virtual machine to which task 𝑡 is assigned in the placement
scheme

𝑷 The set of data placement schemes

𝑸 The set of task placement schemes

Table 3-1 Symbols and notations.

26

Definition 3.3 (Workflow Communication Cost, WCC). If dataset d୨ is

required to transfer from virtual machine vm୧ଵ to vm୧ଶ then the data movement

cost of d୨ is defined as

𝐷𝑀𝐶൫𝑑 , 𝑣𝑚ଵ , 𝑣𝑚ଶ൯ = ቐ

0, 𝑖𝑓 𝑖ଵ = 𝑖ଶ

𝑆൫𝑑൯

𝐷𝑇𝑅(𝑣𝑚ଵ, 𝑣𝑚ଶ)
, 𝑖𝑓 𝑖ଵ ≠ 𝑖ଶ

 (1)

Given a workflow W and Cloud C, workflow communication cost is equal

to the total data movement cost for executing workflow W in C is defines as

follows:

𝑊𝐶𝐶(𝑊, 𝐶) = 𝐷𝑀𝐶൫ 𝑑 , 𝑣𝑚ଵ , 𝑣𝑚ଶ൯

ௗೕ∈ௌ(௧ೖ)

௧ೖ∈ௐ

ୀଵ

 (2)

WCC gives the total data movement within executing the whole workflow

in the Cloud C. In the remainder of this section, we define and model the problem

and our solution. Our solution is based on the clustering technique. The three

main concepts in clustering are objects which need to be clustered, clusters and

a separation measure to compute the similarity among the objects [90].

In this dissertation, datasets and workflow tasks are considered as the

objects and virtual machines in the Cloud are considered as the clusters. The

most important concept is defining a good separation measurement to cluster the

most similar objects together to meet the objective goal.

The goal of our proposed data is minimizing data movement among

virtual machines. Therefore, we consider data interdependency as the separation

27

measurement. For this, two datasets are interdependent and should be collocated

in the same virtual machine if they are simultaneously needed as inputs by many

tasks. The definition for the interdependency of a pair of datasets is as follows:

Definition 3.4 (Data Interdependency). We consider the number of

common tasks that take a pair of datasets as input to define the data

interdependency of the datasets. Data interdependency value is divided by the

total number of workflow tasks in order to be normalized in the range of [0 1].

Formally, given two datasets d୨ଵ and d୨ଶ, the data interdependency is calculated

by:

𝑑𝑝൫𝑑ଵ, 𝑑ଶ൯ =
ห𝑇𝑆(𝑑ଵ) ∩ 𝑇𝑆(𝑑ଶ)ห

|𝑇|
 (3)

For instance, if the set of tasks that consume dଵ is TS(dଵ) = {tଵ,tଶ} and

dଶ is TS(dଶ) = {tଶ,tଷ, tସ} then the data interdependency between

dଵ and dଶ is dp(dଵ, dଶ) =
|ୗ(ୢభ)∩ୗ(ୢమ)|

||
=

| {୲భ,୲మ}∩ {୲మ,୲య,୲ర} |

|{୲భ,୲మ,୲య,୲ర,୲ఱ}|
 =

ଵ

 ହ
= 0.20.

In this way, two datasets are interdependent once they have at least one

common task consuming both of them. Two datasets have a higher

interdependency when they are used by more common tasks and the greater the

number of common tasks is, the higher is the data interdependency of datasets.

To maximize data locality, it is necessary to pre-cluster the datasets

initially. In the first step, we calculate the data interdependency of all the

workflow datasets and generate the data interdependency matrix (DM). In the

interdependency matrix, rows and columns are the workflow datasets and the

28

value of interdependency matrix is the data interdependency between two

datasets. For instance, data interdependency matrix of workflow in Example1 is

as follows:

⋱ d1 d2 d3 d4 d5 dᇱ
1 dᇱ

2 dᇱ
3 dᇱ

4
d1
d2
d3
d4
d5
dᇱ

1
dᇱ

2
dᇱ

3
dᇱ

4
⎝

⎜
⎜
⎜
⎜
⎛

0.4 0.2 0.4
0.2 0.6 0.2
0.4 0.2 0.4

0.0 0.0 0.2 0.0 0.0 0.0
0.4 0.2 0.4 0.2 0.2 0.0
0.0 0.0 0.2 0.0 0.0 0.0

0.0 0.4 0.0
0.0 0.2 0.0
0.2
0.2
0.0

0.4
0.2
0.0

0.2
0.4
0.0

0.4 0.2 0.2 0.2 0.2 0.0
0.2 0.4 0.0 0.4 0.2 0.2
0.6
0.2
0.0

0.4
0.2
0.2

0.4 0.8 0.6 0.4
0.2 0.4 0.2 0.2
0.0 0.2 0.0 0.2⎠

⎟
⎟
⎟
⎟
⎞

 BDAP partitions and distributes the original datasets into all appropriate

virtual machines in the Cloud. Then the related tasks will be assigned to the

corresponding virtual machine so that their required datasets are stored there. In

this way, the total amount of data movement between virtual machines is

decreased and the overall workflow execution time will be reduced. Data

placement scheme is defined to represent the place of each workflow dataset in

a virtual machine. A data placement scheme is defined formally as follows:

Definition 3.5 (Data Placement Scheme 𝚿). Suppose there are I virtual

machines and J datasets, a data placement scheme is represented by a J-element

vector Ψ such that Ψ൫d୨൯ indicates the virtual machine to which d୨ is placed. For

example the data placement scheme of Example I is Ψ = (1, 2, 1, 2, 3, 1, 1, 2, 2)

and it means datasets dଵ, dଷ, dଵ
∗ and dଶ

∗ are placed in virtual machine vmଵ

(Ψ(dଵ) = Ψ(dଷ) = Ψ(dଵ
ᇱ) = Ψ(dଶ

ᇱ) = vmଵ), datasets dଶ, dସ, dଷ
ᇱ and dସ

ᇱ in

virtual machine vmଶ (Ψ(dଶ) = Ψ(dସ) = Ψ(dଷ
ᇱ) = Ψ(dସ

ᇱ) = vmଶ) and the

29

dataset dହ in virtual machine vmଷ (Ψ(dହ) = vmଷ).

Definition 3.6 (Fixed-Location Datasets 𝐃𝐟𝐢𝐱𝐞𝐝). Given the set of

datasets, fixed-location datasets D୧୶ୣୢ ⊆ D is a subset of D such that they have

pre-determined allocations and cannot be moved. Formally suppose D୧୶ୣୢ =

 ൛ d୨ଵ, d୨ଶ, … , d୨୫ൟ ⊆ D then

Ψ൫𝑑ଵ൯ = 𝑣𝑚ଵ , 𝛹൫𝑑ଶ൯ = 𝑣𝑚ଶ, … 𝑎𝑛𝑑 𝛹൫𝑑൯

= 𝑣𝑚 { 𝑣𝑚ଵ, 𝑣𝑚ଶ , … , 𝑣𝑚} ⊆ 𝑉𝑀

the other datasets, D − D୧୶ୣୢ, are called flexible.

We consider all the workflow tasks are flexible and there are no fixed

tasks because moving computation task to datasets is often cheaper than moving

datasets to computation task nodes. To define a good measurement to compare

separation between virtual machines, data interdependency within and between

virtual machines are defined as follows:

Definition 3.7 (Within-VirtualMachine Data

Interdependency 𝐕𝐌𝐃𝐖).

𝑉𝑀𝐷ௐ(𝛹) = 𝑑𝑝൫𝑑ଵ, 𝑑ଶ൯

అ൫ௗೕభ൯ ୀ ௩

అ൫ௗೕమ൯ ୀ ௩

ூ

ୀଵ

 (4)

Where dp൫d୨ଵ, d୨ଶ൯ is the data interdependency between task d୨ଵand d୨ଶ , I is the

maximum number of virtual machines in the Cloud.

Definition 3.8 (Between-VirtualMachine Data

Interdependency 𝐕𝐌𝐃𝐁).

30

𝑉𝑀𝐷(𝛹) = 𝑑𝑝൫𝑑ଵ, 𝑑ଶ൯

అ൫ௗೕభ൯ୀ ௩భ

అ൫ௗೕమ൯ୀ ௩మ

(ூ,ூ)

భஷమ
(భ,మ)∈(ூ,ூ)

 (5)

To achieve the data placement goal, BDAP uses heuristic information for

its search direction of finding the best data placement scheme. Heuristic

information should consider both within and between virtual machine

interdependency. The heuristic is defined in BDAP as follows:

Definition 3.9 (Data Interdependency Greedy DG). The DG heuristic

biases BDAP to select the data placement scheme with higher data

interdependency. It is defined as:

𝐷𝐺(𝛹) =
𝑉𝑀𝐷ௐ(𝛹) + 1

𝑉𝑀𝐷(𝛹) + 1
 (6)

In this formula, the numerator measures Within-VirtualMachine Data

Interdependency and the denominator measures the Between-VirtualMachine

Data Interdependency. The bias 1 is set to avoid divided-by-zero in the case that

the data interdependency between virtual machines get zero. A good data

placement scheme has a higher DG. Therefore, the output of BDAP is a data

placement scheme with the highest DG.

In our system model, we consider two types of system constraints in terms

of data which are defined as follows:

Definition 3.10 (Data Placement Scheme Legality Constraints). Two

types of illegal data placement schemes are considered in BDAP:

 Virtual machine storage capacity constraint: The total amount of

31

placed datasets into a virtual machine should be less than the available storage

capacity of the virtual machine as it is impossible to fit all those datasets into the

same virtual machine.

 Non-replication constraint: Once a dataset is placed into a specific

virtual machine, it is not allowed to place it into another virtual machine as data

and task replication is not in the scope of this version of BDAP.

Definition 3.11 (Data Placement Solution). The data placement solution

for big data workflow, W, to execute in a cloud computing environment, C, is to

select a data placement scheme Ψ ∈ P to minimize the workflow communication

cost (WCC) under the virtual machine storage capacity and non-replication

constraints. In the next section, we explain our data placement strategy, BDAP,

in detail.

3.3 Workflow Data Placement Algorithm-BDAP

The main goal of BDAP is to minimize workflow communication cost by

minimizing the data movement between virtual machines in the Cloud within

running a workflow. The main steps of BDAP which applies in design-time are

depicted in Figure 3-3. BDAP starts with calculating the data interdependency

matrix. Then, it generates a set of legal data placement schemes randomly and

calculates their heuristic values. In the following, for each data placement

scheme, BDAP applies three main operators, Selection, Crossover, and Mutation

sequentially to generate possibly better schemes with higher heuristic values. At

the end, the best observed data placement scheme is recorded in Ψୠୣୱ୲ and will

32

be returned as the output of BDAP.

Selection, crossover and mutation operators are defined as follows:

Definition 3.11 (Selection SE). Selection is the process of choosing two

schemes for recombination and generation two new schemes. There are many

methods to perform selection. We use the Roulette Wheel Selection techniques

for BDAP.

In this selection operator, the probability to choose a certain scheme is

proportional to its heuristic value.

Definition 3.12 (Crossover CO). This operator combines two selected schemes

to reproduce two new schemes. The idea is that the new generated schemes may

be better and have higher heuristic value if they take the best characteristics from

their parent schemes. For instance, suppose Ψ୪ଵ < 1, 2, 1, 2, 3 >, Ψ୪ଶ <

2, 2, 1, 3, 1 > and the selected row number to crossover is 3 then Ψ୪ଵ
ᇱ <

1, 2, 1, 3, 1 > and Ψ୪ଶ
ᇱ < 2, 2, 1, 2, 3 >.

Figure 3-3 Flowchart of BDAP.

33

Definition 3.13 (Mutation MU). After crossover, BDAP applies

mutation operator to an individual scheme to generate a new version of it such

that a virtual machine position in the scheme have been randomly changed.

Mutation prevents BDAP to be trapped in a local maximum heuristic value. For

example, suppose Ψ୪ < 1, 2, 1, 2, 3 > and the select row number is 4 and

generated randomized number for position 4 is 3 then Ψ′୪ < 1, 2, 1, 3, 3 >.

For applying data placement strategy and analyzing the data

interdependency, the whole workflow must be designed. It means all tasks and

datasets of the big data workflow must be specified. The BDAP algorithm is

outlined in Algorithm 1.

In the first step, BDAP generates popsize number of feasible and valid

data placement schemes randomly with the locations for fixed-location datasets

fixed. It also calculates the heuristic value of each individual scheme (lines1-5).

The position numbers of the fixed-location datasets in the generated data

placement scheme is fixed and will not change through the whole algorithm.

In the next steps, BDAP applies three main operators to generate new

schemes with a hopefully higher heuristic values until it reaches the max number

of iterations. First, it selects ne = popsize × elitism_rate number of scheme with

the highest heuristic value and saves them in the Pop (lines 9-10), these high-

value schemes will transfer directly to the next generation of schemes to

guarantee the convergence of BDAP. We apply the fitness proportionate

selection, roulette wheel selection, for this step. The idea behind the roulette

34

Algorithm 1. Big Data Placement (BDAP).
Input:
 D: set of workflow datasets,
 DP: data interdependency matrix,
 popsize: size of population,
 er: rate of elitism,
 cr: rate of crossover,
 mr: rate of mutation,
 num_iteration: number of iterations,
Output:
 The best data placement scheme, 𝛹௦௧

1. Begin
2. for i = 1 to popsize do
3. 𝛹 ← Generate a legal data placement scheme randomly;
4. 𝑃𝑜𝑝 ← < 𝛹, 𝐷𝐺(𝛹) >;
5. end for
6. idx = 0;
7. while (idx ≤ num_iteration) do
8. ne = popsize × er; // number of elitism
9. 𝑃𝑜𝑝ா ← The best ne data placement schemes in Pop;
10. nc = popsize * cr; // number of crossover
11. for i =1 to nc do
12. randomly select two data placement scheme 𝛹 and 𝛹 from Pop;
13. generate ΨC and ΨD by one-point crossover for flexible datasets

of 𝛹 and 𝛹;
14. 𝑃𝑜𝑝 ← < 𝛹 , 𝐷𝐺(Ψେ) >;
15. 𝑃𝑜𝑝 ←< 𝛹 , 𝐷𝐺(Ψ) >;
16. end for
17. nm= popsize × mr;// number of mutation
18. for i =1 to nm do
19. select a data placement scheme 𝛹 from 𝑃𝑜𝑝;
20. 𝛹

ᇱ ← mutate randomly a flexible virtual machine position number
in 𝛹 ;

21. if 𝛹
ᇱ is illegal

22. update 𝛹
ᇱ with a data placement scheme by repairing 𝛹

ᇱ;

23. end if
24. 𝛹 ← 𝛹

ᇱ;

25. end for
26. Pop ← 𝑃𝑜𝑝ா and 𝑃𝑜𝑝;
27. idx = idx +1;
28. end while
29. return the best data placement scheme 𝛹௦௧;
30. End

35

wheel selection technique is that each scheme is given a chance to select in

proportion to its heuristic value. Then, it applies the crossover function and

computes the heuristic value of the new generated schemes (lines 11-16). In the

last step, BDAP applies the mutation operator for a randomly selected scheme

along with computing its heuristic value (lines 17-25). In the crossover and

mutation phases, BDAP does not change the number of virtual machine position

for the fixed-location datasets and applied those functions only on flexible

datasets.

The idea behind the roulette wheel selection technique is that each scheme

is given a chance to select in proportion to its heuristic value. Then, it applies the

crossover function and computes the heuristic value of the new generated

schemes (lines 11-16). In the last step, BDAP applies the mutation operator for

a randomly selected scheme along with computing its heuristic value (lines 17-

25).

In the crossover and mutation phases, BDAP does not change the number

of virtual machine position for the fixed-location datasets and applied those

functions only on flexible datasets. These three operators apply to the schemes

till it reaches a certain number of iterations, a parameter defined by the user at

the beginning of the algorithm. In the last step, the best data placement scheme

Ψୠୣୱ୲ is returned as the output of BDAP.

3.4 Experiments and Discussion

In this section, we present and discuss the simulation results and compares

36

BDAP with the most competitive and Random approaches.

3.4.1 Simulation Setting

To evaluate performance of our proposed data placement approach,

BDAP, we compare it with Yuan’s work and random strategies. Yuan’s work is

the one of the most competitive algorithms in this field. It is a K-means based

clustering algorithm which applies a heuristic binary clustering algorithm to

precluster datasets into their appropriate virtual machines. Then, it greedily

assigns the workflow tasks to each virtual machine such that it stores the most of

its input dataset. Once an intermediate dataset is generated, it places it to the

virtual machine that has the most interdependent datasets with the newly

generated dataset.

We simulate a cloud computing environment on the Wayne State

University’s high performance Grid Computing. We use eight grid computation

nodes along with total storage capacity of 100 GB and compared the three

algorithms by simulating a variety of real and synthetic workflows. We test

BDAP using five synthetic workflow applications based on real data-centric

workflows [11]: Montage [91, 92], CyberShake [93-96], Epigenomics [97-99],

LIGO [26, 100, 101] and SIPHT [102, 103] (Figure 3-4). These workflow

applications are developed through the Pegasus workflow management system

for different research domains like bioinformatics and astronomy. We select the

large-size of each workflow with about 1000 number of tasks and assume each

task can be executed on every virtual machine. For our experiments, we run 100

37

times each of the selected workflows along with assigning five different numbers

of datasets to their tasks randomly. The numbers of datasets are 5, 10, 25, 50 and

100, and dataset sizes are uniformly distributed in the range of [1TB 100TB]. In

addition, we consider five size numbers of virtual machines, 5, 10, 15, 20 and 25

in the range of [200TB 1PB] of storage capacity (as shown in Table 3-2).Virtual

machines storage capacities are selected in a uniformly distributed manner too.

We demonstrate the performance of our proposed data placement algorithm and

Yuan and Random approaches in terms of the average of the workflow

communication cost (WCC) defined in the previous section. In our experiments,

we assume that the data transmission rates among all virtual machines are fixed.

Virtual machines storage capacities are selected in a uniformly distributed

Figure 3-4 The structure of five realistic data-centric workflows [48].

38

manner too. We demonstrate the performance of our proposed data placement

algorithm and Yuan and Random approaches in terms of the average of the

workflow communication cost (WCC) defined in the previous section. In our

experiments, we assume that the data transmission rates among all virtual

machines are fixed. Table 3-3 shows the value of parameters using in BDAP. We

do our experiments for two different scenarios, one scenario with considering

20% of fixed-location datasets and the other one without considering fixed-

location datasets and consider the average of it.

3.4.2 Results

Figure 3-5 shows the Workflow Communication Cost (WCC), in terms

of hour by varying the number of datasets and fixing the number of virtual

machines. WCC is increased by increasing the number of datasets in all three

of datasets

Dataset size

of virtual machines

Virtual machines storage capacity

[5,10,25,50,100]

1TB – 100TB

[5,10,15,20,25]

200TB – 1PB

Table 3-2 Description of dataset and virtual machine of the experiment.

Population size

Initial population

Maximum generation

Crossover probability

Mutation probability

Maximum iteration

100

Randomly generation

100

0.8-0.9

0.3-0.5

1000

Table 3-3 Default setting for the BDAP algorithm.

39

strategies. However, it can be seen clearly that our strategy reduces WCC

compared to the other strategies. This results in greater improvement margin

with more number of datasets.

In the next step (Figure 3-6), we calculate WCC by varying the numbers

of virtual machines and fixing the number of datasets. Although WCC is

increased by increasing the number of virtual machines, the increasing rate of

our strategy is slower than the others. This results in greater improvement margin

with more number of virtual machines.

We demonstrate performance of BDAP in terms of workflow

communication cost by varying the number of datasets and virtual machines for

Figure 3-5 Workflow Communication Cost by varying the number of datasets.

40

five different types of workflows. We compare the BDAP strategy with Yuan as

well as with random strategies. The result shows that BDAP manages to decrease

effectively workflow communication cost more than Yuan and Random

approaches. To see the impact of the total number of fixed-location datasets, we

compare the three approaches for fixed number of datasets and datacenters and

varying the percentages of fixed-location datasets in Figure 3-7 by having more

fixed-location datasets, WCC is increased in BDAP and Yuan algorithms and

there is almost no change for Random strategy. The reason is that the BDAP and

Yuan algorithms are not allowed to change the location of the fixed-location

datasets and the impact of these algorithms are on flexible datasets.

Figure 3-6 Workflow Communication Cost by varying the number of virtual machines.

41

3.5 Data Placement Algorithm in DATAVIEW

In our DATAVIEW system [104, 105], we integrated the big data

workflow engine subsystem with FutureSystems academic research cloud

provider to automatically provision virtual machines to execute data-centric

workflows in the Cloud. We implemented bash scripts to automatically provision

VMs by first creating new VM images in the FutureSystems framework through

configuring both hardware and software stack. Workflows execution is

transparent to our data scientists. They can just create and run any arbitrary

workflow and the system deploys a set of virtual machines, datasets and moves

workflow tasks to the corresponding virtual machine.

In design time, we created the sophisticated XML parser to parse the

workflow specification, which is stored in the XML format. The XML parser

0% 5% 10% 25% 50% 80%
0

20

40

60

80

100

120

140

160

180

Fixed-Location Datasets

W
or

kf
lo

w
 C

om
m

un
ic

at
io

n
C

os
t(
H

ou
r)

Impact of Fixed-Location Datasets

BDAP

Yuan
Random

Figure 3-7 Workflow Communication Cost by varying the percentages of fixed-
location datasets and for fixed number of workflow nodes, 1000, and datacenters, 50.

42

extracted all workflow tasks, a set of input data products and a set of output

datasets that will be generated at run time. The XML parser generated output

(dpID, taskID) key/value pairs that contain mapping details to map datasets to

corresponding workflow tasks. BDAP algorithm validate the (key, value) pairs

to identify the optimal mapping of datasets and workflow tasks to the

corresponding virtual machines.

In running time, DATAVIEW provisioned a set of virtual machines in

FutureSystems and deployed datasets to the corresponding virtual machines

based on the output of BDAP. In our DATAVIEW system, we used files as a

dataset type and used SCP command to move actual files from our DATAVIEW

system to the provisioned virtual machines. In the next step, we assigned all the

workflow tasks to the provisioned virtual machines. After assigning workflow

tasks and datasets, the workflow was executed and intermediate datasets were

moved to the corresponding virtual machines. Data flow between each workflow

task was implemented by the SCP command. The final dataset was moved from

its virtual machine to the DATAVIEW system and the results were published to

the user. In this way, all low-level details were hidden from the data scientists

and only the intermediate and final data products generated by the workflow

were visible to data scientists. Table 3-4 shows some of the result of applying

BDAP for the execution of workflow in Example 1.

43

The best data placement scheme in the :

First population <d#, vm#> Last (10th) population <d#, vm#>

<d1,vm1><d2,vm2><d3,vm3><d4,vm3><

d5,vm1><d’1,vm2><d’2,vm1><d’3,vm1><

d’4,vm3>

DG = 0.1671 and WCC = 0.0097 hr

<d1,vm3><d2,vm1><d3,vm3><d4,vm1><d

5,vm2><d’1,vm1><d’2,vm2><d’3,vm1>

<d’4,vm2>

DG = 3.4032 and WCC = 0.0041 hr

<d1,vm2><d2,vm1><d3,vm3><d4,vm1><

d5,vm3><d’1,vm3><d’2,vm1><d’3,vm2>

<d’4,vm3>

DG = 0.2513 and WCC = 0.0083 hr

<d1,vm1><d2,vm2><d3,vm1><d4,vm2><d

5,vm3><d’1,vm2><d’2,vm1><d’3,vm3>

<d’4,vm2>

DG = 3.4678 and WCC = 0.0033 hr

<d1,vm2><d2,vm2><d3,vm1><d4,vm3><

d5,vm3><d’1,vm3><d’2,vm3><d’3,vm1>

<d’4,vm3>

DG = 0.3165 and WCC = 0.0081 hr

<d1,vm2><d2,vm2><d3,vm1><d4,vm2><d

5,vm3><d’1,vm2><d’2,vm3><d’3,vm3>

<d’4,vm1>

DG = 3.3692 and WCC = 0.0042 hr

Table 3-4 Some results of BDAP running.

44

4 TASK PLACEMENT IN BIG DATA
WORKFLOWS

4.1 Introduction

Decomposing a complex application as a workflow simplifies design

effort, enables reuse of computational modules and allows their parallel and/or

pipelined execution. With the progress in computing, storage, networking, and

sensing technologies and the ease of performing collaborative scientific research,

it is feasible to conceive much more complex data-centric workflows that involve

big data sets and run over distributed and heterogeneous computing

environments.

Workflow management system is a platform to support two key functions:

1) design and specification of workflows, and 2) configuration, execution and

monitoring of workflow runs. Examples of notable data-centric workflow

management system include Taverna [106], Kepler [107], Vistrails [108],

Pegasus, Swift [109] and VIEW [110]. Traditionally, these systems have used a

directed acyclic graph (DAG) abstraction to model a workflow where each

vertex of the graph represents a workflow task, and the directed edges between

two vertices depicts dataflow between the corresponding tasks.

Since scientific applications become more and more data intensive, it is

more critical to assigned workflow tasks to the same virtual machines which are

already hosted their required datasets to maximize data locality and minimize

45

data migrations between virtual machines in the Cloud. Practically, it is

impossible to store all the required datasets of workflow tasks in one virtual

machine due to the storage capacity limitation of virtual machines and so data

movement is necessary to execute data-centric workflows. The main goal of task

and data placement is to minimize the total data movement between virtual

machines.

In this chapter of dissertation, we propose task placement strategy (TPS),

an evolutionary algorithm (EA) which is a genetic-based task placement in big

data workflows such that the data movement between virtual machines during

the execution of a workflow gets minimized. Let’s consider the example 1 in

chapter 3. Figure 4-1.a) illustrates the workflow with five tasks, five original

datasets and five generated intermediate datasets. Figure 4-1.b) shows an

instance of its virtual machines configuration in the Cloud. In this example,

datasets, d1 and d3 were assigned to virtual machine 1, VM1. Similarly, datasets

d2 and d4 were assigned to VM2. Figure 4-1.c) shows an instance of the virtual

machines configuration in the Cloud with assigning tasks t1 and t2 as well as

datasets, d1 and d3 virtual machine 1, VM1. Tasks t3 and t4 were assigned to VM2

and task t5 and dataset d5 were assigned to VM3.

To come up with a task placement of big data workflows, our proposed

strategy, TPS, clusters the most interdependent workflow tasks together and

assign them possibly in the same virtual machine in the Cloud.

A random set of task placement schemes are generated in the first step. In

46

a. Sample Workflow.

b. Big Data Placement (BDAP).

c. Task Placement Strategy (TPS).

Figure 4-1 a) Workflow of Example 1 b) Data placement c) Task placement.

47

the next step, TPS computes and compares the generated schemes by applying a

defined heuristic function and return the best scheme. The heuristic function is

based on the task interdependency within and between the virtual machines in

the Cloud. The best scheme is the one which maximizes the task interdependency

within each virtual machine and minimizes the task interdependency between

virtual machines.

4.2 Workflow Task Placement Model

To minimize data movement between virtual machines in the Cloud, we

cluster the virtual machines such that the placed tasks have the highest task

interdependency within each virtual machine as well as the lowest task

interdependency between virtual machines. In the rest of this section, we model

our task placement solution in detail.

To model TPS we customized the definitions of chapter 3 and add the new

required sets or functions. A cloud computing environment is modeled as

follows:

Definition 4.2.1 (Cloud Computing Environment C). A cloud

computing environment C is a 4-tuple C = (VM, CC, SC, DTR), where

 VM is a set of virtual machine in the Cloud vm୧ (i = 1, 2, … , I).

 CC: VM → Rା is a computation capacity function.

CC (vm୧), vm୧ ∈ VM gives the maximum available computation capacity of

virtual machine vm୧ in the Cloud computing environment C. It is measured in

some pre-determined unit such that 1000 cycle in millisecond. Rା is the set of

48

positive real number.

 SC: VM → Rା is a storage capacity function. SC (vm୧), vm୧ ∈

VM gives the maximum available storage capacity of virtual machine vm୧ in the

Cloud computing environment C. It is measured in some pre-determined unit

such as mega-bytes, giga-bytes or tera-bytes. Rା is the set of positive real

number.

 DTR: VM×VM → Q
ା is the data transfer rate function.

DTR(vm୧ଵ, vm୧ଶ), vm୧ଵ, vm୧ଶ ∈ VM gives the data transfer rate between two

virtual machines vm୧ଵand vm୧ଶ. It is measured in some pre-determined unit

such as mega-bytes, giga-bytes per second. Q
ା is the set of positive rational

number.

The above three attributes, CC, SC and DTR are not fixed or static for a

virtual machine at all times. These are considered to be established by a priori

negotiation and remain unchanged during the execution of an individual

workflow. Big data workflow is formalized as the previous chapter by adding

one more function as follows:

Definition 4.2.2 (Big Data Workflow W). Big data workflow W can be

modeled formally as a 6-tuple that consists of three sets and two functions as

follows:

 W = (𝑇, 𝐷, 𝐷ᇱ, 𝑆, 𝑇𝑆, 𝐷𝑆)

 T is the set of workflow tasks. Each individual task is denoted by

t୩, T = {tଵ, tଶ, tଷ, … , t}.

49

 D is the set of input datasets for workflow W. Each individual

dataset is denoted by d୨, D = ൛dଵ, dଶ, … , dൟ.

 D′ is the set of output datasets for workflow W. The total number

of output datasets is equal to the total number of workflow tasks as each

workflow task, t୩ generates one output dataset, d୩ which can flow to the other

tasks as the input dataset. Each individual output dataset is denoted by d′୩, D′ =

{d′ଵ, d′ଶ, … , d′}.

 S: D ∪ D′ → Rା is the dataset size function. S(d୨), d୨ ∈ D ∪ D′

returns the size of original or generated dataset d୨. The size of a dataset is defined

in some pre-determined unit such as mega-bytes, giga-bytes or tera-bytes. Rା is

the set of positive real number.

 TS: D ∪ Dᇱ → T is the dataset-task function. TS൫d୨൯, d୨ ∈ D ⋃ D′

returns the set of workflow tasks that consume d୨ as their input.

 DS: T → D ∪ Dᇱ is the task-dataset function. DS(t୩), t୩ ∈ T

returns the set of datasets that are consumed by t୩ as its input. The datasets can

be either original or generated datasets.

To evaluate and compare TPS with the others proposed algorithms

Workflow Communication Cost is applied as defined in the previous chapter.

We consider task interdependency as the separation measurement. Two

tasks are interdependent and should be collocated in the same virtual machine if

they simultaneously need many datasets as their inputs. The definition for the

50

interdependency of a pair of tasks is as follows:

Definition 4.2.3 (Task Interdependency tp). We consider the size of

common datasets that a pair of tasks gets them as input to define the task

interdependency of the tasks. Task interdependency value is divided by the total

size of workflow datasets in order to be normalized in the range of [0 1].

Formally, given two tasks t୩ଵ and t୩ଶ, the task interdependency is calculated by:

Which S(D) is the sum of the sizes of datasets in D. In this way, two tasks are

interdependent once they have at least one common dataset as input for both of

them. Two tasks have a higher interdependency when they consume more size

of common datasets and the greater the size of common datasets is, the higher is

the task interdependency of tasks.

For instance, if size of datasets is S(dଵ) = 10MB, S(dଶ) = 35MB,

S(dଷ) = 110MB, S(dସ) = 60MB and S(dହ) = 55MB, then the set of tasks that

consume dଵ is 𝐷𝑆(𝑡ଵ) = {𝑑ଵ , 𝑑ଷ} and 𝑑ଶ is 𝐷𝑆(𝑡ଶ) = {𝑑ଵ,𝑑ଶ, 𝑑ଷ} and the task

interdependency between 𝑡ଵ and 𝑡ଶ is

𝑡𝑝(𝑡ଵ, 𝑡ଶ) =
𝑆(𝐷𝑆(𝑡ଵ) ∩ 𝐷𝑆(𝑡ଶ))

𝑆(𝐷)
=

𝑆({𝑑ଵ,𝑑ଷ} ∩ {𝑑ଵ,𝑑ଶ, 𝑑ଷ})

𝑆({𝑑ଵ, 𝑑ଶ,𝑑ଷ , 𝑑ସ, 𝑑ହ})

 =
𝑆(𝑑ଵ) + 𝑆(𝑑ଷ)

𝑆(𝑑ଵ) + 𝑆(𝑑ଶ) + 𝑆(𝑑ଷ) + 𝑆(𝑑ସ) + 𝑆(𝑑ହ)
= 0.44.

Task interdependency matrix (TM) is defied similar to data

interdependency matrix. In the interdependency matrix, rows and columns are

𝑡𝑝(𝑡ଵ, 𝑡ଶ) =
𝑆(𝐷𝑆(𝑡ଵ) ∩ 𝐷𝑆(𝑡ଶ))

𝑆(𝐷)
 (3)

51

the workflow tasks and the value of interdependency matrix is the task

interdependency between two tasks. For instance, task interdependency matrix

of workflow in Example 1 is as follows:

𝑡ଵ 𝑡ଶ 𝑡ଷ 𝑡ସ 𝑡ହ

 𝑇𝑀 =

𝑡ଵ

𝑡ଶ

𝑡ଷ

𝑡ସ

𝑡ହ ⎝

⎜
⎛

0.44
0.44
0.00

0.44
0.54
0.13

 0.00 0.00 0.00
 0.13 0.13 0.00

 0.22 0.35 0.00
0.00 0.13 0.35 0.55 0.20
0.00 0.00 0.00 0.20 0.20 ⎠

⎟
⎞

TPS partitions and distributes the original datasets into all appropriate

virtual machines in the Cloud. Then the related tasks will be assigned to the

corresponding virtual machine so that their required datasets are stored there. In

this way, the total amount of data movement between virtual machines is

decreased and the overall workflow execution time will be reduced. Task

placement scheme is defined to represent the place of each workflow dataset in

a virtual machine. A task placement scheme is defined formally as follows:

Definition 4.2.4 (Task Placement Scheme 𝚽). Suppose there are I

virtual machines and K tasks, a task placement scheme is represented by a K-

element vector Φ such that Φ(t୩) indicates the virtual machine to which t୩ is

placed. For example if the task placement scheme is Φ = (1, 2, 1, 2, 3) it means

tasks tଵand tଷ are placed in virtual machine vmଵ (Φ(tଵ) = Φ(tଷ) = vmଵ), tasks

tଶand tସ in virtual machine vmଶ (Φ(tଶ) = Φ(tସ) = vmଶ) and the tasks tହ in

virtual machine vmଷ (Φ(tହ) = vmଷ).

We consider all the workflow tasks are flexible and there are no fixed

52

tasks because moving computation task to datasets is often cheaper than moving

datasets to computation task nodes. To define a good measurement to compare

separation between virtual machines, task interdependency within and between

virtual machines are defined as follows:

Definition 4.2.5 (Within-VirtualMachine Task Interdependency

𝐕𝐌𝐓𝐖).

𝑉𝑀𝑇ௐ(𝛷) = 𝑡𝑝(𝑡ଵ, 𝑡ଶ)

ః(௧ೖభ)ୀ௩

ః(௧ೖమ)ୀ௩

ூ

ୀଵ

 (4)

where tp(t୩ଵ, t୩ଶ) is the task interdependency between task t୩ଵand t୩ଶ , I

is the maximum number of virtual machines in the Cloud.

Definition 4.2.6 (Between-VirtualMachine Task Interdependency

𝐕𝐌𝐓𝐁).

𝑉𝑀𝑇(𝛷) = 𝑡𝑝(𝑡ଵ, 𝑡ଶ)
ః(௧ೖభ)ୀ௩ భ
ః(௧ೖమ)ୀ௩ మ

(ூ,ூ)

భஷమ
(భ , మ)∈(ூ,ூ)

 (5)

To achieve the task placement goal, TPS uses heuristic information for its

search direction of finding the best task placement scheme. Heuristic information

should consider both within and between virtual machine interdependency. The

heuristic is defined in TPS as follows:

Definition 4.2.7 (Task Interdependency Greedy TG). The TG heuristic

biases TPS to select the task placement scheme with higher task

interdependency. It is defined as:

53

𝑇𝐺(𝛷) =
𝑉𝑀𝑇ௐ(𝛷) + 1

𝑉𝑀𝑇(𝛷) + 1
 (6)

In this formula, the numerator measures Within-VirtualMachine Task

Interdependency and the denominator measures the Between-VirtualMachine

Task Interdependency. The bias 1 is set to avoid divided-by-zero in the case that

the task interdependency between virtual machines get zero. A good task

placement scheme has a higher TG. Therefore, the output of TPS is a task

placement scheme with the highest TG. In our system model, we consider a

system constraint in terms of task which is defined as follows:

Non-replication constraint: Once a task is placed into a specific virtual

machine, it is not allowed to place it into another virtual machine as task

replication is not in the scope of this version of TPS.

Definition 4.2.8 (Task Placement Solution). The task placement

solution for big data workflow, W, to execute in a Cloud computing

environment, C, is to select a task placement scheme Φ ∈ Q to minimize the

workflow communication cost (WCC) under the virtual machine storage

capacity and non-replication constraints. In the next section, we explain our task

placement strategy, TPS, in detail.

4.3 Workflow Task Placement Algorithm-TPS

Like BDAP, TPS starts with calculating the task interdependency matrix.

Then, it generates a set of task placement schemes randomly and calculates their

heuristic values. In the following, for each task placement scheme, TPS applies

54

Algorithm 2. Task Placement (TPS)

Input:

 T: set of workflow tasks,

 TP: task interdependency matrix,

 popsize: size of population,

 er: rate of elitism,

 cr: rate of crossover,

 mr: rate of mutation,

 num_iteration: number of iterations,

Output: The best task placement scheme, 𝛷௦௧

1. Begin

2. for i = 1 to popsize do

3. 𝛷 ← Generate a task placement scheme randomly;

4. 𝑃𝑜𝑝 ← < 𝛷, 𝑇𝐺(𝛷) >;

5. end for

6. idx = 0;

7. while (idx ≤ num_iteration) do

8. ne = popsize × er; // number of elitism

9. 𝑃𝑜𝑝ா ← The best ne task placement schemes in Pop;

10. nc = popsize * cr; // number of crossover

11. for i =1 to nc do

12. randomly select two task placement scheme 𝛷 and 𝛷 from Pop;

13. generate 𝛷C and 𝛷D by one-point crossover for tasks of 𝛷 and 𝛷;

14. 𝑃𝑜𝑝 ← < 𝛷 , 𝑇𝐺(𝛷) >;

15. 𝑃𝑜𝑝 ←< 𝛷 , 𝑇𝐺(𝛷) >;

16. end for

17. nm= popsize × mr;// number of mutation

18. for i =1 to nm do

19. select a task placement scheme 𝛷 from 𝑃𝑜𝑝 ;

20. 𝛷
ᇱ ← mutate randomly a virtual machine position number in 𝛷 ;

21. 𝛷 ← 𝛷
ᇱ;

22. end for

23. Pop ← 𝑃𝑜𝑝ா and 𝑃𝑜𝑝;

24. idx = idx +1;

25. end while

26. return the best task placement scheme 𝛷௦௧;

37. End

55

three main operators, Selection, Crossover, and Mutation sequentially to

generate possibly better schemes with higher heuristic values. At the end of the

algorithm, the best observed task placement scheme is recorded in Φୠୣୱ୲ and will

be returned as the output of TPS. Selection, crossover and mutation operators are

defined in chapter 3. Algorithm 2 represents TPS.

4.4 Experiment and Case Study

4.4.1 Case Study

To evaluate performance of our proposed task placement approach (TPS)

we compare it with k-means clustering and Random strategy. We developed a

real Cloud-based workflow for OpenXC dataset to compare any number of car

drivers with each other.

In DATAVIEW [17], we developed an OpenXC workflow, that consists

of six individual workflow tasks. For each individual car driver we calculated

her driving brehavior. This workflow has two main stages, in the first stage it

computes how unsafe the driver is based on the braking ability and in the second

stage it evaluates the vehicle speed of the driver in order to to compute the risk

level of the driver.

Description of the workflow tasks are as follows:

Task 1 – getDriverInfo: This workflow task gets the OpenXC raw data set

as well as car driver id, and returns the signal details for that particular car driver.

Task 2 - BrakeSpeedDistribution: This step is used to compute how

unsafe the driver is, based on her braking ability. For every pair of brake pressed

56

(true and false value), the workflow will output the total time driven without

pressing brake and the top 5 vehicle speed.

Task 3 – getAddByLatLon: In this step, the address where the signal is

captured is calculated by using the Google API and Latitude and Longitude

signal.

Task 4 – chkHighway: This task is used to compute decide if the car is on

highway or not by using a google places API. It is based on the address where

the signal is captured.

Task 5 – getSpeedLimit: This task is used to get the speed limit posted on

the road. This workflow will automatically set the speed to 65 if it is highway. If

not highway it will set the speed limit to 45.

Task 6 –speedCheck: This task is to compare the top 5 actual vehicle

speed with the speed limit posted on the road in order to compute the total

number of times the driver exceeded the speed limit.

Task 7 –compareDriver: This task is used to compare different drivers

based on their speed distribution and braking ability.

Figure 4-2 shows the OpenXC workflow for comparing driving behavior

for three car drivers. There are 6 individual tasks and 13 datasets (both original

and intermediate datasets) for each car driver. To create a workflow with the

large number of tasks and data products, we repeat the above workflow with a

different number of car drivers under the assumption that each task can be

executed on different virtual machines. For our experiments, we consider 2, 10,

57

20, 50 and 100 car drivers with a total number of tasks, [13, 61, 121, 301, 601].

In our experimental setting, we used virtual machines in the range of 5-25 with

a range of 5GB-20GB of storage capacity (as shown in Table 4-1). The input

OpenXC datasets are synthetic datasets built from the data recorded by real car

drivers [18]. We demonstrate the performance of our proposed task placement

algorithm by comparing it with k-means clustering, and a randomly generated

task placement approaches with the average of the workflow communication

cost defined in section 3. Based on our experiments, we observe that our results

shown in Table 4-2 outperform the other task placement schemes.

Table 4-1 Description of Task and virtual machine of the experiment.

Table 4-2 Default setting for the TPS algorithm.

Overall task and virtual machine

of tasks

of virtual machines

virtual machines computing capacity

data transfer rate between virtual machines

[13, 61, 121, 301, 601]

[5, 10, 15, 20, 25]

5GB – 20GB

5MB per second

Overall dataset and virtual machine

Maximum population size

Initial population

Maximum generation

Crossover probability

Mutation probability

TG threshold

100

Randomly generation

100

0.8-0.9

0.3-0.5

0.01-0.1

58

4.4.2 Implementation

In our DATAVIEW system, we integrated the big data workflow engine

subsystem with FutureSystems academic cloud provider in order to

automatically provision virtual machines to execute big data workflows in the

cloud. We implemented bash scripts to automatically provision virtual machines

by first creating a new image and configure both the hardware and software

settings.

Workflow execution is transparent to our data scientists. They can just

create and run any arbitrary workflow and the system deploys a set of virtual

machines, datasets and moves workflow tasks to the corresponding virtual

Figure 4-2 OpenXC Workflow for Comparing Three Car Drivers.

59

machine. At design time, our TPS algorithm parses the specification of the

workflow and identifies an optimal mapping of the workflow tasks to the

corresponding virtual machines. At run time, the DATAVIEW system moves the

workflow task to the corresponding virtual machines based on the mapping

generated by TPS. Finally, the workflow is executed in a distributed manner to

improve the performance of the TPS. Please note that workflow scheduling is

out of the scope of this study. The order of workflow tasks execution (sequential,

pipeline or parallel) is not specified by TPS. TPS can be invoked by any

workflow scheduler to obtain an optimal placement and therefore minimize

workflow makespan. For our experiments in three approaches, we ran workflow

tasks sequentially from entry task till the exit/final task. Table 4-3 shows the

description of running the OpenXC workflow of Figure 4-2. Table 4-4 shows

some of the result of applying TPS for the execution of workflow in Example 1.

Table 4-3 Some results of applying TPS for the execution of workflow in Example1.

Task Name Execution

Time (hrs)

Input Data

Size(GB)

Output Data

Size(GB)

VM#

getDriverInfo 0.353 10.00 1.00 vm1

BreakSpeedDistribution 1.514 1.00 0.098 vm2

getAddbyLatLon 0.513 1.00 0.017 vm1

chkHighway 0.012 0.017 0.019 vm3

getSpeedLimit 0.025 0.019 0.024 vm1

speedChk 0.001 0.122 0.098 vm2

computeSimilarity 1.260 0.290 0.001 vm1

60

4.4.3 Results

Figure 4-3 shows the Workflow Communication Cost (WCC), in terms

of hour by varying the number of tasks and fixing the number of virtual

machines. Our experiments show that WCC cost increases with a large number

of tasks and data products in both algorithms. However, it can be seen clearly

that our strategy reduces WCC compared to the k-means clustering and Random

algorithms.

In the next step, we calculate WCC by varying the number of virtual

machines and fixing the number of tasks (Figure 4-4). Although WCC is

increased by increasing the number of virtual machines, the increasing rate of

our strategy is slower than the k-means clustering and Random strategies. In

addition, it shows at some point, provisioning new Cloud resources like virtual

machines does not affect the workflow performance as we may have many idle

virtual machines

Table 4-4 OpenXC workflow of one car driver running in DATAVIEW.

The best task placement scheme in the :

First population <t#, vm#> Last (10th) population <t#, vm#>

<t1,vm1><t2,vm2><t3,vm3><t4,vm3><t5,v

m1>

TG = 0.11 and WCC = 0.0101 hr

<t1,vm1><t2,vm1><t3,vm2><t4,v

m1><t5,vm3>

TG = 2.10 and WCC = 0.0061 hr

<t1,vm2><t2,vm1><t3,vm3><t4,vm1><t5,v

m3>

TG = 0.09 and WCC = 0.0176 hr

<t1,vm2><t2,vm2><t3,vm1><t4,v

m1><t5,vm3>

TG = 2.48 and WCC = 0.0043 hr

61

0 100 200 300 400 500 600
0

20

40

60

80

Number of workflow tasks

W
C

C
 (

h
o

u
rs

)

a-5 Virtual Machines

0 100 200 300 400 500 600
0

50

100

150

Number of workflow tasks

W
C

C
 (

h
o

u
rs

)

b-10 Virtual Machines

0 100 200 300 400 500 600
0

50

100

150

200

Number of workflow tasks

W
C

C
 (

h
o

u
rs

)

c-15 Virtual Machines

0 100 200 300 400 500 600
0

100

200

300

Number of workflow tasks

W
C

C
 (

h
o

u
rs

)

d-20 Virtual Machines

0 100 200 300 400 500 600
0

100

200

300

400

Number of workflow tasks
W

C
C

 (
h

o
u

rs
)

e-25 Virtual Machines

TPS

K-means clustring
Random

5 10 15 20 25
0

20

40

60

Number of virtual machines

W
C

C
(h

o
u

rs
)

a-13 Tasks

5 10 15 20 25
0

20

40

60

80

100

Number of virtual machines

W
C

C
(h

o
u

rs
)

b-61 Tasks

5 10 15 20 25
0

50

100

150

200

Number of virtual machines

W
C

C
(h

o
u

rs
)

c-121 Tasks

5 10 15 20 25
0

50

100

150

200

250

Number of virtual machines

W
C

C
(h

o
u

rs
)

d-301 Tasks

5 10 15 20 25
0

100

200

300

400

Number of virtual machines

W
C

C
(h

o
u

rs
)

e-601 Tasks

TPS

K-means clustring
Random

Figure 4-3 Workflow Communication Cost (hours) by varying the number of
workflow tasks.

Figure 4-4 Workflow Communication Cost (hours) by varying the number of
virtual machines.

62

5 TASK SCHEDULING IN BIG DATA
WORKFLOWS

5.1 Introduction

Workflow scheduling has remained a critical component of modern data-

centric workflow management systems. Cloud computing, which provides

practically unlimited computing and storage resources, has created a new

generation of data-centric workflows, called big data workflows, and the need

for new workflow scheduling algorithms that consider the characteristics of

cloud computing, such as heterogeneous virtual machines, the elastic resource

provisioning model, and the pay-as-you-go pricing model, as well as the time

and monetary cost of transfer of large amount of data. In this study, we consider

one sub-problem of the general big data workflow scheduling problem, in which

a deadline D is given for a workflow W, and the goal is to minimize the monetary

cost of running W in the cloud while satisfying the given deadline.

The current trend in the use of cloud-computing paradigms for big data

querying and analytics has opened up a new set of challenges to the workflow-

scheduling problem [55]. The cloud-computing environment provides an easily

accessible and scalable framework that guides the process of leasing an

unbounded set of resources with heterogeneous types. The workflow engine that

is mainly responsible for the orchestration of the execution of the workflow, will

now need to make more intelligent decisions about when and where to execute

63

the tasks in a workflow. The existing big data workflow engine [27, 30], has a

limitation on the assignment of resources to a workflow at design time based on

the structure of the workflow. Due to the nature of big data processing in those

workflows, the tasks are compute and data intensive, and hence there is a strong

need for scheduling those tasks in different types of machines in the cloud by

making the necessary decisions at run time.

The scheduling decision making process needs to be user interactive in

order to emphasize on the usability of the system. Existing approaches such as

[61, 62], do not consider any QoS constraints that relate to the update of user run

time requirements. We took a different approach to schedule the workflow based

on the user defined deadline constraints. We performed a single objective

optimization task to minimize the execution cost of the workflow with an

intuition that based on the provided deadline the cost can vary. It is based on the

assumption that the provided deadline the cost can vary over time and that the

workflow costs are smaller for large workflows than small ones. We proposed a

new Big data wOrkflow scheduleR undeR deadlIne conStraint (BORRIS) that is

used to minimize the execution cost of the workflow under a provided deadline

constraint in a heterogeneous cloud computing environment. We have

implemented the proposed algorithm in our big data workflow system called

DATAVIEW and the experimental results show the competitive advantage of

our approach.

64

5.2 System Model

To execute a big data workflow in the cloud, we need to model the cloud

first. A cloud computing environment is modeled as follows:

Definition 2.1 (Cloud Computing Environment C): A cloud computing

environment is a 6-tuple C(R, RT, RC, FB, FR, RS), where

 R is a set of resources. Each individual resource is denoted by Ri

in the cloud computing environment.

 RT is a set of resource type such as {"t2.nano”, “t2.micro”,

“t2.small”, “t2.medium, “t2.large”, …}.

 RC: R→ Q+ is the resource usage time function. RC(Ri), Ri ∈ R

gives the time for the resource usage Ri in the cloud computing environment.

The resource with the minimum RC is called Rslowest and the resource with the

maximum RC is called Rfastest.

 FB: R × R → Q+ is the data communication rate function. FB(Ri1,

Ri2), Ri1, Ri2 ∈ R gives the data communication rate between Ri1 and Ri2. Q+
0 is

some pre-determined unit like bytes per second. This function is used to calculate

the data movement time between two resources in the cloud.

 FR: R → Q+ is the resource computing speed function. FR(Ri), Ri ∈

R gives the speed for the computing resource Ri measured in some pre-

determined unit like million instructions per machine cycles or million

instructions per nanoseconds.

 FS: RT → R is the resource provisioning function. FS(Rt), Rt ∈ RT

65

returns a resource instance of the resource type of Rt.

A big data workflow can be defined formally as:

Definition 2.2 (Big Data Workflow W): A big data workflow can be

formally defined as a 4-tuple W = (T, D, FT, FD), where

 T is a set of tasks in the workflow W. Each individual task is

denoted by Tk.

 D = {<Tk1, Tk2> | Tk1, Tk2∈T, k1 ≠ k2; k1, k2 ≤ |T|, Tk2 consumes

data Dk1, k2 produced by Tk1} is a set of data dependencies. Dk1,k2 denotes that an

amount of data is required to be transferred after Tk1 completes and before Tk2

starts. Dk represents all the outgoing edges from task Tk.

 FT: T → Q+ is the execution time function. FT(Tk); Tk ∈ T gives the

execution time of a task Tk, measured in some pre-determined unit like million

instructions per machine cycles or million instructions per nanoseconds.

 FD: D → Q+ is the data size function. FD(Dk1,k2), Dk1, k2 ∈ D gives

the size of a dataset Dki,k2, measured in some predetermined unit like bits or bytes.

To schedule a big data workflow to a set of cloud resources, more

measurements like number of instructions of tasks and data sizes are required.

Therefore, we define big data workflow graph as a weighted directed acyclic

graph that includes a set of tasks and their data dependencies. The weights of the

tasks and data edges are based on the average task computation and average data

communication time, respectively. In addition, the workflow can be partitioned

into a set of partitions such that there is no data dependency between all the tasks

66

of each partition. A big data workflow graph can be defined formally as:

Definition 2.3 (Big Data Workflow Graph G): Given a workflow W in

a cloud computing environment C, a big data workflow graph G, represents a

weighted directed acyclic graph with 14-tuple G(T, D, R, Fc, 𝐹̅, Fp, 𝐹̅, Fm, 𝐹ഥ ,

Fn, 𝐹ത , 𝑃, 𝑇𝐿, 𝑅𝑇), where

 The vertices of the graph represent a set of tasks T.

 The edges of the graph represent a set of data dependencies D.

 R is a set of resources in the cloud computing environment.

 Fc: D×R×R → Q+
0 is the data communication cost function; Dk1,k2

∈ D; Ri1, Ri2 ∈ R gives the data communication cost of Dk1,k2 from resource Ri1

to resource Ri2.

 𝐹̅: D → Q+
0 is the average data communication cost function. 𝐹̅

(k1, k2), Dk1,k2 ∈ D gives the average data communication cost of Dk1,k2 in

resources R, which is taken as the weight of edge in the graph G. The weight of

the edge is 0 for same resource.

 Fp: T×R → Q+ is the task computation cost function. Fp(Tk, Ri), Tk

∈ T, Ri ∈ R gives the computation cost of Tk on resource Ri.

 𝐹̅: T → Q+ is the average task computation cost function, 𝐹̅ (Tk)

gives the average computation cost of task Tk, which is taken as the weight of

vertex in the graph G.

 Fm: D×R×R → Q+
0 is the data communication time function; Dk1,k2

∈ D; Ri1, Ri2 ∈ R gives the data communication time of Dk1,k2 from resource Ri1

67

to resource Ri2. 𝐹ഥ : D → Q+
0 is the average data communication time function.

𝐹̅ (k1, k2), Dk1,k2 ∈ D gives the average data communication time of Dk1,k2 in

resources R, which is taken as the weight of edge in the graph G. The weight of

the edge is 0 for same resource.

 Fn: T×R → Q+ is the task computation time function. Fp(Tk, Ri), Tk

∈ T, Ri ∈ R gives the computation time of Tk on resource Ri.

 𝐹ത : T → Q+ is the average task computation time function, 𝐹̅ (Tk)

gives the average computation time of task Tk, which is taken as the weight of

vertex in the graph G.

 P: N → T is the partition task function, P [j] or Pj gives all the tasks

of partition j. RPj represents the set of resources of partition Pj.

 TL: T → N is the task partition function, TL [Tk] or TLTk gives the

partition number of task Tk.

 RT: P → RT is the partition resource type function. RT[Pj] gives

the resource type that is assigned to partition j.

Workflow makespan is the total time needed to execute the whole

workflow starting from the beginning task. Our goal is to come up with an

optimal workflow schedule such that the workflow execution cost is minimized

and the workflow makespan meets the given deadline. To this end, we need to

model workflow cost in order to be able to measure both workflow makespan

and excetion cost. As we partition the workflow into a set of partitions, the

workflow makespan will be the summation of the execution times of all

68

partitions. We define the workflow makespan as follows:

Definition 2.4 (Workflow Makespan EC): Given a workflow W in a

cloud computing environment C, a workflow execution makespan, represents the

execution time of the workflow with 5-tuple EC(CT, CTതതതത, minCT, maxCT, CC),

where

 CT: Partition × R → Q+ is the workflow partition completion time

function. CT(Pj), Pj ∈ Partition gives the maximum of task computation time of

all the tasks Tk ∈ Pj and the maximum of average data communication time of all

the outgoing edges from all the tasks Tk ∈Pj. We formally define CT as:

 CT (Pj, Ri) = 𝑀𝑎𝑥்ೖ∈୨{𝐹 (Tk, Ri)} +𝑀𝑎𝑥்ೖ∈୨{𝐹(Dk, k1, Ri, Ri1)}

 CTതതതത: Partition → Q+ is the workflow average completion time

function. CTതതതത (Pj), Pj ∈ Partition gives the max of average task computation time

of all the tasks Tk ∈ Pj and the average data communication time for all the

outgoing edges from all the tasks Tk ∈ Pj. We formally define CTതതതത as:

CTതതതത (Pj) = ∑ 𝐹ത

ୀଵ (Tk) + ∑ 𝐹ഥ

ୀଵ,ଵୀଵ

 ஷଵ

 (Dk, k1)

 minCT: Partition → Q+
0 is the minimum workflow partition

completion time function. minCT(Pj), Pj ∈ Partition gives the minimum task

computation time of all the tasks Tk ∈ Pj and the minimum data communication

time for all the outgoing edges from all the tasks Tk ∈ Pj. We formally define it

as:

minCT (P୨) = ∑ 𝐶𝐶൫𝑇 , 𝑅௦௧௦௧൯்ೖ∈ ೕ

69

 maxCT: Partition → Q+
0 is the maximum partition completion

time function. maxCT(Pj), Pj ∈ Partition gives the maximum task computation

times of all the tasks Tk ∈ Pj and the maximum data communication times for all

the outgoing edges from all the tasks Tk ∈ Pj. We formally define maxCT as:

maxCT(𝑃୨) = ∑ 𝐶𝐶(𝑇 , 𝑅௦௪௦௧)்ೖ∈ ೕ

 CC: Partition × R → Q+ is the workflow partition completion cost

function. CC(Pj , Ri), Pj ∈ Partition gives the sum of task computation cost of all

the tasks Tk ∈ Pj assigned to Ri as well as the data communication cost for all the

outgoing edges from all the tasks Tk ∈ Pj. We formally define CC as:

CC (Pj , Ri1) = ∑ F୮(T୩, R୧ଵ)
୩ୀଵ + ∑ ∑ Fୡ(𝐷୩,୩భ

, R୧ଵ, R୧ଶ)
୩ୀଵ,୩ଵୀଵ

୩ ஷ୩ଵ

୍
୧ଵ,୧ଶୀଵ
୧ଵ ஷ୧ଶ

The critical path in the workflow can be computed by the SCPOR

algorithm [62]. We define partition makespan as follows:

Definition 2.5 (Workflow Partition Makespan PM): Given a workflow

W in a cloud computing environment C and deadline D, a workflow partition

makespan, represents the sub-deadline provided to each partition of the

workflow with 6-tuple PM(SD, PRT, ACT, Earliness, Lateness, Threshold,),

where

 SD: Partition → Q+ is the sub-deadline partition function. SD(Pj),

Pj ∈ Partition gives the sub-deadline assigned to the partition Pj. Supposedly

CTM is the makespan of the critical path in the workflow, then SD can be

calculated formally as follows:

70

SD[P୨] = (𝑀𝑎𝑥்ೖ ∈ ୨൛𝐶𝑇തതതത൫𝑃൯ൟ / CTM) * D

 PRT: Partition × R × SD × Threshold → RT is the resource

partition identifier that is used to identify the slowest resource for executing the

tasks in a partition while still managing to meet the deadline of executing the

tasks in the partition to the sum of sub-deadline and threshold allocated to the

partition.

 ACT: Partition → Q+ is the actual completion time that is used to

compute the total time for completing all the tasks in a partition. It can be

formally defined as:

ACT (Pj) = ∑ 𝐶𝑇൫𝑇 , Fୗ(RൣP୨൧)൯
ୀଵ

்ೖ∈ೕ

 Earliness: Partition → Q+ is the earliness partition function.

Earliness (Pj), Pj ∈ Partition gives the earliness time of the partition Pj. It can be

calculated as follows:

Earliness (Pj) = Max {0, SD(Pj) - ACT(Pj)}.

 Lateness: Partition → Q+ is the lateness partition function.

Lateness(Pj), Pj ∈ Partition gives the lateness time of the partition Pj. It can be

calculated as follows:

Lateness (Pj) = Max {0, ACT (Pj) - SD(Pj)}

 Threshold: Partition → Q+ is the threshold partition function.

Threshold(Pj), Pj ∈ Partition gives the threshold time of the partition Pj. It can be

calculated as follows:

71

Threshold(Pj) =Max{0, SD(Pj+1) – minCT (Pj+1)}

Our goal is to minimize workflow execution cost while satisfying the

deadline constraint. We formally define our objective function and the

constraints as follows:

Definition 2.6 (Workflow Cost Minimization): Given a workflow W in

a cloud computing environment C, and deadline D, makespan of workflow is the

objective function and can be defined as follows

Makespan = ∑ ∑ 𝐶𝑇(𝑃 , 𝑅
ூ
ୀଵ)

ୀଵ × 𝑋

where,

𝑥 = ൜
1, 𝑖𝑓 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑃 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑅

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

such that the following constraints are satisfied:

1) ∑ ∑ 𝐶𝑇(𝑃 , 𝑅
ூ
ୀଵ)

ୀଵ × 𝑋 <= D

2) ∑ 𝑋

ୀଵ = 1 for all the tasks in partition j assigned to the resource Ri

∈ R.

There are three cases to consider:

1) if D < ∑ 𝑚𝑖𝑛𝐶𝑇(𝑃)
ୀଵ , then we can satisfy the deadline constraints

and so a solution is to assign all the partition tasks to the slowest resource.

2) if D > ∑ 𝑚𝑎𝑥𝐶𝑇(𝑃)

ୀଵ , then we satisfy the deadline constraint by

assigning all the partition tasks to the fastest resource as a solution.

3) if ∑ 𝑚𝑖𝑛𝐶𝑇(𝑃)
ୀଵ <= D <= ∑ 𝑚𝑎𝑥𝐶𝑇(𝑃)

ୀଵ , then we use our strategy

to find the optimal solution.

72

5.3 The BORRIS Algorithm

The main steps of the BORRIS algorithm are shown in Figure 5-1.

Workflow specification and deadline are the two required inputs for BORRIS.

In the first step, BORRIS parses the given workflow specification and assigns a

non-negative number (weight) to each workflow task and edge to generate a

weighted DAG. We use the number of instructions in of tasks, and data

movement size of the edges along with the cloud resource types information in

order to generate their weights. The average computation times are calculated as

the weights of tasks and the average data movement times are calculated as the

weights of edges.

After generating the weighted DAG for the workflow, BORRIS partitions

the workflow into several partitions such that there is no data dependency (edge)

between the tasks inside each partition however, there is a possibility to have

data dependencies between the partitions. In the next step, BORRIS distributes

Figure 5-1 BORRIS flowchart.

73

the given deadline and assigns initial sub-deadlines to all of the partitions. For

the deadline distribution, BORRIS computes the maximum time needed to

execute the workflow (i.e. workflow makespan) by calculating the makespan of

the critical path. Then, it assigns the sub-deadlines to all of the partition based

on the workflow makespan and average completion time of each partition. In the

next step, the maximum and minimum completion times for each partition are

calculated. The maximum completion time is the completion time of the partition

once all its tasks are assigned to the slowest cloud resource and the minimum

completion time is the completion time once all its tasks are assigned to the

slowest cloud resource.

In addition, BORRIS computes a threshold value for each partition by

taking away some extra time from their subsequent partitions. The initial sub-

deadline of each partitions is increased by the threshold and it provides more

room to select a slower resource for the partition and therefore the execution cost

of the partition is minimized. For the next step, BORRIS goes through all the

partitions sequentially and complete the schedule map by assigning all the

partitions on to the most appropriate cloud resources.

After identifying the appropriate resource type for the partition, each task

in the partition is scheduled to execute in a resource instance of the resource type

in parallel. The actual completion time, the earliness and lateness values for each

partition is calculated after partition execution. Then BORRIS adjusts the sub-

deadline of the subsequent partition by using these earliness and lateness values.

74

If the partition is the last partition, BORRIS does not need to calculate the

earliness and lateness values as there is no subsequent partition that uses them.

For example, let us consider the workflow of Figure 5-2 with 200 minutes

as the deadline. This workflow consists of seven tasks as the vertices and ten

data dependencies as the edges. The workflow is partitioned into three partitions

as P1={T1, D1,2, D1,3, D1,4, D1,5, D1,6}, P2={T2-T6, D2,7, D3,7, D4,7, D5,7, D6,7} and

P3={T7}. Once the weighted DAG of the workflow (Table 5-1.b,c) is computed,

then the initial sub-deadline, maximum and minimum completion time as well

as the threshold value of the three partitions are calculated and shown in Table

5-1.d.

Table 5-1.a shows a list of cloud resources parameters including five

resource types with their computation capacities and the associated costs.

Figure 5-2 Workflow example with seven tasks and ten data dependencies.

75

In the first step, the resource type, “t2.nano” is computed for the first

partition as it is the slowest resource that can meet the partition sub-deadline, 15.

By assigning the first partition to "t2.nano" and calculating its actual completion

time, earliness value is 0 and lateness value is 5. These earliness and lateness

values are passed to the next partition to update the sub-deadline of the second

partition. After this sub-deadline adjustment for partition 2, "t2.small" is selected

as the slowest resource type for this partition. The earliness and lateness values

of the secondpartition is calculated after execution the entire partition as earliness

= 4 and lateness = 0. In the end, "t2.large" can be selected for the last partition

as it is the slowest resource that meets the sub-deadline. Finally, the total

completion cost of workflow execution which is minimized is $0.113. The

earliness and lateness values are shown in Table 5-1.e.

BORRIS assigns the workflow tasks onto the appropriate cloud resource

such that it minimizes the workflow execution cost while meeting the deadline

Table 5-1 a) Cloud resource catalogue, b) Task computation cost c) Data
communication cost, d) Initial budget allocation and e) Final budget allocation.

76

constraints. The BORRIS algorithm is presented as Algorithm 1. Workflow

specification and deadline are the two required inputs. The output is a set of pairs

(<task, resource>) for all the tasks which indicates the resource instances for

executing of all the workflow tasks. In the first step, BORRIS parses the given

workflow in order to generate the weighted DAG (line 4). Then the workflow is

partitioned into several partitions (line 5). In line 6, the critical path of the

workflow is calculated. The total completion time of the workflow is calculated

based on the completion time of the tasks in the critical path (lines 7-10). To

identify the appropriate recourse for each tasks the algorithm evaluates all the

partitions sequentially (lines 11-31). In lines 12-13, an initial sub-deadline is

assigned to the partition. In addition, the minimum and maximum completion

times of the partition are calculated (lines 14-15). If it is not the last partition

(line 16), BORRIS then calculates the threshold (line 17) and the slowest

resource type for all the tasks in the partition. It then adds this schedule to the

output schedule map (lines 18-19). In line 20, BORRIS computes the maximum

of actual completion time (ACT) of the partition tasks. In lines 21-24, BORRIS

calculates the lateness and earliness values of the partition to update the sub-

deadline of the next subsequent partition. In lines 25-30, if it is the last partition

then BORRIS updates the sub-deadline of the last partition (line 26). It calculates

the slowest resource type for it and assigns all of the tasks in the last partition to

different resource instances of this resource type. In the end, the schedule of the

last partition is added to the output schedule map (line 27). Finally, in line 30,

77

BORRIS returns the complete schedule that consists of all the tasks and the

corresponding resources as a set of pairs (<task, resource>).

1: Algorithm 1 BORRIS Scheduler
2: input: workflow w, deadline D
3: output: d, a map storing task-VM assignments.
4: parse w and generate a weighted DAG (w).
5: tasksByPartition ← partition workflow.
6: CTL ← get all critical tasks in the workflow w
7: CTM = 0 // Critical Task Makespan
8: for each crti ∈ CTL
9: CTM = CTM + 𝐶𝑇തതതത(crti)
10: end for
11: for each Partition Pj ∈ tasksByPartition

12: PMax ← 𝑀𝑎𝑥்ೖ∈ ೕ
{𝐶𝑇തതതത(𝑇)}

13: SD[P୨] = (PMax / CTM) * D

14: minCT [P୨] ← ∑ 𝐶𝐶൫𝑇 , 𝑅௦௧௦௧൯்ೖ∈ ೕ

15: maxCT [P୨] ← ∑ 𝐶𝐶(𝑇, 𝑅௦௪௦௧)்ೖ∈ ೕ

16: if (Pj is not last Partition) then
17: Thres [P୨] = Max{0, SD [P୨ାଵ] – minCT [P୨ାଵ]}

18: RT [P୨] ←PRT (P୨, R, SD [P୨] + Thres [P୨])

19: d ← d ∪ MAP (Tk, Fୗ(RT [P୨])) ∀ 𝑇 ∈ 𝑃

20: ACT [P୨] = CT(Pj, Fୗ(RT [P୨]))

21: Lateness [P୨] = Max {0, ACT [P୨] - SD[P୨]}

22: SD[Pj+1] = SD[Pj+1] – Lateness [P୨]

23: Earliness [P୨] = Max {0, SD[P୨] – ACT [P୨]}

24: SD[Pj+1] = SD[Pj+1] + Earliness [P୨]

25: else if (Pj is last Partition) then

26: SD [P୨] = D - ∑ ൫ACT[P୨ଵ] + Lateness[P୨ଵ] ൯
ିଵ
ଵୀଵ

27: RT [Pj] ← PRT (Pj, R, SD [P୨])

28: d ← d ∪ MAP (Tk, Fୗ(RT[Pj])) ∀ 𝑇 ∈ 𝑃

30: end if
31: end for
32: return d

33: end function

78

5.4 Experimental Results

5.4.1 Performance Evaluation

In order to evaluate the performance of BORRIS, we developed a big data

workflow for the automotive domain DATAVIEW platform. This workflow is

an auto analytics workflow based on the OpenXC datasets. OpenXC data

analysis is very useful for different stock holders like automotive insurance

companies to analyze how their customers drive by capturing the large OpenXC

datasets received from their registered vehicles. As the OpenXC datasets are

large, it is beneficial to analyze the data using cloud distributed computing

resources. As a result, there is a need to minimize the execution cost for

performing the analytics. BORRIS automatically learns the complexity of the

tasks computation and the data transfer between the tasks from an initial estimate

and it can be more accurate after each workflow run.

Here we used Amazon EC2 cloud computing environment to perform our

experiments. Amazon EC2 provides a framework that can provision and

deprovision a variety of heterogeneous virtual machines (instances) with

different compute, memory, storage and network capabilities. Each type of

instance consists of an hourly cost for resource utilization and the execution time

is based on the complexity level of the analytics workload. For example, the

general purpose instance types are listed as: {"t2.nano",

"t2.micro","t2.small","t2.medium","t2.large"}. The cheapest option and

resources of type "t2.large" is the fastest and the most expensive option in terms

79

of cost.

We compared the BORRIS algorithm with two more approaches. The first

one is the Workflow Responsive resource Provisioning and Scheduling (WRPS)

algorithm [55]. The WRPS algorithm is the most recent work in the field of

workflow scheduling. WRPS computes a set of bag of tasks (BoT) such that the

tasks inside of each BoT are independent and can be executed in parallel. Then,

it assigns a sub-deadline to each bag of tasks based on the given deadline and

then schedules them onto heterogeneous types of cloud resources with the goal

of workflow execution cost minimization and deadline constraints. The cost

optimization problem is modeled as an unbounded knapsack minimization

problem in that work.

In WRPS, the authors assumed the tasks inside each BoT are

homogeneous. We do not have this limitation and the tasks inside each level can

be heterogeneous. However, in order to compare our strategy to WRPS we

developed our OpenXC workflow such that the tasks of each level are

homogenous.

One of our main contributions is the application of a sub-deadline

adjustment technique that updates the assign sub-deadline of the levels after

completing each level. To demonstrate this technique, we then relaxed BORRIS

(called BORRIS*) by setting the threshold, the earliness and the lateness to be

zero. The WRPS algorithm provides an optimization to the BoT by scheduling

the tasks in a bag to different types of machines but it does not update the sub-

80

deadlines of the other BoT based on the executed BoT. In our strategy, BORRIS

assigns all the tasks inside a given level to the same type of machines. However,

it has the capabilities of adjusting the sub-deadlines of the remaining levels after

execution of the current level.

5.4.2 Results and Analysis

BORRIS was evaluated against the other two approaches using 10

distinctive workflows that were developed in the OpenXC domain with different

levels of complexity and with different provided deadlines. In Table 5-2, we

presented all the 10 workflows with their complexity levels like the computation

and data intensity of all the tasks in each of the workflow and the user defined

deadline.

We did the experiments by varying the types of machines and presented

the results for both makespan and cost parameters.

In Figure 5-3.b, we show that BORRIS outperforms WRPS by roughly 4-

11% margin as the complexity of the workflow increases from w3 to w10.

Table 5-2 Workload details for OpenXC workflow.

81

For the workflows between w1 and w3, which is of least complexity,

WRPS outperforms BORRIS because WRPS assigns tasks in each bag onto

resources of different types. The local optimization done at each level

outperforms the global optimization performed by BORRIS when the

complexity level is low.

Figure 5-3 a) Resource utilization; b) Execution cost minimization.

82

We evaluated the results of all three approaches and have demonstrated

the cost minimization by varying the instance types from K = {5, 10, 15, 20, 25}.

Please notice in this experiments we provided sufficient deadlines to execute

each workflow as there are some cases that the provided deadlines are not enough

to complete the workflow. In Figure 5-3.a, we show the resource utilization in

the cloud for various K values. The BORRIS algorithm outperforms WRPS

because the resource is utilized to the maximum extent for the tasks in each level

since we setup the level dependencies through a system driven threshold value

and automatically update the sub-deadline with a system driven earliness or

lateness value at run time. The earliness and lateness are calculated after the

actual execution time of the previous level. By increasing the number of resource

types (K) we can observe BORRIS has better performance compared to the other

algorithms.

83

6 CONCLUSIONS AND FUTURE WORK
In big data workflows that involve big datasets, either as inputs or

intermediate outputs, the workflow makespan can vary greatly depending on

how the tasks and datasets are allocated in the distributed computing

environment like the Cloud. Therefore, our research focus on the data and task

placement and schedule for big data workflows that are execution in the

heterogeneous and distributed execution environment like Cloud. Our main

contributions in this dissertation are summarized as follows:

We formalized the data placement problem in big data workflows by

defining data interdependency concept for clustering the most interdependent

data products together and place them possibly to the same virtual machine. The

goal is to minimize data movement among virtual machines during workflow

execution. Therefore, we considered data interdependency as the separation

measurement to maximize the data locality. For this, two datasets are

interdependent and should be collocated in the same virtual machine if they are

simultaneously needed as inputs by many tasks. We considered the number of

common tasks that take a pair of datasets as input to define the data

interdependency of the datasets. To define a good measurement to compare

separation between virtual machines, data interdependency within and between

virtual machines were defined. At the end, a data dependency greedy was defined

based on the data interdependency within and between virtual machines.

We proposed BDAP, an evolutionary algorithm (EA) which is a generic

84

population-based metaheuristic optimization strategy for data placement in big

data workflows. The main goal was to minimize the dataset movement between

virtual machines during the execution of a workflow under the constraint of

virtual machine storage capacity. In BDAP, a random set of data placement

schemes were generated in the first step. In the next step, BDAP computed and

compared the generated schemes by applying a defined heuristic function and

returned the best scheme. The heuristic function was based on the data

interdependency within and between the virtual machines in the Cloud. The best

scheme was the one which maximized the data interdependency within each

virtual machine and minimized the data interdependency between virtual

machines.

We formalized the task placement problem in big data workflows. We

defined Task Interdependency concept for clustering the most interdependent

workflow tasks and place them possibly to the same virtual machine. Therefore,

we considered task interdependency as the separation measurement to maximize

the data locality. For this, two tasks were interdependent and should be

collocated in the same virtual machine if they were simultaneously consumed

many datasets. We considered the size of the total number of common input

datasets to define the task interdependency of the tasks. Similarly, task

interdependency within and between virtual machines were defined to define a

good measurement to compare separation between virtual machines as the

clusters. At the end, a task dependency greedy was defined based on the task

85

interdependency within and between virtual machines.

We proposed a generic population-based metaheuristic optimization

strategy for task placement in big data workflows (TPS). The main goal was to

minimize the dataset movement between virtual machines during the execution

of a workflow under the constraint of virtual machine computing capacity. In

TPS, a random set of task placement schemes were generated in the first step.

Then, TPS computed and compared the generated schemes by applying a defined

heuristic function and returned the best scheme. The heuristic function was based

on the task interdependency within and between the virtual machines in the

Cloud. The best scheme was the one which maximized the task interdependency

within each virtual machine and minimized the task interdependency between

virtual machines.

We considerd one sub-problem of the general big data workflow

scheduling problem, in which a deadline D is given for a workflow W, and the

goal is to minimize the monetary cost of running W in the cloud while satisfying

the given deadline.

I plan several improvements and extensions of my work in the future. In

the following, I briefly describe some of the problems I am particularly interested

in contributing to work on fundable and applicable problems in the big data area

by focusing on designing scalable big data applications and algorithms to support

big data computing and analytics. Some of the future works are as follows:

Data Placement with Replica for Big Data Workflows in the Clouds.

86

The growth of big data in volume, variety and velocity is faster than Moore's law

while the demand for more complex data analytics is increasing. We proposed

BDAP, a data placement strategy for Cloud-based scientific workflows. Big data

workflows consume and produce huge datasets. Applying data replication can

reduce data movement as well. So, in future work, I plan to improve BDAP by

applying data replication techniques. In addition, we considered data placement

for executing of a single workflow. However, in real world, multiple workflows

can be executed concurrently. Therefore, I plan to extend BDAP strategy to

achieve data placement for the execution of multiple workflows simultaneously.

I am interested in addressing these new works by using metaheuristic

optimization approaches like Cultural Algorithms. For my experimentation and

testing, I plan to use DATAVIEW with the new cloud testbeds like Chameleon

provided by NSF as well as Amazon EC2 cloud. Moreover, I plan to use cloud

data storages like Dropbox [111], Google Drive [112], Microsoft OneDrive

[113].

Task Placement with Replication for Big Data Workflows in the

Cloud. We proposed TPS, a task placement strategy for big data workflows. Big

data workflows consume and produce huge datasets. Applying task/data

replication can reduce data movement. So, in future work, I plan to improve TPS

by applying task/data replication techniques. In addition, we considered task

placement for executing of an individual workflow. However, in real world,

multiple workflows can be executed concurrently. Therefore, I plan to extend the

87

TPS strategy in order to achieve task placement for the execution of multiple

workflows simultaneously. For the other future work, I will enhance the

performance of both BDAP and TPS strategies by using Cultural Algorithm

(CA). One of the evolutionary computation systems that simulates the cultural

evolution is Cultural Algorithm proposed by Dr. Reynolds [114-118]. Due to its

nature, culture can be seen and understood as a complex adaptive system. In a

complex system, such as culture, different heterogeneous agents are working

together and interacting with the environment. This interaction of intelligent

agents can result in a higher-level behavior used to solve different problems.

Culture as a source of knowledge can significantly affect the behavior of

individuals within a population. Cultural Algorithm has two major components:

the Population Space and the Belief Space [119, 120]. In addition to those two

components, there is a communication protocol that allows the Belief space, and

Population space to interact with each other, and exchange the knowledge.

88

APPENDIX A: SUPPORT VECTOR
MACHINE (SVM) P-WORKFLOW

Workflow Specification

<workflowSpec>

<workflow name="svm" root="true">

 <workflowInterface>

 <workflowDescription>simple svm workflow</workflowDescription>

 <inputPorts>

 <inputPort>

 <portID>i1</portID>

 <portName>a</portName>

 <portType>File</portType>

 <portDescription>port i1 description</portDescription>

 </inputPort>

 <inputPort>

 <portID>i2</portID>

 <portName>b</portName>

 <portType>File</portType>

 <portDescription>port i2 description</portDescription>

 </inputPort>

 </inputPorts>

 <outputPorts>

 <outputPort>

 <portID>o1</portID>

 <portName>c</portName>

 <portType>File</portType>

 <portDescription>port o1 description</portDescription>

89

 </outputPort>

 </outputPorts>

 </workflowInterface>

 <workflowBody mode="builtin">

 <builtin>svm</builtin>

 </workflowBody>

</workflow>

</workflowSpec>

Workflow Java Source Code

package datamining;

import java.io.BufferedReader;

import java.io.BufferedWriter;

import java.io.File;

import java.io.FileNotFoundException;

import java.io.FileReader;

import java.io.FileWriter;

import java.io.IOException;

import weka.classifiers.Classifier;

import weka.core.Instance;

import weka.core.Instances;

import weka.classifiers.functions.SMO;

public class SVM {

 public static BufferedReader readDataFile(String filename) {

 BufferedReader inputReader = null;

 try {

 inputReader = new BufferedReader(new

FileReader(filename));

90

 } catch (FileNotFoundException ex) {

 System.err.println("File not found: " + filename);

 }

 return inputReader;

 }

 public static void writeDataFile(String fileName, String content) {

 try {

 File file = new File(fileName);

 // if file doesnt exists, then create it

 if (!file.exists()) {

 file.createNewFile();

 }

 // true = append file

 FileWriter fileWritter = new FileWriter(file, true);

 BufferedWriter bufferWritter = new

BufferedWriter(fileWritter);

 bufferWritter.write(content);

 bufferWritter.close();

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 public static void svmImplementor(String trainingData, String testData,

 String outputData) throws Exception {

 BufferedReader datafile = readDataFile(trainingData);

 BufferedReader testfile = readDataFile(testData);

 Instances data = new Instances(datafile);

 Instances test = new Instances(testfile);

91

 System.out.println("#read file success...");

 data.setClassIndex(data.numAttributes() - 1);

 test.setClassIndex(test.numAttributes() - 1);

 Classifier smo = new SMO();

 smo.buildClassifier(data);

 System.out.println("#classifier build success...");

 System.out.println(test.numInstances());

 for (int i = 0; i < test.numInstances(); i++) {

 Instance testDataItem = test.instance(i);

 double testDataItemsClass =

smo.classifyInstance(testDataItem);

 System.out.println("#instance classified success...");

 String content = "Data item: " + i + ", belong to class " +

 testDataItemsClass + "\r\n";

 System.out.println(content);

 // Write this to output file...

 writeDataFile(outputData, content);

 }

 }

92

APPENDIX B: RANDOM FOREST P-
WORKFLOW

Workflow Specification

<workflowSpec>

<workflow name="rf" root="true">

 <workflowInterface>

 <workflowDescription>simple rf workflow</workflowDescription>

 <inputPorts>

 <inputPort>

 <portID>i1</portID>

 <portName>a</portName>

 <portType>File</portType>

 <portDescription>port i1 description</portDescription>

 </inputPort>

 <inputPort>

 <portID>i2</portID>

 <portName>b</portName>

 <portType>File</portType>

 <portDescription>port i2 description</portDescription>

 </inputPort>

 <inputPort>

 <portID>i3</portID>

 <portName>a</portName>

 <portType>Integer</portType>

 <portDescription>port i3 description</portDescription>

 </inputPort>

 </inputPorts>

93

 <outputPorts>

 <outputPort>

 <portID>o1</portID>

 <portName>c</portName>

 <portType>File</portType>

 <portDescription>port o1 description</portDescription>

 </outputPort>

 </outputPorts>

 </workflowInterface>

 <workflowBody mode="builtin">

 <builtin>rf</builtin>

 </workflowBody>

</workflow>

</workflowSpec>

Workflow Java Source Code

package datamining;

import java.io.BufferedReader;

import java.io.BufferedWriter;

import java.io.File;

import java.io.FileNotFoundException;

import java.io.FileReader;

import java.io.FileWriter;

import java.io.IOException;

import weka.classifiers.Classifier;

import weka.core.Instance;

import weka.core.Instances;

import weka.classifiers.functions.SMO;

import weka.classifiers.trees.RandomForest;

public class RF {

94

 public static void rfImplementor(String trainingData, String testData,

 int numoftree, String outputData) throws Exception {

 BufferedReader datafile = new BufferedReader(new

FileReader(trainingData));

 BufferedReader testfile = new BufferedReader(new FileReader(testData));

 Instances data = new Instances(datafile);

 Instances test = new Instances(testfile);

 System.out.println("#read file success...");

 data.setClassIndex(data.numAttributes() - 1);

 test.setClassIndex(test.numAttributes() - 1);

 RandomForest rf = new RandomForest();

 rf.setNumTrees(numoftree);

 rf.setDebug(true);

 rf.buildClassifier(data);

 System.out.println("#classifier build success...");

 System.out.println(test.numInstances());

 String content = "";

 File file = new File(outputData);

 BufferedWriter bw = new BufferedWriter(new FileWriter(file,

true));

 for (int i = 0; i < test.numInstances(); i++) {

 Instance testDataItem = test.instance(i);

 double testDataItemsClass =

rf.classifyInstance(testDataItem);

 System.out.println("#instance classified success...");

 content = "Data item " + i + ", belong to class " +

testDataItemsClass;

 System.out.println(content);

 bw.write(content);

95

 bw.newLine();

 bw.flush();

 }

 if (bw != null) { bw.close();

 }

 }

}

96

APPENDIX C: BAYESIAN NETWORK P-
WORKFLOW

Workflow Specification

<workflowSpec>

<workflow name="bayesnet" root="true">

 <workflowInterface>

 <workflowDescription>simple BayesNet workflow</workflowDescription>

 <inputPorts>

 <inputPort>

 <portID>i1</portID>

 <portName>a</portName>

 <portType>File</portType>

 <portDescription>port i1 description</portDescription>

 </inputPort>

 <inputPort>

 <portID>i2</portID>

 <portName>b</portName>

 <portType>File</portType>

 <portDescription>port i2 description</portDescription>

 </inputPort>

 </inputPorts>

 <outputPorts>

 <outputPort>

 <portID>o1</portID>

 <portName>c</portName>

 <portType>File</portType>

 <portDescription>port o1 description</portDescription>

97

 </outputPort>

 </outputPorts>

 </workflowInterface>

 <workflowBody mode="builtin">

 <builtin>bayesnet</builtin>

 </workflowBody>

</workflow>

</workflowSpec>

Workflow Java Source Code

package datamining;

import java.io.BufferedReader;

import java.io.BufferedWriter;

import java.io.File;

import java.io.FileReader;

import java.io.FileWriter;

import weka.classifiers.Classifier;

import weka.core.Instance;

import weka.core.Instances;

public class BayesNet {

 public static void bnImplementor(String trainingData, String testData,

String outputData) throws Exception {

 BufferedReader datafile = new BufferedReader(new

FileReader(trainingData));

 BufferedReader testfile = new BufferedReader(new FileReader(testData));

 Instances data = new Instances(datafile);

 Instances test = new Instances(testfile);

 System.out.println("#read file success...");

 data.setClassIndex(data.numAttributes() - 1);

 test.setClassIndex(test.numAttributes() - 1);

98

 // create a Bayes Network classifier

 weka.classifiers.bayes.BayesNet bn = new

weka.classifiers.bayes.BayesNet();

 bn.buildClassifier(data);

 System.out.println("#classifier build success...");

 System.out.println("number of instances: " + test.numInstances());

 String content = "";

 // Write this to output file...

 File file = new File(outputData);

 BufferedWriter bw = new BufferedWriter(new FileWriter(file,

true));

 System.out.println("#instance classified success...");

 for (int i = 0; i < test.numInstances(); i++) {

 Instance testDataItem = test.instance(i);

 double testDataItemsClass = ((Classifier)

bn).classifyInstance(testDataItem);

 content = "Instance " + i + ", belong to class " +

testDataItemsClass;

 System.out.println(content);

 bw.write(content);

 bw.newLine();

 bw.flush();

 }

 if (bw != null) {

 bw.close();

 }

 }

99

REFERENCES
1. Vouk, M.A. and M.P. Singh, Quality of service and scientific workflows.

Quality of Numerical Software, 1996. 76: p. 77-89.

2. A. Chebotko, C.L., X. Fei, Z. Lai, S. Lu, J. Hua, and F. Fotouhi. VIEW: a

visual scientific workflow management system. in Proceedings of the First IEEE

International Workshop on Scientific Workflows (SWF). 2007. Salt Lake City,

UT, USA.

3. Ogasawara, E., et al., An algebraic approach for data-centric scientific

workflows. Proc. of VLDB Endowment, 2011. 4(12): p. 1328-1339.

4. Juve, G. and E. Deelman, Scientific workflows and clouds. Crossroads,

2010. 16(3): p. 14-18.

5. Bharathi, S., et al. Characterization of scientific workflows. in Workflows

in Support of Large-Scale Science, 2008. WORKS 2008. Third Workshop on.

2008. IEEE.

6. Kosar, T. and M. Livny, A framework for reliable and efficient data

placement in distributed computing systems. Journal of Parallel and Distributed

Computing, 2005. 65(10): p. 1146-1157.

7. Weiss, A., Computing in the clouds. networker, 2007. 11(4).

8. Foster, I., et al. Cloud computing and grid computing 360-degree

compared. in Grid Computing Environments Workshop, 2008. GCE'08. 2008.

Ieee.

100

9. Lohr, S., Google and IBM join in ‘cloud computing’research. New York

Times, 2007. 8.

10. Ricadela, A., Computing heads for the clouds. Business Week, 2007.

11. Juve, G., et al., Characterizing and profiling scientific workflows. Future

Generation Computer Systems, 2013. 29(3): p. 682-692.

12. Brantner, M., et al. Building a database on S3. in Proceedings of the 2008

ACM SIGMOD international conference on Management of data. 2008. ACM.

13. Buyya, R., C.S. Yeo, and S. Venugopal. Market-oriented cloud

computing: Vision, hype, and reality for delivering it services as computing

utilities. in High Performance Computing and Communications, 2008.

HPCC'08. 10th IEEE International Conference on. 2008. Ieee.

14. Moretti, C., et al. All-pairs: An abstraction for data-intensive cloud

computing. in Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE

International Symposium on. 2008. IEEE.

15. Zhao, Y., et al. Opportunities and challenges in running scientific

workflows on the cloud. in Cyber-Enabled Distributed Computing and

Knowledge Discovery (CyberC), 2011 International Conference on. 2011. IEEE.

16. Hoffa, C., et al. On the use of cloud computing for scientific workflows.

in eScience, 2008. eScience'08. IEEE Fourth International Conference on. 2008.

IEEE.

17. Ji Liu, E.P., Patrick Valduriez, Marta Mattoso, Parallelization of

Scientific Workflows in the Cloud. 2014.

101

18. Hey, A.J., S. Tansley, and K.M. Tolle, The fourth paradigm: data-

intensive scientific discovery. Vol. 1. 2009: Microsoft Research Redmond, WA.

19. Gilbert, S. and N. Lynch, Brewer's conjecture and the feasibility of

consistent, available, partition-tolerant web services. ACM SIGACT News,

2002. 33(2): p. 51-59.

20. Birman, K., Q. Huang, and D. Freedman, Overcoming the ‘D’in CAP:

Using Isis2 to Build Locally Responsive Cloud Services. Computer, 2011: p. 50-

58.

21. Agrawal, D., et al., Data management challenges in cloud computing

infrastructures, in Databases in Networked Information Systems. 2010, Springer.

p. 1-10.

22. Yuan, D., et al., A data placement strategy in scientific cloud workflows.

Future Generation Computer Systems, 2010. 26(8): p. 1200-1214.

23. Stewart, R.J., P.W. Trinder, and H.-W. Loidl, Comparing high level

mapreduce query languages, in Advanced Parallel Processing Technologies.

2011, Springer. p. 58-72.

24. Grossman, R. and Y. Gu. Data mining using high performance data

clouds: experimental studies using sector and sphere. in Proceedings of the 14th

ACM SIGKDD international conference on Knowledge discovery and data

mining. 2008. ACM.

25. NIST Big Data Working Group. Available from:

http://bigdatawg.nist.gov/.

102

26. Brown, D.A., et al., A case study on the use of workflow technologies for

scientific analysis: Gravitational wave data analysis. 2006: Springer.

27. Mohan, A., et al. A NoSQL Data Model for Scalable Big Data Workflow

Execution. in Big Data (BigData Congress), 2016 IEEE International Congress

on. 2016. IEEE.

28. Demchenko, Y., et al. Addressing big data issues in scientific data

infrastructure. in Collaboration Technologies and Systems (CTS), 2013

International Conference on. 2013. IEEE.

29. Eaton, C., et al., Understanding big data: Analytics for enterprise class

hadoop and streaming data. FREE ebook, 2012.

30. Kashlev, A. and S. Lu. A System Architecture for Running Big Data

Workflows in the Cloud. in Services Computing (SCC), 2014 IEEE International

Conference on. 2014. IEEE.

31. Wang, J., et al., Big data applications using workflows for data parallel

computing. Computing in Science & Engineering, 2014. 16(4): p. 11-21.

32. Lotfy, A.E., et al., A middle layer solution to support ACID properties for

NoSQL databases. Journal of King Saud University-Computer and Information

Sciences, 2016. 28(1): p. 133-145.

33. Lakshman, A. and P. Malik, Cassandra-a decentralized structured

storage system. 2009. Cited on, 2015: p. 17.

34. Chodorow, K., MongoDB: the definitive guide. 2013: " O'Reilly Media,

Inc.".

103

35. Abouelhoda, M., S.A. Issa, and M. Ghanem, Tavaxy: Integrating Taverna

and Galaxy workflows with cloud computing support. BMC bioinformatics,

2012. 13(1): p. 77.

36. Emeakaroha, V.C., et al., Managing and optimizing bioinformatics

workflows for data analysis in clouds. Journal of grid computing, 2013. 11(3):

p. 407-428.

37. Vöckler, J.-S., et al. Experiences using cloud computing for a scientific

workflow application. in Proceedings of the 2nd international workshop on

Scientific cloud computing. 2011. ACM.

38. Wu, Z., et al., A market-oriented hierarchical scheduling strategy in cloud

workflow systems. The Journal of Supercomputing, 2013. 63(1): p. 256-293.

39. De Oliveira, D., et al. Scicumulus: A lightweight cloud middleware to

explore many task computing paradigm in scientific workflows. in Cloud

Computing (CLOUD), 2010 IEEE 3rd International Conference on. 2010. IEEE.

40. OpenStack. Available from: https://www.openstack.org/.

41. Amazon Elastic Compute Cloud (EC2). Available from:

http:////aws.amazon.com/ec2/.

42. FutureSystems: Digital Science Center, School of Informatics and

Computing, Indiana University | FutureSystems Portal. Available from:

https://portal.futuresystems.org/.

43. Kosar, T., et al., Data placement in widely distributed environments.

Advances in Parallel Computing, 2005. 14: p. 105-128.

104

44. Kayyoor, A.K., A. Deshpande, and S. Khuller, Data placement and

replica selection for improving co-location in distributed environments. Energy

(Joules), 2012. 1000: p. 1500.

45. Chervenak, A., et al. Data placement for scientific applications in

distributed environments. in Proceedings of the 8th IEEE/ACM International

Conference on Grid Computing. 2007. IEEE Computer Society.

46. Ghemawat, S., H. Gobioff, and S.-T. Leung. The Google file system. in

ACM SIGOPS operating systems review. 2003. ACM.

47. Borthakur, D., The hadoop distributed file system: Architecture and

design. Hadoop Project Website, 2007. 11(2007): p. 21.

48. Pegasus | Workflow Management System. Available from:

http://pegasus.isi.edu/index.php.

49. Deelman, E., et al., Pegasus: Mapping large-scale workflows to

distributed resources. 2006: Springer.

50. Deelman, E., et al., Pegasus: A framework for mapping complex scientific

workflows onto distributed systems. Scientific Programming, 2005. 13(3): p.

219-237.

51. Nimbus. Available from: http://www.nimbusproject.org/.

52. Eucalyptus. Available from: https://www.eucalyptus.com/.

53. Çatalyürek, Ü.V., K. Kaya, and B. Uçar. Integrated data placement and

task assignment for scientific workflows in clouds. in Proceedings of the fourth

international workshop on Data-intensive distributed computing. 2011. ACM.

105

54. Er-Dun, Z., X. Xing-Xing, and C. Yi. A data placement strategy based on

genetic algorithm for scientific workflows. in Computational Intelligence and

Security (CIS), 2012 Eighth International Conference on. 2012. IEEE.

55. Rodriguez, M.A. and R. Buyya. A Responsive Knapsack-Based Algorithm

for Resource Provisioning and Scheduling of Scientific Workflows in Clouds. in

2015 44th International Conference on Parallel Processing. 2015.

56. Yu, J., R. Buyya, and C.K. Tham. Cost-based scheduling of scientific

workflow applications on utility grids. in e-Science and Grid Computing, 2005.

First International Conference on. 2005. Ieee.

57. Abrishami, S., M. Naghibzadeh, and D.H.J. Epema, Cost-Driven

Scheduling of Grid Workflows Using Partial Critical Paths. IEEE Transactions

on Parallel and Distributed Systems, 2012. 23(8): p. 1400-1414.

58. Wieczorek, M., A. Hoheisel, and R. Prodan, Towards a general model of

the multi-criteria workflow scheduling on the grid. Future Generation Computer

Systems, 2009. 25(3): p. 237-256.

59. Malawski, M., et al. Cost- and deadline-constrained provisioning for

scientific workflow ensembles in IaaS clouds. in High Performance Computing,

Networking, Storage and Analysis (SC), 2012 International Conference for.

2012.

60. Yu, J. and R. Buyya, Scheduling scientific workflow applications with

deadline and budget constraints using genetic algorithms. Scientific

Programming, 2006. 14(3-4): p. 217-230.

106

61. Lin, C. and S. Lu. Scheduling scientific workflows elastically for cloud

computing. in Cloud Computing (CLOUD), 2011 IEEE International

Conference on. 2011. IEEE.

62. Lin, C. and S. Lu. SCPOR: An elastic workflow scheduling algorithm for

services computing. in Service-Oriented Computing and Applications (SOCA),

2011 IEEE International Conference on. 2011. IEEE.

63. Arabnejad, H. and J.G. Barbosa, List Scheduling Algorithm for

Heterogeneous Systems by an Optimistic Cost Table. IEEE Transactions on

Parallel and Distributed Systems, 2014. 25(3): p. 682-694.

64. Topcuoglu, H., S. Hariri, and M.-y. Wu, Performance-effective and low-

complexity task scheduling for heterogeneous computing. IEEE transactions on

parallel and distributed systems, 2002. 13(3): p. 260-274.

65. Durillo, J.J., H.M. Fard, and R. Prodan. Moheft: A multi-objective list-

based method for workflow scheduling. in Cloud Computing Technology and

Science (CloudCom), 2012 IEEE 4th International Conference on. 2012. IEEE.

66. Li, X., et al. An improved max-min task-scheduling algorithm for elastic

cloud. in Computer, Consumer and Control (IS3C), 2014 International

Symposium on. 2014. IEEE.

67. Bochenina, K., et al., A clustering-based approach to static scheduling of

multiple workflows with soft deadlines in heterogeneous distributed systems.

Procedia Computer Science, 2015. 51: p. 2827-2831.

107

68. Deldari, A., et al. A clustering approach to schedule workflows to run on

the cloud. in 2016 Eighth International Conference on Information and

Knowledge Technology (IKT). 2016.

69. Yang, T. and A. Gerasoulis. A fast static scheduling algorithm for DAGs

on an unbounded number of processors. in Proceedings of the 1991 ACM/IEEE

Conference on Supercomputing (Supercomputing '91). 1991.

70. MadadyarAdeh, M. and J. Bagherzadeh. An improved ant algorithm for

grid scheduling problem using biased initial ants. in Computer Research and

Development (ICCRD), 2011 3rd International Conference on. 2011. IEEE.

71. Wen, X., M. Huang, and J. Shi. Study on resources scheduling based on

ACO allgorithm and PSO algorithm in cloud computing. in Distributed

Computing and Applications to Business, Engineering & Science (DCABES),

2012 11th International Symposium on. 2012. IEEE.

72. Ge, Y. and G. Wei. GA-based task scheduler for the cloud computing

systems. in Web Information Systems and Mining (WISM), 2010 International

Conference on. 2010. IEEE.

73. Zhao, C., et al. Independent tasks scheduling based on genetic algorithm

in cloud computing. in Wireless Communications, Networking and Mobile

Computing, 2009. WiCom'09. 5th International Conference on. 2009. IEEE.

74. Wu, Z., et al. A revised discrete particle swarm optimization for cloud

workflow scheduling. in Computational Intelligence and Security (CIS), 2010

International Conference on. 2010. IEEE.

108

75. Ebrahimi, M., et al. BDAP: A Big Data Placement Strategy for Cloud-

Based Scientific Workflows. in 2015 IEEE First International Conference on Big

Data Computing Service and Applications. 2015.

76. Ebrahimi, M., et al., Task And Data Allocation Strategies for Big Data

Workflows. International Journal of Big Data (IJBD), 2015. 2(2): p. 28-42.

77. Ebrahimi, M., et al. TPS: A task placement strategy for big data

workflows. in 2015 IEEE International Conference on Big Data (Big Data).

2015.

78. Mohan, A., et al. Scheduling big data workflows in the cloud under budget

constraints. in Big Data (Big Data), 2016 IEEE International Conference on.

2016. IEEE.

79. Wang, X., et al., Optimizing the makespan and reliability for workflow

applications with reputation and a look-ahead genetic algorithm. Future

Generation Computer Systems, 2011. 27(8): p. 1124-1134.

80. Durillo, J.J., V. Nae, and R. Prodan. Multi-objective workflow scheduling:

An analysis of the energy efficiency and makespan tradeoff. in Cluster, Cloud

and Grid Computing (CCGrid), 2013 13th IEEE/ACM International Symposium

on. 2013. IEEE.

81. Tangudu, V. and M. Mishra. Estimating makespan using double trust

thresholds for workflow applications. in Proceedings of the CUBE International

Information Technology Conference. 2012. ACM.

109

82. Weise, T., Global optimization algorithms-theory and application. Self-

Published, 2009.

83. Venugopal, S. and R. Buyya, An SCP-based heuristic approach for

scheduling distributed data-intensive applications on global grids. Journal of

Parallel and Distributed Computing, 2008. 68(4): p. 471-487.

84. Yang, Y., et al. An algorithm in SwinDeW-C for scheduling transaction-

intensive cost-constrained cloud workflows. in eScience, 2008. eScience'08.

IEEE Fourth International Conference on. 2008. IEEE.

85. Abrishami, S., M. Naghibzadeh, and D.H. Epema, Deadline-constrained

workflow scheduling algorithms for Infrastructure as a Service Clouds. Future

Generation Computer Systems, 2013. 29(1): p. 158-169.

86. Rodriguez Sossa, M. and R. Buyya, Deadline based Resource

Provisioning and Scheduling Algorithmfor Scientific Workflows on Clouds.

2014.

87. Liu, L., et al. A Survey on Workflow Management and Scheduling in

Cloud Computing. in Cluster, Cloud and Grid Computing (CCGrid), 2014 14th

IEEE/ACM International Symposium on. 2014. IEEE.

88. Google App Engine: Platform as a Service. Available from:

https://cloud.google.com/appengine/docs.

89. Microsoft Azure: Cloud Computing Platform & Services. Available from:

http://azure.microsoft.com/en-us/.

110

90. Tan, P.-N., M. Steinbach, and V. Kumar, Introduction to data mining.

Vol. 1. 2006: Pearson Addison Wesley Boston.

91. Montage - Image Mosaic Software for Astronomers. Available from:

http://montage.ipac.caltech.edu/index.html.

92. Berriman, G.B., et al. Montage: a grid-enabled engine for delivering

custom science-grade mosaics on demand. in Astronomical Telescopes and

Instrumentation. 2004. International Society for Optics and Photonics.

93. Graves, R., et al., CyberShake: A physics-based seismic hazard model for

southern California. Pure and Applied Geophysics, 2011. 168(3-4): p. 367-381.

94. Southern California Earthquake Center. Available from:

http://www.scec.org/.

95. Callaghan, S., et al. Reducing time-to-solution using distributed high-

throughput mega-workflows-experiences from SCEC CyberShake. in eScience,

2008. eScience'08. IEEE Fourth International Conference on. 2008. IEEE.

96. Deelman, E., et al. Managing large-scale workflow execution from

resource provisioning to provenance tracking: The cybershake example. in e-

Science and Grid Computing, 2006. e-Science'06. Second IEEE International

Conference on. 2006. IEEE.

97. USC Epigenome Center. Available from: http://epigenome.usc.edu/.

98. Illumina | Sequencing and array-based solutions for genetic research.

Available from: http://www.illumina.com/.

111

99. Maq: Mapping and Assembly with Qualities. Available from:

http://maq.sourceforge.net/.

100. LIGO project, LIGO—laser interferometer gravitational wave

observatory. Available from: https://www.ligo.caltech.edu/.

101. Althouse, W.E. and M.E. Zucker, LIGO: The laser interferometer

gravitational-wave observatory. Science, 1992. 256(5055): p. 325.

102. Livny, J., et al., High-throughput, kingdom-wide prediction and

annotation of bacterial non-coding RNAs. PloS one, 2008. 3(9): p. e3197.

103. DAGMan - Directed Acyclic Graph Manager. Available from:

http://research.cs.wisc.edu/htcondor/dagman/dagman.html.

104. DATAVIEW. Available from: http://dataview.org/.

105. A. Kashlev, S.L., A. Chebotko, A System Architecture for Running Big

Data Workflows in the Cloud. 2014.

106. Hull, D., et al., Taverna: a tool for building and running workflows of

services. Nucleic acids research, 2006. 34(suppl 2): p. W729-W732.

107. Ludäscher, B., et al., Scientific workflow management and the Kepler

system. Concurrency and Computation: Practice and Experience, 2006. 18(10):

p. 1039-1065.

108. Freire, J., et al., Managing rapidly-evolving scientific workflows, in

Provenance and Annotation of Data. 2006, Springer. p. 10-18.

109. Zhao, Y., et al. Swift: Fast, reliable, loosely coupled parallel

computation. in Services, 2007 IEEE Congress on. 2007. IEEE.

112

110. Lin, C., et al. Service-oriented architecture for VIEW: A visual scientific

workflow management system. in Services Computing, 2008. SCC'08. IEEE

International Conference on. 2008. IEEE.

111. Dropbox. Available from: https://www.dropbox.com.

112. Google Drive. Available from: https://www.google.com/drive/.

113. Microsoft OneDrive. Available from: https://onedrive.live.com.

114. Jayyousi, T.W. and R.G. Reynolds, Extracting Urban Occupational

Plans Using Cultural Algorithms [Application Notes]. IEEE Computational

Intelligence Magazine, 2014. 9(3): p. 66-87.

115. Reynolds, R.G., An overview of cultural algorithms. Advances in

Evolutionary Computation, 1999.

116. Ali, M.Z. and R.G. Reynolds, Cultural algorithms: a Tabu search

approach for the optimization of engineering design problems. Soft Computing,

2014. 18(8): p. 1631-1644.

117. Kobti, Z., R.G. Reynolds, and T. Kohler, Agent-based modeling of

cultural change in swarm using cultural algorithms. Funded by NSF grant BCS-

0119981, 2004.

118. Reynolds, R.G. and B. Peng. Cultural algorithms: modeling of how

cultures learn to solve problems. in Tools with Artificial Intelligence, 2004.

ICTAI 2004. 16th IEEE International Conference on. 2004. IEEE.

119. Reynolds, R.G. and B. Peng, Knowledge learning and social swarms in

cultural systems. Journal of Mathematical Sociology, 2005. 29(2): p. 115-132.

113

120. Ali, M.Z., N. Awad, and R.G. Reynolds. Balancing search direction in

cultural algorithm for enhanced global numerical optimization. in Swarm

Intelligence (SIS), 2014 IEEE Symposium on. 2014. IEEE.

114

ABSTRACT
DATA PLACEMENT AND TASK MAPPING OPTIMIZATION

FOR BIG DATA WORKFLOWS IN THE CLOUD

by

MAHDI EBRAHIMI

August 2017

Advisor: Dr. Shiyong Lu and Dr. Song Jiang

Major: Computer Engineering

Degree: Doctor of Philosophy

Data-centric workflows naturally process and analyze a huge volume of

datasets. In this new era of Big Data there is a growing need to enable data-

centric workflows to perform computations at a scale far exceeding a single

workstation's capabilities. Therefore, this type of applications can benefit from

distributed high performance computing (HPC) infrastructures like cluster, grid

or cloud computing.

Although data-centric workflows have been applied extensively to

structure complex scientific data analysis processes, they fail addressing the big

data challenges as well as leveraging the capability of dynamic resource

provisioning in the Cloud. The concept of “big data workflows” is proposed by

our research group as the next generation of data-centric workflow technologies

to address the limitations of existing workflows technologies in addressing big

data challenges.

115

Executing big data workflows in the Cloud is a challenging problem as

workflow tasks and data are required to be partitioned, distributed and assigned

to the cloud execution sites. In running such big data workflows in the cloud

distributed across physical locations, the workflow execution time and cost

efficiency highly depends on the initial placement of tasks and datasets across

the multiple virtual machines in the Cloud.

In this dissertation, I propose BDAP strategy (Big Data Placement

strategy) for data placement and TPS (Task Placement Strategy) for task

placement, which improve workflow performance by minimizing data

movement across multiple virtual machines in the Cloud during the workflow

execution. In addition, I propose a new Big data wOrkflow scheduleR undeR

deadlIne conStraint (BORRIS) that is used to minimize the execution cost of the

workflow under a provided deadline constraint in a heterogeneous cloud

computing environment. In this dissertation, I 1) formalize data and task

placement problems in workflows, 2) propose a data placement algorithm that

considers both initial input dataset and intermediate datasets obtained during

workflow run, 3) propose a workflow scheduling strategy to minimize the

workflow execution cost once the deadline is provided by user and 4) perform

extensive experiments in the distributed environment to validate that our

proposed strategies provide an effective data and task placement solution to

distribute and place big datasets and tasks into the appropriate cloud virtual

machines within reasonable time.

116

AUTOBIOGRAPHICAL STATEMENT
Mahdi Ebrahimi is currently a PhD candidate in the Big Data Research

Lab at Wayne State University under the supervision of Dr. Shying Lu. His main

research interest is in the field of big data management, with the focus on big

data placement and task mapping optimization for cloud-based workflows. His

broader interests include big data, data science, cloud workflow security, cloud

computing, Internet of Things (IoT), and multi-objective optimization. He has

published several research articles in peer-reviewed international journal and

conferences, including International Journal of Big Data (IJBD), IEEE

International Conference on Big Data (IEEE BigData), IEEE International

Conference on Big Data Computing Service and Application (IEEE

BigDataService), IEEE International Congress on Big Data (IEEE BigData

Congress), and others. He is a member of IEEE and ACM.

	Wayne State University
	1-1-2017
	Data Placement And Task Mapping Optimization For Big Data Workflows In The Cloud
	Mahdi Ebrahimi
	Recommended Citation

	Microsoft Word - Ebrahimi_Mahdi_Dissertation_v9

