

Wayne State University

Wayne State University Dissertations

1-1-2017

Protein Phosphatase 2a Interactions In Islet And Human Skeletal Muscle In Diabetes

Divyasri Damacharla *Wayne State University,*

Follow this and additional works at: https://digitalcommons.wayne.edu/oa_dissertations Part of the <u>Medicinal Chemistry and Pharmaceutics Commons</u>

Recommended Citation

Damacharla, Divyasri, "Protein Phosphatase 2a Interactions In Islet And Human Skeletal Muscle In Diabetes" (2017). *Wayne State University Dissertations*. 1794. https://digitalcommons.wayne.edu/oa_dissertations/1794

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState.

PROTEIN PHOSPHATASE 2A INTERACTIONS IN ISLET AND HUMAN SKELETAL MUSCLE IN DIABETES

by

DIVYASRI DAMACHARLA

DISSERTATION

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

2017

MAJOR: PHARMACEUTICAL SCIENCES

Approved By:

Advisor

Date

© COPYRIGHT BY

DIVYASRI DAMACHARLA

2017

All Rights Reserved

DEDICATION

This work is dedicated to my father

Dr. Srinivas Rao Damacharla, who has been selflessly working very hard for the past 26 years and dreaming about our future (my brother and me). I am forever indebted to him.

ACKNOWLEDGEMENTS

I would like to first thank the department of pharmaceutical sciences for accepting me into this program and giving me a chance to discover my strengths through this program. I would also like to thank my advisor Dr.Zhengping Yi for believing in me by accepting me into his lab and assigning me a great project that contributes to the progress in science.

I am grateful to work under Dr.Anjan Kowluru, my co-mentor. His confidence in me has always been a huge support. Working with his lab members has broadened my exposure and that will always be a added strength to my career.

I will also cherish the support from my committee members Dr.Fei Chen and Dr.Kyle Burghardt for their constant support throughout the program, for their suggestions that helped strengthen my project.

This project wouldn't have been possible without the support of my lab members Dr.Xiangmin Zhang, Dr.Danjun Ma, Dr.Michael Caruso, Yue Qi, and many others. Their suggestions and guidance throughout helped me progress one step at a time. I would like to specially thank Dr.Xiangmin Zhang who has always been my mentor for the past 5 years and for inspiring me to work hard every day.

I am very much indebted for the love and affection of my mother, Padmavathy Damacharla and my brother, Sivaram Damacharla

Lastly, my heartfelt thanks to all my friends who helped. Achieving this degree wouldn't have been possible without my seniors, Anusha Mannepalli and Rahul Gururaj. They have supported me in all possible ways ever since I came to USA and continue to do so even now. I would also like to specially thank my friend Ratna Karthik who has been the pillar of my strength during the tough times I had and for just standing with me no matter what.

TABLE OF CONTENTS

DEDICATIO	Nii
ACKNOWLI	EDGEMENTiii
LIST OF FIG	JURESvii
LIST OF TA	BLESviii
CHAPTER 1	INTRODUCTION1
1.1 INTR	ODUCTION TO DIABETES AND INSULIN SIGNALING PATHWAY1
1.1.1	INTRODUCTION TO DIABETES1
1.1.2	NORMAL GLUCCOSE HOMEOSTASIS
1.1.3	INSULIN PRODUCTION AND RELEASE INPANCREAS
1.1.4	INSULIN SIGNALING PATHWAYS4
1.1.5	PATHOGENESIS OF TYPE 2 DIABETES
1.2 KINA	SE AND PHOSPHATASES9
	EIN PHOSPHATASE 2A (PP2A), REGULATION AND EFFECT OF INSU
1.3.1	SUBUNITS OF PP2A 11
1.3.2	REGULATION OF PP2A
1.3.3	INHIBITORS OF PP2A
1.3.4	ROLE OF PP2A14
1.3.5	PP2A IN DIABETES
	LIN SENSITIVITY; PROTEIN INTERACTIONS AND MASS SPEC- MTRY
1.4.1	METHODS TO MEASURE INSULIN SENSITIVITY17
1.4.2	IMPORTANCE OF PROTEIN-PROTEIN INTERACTIONS17
1.4.3	MASS SPECTROMETRY
1.5 SPEC	IFIC AIMS20
1.5.1	SPECIFIC AIM 1: INS-1 832/13 CELLS
1.5.2	SPECIFIC AIM 2: HUMAN SKELETAL MUSCLE BIOPSY20

CHAPTER 2	RESEARCH DESIGN AND METHODS 21
2.1 REAG	ENTS
2.2 SPECI	FIC AIM 1: INS-1 832/13 CELLS21
2.2.1	CELL CULTURE AND HIGH GLUCOSE TREATMENT 21
2.2.2	PROTEOMICS SAMPLE PREPARATION AND ANALYSIS
2.2.3	STATISTICAL ANALYSIS
2.2.4	VALIDATION THROUGH WESTERN BLOT ANALYSIS23
2.3 SPECI	FIC AIM 2 : HUMAN SKELETAL MUSCLE BIOPSIES23
2.3.1	SUBJECTS23
2.3.2	HYPERINSULENEMIC EUGLYCEMIC CLAMP WITH MUSCLE BIOP- SIES
2.3.3	OUTLINE
2.3.4	PROTEOMIC SAMPLE PREPARATION
2.3.5	STATISTICAL ANALYSIS FOR PP2A27
CHAPTER 3	RESULTS
HUMAN	FIC AIM 1: DETERMINE THE INTERACTION PARTNERS OF PP2AC IN B-ISLET CELLS UNDER BASAL AND HYPERGLYCEMIC CONDI-
3.1.1 F	P2AC INTERACTION PARTNERS IN INS-1 832/13 CELLS29
3.1.2 C	GLUCOSE RESPONSIVE PP2AC INTERACTION PARTNERS
	GLUCOSE RESPONSIVE PP2AC INTERACTION PARTNERS RELATED SULIN SECRETION
	EXPERIMENTAL VALIDATION OF PPP22R1B AS A GLUCOSE RESPON- PP2AC INTERACTION PARTNER
MAN SKE TIONS IN	FIC AIM 2: DETERMINE INTERACTION PARTNERS OF PP2A IN HU- ELETAL MUSCLE UNDER BASAL AND HYPERINSULENEMIC CONDI- I LEAN, OBESE/OVERWEIGHT NON-DIABETICS AND TYPE 2 DIA- BJECTS
	P2AC INTERACTION PARTNERS IN SKELETAL MUSCLE FROM LEAN, WEIGHT/OBESE, AND TYPE 2 DIABETIC HUMAN PARTICIPANTS32
TROL	PARTNERS WITH SIGNIFICANT DIFFERENCE AMONG LEAN CON , OBESE/OVERWEIGHT CONTROL, AND TYPE 2 DIABETIC IPS

CHAPTER 4 DISCUSSION
4.1 SPECIFIC AIM 1: DETERMINE THE INTERACTION PARTNERS OF PP2AC IN HUMAN B-ISLET CELLS UNDER BASAL AND HYPERGLYCEMIC CONDI- TIONS
4.1.1 PP2AC INTERACTION WITH SIGNALING PROTEINS IMPORTANT FOR PHYSIOLOGICAL INSULIN SECRETION
4.1.2 PP2AC INTERACTION WITH KEY PROTEINS THAT REGULATE CELL DYSFUNCTION AND APOPTOSIS
4.2 SPECIFIC AIM 2: DETERMINE INTERACTION PARTNERS OF PP2A IN HU- MAN SKELETAL MUSCLE UNDER BASAL AND HYPERINSULENEMIC CONDI- TIONS IN LEAN, OBESE/OVERWEIGHT NON-DIABETICS AND TYPE 2 DIA- BETIC SUBJECTS
4.2.1 PP2AC INTERACTION PARTNERS IN SKELETAL MUSCLE
4.2.2 KNOWN PARTNERS
4.2.3 PROTEINS INVOLVED IN INSULIN RECEPTOR AND MTORSIGNAL- ING
4.2.4 INTERACTION PARTNERS WITH SIGNIFICANT CHANGES IN THEIR IN- TERACTION TO PP2AC IN SKELETAL MUSCLE IN LEAN, OVER- WEIGHT/OBESE, AND TYPE 2 DIABETIC HUMAN PARTICIPANTS45
4.2.5 PARTNERS WITH SIGNIFICANT CHANGE BETWEEN TYPE 2 DIABETIC AND LEAN SUBJECTS
4.2.6 PARTNERS WITH SIGNIFICANT CHANGE BETWEEN OBESE AND LEAN SUBJECTS
4.2.7 PARTNERS WITH SIGNIFICANT CHANGE BETWEEN TYPE 2 DIABETIC AND OBESE
4.3 SUMMARY AND FUTURE DIRECTIONS60
REFERENCES
ABSTRACT173
AUTOBIOGRAPHICAL STATEMENT

LIST OF FIGURES

Figure 1 Glucose homeostasis involving major tissues
Figure 2 Insulin signaling pathway showing the signaling molecules involved and various effects seen
Figure 3 Negative regulators of insulin signaling pathway64
Figure 4 Insulin signaling regulation by inhibitory serine/threonine phosphorylation
Figure 5 Diagrammatic representation of heterotrimeric PP2A complex
Figure 6 Main steps in mass spectrometry-based proteomics studies
Figure 7 Cell culture, proteomics data acquisition, and data analysis
Figure 8 Proteomic data analysis (INS-1 832/13 CELLS)69
Figure 9 Summary of glucose-responsive PP2Ac interaction partners70
Figure 10 Experimental validation of PPP2R1B as a glucose responsive PP2Ac interaction part- ner
Figure 11 Clinical and proteomics data acquisition and data analysis72
Figure 12 Proteomic data analysis (Human skeletal muscle)73
Figure 13 The significantly enriched pathway, Insulin Receptor signaling, for the 211 PP2Ac interaction partners and PP2Ac in human skeletal muscle
Figure 14 The significantly enriched pathway, mTOR signaling, for the 211 PP2Ac interaction partners and PP2Ac in human skeletal muscle
Figure 15 Network pathway obtained from Ingenuity Pathway Analysis76
Figure 16A PP2Ac partners in human skeletal muscle with significant change among different groups (color coded)
Figure 16B PP2Ac partners in human skeletal muscle with significant change among different groups (color coded)

LIST OF TABLES

Table 1 Various isoforms of PP2A subunits, their cellular and sub-cellular distribution
Table 2 Various inhibitors of PP2A including their sources and specificity to different phosphatases.
Table 3 Clinical characteristics for the 8 lean, 8 overweight/obese, and 8 type 2 diabetic participants in the PP2Ac interaction partner study
Table 4. Clinical characteristics for the 8 lean, 8 overweight/obese, and 8 type 2 diabetic participants in the PP2Ac interaction partner study
Table 5 The 516 proteins identified as interaction partners in INS-1 832/13 cells 85
Table 6 89 Glucose responsive interaction partners in INS-1 832/13 cells
Table 7 Thirty-eight previously reported PP2Ac interaction partners were identified in this study 123
Table 8 IPA analysis of the 516 partners showing the 39 enriched pathways
Table 9 The 211 proteins/ protein groups met the 2 rigorous criteria for classification as PP2Ac interaction partners in human skeletal muscle 132
Table 10 69 proteins PP2Ac partners in human skeletal muscle with significant change among different groups
Table 11 Known partners from databases
Table 12 38 proteins; Comparing partners from both INS-1 cells and human skeletal muscle biopsies 145

CHAPTER 1 INTRODUCTION

1.1 INTRODUCTION TO DIABETES AND INSULIN SIGNALING PATHWAY 1.1.1 INTRODUCTION TO DIABETES

Diabetes is a metabolic disorder characterized by high blood glucose. According to 'Global diabetes report' presented by World Health Organization in 2014, the total number of people with diabetes is 422 million¹. Data collected by Center for Disease Control and Prevention show that 23.5 million people have diagnosed diabetes by 2015 in United States of America itself. This accounts to about 7.5% of its population². The number of diabetes cases has risen from 108 million in 1980 to 422 million in 2014 globally¹ and from 5.53 million in 1980 to 23.35 million in 2015 in United states². This increase over the past few decades is alarming and requires immediate attention of the researchers, healthcare providers, and general public worldwide. There are many complications associated with diabetes due to high blood glucose levels. Eventually, if not controlled, they can have impaired functioning of heart, kidneys, nerves, eyes and blood vessels¹. The high blood glucose levels can lead to life threatening conditions like diabetic ketoacidosis, condition where high amounts of ketones are found in blood and urine, due to utilization of fatty acids as a source of energy and hyperosmolar coma¹. Diabetic retinopathy associated blindness accounts for 1% of the global blindness³. Analysis of 'causes of vision loss from 1990-2010' showed that 2.6% of the blindness and 1.9% of the visual impairment is caused due to diabetic retinopathy⁴. The risk of cardiovascular disease and stroke is higher in patients with high blood glucose⁵. Diabetes can also lead to kidney failure⁶. End Stage Renal Disease (ESRD) is seen more often in patients with diabetes compared to normal population. Diabetes is responsible for 12-55% cases of the ESRD⁷. Neuropathy (nerve damage) is another common effect and when combined with reduced blood flow can lead to other severe complications. These combined effects increase the incidence of foot ulcers, infections, and can lead to limb amputations. The incidence of amputations is 10-20 times higher in patients with diabetes than those without⁸. Other complications of diabetes include periodontal disease, depression, erectile dysfuction, hearing loss, non-alcoholic fatty liver disease, pregnancy complications and more². All these complications reduce the quality of life and they can lead to death as well. According to the WHO statistics, 1.5 million deaths were directly caused by diabetes globally in 2012¹. Their projections show that Diabetes will be the 7th leading cause of death by 2030⁹.

There are two major types of diabetes: type I and type II. Type II Diabetes accounts for 90-95% of all diabetic cases. Type I Diabetes is seen in children and young adults due to the lack of insulin production caused by the loss of pancreatic beta cells. This is also called insulin dependent diabetes mellitus. Type II Diabetes occurs in relatively older people, which is the consequence of a combination of insulin resistance and relative insulin deficiency¹⁰.

1.1.2 NORMAL GLUCOSE HOMEOSTASIS

Majority of the cells in the body require glucose as a fuel. In the absorptive state after a meal, the blood glucose levels rise. To control the plasma glucose levels, insulin is released from pancreas. This hyperinsulinemia and hyperglycemia lead to the following:

1. Glucose uptake in the peripheral (muscle, adipocyte) and splanchnic (liver and gut) tissues

2. Suppression of the glucose production by the liver and kidneys

Majority of the insulin stimulated glucose disposal in the peripheral tissues takes place in the muscle (about 85%)¹¹.

In post-absorptive state, after an 8-12 hour overnight fast, about 85% of the endogenous glucose production takes place in the liver and the rest in kidneys¹¹. The glucose production in the liver is either by gluconeogenesis or glycogenolysis. During this phase, 50% of the glucose is utilized by the brain and another 25% is used by the liver and gastro intestinal tissues. The rest 25% is utilized in insulin dependent manner majorly in the muscle¹¹.

In this manner, many tissues contribute to maintain an optimum level of glucose in the body¹² represented in figure 1.

1.1.3 INSULIN PRODUCTION AND RELEASE IN PANCREAS

Insulin is a hormone produced by the pancreatic beta cells in response to the rise in blood glucose levels. Translation of insulin mRNA leads to the production of 110-aminoacid large sized pre-proinsulin whose amino terminal signal tag directs it to endoplasmic reticulum. In the endoplasmic reticulum, signal tag is cleaved to form pro-insulin. This Pro-insulin then undergoes modifications such as formation of disulfide bonds and folding followed by its transport to the Golgi complex. In the golgi complex, pro-insulin is cleaved to form insulin and C peptide and are stored within the secretory granules¹³.

When the blood glucose levels rise, this glucose enter the pancreatic cells through diffusion. Beta cells contain glucose sensors, one of them being Glucose transporter 2 (GLUT2), that can transport glucose into the cells through facilitated diffusion. Glucose then undergoes glycolysis where it is converted to glucose 6 phosphate by glucokinase which then leads to formation of pyruvate, end product of glycolysis. Pyruvate is further oxidized in mitochondria to produce ATP through tricarboxylic acid cycle. This increased ATP: ADP ratio causes ATP dependent potassium channels to close. The increased positive charge inside the cell due to potassium leads to opening of voltage dependent calcium channels and thereby influx of calcium ions. This facilitates release of insulin stored in the Golgi complex into the surrounding blood vessels. This is the first phase of insulin release, which is rapid. The second phase is prolonged where the insulin needs to be translated, modified and then released. This insulin released from the beta cell enters the blood stream and reaches other tissues where it performs specific actions.

Glucose uptake in these insulin dependent tissues is facilitated through various glucose transporters present in the cell which upon insulin stimulation locate themselves at the plasma membrane. The translocation of glucose transporters occurs when insulin binds to the insulin receptors on the surface of the cell. Glucose that entered the cell is phosphorylated and then metabolized further depending on the tissue. The path-way through which insulin enters the cells and regulates various cellular functions is regulated by numerous signaling molecules and is described further in detail below as insulin signaling pathway, also represented in Figure 2.

1.1.4 INSULIN SIGNALING PATHWAYS

Insulin is an anabolic hormone and thereby increases glucose uptake, synthesis of proteins, lipids and glycogen through activation of various pathways in skeletal muscle cells^{12,14}. In the PI3K-dependent signaling pathway, insulin binds to tyrosine kinase insulin receptor present on the cell membrane. This insulin receptor is composed of two extracellular alpha subunits and two transmembrane beta subunits. Binding of the insulin to the alpha subunits leads to conformational change induced activation of the receptor kinase activity in the beta subunits. This leads to the transphosphorylation of the beta subunits, further activating the kinase. This phosphorylation allows binding of other substrates. The various substrates for the insulin receptor include insulin receptor

substrate 1 (IRS1), APS (SHB2), Gab proteins, cbl and shc proteins. The phosphorylated tyrosines on these substrates allow them to bind to various downstream molecules, which include P85 subunit of the phosphatidylinositide 3 kinase (PI3K), Grb2, crk II, etc. The major pathway connecting actions of insulin and the IRS proteins is the **PI3K** and AKT signaling pathway. PI3K is a heterodimer with a regulatory and catalytic subunit. Binding of the regulatory subunit to the IRS proteins leads to the activation of catalytic subunit, which phosphorylates phosphatidylinositol 4,5-biphosphate (PIP₂) to form phosphatidylinositol(3,4,5)-triphosphate (PIP₃), a second messenger. To this membrane bound PIP3, PDK1(3-phosphoinositide-dependent protein kinase 1) binds and is activated. PDK1 then phosphorylates and activates AGC protein kinase family proteins, which are responsible for PI3K-PIP3 downstream effects. This AGC protein kinase family members include Akt/PKB, p70 ribosomal S6 kinase, serum and glucocorticoid induced protein kinase (SGK), and protein kinase C (PKC). Akt2 is the major isoform involved in the insulin metabolic actions. Akt is phosphorylated at Thr-308 by PDK-1 and at Ser-473 by mammalian target of rapamycin complex 2 (Mtorc2). Akt acts on substrates (TSC-2, FOXO, AS160, GSK3, PGC-1a) and leads to various physiological functions including GLUT4 translocation to the plasma membrane and glucose uptake, glycogen synthesis, and protein synthesis. Insulin also activates mitogenactivated protein kinases (MAPK) to increase gene expression and differentiation through the Grb2-SOS-Ras-MAPK pathway. This pathway is activated independently of the Akt pathway. The insulin receptor and IRS proteins bind to adaptor molecules like Grb2 and shc. Grb2 binds to Gab-1 with the carboxyterminal domain and to SOS with amino terminal domain. SOS is a Guanine nucleotide exchange factor, activates Ras-GDP to Ras-GTP. Activated Ras interacts and activates a series of downstream signaling molecules Raf-MEK1/2-ERK1/2. ERK is directly involved in regulating gene expression, cell proliferation or differentiation, cytoskeletal reorganization. Other insulin receptor substrates include APS (SHB2) and Cbl, which bind to proteins such as the Cbl-associated protein (CAP). Cbl-associated protein is involved in control of insulin-stimulated glucose uptake¹⁴⁻¹⁶.

Insulin signaling is tightly regulated to control the physiological effects. There are several negative regulators of insulin signaling. They are important because the uncontrolled/abnormal activity in this regulation can lead to insulin resistance. The pathway is inhibited by the activity of some protein phosphatases including tyrosine phosphatases, such as PTP1B, transmembrane phosphatases, such as LAR¹⁷, serine/threonine phosphatases including PP1¹⁸, PP2A¹⁹, PP2B²⁰, and some members of PP2C²¹. It is also inhibited by lipid phosphatases such as PTEN²² and SHIP1²³. Other negative regulators include Grb²⁴, Proteins of the suppressor of cytokine signaling (SOCS) family²⁵, Tribbles homolog 3 (Trb3)²⁶, inositol phosphate (IP7)²⁷. These negative regulators are summarized in Figure 3. Phosphorylation on inhibitory serine/threonine sites on the insulin receptor can turn down the insulin signaling as well (Figure 4). This can be influenced by many factors such as hyperglycemia, fatty acids, cytokines, mitochondrial dysfunction, ER stress, increased cAMP concentration¹⁴. Insulin can also cause the inhibitory serine/threonine phosphorylation through activation of MAPK, JNK, IKK, Mtorc1/S6K¹⁴.

1.1.5 PATHOGENESIS OF TYPE 2 DIABETES

In Type 2 diabetes, glucose homeostasis is disrupted. The two major defects involved in the pathogenesis of type 2 diabetes are

- 1. Abnormal insulin production/release
- 2. Impaired sensitivity of tissue to insulin²⁸

As 80% of the insulin dependent blood glucose clearance takes place in skeletal muscle, insulin resistance in skeletal muscle is one of the major drawback in Type II diabetes¹⁰.

1.1.1.1 β-CELL FAILURE IN T2D

Abnormalities in insulin secretion and release in β -cell are seen in type 2 diabetes. To compensate the insulin resistance, β -cell produces large amounts of insulin in the early stages of T2D. It is observed that in the stages of impaired glucose tolerance(IGT), there is impaired first phase of insulin release. This prandial hyperglycemia is the characterisitic feature of IGT. However, with a normal prolonged second phase²⁹, the hyperinsulinemia keeps the glucose under control or mildly impaired. As the disease progresses, the β -cell fails. Studies in human subjects have shown that β -cell mass is decreased in type 2 diabetes. This reduced mass is associated with cell death by apoptosis³⁰. The mechanisms involved in β -cell failure involve glucotoxicity and lipotoxicity, a condition where the cells are exposed to high levels of glucose and fatty acids respectively for longer terms³¹. This can cause high burden on the mitochondria and ER in the β-cells which leads to increased ROS production and upregulated UPR response respectively, which cause cell apoptosis. Research has shown many signaling molecules involved in the cell dysfunction. High glucose induced increased ca⁺² levels in the cells is also shown to cause β -cell dysfunction³². Chronic exposure of cells to high glucose can lead to production of IL-1 β which activates NF_KB signaling, cell apoptosis, and β -cell dysfunction³³. Hyperglycemia is known to cause glycation of intra or extracellular proteins and the Advanced Gycation End prodcuts (AGEs) that can cause cell damage. β -cells are vulnerable to oxidative stress, and under glucotoxic conditions, they can lead to activation of JNK and NF_KB. Activated JNK phosphorylate IRS-1 at ser-307³⁴, which attenuate the IRS-PI3K-AKT signaling, thereby increase in FOXO1

gene expression and decreased nuclear PDX-1, transcription factor important for β -cell survival³⁵. mTOR signaling is important for cell growth and survival. Continuous activation of this pathway by glucose can lead to IRS2 phosphorylation and degradation, thereby cell apoptosis³⁶. Lipotoxicity is shown to decrease glucose stimulated insulin secretion. In addition, there is reduced nuclear transclocation of PDX-1 (cell survival) , downregulated MafA expression (responsible for insulin expression), upregulated UCP2³⁷ (mitochondrial inner membrane protein uncoupling protein 2), activation of PLC- ϵ^{38} (lipid-induced protein kinase), variations in machinery required for insulin secretory granules from Ca2+channels⁴⁰.

1.1.1.2 MECHANISMS OF INSULIN RESISTANCE

Many factors influence insulin sensitivity. Defects in any step along the insulin signaling pathway can cause insulin resistance. In addition, activation/abnormal function of the negative regulators of the pathway can also lead to this condition. Research over the years identified several causes for insulin resistance, which include genetic mutations, hyperglycemia, lipotoxicity, ER stress, and mitochondrial dysfunction¹⁴. Gene mutations in the IRS-1, PI3K, PTEN, AKT2, Trb3, and AS160 are linked to insulin resistance as seen in diabetic patients. Chronic hyperglycemic condition is known to change insulin sensitivity through mechanisms of oxidative stress in tissues like muscle, fat, and also reduce insulin secretion from beta cells. Accumulation of free fatty acids also leads to this metabolic dysfunction through activation of ser-307 IRS1 phosphorylation, JNK, IKK, PKC. Ceramides, a class of biologically-active sphingolipids act via activation of JNK, PKC, and by inhibiting Akt activation. Fatty acid Palmitate is shown to cause insulin resistance through induction of NF-κB signaling, cytokine

8

production, ER stress, and activation of JNK. Inflammatory cytokines also cause insulin resistance by various mechanisms.

1.2 KINASES AND PHOSPHATASES

Phosphorylation is one of the most important post translational modifications which regulates most signaling molecules in the cell. This process is carried out by kinases contrary to the phosphatases which carry out dephosphorylation. Of all the proteins in the eukaryotic cell, one third portions undergo reversible phosphorylation⁴¹. In 1950's, Edmond Fischer and Edwin Krebs discovered the idea of reversible phosphorylation using proteins isolated from rabbit skeletal muscle. They identified that this process required transfer of phosphate group from ATP to phosphorylase b to form phosphorylase a, a phosphoprotein using a 'converting enzyme'⁴². However, the concept of dephosphorylation was discovered about a decade earlier without the knowledge of phosphate group being its product until identified later by Drs.Krebs and Fischer. Phosphorylation and dephosphorylation are mostly carried out on amino acids containing OH group such as serine, threonine and tyrosine. Among these, serine undergoes almost 86.4% of the total phosphorylation followed by threonine (11.8%) and tyrosine $(1.8\%)^{43}$. Therefore 98% of the phosphorylation sites happen on serine/threonine⁴³. Human genome sequence is expected to contain a total of 518 kinases with 90 Tyrosine and 428 Serine/Threonine kinases and about 130 total protein phosphatases with 107 Tyrosine and about 30 Serine/Threonine phosphatases⁴⁴. Protein Tyrosine Phosphatases are almost similar in number to tyrosine kinases. However, Protein serine/threonine kinases are about 10 fold higher than serine/threonine phosphatases. Combined, the number of genes coding kinases approximately 3 fold higher than that of phosphatases⁴⁵. The large number of kinases is balanced through formation of holoenzyme complexes of phosphatases, generally composed of a catalytic subunit and one or more regulatory subunits. Each subunit has been shown to exist in various isoforms. These various subunit isoforms produce numerous possible combinations for each phosphatase and thereby match the kinases. The catalytic subunit itself is relatively non-specific and can dephosphorylate numerous substrates. Therefore, the interaction between the catalytic subunit and regulatory subunits is required to regulate the specificity and activity of the phosphatases⁴⁵. Phosphatases remove phosphate group via S_N2 mechanism with water as a nucleophile⁴⁶. Characterization of these phosphatases based on their substrate is as follows.

- i. Protein Tyrosine Phosphatases (PTP): remove the phosphate group from phosphorylated tyrosine residues.
- ii. Protein Serine/Threonine Phosphatases: remove the phosphate group from phosphorylated serine/threonine residues. This group is further classified into
 - a. Phospho Protein Phosphatase (PPP) which includes PP1, PP2A, PP2B, PP4, PP5, PP6, PP7.

All the proteins in this group have a structurally conserved active site configuration, a catalytic water molecule and six conserved residues [two aspartate (D), one asparagine (N) and three histidine (H) residues] with two metal ions.

b. Metal ion (Mg⁺² and Mn⁺²) dependent phosphatase (PPM) which contains PP2C.

This family of proteins does not possess regulatory subunits to determine the substrate specificity. Instead they have conserved sequence motifs and additional domains. Both PPP and PPM class of proteins require metal ions to play catalytic role.

- c. Aspartate bases based phosphatase comprising Fcp1 and Scp1.As the name indicates, these phosphatases use aspartate based catalysis.RNA polymerase II is the only substrate for this family of phosphatase.
- iii. Dual specificity protein serine/threonine/tyrosine phosphatase.
- iv. Histidine phosphatase.
- v. Lipid phosphatase.

As their names suggest, their substrates involve phosphorylated tyrosine, serine/threonine, serine/threonine/tyrosine, or histidine residues and lipids, respectively.

1.3 PROTEIN PHOSPHATASE 2A (PP2A), REGULATION AND EFFECT OF INSULIN

PP2A is a one of the major serine-threonine protein phosphatases that belongs to the phosphoprotein phosphatase family. This phosphatase constitutes for about 1% of the total protein in the cell⁴⁷. It is a hetero-trimeric complex with a dimeric core enzyme (see Figure 5), composed of a 65kda A subunit (PP2Aa), a 55kda B regulatory subunit (PP2Ab), and a 36kda catalytic subunit C (PP2Ac). Subunits A and C form the dimeric core⁴⁸. PP2A can exert its activity as a dimer (PP2Ad) or as a trimer complex⁴⁹. PP2Ac by itself can also act on substrates.

1.3.1 SUBUNITS OF PP2A

PP2Aa (A regulatory subunit) is ubiquitous and has two isoforms, alpha and beta, which are encoded by two different genes PPP2R1A and PPP2R1B. There is 86% similarity between these two isoforms. The dimer core, in most cases (90%), is composed of A alpha isoform⁴⁷. Both the isoforms are located in the cytoplasm. The structure of the A subunit is unveiled in 1999⁵⁰. It is composed of 15 non-identical repeats (HEAT sequence) containing 39 amino acids each. The repeats are arranged as two antiparallel alpha helices which are connected to each other by intra and inter repeat

loops forming a horse-shoe shape. B subunit binds to loops 1-10 whereas C subunit binds to loops 11-15⁵¹. Because of its flexibility, B subunits and other substrates can be incorporated easily⁴⁷. PP2Aa guides PP2Ac in the interaction with PP2Ab and other substrates and regulates the specificity of PP2Ac⁵².

PP2Ab (B regulatory subunit) regulates localization, activity and substrates for the complex. This regulatory subunit is encoded by 15 different genes which are transcribed to a minimum of 26 transcripts and splice variants. They are expressed variably depending on the tissue type. They are classified into four families B (B55/PR55), B' (B56/PR61), B'' (PR48/PR72/PR130), and B''' (PR93/PR110). They require ATP and Mg⁺² to be active. B has four different isoforms and has a tryptophan-aspartate repeat which helps in its identification. B' has five isoforms which are all identical in the center region but different in the C and N terminals. B'' has three isoforms. Different regulatory subunits direct the holoenzyme to perform varied functions. For example, binding of B subunit to the PP2A complex prevents simian virus40 replication whereas binding of B'' does the opposite. Not all subunits bind at the same region on the A subunit.

PP2Ac (catalytic subunit) is in globular structure, ubiquitously expressed in almost all the tissues and is abundant in heart and brain. PP2Ac is conserved from eukaryotes to mammals, with 86% sequence match between yeast and humans. It is responsible for the catalytic activity of the enzyme. PP2Ac has two isoforms, alpha and beta, which are 97% identical encoded by two different genes. Both are composed of 309 amino acids and differ only by 8 amino acids at the N terminal. PP2Ac alpha is found mainly in plasma membrane whereas beta isoform is in cytoplasm and nucleus. PP2Ac alpha is more abundant than PP2Ac beta because of the high degree of mRNA translation⁵³. Unique feature of PP2Ac is that C terminal tail is highly conserved (³⁰⁴TPDYEL³⁰⁹). This tail binds to the A and B subunits of the complex. All the other phosphatases involved in PPP family cannot bind to A subunit even though they share sequence similarity with PP2Ac. This is because most of the amino acids required for specific interactions with A subunit are replaced⁴⁶.

All the subunits, their isoforms, tissue and subcellular distribution is summarized in Table 1.

1.3.2 REGULATION OF PP2A

Given the presence of large number of A, B and C subunit isoforms, various PP2A complexes are possible. The combination of the A, B and C subunit isoforms affects the activity and specificity of PP2A complexes against a particular substrate. Binding and the presence of other regulators can also influence PP2A activity and specificity^{46,54}. One such example is the binding of α 4 protein. Binding of PP2A to α 4 is important to stabilize PP2Ac in its inactive conformation. Besides stabilization, it also hinders ubiquitination site on PP2Ac thereby preventing its degradation⁵⁵. Phospho tyrosyl phosphatase activator (PTPA) is also shown to be an important regulator. It acts by stabilizing PP2A in an active conformation, which facilitates acquirement of its Serien/Threonine phosphatase activity⁵⁶.

PP2A activity is also regulated by post-translational modifications on PP2Ac⁵⁷. Several experiments in vivo as well as in vitro showed that phosphorylation on Tyr³⁰⁷ on PP2Ac⁵⁷ deactivates PP2Ac, by preventing its interaction with the regulatory subunit. Phosphorylation is also reported in a few PP2A regulatory subunits⁵⁸, which altered their activity and also substrate specificity. In addition, PP2A undergoes carboxyl methylation on the carboxyl group of the C-terminal residue of Leu³⁰⁹. Leucine Carboxyl Methyl Transferase (LCMT), also known as PP2A-Methyl transferase (PPMT), is responsible for methylation of PP2Ac, while PP2A Methyl Esterase (PPME) is responsible for PP2Ac de-methylation. Unlike phosphorylation, effect of methylation on activity is controversial. There are reports with an increase/decrease/no effect in the catalytic activity associated with carboxymethylation. It is however shown that PP2Ac methylation is required for binding of B subunit not the A/B'/B"B" subunits^{59,60}. Recent studies have shown additional functions of PME-1 in addition to affecting the activity. It is shown to be important for maintaining normal PP2A levels by preventing it from proteasome degradation⁶¹.

1.3.3 INHIBITORS OF PP2A

 I_1^{PP2A} and I_2^{PP2A} are two inhibitors which are found to inhibit PP2A through in vitro and in vivo experiments ⁵⁷. Many small compounds found naturally inhibit PP2A. One of them being okadaic acid which is being used in laboratory practices. It also inhibits other phosphatases like PP1 but at relatively higher concentrations. Other commercially available inhibitors include calyculin a, tautomycin, microcystins, cantharidin and endothall. Various inhibitors of PP2A, their specificity over other phosphatases and their origin is seen in Table 2.

1.3.4 ROLE OF PP2A

PP2A is found to be involved in many cell signaling pathways, cell cycle regulation and various other pathways. Experiments conducted by employing phosphatase inhibitor okadaic acid showed that PP2A plays a role in cell cycle regulation (G2/M transition). Using Yeast, they presented the role of various B subunit analogues in cell cycle, stress response, cytoskeleton organization and morphogenesis. Experiments in *drosophila* showed the importance of PP2A in early embryogenesis and the changes in the tissue distribution during its development. Several viral antigens are found to interact with PP2A and prevent the inhibitory role of PP2A in those signaling pathways and promote cell proliferation. It is also shown in *Xenopus* eggs that it involves in initiation of DNA replication. Several studies showed the involvement of PP2A in termination of DNA replication, apoptosis, DNA damage response and heat shock response⁵³. PP2A plays a role in numerous signaling pathways, including MAPK, mTOR, and Wnt signaling pathways, that initiate the cell cycle.

1.3.5 PP2A IN DIABETES

Our lab has shown that IRS1 interacts with PP2Ac using human skeletal muscle biopsies. Further, its interaction is increased in obese insulin resistant nondiabetic controls and type 2 diabetic subjects when compared to lean controls⁶². Its interaction with IRS-1 also shown in murine HL-1 cardiomyocytes⁶³.

There is evidence to indicate that insulin inactivates PP2A through in vitro and in vivo experiments. Also, published evidence shows interaction of PP2A with many signaling molecules, some of which are involved in insulin signaling pathway. Jian Chen et al showed that PP2A is phosphorylated in vitro by the tyrosine kinases which included insulin receptors. It is phosphorylated on Tyr³⁰⁷ and this inactivated PP2A⁵⁷.

The effect of insulin on PP2A during myogenesis in rat L6 cells is shown by Srinivasan and Begum. They showed that insulin inactivated PP2A in the differentiated cells .They also showed that the phosphatase activity decreased relatively with the increased concentrations of insulin and also the incubation time⁶⁴.

One of the effects of insulin in skeletal muscle cells is the glycogen synthesis through the INS/IRS-1/AKT pathway. Rosanna Cazzolli and associates showed that ceramide treatment of C2C12 skeletal myotubes reduced the glycogen synthesis through inhibition of phosphorylation on PKB upon insulin stimulation. Their results indicated that this inhibition is mediated through activated PP2A via ceramide and thereby effecting the glycogen synthesis in the skeletal muscle cells⁶⁵.

It is also shown that PP2A has a positive effect on the insulin signaling pathway by preventing the excessive serine phosphorylation on the IRS-1 which will otherwise negatively regulate the pathway. One such serine kinases is ribosomal protein P70 S6K-1 which is an effector of mTOR. Madavia et al showed direct Interaction of PP2A with IRS-1 in cardiomyocytes protecting IRS-1 from excessive serine phosphorylation. They inferred from their results that PP2A interacts with IRS-1 via mTOR competing for serine residues on IRS-1 and thereby deciding the phosphorylation status of IRS-1. Many factors affect the association, one being the insulin stimulation⁶³.

One group has reported experiments on PP2Ac abundance in human skeletal muscle where they compared ten type II diabetics with ten lean controls. They showed that upon insulin stimulation, PP2Ac protein levels in control subjects reduced when compared to the basal levels but not in type II diabetics. They also showed corresponding reduction in glucose disposal, glucose oxidation and increase in lipid oxidation⁶⁶.

Saturated fatty acids like palmitate negatively regulate insulin signaling pathway by activating PP2A, which dephosphorylates Akt and ERK1/2. Opposite effect is seen with unsaturated fatty acids like oleic acid or linoleic acid⁶⁷.

Chronic exposure of pancreatic β -cells to high glucose (glucotoxicity) leads to metabolic dysfunction in these cells with reported beta cell death³¹. Experiments done by Arora., *et al.* showed that sustained activation of PP2Ac in insulin-secreting INS-1 832/13 cells and normal rat islets under these hyperglycemic conditions. They also showed an increased PP2A activity under similar glucotoxic conditions with a corresponding increase in carboxymethylation of PP2Ac⁶⁸

1.4 INSULIN SENSITIVITY; PROTEIN INTERACTIONS AND MASS SPEC-TROMETRY

1.4.1 METHODS TO MEASURE INSULIN SENSITIVITY

There are several methods to measure insulin sensitivity in humans. Hyperinsulinemic euglycemic clamp and insulin suppression test are used for direct measurement of insulin sensitivity whereas Oral glucose tolerance test and minimal model analysis of frequently sampled intravenous glucose tolerance test are considered for indirect measurement. There are several other Indices used for quick measurement of insulin sensitivity in cases where feasibility is an issue.⁶⁹

For settings where insulin sensitivity measurement and maintenance of steady state conditions is crucial, hyperinsulinemic euglycemic clamp should be the first choice. This technique is also mentioned as a gold standard to assess the action of insulin in vivo⁷⁰. The action of insulin on the body is measured by the rate of exogenous glucose infused to maintain a constant blood glucose concentration. Under conditions of hyperinsulinemia, most (>70%) of the infused glucose is used by skeletal muscle. This implies that the index measured during the clamp mainly reflects the skeletal muscle sensitivity to insulin¹⁰.

1.4.2 IMPORTANCE OF PROTEIN-PROTEIN INTERACTIONS

Most of the proteins in vivo act in the form of complexes. Protein-protein interactions play a very crucial role in various functions of the cell, such as gene transcription, signal transduction⁷¹, cell cycle regulation, etc. Correct formation of these complexes is important for the normal body function. Abnormalities in protein-protein interactions cause aberrant cell signals and thereby cause diseases. Many protein complexes have been targeted to treat diseases⁷². Studying the interactions will help us to find out the function of the particular target protein which is specifically useful in cases of any unidentified protein interaction partners. It will also enable us to analyze the signaling pathways. Protein-protein Interactions have been classified as homo oligomeric /hetero oligomeric based on interaction surface; obligate/non obligate based on stability and transient/permanent depending on persistence⁷³

Protein-protein interactions may result in changes in

- 1. Kinetic characteristics of the complexes
- 2. Substrate channeling
- 3. A new binding site on the complex for other effector molecules
- 4. Substrate specificity
- 5. Activity of the complex
- 6. Downstream events

Methods to determine protein-protein interactions. Biophysical methods determine these interactions using the structural information of the proteins. These include X-ray crystallography, NMR Spectroscopy, fluorescence and atomic force microscopy. Direct high throughput methods include yeast two hybrid, affinity purification and mass spectrometry^{74,75,76}. Indirect high throughput methods include gene co-expression and synthetic lethality. Computational predictions of the protein-protein interactions have also been reported⁷⁴. Affinity purification coupled with mass spectrometry (AP-MS) is widely used for identification of interaction networks⁷⁵. Affinity purification allows to enrich the target protein of interest and its co-interaction partners in a single step, and mass spectrometry offers supreme ability to identify proteins from a complex mixture in a high throughout fashion^{75,76}.

1.4.3 MASS SPECTROMETRY

Mass spectrometry is the most sensitive approach for global identification and quantification of proteins, protein-protein interactions, and protein post translational modifications⁷⁷. The main components of a mass spectrometry instruments, a mass spectrometer, include an ion source, a mass analyzer, and a detector⁷⁷:

1. Ion source: a device to generate charged particles. Electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI) are two commonly used ion sources for proteomics studies⁷⁷.

2. Mass analyzer: a device to separate the ions based on their mass-to-charge ratio, m/z^{77} . Four common types of analyzers for the proteomic analysis include quadruple, Ion trap (quadruple ion trap, linear ion trap), time of flight, and orbitrap analyzers⁷⁷.

3. Detector: A detector is a device to record either the charge induced when an ion hits a surface or the current produced when an ion passes by ⁷⁷. Two main detectors are electron multiplier (charge induced when ions hit a plate) and image current detector (current produced when ions pass) ⁷⁷.

As every wet lab experiment, proteomics studies begin with collecting starting material (e.g., tissue, body fluid, cell lysates, etc.) and followed by protein separation (e.g., affinity capture, electrophoresis, liquid chromatography, etc.). Proteins are cleaved into peptides by enzymatic digestion. The most commonly used protease/enzyme for this purpose is trypsin due to its well-defined specificity, which hydrolyzes proteins at the carboxyl side (or "C-terminal side") of the amino acids lysine and arginine. Since one protein may generate many peptides after trypsin digestion, a tryptic digest of a complex mixture of proteins may contain thousands or even millions of peptides. Therefore, the resulting peptides are further separated using a variety of techniques (e.g. affinity capture, liquid chromatography, etc.). The separated peptides are analyzed by mass spectrometry for peptide/protein identification and quantification. These steps are summarized in Figure 6.

In the present work, the proteomic approach developed in our laboratory⁷⁸ was applied to investigate PP2Ac interaction partners in islet cells and human skeletal muscle biopsies from human participants.

1.5 SPECIFIC AIMS

This project aims to by study the activity of PP2A and to determine the interaction partners of PP2Ac in (i) clonal islet β -islet cells (INS-1 832/13) under basal and hyperglycemic conditions (ii) human skeletal muscle under basal and hyperinsulenemic conditions in in lean, obese/overweight non-diabetics and type II diabetics

1.5.1 SPECIFIC AIM 1: INS-1 832/13 CELLS

Our aim is to determine the activity and interaction partners of pp2ac in β -islet cells under basal and hyperglycemic conditions. We hypothesized that chronic exposure of insulin-secreting β cells to hyperglycemic conditions leads to increased interaction of PP2Ac with its regulatory and scaffolding subunits resulting in its catalytic activation with subsequent dephosphorylation and inactivation of key survival proteins.

1.5.2 SPECIFIC AIM 2: HUMAN SKELETAL MUSCLE BIOPSY

Here, our aim is to determine the activity, post translational modifications and interaction partners of pp2a in human skeletal muscle under basal and hyperinsulenemic conditions in lean, obese/overweight non-diabetics and type II diabetic subjects. PP2Ac activity is increased under hyperglycemic conditions and its regulation varies under this condition

CHAPTER 2 RESEARCH DESIGN AND METHODS

2.1 REAGENTS

Reagents are from these suppliers; protein A sepharose and iodoacetamide (Sigma, St Louis, MO); C18 ZipTip (Millipore, Billerica, MA). RPM1640 medium, normal fetal bovine serum (FBS) and penicillin-streptomycin-glutamine mixture (PSG) were purchased from Life Technologies. HPLC grade acetonitrile (ACN), trifluoroacetic acid (TFA) and formic acid (FA) were from Sigma. Sequence grade trypsin was from Promega. The normal mouse IgG (NIgG) and PP2Ac mouse monoclonal antibody (Cat. 05-421) were from Millipore.

2.2 SPECIFIC AIM 1: INS-1 832/13 CELLS

2.2.1 CELL CULTURE AND HIGH GLUCOSE TREATMENT

INS-1 832/13 cells (provided by Dr.Aris Newgard) were grown in RPMI1640 medium containing 2.5 mM glucose, 10% FBS and 1% PSG. In order to treat the cells with high glucose for 48 hours, same medium was supplemented with glucose to obtain a final concentration of 20 mM. Cells treated with low and high glucose were harvested after the treatment. The cells homogenized in lysis buffer containing 2mM EDTA, 2mM EGTA, 20mM imidazole-HCl, pH 7.0 with protease inhibitors aprotinin, leupeptin, and PMSF. The cells are centrifuged at about 14000rpm for 15min followed by protein quantification using bradford method. 4 mg of protein was used for each sample and was first incubated with 30 μ l of protein A beads conjugated to 4 μ g of mouse NIgG for three hours. Treating with NIgG beads served as control to detect non-specific interactions. The supernatant from NIgG beads was incubated with 30 μ l of protein A beads conjugated to 4 μ g of mouse PP2Ac beads were harvested.

2.2.2 PROTEOMICS SAMPLE PREPARATION AND ANALYSIS

NIgG and PP2Ac beads were washed the next day with PBS for three times. Then, the beads were treated with 30 μ l of 2 x SDS buffer comprising 50 mM DTT at 95°C for 5 min. subsequently, the samples are treated with iodoacetamide (IAA) forabout 30min. The eluates were resolved on 4-15% SDS-PAGE. Five slices were excised from each lane (one sample) followed by in-gel trypsin digestion, peptide purification and HPLC-ESI-MS/MS. The analysis is done on an LTQ Orbitrap Elite as described⁷⁸⁻⁸⁰. Maxquant is used for the Peptide/protein identification and quantification⁸¹. The different steps involved are shown in Figure 7.

2.2.3 STATISTICAL ANALYSIS

Proteins are obtained from Maxquant with peak areas for each which is utilized for analysis (Figure 8). Proteins with atleast two unique peptides are considered for analysis. For it to be categorized as PP2Ac interaction partner, a protein has to meet the following criteria: 1) should be identified with label-free quantification PAs in more than half of the PP2Ac immunoprecipitates (4 IPs); and 2) should have an enrichment ratio (PP2Ac/NIgG) greater than 10, or should not be identified in any of the eight NIgG samples. The calculation of enrichment ratio is explained later in 2.3.5. The proteins which pass the above criteria are considered as potential interaction partners. Further identification of glucose responsive interaction partners (low glucose vs high glucose, n=4) from these PP2A interaction partners, is done as follows: 1) they should have fold change >0.05 of normalized peak areas; 3) and have significantly altered normalized peak areas (P < 0.05 calculated by independent *t*-test).

Ingenuity Pathway Analysis (Ingenuity Systems, Inc., Redwood City, CA), a bioinformatics analysis software package⁸²⁻⁸⁴ is used for pathway analysis on both interaction partners as well as glucose-responsive PP2Ac interaction partners. The software contains chemical, biological interactions, and functional annotations formed by manual curation of the scientific literature^{85,86}.

2.2.4 VALIDATION THROUGH WESTERN BLOT ANALYSIS

To Validate a glucose responsive interaction partner, western blot technique is used. INS-1 832/13 cells were treated with low (2.5 mM) and high (25 mM) glucose for 24 hours followed by collecting cell lysates and protein concentration estimation using the bradford assay. Samples were then treated with SDS sample buffer and resolved on 10% SDS-PAGE. The gel is then transferred onto nitrocellulose membranes (Bio-Rad), and analyzed by Western blotting (WB) with the specific antibodies. enhanced chemiluminescence kit⁸⁷⁻⁸⁹ is used to detect the protein complexes further.

2.3 SPECIFIC AIM 2: HUMAN SKELETAL MUSCLE BIOPSIES

2.3.1 SUBJECTS

A total of 24 participants including 8 lean, 8 overweight/obese non-diabetic and 8 type 2 diabetic volunteers were recruited and took part in the study at the Clinical Research Center at Wayne State University. Written consent was attained from all participants and the study was explained in detail including the indirect benefits and risks. No one had any significant medical problems except for type 2 diabetic participants who have type 2 diabetes, and none engaged in any heavy exercise, and they were directed to stop all kinds of exercise for at least 2 days prior to the study. Institutional Review Board of Wayne State University approved this protocol.

2.3.2 HYPERINSULINEMIC-EUGLYCEMIC CLAMP WITH MUSCLE BIOP-SIES

A hyperinsulinemic-euglycemic clamp was used to assess insulin sensitivity and expose skeletal muscle to insulin *in vivo*, as previously described⁷⁸. Followed by a ten hour overnight fast, the study began at approximately 08:30 hours (time -60 min). Two catheters were placed, one in an antecubital vein, maintained throughout the study for infusions of insulin and glucose. The second in a vein in the contra lateral arm, which was covered with a heating pad (60°C). The purpose of heating pad is to arterialize the venous blood being collected. Blood samples were collected for determination of plasma glucose concentrations. At approximately 09:00 hours (time -30 min), under local anesthesia, a percutaneous needle biopsy of the vastus lateralis muscle was performed. These biopsy samples were blotted free of blood, cleaned of connective tissue and fat (~30 sec), and then frozen in liquid nitrogen. At 09:30 hours (time 0 min), continuous human insulin (Humulin R; Eli Lilly, Indianapolis, IN) infusion was begun at a rate of 80 mU m⁻² minute⁻¹, and continued for 120 min. Plasma glucose was measured at 5-min intervals throughout the clamp. Euglycemia was maintained at 90 mg/dl by variable infusion of 20% d-glucose. Another biopsy is taken at 11:30 hours (time 120 minutes) in the contralateral leg.

Plasma insulin concentration was calculated using the ALPCO Insulin ELISA Jumbo (Alpco Diagnostics, Salem, NH).

2.3.3 OUTLINE

Clinical and proteomics studies were carried out similar to those describe⁷⁸, which reported the discovery of new IRS1 interaction partners in human skeletal muscle. The main difference was that PP2Ac Co-immunoprecipitation was used to enrich PP2Ac interaction partners in the present work instead of IRS1 Co-immunoprecipitation used in the publication.

As illustrated in Figure 11, the approach we used included extensive clinical and proteomics data acquisition and data analysis. We first recruited subjects which was followed by comprehensive tests to screen them for eligibility. This is followed by hyperinsulinemic-euglycemic clamp, procedure to measure insulin sensitivity and muscle biopsies are collected. The proteomics study was performed in the following order: biopsy homogenization; immunoprecipitation of the "bait" protein (PP2Ac), at the endogenous level; followed by one dimensional SDS-PAGE to separate co-interaction proteins; in-gel trypsin digestion to generate peptide fragments; and HPLC-ESI-MS/MS analysis to identify co-immunoprecipitating proteins. Multiple biological comparisons and immunoprecipitation of NIgG (as non-specific control) were used for false positive minimization. Extensive literature searches as well as bioinformatics were used to integrate clinical and proteomics data and to identify pathways and functional categories in which identified PP2Ac interaction partners were involved.

2.3.4 PROTEOMIC SAMPLE PREPARATION

Biopsies were homogenized and processed as described^{78,79,90}. The lysate proteins were precleared with NIgG followed by PP2AC immunoprecipitation. The coimmunoprecipitates were resolved on one dimensional SDS-PAGE, which is followed by in-gel trypsin digestion, peptide enrichment, and HPLC-ESI-MS/MS analysis using a LTQ-Orbitrap Elite as described⁷⁸. Peptides/protein identification and quantification were performed using the MaxQuant software. It is one of the most prevalent quantitative proteomics software⁸¹. Using this, peak areas for each protein were obtained by selecting the option for label-free quantification (LFQ). Only those proteins with a minimum of 2 unique peptides and with false discovery rate (FDR) at 0.01 were considered. In total, 2057 proteins were identified in the 48 muscle biopsies using HPLC-ESI-MS/MS.

To be considered as a PP2Ac interaction partner, a protein has to additionally pass these following criteria: 1). with an enrichment ratio >10; 2). Identified with LFQ

peak area (PA) in more than half of the PP2Ac IP (i.e. >24 biopsies used). The enrichment ratio was calculated as follows: 1^{st} , PA for a protein identified in a gel lane was normalized against the sum of the peak areas for all proteins identified in the same gel lane to obtain normalized ratio for individual protein, Norm:*i*,

Norm:
$$i = \frac{PAi}{\sum_{1}^{n} PAi}$$

Then, the average of normalized ratio for each protein in the PP2Ac co-immunoprecipitates, Average_Norm:*i*_IRS1, as well as the average of normalized ratio for the same protein in the NIgG co-immunoprecipitates, Average_Norm:*i*_NIgG, were obtained. Finally, Average_Norm:*i*_PP2Ac was divided by Average_Norm:*i*_NIgG, which gives the enrichment ratio for each protein.

Enrichment_Ratio:
$$i = \frac{\text{Average}_N \text{orm: } i_PP2Ac}{\text{Average}_N \text{orm: } i_NIgG}$$

Proteins exclusively detected in the PP2Ac immunoprecipitates were identified as PP2Ac interaction partners as we used NIgG as a control. Nevertheless, this will give rise to false negatives since our high sensitivity method would identified trace amounts of a protein non-specifically absorbed on the NIgG beads. However, if a protein is true component of the PP2Ac complex, higher peak area will be assigned to this protein in the PP2Ac sample than in the NIgG sample.

To determine the relative quantities of PP2Ac interaction partners in human skeletal muscle biopsies among lean controls, obese insulin resistant non-diabetic controls, and type 2 diabetic participants, the PA for each protein identified in a specific biopsy was normalized against the PA for PP2Ac identified in the same biopsy, which results in Norm:*j*.

Norm:
$$j = \frac{PAj}{PA_PP2Ac}$$

The normalization strategy is widely used in proteomics studies involving protein-protein interactions⁹¹, and uses similar concept as in western blotting, where the signal for an interaction protein is normalized against that for the protein serving as the "bait." The normalized peak area for each PP2Ac interaction partner, Norm:*j*, was converted to log2 form and compared within the group to assess effects of insulin or across the 3 groups to determine effects of obese insulin resistance and type 2 diabetes on protein-protein interactions involving PP2Ac.

2.3.5 STATISTICAL ANALYSIS FOR PP2A

To be considered as a PP2Ac interaction partner, a protein has to further satisfy the following criteria: 1) the protein is identified with label-free quantification PAs in more than 4 of the PP2Ac immunoprecipitates (IPs); and 2) those proteins have an enrichment ratio larger than 10, or not identified in all of the eight NIgG control samples. The calculation of enrichment ratio was described in our previous publication⁸¹. To be considered as glucose responsive PP2Ac interaction partners, has to: 1) be an identified PP2Ac interaction partner; 2) has >1.5fold change of normalized peak areas (low glucose vs high glucose, n=4); 3) and has significantly changed normalized peak areas (P<0.05 assessed by independent *t*-test). Although a large number of proteins were assigned in at least one of 48 biopsies that were studied, various filters narrowed the number of proteins that were used in comparisons among groups as described above. This approach is diagrammed in Figure 12. To assess the effects of insulin within a group, statistical significance was calculated by paired *t* tests. For across group comparisons, statistical significance was assessed using ANOVA with post hoc independent *t* tests. Differences were considered statistically significant at p<0.01.

Pathway analysis on PP2Ac interaction partners was performed using Ingenuity Pathway Analysis (Ingenuity Systems, Inc., Redwood City, CA), which is widely used and contain biological and chemical interactions and functional annotations created by manual curation of the scientific literature⁸⁴. A pathway was considered significantly enriched if the p-value for that pathway was less than 0.01 and contained at least 4 identified PP2Ac partners.

3.1 SPECIFIC AIM 1: DETERMINE THE INTERACTION PARTNERS OF PP2AC IN β-ISLET CELLS UNDER BASAL AND HYPERGLYCEMIC CON-DITIONS

3.1.1 PP2AC INTERACTION PARTNERS IN INS-1 832/13 CELLS

All these results are published in⁹². Using the proteomics approach developed in our lab⁷⁸, a total of 1131 proteins with FDR at 0.01 were identified from PP2Ac coimmunoprecipitations which have a minimum of 2 unique peptides. Among the 1131 proteins, 606 proteins had enrichment ratio larger than 10. Out of these 606 proteins, 514 proteins were identified with a peak area (PA) in more than half (e.g., >4 out of 8) PP2Ac coimmunoprecipitates. These 514 proteins are considered as potential interaction partners of PP2Ac listed in Table 5. These 514 proteins are then compared with the PP2A interactions obtained from BioGRID3.2 database, which came upto 38 proteins (Table 7). Thus, excluding 38 previously known PP2A partners, 476 proteins from this study were considered novel PP2Ac interaction partners. The previously reported PP2Ac interaction partners include the α and β isoforms of PP2A 65 kDa regulatory subunit A, α and δ isoforms of PP2A 55 kDa regulatory subunit B (PPP2R2A and PPP2R2D), the α isoform of PP2A 72/130 kDa regulatory subunit B (PPP2R3A), and the γ isoform of PP2 56 kDa regulatory subunit B (PPP2R5C). Most of these 38 interaction partners were identified in human cells. These known partners are symbolic to the effectiveness of our proteomic approach. However, most of these proteins were first identified in rat β -cells through our study. Among the 476 novel PP2Ac interaction partners, there were more than 15 different kinases, such as dual specificity mitogenactivated protein kinase kinase 2 (MAP2K2), mitogen-activated protein kinase 1 (MAPK1), CRA_a isoform of LIM motif-containing protein kinase 1 (LIMK1), and calcium/calmodulin-dependent protein kinase type 1 (CAMK1). There were some protein phosphatases (regulatory/catalytic subunits) as well. Examples include serine/ threonine-protein phosphatase 4 regulatory subunit 1 (PPP4R1), serine/threonine-protein phosphatase 6 catalytic subunit (PPP6C), protein phosphatase 1 regulatory subunit 12A (PPP1R12A), and the α isoform of protein phosphatase 3 catalytic subunit (PPP3CA). We also identified insulin-degrading enzyme (IDE), UDP-glucose:glycoprotein glucosyltransferase 1 (UGGT1) and voltage-dependent anion-selective channel protein 1 (VDAC1) as PP2A partners. There were a number of ribosomal proteins, translation initiation factors as well as Ras related proteins identified in the current study.

3.1.2 GLUCOSE RESPONSIVE PP2AC INTERACTION PARTNERS

Out of the 514 PP2Ac interaction partners, 265 are identified with fold change greater than 1.5 (i.e., 1.5fold increase) or less than 0.67 (i.e., 1.5fold decrease) by comparing high low glucose treated samples. Among these 265, 89 proteins showed a significant change in response to the high glucose treatment (P < 0.05). These 89 PP2Ac partners were considered as glucose responsive interaction partners. All these 89 partners are mentioned in Table 6. Among them, seven proteins are known to interact with PP2Ac previously in other cell models. They include regulatory subunits of PP2A such as PPP2R1B⁹³⁻⁹⁷ and PPP2R2A^{10-12,35,43}. The interaction of PPP2R1B and PPP2R2A with PP2Ac was increased by 1.83 and 2.32 folds, respectively in response to high glucose treatment. The other three PP2Ac partners, sarcolemmal membrane-associated protein (SLMAP)⁹⁴, cortactin binding protein 2 (CTTNBP2)⁹⁵, and Ints5 protein⁹⁸, also presented an increased interaction with PP2Ac with fold change 4.95, 11.03 and 2.47, respectively. Conversely, protein phosphatase 1B (PPM1B)⁹⁹, a known PP2Ac partner, displayed a decreased interaction with PP2Ac (0.27 fold change) in response to the high glucose treatment. Out of the thirteen PP2Ac interaction partners with a fold

change higher than 5 or lower than 0.2 (P < 0.01) in response to high glucose treatment, only protein peripherin presented a reduced association with PP2Ac (0.19fold change), while others showed an increase in association with PP2Ac. For example, association of CRA_a isoform of LIM motif-containing protein kinase 1 (LIMK1), LIM domain-containing protein 1 (LIMD1) increased 9.85 fold and 12.94 fold, respectively with PP2Ac.

3.1.3 GLUCOSE RESPONSIVE PP2AC INTERACTION PARTNERS RE-LATED TO INSULIN SECRETION

Ingenuity Pathway Analysis of the 514 PP2Ac interaction partners showed 59 significantly enriched pathways (with a minimum of four interaction partners in a specific pathway and P < 0.01; Table 8). Most of the pathways are related to AMPK signaling, cytoskeleton dynamics, and protein synthesis and degradation. On the other hand, very few glucose responsive PP2Ac partners were recognized in these pathways including PPP2R2A, PPP2R1B, ARPC4, LIMK1 and RhoA. Through this IPA analysis, we did not find any enrichment in the insulin secretion pathway. We further did a manual literature search for the proteins involved in insulin secretion. Through this methos, we identified several proteins involved in insulin secretion and other related cellular functions. RHOA, PLA2G6, APPL1, EIF2C2, PFKFB2 and RAB10 have been shown to regulate insulin secretion (Figure 9). Protein CIAPIN1 and PPP4R1 are promote anti-apoptosis, thus retaining islet survival and function. We identified few proteins involved in vesicle trafficking that include VPS52, VPS37A, TSG101, RAB5C, RAB10 and EEA1. There were few components of ribosomes such as RPL9, RPL4, RPL30, RPL18A and MRPL35. All these ribosomal components were found with increased PP2Ac association in response to high glucose treatment. LIMD1, VGLL4, STAT6, PHF5A, DDX17, NCOR1, ILF3, HIST1H1C and TRIP11 are all involved in regulation of transcription.

3.1.4 EXPERIMENTAL VALIDATION OF PPP2R1B AS A GLUCOSE RE-SPONSIVE PP2AC INTERACTION PARTNER

PPP2R1B, β isoform of PP2A A subunit was validated by co-IP and western blot. It was identified as a glucose responsive PP2Ac interaction partner. INS-1 832/13 cells were incubated with low (2.5 mM) and high glucose (25 mM). Through western blot, we showed an increased association of PPP2R1B with (1.57 fold) under glucotoxic/high glucose condition (n = 4, P < 0.05) (shown in Figure 10). These findings are consistent with our proteomics results where there was 1.83fold change in response to high glucose treatment (n = 4, P < 0.05). Furthermore, we quantified abundance of this PPP2R1B, normalized to β-actin level. This presented only 1.13-fold change in high glucose over the basal conditions (P > 0.05). However, when PPP2R1B is normalized with levels of PP2Ac PPP2R1B/PP2Ac, a significantly increase is seen upon high glucose treatment (n = 4, 1.47 folds, P < 0.01).

3.2 SPECIFIC AIM 2: DETERMINE INTERACTION PARTNERS OF PP2A IN HUMAN SKELETAL MUSCLE UNDER BASAL AND HYPERINSULENEMIC CONDITIONS IN LEAN, OBESE/OVERWEIGHT NON-DIABETICS AND TYPE 2 DIABETIC SUBJECTS.

3.2.1 PP2AC INTERACTION PARTNERS IN SKELETAL MUSCLE FROM LEAN, OVERWEIGHT/OBESE, AND TYPE 2 DIABETIC HUMAN PARTICI-PANTS

Clinical characteristics of all the 24 human subjects (8 lean, 8 obese/overweight, and 8 type 2 diabetic) is listed in Table 3 and Table 4.

PP2Ac α and PP2Ac β were detected in PP2Ac immunoprecipitates from all 48 biopsies used for the study. After performing statistical analysis as mentioned in the Figure 12, 211 proteins met the criteria for classification as PP2Ac interaction partners. These 211 partners may interact with PP2Ac directly or indirectly.

Table 9 lists the 211 PP2Ac interaction partners with their enrichment ratio. PP2A interaction partners were pooled from various databases including BioGrid, SPIKE, IntAct, and STRING. By comparing these partners from databases with the 211 partners identified in our study (human skeletal muscle), 21 were found in common (Table 11). Further comparison with 514 partners previously identified in beta cells (in our study) yielded 38 proteins (listed in Table 12) while 9 out of these 38 are redundant. Altogether, a total of 50 partners are previously identified while 161 were novel. The 50 known PP2Ac interaction partners included AMPK, CAV1, CCDC6, CCT2, CCT6A, CUL1, IGBP1, PPME1, PPP2R1A, PPP2R2A, PPP2R3A, PPP2R5D, PPP4C, PSMC6, PSMD1, RAC1, SOD1, STRN, STRN3, TIPRL, USP7 from the databases and AKR1B1, APPL1, ARCN1, ASNA1, NTPCR, CAND1, *CCDC6*, DARS, EIF2B1, FAHD1, FLNA, GFPT1, GSN, IDH3B, *IGBP1*, MYH14, NAP1L4, PDIA6, *PPME1*, *PPP2R1A*, *PPP2R2A*, *PPP2R3A*, *PPP4C*, PPP4R2, PSMC2, PSMC3, PSMD12, PSMD13, PSMD14, RAB1B, *RAC1*, RPS15A, RPS25, S100A11, *STRN*, TALDO1, TSN, TUBB2A from the beta cells (the ones in bold italics are redundant).

Ingenuity pathway analysis on the 211 PP2Ac interaction partners and PP2Ac suggested various pathways significantly enriched compared to the whole genome background, such as IRS, Mtor, and MAPK signaling. Two of the significantly enriched pathway, IRS and mTOR signaling, are illustrated in Figure 13 and Figure 14 respectively.

We also performed network analysis using Ingenuity pathway analysis for the 211 PP2Ac interaction partners and PP2Ac to illustrate how these partners can be interrelated. Figure 15 shows the network with the highest score and highest number of interaction partners identified in this study.

3.2.2 PARTNERS WITH SIGNIFICANT DIFFERENCE AMONG LEAN CON-TROL, OBESE/OVERWEIGHT CONTROL, AND TYPE 2 DIABETIC GROUPS

As mentioned in the Figure 12, by comparing the normalized peak areas of the 211 proteins, 69 interaction partners exhibited significant difference among the three groups. All the 69 partners are listed in Table 10.

Upon insulin stimulation, in lean control group, 4 proteins showed significant difference which included ACO1, IRP1, PPME1, and PPP4R2 whereas insulin stimulation in obese control significantly changed CCDC6 and LUM and in type 2 diabetic group, it seemed to significantly change one protein, ACOT9.

63 proteins showed a significant change in obese/overweight insulin resistant controls when compared with lean controls while 37 proteins exhibited a significant change in type 2 diabetics compared to lean controls. When the 63 proteins between lean and obese, 37 proteins between lean and T2D are compared, 32 proteins are in common i.e., they are seen with a change in both type 2 diabetics and obese group when compared to lean. When type 2 diabetic group is compared to obese non-diabetic insulin resistant group, 47 proteins presented with a significant change. These partners showed either a significant increase or decrease. Out of 63 proteins difference between lean and obese/overweight, interaction of only PDE4D and SCPEP1 is increased in obese/overweight compared to lean while the rest presented with an increase. CCT2, COPS2, PDE4D, ACO1/IRP1, CA1, GSTM3, BLVRB showed an increased interaction in T2D

compared lean among 37 proteins different between these two groups. 43 out of 47 significant proteins between T2D and obese had an increased interaction with PP2A in T2D while the remaining four, EIF2B1, LAP3, LUM, and SCPEP1 exhibited a decrease. For easy access and understanding, all the 69 proteins are divided per their function and are color coded based on their difference between groups in Figure 16A and Figure 16B. One protein can show difference between groups in more than one case (for example, AKT2 protein show difference between lean and obese group, lean and type 2 diabetic group; hence you can see AKT2 coded in two different colors). It is to be noted that one protein can be involved in more than one function mentioned but, to simplify, a protein is grouped only under one function.

CHAPTER 4 DISCUSSION

4.1 SPECIFIC AIM 1: DETERMINE THE INTERACTION PARTNERS OF PP2AC IN HUMAN B-ISLET CELLS UNDER BASAL AND HYPERGLYCE-MIC CONDITIONS

4.1.1 PP2AC INTERACTION WITH SIGNALING PROTEINS IMPORTANT FOR PHYSIOLOGICAL INSULIN SECRETION

We discovered several PP2Ac interactions that have been involved in islet function and insulin secretion. They include proteins involved in protein sorting and trafficking, SRP72 and GGA2, and vesicle trafficking (VPS52, VPS37A, Rab10, Rab5C etc.). They also include small G proteins Rac1, Rho A, Rab5c. These findings suggest a close interaction between these signaling proteins and PP2Ac. These small G-proteins (Rac1, Cdc42, Rho A and Rab) play a pivotal role in glucose stimulated insulin secretion^{100,101}. They also play an important role to traffic insulin stored vesicles to the cell membrane and cytoskeletal remodeling to allow fusion of these secretory granules with the plasma membrane in order for insulin secretion^{100,101}.

We identified an important interaction, PP2Ac with LIMK1 because LIMK1 is a serine/threonine-protein kinase which plays a vital role in the regulation of dynamics of actin filament at the cell membrane. Activation of kinases like ROCK1, PAK1 and PAK4 cause phosphorylation and activation of LIMK1, which then phosphorylates and thereby inactivates the actin binding/depolymerizing factors^{102,103}. This inactivation of the depolymerizing factors result in the prevention of breakdown of F-actin and thereby actin cytoskeleton stabilization. Besides, LIMK1 has shown to regulate quite a few actin-dependent biological processes including cell cycle progression, cell motility, and cell differentiation¹⁰⁴. This finding has huge significance considering that a glucose responsive PP2Ac partner is involved in vesicle trafficking and actin cytoskeletal remodeling, essential for glucose stimulated insulin secretion.

An othe important interaction partner to be noted is the immunogloblin-binding protein [Igbp1]. Igbp1, also known as α 4, is a non-canonical adaptor subunit of PP2A⁶⁰. In addition to binding to its regulatory subunits, PP2Ac is also shown to interact with other substrates, including α 4 that regulate its localization, abundance, and activity. In this case, α 4 is known to involve in PP2A biogenesis, stability and activation^{60,105}. PP2AC-IGBP1 complex protects the catalytic subunit from proteasomal degradation¹⁰⁶. Other such regulators are found later in this study. α 4 is also shown to interact with other phosphatases like PP4 and PP6¹⁰⁵. It is worthwhile to note that we also identified PP4 as an interacting partner of PP2Ac. This is the first evidence for regulation of protein phosphatase 4 in beta cells its involvement in the induction of defects in nuclear lamin processing stimulated by cytokines¹⁰⁷.

4.1.2 PP2AC INTERACTION WITH KEY PROTEINS THAT REGULATE CELL DYSFUNCTION AND APOPTOSIS

We also identified protein methyl esterase-1 as an interaction partner. As discussed earlier, PP2Ac undergoes methylation at the carboxyterminal leucine (Leu-309) residue. As already mentioned, PP2A activity is increased under glucotoxic conditions with corresponding increase in C-terminal methylation of PP2Ac⁶⁸. LCMT-1/leucine carboxy methyl tranferase, involved in transferring methyl onto leucine -309 of PP2Ac. siRNA-mediated knockdown of LCMT-1 significantly decreased the carboxylmethylation of PP2Ac and hyperactivation of PP2A under high glucose/glucotoxic conditions. This implies that the carboxylmethylation leads to a sustained activation of PP2A^{89,108}. However, potential regulatory roles of PME-1 in islet function are yet to be defined. We also noted another key protein with a significant increase [~3.6 fold] in the interaction with PP2Ac, PPP4R1, a regulatory subunit of PP4. High levels of expression of protein phosphatase 4 catalytic subunit (PP4c) in the nuclear fraction is found in β -cells¹⁰⁷. Additionally, exposing β -cells to IL-1 β , a proinflammatory cytokine, lead to a marked increase in nitric oxide release with a corresponding decrease in carboxyl-methylation of PP4C. IP studies indicated a potential interaction of PP4c with nuclear lamin-B, a vital regulatory protein important in the nuclear envelope assembly¹⁰⁷.

We also identified a significant [2.3-fold] increase in the interaction between PP2Ac and its regulatory subunit, B55 α . Yan et al presented involvement of a B55 α containing PP2A holoenzyme in the dephosphorylation of FOXO1 in islet β -cells under H₂O₂-induced oxidative stress conditions¹⁰⁹. They also reported increased expression of B55 α subunits in islets obtained from *db/db* mouse, a diabetic mouse kodel¹⁰⁹. Significant increase in the abundance of B55 α subunit under hyperglycemic conditions in INS-1 832/13 cells has been reported recently¹⁰⁹.

4.2 SPECIFIC AIM 2: DETERMINE INTERACTION PARTNERS OF PP2A IN HUMAN SKELETAL MUSCLE UNDER BASAL AND HYPERINSULENEMIC CONDITIONS IN LEAN, OBESE/OVERWEIGHT NON-DIABETICS AND TYPE 2 DIABETIC SUBJECTS

4.2.1 PP2AC INTERACTION PARTNERS IN SKELETAL MUSCLE

Using the proteomics approach for protein-protein interactions developed in our laboratory⁷⁸, we have identified 211 PP2Ac interaction partners in skeletal muscle from 8 lean, 8 overweight/obese, and 8 human participants, which represents the largest PP2Ac interaction network in humans to date. Among them, 50 were known PP2Ac interaction partners while 161 were novel (Table 9).

4.2.2 KNOWN PARTNERS

Among these 50 PP2Ac interaction partners are some regulatory and a scaffold subunit of PP2A. They include PPP2R1A, 'A' subunit alpha isoform, PPP2R2A, 'B' subunit alpha isoform, PPP2R3A, B'' subunit alpha isoform, PPP2R5D, B' subunit delta isoform, STRN, B''' subunit alpha isoform, and STRN3, B''' subunit beta isoform. It is also known to bind to catalytic subunit of protein phosphatase 4 (PPP4C)¹¹⁰. Other important known partners include PPME1 and IGBP1. PPME1 is protein methylesterase, which catalyzes the demethylation of PP2A on leucine309. As mentioned in the introduction, regulation of PP2A through methylation is controversial. However, PPME-1 is shown to protect PP2A from degradation⁶¹ and so does IGBP1. It is also known as alpha4, binds to catalytic subunit thereby stabilizing and preventing it from the degradation¹⁰⁵.

Caveolin-1 is a scaffolding protein which is found in most cell types as a prime component of the caveolae plasma membranes. This protein is involved in promoting cell cycle progression. Protein expression of Insulin Receptor Substrate (IRS)-1 is reduced in caveolin knock out cells¹¹¹. In addition, our lab has shown interaction of IRS1 with CAV1 in human skeletal muscle biopsies¹¹². It's interaction with PP2A is also shown in human prostate cancer cells where cav-1 acts as a positive regulator in the Akt signaling pathway via inhibition of PP1 and PP2A¹¹³. Mechanism of inhibition involves binding of cav-1 to the catalytic subunits of both PP1 and PP2A (have a consensus cav-1 binding motif). Thus, the lowered activities of PP1 and PP2A lead to increased phosphorylation levels of their specific substrates like PDK1, Akt, and ERK1/2¹¹³.

Coiled-coil domain containing 6 (CCDC6) translates to a protein that is ubiquitously expressed and its gene re-arrangements is seen in many malignancies¹¹⁴. Its interaction with PP2Ac is seen in high throughput experiments as an attempt to understand phosphatase interactions using human cell lines^{110,115}.

Protein levels are regulated in many ways. Various cell signals regulate the translation of proteins through mRNA. In this process of translation, proteins have to synthesized, folded, and localized specifically. In contrast, protein degradation can occur through proteasome machinery where unneeded/misfolded proteins are tagged with ubiquitin and are degraded through E1, E2, and E3 enzymes. PP2A is known to interact with molecules involved in these processes. Here, we identified few such proteins like CCCT2, CCT61, CUL-1, PSMC6, PSMD1, and USP7. CCT2 and CCT6A are chaperone proteins. All the proteins after translation require proper folding to achieve the tertiary structure. The function of these chaperones is to correct the partially folded or misfolded proteins which otherwise can aggregate to form lethal complexes using ATP as source of energy¹¹⁶. Cullin-1 protein is a core component of a E-3 Ubiquitin protein ligase complex, Cullin-RING ubiquitin ligases (CRLs), involved in the ubiquitination of proteins in cell cycle and signal transduction. It's interaction with PP2A is seen while elucidating the structure of the cullin-RING ubiquitin ligase (CRL) network using human 293T cell lines¹¹⁷. PSMC6 and PSMD1 are subunits of a proteasome complex machinery. This machinery degrades proteins tagged with ubiquitin. Interaction of PP2A with PSMC6, PSMD1 and superoxide dismutase-1 is identified using high throughput quantitative tandem mass spectrometry⁹³ in human HeLa S3 and HEK 293 cells. Ubiquitin specific peptidase 7 (USP7) deubiquitinates proteins, including p53, FOXO4, MDM2, PTEN and others, thereby controlling important cellular functions such as cell proliferation, apoptosis, and signal transduction¹¹⁸. Using two-dimensional SDS-PAGE analysis and other proteomics-based experiments, USP7 is shown to interact with PP2A along with other substrates in HeLa cells¹¹⁸

Small G-protein Rac1 is known to involve in insulin signaling pathway. It is also shown to play a role in actin cytoskeleton remodeling and insulin-stimulated GLUT4 translocation in L6 myotubes^{119,120}. In addition, experiments on rat and human muscle indicated the activation of Rac1 after exercise and its role in contraction induced glucose uptake¹²¹. Using western blot, PP2A is shown to bind to c-terminus of Rac1 in cell culture models¹²².

Target of rapamycin (TOR) is a serine/threonine protein kinase which belongs to the phosphatidylinositol kinase-related kinase family, plays key roles in cellular processes such as proliferation and cell growth. Yeast ortholog of TOR signaling pathway regulator (TIPRL), Tip41 is shown to negatively regulate TOR signaling¹²³ In an attempt to study the role of TIPRL in TOR signaling, it was found that TIPRL facilitates TOR signaling via its association with PP2Ac in human cell lines in contrast to the findings in yeast¹²³. We found TIPRL as PP2A partner in muscle.

AMPK is a protein kinase, composed of alpha beta and gamma subunits, and is activated in response to altered energy levels in the cell. Higher ATP levels reduce the activity of AMPK. When the AMP levels rise, ATP is exchanged for AMP and activates AMPK. Isoforms identified here are PRKAG1 (gamma 1) and PRKAB2 (beta 2). PRKAG1 is ubiquitously expressed whereas PRKAB2 is found abundant in skeletal muscle cells. It is known to have important role in skeletal muscle insulin sensitivity¹²⁴. In skeletal muscle, activation of AMPK will cause fatty acid and glucose oxidation. It also plays a role in activation of GLUT4 transporters, for uptake of glucose and in glycogen metabolism¹²⁵. PP2A has been shown to be able to dephosphorylate AMPK¹²⁶ Activation of AMPK is achieved by phosphorylation of AMPK at various serine and

threonine sites. Its binding to PP2Ac may change the phosphorylation status of this kinase and thereby its activation or inactivation. Since *de novo* AMP synthesis will activate AMPK, experiments were conducted using rat hepatocytes to see if altering the activity of enzymes involved in purine biosynthesis will improve insulin sensitivity. They found that abundant adenosuccinate lyase (ADSL) can lead to increased AMP production, thereby AMPK activation and improved insulin sensitivity¹²⁷. Both ADSL and AMPK are found as PP2Ac interaction partners in our study.

4.2.3 PROTEINS INVOLVED IN INSULIN RECEPTOR AND mTOR SIGNAL-ING

Binding of insulin to the insulin receptor on the cell membrane leads activates a cascade of signaling molecules. The pathways activated are PI3K-AKT signaling pathway and Grb2-SOS-Ras-MAPK pathway. These result in various physiological functions such as GLUT4 translocation to the plasma membrane, glucose uptake, glycogen synthesis, and protein synthesis^{12,14}. Here we see seven molecules associated with Insulin signaling pathway as PP2A interaction partners. These include AKT2, eukaryotic translation initiation factor 2B subunit alpha (ELF2B1), MAP2K1/MEK1, protein phosphatase 1 regulatory subunit 7, AMPK subunit gamma isoform (PRKAG1), protein tyrosine phosphatase, non-receptor type 11, and Ras. Akt2 isoform is found to be crucial for insulin action in vivo¹²⁸. PP2A is shown to negatively regulate Akt2 in fibroblast cells¹²⁹. PP2A hyperactivation associated with insulin resistance in response to saturated fatty acids like ceramide is seen with an associated Akt deactivation¹³⁰. However, experiments on liver hepatocytes in vitro and in vivo showed that PP2A activity is essential for insulin-stimulated glycogen storage¹³¹. This is supported by our data where its interaction is significantly decreased in obese insulin resistant non-diabetic control basal and insulin stimulated biopsies when compared to lean control bas and insulin stimulated biopsy respectively. Similar pattern is seen with type 2 diabetic group. Interaction is significantly decreased in type 2 diabetic basal and insulin stimulated biopsies when compared to lean control basal and insulin stimulated biopsies respectively. PP2A might play a protective role in terms of its interaction with Akt2 in a normal lean person while this interaction may be disrupted in cases of obese insulin resistance and type 2 diabetes. PTPN11, also known as SHP2, encodes a protein tyrosine phosphatase containing SHP binding domain. It is shown to bind with a variety of intermediate signaling molecules such as Grb2, p85 subunit of PI3 kinase, IRS-1, and Gab1 and 2. Being a protein tyrosine phosphatase, SHP-2 is believed to act by dephosphorylating these molecules, thereby lessening the signal¹³². PP2A, being a phosphatase itself can be regulated through phosphorylation and dephosphorylation on its Tyr307 site. This interaction between PTPN11 and PP2A is a novel. Further, its interaction is significantly decreased in obese insulin stimulated biopsy when compared to lean insulin stimulated biopsy. eukaryotic translation initiation factor 2B subunit alpha (ELF2B1), as the name indicates is involved in protein synthesis. Elf2B is regulated through phosphorylation. GSK3 inhibits the activity of elf2B by phosphorylating it under basal conditions. Upon insulin stimulation, GSK3 is inactivated by Akt which leads to elf2B dephosphorylation and activation, thereby increasing protein synthesis¹³³. PP2A is shown to interact with elf2B in our study. In addition, its interaction is 1) decreased in obese basal and insulin stimulated biopsy compared to basal and insulin stimulated biopsy in lean respectively, 2) decreased in type 2 diabetic basal and insulin stimulated biopsy when compared to obese basal and insulin stimulated biopsy respectively and 3) decreased in type 2 diabetic insulin stimulated biopsy compared to lean insulin stimulated biopsy. PP2A is also seen to interact with regulatory subunit of protein phosphatase 1. PP1 is known to dephosphorylate and activate glycogen synthase,

promoting glycogen synthesis. Insulin is shown to activate PP1 in L6 rat skeletal muscle cells¹³⁴. Its interaction with PP2A among three groups varied significantly specifically between type 2 diabetic, obese and obese, lean groups. Interaction is decreased in

1) obese bas and insulin stimulated biopsy when compared to lean basal and insulin stimulated biopsy and 2) type 2 diabetic basal and insulin stimulated biopsy when compared to obese basal and insulin stimulated biopsy correspondingly. Through the Grb2-SOS-Ras-MAPK pathway, Insulin activates mitogen-activated protein kinases (MAPK) to increase gene expression and differentiation. Activation of Insulin receptor and IRS proteins activates signaling cascade that promotes activation of Ras-GDP to Ras-GTP. Activated Ras interacts and activates a series of downstream signaling molecules Raf-MEK1/2-ERK1/2. ERK is directly involved in regulating gene expression, cell proliferation or differentiation, cytoskeletal reorganization. Ras and MAP2K1/MEK1 are identified as PP2A interaction partners. Nevertheless, these two molecules did not show any significant difference among groups.

mTOR pathway has great impact on the cell growth and metabolism. It regulates protein biosynthesis, lipid synthesis, mitochondrial biogenesis and metabolism. Previous reports show that PP2A is down regulated by mTOR, and degradation of IRS1 by mTOR is achieved through inhibition of PP2A¹³⁵. Growth factors like insulin stimulate mTOR by increased phosphorylation of TSC2 protein by kinases like PKB, ERK1/2 and RSK1. This TSC2 phosphorylation leads to inactivation of TSC1/2 and there by activation of mTOR. AMPK is activated in response to low energy levels. This activated AMPK phosphorylates and reduce the activity of TSC2 and thereby reduce mTOR activation¹³⁶. RSK1 and AMPK regulate the mTOR pathway through phosphorylation and dephosphorylation. In the present work, we detected many PP2A interaction partners involved in the mTORpathway. These include small G proteins Ras and Rac,

transcription factors elf3 and elf4A, PRKAG1 (gamma 1) and PRKAB2 (beta 2) subunits of AMPK, Ribosomal protein S6 kinase alpha-1, and ribosomal protein S15A that regulate protein synthesis.

4.2.4 INTERACTION PARTNERS WITH SIGNIFICANT CHANGES IN THEIR INTERACTION TO PP2AC IN SKELETAL MUSCLE IN LEAN, OVERWEIGHT/OBESE, AND TYPE 2 DIABETIC HUMAN PARTICIPANTS

Upon insulin stimulation, in lean control group, 4 proteins showed significant difference which included ACO1/IRP1- Cytoplasmic aconitate hydratase, protein methylesterease-1, and PPP4R2. Aconitate hydratase is an enzyme involved in tricarboxylic acid cycle. Besides, it acts as an iron-sulfur protein, maintaining levels of iron inside the cell. PPME-1, serves two functions, demethylates PP2Ac and helps maintain levels of PP2A. PPP4R2 is a regulatory subunit of protein phosphatase 4. All the three proteins, protein methylesterase-1, PP4 regulatory subunit, and aconitate hydratase displayed a decreased interaction with PP2Ac upon insulin stimulation.

Insulin stimulation in obese control significantly changed CCDC6 and LUM. CCDC6 is a well-known tumor suppressor and its chromosomal re-arrangement is seen in thyroid papillary carcinoma. It is a known PP2Ac interaction partner identified in HeLa and other human cell lines^{110,115} using different proteomic approaches. Here, we saw an increased interaction of PP2Ac with CCDC6 upon insulin stimulation in obese/overweight insulin resistant non-diabetic group. LUM encodes for protein Lumican, which belongs to the family of comparatively small leucine-rich proteoglycans. Proteoglycans are a major component in the extracellular matrix of many tissues. This is a major proteoglycan found in cornea but high levels of expression of this protein is found in skeletal muscle¹³⁷. It binds to collagen fibrils in the tissue spaces, thus regulating collagen fibril organization in addition to corneal transparency, epithelial cell migration, apoptosis, tissue repair, angiogenesis and cell growth¹³⁸. Interaction of lumican with PP2Ac is decreased upon insulin stimulation in obese subjects. The significance of this interactions is yet to be elucidated.

In type 2 diabetic group, upon insulin stimulation, only one protein showed significant change, ACOT9. Acyl-CoA thioesterase 9 is a mitochondrial protein which catalyzes hydrolysis of acyl-CoAs to form coenzyme A and free fatty acid. It is well documented that mitochondrial dysfunction and free fatty acid induce skeletal muscle insulin resistance¹³⁹. The major pathway for oxidation of fatty acids is the mitochondrial fatty acid oxidation (β -oxidation), producing majority of ATP required for the cells where Coenzyme A (CoA) is an important co-factor¹⁴⁰. Hence, this enzyme is one of the factors that regulate levels of coenzyme A. It is interesting to observe that the interaction of PP2Ac with ACOT9 is decreased significantly upon insulin stimulation given the fact that insulin decreases fatty acid oxidation in the skeletal muscle.

4.2.5 PARTNERS WITH SIGNIFICANT CHANGE BETWEEN TYPE 2 DIA-BETIC AND LEAN SUBJECTS

37 proteins exhibited a significant change in type 2 diabetics compared to lean controls out of which seven proteins showed an increased interaction and rest with a decreased interaction in type 2 diabetic compared to lean. The seven proteins included BLVRB, CCT2, COPS2, PDE4D, ACO1/IRP1, CA1, GSTM3 which are explained in detail below. While CCT2, COPS2, and PDE4D are seen with a difference in both basal and insulin stimulated biopsies, change in BLVRB is seen only in basal and change in ACO1/IRP1, CA1, GSTM3 are seen in only insulin stimulated biopsies. Out of these 37, 25 proteins showed a difference in basal biopsies and 32 in insulin stimulated biopsies with 20 in common. Akt2 is one among them. As discussed earlier, Akt2 is an

important signaling molecule in insulin signaling pathway in skeletal muscle. The decreased interaction of Akt2 with PP2A in T2D biopsies compared to lean is an important observation. PP2A might positively regulate Akt2 considering that decreased interaction is seen in type 2 diabetics where insulin signaling is impaired. Nevertheless, further studies are required to conclude this.

Protein synthesis and degradation

Here, we found many proteins involved in protein synthesis as well as is degradation. STAT proteins, as mentioned above, are transcription factors that regulate protein synthesis. Transcription factors STAT3 and STAT5 show a significant difference between lean and T2D. In inactive state, STAT's exist as cytosolic proteins in an unphosphorylated state. Stimulation by cytokine or growth factors induce tyrosine phosphorylation of STATs and its translocation to the nucleus. In addition to tyrosine phosphorylation, all STAT's including STAT3 and STAT5, are regulated by serine phosphorylation (PP2A being a serine/threonine phosphatase). This serine phosphorylation is facilitated by several serine/threonine kinases including, but not restricted to, ERK, p38, JNK, mTOR, CaMKII, IKK ϵ , and PKC δ^{141} . We also saw gamma subunit of calcium/calmodulin-dependent protein kinase type II (CAMK2G) as PP2A interaction partner. It is noteworthy that both STAT proteins and CaMK-II subunit gamma showed a decreased interaction in type 2 diabetic (basal and insulin stimulated). These STAT proteins in addition to eukaryotic translation initiation factor 2B subunit alpha(EIF2B1), glycyl-tRNA synthetase (GARS), and C-terminal-binding protein 1 (CTBP1) regulate protein synthesis at the transcription and translation level. All of them showed a decreased interaction in T2D. C-terminal-binding protein 1 is a transcriptional repressor involved in physiological and pathological functions like apoptosis (antagonist) and tumorigenesis (suppress tumor suppressor genes)¹⁴². CTBP1 dimerizes with a second closely related gene, CTBP2. It is shown in human hepatic cell line that CTBP2 over-expression improved insulin sensitivity by augmenting phosphorylation of (AKT) and glycogen synthase kinase 3β (GSK 3β)¹⁴³. It also showed to reverse the effects of palmitate on ROS level, gluconeogenesis, lipid accumulation, and hepatic glucose up-take¹⁴³. In other human tumor cell lines, under hypoxia conditions, overexpression of CtBP2 resulted in reduction of PTEN levels with corresponding increase in the levels of PI3K and pAkt¹⁴⁴. Though such role in skeletal muscle is not shown, it will be interesting to study the role of this protein in skeletal muscle and the function of pp2a-CtBP1 interaction in insulin resistance and type 2 diabetes. Protein levels can also be regulated post-translation. In this context, we see T-complex protein 1 subunit beta (CCT2) and proteasome activator subunit 2(PSME2) as PP2A partners. T-complex protein 1 subunit beta, a chaperone protein, as mentioned earlier, corrects the partially folded or misfolded proteins¹¹⁶ showed an increased interaction. PSME-2 is involved in the degradation of proteins through ubiquitin-proteasome system.

Protein modifications

We also saw proteins associated with protein modifications. ADP ribosylation is a post translational modification, where a ADP-ribosyl group is transferred onto protein from nicotinamide adenine dinucleotide (NAD⁺)¹⁴⁵. This reversible modification is involved in many cellular processes such as apoptosis, DNA damage repair, cell proliferation, gene transcription and others. The transfer of ADP-ribosly group is aided by group of enzymes called ADP-ribosyl transferase¹⁴⁵. Here, we have found arginine specific ribosyl transferase (ART3) as PP2A interaction partner, with a reduced interaction in T2D. Sumoylation is another post translational modification that regulates protein structure and intracellular localization through addition of small protein SUMO. SUMO-activating enzyme subunit 2 (UBA2) is found in our study, with a decreased interaction in T2D. This protein forms a heterodimer with another protein SME-1 that acts as a SUMO-activating enzyme¹⁴⁶. Ubiquitination is also an important PTM which leads to protein degradation through proteasome complex. COP9 signalosome complex subunit 2 (COPS2), subunit of the COP9 signalosome complex, is involved in the ubiquitin-proteasome pathway through regulation of a E3ubiquitin -protein ligase complex family, culin-RING ubiquitin ligase (CRLs). One of CRLs include cullin-RING-based SCF (SKP1-CUL1-F-box protein), which mediate the ubiquitination of proteins involved in cell cycle progression, signal transduction and transcription. These complexes require neddylation, the attachment of a ubiquitin-like NEDD8 molecule, for its function and this neddylation process is closely regulated by the COP9 signalosome^{147,148}. Cullin-1 is a known interaction partner of PP2A. CUL-1 and COP9 interact with each other shown through various high throughput and low throughput experiments^{117,149-151}. Here, we found both COP9 and CUL-1 as PP2A interactions in our study. However, Cullin-1 (CUL1) showed no significant difference between groups while COP9 is presented with an increased interaction in T2D. Other protein involved in protein modification is leucine aminopeptidase (LAP3), an exopeptidase, catalyzes the hydrolysis of leucine residues from the amino-terminus of protein. Its interaction with PP2A is decreased significantly in T2D. Being an exopeptidase, changes in LAP abundance and/or its activation result can alter a protein activation.

Membrane proteins

Insulin stimulation leads to a rapid actin filament reorganization that corresponds with recruitment PI 3-kinase subunits and glucose transporter proteins to regions of reorganized actin in culture muscle cells¹⁵²⁻¹⁵⁴. Initiation of these effects of insulin

requires an intact actin cytoskeleton and activation of PI 3-kinase¹⁵²⁻¹⁵⁴. It is my speculation that these changes might alter the proteins involved in cell membrane organization and also the proteins to which they are connected to in the extracellular matrix. Extracellular matrix is made of proteoglycans and fibrous proteins, including collagen, elastin, fibronectin, and laminin¹⁵⁵. The extracellular matrix is linked to the cell via transmembrane cell adhesion proteins that connect the matrix to the cell's cytoskeleton¹⁵⁵. The principal cell adhesion proteins are the integrins that act as cell surface receptors. Fermitin family homolog 2 (FERMT2) is scaffolding protein that enhances this integrin activation. While the integrins are connected to extracellular matrix through their extracellular domains, their intracellular domains are anchored to the actin filaments via intracellular anchor proteins, filamin, talin, actinin, and vinculin¹⁵⁵. In our study, we saw proteins Lumican (LUM), a proteoglycan, Fermitin (FERMT2), and filamin A (FLNA) as interactors of PP2A with a decreased interaction in T2D. Besides, Fermitin is also shown to be a key protein required for muscle differentiation¹⁵⁶. During development and regeneration, for the growth of skeletal muscles, muscle precursor cells (or satellite cells) proliferate, known as myoblasts, and consequently differentiate into myofibers¹⁵⁶. Another interesting protein involved in the actin cytoskeleton organization, cellular adhesion is the Ras GTPase-activating-like protein (IQGAP1)¹⁵⁷. It is also known to regulate MAPK and Wnt/β-catenin signaling pathways. IQGAP1 is a downstream effector of Rac and Cdc42, small GTPases that regulate actin assembly¹⁵⁷. As mentioned above, integrin family of cell surface receptors mediate cell adhesion by anchoring to actin assembly. This cell adhesive function of integrins is regulated by its phosphorylation or dephosphorylation modulated by Ca²⁺/calmodulin-dependent protein kinase II (CaMK) or protein phosphatase 2A¹⁵⁸. In human mammillary epithelial cells, $\beta 1$ integrin is immunoprecipitated with Rac and vice versa¹⁵⁹. Given the role of

IQGAP in actin assembly, further studies showed that IQGAP1 and PP2A coimmunoprecipitated with Rac and β 1 integrin¹⁵⁹. Combining the results, formation of a quaternary complex that consists of IQGAP1, PP2A, Rac, and B1 integrin is possible¹⁵⁹. Additional experiments were conducted to show that PP2A functions by recruitment of IQGAP1 to Rac- β 1 integrin¹⁵⁹. Subsequently, by stimulating human mammillary epithelial cells with Epidermal Growth Factor (EGF), they presented a mechanism to explain the regulation by PP2A: activated PP2A promotes IQGAP1 recruitment to β1 integrin-Rac under basal conditions but activation by a growth factor causes dissociation of IQGAP1 from β 1 integrin-Rac through activation of CaMKII and formation of PP2A-IQGAP1-CaMKII complex¹⁶⁰. EGF stimulation is thus shown to abolish the PP2A function¹⁶⁰. IQGAP1 can also directly recruit and sequentially activate B-Raf, Mek1/2(MAPK1/2) and Erk1/2 as a part of MAPK signaling pathway¹⁶¹. Its direct interaction with MAP2K1 is shown¹⁶². It is also shown to interact directly with β -catenin under basal conditions (as part of degradation complex along with axin, GSK3, CK1a, and APC) and after activation, β-catenin is rescued from degradation through IQGAP1-PP2A-mediated dephosphorylation with its subsequent nuclear translocation and specific gene transcriptions¹⁶¹. It is very significant to note that we showed interaction of PP2A with IQGAP1, MAP2K1, Rac 1, and CAM2KG in our study. IQGAP1 is seen with a decreased interaction in T2D while MAP2K1, Rac1 or CAM2KG exhibited no significant difference.

Other proteins

ATP synthase subunit S (ATP5S) is one of the subunits of the catalytic core of ATP synthase enzyme. This enzyme catalyzes the formation of ATP from ADP in the mitochondria¹⁶³. Experiments were conducted on human skeletal muscle comparing the abundance and phosphorylation of ATP synthase between basal and insulin stimulated

biopsies of lean, obese and T2D. The amount of ATP synthase in basal biopsies is found to be decreased in obese and T2D compared to lean. They found abnormal phosphorylation sites in obese and T2D¹⁶⁴. In our study, we saw a decreased interaction of PP2Ac with ATP5S in type 2 diabetic insulin stimulated biopsy compared to lean insulin stimulated biopsy. The interaction in basal biopsies of T2D also dampened but it's not significant (p=0.05).

cAMP-specific 3,5-cyclic phosphodiesterase 4D (PDE4D), involved in hydrolysis of cAMP is seen as a PP2A partner with increased interaction in T2D. PDE4D regulates cAMP levels in the cell which is an important second messenger that regulates various cellular processes. In skeletal muscle, acute cAMP signaling has been implicated in regulation of muscle contraction, glycogenolysis, and sarcoplasmic calcium dynamics¹⁶⁵. In adipocytes, cAMP effects lipid metabolism through cAMP dependent protein kinase (PKA)¹¹². It is known that activation of cells by insulin inhibits lipolysis. Insulin mediates this process through activation of phosphodiesterases thereby reduction in cAMP levels and reduced PKA activity¹¹².

SAM domain and HD domain-containing protein 1 (SAMHD1) plays a role in regulation of the innate immune response, upregulated in response to viral infection and may be involved in mediation of tumor necrosis factor-alpha proinflammatory responses. Its interaction with PP2A is decreased in T2D. The exact role of this interaction or this protein in skeletal muscle and diabetes is unknown and yet to be explored.

4.2.6 PARTNERS WITH SIGNIFICANT CHANGE BETWEEN OBESE AND LEAN

63 proteins showed a significant change in obese/overweight insulin resistant controls when compared with lean controls. Among these 63, 59 showed a significant difference between lean basal and obese basal biopsies whereas 56 proteins showed a significant difference between lean insulin stimulated and obese insulin stimulated biopsies with an overlap of about 50 proteins. Among these 63, only two proteins showed an increased interaction with PP2A while the rest showed a decrease. The two proteins are PDE4D and SCPEP1. The difference in PDE4D is seen in both basal and insulin stimulated biopsies but SCPEP1 presented with an increase only in basal biopsy.

Protein synthesis and degradation

Among these 50 are the proteins involved in proteasome complex machinery. These include proteasome 26S subunit, ATPase 2 (PSMC2), proteasome 26S subunit, ATPase 3 (PSMC3), proteasome 26S subunit, non-ATPase 1(PSMD1), proteasome 26S subunit, non-ATPase 11(PSMD11), proteasome 26S subunit, non-ATPase 12(PSMD12), proteasome 26S subunit, non-ATPase 13(PSMD13), proteasome 26S subunit, non-ATPase 14(PSMD14), and proteasome activator subunit 2(PSME2). It is worthwile to note that the interactions of all these proteins with PP2Ac is decreased in obese group compared to lean (both basal and insulin stimulated biopsies).

chaperonin containing TCP1 subunit 2(CCT2) and chaperonin containing TCP1 subunit 6A(CCT6A) are chaperone proteins. These chaperones correct the partially folded or misfolded proteins using ATP as source of energy¹¹⁶.

Ribosomal Protein S25 (RPS25), eukaryotic translation initiation factor 2B subunit alpha(EIF2B1), eukaryotic translation initiation factor 3 subunit M (EIF3M), glycyl-tRNA synthetase (GARS), valyl-tRNA synthetase (VARS), and STAT3 are involved in protein synthesis and their interaction with PP2Ac is decreased as well (in obese). STAT3 is a transcription factor which upon activation by cytokines or growth factors will promote transcription of appropriate genes. It was reported that phosphorylated STAT3 amounts are increased by two-fold in overweight T2D compared to overweight controls. STAT3 is also shown to contribute to insulin resistance in various tissues like liver and smooth muscle¹⁶⁶. In our study its interaction with PP2Ac is decreased in both basal and insulin stimulated biopsies of obese insulin resistant group when compared to the corresponding lean biopsies.

Mitochondrial proteins

Among these are mitochondrial proteins which include acyl-CoA dehydrogenase (ACADS & ACADM), acyl-CoA thioesterase 9(ACOT9), glycyl-tRNA synthetase(GARS), hydroxysteroid 17-beta dehydrogenase 8(HSD17B8), and superoxide dismutase 1, soluble(SOD1). Among these Acycl dehydrogenase and hydroxysteroid 17beta dehydrogenase 8 are involved in fatty acid metabolism.

Membrane proteins

Extracellular proteins like fermitin family homolog 2 (FERMT2), filamin A (FLNA), and lumican (LUM) (explained in 4.2.6) also show significant change in their interactions. Both showed decreased interaction in obese subjects (both basal and insulin stimulated biopsies).

Other proteins

Other important proteins that showed significant change between obese and lean are AKT2 (involved in insulin signaling), PPME1 (demethylation of PP2Ac), CAV1 (caveolae plasma membrane protein), CCDC6. All these proteins are explained in 4.2.2 and show a decreased interaction in obese.

Arginine specific ribosyl transferase (ART3; involved in post translational modification¹⁴⁵), leucine aminopeptidase (LAP3; an exopeptidase that catalyzes the hydrolysis of leucine residues from the amino-terminus of protein), SUMO-activating enzyme subunit 2 (UBA2; involved in sumoylation, a post translational modification), cAMPspecific 3,5-cyclic phosphodiesterase 4D (PDE4D; regulates cAMP levels in the cell which is an important second messenger that regulates various cellular processes). All these proteins are explained in detail in 4.2.5. Interaction of ART3, LAP3, and UBA2 with PP2A is decreased in obese whereas interaction of PDE4D is increased.

Aldo-keto reductase family 7 member A2 (AKR7A2; catalyze redox transformations of various substrates including glucose), X-ray repair cross complementing 5 (XRCC5; involved in DNA damage repair), and dipeptidyl peptidase 9 (DPP9; postproline dipeptidyl peptidase that cleaves dipeptides) are seen with a decreased interaction and are explained later in 4.2.7.

PP2Ac also seems to bind to protein phosphatase 1 regulatory subunit 7 (PPP1R7) and protein phosphatase 4 regulatory subunit 2 (PPP4R2) with a decreased interaction.

4.2.7 PARTNERS WITH SIGNIFICANT CHANGE BETWEEN TYPE 2 DIA-BETIC AND OBESE

47 proteins presented with a significant change when type 2 diabetic group is compared to obese non-diabetic insulin resistant group. Among 47, 33 proteins are seen with a change in basal biopsies while 40 in insulin stimulated biopsies with 26 shared. Among these 47 proteins, only four proteins showed a decreased interaction in T2D while the rest presented with an increased interaction. These four include translation initiation factor eIF-2B subunit alpha (EIF2B1), cytosol aminopeptidase (LAP3), lumican (LUM), and serine carboxypeptidase 1 (SCPEP1). While the change in interaction with EIF2B1 and LAP3 are seen in only basal biopsies, LUM and SCPEP1 are seen in both basal and insulin stimulated biopsies.

PP2A regulatory subunit A alpha isoform (PPP2R1A) is the only PP2A subunit that showed significant difference among groups and it is only seen to change between T2D and obese groups. Its interaction with PP2Ac is increased in type 2 diabetes subjects compared to obese/overweight in basal and insulin stimulated biopsies correspondingly.

Protein degradation and synthesis

When compared between obese and T2D, we saw some proteins involved in protein synthesis and degradation as PP2A partners with significant change between those groups. They include, proteins involved in proteasome complex machinery, proteasome 26S subunit, ATPase 2 (PSMC2), proteasome 26S subunit, non-ATPase 1(PSMD1), proteasome 26S subunit, proteasome 26S subunit, non-ATPase 14(PSMD14). In addition to proteasome complexes, we also identified COP9 signal-osome complex subunit 2 (COPS2), subunit of the COP9 signalosome complex, involved in the ubiquitin-proteasome pathways. All of them showed an increased inter-action in T2D. glycyl-tRNA synthetase(GARS) and valyl-tRNA synthetase (VARS) are involved in protein synthesis which also exhibited increased interaction in T2D.

ATP-dependent Clp protease ATP-binding subunit (CLPX), chaperonin containing TCP1 subunit 2(CCT2) and chaperonin containing TCP1 subunit 6A(CCT6A) are chaperone proteins. CLPX is involved in mitochondrial unfolded protein response (UPR^{mt}). It identifies any unfolded proteins, utilizes cycles of ATP hydrolysis to disrupt its innate structure, and translocates the unfolded protein into ClpP protease for irreversible proteolysis¹⁶⁷. Experiments were conducted on *in vitro* muscle cells to determine the role of ClpP knock down on mitochondrial function and cellular changes¹⁶⁸. In addition to the reduced UPR^{mt}, dampened mitochondrial respiration, increased production of reactive oxygen species, and transformed mitochondrial morphology at the level of mitochondria besides the other changes were observed¹⁶⁸. At the cellular level, translation inhibition, impaired myoblast differentiation, and cell proliferation were detected¹⁶⁸. Since CLPX is directly associated with this protease machinery, it would be interesting to know the role of CLPX in the muscle. Because its association with PP2A in T2D is increased compared to obese, it might play a prominent role in the metabolic dysfunction associated with type 2 diabetes. It is also important to note that mitochondrial dysfunction is associated with T2D.

Protein modifications

Proteins involved in protein modifications are as follows: Dipeptidyl peptidase 9(DPP9) belongs to the family of serine peptidases, dipeptidyl peptidase IV. DPP9 acts as a post-proline dipeptidyl peptidase that cleaves Xaa-Pro (Xaa is any amino acid except proline) dipeptides from the N-terminus of proteins¹⁶⁹. It is highly expressed in skeletal muscle¹⁷⁰ but its role in skeletal muscle or diabetes is unknown. It would be interesting to learn because DPP4 (other protein that belongs to this dipeptidyl peptidase IV family) inhibitors are used to treat type 2 diabetes¹⁷¹. Substrates of DPP4 include glucagon-like-peptides 1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP)13¹⁶⁹. These two proteins promote almost 60% of postprandial insulin secretion¹⁷². DPP4 inhibition thereby extends the activity of GLP and GIP with improved insulin secretion and blood glucose regulation. Another protein involved in protein modification is the serine carboxypeptidase 1(SCPEP1), that can break the peptide bond at c-terminal residues of proteins. SCPEP1 showed a decreased interaction with PP2Ac in T2D.

Metabolic processes

Proteins involved in various metabolic processes like pentose phosphate pathway, polyol pathway, and anti-oxidant mechanisms are seen as PP2A partners and with a change between obese and T2D. Glucose is converted to glucose-6-phosphate in glycolysis. This glucose-6-phosphate, undergoes pentose phosphate pathway besides citric acid acid cycle and electron transport chain. Pentose phosphate pathway yields NADPH (maintain glutathione at a reduced state) and pentoses (precursor for synthesis of DNA nucleotides). Transaldolase 1 (TALDO1) is an enzyme involved in this pentose phosphate pathway and is seen as a partner of PP2A with increased interaction in T2D. We saw TALDO1 as PP2A partner in beta cells as well⁹².

Aldo-keto reductase family 1 member B (AKR1B1) and aldo-keto reductase family 7 member A2 (AKR7A2) belong to aldo-reductase family, catalyze redox transformations of various substrates including glucose¹⁷³. The role of AKR1B1 (aldose reductase) in hyperglycemia associated injury is widely studied¹⁷⁴⁻¹⁷⁷ considering the fact that it catalyzes the reduction of glucose to sorbitol in a NADPH + H⁺ dependent manner. Glucose, in addition to glycolysis is also metabolized through polyol pathway. The polyol pathway involves conversion to glucose to sorbitol by aldose reductase and subsequent conversion to fructose by sorbitol dehydrogenase. Under hyperglycemic conditions associated with diabetes, the high amounts of the glucose are converted to sorbitol. In some tissues like retina, nerve cells, and kidney, which lack enzyme sorbitol dehydrogenase, sorbitol gets accumulated. This accumulation of sorbitol is shown to be responsible for diabetic complications like retinopathy¹⁷⁷, neuropathy^{174,176}, and others. Though skeletal muscle has the enzyme sorbitol dehydrogenase, use of aldose reductase inhibitors is shown to improve contractile function in skeletal muscle of diabetic rats¹⁷⁸. We are the first to show an interaction of PP2Ac with AKR1B1 and its increased interaction in type 2 diabetes compared to obese/overweight. We also identified this protein in beta cells however with no change under hyperglycemic conditions. Other aldo-keto reductase, AKR7A2, is a aflatoxin reductase which is mainly involved in conversion of succinic semialdehyde (SSA) to γ -hydroxybutyrate (GHB)¹⁷³. However, its role in skeletal muscle is not known.

Oxidative damage in the cells is caused by imbalance between production of reactive oxygen species and the capacity of the cell to neutralize these. This antioxidant mechanisms include enzymes such as superoxide dismutase and glutathione S-transferase among others. Here, in our study we saw superoxide dismutase 1 (SOD1) and glutathione S-transferase mu 3 (GSTM3) as PP2A partners with an increased interaction in T2D. Superoxide dismutase 1 (SOD1), converts superoxide anions to hydrogen peroxide and oxygen, reducing reactive oxygen species in the cell. This is mainly found in the cytoplasm of the cell. Studies have shown that deletion of SOD1 gene in mice led to significant, age-dependent loss of muscle mass which was specific to skeletal muscle¹⁷⁹. These mice also presented with high amounts of oxidative damage in skeletal muscle, particularly in older animals¹⁷⁹. However, knockout of SOD from only skeletal muscle showed no significant changes in the muscle mass or reactive oxygen species (ROS) production¹⁸⁰. But, there was enhanced Akt-mTOR signaling and increased number of muscle fibers with centrally located nuclei in skeletal muscle, which suggests elevated regenerative pathways or muscle weakness¹⁸⁰. This is important because it is clearly indicated that in patients with diabetes, oxidative stress (due to high glucose concentrations) is evident and that some complications of diabetes involve oxidative stress among other reasons¹⁸¹. Reciprocally, oxidative stress is also shown to be one of the causes of insulin resistance in type 2 diabetes¹⁸¹. Macromolecules such as molecules of extracellular matrix, lipoproteins and deoxyribonucleic acid are also damaged by free radicals in diabetes mellitus¹⁸¹. To counteract this damage to cell membrane proteins, especially lipids, Glutathione is present in the cells. glutathione S-transferase functions by conjugating glutathione to detoxify these compounds¹⁸². Further studying

the role of these antioxidant enzymes, glutathione S-transferase mu 3 (GSTM3) and Superoxide dismutase 1 (SOD1) in association with PP2A in skeletal muscle might be significant considering their importance in diabetes.

Other proteins

Other proteins involved in other important cellular processes are also seen which are as follows:

We saw increased interaction of PP2A with X-ray repair cross complementing 5 (XRCC5), a 80-kilodalton subunit of the Ku heterodimer protein (ATP-dependant DNA helicase II) which is involved in DNA damage repair¹⁸³.

Interaction of Lumican (LUM), a proteoglycan (component in the extracellular matrix; explained in 4.2.6), is decreased in T2D.

cAMP-specific 3,5-cyclic phosphodiesterase 4D (PDE4D), involved in hydrolysis of cAMP is seen with increased interaction in T2D. PDE4D regulates cAMP levels¹⁶⁵ (explained in 4.2.6).

4.3 SUMMARY AND FUTURE DIRECTIONS

PP2A is one of the important serine/threonine phosphatase involved in many cellular functions. It's localization and function is regulated by different ways. They include, binding of different regulatory B subunits, post translational modifications, and binding to different substrates. The activity of PP2A is altered in glucotoxic conditions in beta cells and it is also shown to be effected by insulin in skeletal muscle cells thus playing a vital role in diabetes. Considering its complex regulation and its prime role in diabetes, we studied the interactions of PP2A in beta islet cells and skeletal muscle, tissues that significantly contribute to glucose metabolism. Using high throughput proteomics approach, we identified 516 interaction partners of PP2Ac in INS-1 832/13

beta cells and 211 interactions in human skeletal muscle biopsies. In beta cells, 89 proteins showed a significant change in interaction with PP2Ac under hyperglycemic conditions. Similarly, 69 proteins showed a significant difference in interacting with PP2Ac when compared among lean, obese/overweight and type 2 diabetic group. To be more precise, 63 proteins presented a significant change between obese/overweight and lean group, 37 proteins between type 2 diabetics and lean, and 47 proteins between type 2 diabetic and obese group. This is the largest PP2Ac interactome till date. These interactions helped us understand the role and regulation of PP2A in beta cells and skeletal muscle. In addition, the 37 proteins that showed a significant difference between lean and type 2 diabetic human skeletal muscle biopsies further advances our understanding of the role of PP2A in type 2 diabetes in humans. Similarly, analyzing 89 glucose stimulated interactions unveiled on the function of PP2A in insulin secretion and production. In depth analysis of the the altered interactions can provide with a target to correct either hyperglycemia induced beta cell death or metabolic dysfunctions in type 2 diabetes.

FIGURES

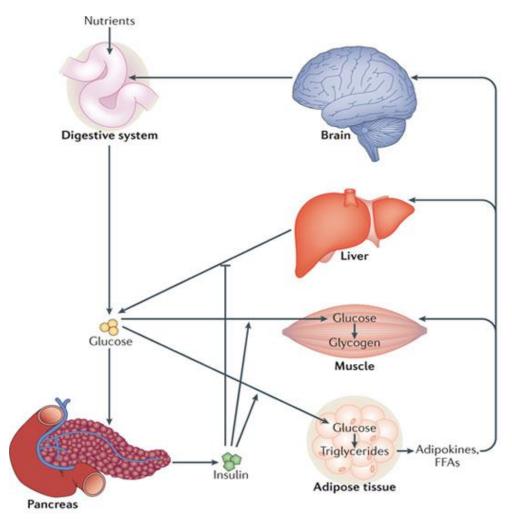


Figure 1. Glucose homeostasis involving major tissues¹²

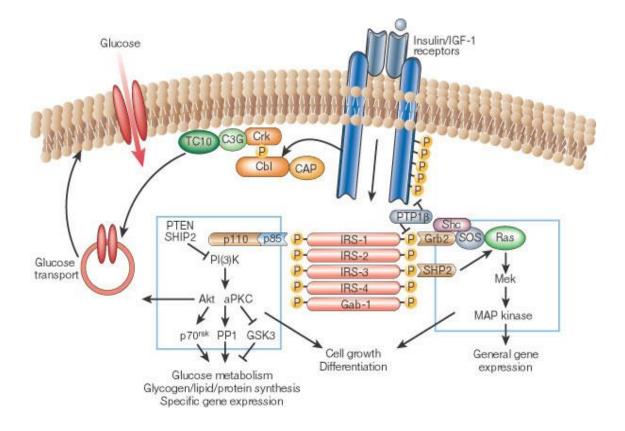


Figure 2. Insulin signaling pathway showing the signaling molecules involved and various effects seen¹⁶

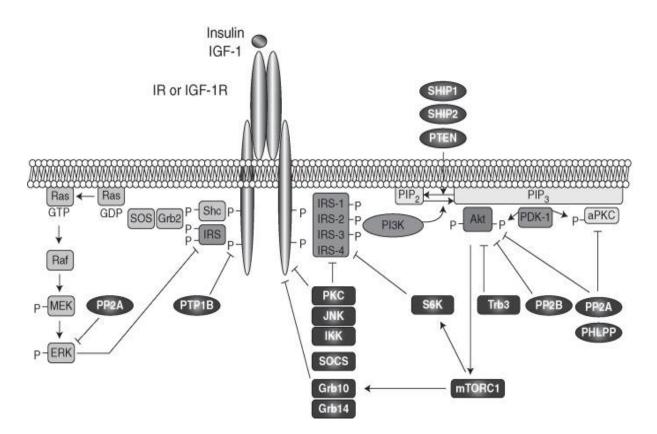


Figure 3. Negative regulators of insulin signaling pathway¹⁴

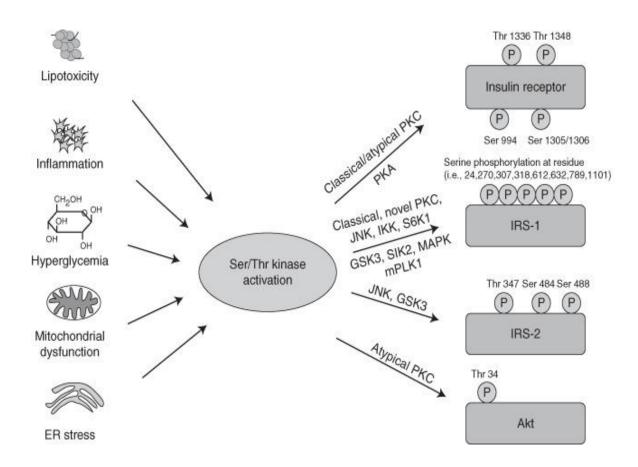


Figure 4. Insulin signaling regulation by inhibitory serine/threonine phosphorylation¹⁴

Figure 5. Diagrammatic representation of heterotrimeric PP2A complex

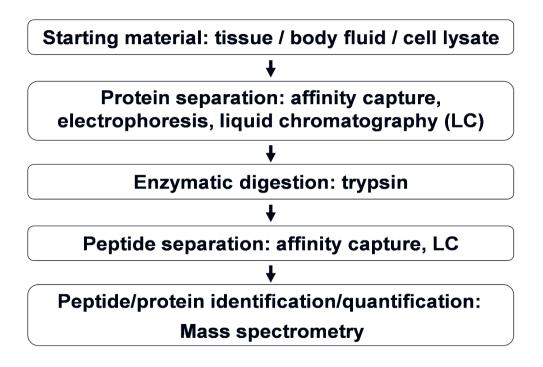
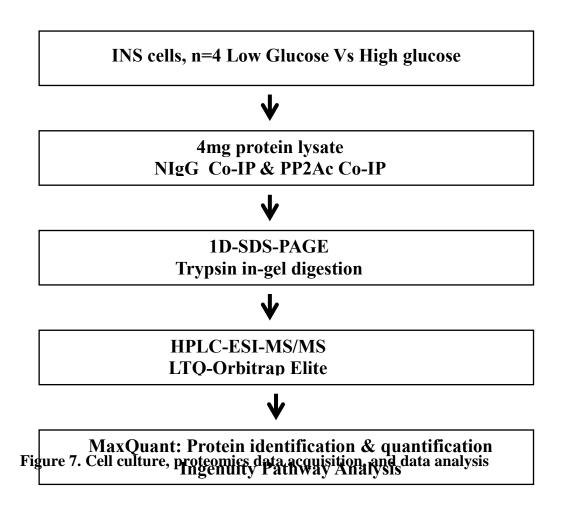



Figure 6. Main steps in mass spectrometry-based proteomics studies

Proteins identified with minimum 2 unique peptides with FDR at 0.01 in at least one PP2Ac IP? (1131 proteins)

 \mathbf{A}

Figure 8. Proteomic data analysis (INS-1 832/13 CELLS)

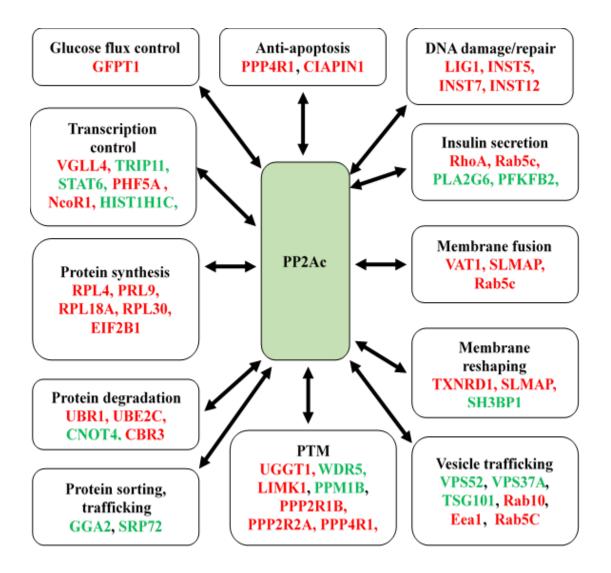


Figure 9. Summary of glucose-responsive PP2Ac interaction partners. In response to high glucose treatment, the proteins with increased PP2Ac association are highlighted in red, and the ones with decreased association are highlighted in green

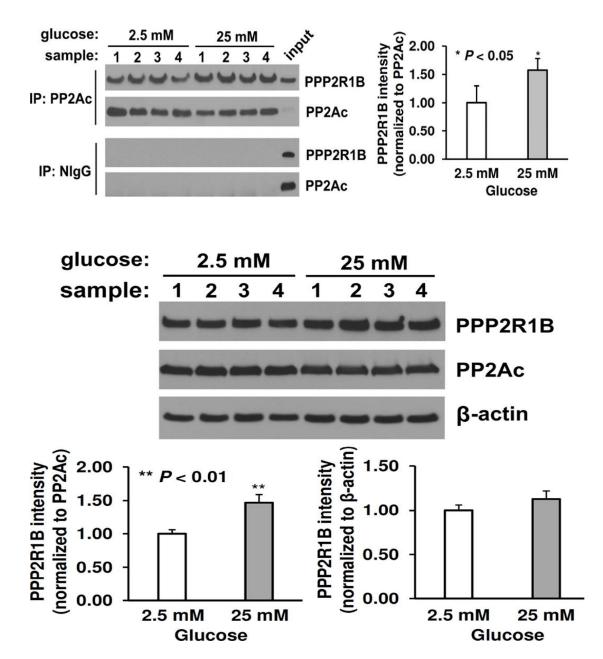


Figure 10. Experimental validation of PPP2R1B as a glucose responsive PP2Ac interaction partner

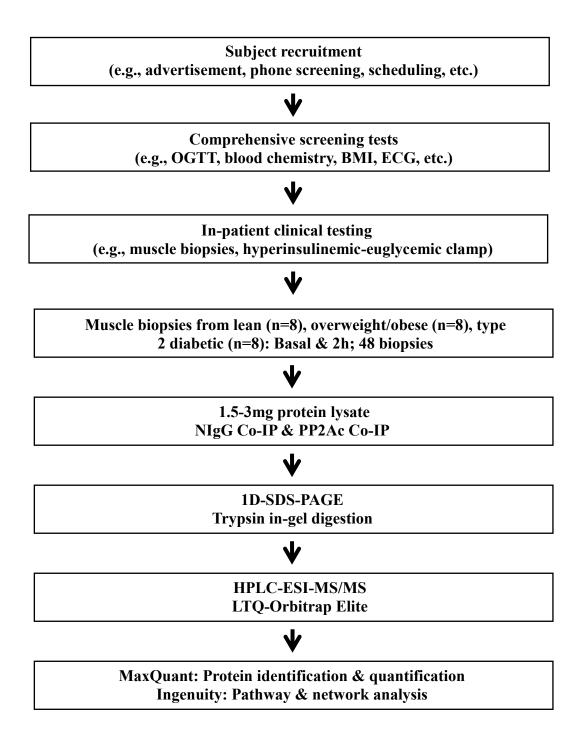


Figure 11. Clinical and proteomics data acquisition and data analysis

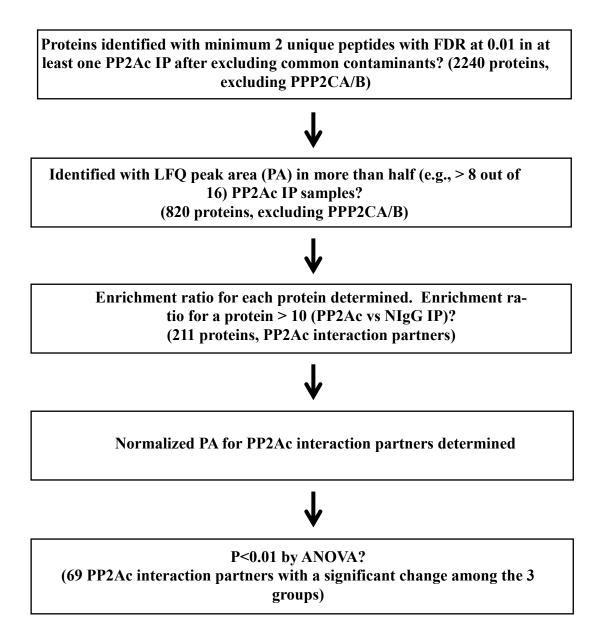


Figure 12. Proteomic data analysis (Human skeletal muscle)

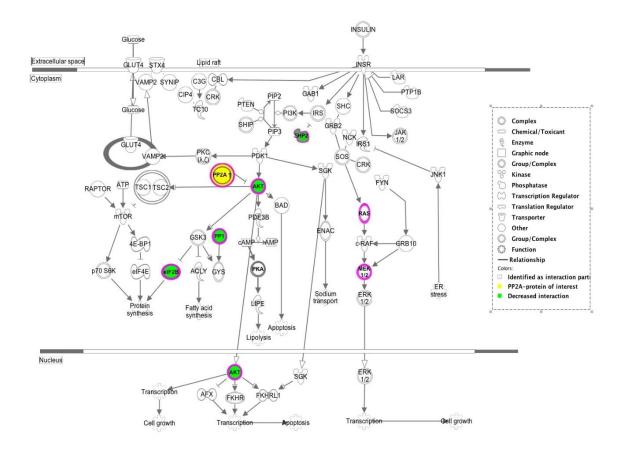
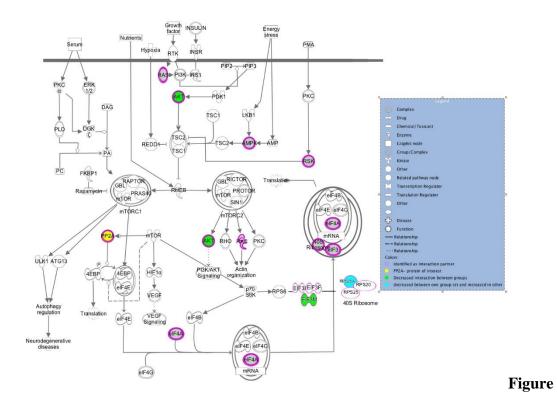



Figure 13. The significantly enriched pathway, Insulin Receptor signaling, for the 211 PP2Ac interaction partners and PP2Ac in human skeletal muscle. PP2Ac interaction partners were highlighted in purple; partners with increased interaction between groups was indicated in green; PP2A was highlighted in yellow

14. The significantly enriched pathway, mTOR signaling, for the 211 PP2Ac interaction partners and PP2Ac in human skeletal muscle. PP2Ac interaction partners were highlighted in purple; partners with increased interaction between groups was indicated in green; partners with increased interaction between one group set and decreased in other group set was indicated in blue; PP2A was highlighted in yellow

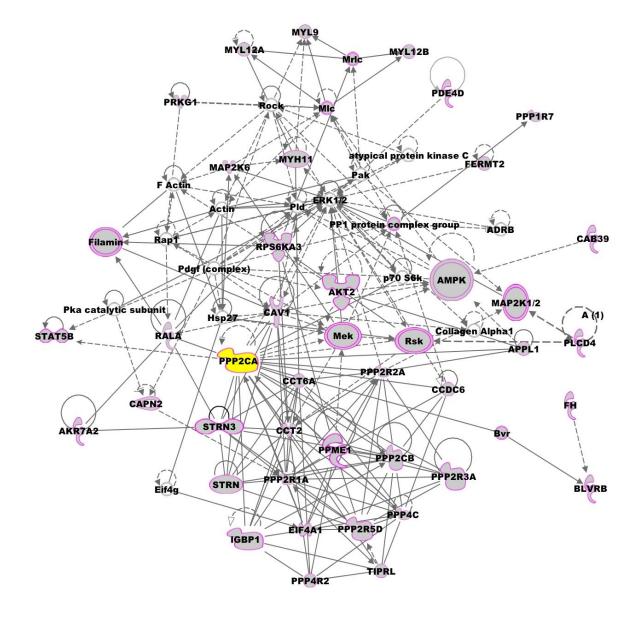
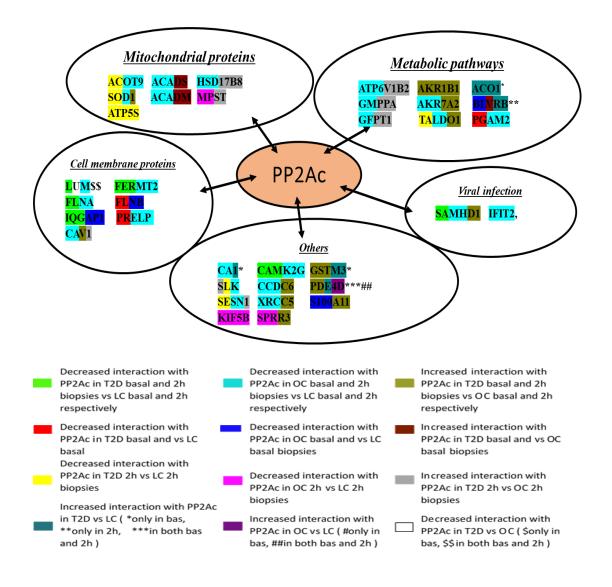



Figure 15. Network pathway obtained from Ingenuity Pathway Analysis. Pathway obtained using 70 molecules per network and the one assigned with highest score is taken; shows 45 interaction partners in human skeletal muscle; target protein PP2Ac (in yellow) and its interaction partners (in purple)

Figure 16A. 69 proteins PP2Ac partners in human skeletal muscle with significant

change among different groups (color coded)

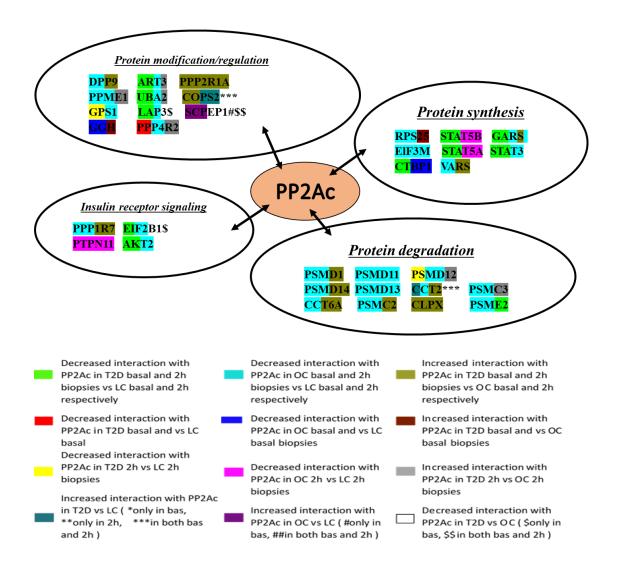


Figure 16B. 69 proteins PP2Ac partners in human skeletal muscle with significant

change among different groups (color coded)

TABLES

Table 1. Various isoforms of PP2A subunits, their cellular and sub-cellular distri-

Subunit	Gene	Iso-	Other name	Normal tissue	Subcellular
		form		distribution	distribution
Scaffold (A)	PPP2R1A	А	PR65a,	Ubiquitously ex-	Cytosol
			ΡΡ2Α-Αα	pressed and	
				highly expressed	
				in ovary (oogene-	
				sis)	
	PPP2R1B	В	PR65β, PP2A-	Ubiquitously ex-	Cytosol
			Αβ	pressed and	
				highly expressed	
				in ovary (oogene-	
				sis)	
Catalytic (C)	PPP2CA	A	PP2Aca	Brain and heart	Cytoplasm
				(HE). Present in	and nucleus
				skeletal muscle ⁶⁶	
	PPP2CB	В	PP2Acβ	Brain and heart	Cytoplasm
				(HE)	and nucleus
Regulatory	PPP2R2A	A	PR55a,	Widely distrib-	Membranes,
(B)			ΡΡ2ΑΒα	uted in all tissues	cytoplasm,
					microtubules
					nucleus.

bution ⁴⁵ . HE:	high	expression
----------------------------	------	------------

					Golgi com-
					plex, endo-
					plasmic retic-
					ulum and
					neurofila-
					ments
	PPP2R2B	В	PR55β,	Brain and testis	Cytosol
			ΡΡ2ΑΒβ	(HE)	
	PPP2R2C	Γ	PR55γ,	Brain (SE)	Mainly in
			ΡΡ2ΑΒγ		Cytoskeletal
					fraction
	PPP2R2D	Δ	PR55δ,	Wide spread dis-	Cytosol
			ΡΡ2ΑΒδ	tribution in tis-	
				sues, Testis (HE)	
Regulatory	PPP2R5A	А	PR56/61a,	Cardiac tissues	Cytoplasm
(B')			ΡΡ2ΑΒ'α	and skeletal mus-	
				cles ¹⁸⁴ (HE)	
	PPP2R5B	В	PR56/61β,	Brain (HE)	Cytoplasm
			ΡΡ2ΑΒ′β		
	PPP2R5C	Г1, 2,3	PR56/61γ,	Cardiac tissues	Cytoplasm
			ΡΡ2ΑΒ'γ	and skeletal mus-	and nucleus
				cles ¹⁸⁵ (HE)	

	PPP2R5D	Δ	PR56/618,	Primarily exist in	Cytoplasm,
			ΡΡ2ΑΒ'δ	brain	nucleus, mi-
					tochondria,
					microsomes
	PPP2R5E	E	PR56/61ε,	Primarily exist in	Cytoplasm
			ΡΡ2ΑΒ'ε	brain	
Regulatory	PPP2R3A	А	PR130, Β"α1	Brain (HE), heart,	Centrosome
(B″)				lung, kidney and	and Golgi
				muscle ¹⁸⁶	complex
	PPP2R3A	А	PR72, Β″α2	Heart (HE) and	Cytosol and
				skeletal muscle ¹⁸⁶	nucleus
	PPP2R3B	В	PR70, PR48,	Placenta	Nucleus
			Β″β		
	PPP2R3C	Γ	G5PR, G4-1	During develop-	Nucleus
				mental process	
				expressed in fetal	
				brain	
	PPP2R3D	Δ	PR59, Β"δ	Cardiac tissue,	Nucleus
				kidney and lungs	
Regulatory	STRN		Striatin,	Brain	Membrane
(B"')			PR110		and cyto-
					plasm
	STRN3		SG2NA	Neurons	Nucleus
	PPP2R4		PTPA, PR53	Widely expressed	Cytosol, nu-
					cleus

Inhibitor	Source	Inhibitory potency
Okadaic acid	Dinoflagellates	PP2A ~ PP4 > PP1 ~
		PP5 >>> PP2B <u>*</u>
Dinophysistoxin-1	Dinoflagellates	PP2A > PP1 >>> PP2B
Microcystins	Cyanobacteria	PP2A ~ PP1 >>> PP2B
Nodularins/Motuporin	Cyanobacteria	PP2A ~ PP1 >>> PP2B
Calyculin A	Isolated from marine sponges	PP2A > PP1 >>> PP2B
Tautomycin	Streptomyces spiroventricilla-	PP1 > PP2A >>> PP2B
	tus	
Cantharidin	Blister beetles	PP2A > PP1 >>> PP2B
Endothall	Synthetic compound	PP2A > PP1 >>> PP2B
Fostriecin	Streptomyces pul-	PP2A ~ PP4 <u>*</u>
	veraceussubsp. Fostreus	
TF-23A	Isolated from marine red alga	PP2A
Cytostatin	Streptomyces sp. MJ654-NF4	PP2A
I1 ^{PP2A}	Cellular inhibitor	PP2A
I2 ^{PP2A} (SET, PHAP-II,	Cellular inhibitor	PP2A
TAF-1β)		

Table 3. Clinical characteristics for the 8 lean, 8 overweight/obese, and 8 type 2 diabetic participants in the PP2Ac interaction partner study. Results were shown as mean \pm SEM.

GROUP	ID	Gender	BMI	Age	2h	M value	HBA1	Fasting
			at		OGTT	mg/kgBW/mi	с	plasma
			V2			n average of		glucose
						last 30 m		(mmol/l)
OC/OW	106PAT	М	27.5	37.0	141.5	7.7	5.6	89.0
OC/OW	237MW	М	29.5	36.0	81.5	6.9	5.7	105.0
	S							
OC/OW	281TEJ	F	29.2	42.0	91.0	4.6	5.4	90.4
OC/OW	274GRD	М	26.7	40.0	141.0	4.0	5.5	90.1
OC/OW	115D-G	F	36.7	48.0	132.0	3.9	5.4	90.0
OC/OW	199JMA	F	33.1	29.0	109.5	5.5	5.2	77.8
OC/OW	330GDS	F	35.7	57.0	113.5	5.4	6.0	86.7
OC/OW	354JMG	М	32.5	47.0	111.5	8.0	5.3	108.0
LC	217MCB	М	22.7	30.0	97.7	7.4	5.4	84.4
LC	242DDR	М	24.7	28.0	128.0	9.0	4.7	87.7
LC	341S-D	М	25.0	59.0	87.8	6.6	5.6	92.4
LC	407NJZ	F	24.0	30.0	126.5	13.0	5.4	91.2
LC	418KMN	F	23.6	26.0	134.5	9.6	5.2	91.1
LC	482D-S	F	23.1	65.0	114.0	10.0	5.3	93.2
LC	506E-J	М	24.5	44.0	102.0	13.1	5.4	90.9
LC	360JMS	F	24.2	33.0	95.1	15.4	4.7	83.6
T2D	292TJ	F	25.4	59.0	NA	6.5	9.0	201.2
T2D	423I_C	М	34.8	37.0	NA	0.5	7.3	143.0
T2D	640 YAN	М	32.5	49.0	NA	3.6	6.9	134.6
T2D	699N-M	F	36.2	19.0	NA	2.5	0.0	113.6
T2D	304-Rb	F	28.0	57.0	NA	2.0	7.6	153.0
T2D	337NMS	F	32.3	41.0	NA	6.1	10.6	83.6
T2D	359-EBK	М	39.1	44.0	NA	2.0	6.4	100.6
T2D	322BRM	F	29.2	51.0	NA	5.0	6.5	165.6

Table 4. Clinical characteristics for the 8 lean, 8 overweight/obese, and 8 type 2 diabetic participants in the PP2Ac interaction partner study. Results were shown as mean \pm SEM.

	LC	OC/OW	T2D
Gender (M/F)	(4/4)	(4/4)	(3/5)
Age (years)	39.3±5.32	42.0 ± 3.0	44.6±4.5
BMI (kg/m²)	23.9±0.26(<25)	31.3 ± 1.3 (>25)	32.1±1.5
2h OGTT Glucose (mg/dl)	110.6±5.78	115.2 ± 7.8 (<140)	N/A
HBA1c (%)	5.2±0.1	5.5 ± 0.1 (<5.7)	6.7±1.0(>6.5)
Fasting plasma glucose (mg/dl)	89.3±1.20	92.1 ± 3.5 (<100)	136.8±13.3(>126)
M-value (mg/kg/min)	10.5±1.0	5.8 ± 0.6	3.5±0.7

Gene name	Protein ID	Protein name	MW [kDa]	Se- quence length	Number of unique peptides detected in the PP2Ac IP	Enrich- ment ra- tio
Acta2	P62738	Actin, aortic smooth mus- cle	42.00 9	377	2	Infinite ^a
Actr2	Q5M7 U6	Actin-re- lated protein 2	44.73 3	394	3	Infinite
Actr3	F1LRA 3	Actin-re- lated protein 3	47.28 5	418	2	Infinite
Add3	Q62847	Gamma-ad- ducin	78.80 3	705	2	Infinite
Ahcy	P10760	Adenosylho- mocystein- ase	47.53 8	432	3	Infinite
Ahcyl2	D3ZW L6	Adenosylho- mocystein- ase	66.49 8	613	2	Infinite
Aimp2	Q32PX 2	Aminoacyl tRNA syn- thase com- plex-inter- acting multi- functional protein 2	35.44 2	320	3	12.2
Aip	Q5FW Y5	AH recep- tor-interact- ing protein	37.59 8	330	10	Infinite
Akap10	F1LNB 3	Protein Akap10	73.77 3	662	4	Infinite
Akr1b1	P07943	Aldose re- ductase	35.79 7	316	2	Infinite
Aldoa	G3V90 0	Fructose- bisphos- phate al- dolase	45.08 6	418	3	Infinite
Amz2	F1LPX 7	Archae- metzincin-2	41.70 3	362	5	Infinite
Ankhd1	E9PTK 9	Protein Ankhd1	269.2 6	2540	2	Infinite
Ankle2	Q7TP6 5	Ankyrin re- peat and LEM do-	106.4 4	964	31	Infinite

 Table 5. The 516 proteins identified as interaction partners in INS-1 832/13 cells.

		main-con- taining pro-				
Anks1a	D4AC1	tein 2 Ankyrin re-	122.1	1125	16	12.4
	2	peat and SAM do- main con-				
		taining 1 (Predicted)				
Anxa1	D3ZVZ 4	Annexin	43.59 2	385	7	Infinite
Anxa4	P55260	Annexin A4	35.84 8	319	2	Infinite
Api5	B1WC4 9	Api5 protein	56.78 4	504	9	Infinite
Apip	D3ZUI 1	APAF1 in- teracting protein (Pre- dicted), iso- form CRA_a	27.05 3	241	8	Infinite
Appl1	D3ZW A8	Protein Appl1	79.36 3	707	3	Infinite
Arcn1	Q66H8 0	Coatomer subunit delta	57.19 9	511	2	Infinite
Arfip1	D3ZNX 6	Arfaptin-1	38.32 2	341	4	Infinite
Arfip2	Q6AY6 5	Arfaptin-2	37.77 2	341	3	Infinite
Arg1	P07824	Arginase-1	34.97 3	323	2	Infinite
Arhgap1	D3ZLP 8	Protein Arhgap1	54.60 6	478	5	Infinite
Arhgef11	D3ZZE 7	Rho guanine nucleotide exchange factor 11	173.0 4	1565	3	Infinite
Arhgef7	F1LNB 0	Rho guanine nucleotide exchange factor 7	97.16 5	862	4	Infinite
Arl6	D3ZIB 8	Protein Arl6	21.78 6	193	2	Infinite
Armcx3	Q5XID 7	Armadillo repeat-con- taining X- linked pro- tein 3	42.55 2	379	3	Infinite
Arpc4	B2RZ7 2	Actin related protein 2/3 complex, subunit 4 (Predicted), isoform CRA_a	19.66 7	168	2	Infinite

Asap2	F1M7E	Protein	107.5	967	2	Infinite
1	9	Asap2	2			
		(Fragment)				
Ascc3	F1LPQ	Activating	250.2	2197	3	Infinite
	2	signal coin-	2			
		tegrator 1				
		complex				
		subunit 3				
Asna1	D3ZD9	Protein	38.99	350	3	Infinite
	8	Asna1	3			
Atox1	Q9WU	Copper	7.292	68	3	Infinite
	C4	transport	4			
		protein				
		ATOX1				
Atp5a1	F1LP05	ATP syn-	59.81	553	4	Infinite
•		thase subunit	2			
		alpha				
Atp5b	G3V6D	ATP syn-	56.34	529	8	20.0
•	3	thase subunit	4			
		beta				
Atp6v1a	D4A13	Protein	68.26	617	3	Infinite
•	3	Atp6v1a	4			
Atp6v1h	D3ZW9	Protein	55.86	483	2	Infinite
^	6	Atp6v1h	8			
Atxn10	Q9ER2	Ataxin-10	53.72	475	13	43.0
	4		6			
Atxn2	F1M04	Protein	103.9	966	6	Infinite
	9	Atxn2 (Frag-	8			
		ment)				
Bax	G3V8T	Apoptosis	21.44	192	3	Infinite
	9	regulator	4			
		BAX				
Blmh	A1A5L	Bleomycin	52.45	455	3	Infinite
	1	hydrolase	1			
Btaf1	F1LW1	Protein	207.1	1848	2	Infinite
	6	Btaf1 (Frag-	2			
		ment)				
Calm2	D4A5H	Uncharac-	16.82	149	2	Infinite
	3	terized pro-	7			
		tein				
Calr	P18418	Calreticulin	47.99	416	3	Infinite
			5			
Camk1	Q63450	Calcium/cal-	41.63	374	2	Infinite
		modulin-de-	8			
		pendent pro-				
		tein kinase				
0 101		type 1	65.00	500	11	T C' '
Camk2b	F1LNI8	Calcium/cal-	65.03	589	11	Infinite
		modulin-de-	4			
		pendent pro-				
		tein kinase				
		type II subu-				
		nit beta				

Cand1	P97536	Cullin-asso-	136.3	1230	8	Infinite
Canar	1 77550	ciated	6	1230	0	mmme
		NEDD8-dis-	0			
		sociated pro-				
		tein 1				
Cand2	G3V7E	Cullin-asso-	139.7	1273	6	Infinite
Calluz	8	ciated	2	1275	0	mmme
	0	NEDD8-dis-	2			
		sociated pro-				
		tein 2				
Capn1	F1LS29	Calpain-1	82.09	713	2	Infinite
Capiti	FILS29		82.09 9	/15	2	minite
		catalytic subunit	9			
Canaa 1	EOWEI		22.10	200	3	In fin it a
Capza1	F8WFI	F-actin-cap-	33.19	289	3	Infinite
	5	ping protein	7			
		subunit al-				
	0.077117	pha-1	22.06	004		X C: 1
Capza2	Q3T1K	F-actin-cap-	32.96	286	2	Infinite
	5	ping protein	7			
		subunit al-				
		pha-2				
Cat	P04762	Catalase	59.75	527	3	Infinite
			6			
Cbr3	B2GV7	Carbonyl re-	30.84	277	3	Infinite
	2	ductase 3	1			
Cc2d1a	F1LQC	Coiled-coil	103.7	942	3	Infinite
	6	and C2 do-	1			
		main-con-				
		taining pro-				
		tein 1A				
Ccdc6	D4AEK	Protein	52.97	470	38	Infinite
	9	Ccdc6	3			
Ccdc88a	D3ZYD	Protein	215.8	1874	4	Infinite
	7	Ccdc88a	6			
Ccdc88b	D3ZSB	Ribosomal	85.30	771	3	Infinite
	7	protein S6	7			
		kinase				
Cdc14a	E9PSZ	Protein	66.90	597	2	226.9
	9	Cdc14a	2			
Cdc16	Q4V88	CDC16 cell	71.36	620	2	Infinite
	4	division cy-				
		cle 16 homo-				
		log (S. cere-				
		visiae)				
Cdc42bpg	D3Z83	Protein	172.4	1552	11	14.8
	7	Cdc42bpg	2			-
Cdk2	D3ZJC	Cyclin-de-	39.03	346	2	Infinite
	8	pendent ki-	4			
	-	nase 2				
Cdk5	Q03114	Cyclin-de-	33.25	292	4	Infinite
Cuns	203114	pendent ki-	4	272		minite
		nase 5				
Celf1	G3V7F	CUG triplet	55.14	513	4	Infinite
	9	repeat, RNA	2	515	–	minite
1	1	repeat, MNA	~			

		binding pro- tein 1, iso-				
		form CRA_a				
Cep290	D4A5F	Protein	289.6	2479	2	Infinite
CCp270	2	Cep290	8	2477	2	minite
Cfl1	F1M51	Cofilin-1	24.45	226	8	Infinite
CIII	0	(Fragment)	7	220	0	minite
Ciapin1	Q5XID	Anamorsin	33.04	309	4	Infinite
Chapini	1	1 manoron	1	507		minite
Ckap5	F1M94	Protein	196.8	1778	24	22.8
	9	Ckap5	3			
		(Fragment)				
Ckb	P07335	Creatine ki-	42.72	381	6	Infinite
		nase B-type	5			
Cltb	P08082	Clathrin	25.11	229	2	Infinite
		light chain B	7			
Cmpk1	Q4KM	UMP-CMP	22.16	196	3	Infinite
	73	kinase	9			
Cnbp	P62634	Cellular nu-	19.46	177	22	12.6
		cleic acid-	3			
		binding pro-				
		tein				
Cndp2	Q6Q0N	Cytosolic	52.69	475	3	Infinite
	1	non-specific	3			
	DATUE	dipeptidase	01.00		-	X (2.1)
Cnot3	D3ZXE	Protein	81.88	751	2	Infinite
Creat 4	8	Cnot3	70.01	712	3	In Circles
Cnot4	F1MA	Protein Croct4	78.21	713	3	Infinite
Cnot6l	D6 F1M64	Cnot4 Protein	1 62.73	553	4	Infinite
Choton	2	Cnot6l	5 5	555	4	minite
	2	(Fragment)	5			
Copb1	P23514	Coatomer	107.0	953	3	Infinite
Copor	120011	subunit beta	1	200	-	minite
Copb2	O35142	Coatomer	102.5	905	2	Infinite
		subunit beta	5			
Copg1	Q4AEF	Coatomer	97.61	874	7	Infinite
10	8	subunit	3			
		gamma-1				
Cpped1	Q66H7	Calcineurin-	35.26	312	2	Infinite
	1	like phos-				
		phoesterase				
		domain-con-				
		taining pro-				
		tein 1	0.510			
Crip1	P63255	Cysteine-	8.549	77	3	Infinite
		rich protein	7			
Crim2	D26201	1 Custaina	22.60	200	4	Infinite
Crip2	P36201	Cysteine-	22.69	208	4	Infinite
		rich protein 2	6			
Crkl	Q5U2U	² Crk-like pro-	33.86	303	5	Infinite
	2	tein	5	505	5	minic
	-		~	I		

Csnk1a1	D3ZRE	Casein ki-	41.93	365	3	Infinite
	3	nase I iso-	3			
		form alpha				
Csrp1	P47875	Cysteine and	20.61	193	9	Infinite
_		glycine-rich	3			
		protein 1				
Csrp2	G3V9V	Cysteine and	20.92	193	10	31.6
	9	glycine-rich	6			
		protein 2,				
		isoform				
		CRA_b				
Cstb	P01041	Cystatin-B	11.19	98	2	Infinite
			6			
Ctnna1	Q5U30	Catenin	100.2	908	4	Infinite
	2	(Cadherin	4			
		associated				
		protein), al-				
		pha 1				
Cttnbp2	Q2IBD	Cortactin	178.7	1649	7	Infinite
	4	binding pro-	7			
		tein 2				
Cttnbp2nl	D4A8X	CTTNBP2	70.07	638	32	Infinite
	8	N-terminal	6			
		like (Pre-				
		dicted), iso-				
		form CRA_a				
Cwf1911	D3Z86	CWF19-like	60.37	537	3	Infinite
	3	1, cell cycle	7			
		control (S.				
		pombe)				
G 11	0.6016	(Predicted)	1065	0.50		X C 1
Cyld	Q66H6	Ubiquitin	106.7	953	2	Infinite
	2	carboxyl-	1			
		terminal hy-				
		drolase				
Dara	D15170	CYLD	57.10	501	7	Infinite
Dars	P15178	Aspartate	57.12	501	/	Infinite
		tRNA ligase,	6			
Dctn2	OCAN	cytoplasmic	44.14	402	4	Infinite
Dctn2	Q6AY H5	Dynactin subunit 2	44.14 7	402	4	Infinite
Ddx17	E9PT29	Protein	72.82	651	2	Infinite
		Ddx17	72.82	0.51	<i>L</i>	minite
Ddx41	B2RYL	DEAD	69.79	622	2	Infinite
DUATI	8	(Asp-Glu-	8	022	~	
		Ala-Asp)				
		box poly-				
		peptide 41				
Ddx5	Q6AYI	DEAD	69.23	615	6	Infinite
2000	1	(Asp-Glu-	8			
	1	Ala-Asp)				
		box poly-				
		peptide 5				
		Pepude 5	L	1		

Ddx6	D3ZD7	Protein	54.24	483	6	Infinite
Duxo	3	RGD156456	4	405	0	minite
	5	0				
Dhx38	D4A32	Protein	140.5	1228	23	Infinite
DIASO	1	Dhx38	4	1220	23	IIIIIIiiii
Dnaja1	P63036	DnaJ homo-	44.86	397	8	13.7
Dilujui	105050	log subfam-	8	571	0	15.7
		ily A mem-	0			
		ber 1				
Dnaja2	035824	DnaJ homo-	45.76	412	5	Infinite
Dhajaz	033824	log subfam-	45.70	412	5	minite
		ily A mem-	5			
		ber 2				
Dnm1	D3ZNS	Dynamin-1	97.49	866	2	Infinite
DIIIII	3	Dynamm-1	7	800	2	mmme
Data		Destrin		165	10	Infinite
Dstn	Q7M0E	Destrin	18.53	165	10	Infinite
D. 11	3	D. 11	3	200		T C' '
Dtd1	B0K01	Dtd1 protein	23.39	209	2	Infinite
D 111	4		4	1611		T C 1
Dync1h1	P38650	Cytoplasmic	532.2	4644	3	Infinite
		dynein 1	5			
		heavy chain				
		1				
Dync1li2	Q62698	Cytoplasmic	54.74	497	3	Infinite
		dynein 1	4			
		light inter-				
		mediate				
		chain 2				
Dynlrb1	P62628	Dynein light	10.99	96	2	Infinite
		chain road-				
		block-type 1				
Dyrk1a	Q63470	Dual speci-	85.54	763	2	Infinite
		ficity tyro-				
		sine-phos-				
		phorylation-				
		regulated ki-				
		nase 1A				
Edc4	Q3ZAV	Enhancer of	152.5	1407	10	Infinite
	8	mRNA-	9			
		decapping				
		protein 4				
Eea1	F1LUA	Protein Eea1	161.1	1411	20	Infinite
	1	(Fragment)				
Eef1a2	P62632	Elongation	50.45	463	5	56.5
		factor 1-al-	4			
		pha 2				
Eftud2	F1LM6	Protein Ef-	109.4	972	2	Infinite
	6	tud2	8			
Eif2b1	Q64270	Translation	33.67	305	2	Infinite
		initiation	8			
		factor eIF-	Ĭ			
		2B subunit				
		alpha				
L		urpina				

Eif2b4	Q63186	Translation initiation factor eIF- 2B subunit delta	57.80 9	524	3	Infinite
Eif2c2	Q9QZ8	Protein argo- naute-2	97.31 7	860	5	Infinite
Eif3d	Q6AY K8	Eukaryotic translation initiation factor 3 sub- unit D	63.98 8	548	2	Infinite
Eif3g	Q5RK0 9	Eukaryotic translation initiation factor 3 sub- unit G	35.65 1	320	5	Infinite
Eif4g1	D3ZU1 3	Protein Eif4g1	175.7	1598	4	Infinite
Eif5a	Q3T1J1	Eukaryotic translation initiation factor 5A-1	16.83 2	154	4	Infinite
Eif6	Q3KR D8	Eukaryotic translation initiation factor 6	26.57 1	245	2	Infinite
Erlin2	B5DEH 2	Erlin-2	37.71	339	2	Infinite
Erp29	G8JLQ 4	Endoplas- mic reticu- lum resident protein 29 (Fragment)	28.67 4	261	2	Infinite
Ewsr1	F1MA6 0	Protein Ewsr1	68.74 2	661	3	Infinite
Exoc2	F1LMB 9	Uncharac- terized pro- tein	104.0 2	924	2	Infinite
Exoc3	Q62825	Exocyst complex component 3	86.49 6	755	2	Infinite
Exoc6	O54923	Exocyst complex component 6	93.17 7	804	2	Infinite
Fahd1	F1M7U 1	Acylpy- ruvase FAHD1, mi- tochondrial (Fragment)	24.58 1	222	2	Infinite
Fam40a	G3V8E 2	Protein Fam40a	95.60 9	837	26	Infinite
Fam83h	D3ZRK 0	Protein Fam83h	131.1 6	1209	2	Infinite

Fam98a	Q5FW	Protein	55.07	515	2	Infinite
T 11' 1	T1	FAM98A	41 47	276		T C' '
Fblim1	D3Z8E 7	Filamin binding LIM protein 1, isoform CRA_a	41.47 9	376	5	Infinite
Fbxl15	D4ABB 4	F-box/LRR- repeat pro- tein 15	33.17 9	300	2	Infinite
Fbxo7	Q68FS 3	F-box only protein 7	57.56	522	2	Infinite
Fgfr1op	Q4V7C 1	FGFR1 on- cogene part- ner	43.01 1	399	3	Infinite
Fgfr1op2	Q6TA2 5	FGFR1 on- cogene part- ner 2 homo- log	29.37 4	253	11	Infinite
Fhdc1	D3ZL8 3	Protein Fhdc1	125.6	1148	3	Infinite
Fhl2	035115	Four and a half LIM do- mains pro- tein 2	32.08 6	279	6	Infinite
Filip1	Q8K4T 4	Filamin-A- interacting protein 1	137.7 5	1212	11	Infinite
Flna	C0JPT7	Filamin al- pha	280.4 9	2639	16	Infinite
Fn3krp	B2RYN 1	Fructosa- mine-3-ki- nase-related protein	34.16 9	309	10	61.5
Fubp3	G3V82 9	Protein Fubp3	61.43 6	569	6	Infinite
Fus	Q5PQK 2	Fusion, de- rived from t(12;16) ma- lignant lipo- sarcoma (Human)	52.67 3	518	2	Infinite
Fxr1	Q5XI81	Fragile X mental retar- dation syn- drome-re- lated protein 1	63.94 7	568	2	Infinite
Fxr2	F1M3Y 6	Protein Fxr2 (Fragment)	70.64 5	654	24	42.6
Fzd7	D4AD M3	Protein Fzd7	48.67 7	434	2	Infinite
Ganab	D4A0 W9	Protein Ga- nab	106.9	944	4	Infinite

Gapvd1	D4A02	Protein	162.7	1463	3	Infinite
	2	Gapvd1	6			
Gart	G3V91	Phosphori-	107.5	1010	2	Infinite
	8	bosyl-	8			
		glycinamide				
		formyltrans-				
		ferase, iso-				
		form CRA_a				
Gbf1	F1M8X	Protein Gbf1	200.3	1807	6	11.9
	9	(Fragment)	7			
Gcn111	F1LRI5	Protein	293.1	2672	45	356.3
		Gcn111	7			
		(Fragment)				
Gemin5	D3ZGD	Uncharac-	167.1	1501	3	Infinite
	0	terized pro-				
		tein				
Gfpt1	D3ZZH	Glucosa-	78.91	699	6	15.4
r	8	minefruc-	8		-	
	-	tose-6-phos-				
		phate ami-				
		notransfer-				
		ase [isomer-				
		izing] 1				
Gga1	F1LPF4	Protein	70.00	635	2	Infinite
Ogai	1°1L11'4	Ggal	8	035	2	minite
Casi	G3V8F	Golgi asso-	66.21	604	5	Infinite
Gga2	03V8F 7			004	3	IIIIIIite
	/	ciated,	4			
		gamma				
		adaptin ear				
		containing,				
		ARF binding				
		protein 2,				
0.1	00707	isoform	05.00	770		T.C
Git1	Q9Z27	ARF	85.23	770	5	Infinite
	2	GTPase-ac-				
		tivating pro-				
		tein GIT1				
Glod4	Q5I0D1	Glyoxalase	33.26	298	4	Infinite
		domain-con-	7			
		taining pro-				
~		tein 4			<u> </u>	
Gmds	Q3MH	GDP-man-	42.09	372	4	Infinite
	S7	nose 4, 6-de-	4			
		hydratase				
Gmps	F1LS80	GMP syn-	77.76	699	3	Infinite
		thase [gluta-	2			
		mine-hydro-				
		lyzing]				
Golga1	D4A6K	Golgi auto-	87.38	758	2	Infinite
	4	antigen, gol-	4			
		gin subfam-				
		ily a, 1 (Pre-				
		dicted)				
		uncicu)	L	L		

Gpd1	035077	Glycerol-3-	37.45	349	6	Infinite
opur	000077	phosphate	2	0.5	0	
		dehydrogen-				
		ase				
		[NAD(+)],				
		cytoplasmic				
Gprasp2	D4A54	Protein	92.93	827	3	Infinite
	2	Gprasp2	6			
Gpsm1	G3V8F	G-protein	78.23	705	2	Infinite
	6	signalling	5			
		modulator 1				
		(AGS3-like,				
		C. elegans),				
		isoform CRA_b				
Gsdma	D4A2V	Protein	50.78	454	3	Infinite
Osullia	1	Gsdma	7	434	5	mmic
Gsn	F8WFK	Gelsolin	86.28	781	2	Infinite
Obh	3	Geisonn	5	/01	-	minite
Gstz1	P57113	Maleylaceto	23.96	216	4	Infinite
		acetate iso-	1			
		merase				
Hadha	Q64428	Trifunc-	82.66	763	2	Infinite
		tional en-	4			
		zyme subu-				
		nit alpha,				
		mitochon-				
		drial				
Hal	P21213	Histidine	72.28	657	5	Infinite
		ammonia-ly-	3			
TT 1	OOIKD	ase	102.4	010		The Charles
Hcn1	Q9JKB 0	Potas- sium/sodium	102.4 2	910	2	Infinite
	0	hyperpolari-	Z			
		zation-acti-				
		vated cyclic				
		nucleotide-				
		gated chan-				
		nel 1				
Hist1h1c	P15865	Histone	21.98	219	4	Infinite
		H1.4	7			
Hist1h2ail	D3ZJ08	Histone H3	15.38	136	2	Infinite
			8			
Hist2h2aa3	P02262	Histone	14.07	130	4	Infinite
		H2A type 1	7			
Hmmr	D4A2	Hyaluronan	82.93	715	3	Infinite
	M9	mediated	5			
		motility re-				
		ceptor				
Hnrnno?h1	A7VJC	(RHAMM)	37.47	353	8	Infinite
Hnrnpa2b1	$\frac{A}{VJC}$	Heterogene- ous nuclear	57.47 7	333	0	minite
	2	Jus nucleal	/			

		ribonucleo- proteins				
Hnrnpf	Q794E 4	A2/B1 Heterogene- ous nuclear ribonucleo- protein F	45.72 9	415	2	Infinite
Hnrnpl	F1LPP9	Protein Hnrnpl	67.90 2	623	2	Infinite
Hnrnpul2	D4ABT 8	Protein Hnrnpul2	84.85 8	745	2	Infinite
Hspa4l	B4F772	Heat shock 70 kDa pro- tein 4L	94.22	838	5	Infinite
Hspb1	G3V91 3	Heat shock 27kDa pro- tein 1	22.80 7	206	2	Infinite
Hsph1	Q66HA 8	Heat shock protein 105 kDa	96.41 7	858	8	Infinite
Ica1	Q63054	Islet cell au- toantigen 1	54.66 2	480	2	Infinite
Ide	P35559	Insulin-de- grading en- zyme	117.7 1	1019	4	Infinite
Idh3B	Q68FX 0	Isocitrate de- hydrogenase [NAD] sub- unit beta, mitochon- drial	42.35 3	385	2	Infinite
Igbp1	O08836	Immuno- globulin- binding pro- tein 1	39.13 5	340	22	Infinite
Ilf3	F1LNJ4	Interleukin enhancer- binding fac- tor 3	98.07 9	915	4	Infinite
Ilk	Q99J82	Integrin- linked pro- tein kinase	51.37 3	452	3	Infinite
Ints10	E9PTE 0	Protein Ints10	82.13 5	710	12	Infinite
Ints12	Q68FR 3	Integrator complex subunit 12	48.47 7	461	5	Infinite
Ints3	D3ZUT 9	Protein Ints3	117.8 9	1041	18	Infinite
Ints4	D3ZZQ 6	Protein Ints4	108.2 5	964	17	21.6
Ints5	D3ZT W1	Protein Ints5	108.4	1019	9	Infinite

Ints7	D4ADS 6	Protein Ints7	106.9 1	967	20	Infinite
Ipo4	D3ZQZ 8	Protein Ipo4	90.52 7	817	2	Infinite
Irf2bpl	Q5EIC 4	Interferon regulatory factor 2- binding pro- tein-like	81.49 5	783	6	Infinite
Itpk1	D3ZQ M7	Protein Itpk1	46.20 4	421	2	Infinite
Kab	D3ZET 9	Protein Kab	174.9 9	1588	4	Infinite
Kalrn	P97924 -4	Isoform 4 of Kalirin	337.5 7	2968	2	Infinite
Kti12	Q5I0L7	Protein KTI12 hom- olog	38.35 7	350	2	Infinite
Lancl1	Q9QX6 9	LanC-like protein 1	45.23 9	399	2	Infinite
Larp1	F1M06 2	Protein Larp1 (Frag- ment)	116.2 1	1024	7	Infinite
Lgals2	Q9Z14 4	Galectin-2	14.73 2	130	2	Infinite
Lig1	Q9JHY 8	DNA ligase	102.4 8	918	14	48.3
Limch1	F1M39 2	Protein Limch1 (Fragment)	110.1 1	979	3	Infinite
Limd1	B5DEH 0	LIM do- main-con- taining pro- tein 1	71.39 2	663	3	Infinite
Limk1	G3V66 3	LIM motif- containing protein ki- nase 1, iso- form CRA_a	72.60 7	647	4	Infinite
Lin7c	Q792I0	Protein lin-7 homolog C	21.83 4	197	2	Infinite
Lmna	P48679	Prelamin- A/C	74.32 3	665	28	16.2
LOC100359593	Q6PD W1	40S riboso- mal protein S12	14.51 5	132	7	Infinite
LOC100359636	D3ZRV 7	Protein LOC100359 636	12.49	110	4	Infinite
LOC100360491	D3ZR M9	60S riboso- mal protein L13	24.20 2	211	9	Infinite
LOC100360722	F1LW3 3	Protein LOC100360	29.71 6	270	2	Infinite

		722 (Frag- ment)				
LOC100361025	D3Z9I6	Heterogene- ous nuclear ribonucleo- proteins me- thyltransfer- ase-like 2	42.43 5	371	2	Infinite
LOC100361517	D3ZIU 2	Protein RGD130559 3	13.34 6	122	2	Infinite
LOC100361915	F1M4I4	Uncharac- terized pro- tein (Frag- ment)	73.37 6	663	2	Infinite
LOC100362366	D3ZFA 8	Protein LOC100364 909	15.46 8	135	12	Infinite
LOC100362464	F1LR6 5	Cold shock domain-con- taining pro- tein E1	88.88 2	798	4	Infinite
LOC100364240	D4A0X 3	Lysophos- phatidylcho- line acyl- transferase 2B	103.5 9	967	3	Infinite
LOC100365869	G3V6 W6	Protein LOC100365 869	45.79 6	403	2	Infinite
LOC100365889	F1M8D 7	Protein LOC100365 889 (Frag- ment)	90.00 3	806	2	Infinite
LOC100365889	D3ZIT7	Protein LOC100365 889	83.78 4	750	14	Infinite
LOC500726	D4A1G 8	Uncharac- terized pro- tein	171.6 9	1575	11	Infinite
LOC681718	F1MA2 9	Protein LOC681718	24.90 8	215	3	Infinite
LOC686548	D3ZE6 3	Protein LOC679748	12.60 5	115	2	Infinite
LOC687994	D3ZC8 2	Protein LOC687994	75.43 5	689	12	16.9
LOC688393	D3ZK M5	Protein LOC688393	41.56 3	373	2	Infinite
LOC689899	D3ZTH 8	Uncharac- terized pro- tein	17.75 3	156	4	Infinite
LOC690416	D3ZQ6 2	Uncharac- terized pro- tein	65.58 7	600	2	Infinite

LOC690728	D4ABT 1	Protein LOC690728	82.79 5	732	8	Infinite
Lpin1	Q5XIM 8	Lipin 1	101.9	924	5	Infinite
Lpp	F1LSB 9	Lipoma-pre- ferred part- ner homolog	68.38 9	633	4	Infinite
Lsm12	D4A8G 0	Protein Lsm12	21.70 1	195	6	Infinite
Maged2	Q3B7U 1	Melanoma antigen, family D, 2	65.75 3	618	3	Infinite
Map1s	P0C5W 1	Microtu- bule-associ- ated protein 1S	102.8	972	3	Infinite
Map2k2	F1LMI 4	Dual-speci- ficity mito- gen-acti- vated protein kinase ki- nase 2	44.38	401	3	Infinite
Map3k7	P0C8E 4	Mitogen-ac- tivated pro- tein kinase kinase ki- nase 7	67.19 9	606	2	Infinite
Map3k7ip1	D4A6C 6	Protein Map3k7ip1	54.6	502	3	Infinite
Map7	F1MA8 2	Protein Map7 (Frag- ment)	80.41	713	5	Infinite
Mapk1	P63086	Mitogen-ac- tivated pro- tein kinase 1	41.27 5	358	4	Infinite
Mapk3	P21708 -2	Isoform 2 of Mitogen-ac- tivated pro- tein kinase 3	45.76 9	406	4	Infinite
Mark2	D3ZZQ 3	Serine/thre- onine-pro- tein kinase MARK2	85.77 9	773	3	Infinite
Mark3	F1M83 6	Uncharac- terized pro- tein	88.72	797	2	Infinite
Mast1	Q810W 7	Microtu- bule-associ- ated ser- ine/threo- nine-protein kinase 1	171.0 3	1570	3	Infinite
Mat2a	P18298	S-adenosyl- methionine	43.71 5	395	6	Infinite

		synthase iso- form type-2				
Mb21d2	D4ACS 3	Protein RGD155964 3	55.76 1	491	7	Infinite
Mbnl2	F2Z3T4	Muscle- blind-like protein 2	40.15 6	373	6	Infinite
Mcm7	Q6AY N8	Minichro- mosome maintenance deficient 7 (S. cere- visiae)	81.06 2	719	2	Infinite
Mcmbp	B1H26 8	Mini-chro- mosome maintenance complex- binding pro- tein	73.00 6	642	6	Infinite
Mdh2	P04636	Malate de- hydrogen- ase, mito- chondrial	35.68 3	338	2	Infinite
Memo1	Q4QQ R9	Protein MEMO1	33.67 9	297	2	Infinite
Metap1	D3ZE7 2	Methionine aminopepti- dase	43.20 5	386	5	Infinite
Mettl11a	Q5BJX 0	N-terminal Xaa-Pro-Lys N-methyl- transferase 1	25.46 4	223	2	Infinite
Micall2	D3ZEN 0	Protein Mi- call2	107.7 9	1003	17	Infinite
Mob4	Q9QY W3	MOB-like protein pho- cein	26.03 2	225	11	Infinite
Mobkl1a	D4A1V 7	MOB1, Mps One Binder kinase acti- vator-like 1A (Yeast) (Predicted)	25.09 1	216	3	Infinite
Мро	D4A85 6	Protein Mpo	80.88 2	718	4	Infinite
Mrpl35	D3ZE1 0	Mitochon- drial riboso- mal protein L35 (Pre- dicted), iso- form CRA_a	21.47 9	188	2	Infinite
Msh2	B1WB Q7	DNA mis- match repair	104.1 5	933	3	Infinite

		protein Msh2				
Msn	F1LP60	Uncharac- terized pro- tein (Frag- ment)	67.65 1	576	6	Infinite
Mt3	P37361	Metallothi- onein-3	6.809	66	2	Infinite
Mtpn	P62775	Myotrophin	12.86 1	118	2	Infinite
Мvр	F1LM4 1	Uncharac- terized pro- tein (Frag- ment)	96.69 2	870	4	Infinite
Myh10	F1LQ0 2	Myosin-10	233.6 1	2013	4	Infinite
Myh14	F1LMN 2	Protein Myh14	232.2 4	2032	6	Infinite
Myl6	B2GV9 9	Myl6 protein	17.01 3	152	6	Infinite
Myo18a	D3ZR0 7	Protein Myo18a	234.3 6	2064	2	Infinite
NA	Q66H5 8	UPF0464 protein C15orf44 homolog	57.14 3	515	3	Infinite
NA	Q5U2Q 3	Ester hydro- lase C11orf54 homolog	34.99 3	315	2	Infinite
NA	Q5I034	Uncharac- terized pro- tein C12orf43 homolog	30.05 6	277	6	Infinite
NA	Q497C 3	UPF0585 protein C16orf13 homolog	22.61 2	204	3	Infinite
NA	P56571	ES1 protein homolog, mitochon- drial	28.17 2	266	2	Infinite
NA	F1MA A3	Uncharac- terized pro- tein	69.31 1	596	11	Infinite
NA	F1M7S 9	Uncharac- terized pro- tein	1409	12659	3	Infinite
NA	F1M3H 8	Uncharac- terized pro- tein (Frag- ment)	20.32 9	194	2	Infinite

NA	F1M2	Uncharac-	32.17	285	2	Infinite
	M4	terized pro- tein (Frag-	9			
NA	F1M1H 0	ment) Protein Dera (Fragment)	34.05 4	308	3	Infinite
NA	F1LZD 9	Uncharac- terized pro- tein (Frag- ment)	37.66 7	354	2	Infinite
NA	F1LXS 1	Uncharac- terized pro- tein (Frag- ment)	205.0 2	1849	12	Infinite
NA	F1LTJ4	Uncharac- terized pro- tein (Frag- ment)	29.42 7	267	4	Infinite
NA	F1LNQ 9	Uncharac- terized pro- tein	168.9	1536	5	Infinite
NA	D4AE7 3	Uncharac- terized pro- tein	116.0 7	1036	2	Infinite
NA	D4AC H3	Uncharac- terized pro- tein	30.62 4	282	3	Infinite
NA	D4ABC 4	Uncharac- terized pro- tein	92.43 6	820	34	Infinite
NA	D3ZKL 0	Uncharac- terized pro- tein	14.3	133	3	Infinite
NA	D3ZIL8	Uncharac- terized pro- tein	14.72 3	134	2	Infinite
NA	D3ZFF 2	Uncharac- terized pro- tein	99.53 1	883	19	Infinite
NA	B0BNA 9	UPF0760 protein C2orf29 homolog	54.83 5	504	2	Infinite
Naa50	F1M8I2	Protein Nat13 (Frag- ment)	19.46	169	4	Infinite
Nampt	Q80Z2 9	Nicotina- mide phos- phoribosyl- transferase	55.43 7	491	3	Infinite
Nans	B1WC2 6	N- acetylneu- raminic acid synthase	40.05 1	359	2	Infinite

Nap114	D3ZE2	Uncharac-	47.30	421	3	Infinite
i up i i	3	terized pro-	3	121	5	
	-	tein	-			
Nav2	F1LR1	Protein	252.5	2342	4	Infinite
	2	Nav2 (Frag-	1			
		ment)				
Ncbp1	Q56A2	Nuclear cap-	91.91	790	4	Infinite
I	7	binding pro-				
		tein subunit				
		1				
Nccrp1	D3ZQ1	Protein	33.00	291	3	Infinite
•	8	Nccrp1	4			
Ncoa1	D4AD	Protein	156.4	1443	4	15.1
	D6	Ncoa1	3			
Ncor1	F1LSA	Nuclear re-	271.1	2456	2	Infinite
	0	ceptor core-	9			
		pressor 1				
Ndel1	Q78PB	Nuclear dis-	38.36	345	2	Infinite
	6	tribution	5			
		protein				
		nudE-like 1				
Nme2	P19804	Nucleoside	17.28	152	3	Infinite
		diphosphate	3			
		kinase B				
Nploc4	Q9ES5	Nuclear pro-	68.05	608	4	Infinite
	4	tein localiza-	5			
		tion protein				
		4 homolog				
Npm3	D3ZYK	Protein	18.91	173	2	Infinite
. .	9	Npm3	7	100	-	
Ntpcr	D4A47	Protein	20.81	192	2	Infinite
	8	RGD130619	3			
Nudt10	D27VII	2 Ductoin	10.50	164	2	Infinite
Nudito	D3ZYH 3	Protein	18.59 3	104	Z	Infinite
Nudt5		Nudt11		210	2	Infinite
Inudio	Q6AY6 3	ADP-sugar pyrophos-	24.11 7	219	Z	Infinite
	5	phatase	/			
Nup93	Q66HC	Nuclear pore	93.30	819	2	Infinite
Nup95	5	complex	93.30 1	019	2	mmme
	5	protein	1			
		Nup93				
Otud4	F1M7Q	Protein	122.8	1106	2	Infinite
	7	Otud4	5	1100	-	
P4hb	P04785	Protein di-	56.95	509	4	Infinite
-		sulfide-iso-	1			
		merase				
Pabpc4	G3V9N	Protein	72.41	660	6	20.8
I	0	Pabpc4	1			
Patl1	B5DF9	Protein	86.86	770	2	Infinite
				1	1	
	3	PAT1 homo-	8			

Pdcd10	Q6NX6 5	Programmed cell death	24.35 5	210	2	Infinite
Pdia6	Q63081	protein 10 Protein di- sulfide-iso- merase A6	48.17 3	440	3	Infinite
Pfkfb2	Q9JJH5	6-phos- phofructo-2- kinase/fruc- tose-2,6- bisphospha- tase 2	64.15 5	557	5	Infinite
Pfkl	P30835	6-phos- phofructoki- nase, liver type	85.33 8	780	2	Infinite
Pfkm	Q52KS 1	6-phos- phofructoki- nase	85.34 2	780	11	Infinite
Pfkp	P47860	6-phos- phofructoki- nase type C	85.71 9	788	4	Infinite
Pgk1	P16617	Phospho- glycerate ki- nase 1	44.53 8	417	4	Infinite
Phf5a	P83871	PHD finger- like domain- containing protein 5A	12.40 5	110	3	Infinite
Pias1	F1LTZ 9	Protein Pias1 (Frag- ment)	71.63 8	651	2	Infinite
Pick1	Q6GQ Q2	PRKCA- binding pro- tein	46.70 5	416	3	14.0
Pklr	P12928 -2	Isoform L- type of Py- ruvate ki- nase iso- zymes R/L	58.79 3	543	17	Infinite
Pla2g6	P97570 -2	Isoform Short of 85/88 kDa calcium-in- dependent phospho- lipase A2	83.56 1	752	16	Infinite
Plec	D4A32 3	Uncharac- terized pro- tein	534.3 7	4692	26	Infinite
Plekha1	D3Z8M 0	Protein Plekha1	39.70 5	357	3	Infinite
Pola1	F1LRJ6	DNA poly- merase	166.8 5	1464	3	Infinite

Pold1	G3V8	DNA poly-	123.5	1103	6	Infinite
1 olur	M1	merase	7	1105	0	minite
Polr2a	D4A5A	DNA-di-	217.2	1970	22	Infinite
	6	rected RNA		1770		
	Ũ	polymerase				
Polr2b	G3V8Y	DNA-di-	133.9	1174	9	Infinite
1 01120	5	rected RNA	1000		Í	
		polymerase				
Polr2c	D4A8A	Protein	37.62	330	3	Infinite
	8	Polr2c	2			
Polr2e	BOBNE	DNA-di-	24.57	210	4	Infinite
	2	rected RNA				
		polymerases				
		I, II, and III				
		subunit				
		RPABC1				
Polr2h	G3V67	Protein	17.14	150	3	Infinite
	8	Polr2h	3			
Ppat	P35433	Amidophos-	57.43	517	2	Infinite
		phoribosyl-	6			
		transferase				
Ppfia1	D3ZXH	Protein	142.6	1266	2	Infinite
•	0	Ppfia1	5			
Ppm1b	Q99ND	Ppm1b pro-	51.00	465	2	Infinite
	8	tein	9			
Ppm1h	Q5M82	Protein	56.37	513	5	Infinite
_	1	phosphatase	9			
		1H				
Ppme1	Q4FZT	Protein	42.31	386	25	Infinite
	2	phosphatase	6			
		methylester-				
		ase 1				
Ppp1r12a	F1LMS	Protein	114.6	1032	2	Infinite
	2	phosphatase	7			
		1 regulatory				
		subunit 12A				
Ppp2ca	P63331	Serine/thre-	35.60	309	6	Infinite
		onine-pro-	8			
		tein phos-				
		phatase 2A				
		catalytic				
		subunit α				
D 01	Dianti	isoform	05.55	200		
Ppp2cb	P62716	Serine/thre-	35.57	309	4	Infinite
		onine-pro-	5			
		tein phos-				
		phatase 2A				
		catalytic				
		subunit β				
Da a 2 - 1 -	052/124	isoform Drotain	65.22	500	10	1767
Ppp2r1a	Q5XI34	Protein	65.32	589	46	176.7
		Ppp2r1a	2			

Dnn 2n1h	DIAIV	Comin o /thmo	76.10	604	22	Infinite
Ppp2r1b	D4A1Y	Serine/thre-		694	23	Infinite
	3	onine-pro-	4			
		tein phos-				
		phatase 2A				
		65 kDa regu-				
		latory subu-				
		nit A beta				
		isoform				
Ppp2r2a	P36876	Serine/thre-	51.67	447	13	Infinite
- FF		onine-pro-	7			
		tein phos-	,			
		phatase 2A				
		55 kDa regu-				
		latory subu-				
		nit B alpha				
		isoform				
Ppp2r2d	P56932	Serine/thre-	51.98	453	14	Infinite
		onine-pro-	2			
		tein phos-				
		phatase 2A				
		55 kDa regu-				
		latory subu-				
		nit B delta				
		isoform				
Ppp2r3a	D3ZLD	Protein	129.9	1150	4	Infinite
	7	Ppp2r3a				
Ppp2r5c	D4A1A	Protein	59.90	514	5	Infinite
	5	Ppp2r5c	9			
Ppp3ca	F1LR8	Serine/thre-	58.53	521	5	Infinite
	5	onine-pro-			-	
		tein phos-				
		phatase				
Ppp4c	G3V8	Serine/thre-	35.08	307	22	Infinite
I pp4c	M5	onine-pro-	33.00	307	22	minite
	IVI.J	—				
		tein phos-				
D 4 1	0.01/102	phatase	105 6	051	10	T C' '
Ppp4r1	Q8VI02	Serine/thre-	105.6	951	12	Infinite
		onine-pro-	1			
		tein phos-				
		phatase 4				
		regulatory				
		subunit 1				
Ppp4r2	D4A8H	Protein	46.27	416	3	Infinite
	5	Ppp4r2	1			
Рррбс	Q64620	Serine/thre-	35.15	305	2	Infinite
		onine-pro-	9			
		tein phos-				
		phatase 6				
		catalytic				
		subunit				
Prkaa1	P54645	5-AMP-acti-	63.97	559	4	Infinite
1 11111 1	101010	vated protein	3		'	minic
		, and protein	5			

		kinase cata- lytic subunit alpha-1				
Prph	P21807	Peripherin	53.54 9	468	5	Infinite
Prps1	P60892	Ribose- phosphate pyrophos- phokinase 1	34.83 4	318	2	Infinite
Prrc2a	Q6MG 48	Protein PRRC2A	229.0 4	2161	16	68.2
Psma2	P17220	Proteasome subunit al- pha type-2	25.92 6	234	3	Infinite
Psma3	P18422	Proteasome subunit al- pha type-3	28.41 9	255	2	Infinite
Psma4	P21670	Proteasome subunit al- pha type-4	29.49 7	261	2	Infinite
Psmb1	P18421	Proteasome subunit beta type-1	26.47 9	240	4	Infinite
Psmc2	G3V7L 6	26S protease regulatory subunit 7	48.63 3	433	5	Infinite
Psmc3	D3ZF9 4	26S protease regulatory subunit 6A	50.34 1	451	2	Infinite
Psmd12	Q5XIC 6	Proteasome (Prosome, macropain) 26S subunit, non- ATPase, 12	52.93 6	456	5	29.7
Psmd13	B0BN9 3	26S pro- teasome non-ATPase regulatory subunit 13	42.81 7	376	2	Infinite
Psmd14	F1LM W6	Protein Psmd14 (Fragment)	32.92 4	294	2	Infinite
Psmd6	Q6PCT 9	Proteasome (Prosome, macropain) 26S subunit, non- ATPase, 6	45.59 8	389	2	Infinite
Psmg1	D4AA H6	Down syn- drome criti- cal region homolog 2 (Human)	33.23 8	289	3	Infinite

		(Predicted), isoform CRA_b				
Psmg2	D3ZAQ 4	Protein Psmg2	29.65 3	264	3	Infinite
Rab10	P35281	Ras-related protein Rab- 10	22.85 8	200	2	Infinite
Rab1b	G3V6H 0	RCG48149, isoform CRA_b	22.17 7	201	8	37.0
Rab22a	B0BN1 9	Protein Rab22a	21.77 5	194	2	Infinite
Rab2a	F1LP82	Ras-related protein Rab- 2A	23.51 7	212	4	Infinite
Rab3c	P62824	Ras-related protein Rab- 3C	25.87 2	227	3	Infinite
Rab3gap2	F1LMT 8	Rab3 GTPase-ac- tivating pro- tein non-cat- alytic subu- nit	154.0 8	1386	3	Infinite
Rab43	Q53B9 0	Ras-related protein Rab- 43	23.22 9	210	2	Infinite
Rab4a	D4ADS 8	Ras-related protein Rab- 4A	23.96 2	214	2	Infinite
Rab5c	D4AB V4	Protein Rab5c	25.17 8	232	4	Infinite
Rac1	D4AD X3	Ras-related C3 botuli- num toxin substrate 1, isoform CRA_b	23.43 6	211	4	Infinite
Racgap1	B2GV0 2	Protein Rac- gap1	69.91 9	626	2	Infinite
Rassf6	Q4QR8 2	Ras associa- tion domain- containing protein 6	39.79 3	341	2	Infinite
Rbbp4	B5DFB 2	Protein Rbbp4	47.65 5	425	3	Infinite
Rbm4	E9PTZ 4	Protein Rbm4	69.37 3	667	2	Infinite
Rem2	Q9WT Y2	GTP-bind- ing protein REM 2	37.27 4	341	2	13.5

RGD1304694	F1LN8 2	Protein RGD130469 4 (Fragment)	48.67 5	430	3	Infinite
RGD1305547_pre- dicted	G3V6G 2	Similar to RIKEN cDNA 2810417D0 8 (Predicted)	133.5 4	1198	6	Infinite
RGD1306215	G3V7Z 0	Protein RGD130621 5	22.08 7	205	2	Infinite
RGD1306487	F1LP59	Uncharac- terized pro- tein (Frag- ment)	95.95 7	860	3	Infinite
RGD1310592	D3ZLQ 6	Protein RGD131059 2	112.4 8	994	5	Infinite
RGD1560341	F1LRI8	Methionine aminopepti- dase	52.97 8	479	2	Infinite
RGD1560501	D3ZU8 0	Ribosomal protein L15	24.17 6	204	2	Infinite
RGD1562502	G3V6C 3	Protein RGD156250 2	22.42 3	198	2	Infinite
RGD1562601	D3ZLH 3	Protein RGD156260 1	18.76 6	160	2	Infinite
RGD1564370	F1M2Q 3	Protein RGD156437 0 (Fragment)	30.23 3	270	2	Infinite
Rgl2	Q6MG C5	Protein Rgl2	83.72 6	778	3	Infinite
Rhoa	P61589	Transform- ing protein RhoA	21.78 2	193	2	Infinite
Ric8a	B1H24 1	Resistance to inhibitors of cholines- terase 8 homolog A (C. elegans)	59.82 6	530	2	Infinite
Rlc-a	P13832	Myosin reg- ulatory light chain RLC- A	19.89 5	172	2	Infinite
Rnf20	D3ZYQ 9	Protein Rnf20	113.4 6	973	6	Infinite
Rpl10a	P62907	60S riboso- mal protein L10a	24.83 1	217	8	Infinite

Rpl12	F8WF	Protein	20.91	191	3	Infinite
	W0	LOC685320 (Fragment)				
Rpl13a	P35427	60S riboso- mal protein L13a	23.47 6	203	2	Infinite
Rpl18a	F1LQL 3	60S riboso- mal protein L18a (Frag- ment)	22.31 9	191	5	Infinite
Rpl19	P84100	60S riboso- mal protein L19	23.46 6	196	8	16.3
Rpl26	G3V6I9	60S riboso- mal protein L26	17.25 8	145	5	Infinite
Rpl27	P61354	60S riboso- mal protein L27	15.79 8	136	3	Infinite
Rpl30	P62890	60S riboso- mal protein L30	12.78 4	115	4	Infinite
Rpl37a-ps1	F1LNS 9	60S riboso- mal protein L37a	10.33 5	92	2	Infinite
Rpl38	P63174	60S riboso- mal protein L38	8.217 8	70	3	Infinite
Rpl4	P50878	60S riboso- mal protein L4	47.25 6	421	8	Infinite
Rpl6	F1LQS 3	60S riboso- mal protein L6	33.54 5	298	2	Infinite
Rpl9	P17077	60S riboso- mal protein L9	21.89 3	192	5	Infinite
Rplp1	P19944	60S acidic ribosomal protein P1	11.49 8	114	2	Infinite
Rprd1a	D4AA U4	Protein Rprd1a	35.73	312	3	10.4
Rps10	P63326	40S riboso- mal protein S10	18.91 6	165	6	Infinite
Rps15	P62845	40S riboso- mal protein S15	17.04	145	4	Infinite
Rps15a	P62246	40S riboso- mal protein S15a	14.83 9	130	9	Infinite
Rps19	P17074	40S riboso- mal protein S19	16.08 5	145	11	Infinite

Rps2	P27952	40S riboso-	31.23	293	6	Infinite
кр82	1 27952	mal protein	1	295	0	minite
		S2	1			
D 01	D05765		0.107	02	4	T C' '
Rps21	P05765	40S riboso-	9.127	83	4	Infinite
		mal protein	2			
		S21				
Rps25	P62853	40S riboso-	13.74	125	5	Infinite
		mal protein	2			
		S25				
Rps28	P62859	40S riboso-	7.840	69	4	Infinite
*		mal protein	9			
		S28				
Rps5	B0BN8	Ribosomal	22.90	204	6	Infinite
	1	protein S5,	6			
	1	isoform	U			
		CRA_b				
Drach	P62755	40S riboso-	28.68	249	3	Infinite
Rps6	F02755		20.00	249	5	minite
		mal protein				
2 7	D (2002	S6	22.12	10.4		20.5
Rps7	P62083	40S riboso-	22.12	194	6	30.6
		mal protein	7			
		S7				
Rps9	P29314	40S riboso-	22.59	194	5	Infinite
		mal protein	1			
		S9				
Rtcd1	Q68FS	Protein	39.31	366	2	Infinite
	8	Rtcd1	3			
Rufy1	F1LR4	Protein	80.37	711	6	Infinite
	2	Rufy1	6			
Ruvbl2	G3V8T	Protein	51.11	463	5	Infinite
Ruv012	5	Ruvbl2	2	405	5	minite
S100a11	Q6B34	Protein	11.06	98	2	Infinite
5100a11	-			90	2	mmme
0 2 1	5	S100-A11	5	044	2	T C' '
Saps3-ps1	F1MA	Uncharac-	94.67	844	2	Infinite
	H5	terized pro-	7			
~ •	~~~~	tein				
Scg2	G3V7X	Secre-	71	619	2	Infinite
	2	togranin 2,				
		isoform				
		CRA_a				
Scyl2	D4A1Y	Protein	103.3	930	9	Infinite
-	0	Scyl2	6			
Serpinb13	D3ZKA	Protein Ser-	44.24	389	3	Infinite
1	0	pinb13	9	-		
Serpinb6	Q6P9U	Protein Ser-	43.01	379	2	Infinite
~•rpinoo	0	pinb6a	8		_	
Sf1	F1LSC	Protein Sf1	70.14	653	3	Infinite
	LILOU	1100011 511	70.14 9	055	5	
511			7	1		1
	3	Dreate	-	701	E	Laf
Sf3a1	3 D3ZQ	Protein	88.58	791	5	Infinite
Sf3a1	3 D3ZQ M0	Sf3a1	88.58 7			
	3 D3ZQ	Sf3a1 Protein	88.58 7 145.8	791 1304	5 6	Infinite Infinite
Sf3a1	3 D3ZQ M0	Sf3a1	88.58 7			
Sf3a1	3 D3ZQ M0 G3V7T	Sf3a1 Protein	88.58 7 145.8			

Sf3b3	E9PT66	Protein Sf3b3	102.6 2	920	6	53.4
Sh3bp1	D3ZFJ3	Protein Sh3bp1	- 74.85 1	689	4	Infinite
Sh3glb1	D4A8Q 6	Endophilin- B1	43.17	386	2	Infinite
Sike1	Q5FW T9	Suppressor of IKBKE 1	23.57 8	207	12	Infinite
Sirt5	Q68FX 9	NAD-de- pendent pro- tein deacyl- ase sirtuin-5, mitochon- drial	34.09 8	310	2	Infinite
S1c25a5	Q09073	ADP/ATP translocase 2	32.90 1	298	3	Infinite
Slc9a3r1	Q9JJ19	Na(+)/H(+) exchange regulatory cofactor NHE-RF1	38.83	356	5	Infinite
Slmap	F1LM8 5	Sarcolem- mal mem- brane-asso- ciated pro- tein	98.23 8	858	7	Infinite
Smc2	D4AB5 7	Structural maintenance of chromo- somes pro- tein	139.1	1230	4	Infinite
Smc3	P97690	Structural maintenance of chromo- somes pro- tein 3	138.4 5	1191	7	Infinite
Smek2	D3ZCR 4	Protein Smek2	93.96 9	820	27	Infinite
Sorbs2	F1LPM 3	Sorbin and SH3 do- main-con- taining pro- tein 2	134.0 7	1196	5	12.4
Spast	D4A0I3	Uncharac- terized pro- tein	66.77 2	613	3	Infinite
Spata5	D4A6T 1	Protein Spata5	91.16 1	838	2	Infinite
Sphkap	F1LNS 0	A-kinase an- chor protein SPHKAP	187.0 9	1708	5	Infinite
Srp72	D4A7R 0	Protein Srp72	75.00 2	671	2	Infinite

Srr	Q76EQ 0	Serine race- mase	35.69 3	333	4	Infinite
Stat6	Q1KQ0 7	Protein Stat6	93.86 8	841	2	Infinite
Stmn2	D3ZW7 3	Stathmin-2	23.33 4	204	2	Infinite
Strap	Q5XIG 8	Serine-thre- onine kinase receptor-as- sociated pro- tein	38.45 6	350	4	Infinite
Strn	G3V6L 8	RCG61894, isoform CRA_a	86.14	780	28	Infinite
Strn4	F1M6V 8	Protein Strn4	81.43 6	759	23	Infinite
Svil	D3ZEZ 9	Uncharac- terized pro- tein	241.9 4	2167	3	Infinite
Synj1	F1LPS0	Synap- tojanin-1	172.8 7	1574	3	Infinite
Taf9	Q5BKE 0	Transcrip- tion initia- tion factor TFIID subu- nit 9	28.99 4	264	4	Infinite
Taldo1	Q9EQS 0	Transal- dolase	37.46	337	5	Infinite
Tbc1d1	D4AC1 6	Protein Tbc1d1	142.3 3	1257	5	Infinite
Tbc1d9b	F1LRL 4	Protein Tbc1d9b (Fragment)	137.6 2	1224	4	Infinite
Tbk1	D4A7D 3	Protein Tbk1	83.38 7	729	6	Infinite
Tbl1x	G3V6G 5	Protein Tbl1x	56.80 2	527	5	Infinite
Tceb1	P83941	Transcrip- tion elonga- tion factor B polypeptide 1	12.47 3	112	9	Infinite
Tcf25	D3ZC4 6	Protein Tcf25	76.80 4	677	3	Infinite
Tes	Q2LAP 6	Testin	47.63 2	419	11	Infinite
Tf	F1LMP 2	Serotrans- ferrin (Frag- ment)	107.4 1	979	2	Infinite
Tfip11	Q5U2Y 6	Tuftelin-in- teracting protein 11	96.15 1	837	2	Infinite
Tgm1	P23606	Protein-glu- tamine	90.76 9	824	4	Infinite

		gamma-glu- tamyltrans-				
Tgm2	Q9WVJ	ferase K Protein	76.93	686	8	Infinite
1 gmz	6	Tgm2	4	080	0	IIIIIIIte
Thop1	P24155	Thimet oli- gopeptidase	78.38 5	687	3	Infinite
Tkt	G3V82	Transketo-	71.15	655	5	Infinite
	6	lase, isoform CRA_a	8	000	5	
Tmed10	Q63584	Transmem- brane emp24 domain-con- taining pro- tein 10	24.85 7	219	2	Infinite
Tnpo3	D4AA M0	Protein Tnpo3	104.8 6	929	2	Infinite
Tpd5211	Q499Q 2	Protein Tpd5211	18.34 8	163	3	Infinite
Tpm3	Q63610	Tropomyo- sin alpha-3 chain	29.00 6	248	7	Infinite
Tpm4	P09495	Tropomyo- sin alpha-4 chain	28.50 9	248	3	Infinite
Trappc3	Q5U1Z 2	Trafficking protein parti- cle complex subunit 3	20.30 2	180	3	Infinite
Trim3	G3V8D 6	Tripartite motif protein 3, isoform CRA_a	80.76	744	6	51.5
Trim33	D3ZUK 4	Protein Trim33	124.1 3	1144	2	Infinite
Trip11	D4AB D7	Protein Trip11	226.0 6	1976	3	Infinite
Tsg101	F1LRB 7	Tumor sus- ceptibility gene 101 protein	44.24 2	391	3	Infinite
Tsn	E9PT79	Protein Tsn	31.47 3	278	3	Infinite
Ttc9c	Q6P5P 3	Tetratrico- peptide re- peat protein 9C	20.06 7	171	2	Infinite
Tubb2a	P85108	Tubulin beta-2A chain	49.90 6	445	6	Infinite
Tubb3	Q4QRB 4	Tubulin beta-3 chain	50.41 8	450	8	255.6

Tubgcp2	B2RYP 8	A disintegrin and metallo- protease do- main 8 (Pre- dicted), iso- form CRA_b	103.0 6	905	3	Infinite
Txnrd1	O89049	Thioredoxin reductase 1, cytoplasmic	54.68 8	499	11	Infinite
Uba5	Q5M7 A4	Ubiquitin- like modi- fier-activat- ing enzyme 5	44.89 5	403	2	Infinite
Uba52	P62986	Ubiquitin- 60S riboso- mal protein L40	14.72 8	128	4	Infinite
Ube2c	D3ZU W6	Protein Ube2c	19.67 9	179	2	Infinite
Ubr1	D3ZQC 6	Protein Ubr1	199.7 6	1756	4	Infinite
Ubxn1	Q499N 6	UBX do- main-con- taining pro- tein 1	33.58 1	297	3	Infinite
Uggt1	Q9JLA 3	UDP-glu- cose:glyco- protein glu- cosyltrans- ferase 1	176.4 3	1551	2	Infinite
Umps	Q4QQS 7	Protein Umps	52.37 8	481	7	Infinite
Usp14	Q5U2N 2	Ubiquitin carboxyl- terminal hy- drolase	55.97 6	493	3	Infinite
Vat1	Q3MIE 4	Synaptic vesicle membrane protein VAT-1 hom- olog	43.11 8	404	4	Infinite
Vcpip1	Q8CF9 7	Deubiqui- tinating pro- tein VCIP135	134.5 6	1221	4	Infinite
Vdac1	Q9Z2L 0	Voltage-de- pendent an- ion-selective channel pro- tein 1	30.75 5	283	2	Infinite
Vgll4	Q5BJP 0	Protein Vgll4	31.02	287	4	Infinite

Vps13a	D3Z8N	Protein	360.0	3167	19	Infinite
	6	Vps13a	5	200		
Vps37a	Q4V79 4	Protein Vps37a	44.48 7	398	2	Infinite
Vps52	O55166	Vacuolar	82.10	723	4	Infinite
		protein sort-	2			
		ing-associ-				
		ated protein				
Vps53	D3ZPE	52 homolog Protein	94.42	832	2	Infinite
v ps55	5	Vps53	8	0.52	2	minite
Vwa5b2	D4A7U	Protein	133.3	1248	4	Infinite
v wu302	5	Vwa5b2	155.5	12-10	Т	minite
Wdr37	D3ZLR	Protein	53.9	492	2	Infinite
	5	Wdr37		-		
Wdr5	Q498M	WD repeat-	36.58	334	3	Infinite
	4	containing	8			
		protein 5				
Wdr81	D4A92	WD repeat-	212.2	1933	7	Infinite
	9	containing	6			
		protein 81				
Wdr91	B2RYI	WD repeat-	83.14	747	10	Infinite
	0	containing	5			
X C	DIZOE	protein 91	126.0	1004	2	T.C
Xpo5	D3ZQE	Protein Vro5	136.8 8	1204	2	Infinite
Xpot	8 D3ZSC	Xpo5 Protein Xpot	8 109.6	963	2	Infinite
Арог	0	Floteni Apot	8	903	2	minite
Yars	G3V71	Tyrosine	63.02	564	3	Infinite
1 415	3	tRNA ligase,	5	501	5	minite
		cytoplasmic	-			
Ybx2	D4A3P	Protein	38.09	359	4	Infinite
	0	Ybx2	4			
Zc3h14	Q7TM	Zinc finger	82.63	736	2	Infinite
	D5	CCCH do-	1			
		main-con-				
		taining pro-				
		tein 14		0.1.2	-	
Zfand5	B5DF1	AN1-type	23.08	213	6	Infinite
	1	zinc finger	8			
7fp655	O5DV	protein 5	62 50	541	2	Infinite
Zfp655	Q5RK G8	Protein Znf655	63.59 9	541	2	Infinite
Zyg11b	F1M8P	Protein	9 83.80	743	5	Infinite
Lygiiu	2	Zyg11b	4 4	143	5	minite
	2	(Fragment)				
	l	(1 iuginenii)	l	L		

Gene name	Protein ID	Protein name	MW [kDa]	Se- quence length	Num- ber of uniqu e pep- tides de- tected in the PP2A c IP	Enrich- ment ra- tio
Арір	D3ZUI1	APAF1 inter- acting protein (Predicted), isoform CRA_a	27.05 3	241	8	Infinite ^a
Appl1	D3ZWA 8	Protein Appl1	79.36 3	707	3	Infinite
Arpc4	B2RZ72	Actin related protein 2/3 complex, sub- unit 4 (Pre- dicted), iso- form CRA_a	19.66 7	168	2	Infinite
Cbr3	B2GV72	Carbonyl re- ductase 3	30.84 1	277	3	Infinite
Cc2d1a	F1LQC6	Coiled-coil and C2 do- main-contain- ing protein 1A	103.7 1	942	3	Infinite
Ciapin1	Q5XID1	Anamorsin	33.04 1	309	4	Infinite
Cnbp	P62634	Cellular nu- cleic acid- binding pro- tein	19.46 3	177	22	12.6
Cnot4	F1MAD 6	Protein Cnot4	78.21 1	713	3	Infinite
Csrp1	P47875	Cysteine and glycine-rich protein 1	20.61 3	193	9	Infinite
Cttnbp2	Q2IBD4	Cortactin binding pro- tein 2	178.7 7	1649	7	Infinite
Dctn2	Q6AYH 5	Dynactin sub- unit 2	44.14 7	402	4	Infinite
Ddx17	E9PT29	Protein Ddx17	72.82 7	651	2	Infinite

 Table 6. 89 Glucose responsive interaction partners in INS-1 832/13 cells.

Eea1	F1LUA1	Protein Eea1 (Fragment)	161.1	1411	20	Infinite
Eif2b1	Q64270	Translation in- itiation factor eIF-2B subunit alpha	33.67 8	305	2	Infinite
Eif2c2	Q9QZ81	Protein argo- naute-2	97.31 7	860	5	Infinite
Fhl2	O35115	Four and a half LIM domains protein 2	32.08 6	279	6	Infinite
Filip1	Q8K4T4	Filamin-A-in- teracting pro- tein 1	137.7 5	1212	11	Infinite
Gfpt1	D3ZZH8	Glucosamine fructose-6- phosphate aminotransfer- ase [isomeriz- ing] 1	78.91 8	699	6	15.4
Gga2	G3V8F7	Golgi associ- ated, gamma adaptin ear containing, ARF binding protein 2, iso- form	66.21 4	604	5	Infinite
Gmds	Q3MHS 7	GDP-mannose 4, 6-dehydra- tase	42.09 4	372	4	Infinite
Gmps	F1LS80	GMP synthase [glutamine-hy- drolyzing]		699	3	Infinite
Gpd1	O35077	Glycerol-3- phosphate de- hydrogenase [NAD(+)], cy- toplasmic	37.45 2	349	6	Infinite
Gprasp2	D4A542	Protein Gprasp2	92.93 6	827	3	Infinite
Hist1h1c	P15865	Histone H1.4	21.98 7	219	4	Infinite
Hmmr	D4A2M 9	Hyaluronan mediated mo- tility receptor (RHAMM)	82.93 5	715	3	Infinite
Hnrnpf	Q794E4	Heterogeneous nuclear ribo- nucleoprotein F	45.72 9	415	2	Infinite

Ilf3	F1LNJ4	Interleukin en- hancer-bind- ing factor 3	98.07 9	915	4	Infinite
Ints12	Q68FR3	Integrator complex subu- nit 12	48.47 7	461	5	Infinite
Ints5	D3ZTW 1	Protein Ints5	108.4	1019	9	Infinite
Ints7	D4ADS 6	Protein Ints7	106.9 1	967	20	Infinite
Itpk1	D3ZQM 7	Protein Itpk1	46.20 4	421	2	Infinite
Kalrn	P97924- 4	Isoform 4 of Kalirin	337.5 7	2968	2	Infinite
Lig1	Q9JHY8	DNA ligase 1	102.4 8	918	14	48.3
Limd1	B5DEH 0	LIM domain- containing protein 1	71.39 2	663	3	Infinite
Limk1	G3V663	LIM motif- containing protein kinase 1, isoform CRA_a	72.60 7	647	4	Infinite
LOC10036424 0	D4A0X3	Lysophospha- tidylcholine acyltransferase 2B	103.5 9	967	3	Infinite
LOC10036588 9	D3ZIT7	Protein LOC10036588 9	83.78 4	750	14	Infinite
Lpin1	Q5XIM8	Lipin 1	101.9	924	5	Infinite
Lsm12	D4A8G0		21.70 1	195	6	Infinite
Map7	F1MA82	Protein Map7 (Fragment)	80.41	713	5	Infinite
Mcmbp	B1H268	Mini-chromo- some mainte- nance com- plex-binding protein	73.00 6	642	6	Infinite
Mettl11a	Q5BJX0	N-terminal Xaa-Pro-Lys N-methyl- transferase 1	25.46 4	223	2	Infinite
Micall2	D3ZEN0	Protein Mi- call2	107.7 9	1003	17	Infinite

Mrpl35	D3ZE10	Mitochondrial ribosomal pro- tein L35 (Pre- dicted), iso- form CRA_a	21.47 9	188	2	Infinite
NA	D3ZFF2	Uncharacter- ized protein	99.53 1	883	19	Infinite
NA	F1LTJ4	Uncharacter- ized protein (Fragment)	29.42 7	267	4	Infinite
NA	F1LZD9	Uncharacter- ized protein (Fragment)	37.66 7	354	2	Infinite
Naa50	F1M8I2	Protein Nat13 (Fragment)	19.46	169	4	Infinite
Nav2	F1LR12	Protein Nav2 (Fragment)	252.5 1	2342	4	Infinite
Ncor1	F1LSA0	Nuclear recep- tor corepressor 1	271.1 9	2456	2	Infinite
Ntpcr	D4A478	Protein RGD1306192	20.81 3	192	2	Infinite
Nudt10	D3ZYH 3	Protein Nudt11	18.59 3	164	2	Infinite
Pfkfb2	Q9JJH5	6-phos- phofructo-2- kinase/fruc- tose-2,6- bisphospha- tase 2	64.15 5	557	5	Infinite
Phf5a	P83871	PHD finger- like domain- containing protein 5A	12.40 5	110	3	Infinite
Pla2g6	P97570-2	Isoform Short of 85/88 kDa calcium-inde- pendent phos- pholipase A2	83.56 1	752	16	Infinite
Pold1	G3V8M 1	DNA poly- merase	123.5 7	1103	6	Infinite
Ppat	P35433	Amidophos- phoribosyl- transferase	57.43 6	517	2	Infinite
Ppm1b	Q99ND8	Ppm1b protein	51.00 9	465	2	Infinite

Ppp2r1b	D4A1Y3	Serine/threo- nine-protein phosphatase 2A 65 kDa regulatory subunit A beta isoform	76.10 4	694	23	Infinite
Ppp2r2a	P36876	Serine/threo- nine-protein phosphatase 2A 55 kDa regulatory subunit B al- pha isoform	51.67 7	447	13	Infinite
Ppp4r1	Q8VI02	Serine/threo- nine-protein phosphatase 4 regulatory subunit 1	105.6 1	951	12	Infinite
Рррбс	Q64620	Serine/threo- nine-protein phosphatase 6 catalytic subu- nit	35.15 9	305	2	Infinite
Prph	P21807	Peripherin	53.54 9	468	5	Infinite
Rab10	P35281	Ras-related protein Rab-10	22.85 8	200	2	Infinite
Rab5c	D4ABV 4	Protein Rab5c	25.17 8	232	4	Infinite
Rhoa	P61589	Transforming protein RhoA	21.78 2	193	2	Infinite
Rpl18a	F1LQL3	60S ribosomal protein L18a (Fragment)	22.31 9	191	5	Infinite
Rpl30	P62890	60S ribosomal protein L30	12.78 4	115	4	Infinite
Rpl4	P50878	60S ribosomal protein L4	47.25 6	421	8	Infinite
Rpl9	P17077	60S ribosomal protein L9	21.89 3	192	5	Infinite
Scyl2	D4A1Y0	Protein Scyl2	103.3 6	930	9	Infinite
Serpinb6	Q6P9U0	Protein Ser- pinb6a	43.01 8	379	2	Infinite
Sh3bp1	D3ZFJ3	Protein Sh3bp1	74.85 1	689	4	Infinite

Slmap	F1LM85	Sarcolemmal	98.23	858	7	Infinite
1		membrane-as-	8			
		sociated pro-				
		tein				
Sorbs2	F1LPM3	Sorbin and	134.0	1196	5	12.4
		SH3 domain-	7			
		containing				
		protein 2				
Srp72	D4A7R0	Protein Srp72	75.00	671	2	Infinite
			2			
Stat6	Q1KQ07	Protein Stat6	93.86	841	2	Infinite
	202011		8			
Tceb1	P83941	Transcription	12.47	112	9	Infinite
		elongation fac-	3			
		tor B polypep-				
Tria 11		tide 1	226.0	1076	2	Infinite
Trip11	D4ABD 7	Protein Trip11	226.0 6	1976	3	Infinite
Tsg101	F1LRB7	Tumor augaan	44.24	391	3	Infinite
Isgiui	FILKD/	Tumor suscep- tibility gene	44.24	391	3	Infinite
		tibility gene 101 protein	2			
Txnrd1	089049	Thioredoxin	54.68	499	11	Infinite
TXIIIUT	089049	reductase 1,	34.08 8	477	11	mmme
		cytoplasmic	0			
Ube2c	D3ZUW	Protein Ube2c	19.67	179	2	Infinite
	6		9		_	
Ubr1	D3ZQC	Protein Ubr1	199.7	1756	4	Infinite
	6		6			
Uggt1	Q9JLA3	UDP-glu-	176.4	1551	2	Infinite
	-	cose:glycopro-	3			
		tein glucosyl-				
		transferase 1				
Vat1	Q3MIE4	Synaptic vesi-	43.11	404	4	Infinite
		cle membrane	8			
		protein VAT-1				
		homolog				
Vgll4	Q5BJP0	Protein Vgll4	31.02	287	4	Infinite
Vps37a	Q4V794	Protein	44.48	398	2	Infinite
		Vps37a	7			
Vps52	055166	Vacuolar pro-	82.10	723	4	Infinite
		tein sorting-as-	2			
		sociated pro-				
		tein 52 homo-				
		log				
Wdr5	Q498M4	WD repeat-	36.58	334	3	Infinite
		containing	8			
		protein 5				

Table 7. Thirty-eight previously reported PP2Ac interaction partners were iden-
tified in this study

Gene name	Protein ID	Protein name		Enrich- ment ra- tio		Spe- cies*
Ankle2	Q7TP65	Ankyrin repeat and LEM do- main-containing protein 2	106.4	1000#	94	Н
Arpc4	B2RZ72	Actin related protein 2/3 com- plex, subunit 4 (Predicted), iso- form CRA_a	19.7	1000	187	H
Cdk2	D3ZJC8	Cyclin-dependent kinase 2	39.0	1000	99,188	H
Csnk1a1	D3ZRE3	Casein kinase I isoform α	41.9	1000	189	Н
Cttnbp2	Q2IBD4	Cortactin binding protein 2	178.8	1000	95	Н
Cttnbp2nl	D4A8X8		70.1	1000	95	H
Fam40a	G3V8E2	Protein Fam40a	95.6	1000		Н
Fgfr1op	Q4V7C1	FGFR1 oncogene partner	43.0	1000	95,190	H, M
Fgfr1op2	Q6TA25	FGFR1 oncogene partner 2 homolog	29.4	1000	~ 4	Η
Gga1	F1LPF4	Protein Gga1	70.0	1000	191	Н
Hnrnpa2b1	A7VJC2	Heterogeneous nuclear ribonu- cleoproteins A2/B1	37.5	1000	192	М
Igbp1	O08836	Immunoglobulin-binding pro- tein 1	39.1	1000	94,95,1 06,193- 201	H, M, R
Ints3	D3ZUT9	Protein Ints3	117.9	1000	98	H
Ints5	D3ZTW1	Protein Ints5	108.4	1000	98	H
Map3k7ip1	D4A6C6	Protein Map3k7ip1	54.6	1000	194	H
	P21708-2	Isoform 2 of Mitogen-activated protein kinase 3	45.8	1000	202	H
Mob4	Q9QYW3	MOB-like protein phocein	26.0	1000	94,95	H
Myh10	F1LQ02		233.6	1000	94	Н
Pdcd10	Q6NX65	Programmed cell death protein 10	24.4	1000	95	Η
Pola1	F1LRJ6	DNA polymerase	166.9	1000	203	H
Ppfia1	D3ZXH0	Protein Ppfia1	142.7	1000	94,95	Η
Ppm1b	Q99ND8	Ppm1b protein	51.0	1000	99	H
Ppme1	Q4FZT2	Protein phosphatase methyles- terase 1	42.3	1000	94,95	Н
Ppp2r1a	Q5XI34	PP2 65 kDa regulatory subunit A, α isoform	65.3	170.7	93- 97,105, 187,190 ,204- 210	H, M
Ppp2r1b	D4A1Y3	PP2 65 kDa regulatory subunit A, β isoform	76.1	1000	93-97	H

Ppp2r2a	P36876	PP2 55 kDa regulatory subunit B, α isoform	51.7	1000	93- 95,204, 211	H, M
Ppp2r2d	P56932	PP2 55 kDa regulatory subunit B, δ isoform	52.0	1000	94,95,2 12	Н
Ppp2r3a	D3ZLD7	PP2 72/130 kDa regulatory subunit B, α isoform	129.9	1000	213,214	H, M
Ppp4c	G3V8M5	PP4 catalitic subunit	35.1	1000	215	Η
Ppp2r5c	D4A1A5	PP2 56 kDa regulatory subunit B, γ isoform	59.9	1000	94,95,1 84,216- 218	
Prkaa1	P54645	5-AMP-activated protein ki- nase catalytic subunit α-1	64.0	1000	219,220	H
Rplp1	P19944	60S acidic ribosomal protein P1	11.5	1000	221	Н
Sike1	Q5FWT9	Suppressor of IKBKE 1	23.6	1000	94	Н
Slmap	F1LM85	Sarcolemmal membrane-asso- ciated protein	98.2	1000	94	Н
Strn	G3V6L8	RCG61894, isoform CRA_a	86.1	1000	94,95	Н
Strn4	F1M6V8	Protein Strn4	81.4	1000	94,95	Н
Tnpo3	D4AAM0	Protein Tnpo3	104.9	1000	187	Н
Uba52	P62986	Ubiquitin-60S ribosomal pro- tein L40	14.7	1000	195	Η
Ankle2	Q7TP6 5	Ankyrin repeat and LEM do- main-containing protein 2	106.4	1000#	94	Н
Arpc4	B2RZ7 2	Actin related protein 2/3 complex, subunit 4 (Pre- dicted), isoform CRA_a	19.7	1000	187	Н
Cdk2	D3ZJC 8	Cyclin-dependent kinase 2	39.0	1000	99,1 88	Н
Csnk1a1	D3ZRE 3	Casein kinase I isoform α	41.9	1000	189	Н
Cttnbp2	Q2IBD 4	Cortactin binding protein 2	178.8	1000	95	Н
Cttnbp2nl	D4A8X 8	CTTNBP2 N-terminal like (Predicted), isoform CRA_a	70.1	1000	95	Н
Fam40a	G3V8E 2	Protein Fam40a	95.6	1000	95	Н
Fgfr1op	Q4V7C 1	FGFR1 oncogene partner	43.0	1000	95,1 90	H, M
Fgfr1op2	Q6TA2 5	FGFR1 oncogene partner 2 homolog	29.4	1000	94	Н
Gga1	F1LPF 4	Protein Gga1	70.0	1000	191	Н
Hnrnpa2b 1	A7VJC 2	Heterogeneous nuclear ribo- nucleoproteins A2/B1	37.5	1000	192	М
Igbp1	O08836	Immunoglobulin-binding protein 1	39.1	1000	94,9 5,10 6,19	H, M, R

					3- 201	
Ints3	D3ZUT 9	Protein Ints3	117.9	1000	98	Н
Ints5	D3ZT W1	Protein Ints5	108.4	1000	98	Н
Map3k7ip 1	D4A6C 6	Protein Map3k7ip1	54.6	1000	194	Н
Mapk3	P21708 -2	Isoform 2 of Mitogen-activated protein kinase 3	45.8	1000	202	Н
Mob4	Q9QY W3	MOB-like protein phocein	26.0	1000	94,9 5	Н
Myh10	F1LQ0 2	Myosin-10	233.6	1000	94	Н
Pdcd10	Q6NX6 5	Programmed cell death pro- tein 10	24.4	1000	95	Н
Pola1	F1LRJ6	DNA polymerase	166.9	1000	203	Н
Ppfia1	D3ZX H0	Protein Ppfia1	142.7	1000	94,9 5	Н
Ppm1b	Q99ND 8	Ppm1b protein	51.0	1000	99	Н
Ppme1	Q4FZT 2	Protein phosphatase meth- ylesterase 1	42.3	1000	94,9 5	Н
Ppp2r1a	Q5XI3 4	PP2 65 kDa regulatory subunit A, α isoform	65.3	176.7	93- 97,1 05,1 87,1 90,2 04- 210	H, M
Ppp2r1b	D4A1Y 3	PP2 65 kDa regulatory subunit A, β isoform	76.1	1000	93- 97	Н
Ppp2r2a	P36876	PP2 55 kDa regulatory subu- nit B, α isoform	51.7	1000	93- 95,2 04,2 11	H, M
Ppp2r2d	P56932	PP2 55 kDa regulatory subunit B, δ isoform	52.0	1000	94,9 5,21 2	Н
Ppp2r3a	D3ZLD 7	PP2 72/130 kDa regulatory subunit B, α isoform	129.9	1000	213, 214	H, M
Ppp4c	G3V8 M5	PP4 catalitic subunit	35.1	1000	215	Н
Ppp2r5c	D4A1A 5	PP2 56 kDa regulatory subunit B, γ isoform	59.9	1000	94,9 5,18 4,21 6- 218	H

Prkaa1	P54645	5-AMP-activated protein ki-	64.0	1000	219,	Н
		nase catalytic subunit α-1			220	
Rplp1	P19944	60S acidic ribosomal protein P1	11.5	1000	221	Н
Sike1	Q5FW T9	Suppressor of IKBKE 1	23.6	1000	94	Н
Slmap	F1LM8 5	Sarcolemmal membrane-as- sociated protein	98.2	1000	94	Н
Strn	G3V6L 8	RCG61894, isoform CRA_a	86.1	1000	94,9 5	Н
Strn4	F1M6V 8	Protein Strn4	81.4	1000	94,9 5	Н
Tnpo3	D4AA M0	Protein Tnpo3	104.9	1000	187	Н
Uba52	P62986	Ubiquitin-60S ribosomal protein L40	14.7	1000	195	Н

Ingenuity Ca- nonical Path-	P value	Glucose re- sponsive	Glucose nonresponsive PP2Ac partners identified in the study
ways		PP2Ac part- ners identified in the study	partners identified in the study
EIF2 Signaling	1.26E-18	RPL4, RPL18A, RPL30, EIF2B1, RPL9	EIF2B4, MAPK1, RPL26, RPS21, EIF4G1, RPS7, RPL6, MAP2K2, EIF3D, MAPK3, RPS9, RPL19, RPL12, RPL37A, RPL27, RPS2, RPS19, RPL10A, EIF3G, RPS6, UBA52, RPS15,
			RPS25, RPS15A, LOC100360491, RPL38, RPL13A
Regulation of eIF4 and p70S6K Signal- ing	2.51E-13	PPP2R2A, EIF2B1, PPP2R1B	EIF2B4, MAPK1, , RPS2, RPS19, RPS21, EIF4G1, EIF3G, RPS7, RPS6, , PPP2R1A, MAP2K2, PPP2R3A, EIF3D, MAPK3, RPS9, RPS15, RPS15A, RPS25
mTOR Signal- ing	5.01E-11	PPP2R2A, RHOA, PPP2R1B	MAPK1, , RPS2, RPS19, RAC1, RPS21, EIF4G1, EIF3G, RPS7, RPS6, , PPP2R1A, PPP2R3A, EIF3D, MAPK3, RPS9, PRKAA1, RPS15, RPS15A, RPS25
AMPK Signal- ing	3.63E-07	PPM1B, PPP2R2A, PPP2R1B, PPAT, PFKFB2	TAF9, MAPK1, , PFKP, PFKL, PFKM, , PPP2R1A, PPP2R3A, PRKAA1
CDK5 Signal- ing	5.89E-07	PPP2R2A, PPP2R1B	PPP2R1A, MAP2K2, CDK5, MAPK1, , PPP2R3A, MAPK3, CAPN1, PPP1R12A
ILK Signaling	1.07E-06	PPP2R2A, RHOA, PPP2R1B	MYH10, FBLIM1, MYL6, MAPK1, CFL1, , MYH14, ILK, , PPP2R1A, PPP2R3A, FLNA, MAPK3, PPP1R12A
Actin Cytoskel- eton Signaling	1.62E-06	RHOA, ARPC4, LIMK1	ACTR2, MYH10, MYL6, CFL1, MAPK1, CRKL, MYH14, RAC1, GSN, GIT1, ACTR3, MAP2K2, FLNA, MAPK3, PPP1R12A, MSN
Salvage Path- ways of Pyrimi- dine Ribonucle- otides	8.71E-06	LIMK1	MAP2K2, CDK5, MAPK1, MAPK3, PRKAA1, NME2, CSNK1A1, CMPK1, CDK2, DYRK1A

Table 8. IPA analysis of the 516 par	tners showing the 39 enriched pathways
--------------------------------------	--

	1.000 05		
Cell Cycle Reg-	1.02E-05	PPP2R2A,	PPP2R1A, , PPP2R3A, CDK2
ulation by BTG		PPP2R1B	
Family Proteins	1.155.05		
Glycolysis I	1.15E-05		PGK1, PKLR, ALDOA, PFKP,
			PFKL, PFKM
Pyridoxal 5'-	1.51E-05	LIMK1	MAP2K2, CDK5, MAPK1,
phosphate Sal-			MAPK3, PRKAA1, CSNK1A1,
vage Pathway			CDK2, DYRK1A
Mitotic Roles of	1.74E-05	PPP2R2A,	SMC3, PPP2R1A, , PPP2R3A,
Polo-Like Ki-		PPP2R1B	CAPN1, CDC16
nase			
Protein Ubiqui-	1.86E-05	UBR1, TCEB1,	USP14, PSMA3, HSPH1,
tination Path-		UBE2C	PSMD13, PSMD6, THOP1,
way			DNAJA1, PSMD12, PSMA4,
5			PSMB1, PSMD14, PSMA2,
			PSMC2, PSMC3, HSPA4L,
			HSPB1
Chemokine Sig-	2.19E-05	RHOA, LIMK1	Calm1 (includes others),
naling	2.17£ 05	KIION, LIMIKI	CAMK1, MAP2K2, MAPK1,
nanng			CFL1, MAPK3, PPP1R12A
Estrogen Recep-	2.82E-05	NCOR1	TAF9, DDX5, POLR2A,
• •	2.02E-03	NCOKI	POLR2C, MAP2K2, MAPK1,
tor Signaling			
			POLR2E, MAPK3, NCOA1,
	4.055.05		POLR2H, POLR2B
Tight Junction	4.07E-05	PPP2R2A,	MYH10, MYL6, , MYH14,
Signaling		RHOA,	MARK2, RAC1, CTNNA1, ,
		PPP2R1B	PPP2R1A, PPP2R3A
Glucocorticoid	8.51E-05	NCOR1,	TAF9, MAPK1, RAC1,
Receptor Sig-		TSG101	POLR2B, POLR2C, POLR2A,
naling			MAP2K2, MAP3K7, POLR2E,
			ANXA1, MAPK3, NCOA1,
			PRKAA1, POLR2H, PPP3CA
ERK/MAPK	8.71E-05	PLA2G6,	MAPK1, , CRKL, RAC1, ,
Signaling		PPP2R2A,	PPP2R1A, MAP2K2, PPP2R3A,
0 0		PPP2R1B	MAPK3, PPP1R12A, HSPB1
Regulation of	9.77E-05	RHOA,	ACTR2, ACTR3, CFL1, MYL6,
Actin-based		ARPC4,	RAC1, PPP1R12A, GSN
Motility by Rho		LIMK1	,,
D-myo-inositol	1.00E-04	ITPK1,	PPFIA1, NUDT5, SYNJ1,
(1, 4, 5, 6)-	1.001-04	NUDT11,	PPP2R3A, PPM1H, PPP1R12A,
Tetrakisphos-		PPP4R1	IGBP1, PPP3CA
-		111411	10DI I, I I I JCA
phate Biosyn- thesis			
	1.00E.04	ITDV 1	DDELA 1 NILIDITE CVNU1
D-myo-inositol	1.00E-04	ITPK1,	PPFIA1, NUDT5, SYNJ1,
(3, 4, 5, 6)-		NUDT11,	PPP2R3A, PPM1H, PPP1R12A,
tetrakisphos-		PPP4R1	IGBP1, PPP3CA
phate Biosyn-			
thesis			

SignalingPPP2R2A, PPP2R1BPPP2R3A, MARK2, CSNK1A1, ILK, RUVBL23-phosphoinosi- tide Biosynthe- sis6.31E-04ITPK1, NUDT11, PPP4R1PPFIA1, NUDT5, SYNJ1, PPP2R3A, PPM1H, PPP1R12A, IGBP1, PPP3CAPAK Signaling7.76E-04LIMK1MAP2K2, MAPK1, CFL1, MYL6, MAPK3, RAC1, GIT1Remodeling of Epithelial Ad- herens Junctions7.94E-04RAB5C, ARPC4DNM1, ACTR2, TUBB3, ACTR3, TUBB2A, CTNNA1, EXOC2Assembly of ase II Complex8.32E-04TAF9, POLR2A, POLR2C, POLR2E, POLR2H, POLR2B	PI3K/AKT Sig- naling	1.00E-04	PPP2R2A, PPP2R1B	PPP2R1A, SYNJ1, MAP2K2, MAPK1, , PPP2R3A, MAPK3,
ARPC4, LIMK1MAP2K2, MAPK1, CFL1, MAPK3, RAC1Androgen Sig- naling2.09E-04CALR, POLR2A, Calm1 (in- cludes others), POLR2C, MAPK1, POLR2E, MAPK3, NCOA1, POLR2H, POLR2BRole of CHK Proteins in Cell 	Rac Signaling	1.12E-04	RHOA.	
Androgen Sig- naling2.09E-04CALR, POLR2A, Calm1 (in- cludes others), POLR2C, MAPK1, POLR2E, MAPK3, NCOA1, POLR2H, POLR2BRole of CHK Proteins in Cell Cycle Check- point Control2.14E-04PPP2R1BCalcium Signal- ing2.14E-04PPP2R1B2.14E-04PPP2R1BMYH10, CALR, Calm1 (in- cludes others), CAMK1, MAPK1, MYL6, MYH14, Acta2, Camk2b, Tpm4, MAPK3, PP93CA, Tpm33-phosphoinosi- tide Degrada- tion3.09E-04ITPK1, NUDT11, PP4R1PPFIA1, NUDT5, SYNJ1, PP2R3A, PPM1H, PPP1R12A, IGBP1, PP2R3A, PPM1H, PPP1R12A, IGBP1, PP2R3A, PPM1H, PPP1R12A, IGBP1, PP3CAp7086K Signal- ing3.63E-04PPP2R1BMAPK1, MYL6, MAPK3, PP2R1Bp7086K Signal- ing4.47E-04RHOA, ARPC4, PP2R1BACTR2, ACTR3, CFL1, MYL6, APP1R12A, CSNK1A1, PPP2R3A, PPM1H, PPP1R12A, IGBP1, PP2R3A, MAPK3Wnt/P-catenin sis4.79E-04APPL1, PP2R1BPPP2R1A, MAPK2, CSNK1A1, PP2R3A, MARK2, CSNK1A1, PP2R3A, PP11, MSNWnt/P-catenin sis6.31E-04ITPK1, PP1R12A, ARHGEF11, MUDT11, PP12R3A, PP1R12A, ARHGEF11, MAPK1, CSNK1A1, PP12R3A, PP1R12A, ARHGEF11, MAPK1, CSNK1A1, PP12R3A, PP1R1A, ARHGEF11, MAPK2, CSNK1A1, PP12R3A, PP1R1A, MAP3K7, PP12R3A, PP1R1A, MAP3K7, PP12R3A, PP1R1A, MAP42, CSNK1A1, PP12R3A, PP1R12A, CSNK1A1, PP	Rue Bighuning	1.121 01	ARPC4,	MAP2K2, MAPK1, CFL1,
Role of CHK Proteins in Cell Cycle Check- point Control2.14E-04 PPP2R1BPPP2R2A, PPP2R1BPPP2R1A, PPP2R3A, CDK2Calcium Signal- ing2.14E-04MYH10, CALR, Calm1 (in- cludes others), CAMK1, MAPK1, MYL6, MYH14, Acta2, Camk2b, Tpm4, MAPK3, PP93CA, Tpm33-phosphoinosi- itom3.09E-04ITPK1, NUDT11, PPP4R1PPFIA1, NUDT5, SYNJ1, PPP3CA, Tpm3D-myo-inositol- itom3.09E-04ITPK1, NUDT11, PPP4R1PPFIA1, NUDT5, SYNJ1, PPP3CA, Tpm35-phosphate MetabolismMOUT11, PPP4R1PPP2R3A, PPM1H, PPP1R12A, IGBP1, PP3CAp70S6K Signal- Signaling3.63E-04PPP2R2A, PP2R1Bp70S6K Signalig4.47E-04RHOA, APPC1, PPP2R1BACTR2, ACTR3, CFL1, MYL6, ARPC4, PP1R12A, ARHGEF11, LIMK1Wnt/f2-catenin Signaling4.79E-04APPL1, PPP2R2A, PPP2R1BPPP2R1A, PP2R3A, MARK2, CSNK1A1, PPP2R3A, MARK2, CSNK1A1, PPP2R1B3-phosphoinosi- itide Biosynthe- sis6.31E-04ITPK1, PPP2R3A, PPA2A, PPP2R3A, MARK2, CSNK1A1, PP2R3A, PPM1H, PP1R12A, PP2R3A, PPM1H, PP1R12A, PP1R12A, ARHGEF11, LIMK1PPP2R3A, PPM1H, PP1R12A, ARHGAP1, MSNWnt/f2-catenin Signaling7.76E-04LIMK1MAP3K7, PP2R3A, PP1R12A, PP2R3A, MARK2, CSNK1A1, PP2R3A, PP1H, PP1R12A, PP2R3A, PP1H, PP1R	0 0	2.09E-04		CALR, POLR2A, Calm1 (in-
Role of CHK Proteins in Cell Cycle Check- point Control2.14E-04 PPP2R1BPPP2R2A, PPP2R1BPPP2R1A, PPP2R3A, CDK2Calcium Signal- ing2.14E-04MYH10, CALR, Calm1 (in- cludes others), CAMK1, MAPK1, MYL6, MYH14, Acta2, Camk2b, Tpm4, MAPK3, PPP3CA, Tpm33-phosphoinosi- tide3.09E-04ITPK1, NUDT11, PPP4R1PPFIA1, NUDT5, SYNJ1, PPP3CA, Tpm3D-myo-inositol- 5-phosphate3.09E-04ITPK1, NUDT11, PPP4R1PPFIA1, NUDT5, SYNJ1, PPP3CA, Tpm3MetabolismPPP4R1IGBP1, PP93CAp70S6K Signal- ing3.63E-04PPP2R2A, PPP2R1ARPS6, , PPP2R1A, MAP2K2, PPP2R1Bp70S6K Signal- ing4.47E-04RHOA, ACTR2, ACTR3, CFL1, MYL6, ARPC4, PPP2R1BACTR2, ACTR3, CFL1, MYL6, ARPC4, PPP2R1A, MAPK1, PPP2R3A, MARK3RhoA Signaling signaling4.47E-04APPL1, PPP2R2A, PPP2R1BPP2R1A, MAP3K7, PPP2R1A, ARHGEF11, LIMK1Wnt/P-catenin sis6.31E-04ITPK1, PPP2R1BPPP2R3A, MARK2, CSNK1A1, PPP2R3A, PPH1H, PPP1R12A, ARHGAP1, MSNWnt/P-catenin sis7.76E-04LIMK1MAP2K2, MAPK1, CFL1, MYL6, MAPK3, RAC1, GIT1Remodeling of Epithelial Ad- herens Junctions7.94E-04RAB5C, ARPC4DNM1, ACTR2, TUBB3, ACTR3, TUBB2A, CTNNA1, EXOC2Assembly of ase II Complex8.32E-04TAF9, POLR2A, POLR2C, POLR2E, POLR2H, POLR2B	naling			
Proteins in Cell CyclePPP2R1BProteins in Cell Cycle2.14E-04Calcium Signal- ing2.14E-04Mapki, Myllo, CALR, Calm1 (in- cludes others), CAMK1, MAPK1, MYL6, MYH14, Acta2, Camk2b, Tpm4, MAPK3, PPP3CA, Tpm33-phosphoinosi- tide3.09E-04D-myo-inositol- 5-phosphate metabolism3.09E-04D-myo-inositol- 5-phosphate3.09E-04D-myo-inositol- 5-phosphate3.09E-04TTPK1, PP4R1PPFIA1, NUDT5, SYNJ1, PP2R3A, PPM1H, PPP1R12A, IGBP1, PP3CAp70S6K Signal- ing3.63E-04p70S6K Signal- ing3.63E-04p70S6K Signal- ing3.63E-04p70S6K Signal- ing3.63E-04pP2R1BMAPK1, PPP2R3A, MAPK3RhoA Signaling4.47E-04RhOA, Signaling4.79E-04APPL1, PPP2R1BPP2R1BILK, RUVBL23-phosphoinosi- is6.31E-04ITPK1, PPP2R1BPP2R1AMAPK3, CSNK1A1, PP2R3A, PPM1H, PPP1R12A, PPP2R3A, PPM1H, PPP1R12A, PP1R12A, MAP3K7, PP2R3A, PPM1H, PPP1R12A, PP2R3A, PPM1H, PPP1R12A, PP2R3A, PPM1H, PPP1R12A, PP2R3A, PPM1H, PPP1R12A, PP1R12A, IGBP1, PP3CAPAK Signaling7.76E-04LIMK1MAP2K2, MAPK1, CFL1, MYL6, MAPK3, RAC1, GIT1Remodeling of Epithelial Ad- herens Junctions7.94E-04Assembly of ase II Complex8.32E-04RNA Polymer- ase II Complex8.32E-04				NCOA1, POLR2H, POLR2B
CycleCheck- point ControlNYH10, CALR, Calm1 (in- cludes others), CAMK1, MAPK1, MYL6, MYH14, Acta2, Camk2b, Tpm4, MAPK3, PPP3CA, Tpm33-phosphoinosi- tide3.09E-04ITPK1, NUDT11, PPP4R1PPFIA1, NUDT5, SYNJ1, PPP2R3A, PPM1H, PPP1R12A, IGBP1, PPP3CAD-myo-inositol- S-phosphate Metabolism3.09E-04ITPK1, PP4R1PPFIA1, NUDT5, SYNJ1, PPP2R3A, PPM1H, PPP1R12A, IGBP1, PPP3CAp70S6K Signal- ing3.63E-04PPP2R1AIGBP1, PP93CAp70S6K Signal- ing3.63E-04PPP2R1BMAPK1, PPP2R3A, MAPK3RhoA Signaling4.47E-04RHOA, ARPC4, PPP2R1BACTR2, ACTR3, CFL1, MYL6, ARPC4, PPP1R12A, ARHGEF11, LIMK1ARHGAP1, MSNWnt/î2-catenin sis4.79E-04APPL1, PP2R1BPPP2R3A, MARK2, CSNK1A1, PPP2R3A, MARK2, CSNK1A1, PPP2R1B3-phosphoinosi- sis6.31E-04ITPK1, NUDT11, PPP2R3A, PPM1H, PPP1R12A, NUDT11, PPP2R3A, PPM1H, PPP1R12A, PP2R3A, PPM1H, PPP1R12A, PP1R1A, NUDT11, PPP2R3A, PPM1H, PPP1R12A, PP1R1A, NUDT11, PP2R3A, PPM1H, PP1R12A, SIGB1ing6.31E-04TRK1, PP4R1GBP1, PP3CAPP4R1PAK Signaling7.76E-04LIMK1MAPK2, MAPK1, CFL1, MYL6, MAPK3, RAC1, GIT1MAP2K2, MAPK1, CFL1, MYL6, MAPK3, RAC1, GIT1Remodeling of Epithelial Ad- herens Junctions7.94E-04RAB5C, ARPC4Assembly of as II Complex8.32E-04TAF9, POLR2A, POLR2A, POLR2C, POLR2E, POLR2H, POLR2B		2.14E-04		PPP2R1A, , PPP2R3A, CDK2
Calcium Signal- ing2.14E-04MYH10, CALR, Calm1 (in- cludes others), CAMK1, MAPK1, MYL6, MYH14, Acta2, Camk2b, Tpm4, MAPK3, PPP3CA, Tpm33-phosphoinosi- tide Degrada- tion3.09E-04ITPK1, NUDT11, PPP4R1PPFIA1, NUDT5, SYNJ1, PPP2R3A, PPM1H, PPP1R12A, IGBP1, PPP3CAD-myo-inositol- 5-phosphate3.09E-04ITPK1, PPP4R1PPFIA1, NUDT5, SYNJ1, PPP2R3A, PPM1H, PPP1R12A, IGBP1, PPP3CAp70S6K Signal- ing3.63E-04PPP2R2A, PPP2R1BRPS6, PPP2R1A, MAPK2, MAPK1, PPP2R3A, MAPK3RhoA Signaling4.47E-04RHOA, ARPC4, PPP2R1BACTR2, ACTR3, CFL1, MYL6, ARPC4, PPP2R1A, MARK2, CSNK1A1, ILK, RUVBL23-phosphoinosi- tide Biosynthe- sis6.31E-04ITPK1, PPP2R1BPPP2R3A, PPM1H, PPP1R12A, ARHGAP1, MSNWnt/β-catenin Signaling6.31E-04ITPK1, PPP2R1BPPP2R3A, MARK2, CSNK1A1, ILK, RUVBL23-phosphoinosi- tide Biosynthe- sis6.31E-04ITPK1, PPP2R1BPPP2R3A, PPM1H, PPP1R12A, IGBP1, PPP3CAPAK Signaling7.76E-04LIMK1MAP2K2, MAPK1, CFL1, MYL6, MAPK3, RAC1, GIT1Remodeling of Lepthelial Ad- herens Junctions7.94E-04RAB5C, ARPC4DNM1, ACTR2, TUBB2A, CTNNA1, EXOC2Assembly of ase II Complex8.32E-04TAF9, POLR2A, POLR2B	Cycle Check-			
ing cludes others), CAMK1, MAPK1, MYL6, MYH14, Acta2, Camk2b, Tpm4, MAPK3, PPP3CA, Tpm3 3-phosphoinosi- tide Degrada- tion 3.09E-04 ITPK1, D-myo-inositol- 5-phosphate NUDT11, PP4R1 IGBP1, PP9CA D-myo-inositol- 5-phosphate NUDT11, PP4R1 IGBP1, PP9CA PP9R3A, PPM1H, PPP1R12A, Metabolism PP4R1 IGBP1, PP9CA PP2R3A, PPM1H, PPP1R12A, IGBP1, PP9CA PP2R3A, PPM1H, PPP1R12A, PPP2R3A, PPM1H, PPP1R12A, IGBP1, PP9CA PP2R3A, PPM1H, PPP1R12A, PPP2R1B MAPK1, PPP2R3A, MAPK3 RhoA Signaling 4.47E-04 RHOA, ARPC4, PPP2R1B MAPK1, PPP2R3A, MAPK3 Signaling 4.79E-04 APL1, Signaling 4.79E-04 APL1, PPP2R3A, MARK2, CSNK1A1, PPP2R3A, MARK2, CSNK1A1, PPP2R1B ILK, RUVBL2 3-phosphoinosi- tide Biosynthe- sis PP4R1 IGBP1, PP3CA PAK Signaling 7.76E-04 LIMK1 MAP2K2, MAPK1, CFL1, MYL6, MAPK3, RAC1, GIT1 Remodeling of 7.94E-04 RAB5C, ARPC4 ARPC4 CTR3, TUBB2A, CTNNA1, herens Junctions ARPC4 TAP5, POLR2A, POLR2A, POLR2A, POLR2B ase II Complex APUMCA ARPC4, POLR2B		2 14E 04		MVH10 CALP Colm1 (in
Acta2, Camk2b, Tpm4, MAPK3, PPP3CA, Tpm33-phosphoinosi- tide Degrada- tion3.09E-04ITPK1, NUDT11, PPP4R1PPFIA1, PPP2R3A, PPM1H, PPP1R12A, IGBP1, PPP3CAD-myo-inositol- 5-phosphate3.09E-04ITPK1, NUDT11, PPP4R1PPFIA1, NUDT5, SYNJ1, PPP2R3A, PPM1H, PPP1R12A, IGBP1, PPP3CAp70S6K Signal- ing3.63E-04PPP2R2A, PPP2R1BPPP2R3A, PPP2R1A, MAPK1, PPP2R3A, MAPK3RhoA Signaling4.47E-04RHOA, ARPC4, PPP2R1BACTR2, ACTR3, CFL1, MYL6, ARPC4, PPP2R1A, ARHGAP1, MSNWnt/β-catenin Signaling4.79E-04APPL1, PPP2R2A, PPP2R1BPPP2R3A, MARK2, CSNK1A1, PPP2R3A, MARK2, CSNK1A1, PPP2R1B3-phosphoinosi- tide Biosynthe- sis6.31E-04ITPK1, NUDT11, PPP2R3A, PPM1H, PPP1R12A, PPP2R3A, PPM1H, PPP1R12A, PPP2R3A, PPM1H, PPP1R12A, PPP2R1BRemodeling of Epithelial Ad- herens Junctions7.94E-04RAB5C, ARPC4DNM1, ACTR3, TUBB2A, CTNNA1, EXOC2Assembly of ase II Complex8.32E-04TAF9, POLR2A, POLR2A, POLR2C, POLR2E, POLR2H, POLR2BTAF9, POLR2A, POLR2C, POLR2E, POLR2H, POLR2B	U	2.14L-04		, , , , , , , , , , , , , , , , , , , ,
PPP3CA, Tpm33-phosphoinosi- tide3.09E-04ITPK1, NUDT11, PPP4R1PPFIA1, PPP2R3A, PPM1H, PPP1R12A, IGBP1, PPP3CAD-myo-inositol- 5-phosphate3.09E-04ITPK1, NUDT11, PPP4R1PPFIA1, NUDT5, SYNJ1, PPP2R3A, PPM1H, PPP1R12A, IGBP1, PP93CAp70S6K Signal- ing3.63E-04PPP2R2A, PPP2R1BRPS6, MAPK1, PPP2R3A, MAPK3RhoA Signaling4.47E-04RHOA, ACTR2, ACTR3, CFL1, MYL6, PPP2R1BACTR2, ACTR3, CFL1, MYL6, PP1R12A, ARHGAP1, MSNWnt/β-catenin Signaling4.79E-04APPL1, PPP2R2A, PPP2R1BPPP2R1A, PPP2R1A, ILK, RUVBL23-phosphoinosi- tide Biosynthe- sis6.31E-04ITPK1, PPP2R1BPPFIA1, NUDT5, SYNJ1, PPP2R3A, MARK2, CSNK1A1, PPP2R3A, MARK2, CSNK1A1, PPP2R1BPAK Signaling7.76E-04LIMK1MAP2K2, MAPK1, CFL1, MYL6, MAPX3, RAC1, GIT1Remodeling of Epithelial Ad- herens Junctions7.94E-04RAB5C, ARPC4DNM1, ACTR2, TUBB3, ACTR3, TUBB2A, CTNNA1, EXOC2Assembly of ase II Complex8.32E-04TAF9, POLR2A, POLR2A, POLR2C, POLR2E, POLR2H, POLR2B				
3-phosphoinosi- tide3.09E-04ITPK1, NUDT11, PPP4R1PPFIA1, PPP2R3A, PPM1H, PPP1R12A, IGBP1, PPP3CAD-myo-inositol- 5-phosphate3.09E-04ITPK1, NUDT11, PPP4R1PPFIA1, PPP2R3A, PPM1H, PPP1R12A, IGBP1, PPP3CAMetabolismPPP4R1IGBP1, PPP3CAp70S6K Signal- ing3.63E-04PPP2R2A, PPP2R1BRP56, MAPK1, PPP2R3A, MAPK3RhoA Signaling4.47E-04RHOA, ARPC4, PPP2R1BACTR2, ACTR3, CFL1, MYL6, PPP1R12A, ARHGEF11, LIMK1Wnt/β-catenin Signaling4.79E-04APPL1, PPP2R2A, PPP2R1BPPP2R3A, MARK2, CSNK1A1, ILK, RUVBL23-phosphoinosi- tide Biosynthe- sis6.31E-04ITPK1, PPP2R1BPPP2R3A, PPM1H, PPP1R12A, ARHGAP1, MSNPAK Signaling7.76E-04LIMK1MAP2K2, MAPK1, CFL1, MYL6, MAPK3, RAC1, GIT1Remodeling of Epithelial Ad- herens Junctions7.94E-04RAB5C, ARPC4DNM1, ACTR2, TUBB3, ACTR3, TUBB2A, CTNNA1, EXOC2Assembly ase II Complex8.32E-04TAF9, POLR2A, POLR2A, POLR2B				
tionPPP4R1IGBP1, PPP3CAD-myo-inositol- 5-phosphate3.09E-04ITPK1, NUDT11, PPP4R1PPFIA1, NUDT5, SYNJ1, PPP2R3A, PPM1H, PPP1R12A, IGBP1, PPP3CAp70S6K Signal- ing3.63E-04PPP2R2A, PPP2R1BRPS6, , PPP2R1A, MAP2K2, MAPK1, PPP2R3A, MAPK3RhoA Signaling4.47E-04RHOA, ARPC4, ILIMK1ACTR2, ACTR3, CFL1, MYL6, ARPC4, PPP2R1BWnt/P-catenin Signaling4.79E-04APPL1, PPP2R2A, PPP2R1BPPP2R1A, , MAP3K7, PPP2R3A, MARK2, CSNK1A1, ILK, RUVBL23-phosphoinosi- tide Biosynthe- sis6.31E-04ITPK1, NUDT11, PPP2R1BPPFIA1, NUDT5, SYNJ1, PPP2R3A, PPM1H, PPP1R12A, IGBP1, PP93CAPAK Signaling7.76E-04LIMK1MAP2K2, MAPK1, CFL1, MYL6, MAPK3, RAC1, GIT1Remodeling of Epithelial Ad- herens Junctions7.94E-04RAB5C, ARPC4DNM1, ACTR2, TUBB3, ACTR3, TUBB2A, CTNNA1, EXOC2Assembly ase II Complex8.32E-04TAF9, POLR2A, POLR2C, POLR2E, POLR2H, POLR2B		3.09E-04	ITPK1,	PPFIA1, NUDT5, SYNJ1,
D-myo-inositol- 5-phosphate3.09E-04ITPK1, NUDT11, PPP4R1PPFIA1, PPP2R3A, PPM1H, PPP1R12A, IGBP1, PP93CAp70S6K Signal- ing3.63E-04PPP2R2A, PPP2R1BRPS6, MAPK1, PPP2R3A, MAP2K2, MAPK1, PPP2R3A, MAPK3RhoA Signaling4.47E-04RHOA, ARPC4, LIMK1ACTR2, ACTR3, CFL1, MYL6, ARPC4, PP1R12A, ARHGAP1, MSNWnt/β-catenin Signaling4.79E-04APPL1, PP2R2A, PPP2R1BPPP2R1A, PP2R3A, MARK2, CSNK1A1, PPP2R3A, MARK2, CSNK1A1, PPP2R3A, MARK2, CSNK1A1, PPP2R3A, PPM1H, PPP1R12A, Signaling3-phosphoinosi- tide Biosynthe- sis6.31E-04ITPK1, NUDT11, PPP4R11PPFIA1, NUDT5, SYNJ1, PPP2R3A, PPM1H, PPP1R12A, IGBP1, PPP3CAPAK Signaling7.76E-04LIMK1MAP2K2, MAPK1, CFL1, MYL6, MAPK3, RAC1, GIT1Remodeling of Epithelial Ad- herens Junctions7.94E-04RAB5C, ARPC4DNM1, ACTR2, TUBB3, ACTR3, TUBB2A, CTNNA1, EXOC2Assembly ase II Complex8.32E-04TAF9, POLR2A, POLR2C, POLR2E, POLR2H, POLR2B	0		,	
5-phosphate MetabolismNUDT11, PPP4R1PPP2R3A, PPM1H, PPP1R12A, IGBP1, PPP3CAp70S6K Signal- ing3.63E-04PPP2R2A, PPP2R1BRPS6, , PPP2R1A, MAP2K2, MAPK1, PPP2R3A, MAPK3RhoA Signaling4.47E-04RHOA, ARPC4, LIMK1ACTR2, ACTR3, CFL1, MYL6, APP1R12A, ARHGEF11, LIMK1Wnt/β-catenin Signaling4.79E-04APPL1, PPP2R2A, PPP2R1BPPP2R1A, , MAP3K7, PPP2R3A, MARK2, CSNK1A1, ILK, RUVBL23-phosphoinosi- tide Biosynthe- sis6.31E-04ITPK1, PPP4R1PPFIA1, NUDT5, SYNJ1, PPP4R1Remodeling of Epithelial Ad- herens Junctions7.76E-04LIMK1MAP2K2, MAPK1, CFL1, MYL6, MAPK3, RAC1, GIT1Remodeling of RSSembly of ase II Complex8.32E-04TAF9, POLR2A, POLR2A, POLR2C, POLR2E, POLR2H, POLR2B		2.005.04		,
MetabolismPPP4R1IGBP1, PPP3CAp70S6K Signal- ing3.63E-04PPP2R2A, PPP2R1BRPS6, PPP2R1A, MAP2K2, MAPK1, PPP2R3A, MAPK3RhoA Signaling4.47E-04RHOA, ARPC4, LIMK1ACTR2, ACTR3, CFL1, MYL6, PPP1R12A, ARHGEF11, LIMK1Wnt/β-catenin Signaling4.79E-04APPL1, PP2R2A, PPP2R1BPPP2R1A, MAP3K7, PPP2R3A, MARK2, CSNK1A1, ILK, RUVBL23-phosphoinosi- tide Biosynthe- sis6.31E-04ITPK1, NUDT11, PPP4R1PPFIA1, NUDT5, SYNJ1, PPP2R3A, PPM1H, PPP1R12A, IGBP1, PP93CAPAK Signaling7.76E-04LIMK1MAP2K2, MAPK1, CFL1, MYL6, MAPK3, RAC1, GIT1Remodeling of Epithelial Ad- herens Junctions7.94E-04RAB5C, ARPC4DNM1, ACTR2, TUBB3, ACTR3, TUBB2A, CTNNA1, EXOC2Assembly ase II Complex8.32E-04TAF9, POLR2A, POLR2C, POLR2E, POLR2H, POLR2B	-	3.09E-04	<i>,</i>	
p70S6K Signal- ing3.63E-04PPP2R2A, PPP2R1BRPS6, MAPK1, MAPK1, PPP2R3A, MAPK3RhoA Signaling4.47E-04RHOA, ARPC4, LIMK1ACTR2, ACTR3, CFL1, MYL6, PPP1R12A, ARHGEF11, LIMK1Wnt/β-catenin Signaling4.79E-04APPL1, PPP2R2A, PPP2R1BPPP2R1A, PPP2R3A, MARK2, CSNK1A1, PPP2R3A, MARK2, CSNK1A1, PPP2R3A, MARK2, CSNK1A1, PPP2R3A, MARK2, CSNK1A1, PPP2R3A, MARK2, CSNK1A1, PPP2R3A, PPM1H, PPP1R12A, ILK, RUVBL23-phosphoinosi- tide Biosynthe- sis6.31E-04ITPK1, NUDT11, PPP4R1PPFIA1, PUP2R3A, PPM1H, PPP1R12A, IGBP1, PPP3CAPAK Signaling7.76E-04LIMK1MAP2K2, MAPK3, RAC1, GIT1Remodeling of Epithelial Ad- herens Junctions7.94E-04RAB5C, ARPC4DNM1, ACTR2, ACTR3, TUBB2A, CTNNA1, EXOC2Assembly ase II Complex6.32E-04TAF9, POLR2A, POLR2A, POLR2H, POLR2BTAF9, POLR2H, POLR2H, POLR2B			,	
ingPPP2R1BMAPK1, PPP2R3A, MAPK3RhoA Signaling4.47E-04RHOA, ARPC4, LIMK1ACTR2, ACTR3, CFL1, MYL6, PPP1R12A, ARHGEF11, ARHGAP1, MSNWnt/β-catenin Signaling4.79E-04APPL1, PPP2R2A, PPP2R1BPPP2R1A, MAP3K7, PPP2R3A, MARK2, CSNK1A1, ILK, RUVBL23-phosphoinosi- tide Biosynthe- sis6.31E-04ITPK1, NUDT11, PPP4R1PPFIA1, NUDT5, SYNJ1, PPP2R3A, PPM1H, PPP1R12A, IGBP1, PPP3CAPAK Signaling7.76E-04LIMK1MAP2K2, MAPK1, CFL1, MYL6, MAPK3, RAC1, GIT1Remodeling of Epithelial Ad- herens Junctions7.94E-04RAB5C, ARPC4DNM1, ACTR2, TUBB3, ACTR3, TUBB2A, CTNNA1, EXOC2Assembly ase II Complex6.32E-04TAF9, POLR2A, POLR2C, POLR2E, POLR2H, POLR2B		3.63E-04		,
RhoA Signaling4.47E-04RHOA, ARPC4, LIMK1ACTR2, ACTR3, CFL1, MYL6, PPP1R12A, ARHGEF11, ARHGAP1, MSNWnt/β-catenin4.79E-04APPL1, PP2R2A, PPP2R1BPPP2R1A, ILK, RUVBL2MAP3K7, PPP2R3A, MARK2, CSNK1A1, ILK, RUVBL23-phosphoinosi- tide Biosynthe- sis6.31E-04ITPK1, NUDT11, PPP4R1PPFIA1, PPP2R3A, PPM1H, PPP1R12A, IGBP1, PPP3CAPAK Signaling7.76E-04LIMK1MAP2K2, MAPK3, RAC1, GIT1Remodeling of Epithelial Ad- herens Junctions7.94E-04RAB5C, ARPC4DNM1, ACTR2, TUBB3, ACTR3, TUBB2A, CTNNA1, EXOC2Assembly ase II Complex8.32E-04TAF9, POLR2A, POLR2A, POLR2B, POLR2H, POLR2B		J.0JL-04		
ARPC4, LIMK1PPP1R12A, ARHGEF11, ARHGAP1, MSNWnt/β-catenin Signaling4.79E-04APPL1, PPP2R2A, PPP2R2A, PPP2R1BPPP2R1A, PP2R3A, MARK2, CSNK1A1, ILK, RUVBL23-phosphoinosi- tide Biosynthe- sis6.31E-04ITPK1, NUDT11, PPP4R1PPFIA1, PPP2R3A, PPM1H, PPP1R12A, IGBP1, PPP3CAPAK Signaling7.76E-04LIMK1MAP2K2, MAPK3, RAC1, GIT1Remodeling of Epithelial Ad- herens Junctions7.94E-04RAB5C, ARPC4DNM1, ACTR2, TUBB2A, CTNNA1, EXOC2Assembly ase II Complex8.32E-04TAF9, POLR2A, POLR2A, POLR2B, POLR2H, POLR2B	- U	4.47E-04		
LIMK1ARHGAP1, MSNWnt/β-catenin Signaling4.79E-04APPL1, PPP2R2A, PPP2R1BPPP2R1A, PPP2R3A, MARK2, CSNK1A1, ILK, RUVBL23-phosphoinosi- tide Biosynthe- sis6.31E-04ITPK1, NUDT11, PPP4R1PPFIA1, NUDT5, SYNJ1, PPP2R3A, PPM1H, PPP1R12A, IGBP1, PPP3CAPAK Signaling7.76E-04LIMK1MAP2K2, MAPK1, CFL1, MYL6, MAPK3, RAC1, GIT1Remodeling of Epithelial Ad- herens Junctions7.94E-04RAB5C, ARPC4DNM1, ACTR2, TUBB3, ACTR3, TUBB2A, CTNNA1, EXOC2Assembly ase II Complex8.32E-04TAF9, POLR2A, POLR2C, POLR2E, POLR2H, POLR2B	8		· ·	
SignalingPPP2R2A, PPP2R1BPPP2R3A, MARK2, CSNK1A1, ILK, RUVBL23-phosphoinosi- tide Biosynthe- sis6.31E-04ITPK1, NUDT11, PPP4R1PPFIA1, NUDT5, SYNJ1, PPP2R3A, PPM1H, PPP1R12A, IGBP1, PPP3CAPAK Signaling7.76E-04LIMK1MAP2K2, MAPK1, CFL1, MYL6, MAPK3, RAC1, GIT1Remodeling of Epithelial Ad- herens Junctions7.94E-04RAB5C, ARPC4DNM1, ACTR2, TUBB3, ACTR3, TUBB2A, CTNNA1, EXOC2Assembly ase II Complex8.32E-04TAF9, POLR2A, POLR2C, POLR2E, POLR2H, POLR2B			,	
PPP2R1BILK, RUVBL23-phosphoinosi- tide Biosynthe- sis6.31E-04ITPK1, NUDT11, PPP4R1PPFIA1, PPP2R3A, PPM1H, PPP1R12A, IGBP1, PPP3CAPAK Signaling7.76E-04LIMK1MAP2K2, MAPK3, RAC1, GIT1Remodeling of Epithelial Ad- herens Junctions7.94E-04RAB5C, ARPC4DNM1, ACTR3, TUBB2A, CTNNA1, EXOC2Assembly ase II Complex8.32E-04TAF9, POLR2E, POLR2H, POLR2B	Wnt/Î ² -catenin	4.79E-04	APPL1,	PPP2R1A, , MAP3K7,
3-phosphoinosi- tide Biosynthe- sis6.31E-04ITPK1, NUDT11, PPP4R1PPFIA1, PPP2R3A, PPM1H, PPP1R12A, IGBP1, PPP3CAPAK Signaling7.76E-04LIMK1MAP2K2, MAPK1, MYL6, MAPK3, RAC1, GIT1Remodeling of Epithelial Ad- herens Junctions7.94E-04RAB5C, ARPC4DNM1, ACTR3, TUBB2A, TUBB2A, CTNNA1, EXOC2Assembly ase II Complex8.32E-04TAF9, POLR2E, POLR2H, POLR2H, POLR2H, POLR2B	Signaling			
tide Biosynthe- sisNUDT11, PPP4R1PPP2R3A, PPM1H, PPP1R12A, IGBP1, PPP3CAPAK Signaling7.76E-04LIMK1MAP2K2, MAPK1, CFL1, MYL6, MAPK3, RAC1, GIT1Remodeling of Epithelial Ad- herens Junctions7.94E-04RAB5C, ARPC4DNM1, ACTR2, TUBB3, ACTR3, TUBB2A, CTNNA1, EXOC2Assembly ase II Complex8.32E-04TAF9, POLR2A, POLR2C, POLR2E, POLR2H, POLR2B				
sisPPP4R1IGBP1, PPP3CAPAK Signaling7.76E-04LIMK1MAP2K2, MAPK1, CFL1, MYL6, MAPK3, RAC1, GIT1Remodeling of Epithelial Ad- herens Junctions7.94E-04RAB5C, ARPC4DNM1, ACTR2, TUBB3, ACTR3, TUBB2A, CTNNA1, EXOC2Assembly ase II Complex8.32E-04TAF9, POLR2A, POLR2C, POLR2E, POLR2H, POLR2B	1 I	6.31E-04	,	· · · · ·
PAK Signaling7.76E-04LIMK1MAP2K2, MAPK1, CFL1, MYL6, MAPK3, RAC1, GIT1Remodeling of Epithelial Ad- herens Junctions7.94E-04RAB5C, ARPC4DNM1, ACTR2, TUBB3, ACTR3, TUBB2A, CTNNA1, EXOC2Assembly ase II Complex8.32E-04TAF9, POLR2A, POLR2C, POLR2E, POLR2H, POLR2B	•		,	
MYL6, MAPK3, RAC1, GIT1Remodeling of Epithelial Ad- herens Junctions7.94E-04RAB5C, ARPC4DNM1, ACTR2, TUBB3, ACTR3, TUBB2A, CTNNA1, EXOC2Assembly of RNA Polymer- ase II Complex8.32E-04TAF9, POLR2A, POLR2C, POLR2E, POLR2H, POLR2B		776E 04		,
Remodeling of Epithelial Ad- herens Junctions7.94E-04RAB5C, ARPC4DNM1, ACTR2, TUBB3, ACTR3, TUBB2A, CTNNA1, EXOC2Assembly of RNA Polymer- ase II Complex8.32E-04TAF9, POLR2A, POLR2C, POLR2E, POLR2H, POLR2B	r AK Signaling	7.70L-04		
herens JunctionsEXOC2Assembly of RNA Polymer- ase II Complex8.32E-04TAF9, POLR2A, POLR2C, POLR2E, POLR2H, POLR2B	Remodeling of	7.94E-04	RAB5C,	
Assembly of RNA Polymer- ase II Complex8.32E-04TAF9, POLR2A, POLR2C, POLR2E, POLR2H, POLR2B			ARPC4	ACTR3, TUBB2A, CTNNA1,
RNAPolymer- ase II ComplexPOLR2E, POLR2H, POLR2B				
ase II Complex	•	8.32E-04		
	•			POLR2E, POLR2H, POLR2B
Geneling by 0.1E 0.4 DUOA ACTDO MADIZI CELI MAZI C	^	<u> </u>		ACTD2 MADELL OF L MALE
Signalingby8.91E-04RHOA,ACTR2, MAPK1, CFL1, MYL6,RhoFamilyARPC4,RAC1,ACTR3,	0 0	8.91E-04	,	
GTPases AKFC4, KAC1, AC1K3, AKF1F2, LIMK1 MAP2K2, MAPK3, PPP1R12A,	•		,	
ARHGEF11, MSN				

II 2 0' 1'	1.000 02		MADOKO MADKI ODKI
IL-3 Signaling	1.02E-03	STAT6	MAP2K2, MAPK1, CRKL,
	1.0000.00		MAPK3, RAC1, PPP3CA
Nucleotide Ex-	1.02E-03		POLR2A, POLR2C, POLR2E,
cision Repair			POLR2H, POLR2B
Pathway			
Aryl Hydrocar-	1.20E-03	TRIP11	TGM2, MAPK1, POLA1,
bon Receptor			MAPK3, BAX, CDK2, HSPB1,
Signaling			MCM7, AIP
Ephrin B Sig-	1.32E-03	KALRN,	MAPK1, CFL1, MAPK3, RAC1
naling		RHOA, LIMK1	
Integrin Signal-	1.62E-03	RHOA, ARPC4	ACTR2, ACTR3, MAP2K2,
ing			MAPK1, CRKL, MAPK3,
C			CAPN1, RAC1, ILK,
			PPP1R12A, GIT1
Epithelial Ad-	1.66E-03	RHOA, ARPC4	MYH10, ACTR2, TUBB3,
herens Junction			ACTR3, MYL6, MYH14,
Signaling			TUBB2A, RAC1, CTNNA1
RhoGDI Signal-	1 91E-03	RHOA,	ACTR2, ACTR3, CFL1, MYL6,
ing	1.712 05	ARPC4,	RAC1, PPP1R12A, ARHGEF11,
mg		LIMK1	ARHGAP1, MSN
Enhrin Decentor	2.00E-03	KALRN,	ACTR2, ACTR3, MAP2K2,
Ephrin Receptor	2.00E-05	RHOA,	
Signaling			MAPK1, CFL1, CRKL,
		ARPC4,	MAPK3, RAC1
0 1 0	2.045.02	LIMK1	
Ceramide Sig-	2.04E-03	PPP2R2A,	PPP2R1A, , PPP2R3A, MAPK3
naling		PPP2R1B	
Cyclins and Cell	2.04E-03	PPP2R2A,	PPP2R1A, PPP2R3A, CDK2
Cycle Regula-		PPP2R1B	
tion			
Clathrin-medi-	3.02E-03	RAB5C,	DNM1, ACTR2, ACTR3,
ated Endocyto-		TSG101,	RAB4A, TF, SYNJ1, CLTB,
sis Signaling		ARPC4	RAC1, SH3GLB1, PPP3CA
FAK Signaling	3.31E-03	HMMR	MAP2K2, MAPK1, MAPK3,
			CAPN1, RAC1, Acta2
Cdc42 Signal-	3.39E-03	ARPC4,	ACTR2, ACTR3, MAPK1,
ing		LIMK1	CFL1, MYL6, EXOC2,
			PPP1R12A, EXOC6, EXOC3
Superpathway	3.72E-03	ITPK1,	PPFIA1, NUDT5, SYNJ1,
of Inositol Phos-		NUDT11,	PPP2R3A, PPM1H, PPP1R12A,
phate Com-		PPP4R1	IGBP1, PPP3CA
pounds			, , , , , , , , , , , , , , , , , , ,
Pyrimidine Ri-	4.27E-03		NUDT5, NME2, CMPK1,
bonucleotides			UMPS
De Novo Bio-			
synthesis			
PPAR Signaling	5.13E-03	NCOR1	MAD2K2 MADK1 MAD2K7
I FAR Signaling	5.15E-05	NUUKI	MAP2K2, MAPK1, MAP3K7,
America D	5 500 02		MAPK3, NCOA1, AIP
Amyloid Pro-	5.50E-03		CDK5, MAPK1, MAPK3,
cessing			CAPN1, CSNK1A1

Phospholipase	6.61E-03	PLA2G6,	TGM2, Calm1 (includes others),
C Signaling		RHOA	MAP2K2, MAPK1, MYL6,
			MAPK3, RAC1, PPP1R12A,
			ARHGEF11, PPP3CA
PPARα/RXRα	6.61E-03	GPD1, NCOR1	CAND1, MAP2K2, MAPK1,
Activation			MAP3K7, MAPK3, CKAP5,
			PRKAA1, AIP
NRF2-mediated	7.41E-03	TXNRD1	USP14, ERP29, MAP2K2,
Oxidative Stress			MAPK1, MAP3K7, MAPK3,
Response			CAT, DNAJA2, DNAJA1,
Actin Nuclea-	8.13E-03	RHOA, ARPC4	ACTR2, ACTR3, RAC1,
tion by ARP-			PPP1R12A
WASP Com-			
plex			
Insulin Receptor	9.77E-03	EIF2B1	EIF2B4, SYNJ1, MAP2K2,
Signaling			MAPK1, CRKL, MAPK3,
			PPP1R12A

Table 9. The 211 proteins/ protein groups met the 2 rigorous criteria (See Methods for details) for classification as PP2Ac interaction partners in human skeletal muscle. # indicating previously identified PP2A partners.

Gene name	Protein ID	Protein name	enrichme nt ratio
PPP2R1A	B3KQV6	Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A alpha isoform	213.3
PPP2R2A	E5RFR9	Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B alpha isoform	155.7
PPP2R3A	F6URX5	Serine/threonine-protein phosphatase 2A regulatory subunit B subunit alpha	10435.3
PPP2R5D	E9PFR3	Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit delta isoform	Infinite
AASDHPPT	B4DDW7	L-aminoadipate-semialdehyde dehydrogenase- phosphopantetheinyl transferase	Infinite
ACAD8	B7Z5W4	Isobutyryl-CoA dehydrogenase, mitochondrial	715.6
ACADM	B4DJE7	Medium-chain specific acyl- CoA dehydrogenase, mitochondrial	20.0
ACADS	E9PE82	Short-chain specific acyl-CoA dehydrogenase, mitochondrial	58.5
ACADSB	B4DQ51	Short/branched chain specific acyl-CoA dehydrogenase, mitochondrial	28.9
ACO1,IRP1	P21399	Cytoplasmic aconitate hydratase	Infinite
ACOT9	C9J7L8	Acyl-coenzyme A thioesterase 9, mitochondrial	11.0
ACTR1A	B4DXP9	Alpha-centractin	Infinite
ACTR1B	P42025	Beta-centractin	Infinite
ADSSL1	G3V232	Adenylosuccinate synthetase isozyme 1	10.7
AKR1B1	E9PCX2	Aldose reductase	Infinite
AKR7A2	H3BLU7	Aflatoxin B1 aldehyde reductase member 2	Infinite

AKT2	A8MX96	RAC-beta serine/threonine-	Infinite
		protein kinase	
ALDH4A1	P30038	Delta-1-pyrroline-5-	Infinite
		carboxylate dehydrogenase,	
	GALLER	mitochondrial	T (1 1
ALDH6A1	G3V4Z4	Methylmalonate-	Infinite
		semialdehyde dehydrogenase	
		[acylating], mitochondrial	
ANXA5	D6RBE9	Annexin A5;Annexin	Infinite
AP1G1	B3KXW5	AP-1 complex subunit	Infinite
	COLADO	gamma-1	I. C it .
APPL1	C9JAB0	DCC-interacting protein 13-	Infinite
		alpha	T C' '
APRT	H3BQB1	Adenine	Infinite
ADCN1	DOVING	phosphoribosyltransferase	T
ARCN1	B0YIW6	Coatomer subunit delta	Infinite
ARHGDIA	J3KRE2	RhoGDP-dissociationinhibitor 1	23.1
ART3	E7ER42	Ecto-ADP-ribosyltransferase 3	18.6
ASNA1	K7ERW9	ATPase ASNA1	Infinite
ATP1B1	A6NGH2	Sodium/potassium-	Infinite
		transporting ATPase subunit	
		beta-1	
ATP5J2,PTCD1	C9JJT5	ATP synthase subunit f,	10.6
,		mitochondrial	
ATP5S	Q8WXQ4	ATP synthase subunit s,	Infinite
		mitochondrial	
ATP6V1B2	C9J5E3	V-type proton ATPase subunit	Infinite
		B, brain isoform	
ATP6V1E1	C9J8H1	V-type proton ATPase subunit	22.0
		E 1	
BLVRB	M0QZL1	Flavin reductase (NADPH)	10.1
BPNT1	A6NF51	3(2),5-bisphosphate	Infinite
		nucleotidase 1	
BZW2	B5MCE7	Basic leucine zipper and W2	112.6
		domain-containing protein 2	
C1ORF57,NTPCR	Q5TDF0	Cancer-related nucleoside-	50.4
	_	triphosphatase	
C210RF33	F2Z2Q0	ES1 protein homolog,	Infinite
		mitochondrial	
CA1	E5RFE7	Carbonic anhydrase 1	Infinite
CAB39			34.3
	B7ZBJ4	Calcium-binding protein 39	54.5
CAMK2G	B7ZBJ4 B4DVQ3	Calcium-binding protein 39 Calcium/calmodulin-	46.8
CAMK2G		Calcium/calmodulin-	
CAMK2G		<u> </u>	
CAMK2G CAND1		Calcium/calmodulin- dependent protein kinase type	
	B4DVQ3	Calcium/calmodulin- dependent protein kinase type II subunit gamma	46.8

CARM1	K7EK20	Histone-arginine	13.3
CARNS1	A5YM72	methyltransferase CARM1 Carnosine synthase 1	12.7
CANNSI CAV1	E9PCT5	Caveolin-1;Caveolin	Infinite
CBR1	A8MTM1	Carbonyl reductase [NADPH] 1	Infinite
CCDC6	Q16204	Coiled-coil domain-containing protein 6	Infinite
CCT2	F5GWF6	T-complex protein 1 subunit beta	97.7
CCT6A	B4DPJ8	T-complex protein 1 subunit zeta	11.6
CDC37	K7EIU0	Hsp90 co-chaperone Cdc37	27.3
CECR5	A8MYZ9	Cat eye syndrome critical region protein 5	Infinite
CLPX			Infinite
СОРА	P53621	Coatomer subunit alpha;Xenin;Proxenin	16.9
COPS2	B4DIH5	COP9 signalosome complex subunit 2	115.6
COPS3	C9JLV5	COP9 signalosome complex subunit 3	17.9
COPS6	E7EM64	COP9 signalosome complex subunit 6	18.2
COPS7A	F5GXT7	COP9 signalosome complex subunit 7a	14.5
COQ3	Q5T063	Hexaprenyldihydroxybenzoat e methyltransferase, mitochondrial	14.1
CTBP1	D6RAX2	C-terminal-binding protein 1	Infinite
CUL1	Q13616	Cullin-1	13.9
DARS,DKFZP781B112 02	C9J7S3	AspartatetRNA ligase, cytoplasmic	10.6
DDX19A,DDX19B	B4DRZ7	ATP-dependent RNA helicase DDX19A;ATP-dependent RNA helicase DDX19B	15.5
DNAJA4	C9JDE6	DnaJ homolog subfamily A member 4	12.3
DPP9	M0QXA6	Dipeptidyl peptidase 9	Infinite
ECI2	С9Ј000	Enoyl-CoA delta isomerase 2, mitochondrial	14.9
EHD1	C9J2Z4	EH domain-containing protein 1	Infinite
EIF2B1	B4DGX0	Translation initiation factor eIF-2B subunit alpha	240.6
EIF3F	B3KSH1	Eukaryotic translation initiation factor 3 subunit F	56.5

EIF3I	Q13347	Eukaryotic translation initiation factor 3 subunit I	Infinite
EIF3M	B4E2Q4	Eukaryotic translation initiation factor 3 subunit M	586.7
EIF4A1	B4E102	Eukaryotic initiation factor 4A-I	Infinite
EIF4A2	E7EQG2	Eukaryotic initiation factor 4A-II	Infinite
ENDOG	Q14249	Endonuclease G, mitochondrial	35.2
FAF1	B1ANM7	FAS-associated factor 1	Infinite
FAHD1	Q6P587	Acylpyruvase FAHD1, mitochondrial	Infinite
FAM49B	E5RFS4	Protein FAM49B	Infinite
FBP2	O00757	Fructose-1,6-bisphosphatase isozyme 2	166.1
FERMT2	G3V1L6	Fermitin family homolog 2	7502.3
FH	P07954	Fumarate hydratase, mitochondrial	12.3
FLNA	E9PHF0	Filamin-A	19.6
FLNB	E7EN95	Filamin-B	32.9
GALK1	B4E1G6	Galactokinase	Infinite
GARS	H7C443	GlycinetRNA ligase	Infinite
GCDH	B4DK85	Glutaryl-CoA dehydrogenase, mitochondrial	32.0
GDI2	E7EU23	RabGDPdissociationinhibitor beta	12.5
GFPT1	E5RJP4	Glucosaminefructose-6- phosphate aminotransferase [isomerizing] 1	Infinite
GGH	Q92820	Gamma-glutamyl hydrolase	Infinite
GMPPA	C9J255	Mannose-1-phosphate guanyltransferase alpha	Infinite
GMPPB	Q9Y5P6	Mannose-1-phosphate guanyltransferase beta	Infinite
GPD1L	C9JFA7	Glycerol-3-phosphate dehydrogenase 1-like protein	17.2
GPS1	C9JFE4	COP9 signalosome complex subunit 1	692.0
GSN	P06396	Gelsolin;Isoform 4 of Gelsolin	22.1
GSTM3	P21266	Glutathione S-transferase Mu 3	63.2
HAGH	E7EN93	Hydroxyacylglutathione hydrolase, mitochondrial	26.5
HDDC2	Q7Z4H3	HD domain-containing protein 2	Infinite
HMGCL	B1AK13	Hydroxymethylglutaryl-CoA lyase, mitochondrial	17.9

HMGCS2	P54868	Hydroxymethylglutaryl-CoA synthase, mitochondrial	Infinite
HSD17B8	Q92506	Estradiol 17-beta- dehydrogenase 8	101.7
IDH3B	O43837	Isocitrate dehydrogenase [NAD] subunit beta, mitochondrial	23.9
IDH3G	E7EQB8	Isocitrate dehydrogenase [NAD] subunit gamma, mitochondrial	17.7
IFIT2	P09913	Interferon-induced protein with tetratricopeptide repeats 2	Infinite
IGBP1	P78318	Immunoglobulin-binding protein 1	61343.7
IMPDH2	C9J381	Inosine-5-monophosphate dehydrogenase 2	Infinite
IQGAP1	E9PDT6	Ras GTPase-activating-like protein IQGAP1	64.3
IVD	H0YKV0	Isovaleryl-CoA dehydrogenase, mitochondrial	Infinite
KIF5B	C9JWB9	Kinesin-1 heavy chain	Infinite
KPNA3	H0Y4S9	Importin subunit alpha-3	Infinite
KPNA4	H7C4F6	Importin subunit alpha-4	56.9
LAMP1	B4DWL3	Lysosome-associated membrane glycoprotein 1	Infinite
LAP3	H0Y983	Cytosol aminopeptidase	Infinite
LARS	B4DER1	LeucinetRNA ligase, cytoplasmic	98.0
LUM	P51884	Lumican	72.8
LYPLAL1	Q5VWZ2	Lysophospholipase-like protein 1	11.8
MAML3	E7EVW8	Mastermind-like protein 3	Infinite
MAOB	B7Z242	Amine oxidase [flavin- containing] B	13.8
MAP2K1	G5E9C7	Dual specificity mitogen- activated protein kinase kinase 1	87.8
MAP2K6	K7EIW3	Dual specificity mitogen- activated protein kinase kinase 6	118.7
MARCKS	P29966	Myristoylated alanine-rich C- kinase substrate	Infinite
MPST	B1AH49	3-mercaptopyruvate sulfurtransferase;Sulfurtransfe rase	14.5
MUSTN1,TMEM110			Infinite
MYH11	E7ERA5	Myosin-11	Infinite
MYH14	F2Z2U8	Myosin-14	72.7
		L	1

MYL12A,MYL12B,M YL9	J3KTJ1	Myosin regulatory light chain 12B;Myosin regulatory light	Infinite
		chain 12A;Myosin regulatory light polypeptide 9	
NAP1L4	A8MXH2	Nucleosome assembly protein 1-like 4	14.4
NEK7	C9J1H8	Serine/threonine-protein kinase Nek7	357.1
NT5C3	B9A035	Cytosolic 5-nucleotidase 3	Infinite
OTUB1	F5GYJ8	Ubiquitin thioesterase OTUB1	27.4
PACSIN3	E9PIY1	Protein kinase C and casein kinase substrate in neurons protein 3	26.5
РСТР	I3L2M9	Phosphatidylcholine transfer protein	Infinite
PCYOX1	B7Z3Y2	Prenylcysteine oxidase 1	12.2
PDE4D	D6RHE0	cAMP-specific 3,5-cyclic phosphodiesterase 4D	Infinite
PDIA3	G5EA52	Protein disulfide-isomerase A3;Thioredoxin	39.9
PDIA6	B5MCQ5	Protein disulfide-isomerase A6	59.1
PDK2	D6R983	[Pyruvate dehydrogenase [lipoamide]] kinase isozyme 2, mitochondrial	181.5
PGAM2	P15259	Phosphoglycerate mutase 2	36.1
PLCD4	C9JAE4	1-phosphatidylinositol 4,5- bisphosphate phosphodiesterase delta-4	2677.5
PLIN5	K7EIX1	Perilipin-5	15.3
PPME1	F5H2D4	Protein phosphatase methylesterase 1	Infinite
PPP1R7	B5MBZ8	Protein phosphatase 1 regulatory subunit 7	Infinite
PPP4C	H3BTA2	Serine/threonine-protein phosphatase 4 catalytic subunit;Serine/threonine- protein phosphatase	Infinite
PPP4R2	C9IZ04	Serine/threonine-protein phosphatase 4 regulatory subunit 2	Infinite
PRELP	P51888	Prolargin	Infinite
PRKAB2	B4DH06	5-AMP-activated protein kinase subunit beta-2	17.4
PRKAG1	E9PGP6	5-AMP-activated protein kinase subunit gamma-1	27.0
PRKG1	B1ALS0	cGMP-dependent protein kinase 1	49.1

PSMA7,PSMA8	H0Y586	Proteasome subunit alpha type-7;Proteasome subunit alpha type-7-like	Infinite
PSMC1	B4DR63	26S protease regulatory subunit 4	17.6
PSMC2	B7Z5E2	26S protease regulatory subunit 7	33.9
PSMC3	E9PKD5	26S protease regulatory subunit 6A	13.7
PSMC5	J3KRP2	26S protease regulatory subunit 8	12.1
PSMC6	Н0ҮЈС0	26S protease regulatory subunit 10B	19.5
PSMD1	C9J9M4	26S proteasome non-ATPase regulatory subunit 1	13.9
PSMD11	J3KSW3	26S proteasome non-ATPase regulatory subunit 11	28.2
PSMD12	J3KSK1	26S proteasome non-ATPase regulatory subunit 12	24.5
PSMD13	E9PL38	26S proteasome non-ATPase regulatory subunit 13	40.0
PSMD14	C9JW37	26S proteasome non-ATPase regulatory subunit 14	11.9
PSME2	H0YKU2	Proteasome activator complex subunit 2	27.9
PTGR1	F2Z3J9	Prostaglandin reductase 1	Infinite
PTPN11	H0YF12	Tyrosine-protein phosphatase non-receptor type 11	Infinite
RAB12	Q6IQ22	Ras-related protein Rab-12	12.7
RAB1B,RAB1C	E9PLD0	Ras-related protein Rab- 1B;Putative Ras-related protein Rab-1C	32.3
RAC1			11.0
RALA,RALB	B4E040	Ras-related protein Ral- A;Ras-related protein Ral-B	61.9
RBX1	P62877	E3 ubiquitin-protein ligase RBX1	40.0
RNF114	Q9Y508	RING finger protein 114	10.2
RNF123	C9J266	E3 ubiquitin-protein ligase RNF123	20.4
RPLP0,RPLP0P6	F8VPE8	60S acidic ribosomal protein P0;60S acidic ribosomal protein P0-like	13.2
RPS15A	H3BN98	40S ribosomal protein S15a	Infinite
RPS20	E5RIP1	40S ribosomal protein S20	91.4
RPS25	P62851	40S ribosomal protein S25	328.0
RPS6KA3	B1AXG1	Ribosomal protein S6 kinase alpha-3	10.3

RRAS2	B7Z5Z2	Ras-related protein R-Ras2	134.5
S100A11	P31949	Protein S100-A11	13.9
S100A7	P31151	Protein S100-A7	Infinite
SAMHD1	A6NDZ3	SAM domain and HD domain- containing protein 1	Infinite
SCFD1	B7Z5N7	Sec1 family domain- containing protein 1	164.5
SCPEP1	Q9HB40	Retinoid-inducible serine carboxypeptidase	Infinite
SEMA6C	Q9H3T2	Semaphorin-6C	Infinite
SESN1	P58005	Sestrin-1	148.6
SLK	Q9H2G2	STE20-like serine/threonine- protein kinase	Infinite
SNX1	A6NKH4	Sorting nexin-1	575.2
SNX2	D6RC15	Sorting nexin-2	Infinite
SOD1	H7BYH4	Superoxide dismutase [Cu-Zn]	21.5
SPR	P35270	Sepiapterin reductase	11.2
SPRR3	B1AN48	Small proline-rich protein 3	11.2
SPTAN1	A6NG51	Spectrin alpha chain, brain	249.0
STARD7	C9JTD3	StAR-related lipid transfer protein 7, mitochondrial	94.3
STAT3	G8JLH9	Signal transducer and activator of transcription 3	11.3
STAT5A,STAT5B	C9J4I3	Signal transducer and activator of transcription 5B;Signal transducer and activator of transcription 5A	32.0
STRN	O43815	Striatin;Isoform 2 of Striatin	Infinite
STRN3	G3V340	Striatin-3	Infinite
SUGT1	F5H5A9	Suppressor of G2 allele of SKP1 homolog	Infinite
SYCP1	Q15431	Synaptonemal complex protein 1	Infinite
TALDO1	E9PKI8	Transaldolase	Infinite
TIMM44	M0QXU7	Mitochondrial import inner membrane translocase subunit TIM44	11.3
TIPRL	075663	TIP41-like protein	Infinite
TLN2	H0YMT1	Talin-2	635.0
TPD52L2	O43399	Tumor protein D54	13.7
TRIM28	M0R0K9	Transcription intermediary factor 1-beta	81.2
TRIM54	Q969Q1	Tripartite motif-containing protein 54	17.7
TSN	E9PGT1	Translin	82.0
TUBB2A,TUBB2B			15.2

UBA2	B3KWB9	SUMO-activating enzyme subunit 2	Infinite
UQCRFS1,UQCRFS1P 1	P0C7P4	Cytochrome b-c1 complex subunit Rieske, mitochondrial;Cytochrome b- c1 complex subunit 11;Putative cytochrome b-c1 complex subunit Rieske-like protein 1	17.5
USP7	F5H2X1	Ubiquitin carboxyl-terminal hydrolase 7;Ubiquitin carboxyl-terminal hydrolase	61.1
USP9X	O00507	Probable ubiquitin carboxyl- terminal hydrolase FAF-X	Infinite
VARS	A2ABF4	ValinetRNA ligase	42.8
VPS28	E9PI55	Vacuolar protein sorting- associated protein 28 homolog	68.0
VPS4A	I3L4J1	Vacuolar protein sorting- associated protein 4A	Infinite
WARS	G3V227	TryptophantRNA ligase, cytoplasmic;T1-TrpRS;T2- TrpRS	Infinite
XRCC5	C9JZ81	X-ray repair cross- complementing protein 5	199.5

Table 10. 69 proteins PP2Ac partners in human skeletal muscle with significant

change among different groups

Gene name	Protein	Protein name	enrich-
	ID		ment ratio
PPP2R1A	B3KQV6	Serine/threonine-protein phospha-	213.3
		tase 2A 65 kDa regulatory subunit	
		A alpha isoform	
ACADM	B4DJE7	Medium-chain specific acyl-CoA	20.0
		dehydrogenase, mitochondrial	
ACADS	E9PE82	Short-chain specific acyl-CoA de- hydrogenase, mitochondrial	58.5
ACO1, IRP1	P21399	Cytoplasmic aconitate hydratase	Infinite
ACOT9	C9J7L8	Acyl-coenzyme A thioesterase 9,	11.0
		mitochondrial	
AKR1B1	E9PCX2	Aldose reductase	Infinite
AKR7A2	H3BLU7	Aflatoxin B1 aldehyde reductase	Infinite
		member 2	
AKT2	A8MX96	RAC-beta serine/threonine-protein	Infinite
		kinase	
ART3	E7ER42	Ecto-ADP-ribosyltransferase 3	18.6
ATP5S	Q8WXQ4	ATP synthase subunit s, mitochon-	Infinite
		drial	
ATP6V1B2	C9J5E3	V-type proton ATPase subunit B,	Infinite
		brain isoform	
BLVRB	M0QZL1	Flavin reductase (NADPH)	10.1
CA1	E5RFE7	Carbonic anhydrase 1	Infinite
CAMK2G	B4DVQ3	Calcium/calmodulin-dependent	46.8
		protein kinase type II subunit	
C A L L A	FORGE	gamma	T (2) 1
CAV1	E9PCT5	Caveolin-1;Caveolin	Infinite
CCDC6	Q16204	Coiled-coil domain-containing pro- tein 6	Infinite
CCT2	F5GWF6	T-complex protein 1 subunit beta	97.7
CCT6A	B4DPJ8	T-complex protein 1 subunit zeta	11.6
CLPX	DIDIJO		Infinite
COPS2	B4DIH5	COP9 signalosome complex subu-	115.6
0152	D+DIIIJ	nit 2	115.0
CTBP1	D6RAX2	C-terminal-binding protein 1	Infinite
DPP9	M0QXA6	Dipeptidyl peptidase 9	Infinite
EIF2B1	B4DGX0	Translation initiation factor eIF-2B	240.6
		subunit alpha	
EIF3M	B4E2Q4	Eukaryotic translation initiation fac-	586.7
		tor 3 subunit M	
FERMT2	G3V1L6	Fermitin family homolog 2	7502.3
FLNA	E9PHF0	Filamin-A	19.6

FLNB	E7EN95	Filamin-B	32.9
GARS	H7C443	GlycinetRNA ligase	Infinite
GFPT1	E5RJP4	Glucosaminefructose-6-phos- phate aminotransferase [isomeriz- ing] 1	Infinite
GGH	Q92820	Gamma-glutamyl hydrolase	Infinite
GMPPA	C9J255	Mannose-1-phosphate guanyltrans- ferase alpha	Infinite
GPS1	C9JFE4	COP9 signalosome complex subunit 1	692.0
GSTM3	P21266	Glutathione S-transferase Mu 3	63.2
HSD17B8	Q92506	Estradiol 17-beta-dehydrogenase 8	101.7
IFIT2	P09913	Interferon-induced protein with tet- ratricopeptide repeats 2	Infinite
IQGAP1	E9PDT6	Ras GTPase-activating-like protein IQGAP1	64.3
KIF5B	C9JWB9	Kinesin-1 heavy chain	Infinite
LAP3	H0Y983	Cytosol aminopeptidase	Infinite
LUM	P51884	Lumican	72.8
MPST	B1AH49	3-mercaptopyruvate sulfurtransfer- ase;Sulfurtransferase	14.5
PDE4D	D6RHE0	cAMP-specific 3,5-cyclic phos- phodiesterase 4D	Infinite
PGAM2	P15259	Phosphoglycerate mutase 2	36.1
PPME1	F5H2D4	Protein phosphatase methylesterase 1	Infinite
PPP1R7	B5MBZ8	Protein phosphatase 1 regulatory subunit 7	Infinite
PPP4R2	C9IZ04	Serine/threonine-protein phospha- tase 4 regulatory subunit 2	Infinite
PRELP	P51888	Prolargin	Infinite
PSMC2	B7Z5E2	26S protease regulatory subunit 7	33.9
PSMC3	E9PKD5	26S protease regulatory subunit 6A	13.7
PSMD1	C9J9M4	26S proteasome non-ATPase regulatory subunit 1	13.9
PSMD11	J3KSW3	26S proteasome non-ATPase regulatory subunit 11	28.2
PSMD12	J3KSK1	26S proteasome non-ATPase regulatory subunit 12	24.5
PSMD13	E9PL38	26S proteasome non-ATPase regu- latory subunit 13	40.0
PSMD14	C9JW37	26S proteasome non-ATPase regu- latory subunit 14	11.9
PSME2	H0YKU2	Proteasome activator complex sub- unit 2	27.9
PTPN11	H0YF12	Tyrosine-protein phosphatase non- receptor type 11	Infinite
RPS25	P62851	40S ribosomal protein S25	328.0

S100A11	P31949	Protein S100-A11	13.9
SAMHD1	A6NDZ3	SAM domain and HD domain-con-	Infinite
		taining protein 1	
SCPEP1	Q9HB40	Retinoid-inducible serine carboxy-	Infinite
		peptidase	
SESN1	P58005	Sestrin-1	148.6
SLK	Q9H2G2	STE20-like serine/threonine-pro-	Infinite
		tein kinase	
SOD1	H7BYH4	Superoxide dismutase [Cu-Zn]	21.5
SPRR3	B1AN48	Small proline-rich protein 3	11.2
STAT3	G8JLH9	Signal transducer and activator of	11.3
		transcription 3	
STAT5A,STAT5B	C9J4I3	Signal transducer and activator of	32.0
		transcription 5B;Signal transducer	
		and activator of transcription 5A	
TALDO1	E9PKI8	Transaldolase	Infinite
UBA2	B3KWB9	SUMO-activating enzyme subunit 2	Infinite
VARS	A2ABF4	ValinetRNA ligase	42.8
XRCC5	C9JZ81	X-ray repair cross-complementing	199.5
		protein 5	

Gene	Protein name
name	
PPP2R1A	Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A
	alpha isoform
PPP2R2A	Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B
	alpha isoform
PPP2R3A	Serine/threonine-protein phosphatase 2A regulatory subunit B subunit
	alpha
PPP2R5D	Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit
	delta isoform
STRN	Striatin;Isoform 2 of Striatin
STRN3	Striatin-3
CCDC6	Coiled-coil domain-containing protein 6
CCT2	T-complex protein 1 subunit beta
CCT6A	T-complex protein 1 subunit zeta
CUL1	Cullin-1
IGBP1	Immunoglobulin-binding protein 1
PPME1	Protein phosphatase methylesterase 1
PSMC6	26S protease regulatory subunit 10B
PSMD1	26S proteasome non-ATPase regulatory subunit 1
RAC1	
SOD1	Superoxide dismutase [Cu-Zn]
TIPRL	TIP41-like protein
USP7	Ubiquitin carboxyl-terminal hydrolase 7;Ubiquitin carboxyl-terminal
	hydrolase
PPP4C	Serine/threonine-protein phosphatase 4 catalytic subunit;Serine/threo-
	nine-protein phosphatase
CAV1	Caveolin-1;Caveolin
AMPK	AMP-activated protein kinase

 Table 11. Known partners from databases

Table 12. 38 proteins; Comparing partners from both INS-1 cells and human skel-

Gene name	Protein name
PPP2R1A	Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A al- pha isoform
PPP2R2A	Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B al- pha isoform
PPP2R3A	Protein phosphatase 2A regulatory subunit B subunit alpha
STRN	Striatin;Isoform 2 of Striatin
CCDC6	Coiled-coil domain-containing protein 6
IGBP1	Immunoglobulin-binding protein 1
PPME1	Protein phosphatase methylesterase 1
RAC1	
AKR1B1	Aldose reductase
APPL1	DCC-interacting protein 13-alpha
ARCN1	Coatomer subunit delta
ASNA1	ATPase ASNA1
NTPCR	Cancer-related nucleoside-triphosphatase
CAND1	Cullin-associated NEDD8-dissociated protein 1
DARS	AspartatetRNA ligase, cytoplasmic
EIF2B1	Translation initiation factor eIF-2B subunit alpha
FAHD1	Acylpyruvase FAHD1, mitochondrial
FLNA	Filamin-A
GFPT1	Glucosaminefructose-6-phosphate aminotransferase [isomerizing] 1
GSN	Gelsolin;Isoform 4 of Gelsolin
IDH3B	Isocitrate dehydrogenase [NAD] subunit beta, mitochondrial
MYH14	Myosin-14
NAP1L4	Nucleosome assembly protein 1-like 4
PDIA6	Protein disulfide-isomerase A6
PPP4C	Serine/threonine-protein phosphatase 4 catalytic subunit;
PPP4R2	Serine/threonine-protein phosphatase 4 regulatory subunit 2
PSMC2	26S protease regulatory subunit 7
PSMC3	26S protease regulatory subunit 6A
PSMD12	26S proteasome non-ATPase regulatory subunit 12
PSMD13	26S proteasome non-ATPase regulatory subunit 13
PSMD14	26S proteasome non-ATPase regulatory subunit 14
RAB1B	Ras-related protein Rab-1B;Putative Ras-related protein Rab-1C
RPS15A	40S ribosomal protein S15a
RPS25	40S ribosomal protein S25
S100A11	Protein S100-A11
TALDO1	Transaldolase
TSN	Translin
TUBB2A	

etal muscle biopsies (bold italics are in common with the database proteins)

REFERENCES

- 1. World Health Organization. Global report on diabetes. Vol. 2017 (2016).
- 2. Center for Disease Control. Long-term Trends in Diabetes Vol. 2017 (2017).
- Pascolini, D. & Mariotti, S.P. Global estimates of visual impairment: 2010. *The British journal of ophthalmology* 96, 614-618 (2012).
- 4. Bourne, R.R., *et al.* Causes of vision loss worldwide, 1990-2010: a systematic analysis. *The Lancet. Global health* **1**, e339-349 (2013).
- 5. Sarwar, N., *et al.* Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. *Lancet (London, England)* **375**, 2215-2222 (2010).
- Global status report on noncommunicable diseases 2010 Geneva: World Health Organization; x. (Global status report on noncommunicable diseases 2010 Geneva: World Health Organization; 2011).
- System, U.S.R.D. USRDS annual data report: Epidemiology of kidney disease in the United States. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 2014. (2014).
- Moxey, P.W., *et al.* Lower extremity amputations--a review of global variability in incidence. *Diabetic medicine : a journal of the British Diabetic Association* 28, 1144-1153 (2011).
- Mathers, C.D. & Loncar, D. Projections of global mortality and burden of disease from 2002 to 2030. *PLoS medicine* 3, e442 (2006).
- DeFronzo, R.A. & Tripathy, D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. *Diabetes care* 32 Suppl 2, S157-163 (2009).

- Cersosimo, E., Triplitt, C., Mandarino, L.J. & DeFronzo, R.A. Pathogenesis of Type 2 Diabetes Mellitus. in *Endotext* (eds. De Groot, L.J., *et al.*) (MDText.com, Inc., South Dartmouth (MA), 2000).
- 12. Leto, D. & Saltiel, A.R. Regulation of glucose transport by insulin: traffic control of GLUT4. *Nature reviews. Molecular cell biology* **13**, 383-396 (2012).
- Fu, Z., Gilbert, E.R. & Liu, D. Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. *Current diabetes reviews* 9, 25-53 (2013).
- Boucher, J., Kleinridders, A. & Kahn, C.R. Insulin receptor signaling in normal and insulin-resistant states. *Cold Spring Harbor perspectives in biology* 6(2014).
- 15. Siddle, K. Signalling by insulin and IGF receptors: supporting acts and new players. *Journal of molecular endocrinology* **47**, R1-10 (2011).
- Saltiel, A.R. & Kahn, C.R. Insulin signalling and the regulation of glucose and lipid metabolism. *Nature* 414, 799-806 (2001).
- Goldstein, B.J., Ahmad, F., Ding, W., Li, P.M. & Zhang, W.R. Regulation of the insulin signalling pathway by cellular protein-tyrosine phosphatases. *Molecular and cellular biochemistry* 182, 91-99 (1998).
- Brady, M.J. & Saltiel, A.R. The role of protein phosphatase-1 in insulin action. *Recent progress in hormone research* 56, 157-173 (2001).
- Millward, T.A., Zolnierowicz, S. & Hemmings, B.A. Regulation of protein kinase cascades by protein phosphatase 2A. *Trends in biochemical sciences* 24, 186-191 (1999).
- 20. Ni, Y.G., *et al.* FoxO transcription factors activate Akt and attenuate insulin signaling in heart by inhibiting protein phosphatases. *Proceedings of the*

National Academy of Sciences of the United States of America 104, 20517-20522 (2007).

- Brognard, J. & Newton, A.C. PHLiPPing the switch on Akt and protein kinase
 C signaling. *Trends in endocrinology and metabolism: TEM* 19, 223-230 (2008).
- 22. Chagpar, R.B., *et al.* Direct positive regulation of PTEN by the p85 subunit of phosphatidylinositol 3-kinase. *Proceedings of the National Academy of Sciences of the United States of America* **107**, 5471-5476 (2010).
- 23. Suwa, A., Kurama, T. & Shimokawa, T. SHIP2 and its involvement in various diseases. *Expert opinion on therapeutic targets* **14**, 727-737 (2010).
- Holt, L.J., *et al.* Dual ablation of Grb10 and Grb14 in mice reveals their combined role in regulation of insulin signaling and glucose homeostasis.
 Molecular endocrinology (Baltimore, Md.) 23, 1406-1414 (2009).
- 25. Ueki, K., Kondo, T. & Kahn, C.R. Suppressor of cytokine signaling 1 (SOCS-1) and SOCS-3 cause insulin resistance through inhibition of tyrosine phosphorylation of insulin receptor substrate proteins by discrete mechanisms. *Molecular and cellular biology* 24, 5434-5446 (2004).
- Du, K., Herzig, S., Kulkarni, R.N. & Montminy, M. TRB3: a tribbles homolog that inhibits Akt/PKB activation by insulin in liver. *Science (New York, N.Y.)* 300, 1574-1577 (2003).
- 27. Chakraborty, A., *et al.* Inositol pyrophosphates inhibit Akt signaling, thereby regulating insulin sensitivity and weight gain. *Cell* **143**, 897-910 (2010).
- DeFronzo, R.A. Lilly lecture 1987. The triumvirate: beta-cell, muscle, liver. A collusion responsible for NIDDM. *Diabetes* 37, 667-687 (1988).

- 29. Leahy, J.L. Pathogenesis of type 2 diabetes mellitus. Archives of medical research **36**, 197-209 (2005).
- 30. Butler, A.E., *et al.* Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. *Diabetes* **52**, 102-110 (2003).
- Poitout, V. & Robertson, R.P. Glucolipotoxicity: fuel excess and beta-cell dysfunction. *Endocrine reviews* 29, 351-366 (2008).
- 32. Khaldi, M.Z., Guiot, Y., Gilon, P., Henquin, J.C. & Jonas, J.C. Increased glucose sensitivity of both triggering and amplifying pathways of insulin secretion in rat islets cultured for 1 wk in high glucose. *American journal of physiology. Endocrinology and metabolism* **287**, E207-217 (2004).
- 33. Maedler, K., *et al.* Glucose-induced beta cell production of IL-1beta contributes to glucotoxicity in human pancreatic islets. *The Journal of clinical investigation* 110, 851-860 (2002).
- 34. Aguirre, V., Uchida, T., Yenush, L., Davis, R. & White, M.F. The c-Jun NH(2)terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307). *The Journal of biological chemistry* 275, 9047-9054 (2000).
- Martinez, S.C., *et al.* Inhibition of Foxo1 protects pancreatic islet beta-cells against fatty acid and endoplasmic reticulum stress-induced apoptosis. *Diabetes* 57, 846-859 (2008).
- 36. Briaud, I., *et al.* Insulin receptor substrate-2 proteasomal degradation mediated by a mammalian target of rapamycin (mTOR)-induced negative feedback down-regulates protein kinase B-mediated signaling pathway in beta-cells. *The Journal of biological chemistry* **280**, 2282-2293 (2005).

- 37. Chan, C.B., *et al.* Increased uncoupling protein-2 levels in beta-cells are associated with impaired glucose-stimulated insulin secretion: mechanism of action. *Diabetes* **50**, 1302-1310 (2001).
- Schmitz-Peiffer, C., *et al.* Inhibition of PKCepsilon improves glucosestimulated insulin secretion and reduces insulin clearance. *Cell metabolism* 6, 320-328 (2007).
- Olofsson, C.S., *et al.* Long-term exposure to glucose and lipids inhibits glucoseinduced insulin secretion downstream of granule fusion with plasma membrane. *Diabetes* 56, 1888-1897 (2007).
- 40. Hoppa, M.B., *et al.* Chronic palmitate exposure inhibits insulin secretion by dissociation of Ca(2+) channels from secretory granules. *Cell metabolism* 10, 455-465 (2009).
- Zolnierowicz, S. Type 2A protein phosphatase, the complex regulator of numerous signaling pathways. *Biochemical Pharmacology* 60, 1225-1235 (2000).
- 42. Fischer, E.H. & Krebs, E.G. Conversion of phosphorylase b to phosphorylase a in muscle extracts. *The Journal of biological chemistry* **216**, 121-132 (1955).
- 43. Olsen, J.V., *et al.* Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. *Cell* **127**, 635-648 (2006).
- 44. Sun, X.J., Goldberg, J.L., Qiao, L.Y. & Mitchell, J.J. Insulin-induced insulin receptor substrate-1 degradation is mediated by the proteasome degradation pathway. *Diabetes* **48**, 1359-1364 (1999).
- 45. Seshacharyulu, P., Pandey, P., Datta, K. & Batra, S.K. Phosphatase: PP2A structural importance, regulation and its aberrant expression in cancer. *Cancer letters* **335**, 9-18 (2013).

- 46. Shi, Y. Serine/Threonine Phosphatases: Mechanism through Structure. *Cell*139, 468-484 (2009).
- 47. Cho, U.S. & Xu, W. Crystal structure of a protein phosphatase 2A heterotrimeric holoenzyme. *Nature* **445**, 53-57 (2007).
- 48. Lin, X.H., *et al.* Protein phosphatase 2A is required for the initiation of chromosomal DNA replication. *Proceedings of the National Academy of Sciences of the United States of America* **95**, 14693-14698 (1998).
- 49. Kremmer, E., Ohst, K., Kiefer, J., Brewis, N. & Walter, G. Separation of PP2A core enzyme and holoenzyme with monoclonal antibodies against the regulatory A subunit: abundant expression of both forms in cells. *Molecular and cellular biology* **17**, 1692-1701 (1997).
- 50. Groves, M.R., Hanlon, N., Turowski, P., Hemmings, B.A. & Barford, D. The structure of the protein phosphatase 2A PR65/A subunit reveals the conformation of its 15 tandemly repeated HEAT motifs. *Cell* **96**, 99-110 (1999).
- Berridge, Michael J. Cell Signalling Biology: Module 5 Off Mechanisms.
 Biochemical Journal (2012).
- 52. Price, N.E. & Mumby, M.C. Effects of regulatory subunits on the kinetics of protein phosphatase 2A. *Biochemistry* **39**, 11312-11318 (2000).
- Janssens, V. & Goris, J. Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. *The Biochemical journal* 353, 417-439 (2001).
- 54. Silverstein, A.M., Barrow, C.A., Davis, A.J. & Mumby, M.C. Actions of PP2A on the MAP kinase pathway and apoptosis are mediated by distinct regulatory subunits. *Proceedings of the National Academy of Sciences of the United States of America* **99**, 4221-4226 (2002).

- 55. Jiang, L., *et al.* Structural basis of protein phosphatase 2A stable latency. *Nature communications* **4**, 1699 (2013).
- 56. Guo, F., *et al.* Structural basis of PP2A activation by PTPA, an ATP-dependent activation chaperone. *Cell research* **24**, 190-203 (2014).
- 57. Chen, J., Martin, B.L. & Brautigan, D.L. Regulation of protein serine-threonine phosphatase type-2A by tyrosine phosphorylation. *Science (New York, N.Y.)*257, 1261-1264 (1992).
- 58. Kirchhefer, U., *et al.* Protein phosphatase 2A is regulated by protein kinase
 Calpha (PKCalpha)-dependent phosphorylation of its targeting subunit
 B56alpha at Ser41. *The Journal of biological chemistry* 289, 163-176 (2014).
- Janssens, V., Longin, S. & Goris, J. PP2A holoenzyme assembly: in cauda venenum (the sting is in the tail). *Trends in biochemical sciences* 33, 113-121 (2008).
- 60. Sents, W., Ivanova, E., Lambrecht, C., Haesen, D. & Janssens, V. The biogenesis of active protein phosphatase 2A holoenzymes: a tightly regulated process creating phosphatase specificity. *The FEBS journal* **280**, 644-661 (2013).
- Yabe, R., *et al.* Protein Phosphatase Methyl-Esterase PME-1 Protects Protein Phosphatase 2A from Ubiquitin/Proteasome Degradation. *PloS one* 10, e0145226 (2015).
- Caruso, M., *et al.* Increased Interaction With Insulin Receptor Substrate 1, a Novel Abnormality in Insulin Resistance and Type 2 Diabetes. *Diabetes* 63, 1933-1947 (2014).

- Mandavia, C. & Sowers, J.R. Phosphoprotein Phosphatase PP2A Regulation of Insulin Receptor Substrate 1 and Insulin Metabolic Signaling. *Cardiorenal medicine* 2, 308-313 (2012).
- Srinivasan, M. & Begum, N. Regulation of protein phosphatase 1 and 2A activities by insulin during myogenesis in rat skeletal muscle cells in culture. *The Journal of biological chemistry* 269, 12514-12520 (1994).
- 65. Cazzolli, R., Carpenter, L., Biden, T.J. & Schmitz-Peiffer, C. A role for protein phosphatase 2A-like activity, but not atypical protein kinase Czeta, in the inhibition of protein kinase B/Akt and glycogen synthesis by palmitate. *Diabetes* **50**, 2210-2218 (2001).
- 66. Hojlund, K., Poulsen, M., Staehr, P., Brusgaard, K. & Beck-Nielsen, H. Effect of insulin on protein phosphatase 2A expression in muscle in type 2 diabetes. *European journal of clinical investigation* **32**, 918-923 (2002).
- 67. Nardi, F., *et al.* Enhanced insulin sensitivity associated with provision of mono and polyunsaturated fatty acids in skeletal muscle cells involves counter modulation of PP2A. *PloS one* **9**, e92255 (2014).
- 68. Kowluru, A., Seavey, S.E., Rabaglia, M.E., Nesher, R. & Metz, S.A. Carboxylmethylation of the catalytic subunit of protein phosphatase 2A in insulin-secreting cells: evidence for functional consequences on enzyme activity and insulin secretion. *Endocrinology* **137**, 2315-2323 (1996).
- 69. Muniyappa, R., Lee, S., Chen, H. & Quon, M.J. Current approaches for assessing insulin sensitivity and resistance in vivo: advantages, limitations, and appropriate usage. *American journal of physiology. Endocrinology and metabolism* **294**, E15-26 (2008).

- 70. Kim, J.K. Hyperinsulinemic-euglycemic clamp to assess insulin sensitivity in vivo. *Methods in molecular biology (Clifton, N.J.)* **560**, 221-238 (2009).
- 71. Pawson, T. & Nash, P. Protein-protein interactions define specificity in signal transduction. *Genes & development* **14**, 1027-1047 (2000).
- 72. Miller, J.P. & Hughes, R.E. Frontiers in Neuroscience Protein Interactions and Target Discovery in Huntington's Disease. in *Neurobiology of Huntington's Disease: Applications to Drug Discovery* (eds. Lo, D.C. & Hughes, R.E.) (CRC Press Llc., Boca Raton (FL), 2011).
- Rao, V.S., Srinivas, K., Sujini, G.N. & Kumar, G.N. Protein-Protein Interaction Detection: Methods and Analysis. *International journal of proteomics* 2014, 147648 (2014).
- 74. Gonzalez, M.W. & Kann, M.G. Chapter 4: Protein Interactions and Disease.*PLoS Comput Biol* 8, e1002819 (2012).
- Vermeulen, M., Hubner, N.C. & Mann, M. High confidence determination of specific protein-protein interactions using quantitative mass spectrometry. *Current opinion in biotechnology* 19, 331-337 (2008).
- Han, X., Aslanian, A. & Yates, J.R., 3rd. Mass spectrometry for proteomics. *Current opinion in chemical biology* 12, 483-490 (2008).
- 77. Angel, T.E., *et al.* Mass spectrometry-based proteomics: existing capabilities and future directions. *Chemical Society reviews* **41**, 3912-3928 (2012).
- 78. Caruso, M., *et al.* Increased interaction with insulin receptor substrate 1, a novel abnormality in insulin resistance and type 2 diabetes. *Diabetes* 63, 1933-1947 (2014).

- 79. Geetha, T., *et al.* Label-free proteomic identification of endogenous, insulinstimulated interaction partners of insulin receptor substrate-1. *Journal of the American Society for Mass Spectrometry* **22**, 457-466 (2011).
- 80. Chen, X.W., *et al.* SEC24A deficiency lowers plasma cholesterol through reduced PCSK9 secretion. *eLife* **2**, e00444 (2013).
- Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. *Nature biotechnology* 26, 1367-1372 (2008).
- Martinez, E., *et al.* Myocardium proteome remodelling after nutritional deprivation of methyl donors. *The Journal of nutritional biochemistry* 24, 1241-1250 (2013).
- Ye, Y., *et al.* Quantitative proteomics by amino acid labeling in foot-and-mouth disease virus (FMDV)-infected cells. *Journal of proteome research* 12, 363-377 (2013).
- 84. Thomas, S. & Bonchev, D. A survey of current software for network analysis in molecular biology. *Human genomics* **4**, 353-360 (2010).
- Jimenez-Marin, A., Collado-Romero, M., Ramirez-Boo, M., Arce, C. & Garrido, J.J. Biological pathway analysis by ArrayUnlock and Ingenuity Pathway Analysis. *BMC Proc* **3 Suppl 4**, S6 (2009).
- Werner, T. Bioinformatics applications for pathway analysis of microarray data.
 Curr Opin Biotechnol 19, 50-54 (2008).
- 87. Syeda, K., Mohammed, A.M., Arora, D.K. & Kowluru, A. Glucotoxic conditions induce endoplasmic reticulum stress to cause caspase 3 mediated lamin B degradation in pancreatic beta-cells: protection by nifedipine. *Biochem Pharmacol* 86, 1338-1346 (2013).

- 88. Khadija, S., Veluthakal, R., Sidarala, V. & Kowluru, A. Glucotoxic and diabetic conditions induce caspase 6-mediated degradation of nuclear lamin A in human islets, rodent islets and INS-1 832/13 cells. *Apoptosis : an international journal on programmed cell death* 19, 1691-1701 (2014).
- Arora, D.K., *et al.* High glucose exposure promotes activation of protein phosphatase 2A in rodent islets and INS-1 832/13 beta-cells by increasing the posttranslational carboxylmethylation of its catalytic subunit. *Endocrinology* 155, 380-391 (2014).
- Yi, Z., *et al.* Global assessment of regulation of phosphorylation of insulin receptor substrate-1 by insulin in vivo in human muscle. *Diabetes* 56, 1508-1516 (2007).
- Wepf, A., Glatter, T., Schmidt, A., Aebersold, R. & Gstaiger, M. Quantitative interaction proteomics using mass spectrometry. *Nature methods* 6, 203-205 (2009).
- 92. Zhang, X., *et al.* Quantitative proteomics reveals novel protein interaction partners of PP2A catalytic subunit in pancreatic beta-cells. *Molecular and cellular endocrinology* **424**, 1-11 (2016).
- 93. Havugimana, P.C., *et al.* A census of human soluble protein complexes. *Cell*150, 1068-1081 (2012).
- Glatter, T., Wepf, A., Aebersold, R. & Gstaiger, M. An integrated workflow for charting the human interaction proteome: insights into the PP2A system. *Molecular systems biology* 5, 237 (2009).
- 95. Goudreault, M., *et al.* A PP2A phosphatase high density interaction network identifies a novel striatin-interacting phosphatase and kinase complex linked to

the cerebral cavernous malformation 3 (CCM3) protein. *Molecular & cellular proteomics : MCP* **8**, 157-171 (2009).

- 96. Sablina, A.A., *et al.* The tumor suppressor PP2A Abeta regulates the RalA GTPase. *Cell* **129**, 969-982 (2007).
- 97. Zhou, J., Pham, H.T., Ruediger, R. & Walter, G. Characterization of the Aalpha and Abeta subunit isoforms of protein phosphatase 2A: differences in expression, subunit interaction, and evolution. *The Biochemical journal* 369, 387-398 (2003).
- 98. Malovannaya, A., *et al.* Streamlined analysis schema for high-throughput identification of endogenous protein complexes. *Proceedings of the National Academy of Sciences of the United States of America* **107**, 2431-2436 (2010).
- 99. Cheng, A., Kaldis, P. & Solomon, M.J. Dephosphorylation of human cyclindependent kinases by protein phosphatase type 2C alpha and beta 2 isoforms. *The Journal of biological chemistry* 275, 34744-34749 (2000).
- Wang, Z. & Thurmond, D.C. Mechanisms of biphasic insulin-granule exocytosis - roles of the cytoskeleton, small GTPases and SNARE proteins. *Journal of cell science* 122, 893-903 (2009).
- 101. Kowluru, A. Small G proteins in islet beta-cell function. *Endocrine reviews* 31, 52-78 (2010).
- 102. Bernard, O. Lim kinases, regulators of actin dynamics. *The international journal of biochemistry & cell biology* **39**, 1071-1076 (2007).
- 103. Manetti, F. LIM kinases are attractive targets with many macromolecular partners and only a few small molecule regulators. *Medicinal research reviews* 32, 968-998 (2012).

- 104. Scott, R.W. & Olson, M.F. LIM kinases: function, regulation and association with human disease. *Journal of molecular medicine (Berlin, Germany)* 85, 555-568 (2007).
- 105. Kong, M., Ditsworth, D., Lindsten, T. & Thompson, C.B. Alpha4 is an essential regulator of PP2A phosphatase activity. *Molecular cell* **36**, 51-60 (2009).
- McConnell, J.L., *et al.* Alpha4 is a ubiquitin-binding protein that regulates protein serine/threonine phosphatase 2A ubiquitination. *Biochemistry* 49, 1713-1718 (2010).
- 107. Veluthakal, R., Wadzinski, B.E. & Kowluru, A. Localization of a nuclear serine/threonine protein phosphatase in insulin-secreting INS-1 cells: potential regulation by IL-1beta. *Apoptosis : an international journal on programmed cell death* **11**, 1401-1411 (2006).
- 108. Kowluru, A. & Matti, A. Hyperactivation of protein phosphatase 2A in models of glucolipotoxicity and diabetes: potential mechanisms and functional consequences. *Biochem Pharmacol* 84, 591-597 (2012).
- Yan, L., *et al.* The B55alpha-containing PP2A holoenzyme dephosphorylates
 FOXO1 in islet beta-cells under oxidative stress. *The Biochemical journal* 444, 239-247 (2012).
- 110. Hein, M.Y., *et al.* A human interactome in three quantitative dimensions organized by stoichiometries and abundances. *Cell* **163**, 712-723 (2015).
- 111. Chen, J., *et al.* Regulation of insulin receptor substrate-1 expression levels by caveolin-1. *Journal of cellular physiology* **217**, 281-289 (2008).
- 112. Choi, S.M., *et al.* Insulin regulates adipocyte lipolysis via an Akt-independent signaling pathway. *Molecular and cellular biology* **30**, 5009-5020 (2010).

- 113. Li, L., Ren, C.H., Tahir, S.A., Ren, C. & Thompson, T.C. Caveolin-1 maintains activated Akt in prostate cancer cells through scaffolding domain binding site interactions with and inhibition of serine/threonine protein phosphatases PP1 and PP2A. *Molecular and cellular biology* 23, 9389-9404 (2003).
- 114. Thanasopoulou, A., Stravopodis, D.J., Dimas, K.S., Schwaller, J. & Anastasiadou, E. Loss of CCDC6 affects cell cycle through impaired intra-Sphase checkpoint control. *PloS one* 7, e31007 (2012).
- St-Denis, N., *et al.* Phenotypic and Interaction Profiling of the Human Phosphatases Identifies Diverse Mitotic Regulators. *Cell reports* 17, 2488-2501 (2016).
- Kubota, H. Function and regulation of cytosolic molecular chaperone CCT.
 Vitamins and hormones 65, 313-331 (2002).
- 117. Bennett, E.J., Rush, J., Gygi, S.P. & Harper, J.W. Dynamics of cullin-RING ubiquitin ligase network revealed by systematic quantitative proteomics. *Cell* 143, 951-965 (2010).
- 118. Park, J.J., Lim, K.H. & Baek, K.H. Annexin-1 regulated by HAUSP is essential for UV-induced damage response. *Cell death & disease* **6**, e1654 (2015).
- 119. JeBailey, L., *et al.* Skeletal muscle cells and adipocytes differ in their reliance on TC10 and Rac for insulin-induced actin remodeling. *Molecular endocrinology (Baltimore, Md.)* 18, 359-372 (2004).
- 120. Ueda, S., Kataoka, T. & Satoh, T. Activation of the small GTPase Rac1 by a specific guanine-nucleotide-exchange factor suffices to induce glucose uptake into skeletal-muscle cells. *Biology of the cell* **100**, 645-657 (2008).
- 121. Sylow, L., *et al.* Rac1 is a novel regulator of contraction-stimulated glucose uptake in skeletal muscle. *Diabetes* **62**, 1139-1151 (2013).

- 122. ten Klooster, J.P., Leeuwen, I., Scheres, N., Anthony, E.C. & Hordijk, P.L. Rac1-induced cell migration requires membrane recruitment of the nuclear oncogene SET. *The EMBO journal* 26, 336-345 (2007).
- 123. Nakashima, A., *et al.* A positive role of mammalian Tip41-like protein, TIPRL, in the amino-acid dependent mTORC1-signaling pathway through interaction with PP2A. *FEBS letters* **587**, 2924-2929 (2013).
- 124. Steinberg, G.R. & Jorgensen, S.B. The AMP-activated protein kinase: role in regulation of skeletal muscle metabolism and insulin sensitivity. *Mini reviews in medicinal chemistry* **7**, 519-526 (2007).
- 125. Steinberg, G.R. & Kemp, B.E. AMPK in Health and Disease. *Physiological reviews* **89**, 1025-1078 (2009).
- Park, S., Scheffler, T.L., Rossie, S.S. & Gerrard, D.E. AMPK activity is regulated by calcium-mediated protein phosphatase 2A activity. *Cell calcium* 53, 217-223 (2013).
- 127. Sadasivan, S.K., *et al.* Modulation of de novo purine biosynthesis leads to activation of AMPK and results in improved glucose handling and insulin sensitivity. *Journal of diabetes and metabolic disorders* **13**, 51 (2014).
- 128. Cho, H., *et al.* Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). *Science (New York, N.Y.)* 292, 1728-1731 (2001).
- 129. Andjelkovic, M., *et al.* Activation and phosphorylation of a pleckstrin homology domain containing protein kinase (RAC-PK/PKB) promoted by serum and protein phosphatase inhibitors. *Proceedings of the National Academy of Sciences of the United States of America* **93**, 5699-5704 (1996).

- Galbo, T., Olsen, G.S., Quistorff, B. & Nishimura, E. Free fatty acid-induced PP2A hyperactivity selectively impairs hepatic insulin action on glucose metabolism. *PloS one* 6, e27424 (2011).
- Galbo, T., *et al.* PP2A inhibition results in hepatic insulin resistance despite Akt2 activation. *Aging* 5, 770-781 (2013).
- 132. Qu, C.K. The SHP-2 tyrosine phosphatase: signaling mechanisms and biological functions. *Cell research* **10**, 279-288 (2000).
- 133. Lizcano, J.M. & Alessi, D.R. The insulin signalling pathway. *Current biology :* CB 12, R236-238 (2002).
- Ragolia, L. & Begum, N. Protein phosphatase-1 and insulin action. *Molecular and cellular biochemistry* 182, 49-58 (1998).
- Hartley, D. & Cooper, G.M. Role of mTOR in the degradation of IRS-1: regulation of PP2A activity. *Journal of cellular biochemistry* 85, 304-314 (2002).
- Laplante, M. & Sabatini, D.M. mTOR signaling at a glance. *Journal of cell science* 122, 3589-3594 (2009).
- Grover, J., Chen, X.N., Korenberg, J.R. & Roughley, P.J. The human lumican gene. Organization, chromosomal location, and expression in articular cartilage. *The Journal of biological chemistry* 270, 21942-21949 (1995).
- 138. Nikitovic, D., Papoutsidakis, A., Karamanos, N.K. & Tzanakakis, G.N. Lumican affects tumor cell functions, tumor-ECM interactions, angiogenesis and inflammatory response. *Matrix biology : journal of the International Society for Matrix Biology* **35**, 206-214 (2014).
- 139. Rachek, L.I. Free fatty acids and skeletal muscle insulin resistance. *Progress in molecular biology and translational science* **121**, 267-292 (2014).

- 140. Tillander, V., *et al.* Acyl-CoA thioesterase 9 (ACOT9) in mouse may provide a novel link between fatty acid and amino acid metabolism in mitochondria.
 Cellular and molecular life sciences : CMLS 71, 933-948 (2014).
- 141. Jatiani, S.S., Baker, S.J., Silverman, L.R. & Reddy, E.P. Jak/STAT pathways in cytokine signaling and myeloproliferative disorders: approaches for targeted therapies. *Genes & cancer* 1, 979-993 (2010).
- Chinnadurai, G. The transcriptional corepressor CtBP: a foe of multiple tumor suppressors. *Cancer research* 69, 731-734 (2009).
- 143. Liu, P., *et al.* CtBP2 ameliorates palmitate-induced insulin resistance in HepG2 cells through ROS mediated JNK pathway. *General and comparative endocrinology* 247, 66-73 (2017).
- 144. Paliwal, S., *et al.* The alternative reading frame tumor suppressor antagonizes hypoxia-induced cancer cell migration via interaction with the COOH-terminal binding protein corepressor. *Cancer research* **67**, 9322-9329 (2007).
- 145. Liu, C. & Yu, X. ADP-ribosyltransferases and poly ADP-ribosylation. *Current protein & peptide science* **16**, 491-501 (2015).
- 146. Okuma, T., Honda, R., Ichikawa, G., Tsumagari, N. & Yasuda, H. In vitro SUMO-1 modification requires two enzymatic steps, E1 and E2. *Biochemical* and biophysical research communications 254, 693-698 (1999).
- 147. Wei, N., Serino, G. & Deng, X.W. The COP9 signalosome: more than a protease. *Trends in biochemical sciences* **33**, 592-600 (2008).
- 148. Lyapina, S., *et al.* Promotion of NEDD-CUL1 conjugate cleavage by COP9 signalosome. *Science (New York, N.Y.)* **292**, 1382-1385 (2001).
- 149. Scherer, P.C., *et al.* Inositol hexakisphosphate (IP6) generated by IP5K mediates cullin-COP9 signalosome interactions and CRL function. *Proceedings*

of the National Academy of Sciences of the United States of America **113**, 3503-3508 (2016).

- Min, K.W., *et al.* CAND1 enhances deneddylation of CUL1 by COP9 signalosome. *Biochemical and biophysical research communications* 334, 867-874 (2005).
- 151. Yang, X., et al. The COP9 signalosome inhibits p27(kip1) degradation and impedes G1-S phase progression via deneddylation of SCF Cul1. Current biology : CB 12, 667-672 (2002).
- 152. Tsakiridis, T., *et al.* Role of the actin cytoskeleton in insulin action. *Microscopy research and technique* **47**, 79-92 (1999).
- 153. Patel, N., Rudich, A., Khayat, Z.A., Garg, R. & Klip, A. Intracellular segregation of phosphatidylinositol-3,4,5-trisphosphate by insulin-dependent actin remodeling in L6 skeletal muscle cells. *Molecular and cellular biology* 23, 4611-4626 (2003).
- 154. Bisht, B. & Dey, C.S. Focal Adhesion Kinase contributes to insulin-induced actin reorganization into a mesh harboring Glucose transporter-4 in insulin resistant skeletal muscle cells. *BMC cell biology* **9**, 48 (2008).
- 155. Alberts B, J.A., Lewis J, et al. *Molecular Biology of the Cell*, (2002).
- 156. Suzuki, A., Pelikan, R.C. & Iwata, J. WNT/beta-Catenin Signaling Regulates Multiple Steps of Myogenesis by Regulating Step-Specific Targets. *Molecular* and cellular biology 35, 1763-1776 (2015).
- Noritake, J., Watanabe, T., Sato, K., Wang, S. & Kaibuchi, K. IQGAP1: a key regulator of adhesion and migration. *Journal of cell science* 118, 2085-2092 (2005).

- Suzuki, K. & Takahashi, K. Reduced cell adhesion during mitosis by threonine phosphorylation of beta1 integrin. *Journal of cellular physiology* **197**, 297-305 (2003).
- 159. Suzuki, K., Chikamatsu, Y. & Takahashi, K. Requirement of protein phosphatase 2A for recruitment of IQGAP1 to Rac-bound beta1 integrin. *Journal of cellular physiology* 203, 487-492 (2005).
- Takahashi, K. & Suzuki, K. Regulation of protein phosphatase 2A-mediated recruitment of IQGAP1 to beta1 integrin by EGF through activation of Ca2+/calmodulin-dependent protein kinase II. *Journal of cellular physiology* 208, 213-219 (2006).
- 161. Abel, A.M., *et al.* IQGAP1: insights into the function of a molecular puppeteer.*Molecular immunology* 65, 336-349 (2015).
- 162. Carmon, K.S., Gong, X., Yi, J., Thomas, A. & Liu, Q. RSPO-LGR4 functions via IQGAP1 to potentiate Wnt signaling. *Proceedings of the National Academy* of Sciences of the United States of America **111**, E1221-1229 (2014).
- 163. Habersetzer, J., *et al.* ATP synthase oligomerization: from the enzyme models to the mitochondrial morphology. *The international journal of biochemistry & cell biology* **45**, 99-105 (2013).
- 164. Hojlund, K., *et al.* Human ATP synthase beta is phosphorylated at multiple sites and shows abnormal phosphorylation at specific sites in insulin-resistant muscle. *Diabetologia* **53**, 541-551 (2010).
- 165. Berdeaux, R. & Stewart, R. cAMP signaling in skeletal muscle adaptation: hypertrophy, metabolism, and regeneration. *American journal of physiology*. *Endocrinology and metabolism* **303**, E1-17 (2012).

- 166. Mashili, F., Chibalin, A.V., Krook, A. & Zierath, J.R. Constitutive STAT3 phosphorylation contributes to skeletal muscle insulin resistance in type 2 diabetes. *Diabetes* 62, 457-465 (2013).
- 167. Shin, Y., et al. Single-molecule denaturation and degradation of proteins by the AAA+ ClpXP protease. Proceedings of the National Academy of Sciences of the United States of America 106, 19340-19345 (2009).
- 168. Deepa, S.S., *et al.* Down-regulation of the mitochondrial matrix peptidase ClpP in muscle cells causes mitochondrial dysfunction and decreases cell proliferation. *Free radical biology & medicine* **91**, 281-292 (2016).
- 169. Kirby, M., Yu, D.M., O'Connor, S. & Gorrell, M.D. Inhibitor selectivity in the clinical application of dipeptidyl peptidase-4 inhibition. *Clinical science* (*London, England : 1979*) **118**, 31-41 (2009).
- 170. Olsen, C. & Wagtmann, N. Identification and characterization of human DPP9, a novel homologue of dipeptidyl peptidase IV. *Gene* **299**, 185-193 (2002).
- 171. Drucker, D.J. Dipeptidyl peptidase-4 inhibition and the treatment of type 2 diabetes: preclinical biology and mechanisms of action. *Diabetes care* 30, 1335-1343 (2007).
- 172. Baggio, L.L. & Drucker, D.J. Harnessing the therapeutic potential of glucagon-like peptide-1: a critical review. *Treatments in endocrinology* 1, 117-125 (2002).
- 173. Barski, O.A., Tipparaju, S.M. & Bhatnagar, A. The aldo-keto reductase superfamily and its role in drug metabolism and detoxification. *Drug metabolism reviews* **40**, 553-624 (2008).

- 174. Bril, V. & Buchanan, R.A. Long-term effects of ranirestat (AS-3201) on peripheral nerve function in patients with diabetic sensorimotor polyneuropathy. *Diabetes care* 29, 68-72 (2006).
- 175. Dvornik, E., *et al.* Polyol accumulation in galactosemic and diabetic rats: control by an aldose reductase inhibitor. *Science (New York, N.Y.)* 182, 1146-1148 (1973).
- Gabbay, K.H., Merola, L.O. & Field, R.A. Sorbitol pathway: presence in nerve and cord with substrate accumulation in diabetes. *Science (New York, N.Y.)* 151, 209-210 (1966).
- 177. Lorenzi, M. The polyol pathway as a mechanism for diabetic retinopathy: attractive, elusive, and resilient. *Experimental diabetes research* 2007, 61038 (2007).
- 178. Cotter, M.A., Cameron, N.E., Robertson, S. & Ewing, I. Polyol pathway-related skeletal muscle contractile and morphological abnormalities in diabetic rats. *Experimental physiology* 78, 139-155 (1993).
- 179. Muller, F.L., *et al.* Absence of CuZn superoxide dismutase leads to elevated oxidative stress and acceleration of age-dependent skeletal muscle atrophy. *Free radical biology & medicine* **40**, 1993-2004 (2006).
- 180. Zhang, Y., et al. CuZnSOD gene deletion targeted to skeletal muscle leads to loss of contractile force but does not cause muscle atrophy in adult mice. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 27, 3536-3548 (2013).
- 181. Bonnefont-Rousselot, D., Bastard, J.P., Jaudon, M.C. & Delattre, J. Consequences of the diabetic status on the oxidant/antioxidant balance. *Diabetes & metabolism* 26, 163-176 (2000).

- Hussey, A.J. & Hayes, J.D. Human Mu-class glutathione S-transferases present in liver, skeletal muscle and testicular tissue. *Biochimica et biophysica acta* 1203, 131-141 (1993).
- Fell, V.L. & Schild-Poulter, C. The Ku heterodimer: function in DNA repair and beyond. *Mutation research. Reviews in mutation research* 763, 15-29 (2015).
- 184. McCright, B., Rivers, A.M., Audlin, S. & Virshup, D.M. The B56 family of protein phosphatase 2A (PP2A) regulatory subunits encodes differentiationinduced phosphoproteins that target PP2A to both nucleus and cytoplasm. *The Journal of biological chemistry* 271, 22081-22089 (1996).
- 185. Tehrani, M.A., Mumby, M.C. & Kamibayashi, C. Identification of a novel protein phosphatase 2A regulatory subunit highly expressed in muscle. *The Journal of biological chemistry* 271, 5164-5170 (1996).
- Mayer-Jaekel, R.E. & Hemmings, B.A. Protein phosphatase 2A--a 'menage a trois'. *Trends in cell biology* 4, 287-291 (1994).
- Kristensen, A.R., Gsponer, J. & Foster, L.J. A high-throughput approach for measuring temporal changes in the interactome. *Nature methods* 9, 907-909 (2012).
- Cheng, A., Gerry, S., Kaldis, P. & Solomon, M.J. Biochemical characterization of Cdk2-Speedy/Ringo A2. *BMC biochemistry* 6, 19 (2005).
- Dubois, T., Howell, S., Zemlickova, E. & Aitken, A. Identification of casein kinase Ialpha interacting protein partners. *FEBS letters* 517, 167-171 (2002).
- 190. Hutchins, J.R., *et al.* Systematic analysis of human protein complexes identifies chromosome segregation proteins. *Science* **328**, 593-599 (2010).

- 191. Ghosh, P. & Kornfeld, S. Phosphorylation-induced conformational changes regulate GGAs 1 and 3 function at the trans-Golgi network. *The Journal of biological chemistry* 278, 14543-14549 (2003).
- 192. Vera, J., *et al.* Heterogeneous nuclear ribonucleoprotein A2 is a SET-binding protein and a PP2A inhibitor. *Oncogene* **25**, 260-270 (2006).
- 193. McDonald, W.J., Thomas, L.N., Koirala, S. & Too, C.K. Progestin-inducible EDD E3 ubiquitin ligase binds to alpha4 phosphoprotein to regulate ubiquitination and degradation of protein phosphatase PP2Ac. *Molecular and cellular endocrinology* 382, 254-261 (2014).
- 194. Wang, J., *et al.* Toward an understanding of the protein interaction network of the human liver. *Molecular systems biology* **7**, 536 (2011).
- 195. LeNoue-Newton, M., *et al.* The E3 ubiquitin ligase- and protein phosphatase 2A (PP2A)-binding domains of the Alpha4 protein are both required for Alpha4 to inhibit PP2A degradation. *The Journal of biological chemistry* 286, 17665-17671 (2011).
- 196. McDonald, W.J., Sangster, S.M., Moffat, L.D., Henderson, M.J. & Too, C.K. alpha4 phosphoprotein interacts with EDD E3 ubiquitin ligase and poly(A)binding protein. *Journal of cellular biochemistry* **110**, 1123-1129 (2010).
- 197. Gingras, A.C., et al. A novel, evolutionarily conserved protein phosphatase complex involved in cisplatin sensitivity. *Molecular & cellular proteomics :* MCP 4, 1725-1740 (2005).
- 198. Liu, J., Prickett, T.D., Elliott, E., Meroni, G. & Brautigan, D.L. Phosphorylation and microtubule association of the Opitz syndrome protein mid-1 is regulated by protein phosphatase 2A via binding to the regulatory subunit alpha 4.

Proceedings of the National Academy of Sciences of the United States of America **98**, 6650-6655 (2001).

- 199. Maeda, K., Inui, S., Tanaka, H. & Sakaguchi, N. A new member of the alpha4related molecule (alpha4-b) that binds to the protein phosphatase 2A is expressed selectively in the brain and testis. *European journal of biochemistry* /FEBS 264, 702-706 (1999).
- 200. Chung, H., Nairn, A.C., Murata, K. & Brautigan, D.L. Mutation of Tyr307 and Leu309 in the protein phosphatase 2A catalytic subunit favors association with the alpha 4 subunit which promotes dephosphorylation of elongation factor-2. *Biochemistry* 38, 10371-10376 (1999).
- 201. Chen, J., Peterson, R.T. & Schreiber, S.L. Alpha 4 associates with protein phosphatases 2A, 4, and 6. *Biochemical and biophysical research communications* 247, 827-832 (1998).
- 202. Quevedo, C., Salinas, M. & Alcazar, A. Initiation factor 2B activity is regulated by protein phosphatase 1, which is activated by the mitogen-activated protein kinase-dependent pathway in insulin-like growth factor 1-stimulated neuronal cells. *The Journal of biological chemistry* **278**, 16579-16586 (2003).
- 203. Dehde, S., *et al.* Two immunologically distinct human DNA polymerase alphaprimase subpopulations are involved in cellular DNA replication. *Molecular and cellular biology* **21**, 2581-2593 (2001).
- 204. Honarpour, N., et al. F-box protein FBXL16 binds PP2A-B55alpha and regulates differentiation of embryonic stem cells along the FLK1+ lineage.
 Molecular & cellular proteomics : MCP 13, 780-791 (2014).
- 205. Fogeron, M.L., *et al.* LGALS3BP regulates centriole biogenesis and centrosome hypertrophy in cancer cells. *Nature communications* **4**, 1531 (2013).

- 206. Shamay, M., *et al.* A protein array screen for Kaposi's sarcoma-associated herpesvirus LANA interactors links LANA to TIP60, PP2A activity, and telomere shortening. *Journal of virology* **86**, 5179-5191 (2012).
- 207. Ohama, T. & Brautigan, D.L. Endotoxin conditioning induces VCP/p97mediated and inducible nitric-oxide synthase-dependent Tyr284 nitration in protein phosphatase 2A. *The Journal of biological chemistry* 285, 8711-8718 (2010).
- 208. Junttila, M.R., *et al.* CIP2A inhibits PP2A in human malignancies. *Cell* 130, 51-62 (2007).
- Nazarenko, I., Schafer, R. & Sers, C. Mechanisms of the HRSL3 tumor suppressor function in ovarian carcinoma cells. *Journal of cell science* 120, 1393-1404 (2007).
- 210. Hsu, W., Zeng, L. & Costantini, F. Identification of a domain of Axin that binds to the serine/threonine protein phosphatase 2A and a self-binding domain. *The Journal of biological chemistry* 274, 3439-3445 (1999).
- 211. Kamibayashi, C., Lickteig, R.L., Estes, R., Walter, G. & Mumby, M.C. Expression of the A subunit of protein phosphatase 2A and characterization of its interactions with the catalytic and regulatory subunits. *The Journal of biological chemistry* 267, 21864-21872 (1992).
- 212. Oberg, E.A., Nifoussi, S.K., Gingras, A.C. & Strack, S. Selective proteasomal degradation of the B'beta subunit of protein phosphatase 2A by the E3 ubiquitin ligase adaptor Kelch-like 15. *The Journal of biological chemistry* 287, 43378-43389 (2012).
- 213. Yan, Z., Fedorov, S.A., Mumby, M.C. & Williams, R.S. PR48, a novel regulatory subunit of protein phosphatase 2A, interacts with Cdc6 and

modulates DNA replication in human cells. *Molecular and cellular biology* **20**, 1021-1029 (2000).

- 214. Zwaenepoel, K., Goris, J., Erneux, C., Parker, P.J. & Janssens, V. Protein phosphatase 2A PR130/B"alpha1 subunit binds to the SH2 domain-containing inositol polyphosphate 5-phosphatase 2 and prevents epidermal growth factor (EGF)-induced EGF receptor degradation sustaining EGF-mediated signaling. *FASEB journal : official publication of the Federation of American Societies* for Experimental Biology 24, 538-547 (2010).
- 215. Ewing, R.M., *et al.* Large-scale mapping of human protein-protein interactions by mass spectrometry. *Molecular systems biology* 3, 89 (2007).
- 216. Dozier, C., Bonyadi, M., Baricault, L., Tonasso, L. & Darbon, J.M. Regulation of Chk2 phosphorylation by interaction with protein phosphatase 2A via its B' regulatory subunit. *Biology of the cell / under the auspices of the European Cell Biology Organization* 96, 509-517 (2004).
- 217. Ito, A., *et al.* A truncated isoform of the PP2A B56 subunit promotes cell motility through paxillin phosphorylation. *The EMBO journal* 19, 562-571 (2000).
- 218. Letourneux, C., Rocher, G. & Porteu, F. B56-containing PP2A dephosphorylate ERK and their activity is controlled by the early gene IEX-1 and ERK. *The EMBO journal* 25, 727-738 (2006).
- Chandrashekarappa, D.G., McCartney, R.R. & Schmidt, M.C. Subunit and domain requirements for adenylate-mediated protection of Snf1 kinase activation loop from dephosphorylation. *The Journal of biological chemistry* 286, 44532-44541 (2011).

- 220. Al-Hakim, A.K., *et al.* 14-3-3 cooperates with LKB1 to regulate the activity and localization of QSK and SIK. *Journal of cell science* **118**, 5661-5673 (2005).
- 221. Vinayagam, A., *et al.* A directed protein interaction network for investigating intracellular signal transduction. *Science signaling* **4**, rs8 (2011).

ABSTRACT

PROTEIN PHOSPHATASE 2A INTERACTIONS IN ISLET AND HUMAN SKELE-TAL MUSCLE IN DIABETES

by

DIVYASRI DAMACHARLA

August 2017

Advisor: Dr. Zhengping Yi

Major: Pharmaceutical Sciences (Pharmacology and Toxicology)

Degree: Doctor of Philosophy

Type 2 Diabetes is a metabolic disorder associated with insulin resistance and consequent high blood glucose levels. Under normal conditions, in response to high blood glucose levels, pancreatic beta cells produce insulin. The secreted insulin is distributed to tissues thereby stimulating insulin stimulated glucose uptake. However, maximum glucose disposal takes place in skeletal muscle. Thus, studying beta cells and skeletal muscle in respect to diabetes is crucial. Protein Phosphatase 2A (PP2A) is one of the major serine/threonine phosphatases belonging to PhosphoProteinPhosphatase (PPP) family. It constitutes about 80% of all serine/threonine phosphatases. It is regulated by numerous regulatory subunits as well as other substrate molecules and post translational modifications. This alters their localization, activity and its target molecules. Many evidences show the effect of insulin on PP2Ac and its abnormal regulation in conditions of glucolipotoxicity. Thus, studying PP2Ac interaction partners in respect to type 2 diabetes will give insight into its role in insulin resistance.

Here, we studied interaction partners of PP2Ac in both beta cells and human skeletal muscle. INS-1 832/13 insulin secreting cells are used to study beta cell which are treated with basal and high glucose for 48hrs which are then harvested and analyzed.

Skeletal muscle biopsies are collected from human subjects. Two biopsies are collected from each individual, basal and insulin stimulated using hyperinsulenemic euglycemic clamp technique. We collected biopsies from individuals characterized in three different groups, lean controls, obese/overweight insulin resistant, and type 2 diabetics. Both beta cells and human skeletal muscle biopsies are analyzed using a similar proteomics approach using ESI-HPLC-MS/MS. Using this technique, we identified 514 partners in INS-1 832/13 cells with 89 partners classified as glucose responsive. Similarly, 211 interaction partners are identified in human skeletal muscle biopsies and 69 proteins presented a significant difference among three gropus. Several important PP2Ac interaction partners were identified which included some known partners (identified in other cell types) as well. Many proteins involved in insulin secretion are found as PP2Ac partners in beta cells whereas several vital molecules involved in insulin signaling pathway are identified in skeletal muscle biopsies. Some important molecules like Rac1, Limk1, Akt2, MAPK are identified among others. Proteins that effect PP2Ac post translational modification, such as PPME-1, are also identified and presented with a significant change. Further validation of these partners will help with a better understanding of the role and regulation of PP2Ac in diabetes.

AUTOBIOGRAPHICAL STATEMENT

DIVYASRI DAMACHARLA

EDUCATION

2017 PhD in Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, U.S.A.
2015 Masters in Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, U.S.A.
2012 Bachelors in Pharmacy, Rajiv Gandhi University of Health sciences, India

PROFESSIONAL ASSOCIATIONS

American Society for Mass Spectrometry (ASMS) American Association for Pharmaceutical Scientists (AAPS)

PRESENTATIONS

Divyasri Damacharla., et al. Identification of Protein Interaction Partners of Protein Phosphatase 2A Catalytic Subunit Using Quantitative Mass Spectrometry, the 62nd American Society for Mass Spectrometry Conference on Mass Spectrometry, June 15-19, 2014, Baltimore Convention Center, Baltimore, MD.

Divyasri Damacharla., et al. Protein Interaction Partners of Protein Phosphatase 2A Catalytic Subunit in Rat β -Islet cells Using Quantitative Mass Spectrometry, the 63rd ASMS Conference on Mass Spectrometry and Allied Topics, May 31 - June 4, 2015 - America's Center, St. Louis, Missouri

Divyasri Damacharla., et al. Identification of Interaction Partners of Protein Phosphatase 2A Catalytic Subunit in human skeletal muscle using Label free Mass Spectrometry, the 65th American Society for Mass Spectrometry Conference on Mass Spectrometry, June 4-8, 2017, Indianapolis Convention Center, Indianapolis, Indiana.

PUBLICATION

Zhang, X., *et al.* Quantitative proteomics reveals novel protein interaction partners of PP2A catalytic subunit in pancreatic beta-cells. *Molecular and cellular endocrinology* **424**, 1-11 (2016).