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CHAPTER 1: INTRODUCTION 

I. Herpesviruses 

The name herpes comes from the Greek verb “έϱπειν” meaning “to creep” and 

was originally used to describe various recurring skin infections (4).  Since the time of 

Hippocrates, the use of the term “herpes” has been continually refined based on observed 

characteristics of infection.  Eventually, herpes came to describe infections resulting in 

formation of small transient pustules that were resistant to other treatments.  In the initial 

17th through 19th century classifications of the genus Herpes, H. zoster and H. simplex 

were first identified.   

Through advances in technology and the characterization of viruses in modern 

times, the genus Herpesvirus was officially recognized by the International Committee of 

Taxonomy of Viruses (ICTV) starting in 1971 (5).  Since then, the genus has been 

elevated to the order Herpesvirales and now contains over 130 species divided into three 

families based on host speciation: Herpesviridae (mammal, bird, and reptile), 

Alloherpesviridae (fish and frog), and Malacoherpesviridae (mollusks).  The human 

herpesviruses (HHVs) are contained within Herpesviridae and help comprise three 

subfamilies:  Alphaherpesvirinae includes herpes simplex virus 1 (HSV-1, HHV-1), herpes 

simplex virus 2 (HSV-2, HHV-2), and varicella zoster virus (VZV, HHV-3); 

Betaherpesvirinae includes human cytomegalovirus (HCMV, HHV-5), HHV-6A, HHV-6B, 

and HHV-7; finally, Gammaherpesvirinae includes Epstein-Barr virus (EBV, HHV-4) and 

Kaposi’s sarcoma-associated herpesvirus (KSHV, HHV-8).  Based on evolutionary 

phylogeny, divergence of the Herpesviridae subfamilies happened ~180-220 million years 
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ago whereas Homo sapiens are estimated to have evolved only ~1.3-1.8 million years 

ago (6). 

HHVs vary broadly in their tissue tropism and, as a result, are associated with a 

wide range of etiologies with contrasting degrees of severity in healthy individuals.  HSV-

1 and HSV-2 cause oral and genital lesions, respectively, and are classified as cofactors 

for sexually transmitted infections.  VZV is the causative agent of chicken pox and 

shingles.  HHV-6A, HHV-6B, and HHV-7 are all associated with roseola in infants.  

Infectious mononucleosis is caused by EBV and to a lesser degree, HCMV.  Lastly, HSV-

1, EBV, and KSHV infections have also been correlated with the development of cancer. 

Despite differences in virion tropism and disease progression, HHV virions 

maintain a conserved structure similar to all herpesviruses (7).  Mature virions range from 

100-200 nm in size and contain a large linear double-stranded DNA genome packaged 

within an icosahedral nucleocapsid (Fig. 1.1).  Within HHVs, genomes range from 145-

240 kbp in size and vary in terms of coding potential and sequence organization (Fig. 1.2) 

(8).  The capsid is then wrapped in a proteinaceous tegument which serves as a bridge 

between the capsid and the envelope in addition to several key effector functions upon 

infection. Ultimately, mature virions are wrapped in a host-derived lipid bilayer containing 

membrane bound glycoproteins and accessory factors required for receptor binding and 

membrane fusion during initiation of infection.   

Similar to structure, the general replication cycle for HHVs is also conserved 

between subfamilies (Fig. 1.3) (8).  During lytic infection, virions attach the receptors on 

host cell membranes.  Following adherence, the virion envelope fuses with the plasma 

membrane or endocytic vesicle thus releasing the tegument and nucleocapsid into the 
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cytoplasmic space.  The tegument downmodulates host immune responses while also 

aiding in transport of the capsid to the nuclear membrane.  Upon arrival at the nucleus, 

the capsid portal is opened and the high internal pressure of the capsid ejects the viral 

genome.  Through a combination of tegument trans-activating proteins and host factors, 

transcription of viral genes is initiated.  This leads to the sequentially regulated expression 

of viral proteins. Generally, immediate early (IE, α) genes promote replication by altering 

the host environment, early (E, β) genes lead to DNA replication, and late (L, γ) genes 

produce structural components used in assembly of nascent virions.  When the infection 

has sufficiently progressed, genome concatemers are packaged into the capsid which is 

then exported out of the nucleus and into the cytoplasm.  An amorphous tegument layer 

is added and virions are enveloped.  Finally, HHV progeny are exported out of host cells 

into the extracellular space. 

A hallmark of HHV infection is the ability to establish latency within host tissues.  

In these instances, a low level of IE gene expression is maintained while the majority of 

downstream genes are repressed through various mechanisms.  Following cellular stress 

or another appropriate stimulus, viral gene expression is induced and lytic replication 

proceeds normally. 

A. Global health burden of HCMV infection 

Of all the HHVs, HCMV is one of the most pervasive and opportunistic pathogens 

worldwide.  Seroprevalence has been shown to increase as a function of age with 

approximately 60% of individuals being positive at 50 years of age (9).  Rates of 

seroprevalence also tend to be disproportionately higher in both non-white and low 

socioeconomic groups suggesting lifestyle-associated risk factors.  In healthy individuals, 
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primary symptoms are typically mild and may go unnoticed. Conversely, in individuals 

with naïve or compromised immune systems, infection can have severe and lasting 

effects. 

HCMV is the leading infectious cause of congenital birth defects in the United 

States (10).  If a seronegative woman becomes infected prior to becoming pregnant, the 

likelihood of fetal infection is low (11).  If the same woman were to instead become 

infected while pregnant, there is a 50% probability that the fetus will also be infected.  

Even in healthy individuals, the normal immune response to HCMV is weakly protective.  

Thus, if a mother contracts a previously unencountered strain of HCMV during pregnancy, 

the risk for fetal infection increases. Of infected children, only 10% will show symptoms 

although the other 90% may develop symptoms later.  The primary outcomes of 

congenital infection are microcephaly, hearing loss, and growth retardation, among others 

(12).  During infection, the virus is able to access the fetus through infection of placental 

cytotrophoblasts unless sufficiently controlled by the maternal immune response.  

Infection of cytotrophoblasts also alters cellular gene expression and may impact the 

support structures required for fetal development, particularly if infection occurs within the 

first trimester.   

In addition to congenital cases, HCMV is particularly problematic for 

immunocompromised individuals, including HIV/AIDS patients and organ transplantation 

patients.  Because HCMV is so prevalent and establishes latency in hosts, individuals 

with diminished immune systems are at high-risk for experiencing frequent viral 

reactivations.   
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Individuals infected with HIV were 2.5-times more likely to develop AIDS if they 

were also HCMV-seropositive (13).  For those who already developed AIDS, infection 

with HCMV most often results in virally induced retinitis (14).  The inability to mount a 

sufficient neutralizing response to HCMV infection is correlated with decreased CD4+ 

leukocyte populations.  The development of highly active antiretroviral therapy (HAART) 

has led to dramatic improvements in the prognosis of AIDS patients but treatment can 

also lead to temporary uveitis from reconstituted immune populations attacking remaining 

viral antigens in the eye (15). 

 For solid organ transplant patients, CMV can be particularly problematic because 

the virus exhibits an extraordinarily broad tissue tropism and is able to infect most major 

organ systems.  If a transplanted organ is directly infected or carries latently infected 

monocytes, the new host may mount a strong CD8+ response against the new tissue 

resulting in graft versus host disease and ultimate rejection of the organ.   

For all at risk populations, the combination of improved screening techniques and 

development of HCMV antiviral treatments has greatly reduced the incidence of 

complications (16).  Currently, there are four treatments available for HCMV: ganciclovir, 

valganciclovir, cidofovir, and foscarnet.  Thus far, vaccination strategies against HCMV 

have been unsuccessful due to its unique immune evasion tactics meaning the antivirals 

are the only option for treating patients.  Unfortunately, all available drugs target either 

viral DNA polymerase (UL54) or the phosphokinase, pUL97, so antiviral resistance has 

increased.  Hindering the development on novel therapies is a lack in understanding of 

HCMV replicative processes.  In relation to several other clinically relevant viruses, 
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comparatively little is known regarding HCMV virion assembly and egress.  If these 

processes were better understood, drug targets could be pursued. 

B. HCMV replication and formation of the assembly compartment 

During infection, HCMV follows a replication cycle similar to other herpesviruses 

(Fig. 1.3).  Where HCMV replication deviates most notably from the other herpesviruses, 

is the formation of the assembly compartment.  Approximately three days post-infection, 

the host organelle structure is significantly altered through a process dependent on viral 

gene expression (17-19).  The internal reorganization of host membranes leads to the 

generation of the cytoplasmic virion assembly compartment (cVAC; Fig. 1.4).  The cVAC 

is a structure unique to HCMV infection and consists of one or more enlarged nuclei bent 

around a perinuclear ring-like Golgi structure with various endosome populations at the 

center (18-20).  In tissue sections of clinical specimens, these structures are referred to 

as “owl’s eye inclusions.”  The prevailing idea is that the cVAC functions as a viral 

assembly line where the maturing capsids pass through the subsequent layers, gathering 

the requisite structural proteins, until envelopment and egress. 

Several studies have looked for proteins integral to cVAC biogenesis leading to 

identification of both viral and cellular factors.  An siRNA screen of viral genes identified 

UL48, UL94, and UL103 as being important for induction of cVAC structures (21).  After 

establishing a direct role for UL103, a follow-up proteomics study characterized several 

cellular proteins that interact with UL103 (22).  By this study and others, the Golgi-resident 

motor protein, MYO18A, was found to facilitate cVAC structure formation (22, 23).   

The induction of cVAC formation is not required for virion growth but does augment 

it.  Several studies seeking to understand envelopment and egress of HCMV virions have 
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found arrest of virion maturation is typically accompanied by improper localization of virion 

structural proteins typically found in the cVAC.  These observations lead to the question: 

does cVAC development drive envelopment and egress or do envelopment and egress 

drive cVAC development as a byproduct of virion production?  To look at this interplay 

further, we need to take a closer look at events required for envelopment and egress. 

II. Envelopment and Egress  

Several components are required for virion biogenesis including: i) the viral 

genome, ii) capsid proteins, iii) viral microRNAs (miRNAs), iv) tegument proteins, v) lipid 

membranes, and iv) membrane-bound glycoproteins.  During infection with HCMV and 

other herpesviruses, the host environment is heavily modified to generate the various 

components and organize them along a novel biosynthetic pathway.  If any one of the 

components is absent or mislocalized, the stability of maturing particles is compromised 

because the scaffold-like assembly of virions requires accurate construction at the 

preceding stages.  As an example, the ability for nascent virions to acquire the lipid 

envelope is dependent on proper tegumentation. 

Secondary envelopment of maturing virions takes place in the cytoplasmic space 

and only proceeds following successful tegumentation.  Similar to replication of HSV-1 

and other herpesviruses, the lipid envelope is essential because it carries the necessary 

glycoproteins and other signaling molecules to initiate infection upon release from the 

host cell (24, 25).  Envelopment is mediated by layers of tegument proteins interacting 

with cellular lipid membranes in the assembly compartment, either directly through lipid 

modifications or indirectly via membrane bound proteins (26).  Through these interactions, 

HCMV particles are engulfed by the target membranes and virion maturation is completed 
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upon membrane scission (27).  For the replication cycle to complete, the last remaining 

stage is virion egress. 

In addition to factors required for initiation of infection, membranes used during 

envelopment define the route of virion egress (28, 29).  The lipid composition of co-opted 

membranes determines which cellular mediators of vesicle trafficking are able to interact 

and by extension, the direction of transport (23).  HCMV influences the route of exocytosis 

through manipulation of fatty acid (FA) synthesis and resultant shifts in the balance of 

various lipid moieties in the assembly compartment during infection (30, 31).  Likewise, 

several viral gene products also influence the stability and localization of proteins required 

for vesicle transport, further driving the process (21, 32, 33).  Through this multi-faceted 

approach, HCMV virions are carried along a pathway that appears to connect Golgi-

derived membranes to the plasma membrane (20, 29).  Following fusion of the transport 

vesicle at the plasma membrane, viral particles are released and infection can start anew. 

Because secondary envelopment and exocytosis are the last stages required to 

produce infectious virions, upstream disruptions of replicative processes can manifest as 

defects in envelopment or export.  To increase replication efficiency, HCMV expresses 

several miRNAs and viral proteins with overlapping functions.  Some alter the host cell 

metabolic profile and internal morphology while others participate in virion construction 

and recruitment of essential components.  This observed functional redundancy is one of 

the primary cofounding factors to studying HCMV replication. 

In this section, we explore the impact of virally induced mechanisms leading to 

secondary envelopment and egress.  Through understanding the cooperative nature of 

viral and host-derived factors, we seek to outline a progressively more detailed map of 
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these complex and often interwoven processes critical for virion maturation.  Generation 

of a map of HCMV replication enables identification of critical control points which can 

then be exploited for the development of novel antiviral treatments. 

A. Host-derived compartments as the site of secondary envelopment 

Due to the dramatic restructuring of infected cells and the resultant shifts in 

organelle identity (19), the source of membranes used for the process of envelopment is 

unclear but correlations can be made using known cellular markers (23).  Though it is not 

strictly necessary, formation of the cytoplasmic virion assembly complex (cVAC) appears 

to facilitate envelopment of nascent particles (21, 34).  Following the cVAC model, 

nascent particles are enveloped during translocation through a Golgi-derived ring-like 

structure and upon entrance into the predominantly endosomal-staining central 

compartment (18, 19, 34).  Three-dimensional reconstruction of immune electron 

micrographs (EMs) from infected human foreskin fibroblasts (HFFs) suggests that 

envelopment likely occurs in a region coinciding with markers for both the trans-Golgi 

Network (TGN) and various endosome populations as seen in other herpesviruses (19, 

35-37).   

Through immunofluorescence imaging and immunogold staining of EMs, it was 

found that membranes targeted for envelopment based on glycoprotein accumulation 

colocalize with typical Golgi-derived markers (TGN46, mannosidase II, Rab3, syntaxin 5) 

and endosomal markers (CD63, EEA1, Rab11) but not lysosomal markers in HFFs (17-

20, 38-41).  Supporting the role of endosomes in herpesvirus replication, HSV-1 or HCMV 

infected cells labeled with horse radish peroxidase (HRP), a fluid phase marker of uptake 

and release through the endocytic recycling compartment (ERC), had an accumulation of 
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HRP in the interstitial space between the lipid bilayers of successfully enveloped particles 

(42, 43).  HRP accumulation is indicative of a change in the net flux of endocytic and 

exocytic pathways throughout the ERC during infection.  Transferrin receptor (TfR) also 

appears to be sequestered in a perinuclear secretory trap coinciding with markers of the 

cVAC (20).   

Formation of the secretory trap is partly induced by HCMV miRNA-mediated 

downregulation of recycling activity by targeting host genes involved in ERC trafficking 

(44), a pattern also seen in Epstein-Barr virus (EBV) and Kaposi’s sarcoma-associated 

herpesvirus (KSHV) (45, 46).  Characterization of the HCMV transcriptome late in 

infection shows a much broader effect with 112 host vesicular trafficking genes being 

differentially modulated by infection, far more than are targeted by miRNAs alone (44, 47, 

48).  This activity is multi-faceted because it both blocks innate immune signaling through 

cytokines such as IL-6 or TNF-α and leads to the perinuclear pooling of virion 

components, thus contributing to cVAC formation (44, 47, 49).   

The immediate-early viral protein pUL37x1 also contributes to altered host 

morphology and cVAC development by potentiating actin remodeling.  pUL37x1 is a multi-

function protein responsible for releasing Ca2+ stores from the endoplasmic reticulum 

(ER) before traveling to mitochondria where it inhibits apoptosis (50-52).  The Ca2+ efflux 

activates PKCα which remodels actin along with RhoB (53), leading to altered 

morphology.  In addition, the efflux causes the accumulation of large cytoplasmic vesicles 

approximately 0.5-5 µm in diameter through a process requiring FA synthesis and 

elongation (50, 51, 54).  When pUL37x1 is not expressed, the cVAC is disrupted and 

there is an buildup of nonenveloped particles in the perinuclear region (51).   
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It is not enough that the virion structural components are made in sufficient 

quantities, they must also be spatially organized in the appropriate order. Only through 

extensive rearrangement of host morphology, are virions efficiently produced.  The 

complex orchestration of viral products and host factors underscores the complexity of 

understanding virion envelopment.   

B. Regulation of envelopment as a function of tegumentation 

For envelopment to take place, one of several prerequisite steps that must be 

completed is tegumentation.  The tegument layer of herpesvirus virions provides a 

scaffold-like interface for membrane-associated viral proteins to adhere to during 

envelopment.  Because of this, alterations in tegument composition can ultimately cause 

defective envelopment. 

As an example, products of the UL35 ORF have been implicated as having a role 

in tegument recruitment (55).  At early time points, both ppUL35A and ppUL35 localize to 

the nucleus where they interact with ppUL82 and activate the major IE promoter.  At late 

timepoints, however, the longer form, ppUL35, helps shuttle ppUL82 and pp65 (ppUL83) 

out of the nucleus as it translocates to the cytoplasm for incorporation into the tegument 

(55-58).  If the UL35 ORF is deleted, nonenveloped capsids accumulate in the 

cytoplasmic space and infectious output is reduced 10-fold likely due to improper 

tegument structure and inability to bind lipid recruiting molecules (55).   

During infection, the tegument proteins pUL103 and pUL71 also contribute to the 

process of envelopment (21, 59).  pUL103 is required for cVAC biogenesis and efficient 

release of nascent virions (21, 60, 61).  Using the UL103-Stop-F/S deletion mutant or 

UL103-FKBP destabilization mutant, decreased pUL103 expression correlated with 
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altered trafficking of pp28 (viral UL99), golgin-97, GM130, and CD63 and decreased 

plaque size (21, 60).  Further imaging shows virions stalled during envelopment or with 

abnormal structure accumulating in the perinuclear region (21).  Because pUL103 has 

several interacting partners during infection (22), it isn’t clear which process leads to the 

observed phenotypes but it appears to be linked to the two C-terminal ALIX-binding 

motifs.  ALIX-binding motifs are also important in the maturation of other enveloped 

viruses including during the primary envelopment of EBV (62-64).  Alternatively, the 

defective phenotypes may be linked to pUL103 interacting with pUL71 under normal 

conditions (22, 65).   

pUL71 is a component of mature virions and HCMV infected patients mount a B 

cell response against it suggesting it may be exposed on virions or it is otherwise released 

from host cells (58, 66).  pUL71 deficient virus causes the aberrant localization of viral 

proteins in the cVAC and the formation of large Lamp1/CD63 positive multi-vesicular 

bodies (MVBs) near the cVAC in infected cells (59, 67).  Structural analysis of the pUL71 

null mutants, TBstop71 and BADinUL71STOP, showed the accumulation of HCMV 

particles unable to complete envelopment on the cytoplasmic side of MVBs (59, 67).  

During TBstop71 infection, 26.90% of particles were enveloped and 70.14% were 

budding compared to 86.64% and 12.95%, respectively, during wild-type infection (68).  

This behavior can be recapitulated when pUL71 is expressed with a mutated basic 

leucine zipper (bZIP)-like domain suggesting oligomerization is necessary for pUL71 to 

function properly (68, 69).  Positional homologs of pUL71 are involved in envelopment 

and are conserved amongst other herpesviruses including pUL51 in HSV-1 (70), UL51 in 

pseudo-rabies virus (PRV) (71), and GP71 in guinea pig CMV (GPCMV) (72).  The 
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observed phenotypes of pUL71 suggest that it is involved in membrane scission events 

during envelopment.   

Despite being low abundance compared to other virion-associated proteins (58), 

the outer tegument protein, pp28, is important for envelopment as well (73).  After the 

amino terminus of pp28 is myristoylated, it attaches to target membranes before localizing 

to the cVAC and forming multimers late in infection (17, 39, 74, 75).  When the first 50 

residues at the amino terminus of pp28 are mutated, infectious yield is hindered due to 

aberrant trafficking of pp28 and a corresponding accumulation of nonenveloped particles 

in the cytoplasm (26, 76).  The irregular trafficking of mutated pp28 does not affect the 

level of other tegument proteins in mature virions suggesting it forms part of the outermost 

layer of tegument proteins (26).  Expression of only the amino-terminus of pp28 was 

necessary and sufficient for reconstituting infectious output, accumulation of pp28 in 

mature virions, and proper envelopment (76).  Further characterization found the most 

important sites of the pp28 amino terminus to be the second residue, glycine, which 

serves as the site of myristoylation (39), amino acids (aa) 26-43 which are responsible 

for multimerization in the cVAC (75), and aa 37-39 which allow interaction with the 

cysteine residue at position 250 of the viral protein UL94 (77, 78).  The ability of pp28 to 

be incorporated in maturing virions is also dependent on its interaction with UL94 which 

serves as a scaffold on the outside of the tegument (77, 78).  Without UL94, secondary 

envelopment and cVAC formation is hindered (79).  In HSV-1, KSHV, mouse 

cytomegalovirus (MCMV), and murine herpesvirus 68 (MHV-68), homologs of pp28 and 

UL94 play an analogous role but in contrast to HCMV infection, they are not considered 

essential for virus replication (80-84). 
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Genes within the HCMV UL/b’ region influence maturation through cell-specific 

mechanisms.  Within this region, the UL133-UL138 (UL133/8) locus is nonessential for 

growth in fibroblasts but required for other cell types (85).  Proteins produced by HCMV 

UL135 and UL136 are transcribed as part of UL133/8 polycistronic mRNAs (86), localize 

to Golgi membrane structures (87, 88), and are required for latency and virion maturation 

(86, 88-93).  UL135 and UL136 ORFs were responsible for the dispersion of cVAC 

markers and abnormal particle formation when human lung microvascular endothelial 

cells (HMVECs), but not fibroblasts, were infected with a TB40/E-UL133-UL138NULL virus 

(88-91). Using a TB40/E-UL135STOP mutant defective in UL135 expression to infect 

HMVECs, only 27% of virions exhibited normal morphology with the remainder being non-

infectious enveloped particles (NIEPs) or aberrantly enveloped particles (90).  UL135 

mutation also resulted in smaller dense bodies, caused by a 2- to 3-fold decrease in pp65 

and pp150 expression, and, furthermore, dense bodies were excluded from MVBs where 

they normally aggregate with progeny virus in endothelial cells (89, 90).  In fibroblasts, 

the only phenotype of infection with TB40/E-UL135STOP was a slight increase in NIEPs 

relative to wild type (91).  Using similar methodology as the UL135 studies, a TB40/E-

UL136GalK mutant with a disrupted UL136 ORF produced aberrantly enveloped virions 

65% of the time and dense bodies that were 2.5 times larger on average despite having 

comparable levels of tegument proteins compared to wild type (90).  Of the several 

different sized proteins encoded by UL136 splice variants, the 26 kDa and 33 kDa 

products were shown to be the most important in facilitating normal cVAC biogenesis and 

particle formation (92, 93).  Although specific mechanisms have yet to be determined, 

HCMV pUL135 appears to direct maturation and envelopment through interactions with 
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other tegument proteins while UL136 ORF isoforms are needed for interacting with target 

membranes.  The endothelial-dependent phenotypes exhibited by UL133/8 locus 

mutations are a prime example of the manipulative nature of HCMV in distinct host 

environments. 

The herpesvirus tegument serves essential functions during replication and 

initiation of new infections.  During HCMV infection, the diverse, yet overlapping, 

mechanisms of recruiting lipids demonstrate how important this function is to virion 

replication.  Through their interactions between capsids and envelope-associated 

glycoproteins, tegument proteins are responsible for bringing together the various 

biosynthetic pathways and initiating secondary envelopment.   

C. Outcomes of envelopment as determined by glycoprotein composition 

The variability in cellular tropism of nascent virions from different cell types 

suggests different maturation events occur leading up to egress. As in other 

herpesviruses, including GPCMV and rhesus CMV (RhCMV), HCMV glycoprotein 

composition plays a role in establishing sites of envelopment (94-100).  HCMV isolates 

contain approximately 70 ORFs with predicted features of glycoproteins but only a few 

have been directly studied (95, 101, 102).  The most abundant HCMV glycoproteins are 

gM (UL100), gN (UL73), gB (UL55), gH (UL75), gL (UL115), gO (UL74), and UL128-131 

(58) but most have not been detected in virions suggesting non-structural roles. The 

gM/gN complex is the most abundant glycoprotein complex in mature HCMV virion 

envelopes and if either is deleted, the virus is unable to replicate (103).   

Similar to EBV (104, 105), gM and gN form a complex (gM/gN) when present in 

the ER before they can be trafficked to cytoplasmic vesicles and colocalize with other 
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markers of the cVAC (106, 107).  Translocation of HCMV gM to the cVAC occurs when 

the cytoplasmic region of gM interacts with cellular FIP4, FIP4 binds Rab11, and Rab11 

recruits further effector proteins until gM is transported in complex with gN (108).  gM and 

gN also contain other C-terminal endocytic trafficking motifs, including an acidic cluster 

used for binding cellular transport proteins, such as PACS-1, and a YXXΦ tyrosine motif 

(109-111).  The highly-conserved nature of the C-terminal acidic clusters in herpesvirus 

glycoproteins suggests a common mechanism for direct transport to the site of virion 

envelopment using membranes believed to be TGN-derived (112-116).  YXXΦ motifs are 

also conserved across all subfamilies of Herpesviridae and allow various envelope 

proteins to be retrieved from the plasma membrane through interactions with the AP-2 

complex leading to clathrin-mediated, dynamin-dependent, endocytosis and 

accumulation in endosomes or the TGN (98, 117-120).   

Cell-to-cell spread during HSV-1 infection is dependent on the UL51 (HCMV 

pUL71 homolog)/gE (US8) interaction (121, 122), an important mediator of syncytia 

formation (123, 124), before both are transported to the site of envelopment through use 

of terminal YXXΦ tyrosine motifs (70, 122, 125-128).  When the motif is mutated in pUL51, 

neither pUL51 nor gE is incorporated into nascent virions and spread is hindered in Hep-

2 human epithelial cells but not Vero monkey epithelial cells suggesting cell type 

dependent mechanisms for spread (122).   

In HCMV, the more defined assembly compartment results in greater 

concentration of envelope proteins compared to other herpesviruses.  Inclusion of both 

the acidic cluster and YXXΦ motifs in most envelope proteins ensures proper localization 

to the assembly compartment.  Neither trafficking pattern is essential for virus production 
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but they both serve to augment infectious output as seen in HCMV gB, gM/gN, and 

gpUL132 (109, 119, 129-132), varicella-zoster virus (VZV) gE, gH, and gB (99), HSV-1 

gB, pUL51, and gE (98, 122, 133), or PRV gB (134), amongst others. During HSV-1 

infection, UL20 helps chaperone gK and gE from the ER to Golgi and without it, neither 

glycoprotein is incorporated resulting in accumulation of nonenveloped particles and 

inability to form syncytia (135, 136).   

The incorporation of gH/gL complexes into the envelope of nascent virions is 

another example of maturation events defining HCMV tropism (137-140).   HCMV and 

GPCMV virions require the gH/gL/gO complex for entering fibroblasts by fusion at the 

plasma membrane and the gH/gL/UL128-131 pentameric complex for entry into epithelial 

and endothelial cells by pH dependent endocytosis (24, 94, 96, 141).  Some laboratory 

strains are fibroblast-restricted because serial passaging has led to loss of functional 

UL128-UL131 and a compensatory increase in gH/gL/gO concentration (142-144).  The 

ratio between gH/gL/gO and gH/gL/UL128-131 complexes is determined within the ER 

prior to transport to Golgi or post-Golgi membranes for use in envelopment (96, 140, 145, 

146).  After gH and gL interact and stabilize each other in the ER (147), a single gH/gL 

complex can either form a disulfide bond with gO or a noncovalent bond with UL128-131 

but not both (96, 148). During formation of the pentameric complex, UL128, UL130, and 

UL131 are each capable of binding to gH/gL and help recruit the remaining components 

of the pentameric complex (96).  To a lesser degree, the UL116 glycoprotein also appears 

to compete for gH binding in the ER but its role is still unknown (149).  Only after formation 

of gH/gL/gO or gH/gL/UL128-131 do the complexes migrate to the Golgi where they 

mature through glycosylation and become incorporated into virions (96, 145, 150).   
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Glycoprotein complex formation and incorporation in HCMV infected cells is driven 

by several viral proteins including US17, UL148, and gO (1, 151, 152).  In addition to its 

immune modulatory role, when the transmembrane protein US17 was deleted, gH was 

mislocalized and there was a 3-fold decrease in the level of gH found in virions (1).  

UL148 is a glycoprotein with a RXR motif that retains it in the ER where it appears 

to bind and sequester gH/gL/UL130 or gH/gL/UL131 thus reducing the formation and 

trafficking of completed gH/gL/UL128-131 complexes to the cVAC leading to an 

enrichment of gH/gL/gO in virions (151).  Using the TB40/E deletion strain TB_Δ148, high 

MOI infections were similar to parent in HFFs but yielded 100x more infectious output in 

ARPE-19 human retinal pigment epithelial cells (151).  The deletion also caused 

substantially less gH/gL/gO complexes to form (151).  Insertion of UL148 into the 

laboratory strain ADr131 which previously lacked it decreased ARPE-19 tropism four-fold 

(151).  A related tropism effect was seen when comparing B cell-derived to epithelial cell-

derived EBV suggesting mechanisms for selecting envelope glycoprotein complexes may 

be a conserved feature of herpesviruses (147).  Positional homologs of HCMV gO exhibit 

approximately 40% aa similarity on average and are maintained in HHV-6A (U47), HHV-

6B (KA8L), HHV-7 (U47), and MCMV (M74) (153, 154).  Binding properties of HCMV gO 

vary in efficiency and are strain dependent (146).  When aligning the aa sequences of 

HCMV gO in 40 clinical and 6 laboratory strains, gO isoforms group into 8 different 

families with increased diversity between sequences at aa 1-100 of the N-terminus and 

residues in the 270-340 region (146, 155).  While gO isoforms from HCMV strains Towne, 

TR, Merlin, TB40/E, and AD169 were all able to form disulfide bonds with TR gH/gL in 

HFFs, virions produced in the presence of Merlin gO incorporated significantly more 
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gH/gL/UL128-131 than gH/gL/gO as opposed to the other strains in which the ratios were 

reversed (146).  Infecting fibroblasts using strains without gO expression caused 

accumulation of nonenveloped particles in the cytoplasm and mature virions had 

increased levels of gH/gL/UL128-131 but 50% less gH/gL overall (143, 152).  

Interestingly, when HUVECs were infected with a UL131 deletion mutant, an identical 

phenotype was observed but virions accumulated increased levels of gH/gL/gO instead 

emphasizing the cell specific pathways and competitive nature of glycoprotein complex 

selection in virion maturation.   

By altering glycoprotein expression during infection, HCMV is able to diversify the 

spread of infection and avoid complete elimination from infected hosts.  On a more basic 

level than determining cellular tropisms, herpesvirus glycoproteins serve a crucial role as 

bridges between the lipid membrane and tegument layer, without which, production of 

infectious particles is severely diminished. 

D. Fatty acid metabolism as a driver of envelopment 

As part of the process that leads to cVAC formation, envelopment, and egress, 

HCMV induces significant alterations in the metabolic profile of host cells (156).  As 

opposed to HSV-1 infection which upregulates pyrimidine nucleotide synthesis, HCMV 

induces a metabolic shift that favors long chain FA synthesis (30, 156-158).  By altering 

the metabolic profile during infection, HCMV upregulates saturated FA, which increase 

membrane curvature at sites of envelopment.  As seen with other enveloped viruses, 

increased curvature promotes envelopment through concentration of membrane-bound 

viral proteins and decreased energy cost during membrane budding (159-162).   
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The first committed step of FA acid synthesis is catalyzed by acetyl-CoA 

carboxylase (ACC) generating malonyl-CoA from byproducts of glycolysis and the 

tricarboxylic acid (TCA) cycle (163, 164).  Malonyl-CoA is then used as a substrate by 

cellular acyl-CoA synthetases and elongases to create long chain FA (LCFA; 14-21 C 

chain) and very long chain FA (VLCFA; 21 < C chain) (163, 164).   

Following HCMV infection, uptake of cellular glucose required for glycolysis was 

increased as a downstream result of the antiviral protein viperin becoming activated (165-

167). Cellular ACC levels also increased coincident with HCMV infection.  By increasing 

glucose and ACC, host malonyl-CoA production capacity increases and drives 

downstream FA synthesis. If this process is blocked as during inhibition of ACC by siRNA 

or the inhibitor TOFA, virion output decreased by 10-100-fold ostensibly due to loss of FA 

(157, 158).   

In addition to viperin, infected cells also upregulate the plasma membrane-bound 

low-density lipoprotein related receptor 1 (LRP1) as part of the antiviral response (28).  

Offsetting the adipogenic outcome of viperin upregulation, LRP1 depletes cellular- and 

virion-associated cholesterol because of amplified FA synthesis during infection.  

Inhibition of LRP1 by siRNA or antibody binding was sufficient to increase cholesterol 

concentration and infectivity of nascent virions (28).   

An extensive siRNA screen identified 172 cellular enzymes associated with FA 

metabolism and adipogenesis as having a role in HCMV replication (30).  From the 

screen, several acyl-CoA synthetases, including ACSM2A, 3-5, ACSBG1-2, ACSL1, 3-6, 

and SLC27A1-6 plus the ELOVL1-7 family of elongases, were found to be important for 

HCMV biogenesis (30).  Pharmacological inhibition of either set of enzymes caused 
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reduced viral infectivity with elongase inhibitors delaying expression of viral genes and 

causing a reduction in overall abundance of the tegument protein pp28 (30).  In addition 

to acyl-CoA synthetases and elongases, class III phosphatidylinositol 3-kinase (Vps34) 

was also identified in the screen as being required for growth; without it, nonenveloped 

virions accumulate in the cytoplasm (30, 51).   

During HCMV infection, Vps34 and ACC cooperatively form large cytoplasmic 

vesicles, presumed to be the sites of virion envelopment, and act downstream of the viral 

protein pUL37x1 in the process of envelopment (51). Through carbon labeling and mass 

spectrometry, the increased acyl-CoA synthetase, elongase, and Vps34 expression were 

found to cause an upregulation of saturated VLCFA in the viral envelope due to C18 FA 

elongation, not de novo synthesis (30).  Accumulation of VLCFA in defined regions is 

associated with increased membrane curvature (162, 168-171).  The lack of de novo 

synthesis suggested HCMV uses preexisting stores of FAs to generate VLCFA for virion 

envelopes.  The source was later found to be lipid droplets within the host cell (30).   

The ability to maintain elevated lipogenesis during HCMV infection is dependent 

on cleavage of the cellular sterol regulatory element binding protein (SREBP) by SREBP 

activation protein (SCAP) (172).  Under normal conditions, the interaction of SREBP1 and 

SCAP is inhibited by increased sterol formation but HCMV overrides the failsafe through 

expression of pUL38 (31, 172).  pUL38 removes a repressor of mTOR activity which is 

sufficient for maintaining cleavage and activation of SREBP1 thereby inducing elongase 

ELOVL7 and VLCFA is synthesized for use in virion envelopment (31, 173, 174).   
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E. Completion of envelopment by membrane scission 

After maturing virions have initiated the budding process, membrane scission 

events are required to seal the envelope.  In cellular pathways, scission is mediated by 

dynamin- or endosomal sorting complex required for transport (ESCRT)-dependent 

mechanisms (175, 176).  Dynamin is required for pinching off membranes during inbound 

trafficking and ESCRT stitches membranes closed as they bud into topologically 

extracellular vacuoles within cells as seen in MVB formation. While both are used for 

replication of enveloped viruses (177-179), the propensity for HCMV virions to 

accumulate in structures resembling MVBs suggests a dependence on ESCRT-mediated 

pathways (67, 90, 175, 176).   

ESCRT machinery is comprised of five main cytoplasmic complexes, ESCRT-0, -

I, -II, III, and Vps4-Vta1, and assists in both budding and scission of cellular vesicles 

through recognition of ubiquitin signals (175, 180-182).  There is some conflicting 

evidence but ESCRT-0, -I, and -II appear to act in parallel, not sequentially, to facilitate 

budding (175, 180-182).  ESCRT-III and Vps4-Vta1 act downstream of the other 

complexes and control the scission and release events, respectively (175, 176).   

Following cVAC formation during HCMV infection, components of the ESCRT 

machinery are intermingled with Golgi and endosomal markers near sites of envelopment 

(19, 183).  During infection of RPE1 retinal pigment epithelial cells with a GFP labelled 

variant of AD169, siRNA silencing of Tsg101, a component of ESCRT-I, and Alix, which 

helps recruit ESCRT-III, did not reduce virion output (184).  Conversely, siRNA silencing 

of Vps4A/B resulted in increased infectious output suggesting ESCRT recruitment was 

nonessential and, in some cases, inhibitory to virion maturation (184).  In a separate 
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study, HFFs were infected with the HCMV strain Towne followed by transfection with 

dominant negative (DN) forms of Vps4, Tsg101, and CHMP1, a component of ESCRT-III 

(183).  CHMP1DN and Vps4DN reduced infectious output in contrast to the previous study 

(183).   

Results from both studies combined with other observations suggest that HCMV 

utilizes ESCRT machinery for membrane budding and scission but may have functional 

redundancies that allow it to bypass requirements for recruitment of upstream ESCRT 

complexes (67, 90, 183, 184).  For example, HCMV UL103 contains ALIX binding 

domains so through interactions with other tegument proteins, including membrane 

associated pUL71, and ALIX, UL103 may be able to recruit ESCRT-III to membranes for 

envelopment without involving ESCRT-0, -I, or -II (21, 22, 59, 65, 67).  Another possible 

explanation for the discordant results is ESCRT complexes are multi-protein formations 

so only targeting select proteins may not be enough to abrogate budding and scission.  

As a potential confounding variable, the studies were conducted in different cell types 

with strains containing divergent coding potential so the results may indicate nuanced 

differences in virion maturation.   

What is known is that other herpesviruses also utilize ESCRT functions for 

envelopment which suggests this may be a conserved mechanism for viruses within 

Herpesviridae.  HSV-1 and HHV-6 particle envelopment is dependent on MVB formation 

and HSV-1 utilizes a Vps4-dependent mechanism (185-188), however, it is independent 

of Tsg101 and ALIX similar to HCMV (189).  Alternatively, the observed defects following 

targeting of ESCRT machinery may be related to events required for entry into cells, as 

seen during KSHV infection (190-192), or membrane remodeling as seen with EBV (64). 
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F. Virion egress completes HCMV replication 

Following successful envelopment, fully matured virions must be exported out of 

host cells.  For herpesviruses, HCMV in particular, the mechanism of viral egress is poorly 

understood.   

In vesicle-mediated transport, divergent pathways maintain unique lipid and 

protein signatures because the concentration of various FA moieties in a given region 

defines membrane physiology and restricts the array of interacting proteins (193-196).  

By analyzing the lipid composition of mature virions, correlations can be made with known 

trafficking pathways and exocytic events can be better understood.   

To identify potential pathways, liquid chromatography-mass spectrometry (LC-MS) 

was used analyze the lipidome of HCMV infected fibroblasts by measuring the relative 

abundance of 146 unique glycerophospholipid (GPL) species with chain lengths of 30-42 

carbons (29).  Except for a four-fold enrichment of phosphatidic acid (PA) during infection, 

the cellular GPL profile did not deviate greatly from mock-infected cells (29).  The GPL 

composition of virions, however, was markedly different compared to HCMV- or mock-

infected cells and was dominated by phosphatidylcholine (PC) and 

phosphatidylethanolamine (PE) species (29).  When compared to known subcellular 

compartments, the lipid composition of virion envelopes most closely matched profiles 

seen in neuronal synaptic vesicle membranes suggesting HCMV particles follow a related 

secretory vesicle (SV) pathway that operates in non-neuronal cells (29).   

Secretion via SVs is dependent on a highly-conserved trafficking pipeline used in 

cells from diverse lineages including mast cells in the immune system and β cells in the 

pancreas (197-201).  Usage of such a widely available pathway would potentially enable 
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infection of diverse cell types as seen during HCMV infection. Assuming this is the same 

pathway HCMV uses, it would dramatically reduce the coding potential required to 

facilitate release in the functionally disparate group of cell types subject to HCMV infection 

in vivo.  Starting at the TGN, SV release is mediated by several factors acting in 

sequence.  Various Rab GTPases, cytoskeletal motors, and SNAP/SNARE complexes 

associate with the target vesicle and relay it towards the plasma membrane where fusion 

occurs by a Ca2+ dependent mechanism (202-207).   

Several proteins involved in SV transport have been implicated in exocytosis of 

HCMV and other herpesviruses.  Rab GTPases control specific vesicle-mediated 

trafficking events within cells (208, 209).  For SV exocytosis, Rab3 and Rab27 work 

cooperatively to transport and dock vesicles at the plasma membrane prior to fusion (201, 

210, 211).  Maturing HCMV and HSV-1 virions associate with Rab3 containing 

membranes following immunogold staining and EM imaging (38, 212).  Likewise, 

infectious output was dramatically reduced in Rab27A deficient cells when infected with 

HCMV and HSV-1 (33, 213).   

Once docked at the plasma membrane, SVs require SNAP/SNARE complexes to 

mediate fusion.  Syntaxin 3 (STX3) is one of several SNARE proteins capable of initiating 

SV-plasma membrane fusion events (214).  During HCMV infection, STX3 expression is 

highly upregulated and localizes to the cVAC. When knocked down using shRNA, 

production of infectious material was reduced four-fold (32).  In neurons, SNAP25 is the 

major SNAP protein involved in SNAP/SNARE-mediated SV exocytosis (204, 207).  In 

other cell types including fibroblasts, SNAP23, a homolog of SNAP25, is more widely 



26 
 

 

used for exocytic events.  SNAP23 abundance was unaffected by HCMV infection but 

shRNA knockdown of SNAP23 decreased infectious output 1,000-fold (29).   

There are several lines of evidence that predict HCMV uses a SV-like pathway for 

final egress but it is noteworthy that inhibition of key proteins was not sufficient to 

completely eliminate HCMV egress.  This suggests either there are alternative pathways 

for virion egress or the SV pathway may only be important for one aspect of virion 

replication not necessarily specific to egress.  For example, despite correlations with a 

SV pathway, HSV-1 and PRV infectious particles in neurons associate with and are 

released via a Rab6A/Rab8A/Rab11A-dependent pathway as opposed to 

Rab3A/Rab27A-staining vesicles (212, 215-217).  The difference in HSV-1 and PRV 

function may a result of increased cellular dependence for Rab3A/Rab27A pathways 

during maintenance of homeostasis compared to other cell types. 

III. This Work 

Complications from HCMV infection place a high burden on society due to their 

frequency and severity.  An effective vaccine has yet to be developed and current 

treatments are limited in target diversity due to a lack of understanding of HCMV 

replicative processes.  By exploring the cellular-associated aspects of HCMV 

envelopment and egress, we aim to build a map of maturing HCMV virions as they 

traverse the cytoplasmic assembly compartment. 

To accomplish this, I will first describe the structure and function of a novel HCMV 

transduction vector, TB40/E/Cre, for use in studying various genes of interest in the 

context of infection.  Through demonstration of its growth properties, we were able to 

make preliminary observations relating HCMV genome length to replicative efficiency in 



27 
 

 

fibroblasts.  Using various protein tags, we also show the utility of expressing genes from 

TB40/E/Cre.  The flexibility of TB40/E/Cre allows it to be adapted to a wide range of 

experiments such as studying cellular trafficking pathways. 

Next, I transition into our current model of pathways involved in HCMV assembly 

and egress.  By analyzing previously generated microarray data (1), we were able to 

identify clusters of cellular transcripts significantly altered over the course of infection that 

have defined roles in host vesicle mediated transport.  By mapping the transcriptional 

data onto known pathways, we establish a model for which transport events are favored 

during HCMV virion maturation. 

Lastly, I will summarize the contributions made to herpesvirus biology as part of 

this work.  Inherent to that is the current state of knowledge and the potential for future 

directions.  Through our work, we have developed various tools and models that will 

continue to benefit researchers going forward.  By applying these concepts to HCMV 

replication, we have generated a road map of HCMV maturation as virions navigate 

through host compartments. 
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Fig. 1.1.  Structure of an HCMV virion.  An artist representation and an electron micrograph image of an 

HCMV virion are shown with the corresponding layers. 
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Fig. 1.2.  Comparative alignment of herpesvirus genomes demonstrates conserved regions and strain-

specific differences.  Small triangles depict virally encoded open reading frames (ORFs), boxes represent 

repeat regions, and colored boxes denote conserved gene blocks.  Abbreviations: herpes simplex virus 1 

(HSV-1), herpes simplex virus 2 (HSV-2), varicella zoster virus (VZV), human cytomegalovirus (HCMV), 

human herpesvirus 7 (HHV-7), Epstein-Barr virus (EBV), human herpesvirus 8 (HHV-8) 

 

Figure adapted, with permission, from P.E. Pellett and B. Roizman, Fields Virology, 6th ed., 2013, p 1802-1822 
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Fig. 1.3.  General replication cycle of herpesviruses.  (A) Adherence, entry, and initiation of infection.  

Extracellular virions adhere to target host cells; the capsid and tegument are released following fusion at the 

plasma membrane or within endocytic vesicles; the viral genome is delivered to the nucleus and immediate 

early (IE, α) transcripts are expressed or latency is induced.  (B) Early (E, β) protein expression leads to DNA 

replication of the viral genome and late (L, γ) gene expression. (C) Herpesvirus assembly.  Structural L proteins 

assemble into the capsid prior to genome packaging and nuclear export.  Viruses follow two general pathways: 

a) capsids associate with nuclear tegument proteins and bud through the nuclear membrane, thereby 

becoming enveloped, before final exocytosis or b) capsids are exported to the cytoplasm where they acquire 

the tegument and host-derived envelope prior to being exported from host cells. 

 

Figure adapted, with permission, from P.E. Pellett and B. Roizman, Fields Virology, 6th ed., 2013, p 1802-1822 
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Fig. 1.4.  Three-dimensional structure of the HCMV cytoplasmic virion assembly complex (cVAC).  

Immunofluorescence imaging shows the characteristic reniform nuclei (DAPI) surrounding the ring-like Golgi 

structure (mannosidase II) with endosome populations at the center (EEA1) 
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CHAPTER 2:  GENERATION OF A NOVEL HUMAN CYTOMEGALOVIRUS BACTERIAL 
ARTIFICIAL CHROMOSOME, TB40/E/CRE, TAILORED FOR TRANSDUCTION OF 

EXOGENOUS SEQUENCES 

I. Abstract 

The study of herpesviruses, including human cytomegalovirus (HCMV), is 

complicated by viral genome complexity and inefficient methods for genetic manipulation 

in tissue culture.  To facilitate reverse genetics of herpesvirus genomes, isolates have 

been adapted to grow in E. coli as bacterial artificial chromosomes (BACs).  Through BAC 

adaption, viral genomes are easily manipulated using bacterial recombinational systems.   

Strict herpesvirus genome packaging requirements require deletion of viral genes 

for inclusion of the E. coli mini-F propagation sequence.  Contextual classification of 

deleted regions as nonessential for growth reduces biological significance due to loss of 

potentially important uncharacterized functions.  To avoid deleting viral genes, several 

BACs utilize a Cre/LoxP system to self-excise the mini-F sequence upon reconstitution 

of virus in tissue culture. 

Here, we describe the adaptation of Cre/LoxP to modify the mini-F sequence of 

the HCMV BAC, TB40/E, thus generating a new self-excisable BAC, TB40/E/Cre.  By 

excising the E. coli propagation sequence, an approximately 2.7 kbp genome length 

deficit is created due to a preexisting deletion within the US2-US6 coding region. We 

exploit this deficit to incorporate genes of interest fused to an FKBP destabilization 

domain thereby creating a novel gene transduction system for studying exogenous 

proteins during HCMV infection.  Using TB40/E/Cre, we found genome length-associated 

differences in growth and demonstrated its utility as a transduction system by significantly 

regulating the accumulation of an exogenously expressed cellular protein within 2 h.  
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Because of its flexibility, TB40/E/Cre is a powerful tool that can be adapted to study HCMV 

replication in a variety of contexts.  The work presented in this chapter has been submitted 

for publication pending review. 

II. Introduction 

Human cytomegalovirus (HCMV) is a double-stranded DNA virus belonging to the 

family Herpesviridae.  HCMV is abundant in the population but only causes minor illness 

in children and adults with functionally mature immune systems.  For those with naïve or 

compromised immune systems, such as developing fetuses, AIDS patients, or transplant 

recipients, HCMV infection is associated with several manifestations including hearing 

loss, gastric ulcers, blindness, liver failure, and encephalitis (9, 218, 219).  HCMV is also 

the leading infectious cause of congenital birth defects and the major non-genetic cause 

of early-life hearing loss (220, 221).  Despite its associated public health impact, HCMV 

replication is poorly understood when compared to viruses such as HIV and Hepatitis C 

(222-224).  The complexity of herpesvirus genomes greatly contributes to the difficulty of 

studying their replication.  Herpesvirus genomes are 130-240 kbp in size with some 

containing invertible unique short (US) and unique long (UL) regions (225).  HCMV 

contains the largest known herpesvirus genome at 230-240 kbp which encodes at least 

200 protein open reading frames (ORFs) and 14 miRNAs (48, 101, 144, 226, 227).  While 

reverse genetics facilitates the exploration of viral gene function, systems for genetic 

manipulation of herpes genomes in mammalian cell culture are difficult, time-consuming, 

and inefficient (228, 229). 

Bacterial artificial chromosomes (BACs) allow the high-fidelity propagation of 

sequences of up to 300 kbp in Escherichia coli (E. coli) (230, 231).  Strains of several 
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HCMV isolates have been adapted as BACs allowing the use of bacterial systems for 

mutation of viral sequences before reconstitution and functional analysis of virus in 

mammalian cells (232-236).  New BACs are generated by infecting mammalian cells with 

viral isolates in the presence of constructs containing a selectable E. coli mini-F 

propagation sequence flanked by viral targeting sequences (234, 237-240).  Host-

mediated homologous recombination between the HCMV genome and viral targeting 

sequences leads to the incorporation of the mini-F sequence into the HCMV genome.  

Following selection (236, 239), recombined genomes are purified and transformed into E. 

coli where they replicate as plasmids and can be further manipulated by recombinational 

processes (235, 241, 242). 

Similar to some classes of tailed bacteriophage, herpesviruses have strict genome 

length packaging restrictions (225, 243).  Because of this, generation of new HCMV BACs 

has relied on deletion of sufficient viral sequences to accommodate the E. coli mini-F 

sequence (85, 234, 244, 245).  In the HCMV BAC strains TR-BAC (TR) and TB40/E BAC 

clone 4 (TB40/E), the mini-F sequence is substituted into the US2-US6 locus and is 

maintained in the viral genome after virus reconstitution in mammalian cells (85, 244).  

This poses two major problems: i) intentional deletion of US2-US6 or other viral coding 

regions assumes the genes are nonessential, a term which is contextually defined by the 

experiment and ii) the E. coli mini-F sequence insertion is generally larger than the region 

being replaced thereby increasing genome length and potentially interfering with 

herpesvirus packaging.   

Under normal conditions, rolling-circle replication of herpesvirus genomes 

produces viral genome concatemers (225, 246-248).  Viral genomes are inserted into 
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capsids by the viral terminase complex and an ATP-dependent mechanism until the 

capsid has reached a structurally defined capacity (249).  After passing the capacity 

threshold, a conformational signal is initiated and terminase subunits cleave the 

concatemers at designated pac sites found within the US and UL inverted terminal repeat 

regions (225, 249-254).  The result is a rigid highly pressurized capsid containing one full 

complement of the herpesvirus genome (225, 255, 256).  If the genome is too short, 

nascent particles are less infectious possibly due to loss of important genes or a decrease 

in internal pressure required for injection of the genome into host nuclei upon infection.  If 

the genome is too long, the physiological capacity of the capsid is exceeded and 

incomplete genomes are packaged or spontaneous deletions are used to compensate.  

As an example, reconstitution and production of infectious guinea pig cytomegalovirus 

(GPCMV) virions was reduced when the 233 kbp genome length was decreased by more 

than 6.5% following deletion of nonessential genes or increased by 3.8% following 

insertion of an 8.8 kbp E. coli mini-F sequence (257).  Insertion of the E. coli propagation 

sequence was also correlated with deletion of several-kbp-long regions elsewhere in the 

genome (257, 258).  Likewise, sequence analysis of TR found deletions from US9-US16 

and analysis of TB40/E found spontaneous excision of the remaining portion of US2 

through US9, including the E. coli mini-F sequence (259).  These observations are 

consistent with genome size being important for production of nascent virus. 

Alternatively, other herpesvirus BACs utilize a Cre/Lox system for excision of the 

E. coli propagation sequence following reintroduction to mammalian cells (238, 258, 260, 

261).  E. coli mini-F sequence excision avoids maintenance of length increases in 

reconstituted virus and mitigates the need for spontaneous mutation as evidenced by the 
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absence of large-scale deletions in the Cre/Lox-containing Merlin-BAC (Merlin) compared 

to TR or TB40/E (238, 259).  In self-excisable BACs, such as Merlin or the AD169 adapted 

strain, pAD/Cre, a copy of the Cre recombinase gene containing a synthetic intron (inCre) 

is inserted adjacent to the E. coli mini-F sequence and both are flanked by LoxP sites 

(239, 262).  In bacterial culture, inCre remains inactive but introduction to mammalian 

cells causes splicing and activation of inCre leading to excision of the E. coli propagation 

sequence (261).   

To address the problem of studying genes of interest during infection, we adapted 

the Cre/Lox system to generate a novel TB40/E-derived self-excisable HCMV BAC, 

TB40/E/Cre, for the transduction of exogenous sequences.  TB40/E was chosen as a 

template based on preserved endothelial and epithelial cell tropisms compared to other 

HCMV laboratory strains (85, 244).  Relative to a virus with an intact US2-US6 region, an 

approximately 2.7 kbp genome length deficit is created following BAC excision.  We use 

the resultant genome length availability to transduce proteins of interest.  This new 

construct: i) alleviates length-associated selective pressures (259), ii) removes the need 

for deletion of other viral sequences (245, 263), and iii) maintains comparability to 

previous studies.  As a demonstration of its utility, we use TB40/E/Cre to express the 

cellular trafficking protein Rab3A tagged with the ECFP fluorescent protein and FKBP 

destabilization domain (264).  In this study, we show the power of the TB40/E/Cre 

transduction system through the controlled accumulation and visualization of Rab3A 

within the HCMV assembly compartment.  In addition to its use as a vector, we used 

TB40/E/Cre to conduct a preliminary study directly relating HCMV genome size to growth 

in tissue culture.  HCMV strains with genome lengths most similar to wild-type (WT) 
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isolates had modest growth advantages compared to strains containing extraneous 

insertions.  The ability to adapt TB40/E/Cre for use in various experimental contexts 

makes it a powerful tool for understanding critical components of HCMV replication and 

herpesvirus biology as a whole. 

III. Materials and Methods 

A. Cells and virus.   

HCMV strain TB40/E BAC clone 4 was generously provided by Christian Sinzger 

(University of Tubingen, Germany) and strain pAD/Cre was kindly provided by Dong Yu 

(Washington University, St. Louis, MO) (239, 244).  Viruses were grown in low-passage-

number pooled human foreskin fibroblasts (HFFs) in complete Dulbecco’s modified Eagle 

medium (DMEM; Hyclone, Logan, UT; catalog no. SH30243.01) supplemented with 1% 

nonessential amino acids (Hyclone, Logan, UT; catalog no. SH30238.01), 1% GlutaMax 

(Gibco, Gaithersburg, MD; catalog no. 35050-061), and 5-10% fetal bovine serum (FBS; 

Atlanta Biologicals, Atlanta, GA; catalog no. S11150).  Virus was titrated by standard 

plaque assay in HFFs. 

BAC recombineering was done in the Escherichia coli (E. coli) strains SW102 and 

SW105, provided by Donald L. Court (National Cancer Institute, Bethesda, MD) (235).  

SW102 contains a heat-inducible lambda phage Red recombinase gene and is unable to 

utilize galactose due to a galK deletion.  SW105 also contains temperature-sensitive Red 

recombinase and galK deletion in addition to a gene for arabinose-inducible flippase. 

B. Electrocompetency and recombinase induction.   

E. coli strain overnights were grown in Luria broth (LB) with appropriate antibiotic 

selection on a 32°C shaking incubator.  The next day, a 1/50 dilution of the culture was 
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made in antibiotic-LB until an OD600 of 0.5-0.7 was reached.  Cells were spun down at 

4°C at 4,500 x g for 5 min and washed three times with ice cold sterile deionized water 

(diH2O) or 10% glycerol in diH2O before being resuspended in a minimal amount of cold 

diH2O or glycerol solution and aliquoted into separate tubes for electroporation or storage 

at -80°C.  To induce recombinase expression, SW102 and SW105 cells were transferred 

to a shaking 42°C water bath for 15 min after reaching the appropriate OD600 and before 

pelleting in the cooled centrifuge.  Following heat shock, the normal protocol was 

resumed.  If frozen, induced cells were used within 48 h.  Uninduced cells were used as 

a control for transformation and recombination efficiency. 

C. Construction of recombinant viruses. 

Recombineering of HCMV BACs was done as previously described (21, 235).  In 

brief, competent E. coli SW102/SW105 cells were electroporated with BAC DNA and 

selected for by growth on chloramphenicol (Cam)-LB plates.  Fragments with a galK/kanr 

selection cassette were PCR amplified from pYD-C630 (provided by Dong Yu) with 

primers containing 50 bp of overhang homologous for the desired region of insertion into 

the BAC (Table 2.1, Fig. 2.1 and 2.6).  The galK/kanr containing amplicons were 

electroporated into competent and Red recombinase-induced E. coli SW102/SW105 cells 

before plating on kanamycin (Kan)/Cam-GalK indicator plates (MacConkey agar base 

with 5% D-galactose) for positive selection and screening of colonies.  Following 

incubation at 32°C for two days, colonies were selected based on growth, indicating 

incorporation of selection cassette into the BAC, and screened based on acid production 

denoting galactose utilization.  Colonies were restreaked onto a second Kan/Cam-GalK 

indicator plate and grown overnight at 32°C.  Following isolation of BAC DNA from 
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candidate clones, selection cassette insertion was verified by PCR amplification across 

cloning site junctions and size determination using 0.8% agarose gels in TBE buffer (89 

mM Tris [pH7.6], 89 mM boric acid, 2 mM EDTA).  Then, fragments containing desired 

coding sequences were PCR amplified using primers with 50 bp of overhang homologous 

to those used for insertion of the selection cassette (Table 2.1).  These fragments were 

electroporated into the previously verified galK/kanr-containing clones following induction 

of the Red recombinase and cultures were grown for 4 h on a 32°C shaking incubator 

prior.  Outgrowths were washed 2x with 1x M9 salts, plated on media containing 2-

deoxygalactose (2-DOG; Acros Organics, Geel, Belgium; catalog no. 111970050; 1.5 % 

agar, 1x M63, 0.2 % glycerol, 15 µg/ml Cam, 1 mM MgSO4, 0.2 % 2-DOG, 1 µg/ml biotin, 

and 45 µg/ml leucine), a bacteriostatic galactose analog, and galK/kanr-containing 

transformants were negatively selected.  After growth at 32°C for five days, colonies were 

streaked for isolation on Cam-GalK plates and grown overnight at 32°C.  DNA was 

isolated from individual colonies, inserts were PCR verified as before, and amplicons 

were sent in for Sanger sequencing (Genewiz, South Plainfield, NJ).  Isolated BAC DNA 

was also restriction digested and proper band patterns were verified for each clone (see 

corresponding section below).  Following verification, the process was repeated as 

needed.  For the induction of flippase in SW105 cells, 0.1% L-arabinose was added to 

SW105 cultures in LB and incubated while shaking at 32°C for 1 h.  Cells were diluted 

1:10 and incubation was resumed for 4-5 h.  Cultures were then washed 2x with 1x M9 

salts and plated on Cam-GalK indicator plates before incubation overnight at 32°C.  

Following completion of recombineering, large volume BAC DNA preps were made.  For 

reconstitution of virus, 2 µg of DNA were transfected into 80% confluent HFFs in a T25 
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(4.4 x 104 cells/cm2) using Lipofectamine 2000 (ThermoFisher, Waltham, MA; catalog no. 

11668027) and cells were grown in 10% FBS media until 100% cytopathic effects (CPE) 

were observed.  Infections were harvested and stocks were made for storage at -80°C 

until use.  Construction schematics are shown in Fig. 2.1 and 2.6; the primers are listed 

in Table 2.1. 

D. Restriction endonuclease analysis of BAC and reconstituted virus DNA.   

Before transfection BAC DNA samples were purified from SW102 overnights using 

a Plasmid Midi Kit (Qiagen, Valencia, CA; catalog no. 12143).  For reconstituted viruses, 

T175 flasks of HFFs were transfected with 2 µg of BAC DNA using Lipofectamine 2000 

and grown until 100% CPE were evident.  Flask contents were scraped, sonicated, and 

spun at 3,000 x g for 5 min.  The supernatant was then layered onto a 20% sorbitol 

cushion and spun at 100,000 x g for 1 h at 4°C.  The virus-containing pellet was 

resuspended in TNE buffer (10 mM Tris, 1 mM EDTA, 0.1 M NaCl, pH 7.4), treated with 

DNase I (Promega, Madison, WI; catalog no. M6101), and DNA was isolated using a 

Blood and Cell Culture DNA Mini Kit (Qiagen, Valencia, CA; catalog no. 13323).  

Equivalent levels of BAC DNA from before transfection and after transfection were 

digested using HindIII-HF and EcoRI-HF (New England Biolabs, Ipswich, MA; catalog 

nos. R3104T and R3101T) for 1 h at 37°C and separated overnight using a large format 

0.5% agarose gel in TBE buffer. 

E. Virus growth curves.   

HFFs were seeded at 1.67 x 105 cells per well in 12-well plates with 10% FBS 

media.  The following day, plates were infected at a multiplicity of infection (MOI) of 0.01 

or 1.0 in 10% FBS media, incubated for 1-2 h at 37°C, washed with PBS (HyClone, Logan, 
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UT; catalog no. SH30028.02), and replenished with clean 10% media.  Plates were 

incubated until noted time points at which time they were taken out and processed.  For 

extracellular samples, supernatants were removed and clarified by centrifugation at 1,500 

x g and 4°C for 2 min.  For intracellular samples, remaining cells were washed once with 

PBS, fresh 10% FBS media was added, cells were scraped, transferred to a tube, and 

then sonicated.  Following sonication, the samples were spun as before and the pellets 

were discarded.  Virus titers were measured by plaque assay in 24-well plates. 

F. Virus genome abundance.   

Intracellular and extracellular samples from the viral growth curves were treated 

with DNase I (Promega, Madison, WI; catalog no. M6101) for 30 min at 37°C prior to DNA 

isolation using a QIAamp MinElute Virus Spin Kit (Qiagen, Valencia, CA; catalog no. 

57704).  Samples were assayed by quantitative PCR (qPCR) using iTaq Universal SYBR 

Green Supermix (Bio-Rad, Hercules, CA; catalog no. 1725121), primers targeting HCMV 

UL83, and 40 cycles on a 7500 Real-Time PCR System (Applied Biosystems, Foster City, 

CA; catalog no. 4351105).  Relative abundance was normalized relative to the TB40/E 

day 3 sample in each set using the 2-ΔC’T method (3).  

G. Immunoblots.   

HFFs were grown to confluency and infected with HCMV strains at an MOI of 0.1 

or 1.0 in 10% FBS media.  Following 1-2 h incubation at 37°C, cells were washed once 

with PBS, and clean 10% FBS media was added.  For Shield-1 experiments, Shield-1 

(Cheminpharma, Farmington, CT; catalog no. CIP-AS1) was added to a final 

concentration of 1 µM at the desired times.  At 96 hours post infection (hpi), cells were 

washed with PBS and lysed using RIPA buffer (0.1 M HEPES [pH 7.4], 0.1% sodium 
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deoxycholate, 150 mM NaCl, 1% NP-40, 0.1% SDS, and 1x EDTA-free protease 

inhibitors [Roche, Basel, Switzerland; catalog no. 11836170001]).  Lysates were passed 

through a 27-gauge needle and centrifuged at 14,000 x g and 4°C for 10 min.  Protein-

containing supernatants were collected for analysis.  Protein concentrations were 

calculated using a bicinchoninic acid (BCA) kit (ThermoFisher, Waltham, MA; catalog no. 

23227). Equal amounts of protein were added to 10x sample buffer (65% sucrose, 1% 

Tris-HCl [pH 7.4], 10 mM EDTA, and 0.3% bromophenol blue) with 5% 2-

mercaptoethanol, incubated for 7 min at 100°C, and separated in 12% SDS-

polyacrylamide gels before being transferred to nitrocellulose membrane (GE Healthcare, 

New York, NY; catalog no. 10600007).  Membranes were probed with primary antibodies 

(see Table 2.2) and HRP-conjugated goat anti-mouse/rabbit IgG secondary antibodies 

(Table 2.2; ThermoFisher, Waltham, MA).  Reactive proteins were visualized by reaction 

with Supersignal West Pico Chemiluminescent substrate (ThermoFisher, Waltham, MA; 

catalog no. 34080) and exposure to autoradiography film (MIDSCI, St. Louis, MO; catalog 

no. BX810).  Relative protein levels were determined using densitometry and FIJI imaging 

software (265). 

H. Immunofluorescence assays (IFA).   

Eight-well chamber slides (LabTek, Nunc, Rochester, NY; catalog no. 177-402) 

were coated with 0.2% gelatin phosphate buffered saline (PBS) solution for 1 h at 37°C.  

Following splitting and resuspension in 5% FBS media, HFF were seeded at 2.64 x 104 

per well and incubated at 37°C.  The following day, cells were infected at a multiplicity of 

infection (MOI) of 0.1 in 5% FBS media and incubated at 37°C for 1-2 h.  Cells were 

washed once with warmed PBS before addition of clean 5% FBS media and continued 
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incubation for 96 h.  For Shield-1 experiments, the compound was added to a final 

concentration of 1 µM at desired times.  At 96 hpi, cells were fixed for 15 min using 4% 

paraformaldehyde in PBS at pH 7.4 and autofluorescence was quenched by exposing 

cells to 50 mM ammonium chloride in PBS for 15 min.  Cells were then permeabilized for 

15-20 min by exposure to 0.2% Triton X-100 in blocking buffer (5% glycine, 10% normal 

goat serum, and 0.1% sodium azide in PBS) before incubation with blocking buffer for 1 

h.  Primary antibodies were diluted in blocking buffer before addition to the slide for 1 h 

at 25°C.  Slides were washed three times in PBS prior to incubation with secondary 

antibodies (Table 2.2) for 1 h at 25°C.  Following another series of PBS washes, slides 

were mounted with Vectashield containing DAPI (4’,6-diamidino-2-phenylindole; Vector 

Laboratories Inc., CA; catalog no. H-1200) and then sealed.  Imaging was done using a 

Nikon Eclipse E800 epi-fluorescence microscope system equipped with a 1.4 MP 

monochromatic CoolSNAP ES2 CCD camera (Photometrics, Tucson, AZ) and 

MetaMorph software (Molecular Devices, LLC., Sunnyvale, CA).  False coloring of images  

was done using FIJI (265). 

IV. Results 

A. Generation of TB40/E derived strains.   

Our primary goal was to develop an HCMV BAC capable of accommodating 

exogenous sequences to be used to manipulate cellular processes in infected cells.  To 

avoid genome size packaging restrictions without deleting viral sequences, we modified 

the original TB40/E BAC by making the E. coli propagation sequence self-excisable.  To 

accomplish this, we modelled our new BAC, TB40/E/Cre, after the HCMV AD169-derived 

BAC strain, pAD/Cre (239). 
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Adaptation of the TB40/E E. coli propagation sequence required the incorporation 

of Cre recombinase, a pair of associated LoxP cleavage sites, and an accessory linker 

region (LR) (Fig. 2.1).  BAC recombineering was used to systematically construct the new 

BAC through alternating cycles of positive and negative selection using a galK/kanr 

selection cassette and homologous recombination (235).  The selection cassette was 

cloned from the plasmid pYD-C630 and initially targeted to the junction of the truncated 

US2 (trUS2) open reading frame (ORF) and adjacent E. coli mini-F sequence.  Following 

successful rounds of transformation and recombination in E. coli SW102 cells, TB40/E 

US2 GalK/Kanr (TB40/E GalK/Kanr) was generated (BAC 2, Fig. 2.1).  An upstream LoxP 

fragment was then generated using overlapping primer pairs and inserted in place of the 

selection cassette using a similar method as before (BAC 3, Fig. 2.1).  The process was 

repeated and a fragment containing the LR and CMV major immediate early (MIE) 

enhancer (MIEEnh) was inserted following amplification from the plasmid pECFP-C1 

Rab11A (BAC 5, Fig. 2.1).  The LR is a 50 bp region of innocuous sequence directly 

upstream of the MIEEnh without any significant degree of homology to known HCMV 

sequences. It assists in targeting of amplicons during homologous recombination and 

mitigates issues related to recombination of the LoxP sites during sequence insertion or 

deletion.  Next, the downstream LoxP site was cloned from pAD/Cre as part of a fragment 

that included a SV40 promoter (SV40P)-driven cre gene.  The presence of a synthetic 

intron interrupting cre prevents proper expression of Cre until after transfection into 

mammalian cells (262).  After insertion of another selection cassette, the SV40P/cre-LoxP 

fragment was inserted while oriented downstream of the E. coli mini-F sequence so both 

cre and the E. coli propagation sequence would be within the bounds of the LoxP 
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cleavage sites (BAC 7, Fig. 2.1).  Finally, the galK/kanr selection cassette was inserted to 

remove the MIEEnh and then subsequently deleted thus generating TB40/E/Cre GalK/Kanr 

and TB40/E/Cre, respectively (BAC 8 and 9, Fig. 2.1).  Proper insertion of the various 

fragments was confirmed at each step by PCR amplification and sequencing of junctions, 

as well as by assessing the overall integrity of the constructs by restriction endonuclease 

digestion of the whole BAC plasmid (data not shown).  

To verify the proper excision of the E. coli propagation sequence following 

recombineering and reconstitution in mammalian cells, restriction mapping of TB40/E/Cre 

was compared to TB40/E, TB40/E GalK/Kanr, and TB40/E/Cre GalK/Kanr both before and 

after transfection (Fig. 2.2).  By monitoring the presence or absence of predicted bands, 

strain specific differences can be observed including whether the E. coli mini-F sequence 

is maintained.  Following HindIII digestion of TB40/E/Cre and TB40/E/Cre GalK/Kanr, a 

fragment is present at 6.8 kbp before transfection but is absent after transfection.  The 

missing band corresponds to the altered E. coli mini-F sequence and its absence shows 

the system is functional.  Similarly, when digested with EcoRI, a 2.0 kbp band in the 

TB40/E and TB40/E GalK/Kanr lanes, regardless of state, indicates the unaltered E. coli 

mini-F sequence whereas a band at 7.1 kbp in the TB40/E/Cre and TB40/E/Cre 

GalK/Kanr lanes before transfection indicates the modified E. coli mini-F sequence. A 5.9 

kbp fragment present in all four BACs is absent in the TB40/E/Cre and TB40/E/Cre 

GalK/Kanr reconstituted viruses, demonstrating successful excision of the E. coli 

propagation sequence. 

Based on our methods of verification, the newly derived BAC plasmids were able 

to excise the E. coli propagation sequence upon virus reconstitution in mammalian cells. 
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B. Growth of TB40/E/Cre and the effects of genome length.   

To examine the relationship between genome length and virion maturation, we 

compared growth of TB40/E, TB40/E GalK/Kanr, TB40/E/Cre, and TB40/E/Cre GalK/Kanr 

as a function of genome length.  Wildtype isolates of HCMV have genome lengths ranging 

from ~230-240 kbp.  Differences in length can generally be attributed to a mixture of gene 

duplications and deletions depending on the strain. Even within certain isolates, 

population heterogeneity can contribute to the observed variation in genome length (244).  

For TB40/E, the viral encoding region of the genome is approximately 229 kbp in addition 

to the 7.5 kbp E. coli propagation sequence.  The 1-10 kbp difference in viral coding 

capacity of TB40/E relative to directly sequenced isolates is partly due to loss of IRS1-

US1, part of US2, all of US3-US6, and other mutations which may have resulted from the 

initial adaptation of TB40/E as a BAC (244).  Because the sequence for the original 

TB40/E clinical isolate is unavailable, we are unable to determine which mutations were 

directly caused by BAC generation.  Therefore, for the purpose of our study, we compared 

the lengths of TB40/E and TB40/E/Cre derivatives relative to an approximately 232 kbp 

long hypothetical pseudo-wildtype TB40/E sequence (pwTB40/E) consisting of the noted 

229 kbp TB40/E viral sequence with a reconstituted US2-US6 region in place of the E. 

coli mini-F sequence (Fig. 2.3).  Using pwTB40/E as the benchmark, the 7.6 kbp TB40/E 

E. coli mini-F sequence replaced a 2.7 kbp portion of the US2-US6 region resulting in a 

net length increase of 4.9 kbp.  Because TB40/E/Cre excises the complete E. coli mini-F 

sequence, the resulting genome length during packaging into the capsid is -2.7 kbp 

relative to pwTB40/E, or 229 kbp.  Insertion of a 2.3 kbp galK/kanr segment, which is 

under control of a bacterial promoter, was then used as a biologically inert surrogate for 
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introducing exogenous sequence to the genome of both TB40/E and TB40/E/Cre.  After 

transfection, genome lengths relative to pwTB40/E are as follows: TB40/E/Cre = -2.7 kbp, 

TB40/E/Cre GalK/Kanr = -0.4 kbp, TB40/E = +4.9 kbp, and TB40/E GalK/Kanr = +7.2 kbp 

(Fig. 2.3).  

To characterize virus replication kinetics, we compared the four strains in single-

step (MOI = 1.0) and multi-step (MOI = 0.01) growth curves in primary human foreskin 

fibroblasts (HFFs; Fig. 2.4).  No distinct patterns emerged when comparing the 

intracellular or extracellular growth of the strains following high MOI infection except a 

slight lag in extracellular TB40/E GalK/Kanr production.  During low MOI infection, 

intracellular and extracellular titers for TB40/E/Cre and TB40/E/Cre GalK/Kanr increased 

at a faster rate than either TB40/E or TB40/E GalK/Kanr.  Unexpectedly, the growth rate 

of TB40/E GalK/Kanr appeared to surpass growth of TB40/E by a slight margin despite 

having the longest overall genome length.  Regardless of differences in growth rate, all 

four viruses reached approximately the same titer at the culmination of the time course.  

We found a similar pattern when comparing the accumulation of DNase I resistant 

genomes over the same time course (bottom panels, Fig. 2.4).  TB40/E/Cre and 

TB40/E/Cre GalK/Kanr, with the smallest genomes, grew faster and almost 

indistinguishably from each other compared to TB40/E or TB40/E GalK/Kanr.  Likewise, 

TB40/E GalK/Kanr genomes accumulated more quickly than TB40/E genomes over the 

same time course both at the intracellular and extracellular stages.  Overall, the growth 

curves show that TB40/E/Cre and its derivative grow more quickly than strains that 

maintain the E. coli propagation sequence.  Additionally, the growth of TB40/E/Cre with 
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or without insertion of exogenous sequence is identical allowing greater comparability 

during experiments where expression of foreign sequence is required. 

In addition to the growth curves and genome abundance, we assessed expression 

of the three HCMV kinetic classes of viral proteins (immediate early [IE], early [E], and 

late [L]); their successive expression is required for production of infectious virions.  IE1/2 

(IE), pUL44 (E), and pp28 (L) expression levels were evaluated in immunoblots to monitor 

changes in growth in HFFs (Fig. 2.5A).  In comparison to levels of the cellular 

housekeeping protein, GAPDH, expression of all three classes appeared identical across 

TB40/E, TB40/E GalK/Kanr, TB40/E/Cre, and TB40/E/Cre GalK/Kanr, with the exception 

of a slight shift in pp28, suggesting growth differences are largely independent of viral 

protein expression. 

Lastly, we compared the characteristic CPE produced by each strain to look for 

potential issues with spread during infection.  HCMV produces a hallmark cytoplasmic 

virion assembly complex (cVAC) late in infection following viral protein expression and a 

significant alteration in internal host cell architecture.  The cVAC is proposed to facilitate 

virion maturation and consists of a reniform nucleus with endosomal populations centrally 

located in a perinuclear, ring-like, Golgi-derived structure.  To monitor cVAC formation, 

we used IFA to image structures present in HFFs (Fig. 2.5B).  Infected cells were 

identified based on the presence of nuclear viral proteins IE1/2 and cellular structures 

were observed using GM130 to mark the cis-Golgi or EEA1 to mark endosome 

populations.  At an early time point (24 hpi; top panels, Fig. 2.5B), a time prior to cVAC 

formation, there were no differences between TB40/E, TB40/E GalK/Kanr, TB40/E/Cre, 
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or TB40/E/Cre GalK/Kanr.  Similarly, at 96 hpi (bottom panels, Fig. 2.5B), when the cVAC 

should be fully formed, no appreciable differences in cellular morphology were detected.   

Our observations suggest that differences in growth rate as a function of genome 

length are independent of both viral protein expression and cVAC development. 

C. Implementation of TB40/E/Cre as a gene transduction vector.   

To test the ability of TB40/E/Cre to express a gene of interest, we used the cellular 

trafficking protein, Rab3A.  Rab3A is a GTPase involved in shuttling cargo from Golgi 

compartments to the plasma membrane and is associated with envelopes of HCMV 

virions in the cVAC (20, 211, 212).   

To express Rab3A from TB40/E/Cre, we first created a TB40/E/Cre derivative that 

fuses proteins of interest to ECFP and FKBP tags (Fig. 2.6). The fluorescent protein, 

ECFP, allows protein localization to be monitored.  FKBP is a destabilization domain that 

post-translationally controls protein abundance (264) (Fig. 2.7).  In the presence of the 

soluble stabilizing ligand, Shield-1, the protein is stabilized and accumulates.  In the 

absence of Shield-1, the protein is co-translationally degraded by the proteasome. FKBP 

allows us to stabilize accumulation of genes of interest on smaller timescales than 

typically available through other techniques such as plasmid transfection.   

Using recombineering as before, BACs were initially modified in E. coli SW105 

cells (Fig. 2.6).  After ECFP-Rab11A was tagged with FKBP using the SW105 arabinose-

inducible flippase which excises intervening sequence between FRT cleavage sites, the 

tagged construct was moved to E. coli SW102 cells containing TB40/E/Cre MIEEnh from 

Fig. 2.1.  Incorporation of the fragment reconstituted the MIE enhancer/promoter region 

(MIEEnh/P) and generated TB40/E/Cre FKBP-ECFP-Rab11A (BAC 7, Fig. 2.6).  Rab11A 
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was replaced with galK/kanr creating the intermediate TB40/E/Cre FKBP-ECFP-

GalK/Kanr which directly tags genes of interest for transduction (BAC 8, Fig. 2.6).  Lastly, 

the selection cassette was replaced by Rab3A and TB40/E/Cre FKBP-ECFP-Rab3A was 

completed (BAC 9, Fig. 2.6).  As before, each step of the process was verified prior to 

transfection and reconstitution of infectious virus (data not shown). 

To demonstrate the transduction and stability regulation system, stabilization of 

FKBP-ECFP-Rab3A was determined by immunoblot of infected HFFs (MOI = 0.1) using 

a time course of Shield-1 additions leading up harvesting of cell lysates at 96 hpi (Fig. 

2.8A).  Cellular GAPDH and the viral DNA processivity factor, pUL44, was used to monitor 

the progression of infection.  When stained with an anti-Rab3A monoclonal antibody, 

FKBP-ECFP-Rab3A expression is apparent at the predicted size of 70 kDa even in the 

absence of Shield-1.  The higher molecular weight bands detected by the Rab3A antibody 

likely represent post-translationally modified forms of FKBP-ECFP-Rab3A which are 

required for normal Rab3A function.  Native Rab3A is a cellular protein of approximately 

25 kDa in size.  Because Rab3A is expressed at relatively low levels in HFFs (data not 

shown), it was not detected under the conditions tested due to the significant amount of 

FKBP-ECFP-Rab3A present.  As measured through densitometry, accumulation of the 

Rab3A construct increases as a function of Shield-1 exposure time with an approximately 

4-fold increase in abundance occurring in as little as 2 h (Fig. 2.8B).  To demonstrate the 

reversibility of the system, cells were also exposed to Shield-1 for 12 h, washed, and then 

incubated in clean media for another 12 h prior to fixation (12 + wash, Fig. 2.8A and B).  

The withdrawal of Shield-1 was sufficient to stop the continued accumulation of FKBP-

tagged Rab3A leading to identical levels as the 12 h time point.  Because Rab proteins 
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associate with membranes after being post-translationally modified, the prolonged 

persistence of Rab3A following Shield-1 removal may be due to interactions that preclude 

it from being routed to the proteasome.   

To assess intracellular localization of Rab3A as expressed from this construct, 

internal morphologies of HFFs were compared after infection (MOI = 0.1) with 

reconstituted TB40/E/Cre or TB40/E/Cre FKBP-ECFP-Rab3A (Fig. 2.8B).  Infected cells 

were identified using an antibody against the nuclear-resident viral protein pUL44.  

Progression through infection correlates with an increase nuclear pUL44 staining, 

enabling estimation of the stage of infection in individual cells.  GM130 was used to mark 

the Golgi-ring and the accumulation and localization of FKBP-ECFP-Rab3A was detected 

using its the ECFP tag.  Shield-1 was added according to an identical time course as 

used for the immunoblots, and cells were fixed for staining at 96 hpi.  As in the 

immunoblots, no FKBP-ECFP-Rab3A was detected during TB40/E/Cre infection alone 

but a small amount was evident in the absence of Shield-1 during infection with 

TB40/E/Cre FKBP-ECFP-Rab3A.  Likewise, the abundance of the stabilized Rab3A 

construct increases as a function of time and is markedly different within only 2 h of 

Shield-1 treatment.  Consistent with previous results, when FKBP-ECFP-Rab3A was 

stabilized, it localized to the cVAC and the plasma membrane.  During prolonged 

exposure to Shield-1, it appears that excessive accumulation of the Rab construct leads 

to collapse of normally occurring Golgi-ring.  This alteration may be caused by secondary 

or off-target effects of Rab3A expression as Rab3A controlled pathways are required for 

normal cell homeostasis. 
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V. Discussion 

Several BAC systems have been generated to study HCMV in laboratory settings.  

The ability to replicate and modify the genome in bacterial culture is a powerful tool for 

understanding the viral replication cycle but is typically achieved at the cost of viral coding 

capacity due to genome packaging restrictions.  This forces researchers to classify viral 

sequences as essential versus nonessential despite a lack of functional knowledge and 

contextual understanding all which contributes to a loss of biological significance.  With 

this in mind, a handful of currently available BACs have been designed using a Cre/LoxP 

cleavage system to excise the E. coli propagation sequence upon transfection into 

mammalian cells.  The Cre/LoxP system decreases the potential for mutations by 

alleviating genome length restrictions relative to BACs that maintain the E. coli mini-F 

sequence. 

Here we describe the adaption of the endothelial-tropic HCMV strain TB40/E to 

contain a self-excisable E. coli mini-F sequence resulting in the novel strain TB40/E/Cre.  

By adapting a previously characterized strain, we maintain the ability to compare results 

from TB40/E/Cre infections to earlier observations.  In TB40/E, the E. coli propagation 

sequence replaces the US2-US6 viral gene locus, which contains genes with primarily 

immunomodulatory roles.  In TB40/E/Cre, the US2-US6 deletion is maintained but the E. 

coli propagation sequence is lost upon introduction to mammalian cells thus creating a 

small surplus of coding capacity that can be used for transduction of exogenous 

sequences.   

The growth of TB40/E/Cre was compared to the parent strain, TB40/E, and the 

insertion strains TB40/E GalK/Kanr and TB40/E/Cre GalK/Kanr.  The inclusion of the 
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bacterially driven galK/kanr selection cassette was used to test the fitness of TB40/E/Cre 

as a mammalian transduction vector without interference from a biologically active 

molecule.  We show that TB40/E/Cre and its derivative, TB40/E/Cre GalK/Kanr, grew 

faster than TB40/E and TB40/E GalK/Kanr at a low MOI (Fig. 2.4).  Additionally, the growth 

patterns of TB40/E/Cre and TB40/E/Cre GalK/Kanr were almost completely 

indistinguishable from each other whereas TB40/E and TB40/E GalK/Kanr grew at 

different rates relative to each other.  This suggests there may be a confounding variable 

when expressing exogenous sequence from TB40/E, consequentially reducing its utility 

as a transduction vector.  Unexpectedly, TB40/E GalK/Kanr, which contains an 

approximately 8 kbp longer genome compared to WT HCMV isolates and the longest 

genome of the strains studied here, grew faster than TB40/E alone.  There were no 

significant differences in viral protein expression or generation of the cVAC in infected 

cells (Fig. 2.5A and B).  HCMV strains without a Cre/LoxP system are capable of 

preferentially and spontaneously losing all or part of the E. coli propagation sequence 

during replication.  It may be that TB40/E GalK/Kanr mutants are closer to the threshold 

of capsid packaging capabilities so the virus is more predisposed to excising nonessential 

gene regions following successive rounds of replication.  Future studies looking at the 

genetic content of the various strains over the course of infection may help identify the 

discrepancies in growth rates. 

After demonstrating the ability of TB40/E/Cre to tolerate exogenous sequence, we 

incorporated a tagged protein transduction system to regulate the abundance of genes of 

interest over short time intervals (Fig. 2.6-8).  Compared to generating stable protein-

expressing cell lines or co-transfection/infection experiments, incorporating constructs 
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into TB40/E/Cre simplifies the process of studying genes of interest during infection.  

TB40/E/Cre is easily manipulated in bacterial systems and its use as a vector ensures 

each infected cell carries a copy of the protein of interest.  In this instance, we fused the 

host vesicular trafficking protein Rab3A to ECFP and the destabilization domain, FKBP.  

By attaching the tags to the N-terminal domain, FKBP is translated first and immediately 

targets the construct to the proteasome for co-translational degradation unless the soluble 

ligand, Shield-1 is added to the system and stabilizes FKBP.  We use the system to show 

Rab3A accumulation in infected cells as a function of Shield-1 exposure and demonstrate 

proper localization of the construct to the cVAC where endogenous Rab3A has been 

identified as having a role in secondary envelopment and virion egress.  The presence of 

FKBP-ECFP-Rab3A in the absence of Shield-1 may be due to the membrane 

sequestration of Rab3A following post-translational geranylgeranylation.  Despite the 

incomplete degradation, protein accumulation is able to be modified significantly by 

addition of Shield-1 with appreciable differences being seen by IFA and Western blot in 

as few as 2 h post-Shield-1 exposure.  This is a marked improvement over other 

expression systems which typically require 24-48 h before proteins accumulate which is 

particularly important given the fast nature of many cellular events.   

The application of TB40/E/Cre will facilitate the study of viral replication.  The 

combination of the self-excisable BAC and titratable nature of the FKBP/Shield-1 system 

in TB40/E/Cre gives researchers increasing control of protein accumulation over 

decreasing time scales.  By using TB40/E/Cre to express inhibitors of cellular processes 

over short periods, it will be easier to avoid off-target effects relative to more traditional 

techniques such as plasmid transfection.  Through proper application, TB40/E/Cre may 
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be the key to identifying critical control points in viral replication which we can then use 

for development of novel antivirals.  
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Table 2.1.  Primers used to generate recombinant viruses. 
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Table 2.2. Antibodies used for immunoblots and IFA. 
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Fig. 2.1.  Generation of the self-excisable endotheliotropic HCMV BAC, TB40/E/Cre.   
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Fig. 2.1.  Generation of the self-excisable endotheliotropic HCMV BAC, TB40/E/Cre.  Homologous 

recombination in E. coli SW102 cells was used to modify the original TB40/E E. coli mini-F propagation 

sequence which replaces the US2-US6 region in the HCMV genome.  Alternating rounds of positive and 

negative selection with a galK/Kanr cassette were used to insert PCR amplicons containing desired features.  

Cre recombinase with a synthetic intron (inCre) was inserted adjacent to the E. coli propagation sequence and 

flanked by LoxP cleavage sites.  Following transfection, the cre intron is removed and the LoxP sites are 

cleaved resulting in loss of the E. coli propagation sequence.  Coding sequences are drawn to scale excluding 

the E. coli propagation sequence which is represented as one third the normal length.  Letter designations 

correspond to the primers used in Table 2.1.  Abbreviations: unique long region (UL), unique short region (US), 

truncated US2 (trUS2), linker region (LR), CMV major IE promoter enhancer region (MIEEnh), SV40 promoter 

(SV40P). 

 

Fig. 2.2.  Restriction digestion of HCMV DNA before and after transfection shows successful excision 

of the E. coli mini-F propagation sequence from TB40/E/Cre derivatives following virus reconstitution.  

Equal amounts of DNA purified from E. coli and DNase I treated virions were digested using HindIII or EcoRI 

restriction endonucleases.  Digests were run overnight on a large format gel and band sizes relative to a 

standard DNA ladder (S) were visualized with ethidium bromide.  Abbreviations: TB40/E (TB), TB40/E/Cre 

(TBC). 
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Fig. 2.3.  BAC structures and genome lengths following reconstitution relative to a pseudo-wild type 

TB40/E (pwTB40/E) strain.  pwTB40/E is comprised of the TB40/E sequence with an intact US2-US6 gene 

region in place of the E. coli mini-F propagation sequence.  Coding sequences are drawn to scale and number 

designations correspond to the cloning diagram found in Fig. 1.  Abbreviations: truncated US2 (trUS2), linker 

region (LR). 
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Fig. 2.4.  Divergent HCMV genome length-associated growth rates. BAC single-step (MOI 1.0) or multi-

step (MOI 0.01) HFF growth rates were determined by plaque assay and genome accumulation. Cellular 

supernatants were collected for extracellular fractions and remaining cells were washed prior to sonication and 

harvesting of intracellular fractions.  DNase I protected genomes were detected by qPCR and abundances 

were calculated relative to 3 dpi TB40/E samples using the 2-ΔC’T method (3).  Error bars represent standard 

error of the mean (SEM). Abbreviations: TB40/E (TB), TB40/E/Cre (TBC). 
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Fig. 2.5.  HCMV genome length-associated growth rates are independent of viral protein expression 

and assembly complex formation. (A) Protein expression of BAC infected HFFs (MOI 1.0) using markers 

for immediate early (IE1/2), early (pUL44), and late (pp28) viral proteins.  (B) Golgi-ring formation and 

endosome redistribution indicates HCMV assembly complex formation at late time points of infection in HFFs 

(MOI 0.1).  IE1/2 nuclei are positive for infection.  Abbreviations: TB40/E (TB), TB40/E/Cre (TBC). 
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Fig. 2.6.  Self-excision of the TB40/E/Cre E. coli mini-F propagation sequence creates a genome length 

reduction that can accommodate exogenous sequence.   
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Fig. 2.7.  Regulation of function by FKBP/Shield-1 stabilization.  FKBP tagged constructs are co-

translationally degraded by the proteasome unless reversibly stabilized by the soluble Shield-1 ligand. 

Abbreviations: CMV major IE enhancer and promoter region (MIEEnh/P), SV40 polyadenylation site (SV40pA). 

 

Fig. 2.6.  Self-excision of the TB40/E/Cre E. coli mini-F propagation sequence creates a genome length 

reduction that can accommodate exogenous sequence.  Homologous recombination of HCMV BACs in E. 

coli strains SW105 and SW102 was used to insert PCR amplicons containing desired sequences through 

consecutive rounds of positive and negative selection.  The Rab11A cellular GTPase protein was tagged with 

ECFP and the destabilization domain, FKBP, using an arabinose-inducible flippase to cleave FRT sites. FKBP-

ECFP-Rab11A was then incorporated into TB40/E/Cre and Rab11A was replaced with the cellular trafficking 

protein Rab3A.  Coding sequences are drawn to scale excluding the E. coli propagation sequence which is 

represented as one third the normal length.  Letter designations correspond to the primers used in Table 2.1.  

Abbreviations: unique long region (UL), unique short region (US), CMV major IE promoter (MIEP), enhanced 

cyan fluorescent protein (ECFP), SV40 polyadenylation site (SV40pA), FKBP destabilization domain (FKBP), 

truncated US2 (trUS2), SV40 promoter (SV40P), Cre recombinase with a synthetic intron (inCre), linker region 

(LR), CMV major IE promoter enhancer region (MIEEnh), reconstituted CMV major IE enhancer and promoter 

region (MIEEnh/P). 
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Fig. 2.8.  Enhanced accumulation of FKBP tagged Rab3A can be detected within 2 h of exposure to 

Shield-1.  (A) Immunoblot analysis showing accumulation of FKBP-ECFP-Rab3A (70 kDa) in infected HFFs 

(pUL44; MOI 0.1) following addition of Shield-1.  Shield-1 was added at indicated times prior to harvest of cell 

lysates at 96 hpi.  (B) Densitometry analysis of immunoblot in (A).  Error bars represent standard error of the 

mean (SEM).  (C) IFA time course of Shield-1 addition showing accumulation and localization of FKBP-ECFP-

Rab3A relative to the Golgi-ring (GM130) in infected HFFs (pUL44; MOI 0.1).  Shield-1 was added at indicated 

times prior to fixation and staining at 96 hpi. Abbreviations: TB40/E/Cre (TBC), mock infected control (M). 
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CHAPTER 3:  REGULATION OF THE HOST CYTOPLASMIC COMPARTMENT BY HCMV 
INFECTION 

I. Abstract 

Human cytomegalovirus (HCMV) is a persistent pathogen for individuals without 

functionally competent immune systems.  Failure to understand viral assembly has 

resulted in limited antiviral treatments and the unique biology of HCMV infection has 

eluded protection by vaccination. 

During infection, HCMV causes the dramatic reorganization of host intracellular 

structures thereby causing formation of the cytoplasmic virion assembly complex (cVAC).  

The cVAC promotes virion maturation by constituting a viral assembly line.   

To understand the role of cellular components during infection, we characterized 

the role of cellular structures within the endocytic recycling compartment (ERC) as they 

relate to cVAC formation and virion maturation.  We used previously generated 

transcriptional and proteomic data sets to map regulation of cellular trafficking 

components throughout the ERC.  As a result, we have generated a model for cVAC 

development and virion maturation which suggests formation of a perinuclear secretory 

trap utilized for virion assembly and eventual egress using secretory vesicle-like 

pathways.  Using our model, we are able to provide context for previous observations 

during HCMV replication and provide future opportunities for the development of HCMV 

specific treatments. 

II. Introduction 

Human cytomegalovirus (HCMV) is a common viral pathogen capable of causing 

severe complications in immunologically compromised or naïve individuals.  A lack of 

antiviral target diversity has led to the emergence of antiviral-resistant strains, thereby 



67 
 

 

removing the last line of defense for patients unable to control the infection.  By increasing 

our understanding of cytoplasmic events during HCMV replication, we can identify and 

exploit potential targets for the generation of novel therapeutics. 

As part of normal HCMV replication, HCMV induces the hallmark reorganization of 

internal cellular structures at time points late in infection.  The restructuring of cellular 

components leads to the formation of the cytoplasmic virion assembly complex (cVAC) 

which is proposed to act as a viral assembly line leading to the directed sequential 

addition of the structural components required to generate nascent virions.  The cVAC is 

a perinuclear structure consisting of a Golgi-derived ring structure with endosome 

populations at the center.  Formation of the cVAC is dependent on cooperation between 

viral and cellular factors through a process that is not yet understood. 

As part of the structural alterations, characteristic membrane populations 

experience a shift in marker protein identities (19, 23).  This shift complicates the 

classification of host cell-derived membranes used during virion envelopment and egress.  

Several observations suggest virion envelopes are Golgi-derived and follow a path similar 

to secretory vesicle (SV) formation and exocytosis (20, 23, 29, 32, 33, 35).  Others have 

looked at the effect of viral regulatory mechanisms on cellular transcripts and protein 

abundance (2, 23, 266).  While individual proteins or processes have been implicated in 

virion development, an overall map of HCMV-induced trafficking has not yet been 

presented.   

In this study, we utilize previously available data sets to examine the trafficking 

regulatory processes in the context of HCMV infection.  For generation of our model, we 

map alterations to cellular pathways through the endocytic recycling compartment (ERC) 
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(Fig. 3.1).  The ERC is a functional characterization of normal cellular transport and is 

required for maintaining homeostasis under normal conditions (reviewed in (267)).  

Trafficking through the ERC is dependent, in part, on membrane-bound GTPases, 

including the Rab family of proteins, and various effector molecules attaching to the 

cytoskeletal network.  Importantly, ERC pathways are highly conserved in all cell types. 

In this study, we combine the analysis of transcriptional and proteomic data sets 

to analyze cellular trafficking throughout the ERC as a function of HCMV infection.  

Through the use of data transformation and a novel metric, we are able to examine global 

cellular trafficking regulatory patterns induced by viral factors.  Our model provides a 

framework for understanding derivation of host membranes for use in cVAC development 

and details potential routes of virion egress.  In our model, we provide further evidence 

suggesting HCMV utilizes a SV-dependent pathway for virion envelopment and egress. 

Using our model of virion maturation, we provide context for studies examining 

cytoplasmic events during virion growth.  It also provides the opportunity for targeting key 

regulatory elements which can be exploited for inhibiting HCMV infection in host tissues. 

III. Methods 

A. Cells and virus.   

The viruses used in this study were HCMV Towne, provided by Thomas Shenk 

(Princeton University, Princeton, NJ), AD169 (ATCC), and AD169-dervied bacterial 

artificial chromosome (BAC) strain, pAD/Cre, provided by Dong Yu (Washington 

University, St. Louis, MO).  Viruses were grown in low-passage-number pooled human 

foreskin fibroblasts (HFFs) in complete Dulbecco’s modified Eagle medium (DMEM; 

Hyclone, Logan, UT; catalog no. SH30243.01) supplemented with 1% nonessential amino 
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acids (Hyclone, Logan, UT; catalog no. SH30238.01), 1% GlutaMax (Gibco, 

Gaithersburg, MD; catalog no. 35050-061), and 10% fetal bovine serum (FBS; Atlanta 

Biologicals, Atlanta, GA; catalog no. S11150).  Virus was titrated by standard plaque 

assay in HFFs. 

B. Transcriptional and proteomic data sets of HCMV infected cells. 

Generation of the transcriptional microarray dataset in our lab has been previously 

described (1).  Briefly, low passage HFFs were mock treated or infected at an MOI of 6.0 

using Towne or AD169 and incubated for 12 or 96 h.  Upon harvest, RNA was Trizol 

extracted (Life Technologies, Grand Island, NY; catalog no. 15596-018), and RNA quality 

was assessed.  RNA samples were then loaded onto Illumina HT-12 v4 human bead 

array chips for detection.  Setup of the assay and reading of the chips was done at the 

Wayne State University Advanced Genomics Technology Center (Wayne State 

University, Detroit, MI).  Results were reported as individual signal intensities. 

Generation of the proteomic dataset has also been previously described (2).  

Briefly, HFFs were infected at an MOI of 10 using the HCMV bacterial artificial 

chromosome (BAC) strain Merlin.  Following appropriate incubation periods, plasma 

membrane and whole cell lysate samples were isolated, enzymatically digested, and 

labelled using tandem mass tag (TMT) 8-plex and 10-plex reagents.  Labeled samples 

were then subjected to liquid chromatography and tandem mass spectrometry.  For our 

analysis, available data sets are reported as relative abundances. 

C. Bioinformatics analysis. 

Initial analysis of microarray data was done using BRB-ArrayTools (v. 4.2.0 beta 

2) from Dr. Richard Simon and the BRB-ArrayTools Development Team.  Microarray data 
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for 12 and 96 hours post infection (hpi) samples were compared to mock using the 

significance analysis of microarray (SAM) function with a false discovery rate of 0.01.   

A heatmap of SAM significant genes of interest was generated in R using the limma 

and gplots packages.  Clustering was done using Pearson’s correlation coefficient and 

an average-linker method.  Results were normalized on the basis of each individual row 

and reported as row Z-scores centered around the mean log2 intensities. 

Graphical analysis of dataset relationships was also done using R and r value was 

calculated using Pearson’s correlation coefficient. 

D. Transmission electron microscopy. 

Infection and imaging of cells infected with the AD169 BAC strain, pAD/Cre, in our 

lab was previously described (21).  In brief, HHFs were infected at an MOI of 0.3 and 

infections progressed for 120 hpi.  Cells were fixed and sent to Dr. Hong Yi at the Robert 

P. Apkarian Integrated Electron Microscopy Core Facility of Emory University (Atlanta, 

GA) for staining and imaging. 

IV. Results 

A. Vesicular transport proteins are differentially regulated over the course of 

infection 

To generate a model of HCMV trafficking within cells, we used a previously 

generated microarray dataset from our lab to examine transcriptional regulation of vesicle 

transport during infection with HCMV at early and late time points in viral replication (1).  

Following infection with HCMV variants Towne and AD169, the cellular transcriptional 

profile of ~25,000 genes, represented by 47,213 probes, was measured relative to a mock 
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infected control.  By comparing triplicate samples from 12 and 96 hpi, the progression of 

virally induced transcription regulation was able to be monitored. 

Following significance analysis of microarray (SAM) profiling of the transcriptional 

dataset, probes that passed the filter were examined for roles in cellular vesicle mediated 

transport.  Probes were identified based on known gene ontology classifications and 

thorough reviews of related literature.  In total, 328 probes, representing 328 unique 

genes, with known functions in vesicular transport were identified. 

For a comprehensive overview of regulatory patterns, a heatmap was generated 

representing the transcriptional profiling of the 328 probes (Fig. 3.2).  Construction of the 

heatmap used Pearson’s correlation coefficient to group transcripts based on individually 

normalized standard deviations around the mean log2 expression values.  Clustering was 

then performed using an average-linkage method.  When examined, the heatmap 

displays four distinct regulatory patterns including upregulation and downregulation of 

transcripts at both 12 and 96 hpi.  To establish a model of trafficking pathways, the 

transcriptional data was then compared to measured cellular protein abundances. 

B. Transcriptional regulation of HCMV infection correlates with cellular protein 

abundance 

Because transcriptional patterns don’t completely correlate with protein translation 

or protein stability, we compared the whole microarray dataset to a previously 

characterized proteomic dataset (2).  The proteomic data was generated from a series of 

experiments analyzing whole cell lysate and plasma membrane specific fractions of 

cellular proteins.  Importantly, the proteomic data contained slightly over 8,000 detected 

proteins so comparison between the two sets were based on only those detected in both 
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sets.  Because the proteomic data was represented as the relative abundance over a 

series of time points, a summary metric was devised that could be applied to both the 

transcriptional and proteomic profiles.  This was possible because we were interested in 

the general regulation of pathways over time and not in absolute values. 

To transform the data, transcript signal intensities and protein abundance data 

were independently averaged across all replicates at 12 and 96 hpi.  Then, the averages 

were respectively normalized to control values from mock infected cells resulting in the 

transcript/protein level fold change (FC) relative to mock.  FC values were log2 

transformed and FC12hpi was subtracted from FC96hpi to give the change in log2 FC 

(Δlog2FC) as seen below. 

∆𝑙𝑜𝑔2𝐹𝐶 =  𝑙𝑜𝑔2 (
96ℎ𝑝𝑖

𝑚𝑜𝑐𝑘
) − 𝑙𝑜𝑔2 (

12ℎ𝑝𝑖

𝑚𝑜𝑐𝑘
) 

By summarizing both data sets using the Δlog2FC metric, which is reported in 

arbitrary units, we focus on the patterns of regulation instead of the absolute values.  Next, 

the Δlog2FC values for the Merlin infected proteomic data were graphed against the 

transcriptional data from AD169 infected cells using a standard coordinate axis (Fig. 3.3).   

Comparison of regulatory patterns resulted in a value of r = 0.46 showing the 

samples are positively correlated but there are still substantial differences. 

C. HCMV infected cells favor a secretory vesicle mediated exocytic pathway. 

Because the two data sets were overall positively correlated, we proceeded to use 

the microarray data for establishing a model of HCMV infection because the data were 

more robust.  Using the established roles of the 328 identified probes in regard to positive 

regulators versus negative regulators of specific pathways, the Δlog2FC regulatory 

patterns were mapped onto pathways throughout the ERC. 
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The resulting downregulation of all major exocytic pathways and upregulation of 

all major endocytic pathways with the exception of those required for SV exocytosis 

suggest a novel pathway for virion egress (Fig. 3.4).  By transcriptional analysis, it 

appears that HCMV drives SV vesicle exocytosis leading to compound exocytic events.  

Indeed, through imaging by electron microscopy, vesicles containing multiple mature 

virions and other particles are evident (Fig. 3.5). 

V. Discussion 

During HCMV infection, virally-induced processes dramatically alter the internal 

cellular morphology leading to formation of the cVAC (17, 18).  As part of the remodeling, 

several pathways required for normal homeostasis are rerouted or dissociate resulting in 

an apparent perinuclear secretory trap (19, 42, 44). 

By using previously available data, we were able to construct a model of HCMV-

induced changes to host secretory systems.  While informative, there are a few potential 

factors that may confound our analysis: i) the viral strains used were different between 

data sets, ii) the experiments were not setup exactly the same (i.e. MOI of 6.0 versus 

10.0), iii) the selection of probes related to transport are subject to individual bias, and iv) 

mapping of changes to pathway flux is somewhat subjective.  While the setup has its 

flaws, there were still enough correlations to justify use of these data sets for preliminary 

experiments.   

Consistent with previous observations of secretory regulation by HCMV, our 

modelling predicts a change in the net flux of ERC pathways (19, 20, 42, 44).  Under this 

model, we predict that HCMV promotes the perinuclear accumulation of various 

components within cells.  The concentration of materials in an area coincident with cVAC 
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development then facilitates cytoplasmic events required for virion maturation (Fig. 3.6).  

The apparent upregulation of cellular transcripts required for SV vesicle release suggests 

SV exocytosis may serve as a final pathway for virion egress.   

This is supported by previous observations relating virion envelope lipid 

composition to synaptic vesicles, which follow a similar trajectory, and findings that of SV 

trafficking proteins associated with HCMV envelopes (20, 29, 32, 33).  Additionally, SV 

exocytosis is mediated through a Ca2+ dependent mechanism and during infection with 

HCMV, Ca2+ levels are maintained at substantially elevated levels throughout infection 

(50).  Because SV pathways are highly conserved across diverse cell types, they provide 

an attractive avenue for HCMV envelopment and egress. 

Given the opportunity for further investigation, the various pitfalls could be 

controlled for and the relationships could be examined in more detail.  Using the Δlog2FC 

metric under improved conditions may also lead to insight related to regulation of 

transcriptional activity and protein expression as a result of infection.  While approximately 

half of the investigated transcripts/proteins appeared to follow the same general 

regulatory pattern, there were some that exhibited increased transcription but decreased 

protein abundance and vice versa.  These techniques can also be applied in the context 

of infection with other viruses to study viral replication.  Understanding the relationship 

between transcripts and proteins may give context to the effects we see during HCMV 

infection and cVAC biogenesis. 

Through use of our model, we are able to target the various trafficking events that 

appear to be important for virion maturation.  By interfering with key steps, we can identify 
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critical control points and either validate or improve our current model with the goal of 

eventually exploiting control points for the development of new therapies.   

 

 



76 
 

 

 

Fig. 3.1.  Features of the endocytic recycling compartment (ERC).  The endocytic recycling compartment 

is a functional classification of cellular trafficking events required to maintain homeostasis.  Under normal 

circumstances, inbound materials enter through early endosome (EE) populations before being routed 

elsewhere such as common recycling endosomes (CRE) or degradative pathways (LE, MVB, LYS).  Secretory 

vesicles (SV) are also generated in this compartment using CRE and Golgi (GA)- derived membranes.  During 

SV exocytosis, vesicles are transported to the plasma membrane and released either independently or through 

compound exocytosis.  Abbreviations: endoplasmic reticulum (ER), Golgi apparatus (GA), common recycling 

endosomes (CRE), early endosomes (EE), apical recycling endosomes (ARE), late endosomes (LE), 

multivesicular bodies (MVB), lysosomes (LYS), secretory vesicles (SV). 
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Fig. 3.2.  Heatmap demonstrating regulation of cellular trafficking during HCMV infection.  HCMV 

infected HFFs (Towne and AD169; MOI 6.0) were harvested at indicated time points and RNA was extracted 

for microarray analysis as reported previously (1).  Following significance analysis of microarray (SAM) relative 

to mock cells, 328 significant probes were identified as having roles in vesicle-mediated transport.  A heatmap 

was generated based on standard deviation around the mean log2 intensity for each individual row.  Distance 

matrices were calculated using Pearson’s correlation coefficient and clustering was completed using an 

average linkage method.  Reported Z-scores represent standard deviations from the mean. 
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Fig. 3.3.  Comparison of proteomic and transcriptional regulation during HCMV infection.  Using data 

sets generated previously (1, 2), proteomic data from HCMV Merlin infected HFFs (MOI 10.0) was compared 

to transcriptional data for HCMV AD169 infected HFFs (MOI 6.0). By transforming the data using the Δlog2FC 

of protein abundance or transcript intensity relative to mock infected cells, the variation in regulatory patterns 

of proteins and transcripts during infection was compared.  Data represents patterns connecting 12 and 96 hpi 

relative to mock.  Abbreviations: plasma membrane proteome samples (PM), whole cell lysate proteome 

sample (WCL) 
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Fig. 3.4.  HCMV induced upregulation of secretory vesicle (SV) exocytosis during infection.  Following 

significance analysis of microarray (SAM) filtering, probes were selected for their role in vesicle mediated 

transportation.  As opposed to increased endocytic flux of other pathways in the endocytic recycling 

compartment, SV vesicle exocytosis-associated transcripts increased.  The schematic represents trafficking 

events required for SV exocytosis with green labeled proteins being upregulated or red labeled proteins being 

downregulated as a function of HCMV infection.  As the figure moves to the right, SVs encounter the plasma 

membrane and undergo single or compound exocytic events.  The graph shows the relative transcript levels 

of identified proteins over the course of infection with HCMV AD169 or Towne at early (12 hpi) and late (96 

hpi) time points. 
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Fig. 3.5.  Ultrastructural analysis of HCMV infected cells suggests virion egress by compound 

exocytosis.  Representative images of HFFs infected by the AD169-derived bacterial artificial chromosome 

(BAC) pAD/Cre (MOI 0.3) show the accumulation of multiple mature viral particles packaged within individual 

vesicles (red).   
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Fig. 3.6.  HCMV induced alterations to trafficking within the endocytic recycling compartment (ERC) 

based on transcriptional data.  Following significance analysis of microarray (SAM), 328 significant 

transcripts were identified as being involved with cellular vesicle-mediated transport.  The effects of 

transcriptional regulation during infection were mapped onto the various pathways within the ERC.  The 

resultant diagram showcases changes in the net flux of various ERC pathways and resultant increase in 

secretory vesicle exocytosis.  Thickness of arrows indicates change in flux relative to uninfected cells with 

thicker arrows being the favored direction of transport.  Abbreviations: endoplasmic reticulum (ER), Golgi 

apparatus (GA), common recycling endosomes (CRE), early endosomes (EE), apical recycling endosomes 

(ARE), late endosomes (LE), multivesicular bodies (MVB), lysosomes (LYS), endosomal sorting complex 

required for transport (ESCRT, E). 
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CHAPTER 4: GENERAL CONCLUSIONS 

Herpesvirus replication cycle relies heavily on remodeling host environments to 

achieve envelopment and egress of nascent particles.  While similar high order 

requirements exist between the different subfamilies of Herpesviridae, details of virion 

replication differ based on the repertoire of cells infected by each virus.  Areas of observed 

differences include development of an assembly compartment, function of virion structural 

proteins, composition of virion envelopes, and mechanisms required for membrane 

scission and virion egress.   

In general, herpesviruses hijack host trafficking pathways and direct virion 

components to a defined assembly region in infected cells, the HCMV cVAC being the 

most prominent, before exocytosis of fully matured particles.  Redirection of trafficking is 

a result of transcriptional regulation, a complex network of viral protein interactions, and 

modifications to the metabolic profile of host cells.  Key proteins have been identified as 

having a role in virion maturation but interpretation is difficult due to functional 

redundancies and downstream cascades of interactions.   

As part of this research, we generated a series of novel tools and ideas that will 

continue to advance the study of HCMV replication.  Through the BAC, TB40/E/Cre, 

genes of interest can be expressed in the context of infection.  Through manipulation of 

cellular and viral processes we will be able to identify pathways integral to HCMV 

maturation.  Through our model of HCMV induced changes to cellular trafficking, we have 

identified a series of potential targets for further characterization and potential 

development of novel therapeutics. 
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By combining all of these advances, functional mutants of cellular trafficking 

proteins, such as Rab GTPases, can be expressed during infection to inhibit pathways 

identified as critical control points for virion egress as evidenced by changes in the net 

output of nascent virions.  Likewise, mutated forms of viral proteins purported to be 

involved in virion maturation and egress could be expressed to look for similar endpoints.  

Based on prior evidence of cell-specific activities, it will be important to assess trafficking 

events in all cell types permissive to HCMV infection, particularly epithelial, endothelial, 

and monocytic lines.  Only by using a comprehensive approach will new antiviral targets 

be identified. 

There are still many unanswered questions left but with the advent of new and 

improved technology, we will be able to probe deeper into depths of virion replication, 

expanding our knowledge one particle at a time. 
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ABSTRACT 

NAVIGATING HUMAN CYTOMEGALOVIRUS (HCMV) ENVELOPMENT AND 
EGRESS 

 
by 

WILLIAM L. CLOSE 

August 2017 

Advisor: Dr. Philip E. Pellett 

Major: Immunology and Microbiology 

Degree: Doctor of Philosophy 

Human cytomegalovirus (HCMV) is a ubiquitous viral pathogen.  In individuals with 

fully functioning and mature immune systems, HCMV is associated with mild symptoms 

prior to establishing latency.  In individuals with naïve or compromised immune systems, 

HCMV is capable of causing severe organ damage.  HCMV is the leading infectious cause 

of congenital birth defects and a major non-genetic cause of hearing loss.  Unfortunately, 

antiviral treatment options lack diversity due to limited knowledge of virion replication.  If 

HCMV replication were better understood, new antiviral treatments could be developed. 

In this work, we describe the development and implementation of new tools to 

study HCMV replication with a focus on envelopment and egress.  We generated a novel 

HCMV bacterial artificial chromosome (BAC) expression system for characterizing the 

effects of exogenous proteins in the context of HCMV replication.  While demonstrating 

the new BAC, TB40/E/Cre, we are also able to draw conclusions relating HCMV genome 

size to replication efficiency.  In addition, we characterize the transcriptional profile of 

cellular proteins during HCMV infection.  We found that HCMV causes significant 

alteration in host mRNA expression and targets a number of transcripts related to vesicle-
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mediated trafficking.  By tracing the effects of HCMV on cellular trafficking, we propose a 

model of virion envelopment and egress.  

Through this work, we now have the capability to test our predictions and 

determine the route of viral maturation and exocytosis in host cells.  By constructing a 

map of HCMV replication, we provide critical control points for use in developing novel 

antiviral therapies. 
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