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CHAPTER 1 BACKGROUND AND MOTIVATION  

 Problem Statements  

Orthopedic implants are manufactured and routinely used to fix and 

support long bone or spine fractures, replace arthritic joints, and repair other 

orthopedic and maxillofacial defects (Goodman, Yao et al. 2013). Historically, the 

design of implants simply focused on mechanical properties, which should 

stabilize fractures, bear loading and facilitate more normal use of injured joints or 

limbs, and biological aspects were overlooked. It was believed if the implants 

were appropriately fixed, the bone would be self-healed (Goodman, Yao et al. 

2013).  However, every year in the United States about 600,000 fractures have 

delayed union and 100,000 fractures are nonunion (Bishop, Palanca et al. 2012). 

Some joint prosthetics cannot integrate to the surrounding bone (Aro, Alm et al. 

2012). A long-term survival of implants needs early osseointegration (the 

formation of a direct interface between an implant and bone). Ryd et al.(Ryd 

1992) reported that early implant loosening in both hips and knees might result in 

implants failure. Kärrholm et al. (Kärrholm J 1994) also concluded that the 

subsidence of the implant could increase the risk of aseptic loosening (AL).  

The lack of early osseointegration also increases the risk of later aseptic 

loosening (AL), and is the main reason for the failure of total joint replacements 

(Kroell, Beaule et al. 2009, Bahraminasab 2012). Every year over 700,000 total 

joint replacements surgeries (hips and knees) are performed in the United States 

(Berry, Harmsen et al. 2002). Polymethylmethacrylate (PMMA) is a commonly 

used fixation material for cemented implants (Haboush 1996). As the cement 
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aged, the brittleness of PMMA creates debris (Howie, Haynes et al. 1993). At the 

same time the metallic implants (titanium or its alloy) them generate debris when 

they rub against other materials. Duo to wear debris accumulating around the 

implant and bone interface; macrophages differentiate into osteoclasts, which 

start osteolysis and enlarge the gap between the implants and bones resulting in 

loosening (Lennox, Schofield et al. 1987, Bullough, DiCarlo et al. 1988, Boos, 

Fink et al. 2008, White, Carsen et al. 2012). Early osseointegration can reduce 

wear debris, an inducement of AL, which is formed by rubbing. These facts 

stimulate scientists to pay more attention to modify the implants with biological 

and porous coatings (Figure 1). A “bone-like” implant interface between implant 

and bone could provide reliable mechanical support and robust bone healing, 

which could reduce AL via assisting early osseointegration.   

  
Bone tissue anatomy and circulations  

An appropriated physiochemical and biologic milieu can boost the rate, 

quality and quantity of the early osseointegration. It is necessary to understand 

Figure 1 . The cement fixation implant (left) and the implant with biological coatings   



 

 

the anatomy and physiology of the native bone for the design of an implant. This 

review would address the anatomy, physiology and repairing of the native tissue. 

Bone is a highly mineralized connective tissue that is able to support the 

human body and maintain mineral homeostasis (Baroli 2009). Macroscopically, 

bone tissue can be classified into compact bone (cortical bone) and spongy bone 

(trabecular bone) (Baroli 2009). Compact bone is mainly responsible for 

supporting and protecting. It is formed by plenty of osteons.  Blood vessels 

longitudinally pass through the osteon via the Haversian canal (Baroli 2009). The 

blood vessel inside the transverse Volkmann’s canal connects each osteon. Thus, 

the Haversian canal and the Volkmann’s canal form the blood vessel network for 

the bone’s nutrition feeding and signal transduction (Baroli 2009). Spongy bone 

is a lightweight, highly porous tissue where riches in blood vessels and contains 

bone marrow. The main blood vessel, lymphatics and nerve fibers go through the 

center of spongy bone. It has the function of supplying nutrition for bone cells, 

hematopoiesis, and keeping mineral balance in body. The outer layer and 

coating of bone is the periosteum, which is a highly vascularized connective 

tissue. Not only can it connect one bone tissue with another or with muscle tissue, 

but also has the ability to regenerate bone during body development and bone 

healing because of the amounts of bone cells that accumulate at the inner layer 

of periosteum (Baroli 2009).   
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                                       Figure 2. The anatomy of bone  

The extracellular matrix of bone tissue is composed of with 65% minerals 

and 35% organic matrix (Baroli 2009). The organic material is mainly type I 

collagen (Col), which provides bone its flexibility and resilience. Col is important 

for cell adhesion and migration, and signal transduction of growth factors. The 

inorganic material consists of crystalline mineral hydroxyapatite (HA), which is 

precipitated in the collagen, and is responsible for the stiffness and strength of 

bone. HA nanocrystals are crucial for biomineralization and osseointegration 

(Wei and Ma 2004). The organic–inorganic constituents combine to provide a 

mechanical and supportive role in the body (Pramanik, Mishra et al. 2009).  

There are several types of bone cells related to bone formation, such as 

mesenchymal stem cells (MSCs), osteoblasts (OB), osteocytes (OC), osteoclasts, 

and chondrocytes (Baroli 2009). The mesenchymal stem cells located in bone 

marrow are small, long and thin cells with a large nucleus. They have a great 

capacity of self-renewal and can differentiate into adipocytes, chondrocytes, 

osteoblasts, hepatocytes, and pneumoncytes. In the vascularization area, the 



 

 

mesenchymal stem cells would differentiate into osteoblasts; but while they are 

under the non-vascularization area, they form chondrocytes (Uccelli, Frassoni et 

al. 2007). The osteoblasts are immature bone cells and produce osteoid matrices 

that are mainly composed of type I collagen, alkaline phosphatase, and other 

proteins (Xiao, Fu et al. 2007). After osteoblasts are trapped and deposited in the 

bone matrix, they eventually develop into mature bone cells, osteocytes. Like 

osteoblasts, the osteocytes can secrete hydroxyapatite, calcium carbonate and 

calcium phosphate bone matrix (Uccelli, Frassoni et al. 2007, Xiao, Fu et al. 

2007). Additionally, they are very sensitive to mechanical strain and can secrete 

many growth factors to help cell proliferation and differentiation. The osteoclasts 

are large and multinuclear cells that are important for bone degradation and 

resorption (Baroli 2009).   

Adult bones continuously undergo remodeling in order to maintain their 

integrity and biomechanical strength. The remodeling process is associated with 

two steps: osteoclasts resorption of bone and osteoblasts rebuilding of bone.  

This process happens in special vascularized structures called bone remolding 

units (BRUs) (Saran, Gemini Piperni et al. 2014). The BRUs recruit the 

osteoblasts and osteoclasts or their precursors and signal molecules from 

circulation to the site of remodeling.  The BRUs facilitate the direct cell 

interactions between osteoblasts and osteoclasts, and secretion of receptor 

activator NF-κB ligand (RANKL) by osteoblasts promotes osteoclasts 

differentiation and activations (Baroli 2009, Saran, Gemini Piperni et al. 2014). It 

is crucial to keep a precise balance between the bone resorption and bone 
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formation (Saran, Gemini Piperni et al. 2014). Imbalance between these 

processes, such as an increase in bone resorption without adding bone formation, 

results in an onset of osteoporosis usually seen in post-menopausal women.   

The loss of bone mass and density cause weakening of bone strength and 

increase the risk of bone fracture.   

In the event of injury, bone is able to regenerate to its original structure 

through several stages of healing, which are: impact-induced inflammation, 

granulation (primary soft callus formation), callus mineralization (hard callus 

formation), callus remodeling and concurrent modeling (Figure. 3) (Baroli 2009). 

When the fracture happens, the injured area is immediately invaded with blood 

that will form a blood clot or a hematoma. The hematoma will release various 

signaling factors and angiogenetic growth factors, which in turn recruit 

inflammatory cells such as macrophages and repairing cells including fibroblasts, 

osteoblasts, mesenchymal stem cells (MSCs) and vascular endothelial cells 

(Ferrara, Gerber et al. 2003, Brandi and Collin-Osdoby 2006, Golub, Kim et al. 

2010). Meanwhile the fracture area is a hypoxic environment because of 

compromised blood supply, disruption of oxygen and acute necrosis of the 

surrounding tissue. Hypoxia is an important physiological signal in bone repair as 

it up regulates the VEGF expression by the osteoblasts that in turn promote 

endothelial cells (ECs) proliferation and differentiation (Ball SG 2007, Saran, 

Gemini Piperni et al. 2014). The ECs secrete osteogenic growth factor for 

osteogenesis (Brandi and Collin-Osdoby 2006, Ball SG 2007). In these 

conditions, osteoprogenitor cells and osteoblasts deposited close to the 



 

 

undamaged bone form osteoids that are subsequently mineralized to form the 

granulation /soft callus around an injured area. The soft callus will undergo 

endochondral ossification bridging the fracture gap. Finally, the healing bone will 

undergo remodeling to restore its structure and mechanical strength.  

  

Current implant coatings  

Many efforts have been done on implant surface coatings in order to add 

biologic properties to the implants and improve osseointegration. Calcium 

phosphate-like coatings have been used in the orthopedics because of their 

similar components to the native bone. Titanium (Ti) implants with HA coating in 

cementless hip replacements have been used to enhance bone ingrowth since 

1987(Geesink RG 1987). Current studies found no significant improvement in 

clinical outcomes in patients with a cementless hip replacement as compared to 

those with a cemented hip replacement (de Jonge, Leeuwenburgh et al. 2008). 

The limitations of a HA coating include (1) a non-physiological surface of HA 

Figure 3 . Schematic representation of bon e healing phase and  
duration  ( Baroli  2009) .   



 

 

8 

coating leads to diminished initial osseointegration (Goosen JH 2008); (2) brittle 

nature (Song Y 2010); (3) poor adhesion strength (de Jonge, Leeuwenburgh et al. 

2008) and (4) the lack of controllable drug release (Renwen Zhang 2004). Our 

previous study within 24h found about three quarter of erythromycin loaded onto 

a Ti implant with a HA coating was released (Ren, Zhang et al. 2010). Another 

coating is a biomolecule coating that is divided into three categories: layer-by-

layer (LBL) coatings, hydrogel coatings and immobilization (Goodman, Yao et al. 

2013). Hydrogel coatings are composed of simply immersing implants into a 

hydrogel solution with biomolecules. Many researches proved that collagen 

(Rammelt, Schulze et al. 2004, Sartori, Giavaresi et al. 2015), decorin (Stadlinger, 

Pilling et al. 2008), chondroitin sulphate (Stadlinger, Pilling et al. 2008) and 

BMP2 embedded hydrogel coating for titanium implants can enhance early bone 

remodeling around the implant and increase osseointegration (Dupont, Boerckel 

et al. 2012).  However, it is difficult to control the loading efficiency and drug 

releasing kinetics. The LBL techniques repeatedly dip implants into polyelectrolye 

solutions with opposite charges to load the coating materials and biomolecules. It 

has the potential to carry dual molecules and to control the releasing kinetics 

through changing the number of layers and the properties of polyelectrolytes. 

Shah NJ et al. coated VEGF and BMP-2 to the surface of PCL/ β-TCP scaffolds 

via LBL to mimic the bone healing processes (Shah, Hong et al. 2012). Doped 

with these two proteins, the implant facilitated blood vessel ingrowth and bone 

formation (Shah, Hong et al. 2012). However, several barriers inhibited the board 

application of LBL techniques: (1) labor intensive and expensive, (2) toxic to 



 

 

tissue, (3) mechanical instability (Goodman, Yao et al. 2013). Biomolecules 

including peptides and proteins immobilized onto the metallic implant surface 

utilize cross-linking or covalent bonding, which may alert bioactivity of molecules. 

Future developments of implant coatings should emulate the host environments 

that induce cell adhesion and osseointegration via released biomolecules. 

Electrospinning Technology and Electrospun Nanofibers (NFs) Implant 
Coatings  
 

The native microstructures of the extracellular environments (ECMs) of 

bone tissues are nano-fibrous collagen networks. The basic building block of 

bone is mineralized and highly ordered collagen I fibrils (Weiner S 1998), only a 

few nanometers thick (Fratzl P1 1992), with collagen.  The collagen I fibrils are 

aligned and arranged to form a higher order structure until a complete bone 

tissue (Zhang R 2000, Li WJ 2001, White CA 2012). One of the promising 

technologies created to mimic bone nanoscale extracellular matrix (ECM) 

structure is electrospinning (Baker, Handorf et al. 2009).   

Electrospinning was developed in the early 1930s and had applications in 

various industries, such as highly efficient filters, lightweight and protective cloth 

and battery cells (Katti, Robinson et al. 2004, Ramaseshan R 2006, K Fujihara A 

Kumar 2007).  It uses an electrical charge to overcome the surface tension of a 

charged polymer solution, and form very fine (typically on the micro or nano-

scale) fibers from a liquid (Reneker DH 1996). With the expanding availability of 

polymer materials electrospun NFs have been applied to tissue engineering as 

scaffolds, and its unique characteristics has drawn increased attention (Doshi J 

1995). One of the characters is its high surface area, high mass to volume ratio 
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and a small inter-fibrous pore size with high porosity (Ifkovits, Sundararaghavan 

et al. 2009), which makes it an ideal matrix for cell adhesion and growth. In tissue 

engineering, the electrospun NFs also has been used as a controllable drug 

delivery device by embedding antibiotics, peptides, proteins and other drugs 

(Song, Yu et al. 2013). We have developed doxycycline (Doxy)-doped 

polycaprolactone/polyvinyl alcohol (PCL/PVA) NFs, which successfully inhibited 

bacterial infection up to 8 weeks in vivo by sustaining release of Doxy (Song, Yu 

et al. 2013). The potential application of NFs for the enhancement of 

osseointegration is promising but often is overlooked. Our previous works have 

demonstrated that Doxy-dope PCL/PVA NFs can improve osseointegration 

(Song, Seta et al. 2017). The bone-implant surface (%) in the NFs coated 

titanium implant groups was significantly higher (p<0.05) than the non-coated 

groups after implantation for 2, 4 and 8 weeks in a Staphylococus aurus infected 

tibia implantation rat model.  Additionally, there are a few papers (Kohgo, 

Yamada et al. 2011) (Huang, Daniels et al. 2008) that demonstrated the NF 

structural cues alone can be used to create an osteogenic environment and that 

the cell attachment, proliferation, and differentiation of bone cells are influenced 

by the physiochemical properties of the NFs (Huang, Daniels et al. 2008). More 

efforts are needed to understand the interplay between the physiochemical 

natures of NFs and the fate of local bone cells. 

Current Electrospinning Technologies to Form Three-dimensional (3D) 
Nanofibers and Limitations   
 

One of limitations of electrospun NFs in tissue engineering is its dense, 

compact and flat structure. This structure inhibits further cell infiltration, 



 

 

proliferation, and vascularization (Nam, Huang et al. 2007, Skotak 2011). There 

is still a technical challenge to fabricate loose, thick and bulky scaffolds (3D 

scaffolds) with controlled microstructures and properties (Ma 2011). It is well 

accepted that a defined 3D microenvironment and porous structure of NF 

scaffolds are critical for cell growth and tissue regeneration (Barthes, Ozcelik et 

al. 2014). Many efforts have been explored in past decades to prepare 3D 

porous and looser NF scaffolds. Salt leaching (Nam, Huang et al. 2007) has 

been used to create depth during electrospinning (Teo 2011). It sprinkles salt 

particles in a polymer solution during electrospinning. The salt would be built 

inside a thick NF scaffold. Finally, these particles would be washed out of the NF 

scaffold and leave a porous and thick NF scaffold (Nam, Huang et al. 2007). A 

similar technology is an ice crystal method. Ice crystals are formed inside of the 

NFs when NFs are under low temperature in order to freeze water molecules 

inside (Leong, Rasheed et al. 2009, Schneider O D 2009). Porous 3D NFs could 

be formed as soon as the temperature is increased and the ice crystals melted. 

The limitation of these methods is that they are time-consuming. The fiber 

formation is slow and the pore sizes may still be relatively small.  Some methods 

are effective in reducing the deposition speeds of NFs. Miyamoto et al. applied a 

negatively charged electrode to neutralize the charged electrospinning jet. The 

polymer jet traveled slowly to the collector and formed a fluffy 3D NF scaffold 

(Miyamoto, Atarashi et al. 2009). However, the pore sizes were difficult to control 

with this method.   
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It has been demonstrated that collection methods act most effectively on 

constructing 3D fibers and manipulating the elaborate fibrous structure (Teo and 

Ramakrishna 2006). Some advanced collection techniques have been reported 

including wet electrospinning (Yokoyama 2009), rolling or stacking collectors 

(Pham, Sharma et al. 2006, Thorvaldsson, Stenhamre et al. 2008, Shim, Suh et 

al. 2009), and yarn (Smit 2005). These technologies can be used to prepare 3D 

NF scaffolds. For instance, the yarn technology uses a water bath as a collector 

instead of a flat metallic, grounded collector. Through water vortex, the NF yarns 

are collected in the basin below the vortex (Teo 2011). Some researchers use an 

organic solvent bath rather than a water bath because the organic solvent has a 

lower surface tension and the NFs would sink into the solvent and would be 

discharged immediately. In this condition, the deposition area would be smaller 

but the accumulating speed would be faster and would form 3D NFs as a result 

(Ki C S 2007). Using a micro-patterned collector is another collection technique, 

allowing the formation of highly porous NFs. Li et al. developed patterned static 

collectors consisting of conductive and non-conductive void spaces (Li D 2004, Li, 

Ouyang et al. 2005). NFs were aligned across a non-conductive void. These 

methods make it possible to form 3D NFs scaffolds in certain forms. However, 

the processing is relatively complex, slow, and difficult to be controlled and this 

process cannot create scalable, block scaffolds with an interconnected porous 

structure. An efficient and real-time 3D NFs fabrication method is still required 

and necessary for its further application in tissue engineering.   



 

 

We have developed a novel 3D NFs collector with arranged, movable and 

electrically conductive needles on the tips of which electrospun NFs are gradually 

deposited and form 3D NF architecture (Wei S. 2017). We have compared these 

3D NFS with 2D PCL NFs, and found that the 3D NFs assisted cell proliferation 

and infiltration. Based on this study, our goal is to develop the customized 

collector into an automatic electrospun NFs collector to fabricate 3D NFs and 

control the microstructure of NFs via accurately changing the velocities of 

collector movements. The objectives of this study are to determine whether the 

microstructures of 3D NFs are reproducible using this programmed collector, 

compare the responses of different cells when cultured on these 3D NFs with 

different pore sizes, and study the osseointegration ability of the 3D NFs as a 

drug delivery vehicle. The NFs could be utilized as implant coating materials to 

improve and satisfy various cell adhesion, growth and differentiation and to 

induce early osseointegration via controlled release of biomolecules.  
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CHAPTER 2 THREE-DIMENSIONAL (3D) POLYCAPROLACTONE (PCL) 
NANOFIBERS FABRICATED BY A NOVEL AUTOMATIC COLLECTOR AND 
ITS CHARACTERIZATION  

Introduction  

 Background  

Natural bone is a nano-fibrous network, which is a porous, highly 

mineralized and well-organized structure (S Weiner 1998). The basic unit is 

collagen I fibers (only a few nanometers thick) (Fratzl P 1992, Zhang R 2000). 

They are aligned and arranged to form a higher order structure unit of a basic 

bone matrix (Zhang R 2000, Li WJ 2002, White CA 2012). Various types of bone 

substitutes have been developed in order to assist bone healing. Although many 

of them have the desired mechanical strength, they have insufficient abilities of 

osteoconduction and osteoinduction to enhance bone ingrowth (Goodrich JT 

2012). The ideal substitute should mimic the extracellular matrix environment 

(ECM) of the bone tissue, the nano-fibrous network, and aim to help bone cells 

adhesion, growth and differentiation onto the implants (Jang JH 2009, Holzwarth 

and Ma 2011).   

Electrospun nanofibers have similar diameters as compared to the natural 

fibers of the bone ECM (Sundararaghavan HG 2010). In addition, nanofibers 

have a higher surface to volume ratio and high porosity and interconnectivity that 

are critical to facilitate cell attachment and growth (Pham, Sharma et al. 2006, 

Teo and Ramakrishna 2006, Yokoyama 2009). These characters ensure 

electrospinning as one of the promising technologies to mimic the nanoscale 

extracellular matrix of bone (Baker, Handorf et al. 2009). Porous structure is 



 

 

another requirement of a scaffold. The nutrition and waste of cells should be 

transported and removed through the pores (Rampichová M 2013). Cells growth 

and differentiation demand a porous structure. It is well acknowledged that 

different cells require different pore sizes (Rampichová M 2013). For example, 

vascularization happens at pore sizes over 300 µm in the bone tissue 

(Karageorgiou V 2005); while fibroblasts prefer a pore size of 6-20 µm (Lowery 

JL 2010). Thus, ideal electrospun NFs scaffold should have three-dimensional 

shape and macroscale pores, which provide sufficient space for cell infiltration 

and differentiation (Blakeney BA 2011). In this aspect, traditional electrospun 

NFs are limited by their dense and tightly packed structure, which only allows 

superficial penetration of the cells.  

Many methods have been used in an effort to create 3D NFs with larger 

pore sizes. Some focused on changing parameters of electrospinning like an 

external force on a spinneret jet, electric charge and a magnetic field (Teo 2011); 

others used a solid support, which eventually was leached out, to introduce large 

pores, such as salt particles (Nam, Huang et al. 2007), ice crystals (Teo 2011), 

and photo patterning (Goodman, Yao et al. 2013). In addition, advanced 

techniques like wet electrospinning (Yokoyama 2009), yarn (Smit 2005) and 

rolling or stacking collectors (Pham, Sharma et al. 2006) are suitable for mass 

production. However, most of them fail to control the desired porosity and pore 

size. Moreover, these techniques are time consuming and expensive that greatly 

limits intended application. Therefore, it is essential to develop real-time and one-
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step 3D NFs fabrication technology that can be used to control the matrices and 

geometry of formed nanofibers during electrospinning.   

The principle of 3D NFs collector  

 The working mechanism of electrospinning is that driven by high voltage, 

a charged polymer jet overcomes its surface tension and deposits onto low 

potential targets in the form of numerous nanofibers. Conventionally, the 

solidified fibers deposit on the flat surface with equipotential density. However, if 

a sharp needle projects from the surface, a corona discharge would favorable 

build up at the tip of the needle (Wei S. 2017). As a result, the local electric field 

around the needle tip creates strength much higher than the surrounding 

conductor, resulting in an acceleration of free electrons to a high velocity, which 

ionizes neutral air molecules (Wei S. 2017). Thus, the charged polymer jet 

prefers to deposit onto the sharp tip of the needle during the electrospinning 

(Figure 4).  

 
According to this mechanism, we have designed a collecting device with 

numerous movable needles where electrospun NFs are gradually deposited to 

form 3D architectures (Figure 5 (a)). Figure 5 (b) shows a 2D cross-sectional 

Figure 4 . A diagram of electrospinning setup aims to explain the  g g
phenomenon of the nanofibers depositing on the needle tip  ( We i S. 2017) .    



 

 

view of electrospinning build-up between the spinneret and a grounded collector. 

A discharge prefers to occur in the vicinity of a sharp point where a highly curved 

region exists, for instance, projecting point of a needle or edging corner, shown 

as point A or B/C in Figure 5 (b). Unlike conventional electrospinning that lays 

down a uniform deposition, the electric field vectors in the vicinity of the collector 

in this study majorly target two fractions—the projecting points of needles (A) and 

the edging corner of the platform (B/C), which enforces the deposition of spinning 

nanofibers along the alignment of B-A-C and allows a triangle-shaped fiber sheet 

formation, as shown in Figure 5 (b, 1). When two points are more prominent on 

the surface of collector such as points D and E, the spinning fibers are deposited 

to these points giving a wave-shaped fiber sheet formation (Figure 5 (b)).  Figure 

5 (c) shows the photograph of a typical 3D nanofibers scaffold during 

electrospinning with fibers directly deposited on pierced needles and platform 

corners to form a wave shape.  
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Our strategy is to build up a loose and hollow structured 3D scaffold 

constructed by stacking multi-layers of fiber-sheet into bulk. We performed 

multiple rounds of electrospinning steps to construct different fiber sheets along 

various angles. When the collector was fully covered by a deposited fiber sheet, 

the needles’ positions were re-adjusted by gradually pushing those pierced 

needles forward.  At the same time, a new fiber sheet would start depositing on 

the tips.  Each round lasted the same time. After several rounds, 3D NFs 

architectures were gradually built on the surface of the collector (Figure 6). Thus, 

using the coronal charge effect provides a simple and feasible approach to 

develop the 3D nanofibers.  

Figure 5 .   Fabrication of PCL 3D nanofiber scaffolds. (a)  
electrospinning   setup with self - designed needle pierced collector.  
( b) Illustration in cross - sectional view of electrospun fibers built - up  
between the spinneret and needle - collector. (c) Photograph of  
collected fibers deposited along needles and platform during  
electrosp inning.    



 

 

 

 We have confirmed that in comparison to the 2D PCL nanofibers, the 3D 

PCL nanofibers have a looser microstructure and larger pore sizes via scanning 

electron microscopy (Figure 7)(Wei S. 2017). The pore sizes of 2D NFs was in 

the range of 0 -1µm2; and about 80% of pores in 2D NFs was smaller than 0.1 

µm2 (Figure 7c). The 3D NFs had a much looser structure and the pores were 

mainly in the range of 0.1 to 10 µm2 (Figure 7a,c).   

Figure 6 .   Multiple rounds (5,   10  and 20) for building 3D  
nanofibers on  a needle  collector.    
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 In addition, we found these looser structures of the 3D nanofibers 

elevated murine pre-osteoblastic MC3T3-E1 cells infiltration, proliferation and 

differentiation (Figure 8) (Wei S. 2017). The preosteoblast cells infiltrated the 

entire 3D PCL nanofibers, while they only spread on the surface of 2D nanofibers 

(Figure 8 a and b). A significantly higher cellular proliferation was also discovered 

on 3D NFs at 7-day culture than that on the 2D NFs (p<0.01, Figure 8d). The 

looser structure further increased the differentiation level of the cells, which had a 

significantly higher alkaline phosphatase (ALP) concentration on 3D NFs (p<0.01, 

Figure 8e) (Wei S. 2017).  

Figure 7 .   T he cross - sectional 2D (a) and 3D(b) of PCL nanofibers by  
SEM. (c) pore size distribution calculated by Image J (n=3),   p<0.05  
( Wei S.  2017)      



 

 

  

In order to precisely repeat each fabrication, we cooperated with Dr. Wen 

Chen, an assistant professor from the Department of Engineering Technology at 

Wayne State University, and Mr. Christopher Rea who is an experienced 

engineer to develop an automatic controllable 3D NF collector. The collector 

should be able to alter the microstructure of the 3D nanofiber via different moving 

speeds (0-0.232mm/min). We used polycaprolactone (PCL) in this study to 

fabricate the nanofiber. PCL is a biocompatible and biodegradable material, 

Figure 8 .   Hematoxylin - eosin (H&E) staining of 2D (a) and 3D (b)  
nanofibers with MC3T3 - E1 cultured for 7 days.  In the cross section  
images of nanofiber, cells grown on the superficial layer of the 2D  
sample;   while they infiltrated throughout the whole 3D sample.  
MC3T3 - E1 cells proliferation on the 2D and 3 D PCL scaffold were  
measured by DNA quantification (c) and MTT method (d). The cell  
differentiation was tested by ALP quantification (e). (f) Quantification  
of the depth of the cell infilt ration based on H&E images  ( Wei S.  2017)   
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which is approved by Food and Drug Administration in USA for many tissue-

engineering applications. We used SEM, micro-CT, and confocal microscopy, etc. 

to investigate physiochemical characteristics of the NFs formed using this NF 

collector. We hypothesized that the NFs formed by different speeds should be 

accurate and reproducible, and the microstructure changes of NFs (porosity, 

pore size, etc.) should be proportional to the changes of the collector-moving 

speeds.  

Materials and Methods  

Polycaprolactone (PCL, Mw = 70,000−90,000), chloroform, and dimethyl- 

formamide (DMF) were purchased from Sigma-Aldrich (St. Louis, MO).   

Description of a concept-proving prototype of the automatic NF collector  

The design of the prototype of the NF collector was shown in Figure 9.    

 

Figure 9. Illustration of a novel 3D NF collector   

It consists of (1) a high voltage DC supply, (2) a commercial spinneret, (3) 

a syringe pump for material supply, and (4) a novel robotic collector device.  The 

robotic collector has a collector platform pierced by many electro-conductive 

needles. Microcontrollers are used to control stepper motors to drive the collector 



 

 

platform. The microcontroller is a small computer on a single integrated circuit 

that includes a processor core, memory, and programmable input/output.  

Microcontrollers have been widely used in automobile engine control; implantable 

medical device and other embed control systems because of their small size and 

acceptable cost.  In current applications, it is used to change various settings, 

such as moving speeds (0, 0.085, 0.158 and 0.232 mm/min) and direction 

(forward, stand and backward), by programming the assembly language easily.  

More importantly, it is able to accurately control the stepper motor movement by 

using a microcontroller named UNO (Arduino). The UNO sends out impulses with 

microsecond durations, leading to a perfectly controlled performance. In the 

concept-proving prototype NF collector device, there are four microcontrollers 

that controls four stepper motors movement independently (Figure 10). They 

provide forward, stand and backward movements for the platforms. 

Simultaneously, each of the platforms were programmed a defined moving speed 

(0, 0.085, 0.158 and 0.232 mm/min respectively). The rationale for the selected 

range of moving speeds was that the microstructures of NFs formed using these 

settings were similar to the extracellular environment of cells that had been 

tested in our previous experiments. Nine needles arranged in a square shape 

were fixed on each collector for NFs deposition. In Richard Barber 

Interdisciplinary Summer Research Program, Ameer Hussein Ali Al Shawk and 

Dr. Xin Wu from Mechanical Engineering Department of Wayne State University 

designed and produced a new collector platform produces more uniform 

electrical field and allows more even NFs distribution. It contained seven evenly 



 

 

24 

grounded needles (0.18mm diameter) arranged in a hexagonal shape  (Figure 

11).  Thus, with the automatic controller system, this prototype NF collector 

allows an accurate control of the collector platform movement, which might affect 

the microstructure of NFs deposited on the surface during the electrospinning.  

 

  

 

Figure 11. The hexagonal collector with seven electrical conductive needles. (A) 

Designed and drawn by Ameer Al Shawk (Al-Shawk, A,2019).    

Figure 10 .   Prototype of automatic NF  
collector device.  (A) Micro - o ---controller; (B)  
Microstepper, and (C) collector surface   

  



 

 

Environmental controllable cabinet  

The closed cabinet was fabricated by polycarbonate with the dimension of 

42’x30’x24’. This cabinet was equipped with a humidifier, a circulation system (a 

fan), two heaters, a sensor, and an internal control unit.  This closed environment 

cabinet keeps a constant environment at 25°C and 70% humidity during the 

electrospinning process (Figure 12).  

 

Fabrication of electrospun 3D PCL nanofibers  

11% (w/v) PCL was prepared by dissolving PCL into 

chloroform/dimethylformamide (DMF)(1:1,v/v) overnight to homogenize (Song, 

Yu et al. 2013). The PCL solution was uploaded to a 5ml syringe (BD Scientific, 

Franklin Lakes, NJ) and connected to a syringe pump (R100E, Razel Scientific 

Instruments, St. Albans, VT) with a set flow rate Q. The PCL was ejected through 

a blunt 26 G needle tip that was connected to a high voltage supply (ES40P, 

Gamma High Voltage Research Inc., Ormond Beach, FL) with alligator clips. The 

electrospinning process was performed with the following settings: flow rate (Q) = 

1 mL/h, voltage (V)=15 kV, and a needle tip-to-collector plate distance of 10 cm.  

Figure 12 .   T he  electrospun cabinet for environmental control   
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The four collector platforms of the automatic collector were constantly moving 

forward at speed of 0, 0.085, 0.158 and 0.232mm/min, respectively. The PCL 

NFs deposited on the four needle areas quickly.  Six rounds of electrospinning 

were conducted at 10min/round. At the end of each round, the needles were 

manually pushed and pierced the formed matrix. The 2D PCL nanofibers were 

collected on a flat aluminum surface with the aim to compare with the 3D 

nanofibers.   

Scanning electron microscopy (SEM)  

The 3D NFs samples were gold-coated (Gold Sputter EFFA Coater, 

Redding, CA, USA) and the morphology of the NFs was characterized by using 

scanning electron microscopy (SEM) (JSM-6510LV-LGS, MS, USA) at a 25kV 

accelerating voltage.   

Micro-computerized tomography (µ-CT)  

Four types of 3D NFs were scanned with the VivaCT 40 (SCANCO 

Medical AG, Fabrikweg, Brüttisellen, Switzerland) respectively using a voltage of 

45 kVp and a current of 177 µA at10 µm resolution. The morphology of the 

scaffolds was determined using software from the manufacturer to measure 

porosity and pore size distribution.  

3D confocal laser scanning microscopy (CLSM)  

The NFs were scanned and analyzed by a color 3D confocal laser-

scanning microscope (Keyence VK-9700, Itasca, IL) (Wei S. 2017). Each 

measurement forms three types of images: light intensity, color height, and 3D 

images. The pore volume distribution and surface roughness were measured 



 

 

using VK-Analyzer software (Keyence). For pore volume measurements (color 

height image, 400× magnification), about 100 pores at the same height along the 

z-axis were selected and their volumes measured individually in each scaffold (n 

= 3). The pore volume distribution was calculated as the percent of a range of 

pore volumes versus the total pore volume. The surface roughness was 

represented by the arithmetic mean roughness (Ra), which is automatically 

calculated using eq 1 according to JIS B 0601-1994 surface texture parameter:  

 (1)  

Where ι indicates the whole measuring length and x indicates the distance from 

measuring point-to-point 0.  

Atomic force microscopy (AFM)  

The nano-scale mechanical properties of PCL NFs were measured by 

AFM (Bruker). AFM images of the NFs were captured using Contactor Tapping 

Mode in air (Anagnostakos, Furst et al. 2006). The integrated optical microscope 

was used to position the cantilever on the top of the NFs within micrometer 

accuracy. Data was collected by mapping the NFs within a 20×20 µm2 sized grid. 

The cantilever tip deflection was used as a feedback signal to maintain a 

constant force over the scanned area. Young’s modulus was automatic 

calculated by built-in software.  

 Raman spectrometer  

The crystallinity of NFs was measured by Invia Raman Microscope 

(Reinshaw, uk). Spectra were measured at 10% laser power for three 
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accumulations of 10s each over the spectral range 200-1500 cm-1 with spectral 

resolution varying from 0.87 to 1.11 cm-1. 

Macro-tensile testing  

The four types of NFs were cut into 3.8 × 1.3 cm rectangular dumbbell-

shaped tensile testing samples with cross sectional width of 0.9 cm for testing 

region. Sample thickness was measured with an iGAGING caliper (iGAGING, 

San Clemente, CA). Macro-tensile measurements were performed using an 

electromechanical universal tester (Instron, Elancourt, France). All samples were 

mounted between holders at a distance of 1 cm. Tensile testing was conducted 

at a rate of 0.1 mm/s. A photograph of the experimental setup is shown in Figure 

26A.  

Statistical analysis  

Data was analyzed using SPSS Version 12.0 (SPSS Inc., Chicago, IL, 

USA).  All values were presented as mean ± standard deviation. One-way 

analysis of variance (one-way ANOVA) was used to analyze the data of each 

experiment. Statistical significance was p<0.05.  

Results  

The 3D PCL nanofibers were prepared by using the classic 

electrospinning setting, but collected by the automatic collector (Figure 13) Within 

1 hour of fabrication, the thickness of each type of NFs was shown in Table 1 

(n=3). The thickness of the NFs increased by the increased movement of the 

collector. The NF-high has the thickest structure (0.906±0.039mm).  Moreover, 

the thickness of the NFs was increased proportional to the fabrication time. For 



 

 

NF-high, the thickness of the sample with 15 min fabrication was 0.457 

±0.0388mm (Figure 13A); the thickness was enhanced to 0.906±0.039mm after 1 

h fabrication (Figure 13B). The 3D nanofibers have the densest structure in the 

needle tip area and the loosest structure in between two needles. When we 

characterized the samples, we chose the central area between two needles, 

because it has a relatively homogenous structure (Figure 14).  

  NF-zero  (0 

mm/min)  

NF-low  

(0.085mm/min)  

NF-mid  

(0.158mm/min)  

NF-high  

(0.232mm/min)  

Thickness 

(mm)  

0.212±0.011  0.498±0.094  0.778±0.103  0.906±0.039  

Table 1 the thickness of four types of nanofiber after 1 h fabrication  

  

 

  

 

   

Figure  13   3 D PCL nanofiber after 15min (A) and 1 hour (B)  
fabrication   
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The microstructure characterization of 3D PCL NFs--Scanning electron 
microscopy (SEM)  
 

As shown in Figure 15, the density of the NF matrices was influenced by 

the moving-speed of the collectors. The NF-zero exhibited the densest 

microstructure; with increasing the moving speed from 0.085 to 0.232mm/min, 

the NF matrices became fluffier (5000X).  

  

Figure  14   the laser image (A) and height image (B) of the central  
area of the NF - low captured by the CLSM.  The magnification was  
3000 X . 

y g
. (Al-Shawk A,2019) 



 

 

 

The microstructure characterization of 3D PCL NFs--Micro-computerized 
tomography (µ-CT)  
 

The entire area of the NFs were scanned using µ-CT aimed with the aim 

to understand the porosity and pore size (µm2) of the whole matrix (Rampichová 

M 2013, Wei S. 2017). Figure 16 revealed that the majority of the pore sizes of 

the four types of NFs distributed in the range of 50-100 µm2; however, the 

percentage of pores was gradually reduced with increased moving speeds. 

Figure  15.   T he SEM   images of four types of NFs with 2000X  
and 5000X magnifications   
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Notably, in the larger pore size range (>100µm2), the amount of pores in the 

NFhigh was dominant. The percentage of pores in NF-high was 34.4% in >100 

µm2, which was higher than NF-mid and -low (18.9%), and NF-zero (3.5%).  

Similarly, NF-high had the largest porosity, 93%; and the porosity dropped when 

the moving speeds decreased (Figure 17).  

  

 

   

  

Figure 1 6.   T he pore size d istribution of four types of  
nanofibers . Approximately, 100 pore s were measured  
for each sample   by µ - CT .   

Figure  17.   T he porosity of four types of NFs  
calculated by µ - CT (n=3).   



 

 

 The microstructure characterization of 3D PCL NFs--3D confocal laser scanning 
microscopy (CLSM)  

The confocal laser scanning microscopy was used to investigate the 3D 

morphology, pore volume and surface roughness of the NFs. Three types of 

images were captured by CLSM, and they were laser image, height image and 

3D images (Figure 18). The color in the height and 3D images represented the 

location of fibers along the z direction. Thus, the character at the z direction could 

be obtained. The SEM results were further confirmed by CLSM. The NFs 

became less dense when the collector movement increased (Figure 18) (Al-

Shawk A. et al, 2015). The NFs were prepared by nine needles array collector. 

  

Based on the height images (400X), the pores located at the same level of 

the z-axial were picked, and the volume of picked pores was measured by built-in 

             

Figure  18.   T he laser image (A), height images (B) and 3D  
images (C) of four types of NFs (15,000X). In the height and 3D  
images, the same color represented the NFs located at the same  
height along z direction. (Al-Shawk A. et al, 2015)  (A(A  
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software. The pore volume distribution was presented in Figure 19. Generally, 

the pore volume was increased following an increase of moving speed. More 

than 60% of pores in NF-zero had the volume less than 10,000 µm3, whereas 

only 0.1% of pores in NF-high had the volume distributed in this range, and the 

percentages of pores in NF-low and –mid were 18.1% and 4.3%. In order to 

better understand the pore volume distribution, we combined some ranges of the 

pore volume and the data was shown in Figure 20. We found the gradual 

increase of the larger pore volume range (>60,000 µm3) with the increase of 

moving speed provides a favorable microenvironment because larger pores are 

expected to better support the cell infiltration and growth. In this range, NF-high 

had the highest percentage, 51.7%, and the percentage of NF-mid, NF-low and 

NF-zero was 37.7%, 21.7% and 12.4% respectively.   

 

   

Figure  19.   P ore volume distribution of NF - zero, NF - low, NF - 
mid and NF - high (n=3, 100 pores picked from each sample).  
3D scanning data was measured by Ameer Al-Shawk.  



 

 

 

   

  

The total pore volume of scanned NFs was measured by CLSM with 400X 

magnification at the same time. The NF-high had the highest total pore volume 

(Figure 21). The surface roughness was gradually increased by the increase of 

Figure  20.   T he percentages of four types of NFs in the  
range of pore volume <30,000, 30,000 - 60 ,000 and >60,000 µm3 

Figure 21 .   T he total pore volume of the four types  
of NFs measured by CLSM at 400X magnification.  
( n=3, p <0.05). 3D scanning data was measured by  
Ameer Al-Shawk.  
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moving speeds (Figure 22). The surface roughness of the NF-high was 

significantly higher than the NF-zero and NF-low (p<0.05) (Figure22).  

  

Mechanism properties of the 3D NFs –nanoscale mechanism properties (AFM)  

The Young’s modulus of a single nanofiber was measured and calculated 

by contactor tapping mode of the AFM. Figure 23B exhibited the nanofibers 

collected by the moving collector had a higher stiffness than the one formed on 

the non-moving collector, in which the Young’s modulus of NF-mid and NF-high 

were significantly higher than the NF-zero.  

  

Figure   22 . T he surface roughness of NFs (Ra, µm)  g g ( )
measured by CLSM. 3D scanning data was measured 
by Ameer Al-Shawk. 



 

 

 

Mechanism properties of the 3D NFs –macro-scale mechanism properties  

In Figure 24, all samples’ maximum stress was between 0.2-0.3 MPa. It 

was lower than the 2D PCL NFs, which was about 0.85 MPa according to our 

previous work (Wei S. 2017), because 3D samples have a much looser structure.   

  

Mechanism properties of the 3D NFs –crystallinity (Raman spectroscopy)  

We obtained Raman spectra of 3D NFs, which are sensitive to the degree 

of crystallinity (Figure 25). The increased crystallinity of NF-high, NF-mid and NF-

low fibers relative to NF-zero were confirmed by enhanced peak intensities of the 

main PCL bands reflecting crystalline domains: 1100 cm-1 (skeletal stretching) 

  

Figure 2 3.   Nano - scale mechanical properties tested  
by AFM. (A) Contact tapping mode images; (B)  
Young’s modulus (E) of single fiber (n=100)   

  

Figure  24.   M acro - tensile tests of four types of PCL NFs, experiment set - up  
( A), and maximum stress (B )   
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and 1443 cm-1 (δ CH2) (G.Kister 2000, PaolaTaddei 2005). In addition, the 

presence of the board band at 868cm-1, and the absence of 1107 cm-1 narrow 

peak were also associated to the character of the amorphous part of the PCL 

(G.Kister 2000).  

  

Discussion   

In this study  I described a simple and one-step method to fabricate 3D 

nanofiber matrices with desired porous structure by designing a moving  

electrospinning collector mounted with a panel of hexogen needles array.  

Moreover, the collector was allowed to move forward at constant speed via an 

electronic control system. Interestingly, the collector movement altered the 

physiochemical properties of the NFs. Results of SEM, CLSM, and micro-CT 

demonstrated that the porosity and pore size/volume were proportional to the 

Figure 2 5.   Raman spectra of four types of NFs to represent  
the crystallinity of NFs. Red triangle means amorphous  
wavenumber of PCL; Red diamond shape means crystal  
wavenumber of PCL    



 

 

moving speeds. Faster movement produced thicker matrixes, which also proved 

that less dense structure is formed by faster movement. The collector movement 

also changed the mechanical properties via elevating crystallinity of fibers. With 

this novel fabrication, not only it did produce 3D matrixes, but it also controlled 

physiochemical properties of the matrices.   

There are many other methods to produce 3D nanofibers. Ekaputra et al. 

developed PCL NFs employing sacrificial co-fiber (poly ethylene oxide (PEO)), 

which would be leached out eventually. This PCL NFs further combined with 

Heprasil, a hyaluronic acid-derivative hydrogel to form a 3D matrix. They found 

that the 3D matrix especially enhanced human fetal osteoblasts infiltration and 

assisted cell attachment and proliferation (Baker BM 2008). Pham et al. used 

stacking multilayers of PCL microfibers and PCL nanofibers to build a 3D scaffold 

and to increase the pore sizes (Pham, Sharma et al. 2006). Results showed the 

microfiber layer significantly increased the pore size to 20-45 µm, which was 

beneficial to cell infiltration; and the nanofiber layer enhanced cell spreading after 

24h culture (Pham, Sharma et al. 2006). Rampichova et al. modified the texture 

of the collector surface and received PCL meshes with knitted structure, which 

consisted of a less dense and a thick area. The thick area supported enough 

mechanical strength, and the loose area was beneficial to bone marrow derived 

mesenchymal stem cells (MSCs) penetration and proliferation (Rampichová M 

2013). Other methods like yarn (Smit 2005), ice crystals (Teo 2011), and 

photopaterning (Goodman, Yao et al. 2013) are able to fabricate NFs with a 3D 

structure. Compared to these methods, the advantage of our method is its one-
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step and high efficiency fabrication, which allows us to simply control the 

thickness, microstructure, and chemical and mechanical properties of the NFs via 

collector movement. It would not be necessary to remove the pore-forming agent 

like the leach-out method; or to stack meshes together like the layer-by-layer 

method. It is real-time and just a one-step production. In addition, the quality and 

microstructure of formed NFs are guaranteed and reproducible. Firstly, we used 

a closed electrospun cabinet to keep the electrospinning process in an 

environment with a constant humidity and temperature. Secondly, the collector 

movement is precisely controlled. Thirdly, the needle array in the hexogen shape 

kept the same electrical charge at each needle tip (Al-Shawk A, 2019). With this 

technology we could make various types of NFs with different structures based 

on the requirement of the application. The composite NFs seem to be very 

promising for tissue engineering applications.  

Several techniques had been applied to characterize the microstructure of 

our samples. As we know each technology has merits and limits, and we tried to 

combine their advantages and characterized the NFs from different aspects. It 

was necessary to point out that our sample was not homogenous (needle area— 

dense structure), and we only characterized the NFs located at the center area 

between two needles, because this area has a relatively loose and homogenous 

structure, which should be suitable for cell growth.  In comparison, the SEM 

images visually (Figure 15) revealed the NF-high and –mid had a relatively looser 

structure with a larger space between the nanofibers than the NF-low and NF-

zero. Micro-CT scanning further proved the SEM results. The NF-high had the 



 

 

highest porosity (92.8%) that was higher than NF-mid (87%), NF-low (86.8%) 

and NF-zero (85%). We demonstrated that the porosity was increased by the 

increase of the moving speed. Followed by elevating moving speed, the pore 

size was also increased. The pore size distribution of NF-zero, -low, -mid and 

high was 0-100, 0-250, 0-250 and 0-300µm2. Notably, a very little portion of pore 

in NF-high had >300µm2 diameter. This pore size of NFs has not been reported. 

Large pore size is critical to cell infiltration and tissue regeneration, especially for 

blood vessel ingrowth, for example, in bone repair, vascularization happens at 

highly porous area with pore size over 350 µm (Karageorgiou V 2005). The main 

advantages of the micro-CT include that it is a non-destructive method and 

enable to scan and analyze the entire sample (Ho ST 2006, Marelli B 2010, A. 

Cipitria 2011). However, the relatively low resolution (10 µm) limits its application 

on nano-scale materials characterization. The second quantification method we 

used was CLSM. Compare to the SEM and micro-CT, it’s able to obtain the 3D 

characters of the samples and has high resolution (1nm).  Similarly, the NF-high 

had the largest total pore volume, and it was significantly higher than the NF-low 

and –zero. According to the magnification, the measured sample size was about 

147*147*147 µm. Thus, after covering to the porosity, the NF-zero was 60.7%; 

NF-low was 70.8%; the NF-mid was 76.8%; and the NF-high was 93.01%.  It 

showed the same tendency of the porosity measured by micro-CT. Most of 

published literature reported the porosity of PCL NFs was between 60% to 80% 

(A. Cipitria 2011). The higher porosity like NF-high may benefit to cell growth, 

while it may impair mechanical strength at the same time. The pore volume 
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results showed about 80% and 55% of pores in NF-zero and -low had volume 

less than 30,000 µm3 respectively, whereas, the most of pores’ volume in NF-

high were larger than 60,000 µm3. Notably, 25.9% pores of NF-high had volume 

over 100,000 µm3, which should be large enough for cell infiltration. In this range, 

the percentage of pores decreased followed by slower movement. Taken 

together, our results proved that faster collector movement could build less 

dense nanofiber matrices via enlarging the porosity and pore size/ volume. In 

comparison, during the same time, the moving distance of the needle tip 

(collector) with faster movement was longer than the slower moved collector. 

These larger distances elongate the nanofibers and increase the space between 

each fiber, which results in a looser structure. This mechanism also explained the 

results of surface roughness. The NF-high should have higher peaks along the z-

axis than others, corresponding to a rough surface.  

The mechanical properties of scaffold are essential for bone tissue 

engineering, because they should withstand the forces exerted by physiological 

activity and by tissue growth. The nano-scaled mechanical properties of the 

materials relate to the interaction between the materials and cells; the 

macroscaled mechanical properties used to describe the ability of the scaffold to 

bear loading. Results of AFM showed higher Young’s modulus of the single 

nanofiber formed at the moving collector than that of NFs formed without 

movement (NF-zero). The crystallinity of nanofiber relates to its mechanical 

properties (Shing-Chung Wong 2008, A. Cipitria 2011). Higher crystallinity 

enhances the stiffness of fiber (Shing-Chung Wong 2008). During the 



 

 

electrospinning, rapid removing solvent is expected to result in little opportunity 

for crystal nucleation. The process of crystallization finally completed in the 

whipping region of the jet through orientation of the polymer chain (C.T. Lim 2008, 

A. Cipitria 2011). The NFs formed by the moving collector were found to have 

higher crystallinity as well, which explained the results of AFM. The movement of 

collector created a pulling force, which results in the nanofibers of NF-low, mid 

and high was stretched during electrospinning. Crystallization would be 

orientated and enhanced by the stretch (Shing-Chung Wong 2008). Results of 

macro-tensile test showed the maximum stress of four samples was between 

0.2-0.3MPa, and there was no significant difference among the samples. 

Commonly, the looser structure of NFs may impair the tensile strength, because 

fewer fibers entangled. While the maximum stress of the NF-high was not much 

lower than others. We thought its higher crystallinity might help to enhance the 

tensile strength. Overall, the tensile strength of the NFs was lower than sponge 

bone as reported within 0.92-5.38 MPa (Røhl L 1991). Thus, further study on the 

biomineralization of the 3D NFs is necessary.  

Conclusion  

A novel 3D NF fabrication technology has been developed based on 

coronal charge effect. The automatic 3D NF collector and the environment 

control cabinet further precisely control the process of electrospinning. The 

technique ensures the accuracy and reproducibility of NFs. Moreover, we can 

control the thickness, physiochemical and mechanical properties of the 3D NFs 

by simply through changing the collector movement, and discover the pore size 
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and porosity of the NFs are proportional to the moving speed. Interestingly, the 

collector movement also increased the crystallinity, which enhanced the stiffness 

of the fiber. We are continuing develop and update a second-generation collector. 

It should be more convenient to operate. Users are allowed to set different 

moving speeds, moving directions and patterns via a control board or a mobile 

application. In order to comprehensive describe the NFs; we still need to 

character the dense area (around needle tip) of the NFs.  

The nanofiber is one of the promising materials to mimic the nano-fibrous 

structure of the ECM. A porous and 3D structure scaffold is predominantly 

required in tissue engineering. Our composited 3D NFs with a controllable 

microstructure could mimic different ECMs and be applied to the various areas of 

tissue engineering. As a bone implant coating material, in the next chapter we 

would investigate its biological properties by in vitro cell culture and defined the 

optimal NF microstructure that can be used for cell adhesion, proliferation and 

differentiation.      



 

 

CHAPTER 3 THE BIOLOGICAL PROPERTIES OF BONE CELLS CULTURED 
ON THE 3D NANOFIBERS  

Introduction  

Tissue engineering develops different biocompatible scaffolds with the aim 

to mimic the ECM of native tissues and assist tissue regeneration. The 

microstructure of a scaffold, such as pore sizes, porosity and interconnectivity 

plays essential role in guiding cell ingrowth (Chen L 2016).  Many types of cells 

are involved in bone healing including macrophages, fibroblasts, osteoblasts, 

mesenchymal stem cells (MSCs) and vascular endothelial cells. These cells have 

different requirements of the favorable extracellular environment for their growth 

and differentiation. For example, osteogenesis occurs at a highly porous area 

with large pore sizes (>350µm) in vivo (Karageorgiou and Kaplan 2005); whereas 

fibroblasts have been demonstrated to prefer an area with the pore sizes of 6-20 

µm (Lowery, Datta et al. 2010). In a separate study, we developed a calcium 

polyphosphate scaffold with gradient pore sizes (Chen L 2016). We found that 

MC3T3-E1 (pre-osteoblasts) had much higher growth rate and differentiation 

level in the zone with the larger pore sizes (>250 µm) than the zones with smaller 

pore sizes (<250 µm) (Chen L 2016). In this continuing study, we will determine 

the most favorable extracellular microenvironment for the growth and 

differentiation of different bone cells. More specifically, we investigated the 

cellular behaviors of the different types of cells when they grown on the 3D NF 

matrices with different and well-defined microstructures. This study is important 

and essential because a better understanding of the various cell responses 

grown on the 3D NFs in vitro is critical for the further application of the 3D NFs as 
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a new implant surface coating to enhance implant stability by enhancing new 

bone formation.    

We have chosen three cell lines for this study.  (1) Murine pre-osteoblast 

MC3T3 cells (bone forming cells), murine pre-osteoclast RAW 264.7 cell (bone 

dissolving cells) and rat adipose tissue-derived stem cells (ASC). We had 

established MC3T3-E1 and RAW cell line models (Song, Yu et al. 2013, Chen L 

2016), and believed cells should be very sensitive to their living environments. 

Since we discovered the different properties of the four types of 3D NFs in 

Chapter 2, we could investigate how the cells chose their preferential 

environments. We cultured the three types of cells on the four types of PCL NFs 

NF-zero, NF-low, NF-mid and NF-high, respectively. The cell behaviors of 

adhesion, proliferation, distribution and differentiation were investigated.  An 

optimized 3D NF would be defined as a coating material for a further drug 

loading investigation (Chapter 4) with an aim to enhance osseointegration. We 

hypothesized that a favorable cellular response should be expected when cells 

were cultured on the 3D PCL NFs with less density and large pore sizes. We 

proposed that cells were very sensitive to the changes of the NF microstructures 

(pore sizes, pore shapes, porosities and topologies) and that the requirements of 

NF microstructures should be different among different cell lines.   

Materials and Methods  

Alpha-modified Minimum Essential Medium, trypsin, fetal bovine serum,  

penn/strep, Dulbecco’s phosphate-buffered saline (DPBS buffer), and DiI 

celllabel solution were purchased from Invitrogen (Grand Island, NY). 



 

 

Collagenase II and CelLytic MT cell lysis reagent were purchased from Sigma-

Aldrich (St. Louis, MO). Murine MC3T3-E1 pre-osteoblast cell line and murine 

pre-osteoclast RAW 264.7 cells culture was purchased from American Type 

Culture Collection (ATCC, Manassas, VA). Quant-iT Pico- Green dsDNA Assay 

Kit was purchased from Thermo Fisher Scientific (Waltham, MA). Alkaline 

Phosphatase Activity Colorimetric Assay Kit was purchased from BioVision 

(Milpitas, CA).  

Cell culture  

Murine pre-osteoblast MC3T3 cells culture: MC3T3 cells (ATCC) were 

cultured in complete α-modified minimum essential medium (α-MEM) medium 

including α-MEM, 10% fetal bovine serum and 1% penn/strep at 37°C with 5% 

CO2.  

Murine pre-osteoclast RAW 264.7 cells culture:  RAW cells (ATCC) were 

cultured in DMEM medium containing 10% fetal bovine serum and 1% 

penn/strep at 37°C with 5% CO2.  

Rat adipose tissue-derived stem cells (ASCs) isolation and culture: ASCs 

were isolated from the belly adipose tissue of adult female Sprague-Dawley rats 

following Dr. Main Lam’s instruction, and the technique was also described 

elsewhere (Veronesi F 2014). Briefly, adipose tissues were washed by serial 

solutions of Betadyne followed by PBS, and then chopped into small tubes and 

digested by 150ug/ml collagenase II in agitation for 1 h at 37°C.  The enzymatic 

reaction was stopped by the addition of DMEM (high glucose) with 10% FBS 
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added. The nucleated cells were plated into 75-cm2 tissue culture flasks and 

cultured in complete DMEM medium for expansion.  

NFs preparation and sterilization   

The NF-zero, -low, -mid and –high was produced by method introduced in 

chapter 2. Each sample (size: 1x1 cm) was sterilized by UV light for 4h (2h for 

each side). The sterilized samples were placed in 40mm petri dish pre-filled with 

cell culture medium overnight prior to cell seeding.  

Cellular proliferation  

The MC3T3 cell, RAW and ASCs suspension with cell density of 8X105 

cells/ml were respectively and manually pipetted on the top of each NF sample  

(four types of samples) with 10µl per droplet. Each scaffold was loaded with 

100µl cell suspension. The cellular proliferation was measured by DNA 

quantification through Qaunt-iT Pico-green DNA kit after 3 days and 7 days 

culture. Briefly, the cells grown on the NFs were lysed by mixing with 200 µl 

CelLytic MT cell lysis reagent overnight at 4 °C. 50 µl cell lysate was mixed with 

50 µl PicoGrenn dsDNA reagent and then added into 96 well plates. The 

fluorescence values were measured by microplate reader at 528 nm after 

excitation with 485 nm light. The DNA concentration was converted from an OD 

value on the basis of standard curve.  

Cellular distribution  

To better understand the cell interaction with the NFs, the NFs and cells 

were labeled by fluorescent dyes and observed under confocal laser scanning 

microscopy. 5ml PCL solution was labeled by adding 20 µl green fluoresce 



 

 

Calcein, and then the fluorescent labeled PCL solution was used to prepare 3D 

PCL NFs. Three types of cells were cultured on these NFs respectively. After 3 

days culture, the NFs was firstly washed by PBS three times. The cells were 

labeled by Dil cell-labeling solution at 37 °C for 15 min. Dil is a lipophilic 

membrane stain, which can stain the entire cell. The NFs were then washed by 

PBS three times and soaked in PBS for observation. The fluorescent images 

were obtained by Leico TCS SP II confocal laser-scanning microscopy (Buffalo 

Grove, IL) under 10X objective. 3D reconstruction was performed used Volovity 

(PerkinElmer, Waltham, MA) via stacking images along z direction to reveal the 

cell migration.  

Cellular differentiation  

Murine pre-osteoblast MC3T3 cells differentiation:  After cell seeding, 

MC3T3 cells were cultured in osteogenic media containing 10 mM β-

glycerophosphate and 50 µg/ml L-ascorbic acids for 14 days. The cell 

differentiation levels were measured by alkaline phosphatase (ALP) assay (Song, 

Markel et al. 2012). Briefly, the cells were lysed overnight. The ALP activity in the 

cell lysates was measured utilizing the conversion of a colorless p-nitrophenyl 

phosphate to a colored p-nitrophenil. Microplate reader was used to measure the 

color changes at 405nm. The AKP activity levels were normalized and converted 

from optical density (OD) value to protein concentration based on the standard 

curve.  

Murine pre-osteoclast RAW 264.7 cells differentiation: The RAW cells 

were cultured in the presence of receptor activator of nuclear factor kappa B 
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ligand (RANKL, 30 ng/ml) for 14 days. The formation of osteoclast and 

osteoclast-like cells were evaluated using the Tartrate-Resistant Acid 

Phosphatase (TRAP) assay, and the presence of TRAP+ cells were represented 

as the percentage of total cells, as we described elsewhere (Ren, Li et al. 2004).  

Data analysis  

All the variables were summarized and expressed as mean ± SD. The 

statistical significance of results was determined by ANOVA for differences 

among multiple groups. p<0.05 was considered the statistically significance.  

Results  

Cell proliferation  

The number of cells cultured on NFs was measured by a PicoGreen assay. 

For MC3T3 cells, the cell number on NF-zero, NF-low, NF-mid and NF-high was 

slightly increased on day 3 (Figure 26). On day 7 the highest cell amount was 

found on NF-high; and the lowest cell amount was found on NF-zero and that 

number was significantly lower than other groups (p<0.05) (Figure 26). The cell 

number on NF-low, -mid and –high rapidly increased 10 to 15 folds between 3 

and 7 days, and the increase was significant (p<0.05)  (Figure 26).   



 

 

  

For RAW cell, on third day the cell number slightly decreased followed by 

the increase of moving speeds, and the highest cell amount was found on NF-

zero (Figure 27). On day 7 the cell number on NF-mid was the highest (Figure 

27). The cell number of ASC was gradually increased from NF-zero to NF-high, 

in which the NF-high had the highest cell amount (Figure 28). The amount of cell 

on the NF-zero was significantly lower than other groups (p<0.05).  

Figure  26.   MC3T3 - E1 cells proliferation on NF - zero, - low, - mid, and  - high   
for 3     and 7days culture,  analyzed via DNA quantification ( p<0.05 ). 
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Cell distribution   

Three days after cell seeding, the NFs were stained by a green fluorescein 

Calcein and the cells were labeled by a red fluorescein DiI. The confocal laser-

scanning microscopy was used to visualize the cell locations inside of the NFs. 

As shown in Figure 29, all three types of cells were trapped in the superficial 

layer of the NF-zero at the z-direction; In contrast, the RAW cells on the NF-high 

Figure  27.   RAW cells proliferation on NF - zero, - low, - mid,  and  - 
high  for 3 and 7days  culture, analyzed via DNA quantification  
( p<0.05)    

Figure  28.   ASC cell proliferation NF - zero, - 
low, - mid,  and - high for 3 culture, analyzed via  
DNA quantification, p<0.05.   



 

 

migrated much deeper with a depth of 621.8 µm. The migration of ASC and 

MC3T3 was not as obvious as the RAW cells did; however the distinctly more 

amount of cells were observed on NF-high than on the NF-zero.   

  

Cell differentiation  

The differentiation level of the MC3T3 was represented by the expression 

level of AKP, an osteoblasts marker. The AKP concentration was normalized by 

Figure  29.   RAW cells, MC3T3 - E1 and ASC cells  gg ,
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total protein concentration. Results indicated that the NF-high had highest 

expression level of AKP, and it was significantly higher than the expression level 

on the NF-mid and NF-zero (Figure 30).  

   

The RAW cells were cultured in the presence of the receptor activator of 

nuclear factor kappa B ligand (RANKL, 30ng/ml) for 14 days. The formation of 

osteoclasts and osteoclast-like cells was evaluated using the Tartrate Resistant 

Acid Phosphatase (TRAP) Assay.  Cells on the NFs-high showed highest 

differentiated level (Figure 31).  

Figure 3 0.   MC3T3 - E1cell differentiations  on NF - zero, - low, - 
mid, and  - high  measured by  AKP   assay, p<0.05.   
  



 

 

 

Discussions  

Bone cell microenvironment is composed of factors directly surrounding 

the cells.  These factors including biochemical signals, geometry, microstructures 

and mechanical stimuli decide the fate of cells. It have been reported that a minor 

modification of the sintering temperature of a CaP ceramic has a consequence 

on its microstructure (Barthes J 2014), crystal sizes (Glawe JD 2005), and 

mechanical strength (Glawe JD 2005). The changes of these parameters in turn 

enhanced the osteoconductive properties of the scaffold and expressed by 

elevating the cell expressions of alkaline phosphatases and osteocalcins (Crouch 

AS 2009). Thus, the extracellular microenvironment is essential, and it should be 

the ideal model for the design of a bone substitute.  

The microstructure of a bone scaffold including pore sizes, porosity, 

interconnectivity, and surface areas plays an important role on the effect to the 

cell behavior. Generally, the high portion of well-connected macro-pores can 

allow sufficient culture medium with enough nutrients and oxygen to pass 

Figure 3 1.   RAW cell differentiations on   NF - zero, - low, - mid,  
and  - high   analyzed by TRAP assay,   p<0.05   
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throughout of the scaffold (Barthes J 2014); whereas the micro-pores areas of 

the scaffold have high mechanical strength and slow degradation rate (Barthes J 

2014). We produced the four types of NFs with different microstructures that 

have significant impacts on the cell growth. The cellular proliferation results of the 

MC3T3 and ASC indicated that the both cell lines grown faster on the NF-high, 

and the cell number on the NF-high was significantly higher than the number on 

the NF-zero (7 day culture, p<0.05). According to the data of chapter 2, we 

understood that the NF-high had the highest porosity (93%), and about 85% 

pores of the NFs were larger than 30,000 µm3. Probably due to its looser 

structure, it allowed sufficient nutrients and oxygen to transport to the cells. The 

cell amount gradually decreased when cultured on a denser structure (NF-low 

and NF-zero) because less nutrients and oxygen were available at this area. 

These results are in the good agreement with our previous work regarding to the 

comparison of cell growth between 3D NFs and 2D NFs (Wei S. 2017). The 3D 

NFs had the pore sizes mainly distributed in the 0.1-10 µm2, while the primarily 

pores of the 2D NFs were much smaller  (<0.1 µm2). The infiltration and 

proliferation of the MT3T3 cells were increased due to the loose pore structure of 

the 3D NFs (Wei S. 2017). Badami AS et al. and Schofer MD et al. reported that 

an ideal electrospun NFs should have nano-scale fibers with macro-scale pores 

between 10 to 500 µm, and this porous structure permitted the growth of human 

mesenchymal stem cells (hMSCs) and their differentiation to osteoblasts 

(Badami AS 2006, Schofer MD 2008, Blakeney BA 2011). Other research groups 

like M. Rampichova et al. concluded their 3D PCL NFs with larger pore size 



 

 

areas (average 10 µm2) than 2D NFs (5 µm2) significantly increased 

mesenchymal stem cells migration and proliferation (Rampichová M 2013).  For 

RAW cells, we surprised found the looser structure of the NFs didn’t obviously 

help its proliferation. The cell number on the NF-low and –mid even slightly 

higher than the number on the NF-high (7 day culture).  The reason for this might 

due to the smaller size of the RAW, it made cells difficult to bridge the large 

pores in the NF-high and that impacted cell growth rate (Holtorf, Datta et al. 2005, 

Gomes, Holtorf et al. 2006, Mygind, Stiehler et al. 2007, Thorvaldsson, 

Stenhamre et al. 2008).   

The less dense structure of the NFs assisted cell infiltration and 

differentiation as well. The confocal laser-scan image of RAW cells showed the 

cells were able to penetrate much deeper on the NF-high (621.8 µm), while they 

only spread on the superficial layer of the NF-zero. This phenomenon also 

explained the significantly higher growth rate (cell amount on 7day/ cell amount 

on 3 day) of MCT3T cells.  The growth rate of MC3T3 on NF-high was about 6 

times higher than on the NF-zero, because NF-high allowed cell migrated into 

deeper area when the surface area was fully occupied. More space in the NF 

matrices allowed the constantly proliferation of the cells. The AKP is an early 

osteoblast differentiation biomarker (Andrea Di Luca 2016). It showed that the 

AKP level on the NF-high was significantly higher than its on the NF-mid and the 

NF-zero (p<0.05).  Our results have been supported by several previous 

publications. Andrea Di Luca et al. stated that the AKP activity of the hMSCs 

increased with the increase of scaffold pore sizes (Andrea Di Luca 2016). Using 
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gradient calcium polyphosphate scaffolds, we found that a much higher 

osteoblastic cell differentiation and mineralization can only be found on the area 

with larger pore sizes (> 250 µm), as manifested by AKP assay and position 

emission tomography scan (PET scan) (Chen L 2016).  However, the similar 

changes cannot be observed in the RAW cells. The cell differentiation of RAW 

cells was not enhanced by the increase of the NF pore sizes. We propose that 

RAW cells are relatively small and need a relatively dense NF microstructure for 

the growth and differentiation. In addition, as compared to the MC3T3 

preosteoblasts, the RAW cells have much stronger migration capacity that will 

help RAW cells to transform to osteoclasts during cell differentiation. The detail 

mechanism behind these differences is worthy further investigation.    

The surface roughness of the ECM is another important factor that affects 

cell behavior.  The average roughness of the native bone tissue is 32nm (Erica 

Palin 2005). The surface roughness of our samples was between 1 to 5 µm, in 

which the NF-high has the highest roughness  (>4 µm), and the roughness 

decreased gradually with a slower collector movement (Figure 22). The surface 

roughness is closely related to cell attachment and differentiation.  It had been 

reported that the presence of micron and submicron surface roughness on the 

scaffold enabled to robust bone differentiation (Mendonça G 2010, Gittens, 

McLachlan et al. 2011, Gittens RA 2011). One study examined osteoblasts 

differentiation on various titanium nanonodules with   the diameters of 100, 300, 

and 500nm. They found the best differentiation of osteoblast was on the 

nanonodule with 500nm diameter (Ogawa, Saruwatari et al. 2008). These 



 

 

findings are in agreement with our results, which the highest ALP level was found 

on NF-high.   

As bone is a highly mineralized tissue with high stiffness, in order to better 

mimic the ECM of bone, biomechanical modification of the scaffold is necessary. 

In addition, bone cells are very sensitive to the stiffness of the ECM; for example, 

the maintenance of the osteoblasts phenotypes needs a ECM with a relatively 

high stiffness, while the chondrocytes would dedifferentiate where they grow at a 

rigid area (Weber, Bjerke et al. 2011). NFs is a relatively soft scaffold compared 

to other CaP ceramic bone substitutes, thus the fiber mineralization is important 

for the enhancement of the fiber stiffness. H.S. Yu et al. added hydroxyapatite 

into a PCL nanofiber surface, which showed the improvement of osteoblasts 

adhesion and growth than non-mineralized NFs (Jang, Castano et al. 2009, Yu, 

Jang et al. 2009). The single NF stiffness of the NF-low, -mid and –high was 

increased significantly by the higher crystallinity than the NF-zero (p<0.05). We 

propose that the better cell proliferation and differentiation on these samples than 

they on the NF-zero that might due to their relatively higher NF stiffness.  The 

increased NF stiffness enhanced the cell response, such as adhesion (Wei S. 

2017), growth (Yu, Jang et al. 2009) and differentiation (Rosenzweig, 

SolarCafaggi et al. 2012).  .   

In order to better mimic the bone ECM matrices and enhance cell growth 

and differentiation, we plan to develop the 3D NF scaffold to a local drug delivery 

tool by embedding bioactive agents/drugs in polymer solutions before 

electrospinning. The candidates of biomolecules can be glycosylation (Zhang 



 

 

60 

and Ten Hagen 2011) and fibronectin (stimulating cell adhesion and proliferation), 

bone morphogenetic protein 2 (BMP-2) (stimulating MSCs differentiation to 

osteogenic linage and calcification (Li, Vepari et al. 2006), and antibiotics 

(prevent and treat local bone infection) (Song, Yu et al. 2013, Song, Seta et al. 

2017). Moreover, mechanical stimuli could be induced by dynamic cell culture via 

bioreactor system to mimic the movement of physiological fluid.  

In conclusion, the microenvironment of the NFs affected cell behavior. 

Larger pore sizes and porosity, increased surface roughness and stiffness assist 

cell infiltration, growth and differentiation. In the next chapter, we would embed 

Strontium Chloride (SrCl2) into a coaxial 3D NF with the aim to enhance 

osseointegration. In that study, we would select the NF-high formula to fabricate 

a Sr2+ doped coaxial 3D NF because the pre-osteoblasts have best proliferation 

and differentiation on the NF-high.   



 

 

CHAPTER 4 DEVELOPMENT OF SR2+-DOPED PCL/PLGA-PVA COAXIAL 
NFS FOR OSSEOINTEGRATION ENHANCEMENT 

Introduction  

The lack of early osseointegration is one of the major reasons of 

orthopedic implant failures (Song, Seta et al. 2017). Every year in the Unite State 

about 600,000 fractures have delayed union and 100,000 fractures are nonunion 

(Bishop, Palanca et al. 2012, Goodman, Yao et al. 2013). Some joint prosthetics 

cannot integrate to the surrounding bone (Aro, Alm et al. 2012). Many researches 

have confirmed that defective rapid osseointegration causes implant instability, 

micromotion, osteolysis and loosening (Song, Seta et al. 2017). Ryd et al. 

reported that implant instability and micromotion in both hips and knees might 

result in implants failure (Ryd 1992). These facts stimulate scientists to develop 

and modify the implant surface because the physiochemical and biological 

properties highly impact the quality and quantity of implant early osseointegration 

(de Jonge, Leeuwenburgh et al. 2008).   

Many implant surface coatings have been developed. One of the earliest 

used coatings is hydroxyapatite (HA) coating for titanium (Ti) implants. It was 

used to enhance bone ingrowth; however, recent clinical studies found there is 

no significant difference of long-term clinical outcomes between HA coated hip 

replacement and cementless hip replacement (Song, Seta et al. 2017). It may be 

caused by the brittle nature of HA coating, poor adhesion strength and 

uncontrollable drug release. Other coatings techniques like layer-by-layer (LBL), 

hydrogel coating and immobilization have limitations such as lack of controllable 

drug release, expensive, and mechanical instability (Goodman, Yao et al. 2013). 
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Therefore, more research efforts are needed to develop a ‘bone-like’ implant 

surface at nanoscale to enhance osseointegration.  

Electrospun nanofibers (NFs) are one of promising substitutes to mimic 

the nano-fibrous collagen network of the bone extracellular environment. The 

advantages of nanofibers include its high surface area and high mass to volume 

ratio, which could activate cell responses such as cell adhesion and proliferation 

(Ifkovits, Sundararaghavan et al. 2009). Both Wang X. et al. and Huang Z et al. 

demonstrated that the physiochemical properties of the NFs can be used to 

create an osteogenic environment without use of exogenous factors, because it 

assisted osteoblasts attachment, proliferation and differentiation in vitro (Huang, 

Daniels et al. 2008, Kohgo, Yamada et al. 2011, Wang, Gittens et al. 2012). The 

electrospun NFs can also be used as a controllable drug release system via 

forming a coaxial core-sheath structure (Gluck, Rahgozar et al. 2011). The 

coaxial electrospinning is a process where a concentric spinneret can 

accommodate two different polymer solutions (Gluck, Rahgozar et al. 2011). 

During the electrospinning the coaxial 

setup allows for the injection of one 

solution into another at the tip of 

customized spinneret (Figure 33). The 

sheath solution acts as a guide and 

surrounds the core solution. The sheath 

structure represents a physical barrier to 

reduce the initial burst release and 

Figure  32.   Spinneret for  
coaxial electrospinning     
  



 

 

protects the drugs in the core fiber.  We have developed a coaxial electrospun 

polycaprolactone/polyvinyl alcohol (PCL/PVA) NFs. The PCL was chosen 

because of its ideal biocompatibility, slow degradation rate and good mechanical 

properties (Lee and Goodman 2008, Pulido, Ghanem et al. 2008). The PVA had 

good fiber formation property, which was used as the core material for drug 

reservoir. Doxycycline (Dox), a tetracycline class antibiotic, was loaded. The 

results showed the Dox was released from the coaxial PCL/PVA NFs constantly 

and sustainably for more than 4 weeks (Song, Seta et al. 2017). The slow 

degraded PCL reduced the doxy diffusion from PVA (core materials. Thus, the 

controllable drug release from coaxial NFs is achieved by concentration gradient 

and the degradation rate of the barrier (Szentivanyi, Chakradeo et al. 2011). We 

also observed that these coaxial NFs significantly enhanced the attachment and 

proliferation of murine pre-osteoblasts MC3T3-E1 cells (Song, Yu et al. 2013).  

Next we tried to coat the  titanium (Ti) implant with the optimized coaxial 

PCL/PVA NFs. The Dox doped coaxial PCL/PVA NFs were directly deposited on 

the Ti implant surface during electrospinning with the aim to improve 

osseointegration. The bone-implant surface (%) in the NFs coated titanium 

implant groups was significantly higher (p<0.05) than the non-coating groups 

after implantation 2, 4 and 8 weeks in a Staphylococcus aureus infected tibia 

implantation rat model (Song, Seta et al. 2017). In addition, the Dox loaded NFs 

inhibited bacterial growth up to 8 weeks in vivo (Song, Seta et al. 2017). These 

two studies showed the great potential of NFs in the enhancement of implant 

osseointegration, and established techniques of coaxial electrospinning and drug 
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release testing methods for further study. However, the coaxial NFs we used did 

not have the 3D structure. In the previous chapters, we have shown the benefit of 

3D NFs with larger porosity and pore size to the pre-osteoblasts cell growth. 3D 

NFs should behave better for early osseointegration than the 2D NFs. Another 

shortage is the relatively slower degradation rate of PCL both in vitro and in vivo 

(6 month or longer) (Fu, Meng et al. 2014).  A match of NF coating degradation 

rate with the physiology of osseointegration (~1 month) is critical (Lu, Peter et al. 

2000).  

In this study, we would develop a coaxial polycaprolactone (PCL)/ poly 

(lactide-co-glycolide) (PLGA) sheath-polyvinyl alcohol (PVA) core nanofibers matrix. 

PLGA is a FDA-approved co-polymer of poly lactic acid (PLA) and poly glycolic 

acid (PGA) with long clinical experience (Dawes, Fratila-Apachitei et al. 2010). In 

the past two decades the PLGA has been used as a vehicle for sustained drug 

delivery. A controllable drug release by PLGA is coupled with its degradation rate 

(Makadia and Siegel 2011). The rate of PLGA degradation could be controlled by 

manipulating the composition and ratio of the co-polymers. For example, PLGA 

with 50:50 PLA: PGA ratio exhibits the fastest degradation (about one month). In 

order to match the physiological osseointegration rate (~1month), we selected 

the PLGA with 50:50 PLA: PGA in this study (Abdal-hay, Hwang et al. 2012, Xiao, 

Liu et al. 2014). To better control the degradation rate of sheath solution, we 

mixed PCL with PLGA with the ratio of 4:1, 1:1 and 1:4 (v/v), and proposed that 

the incorporation of faster degrading PLGA could speed up the degradation rate 

of the sheath fiber. Another benefit of PLGA is its stronger binding to the Ti 



 

 

surface than that of PCL. One reason for this is that PLGA has a much higher 

ratio of oxygen atoms in its molecular structure than does PCL, which provides 

for more electrostatic interactions of the Ti surface with coated NF matrices 

(Makadia and Siegel 2011). We proposed to identify an optimal formula to 

fabricate coaxial NFs from these three ratios based on the morphology, in vitro 

degradation rate (weight change), and albumin release study. Based on that, we 

would produce 3D coaxial NFs by automatic 3D NFs collector. The fastest 

collector movement was selected based on the data generated in Chapter 3.  

Strontium (Sr2+) is a minor element and can be found in our body and daily 

diet. Approximately, 99% of Sr2+ ions deposit in bone. Like calcium ion, the Sr2+ 

ion has the similar cellular transport pathway, which has strong affinity for the 

incorporation in the bone matrix during mineralization (Nielsen 2004, Meka, Jain 

et al. 2016). Sr2+ enhances bone strength through the inhibition of osteoclasts 

and activation of osteoblasts (Marie 2003, Barbara, Delannoy et al. 2004, Yang, 

Yang et al. 2011, Schumacher, Lode et al. 2013). The molecular mechanism of 

Sr2+ action is in part due to the activation of calcium-sensing receptors (CaSRs) 

(Schumacher, Lode et al. 2013). Data from a clinical trial of osteoporosis patients 

under the administration of 2g/day strontium ranelate concluded a significant 

increase of bone mineral density (Reginster, Seeman et al. 2005, Meunier, Roux 

et al. 2009). However, several long-term side effects have been reported in 

patients who have taken high dose of strontium containing drugs (Nielsen 2004, 

Lee, Lie et al. 2009). Local delivery of Sr2+ ion is an alternative method for the 

supplement of Sr2+ ions in the body. Many researchers have reported the 
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benefits of applying strontium doped biomaterials, including calcium phosphate 

(Kim, Koh et al. 2004, Zhang, Shen et al. 2011), nanofibers, and bio-glass (Kim, 

Koh et al. 2004). In this study, we planned to develop Sr2+ doped coaxial 

PCL/PLGA-PVA NFs as the implant coating material to enhance 

osseointegration. Studies regarding the role(s) of Strontium in implant 

osseointegration are limited and still at the experimental stage (Karrholm, 

Borssen et al. 1994, Makadia and Siegel 2011). Park et al. found that Sr2+-

embedded titanium (Ti) implants significantly enhanced implant osseointegration 

in a rabbit tibia implantation model (more bone apposition on the implant surface 

and higher bone-to-implant contact percentages), as compared with the control 

Ti implants. In addition, Strontium enhances angiogenesis by stimulating the 

proliferation of endothelial cells (Kurtz, Ong et al. 2010) and increasing the 

production of vascular endothelial growth factor (VEGF) (Bozic, Kurtz et al. 2009). 

These findings are important because angiogenesis at the implant/bone interface 

plays a key role in the early osseointegration.  

In this study, we developed Sr2+ doped coaxial 3D PCL/PLGA-PVA NFs. 

The physiochemical properties of formed coaxial 3D PCL/PLGA-PVA NFs have 

been extensively tested, including in vitro drug release profiles and mechanical 

properties.  In addition, the biological behaviors of MC3T3 pre-osteoblasts were 

carefully evaluated by both indirect and direct contact methods.  Data generated 

from these experiments provided essential information for the further in vivo 

testing of Sr2+-doped coaxial NFs as Ti implant coating using a rat tibia 

implantation model.  



 

 

Materials and Methods  

Polycaprolactone (PCL, Mw = 70,000−90,000), PVA (mw ~205,000), Poly 

(D,L – lactide-co-glycolide) (PLGA, Mw=54,000-69,000), chloroform, and 

dimethyl- formamide (DMF) were purchased from Sigma-Aldrich (St. Louis, MO). 

Alphamodified Minimum Essential Medium, trypsin, fetal bovine serum, 

penn/strep and Dulbecco’s phosphate-buffered saline (DPBS buffer) were 

purchased from Invitrogen (Grand Island, NY). CelLytic MT cell lysis reagent was 

purchased from Sigma-Aldrich (St. Louis, MO). Murine MC3T3-E1 pre-osteoblast 

cell line and murine pre-osteoclast RAW 264.7 cells culture was purchased from 

American Type Culture Collection (ATCC, Manassas, VA). Quant-iT Pico- Green 

dsDNA Assay Kit was purchased from Thermo Fisher Scientific (Waltham, MA). 

Cytotoxicity Detection Kit (LDH) and Alkaline Phosphatase Activity Colorimetric 

Assay Kit were purchased from BioVision (Milpitas, CA).  

Fabricate and define optimal formula of coaxial 3D PCL/PLGA-PVA NFs  

11% (w/v) PCL and 15% (w/v) PLGA was prepared by dissolving PCL and 

PLGA respectively into chloroform/dimethylformamide (DMF)(1:1,v/v) overnight 

to homogenize (Song, Yu et al. 2013). 15% (w/v) PVA was prepared by 

dissolving PVA into distill water. In order to adjust the degradation rate of the 

sheath solution, the PCL/PLGA mixer was prepared by the ratio of 4:1, 1:1 and 

1:4 (v/v). Coaxial electrospinning was achieved by using custom made coaxial 

nozzle composing of a hollow t-junction with fully penetrating 19-gauge core 

needle.  PCL/PLGA mixer (sheath) and PVA (core) were uploaded to the 5 ml 

syringes. The syringes were attached to the syringe pumps set at flow rate (Q) of 
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1ml/h for PCL/PLGA and 0.48ml/h for PVA. 20 KV voltages were applied to the 

nozzle. The distant between nozzle and collector was 10 cm. The three types of 

coaxial NFs, PCL/PLGA (4:1)-PVA NFs, PCL/PLGA (1:1)-PVA NFs, and 

PCL/PLGA (1:4)-PVA NFs, were collected by automatic 3D NF collector at the 

moving speed of 0.232mm/min. Six rounds of electrospinning were conducted at 

10min/round. The optimal formula of coaxial NFs would be decided by 

transmission electron microscopy (TEM), in vivo degradation and albumin 

release study.  

Transmission electron microscopy (TEM): 

The Coaxial PCL/PLGA (4:1)-PVA NFs, PCL/PLGA (1:1)-PVA NFs, and 

PCL/PLGA (1:4)-PVA NFs were directly deposited onto Cu-grids covered with 

ultrathin carbon layers and observed under a TEM (jeol-2010 FasTEM, USA) at 

accelerating voltage of 200 kV to characterize its coaxial structure.  

In vitro degradation:   

The degradation rate of NFs was presented by weight change. 0.1 g (Wo) 

three types of coaxial NFs were entirely soaked in ultrapure water at 37°C 

respectively. The NFs were air dried after 1 week, 1 month and 3 month and 

measured the dry weight (Wi). The percentage of weight remain was calculated 

by equation (2):  

              Weigh remain (%)= (Wo-Wi)/Wo *100%   (2)  

Albumin release study:   

Albumin-FITC were incorporated into both sheath and core solution at the 

final concentration of 0.11mg/ml and 0.35mg/ml respectively. Three types of 



 

 

coaxial NFs were soaked into ultrapure water (0.1g/ml). The eluent was totally 

collected and replaced at time points of 1, 2, 4, 6 hour, 1, 2, 5 days, 1, 2, 3, and 

4weeks. The fluorescence intensity of collected eluent at each time point was 

measured by UV/VIS Spectrophotometer (BioTek Synergy HT, USA) with 

excitation/emission wavelength of 485/528nm. The albumin release curve was 

created by time versus albumin release percentage.  

Fabricate coaxial 3D Sr2+ doped PCL/PLGA (1:1)-PVA coaxial 3D NFs  

Strontium chloride was loaded into both sheath and core solutions with the 

10mmol/ml final concentration. The Sr2+ dose selected is based on previous 

reports of both in vitro and in vivo animal studies (de Jonge, Leeuwenburgh et al. 

2008). The optimal formula of PCL/PLGA was 1:1 (v:v). The Sr2+ doped coaxial 

NFs were fabricated as described previous.  

Transmission electron microscopy (TEM)  

The TEM was used to observe the coaxial structure of formed the NFs. 

The Sr2+ doped coaxial PCL/PLGA-PVA nanofibers were directly deposited on 

onto Cu-grids covered with ultrathin carbon layers and observed at accelerating 

voltage of 200 kV. Dispersive X-Ray spectrometry (EDAX) was used to analyze 

the chemical composition in area of sample surface of interest.  

3D confocal laser scanning microscopy (CLSM)  

Samples were scanned by a color 3D confocal laser-scanning microscope 

(Keyence VK-9700, Itasca, IL) [3D]. The pore volume distribution and total pore 

volume were measured using VK-Analyzer software (Keyence). For pore volume 

measurements (color height image, 400× magnification), about 100 pores at the 
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same height along the z-axis were selected and their volumes measured 

individually in each scaffold (n = 3). The pore volume distribution was calculated 

as the percent of a range of pore volumes versus the total pore volume.  

Macro-tensile testing  

NF scaffolds were cut into 3.8 × 1.3 cm rectangular dumbbell-shaped 

tensile testing samples with cross sectional width of 0.9 cm for testing region. 

Sample thickness was measured with an iGAGING caliper (iGAGING, San 

Clemente, CA). Macro-tensile measurements were performed using an 

electromechanical universal tester (Instron, Elancourt, France). All samples were 

mounted between holders at a distance of 1 cm. Tensile testing was conducted 

at a rate of 0.1 mm/s.  

Strontium (Sr 2+) in vitro release study  

The strontium doped coaxial NF was immersed in ultrapure water (0.1g/ml) 

at 37 °C. The eluent was totally collected and replaced with the same amount of 

water at time points, 1, 2, 4, 6 hour, 1, 2, 5 days, 1, 2, 3, 4, 5, 6, 7, and 8 weeks. 

We measured Sr2+ concentration using an inductively coupled plasma optical 

emission spectrometry system (ICP-OES, Thermo Fisher Scientific, Waltham, 

USA). The samples were diluted in 13.5ml distill water and 0.5ml HNO3 for 

analysis. The concentration was determined from standard curve prepared by 

salt solution of known concentration.  

Scanning electron microscopy (SEM)  

The 3D coaxial NFs after Sr2+ release were gold-coated (Gold Sputter 

EFFA Coater, Redding, CA, USA) and the morphology of the NFs was 



 

 

characterized by scanning electron microscopy (SEM) (JSM-6510LV-LGS, MS, 

USA) at a 25kV accelerating voltage.   

Cellular study—indirect contact  

According to the strontium release curve, the eluent collected at 4 hours, 1, 

2, 3 and 4 weeks time points were selected for cell study. The eluent treated 

preosteoblasts cell would be test for toxicity, proliferation and differentiation. We 

would use the similar approach for cell culture and test described in Chapter 3.   

Proliferation:   

The MC3T3-E1 cells were seeded into 24 well plates with the amount of 

1.5x105/well. After cell attached, 50µl eluent at different time point was added 

into each well respectively. Cell culture medium was collected for toxicity test and 

refreshed every 3 days, at the same time, 50µl eluent at different time points 

were added as well. The cellular proliferation was measured by DNA 

quantification through Qaunt-iT Pico-green DNA kit after 3 days and 7 days 

culture. Briefly, the cells grown on the NFs were lysed by mixing with 200 µl 

CelLytic MT cell lysis reagent overnight at 4 °C. 50 µl cell lysate was mixed with 

50 µl PicoGrenn dsDNA reagent and then added into 96 well plates. The 

fluorescence values were measured by microplate reader at 528 nm after 

excitation with 485 nm light. The DNA concentration was converted from an OD 

value on the basis of standard curve.  

Toxicity:   

LDH reagent was mixed by dye solution and catalyst (45:1,v:v), and then 

100 µl reagent was added into 96 well plated followed by adding 50µl collected 
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medium at different time points. Microplate reader was used to measure the color 

changes at 450nm.  

Differentiation:   

After cell seeding, MC3T3 cells were cultured in osteogenic media 

containing 10 mM β-glycerophosphate and 50 µg/ml L-ascorbic acids for 14 days. 

The cell culture medium and different time points eluents were replaced every 3 

days. The cell differentiation levels were measured by alkaline phosphatase (ALP) 

assay(Song, Markel et al. 2012). Briefly, the cells were lysed overnight. The ALP 

activity in the cell lysates was measured utilizing the conversion of a colorless p-

nitrophenyl phosphate to a colored p-nitrophenil. Microplate reader was used to 

measure the color changes at 405nm. The AKP activity levels were normalized 

and converted from optical density (OD) value to protein concentration based on 

the standard curve.  

Cellular study—direct contact  

The MC3T3-E1 cells were directly seeded on the Sr2+ doped coaxial NFs 

and coaxial NFs with the amount of 8X104 cells/scaffold. The cells were cultured 

and tested (proliferation, toxicity and differentiation) by the same methods 

described above.  

Results  

Define the optimal formula of coaxial 3D PCL/PLGA-PVA NFs  

Three types of coaxial NFs with different sheath ratios, PCL/PLGA (4:1), 

PCL/PLGA (1:1), and PCL/PLGA (1:4), were successfully produced. They all 

formed clear coaxial structures (Figure 33).   



 

 

 

The PLGA did accelerate the degradation rate of PCL. As shown in Figure 

34, at 3 month, the remained weight of coaxial NFs was conversely proportional 

to the amount of PLGA. About 60%, 40% and 10% NFs remained for PCL/PLGA 

(4:1), PCL/PLGA (1:1), and PCL/PLGA (1:4). At the same time, the PCL 

decreased the degradation rate of PLGA, which used to degrade within one 

month. There was no obvious difference of cumulative albumin release curve 

between three types of coaxial NFs, and all of them were able to sustain release 

the albumin over a month (Figure 35).   

Figure   3 3.   TEM images show the coaxial structure of 3 types of NFs. (A)  
PCL/PLGA(4:1) 

g
sheath - PVA AAcore ; (B) PCL/PLGA(1:1) sheath - PVA AAcore ; (C)  

PCL/PLGA(1:4) sheath - PVA 
;

AAcore     



 

 

74 

 

  

  

According to these three studies, we chose PCL/PLGA (1:1) as the 

optimal sheath ratio, because it had clear sheath-core structure and enabled to 

release albumin over a month. A sufficient osseointegration resulting in "the 

formation of a direct interface between an implant and bone without intervening 

soft tissue” is critical for the early implant stability (~ 1 month)(Lu, Peter et al. 

Figure 3 4.   The remained weight of three  
coaxia l PCL/PLGA AA- PVA NFs after 1 week,  
1 month and 3 month degradation in vivo  (n=3).   

Figure 3 5.   T he cumulative albumin one - month release curve  
(n=3)   



 

 

2000).  The degradation rate may be slower than the osseointegration rate in 

physiological condition, but we believed the NFs with slightly slower degradation 

rate could keep a constant local microstructure and mechanical strength, which 

were still important for cell growth.  

The physiochemical properties of coaxial 3D Sr2+ doped PCL/PLGA (1:1)-PVA 
NFs  
 

The coaxial 3D Sr2+ doped PCL/PLGA (1:1)-PVA NFs had clear sheath 

and core structure (Figure 36). The ratio of diameter sheath to core was about 

4:1. The hydrophilic SrCl2 could not mix evenly with the hydrophobic PCL/PLGA 

solution. As the result, several Sr2+ clusters can be found in the sheath of NFs, 

as manifested by the EDAX measurement.    

  

Figure  36.   The TEM image showed the clear core/sheath  
structure of Sr r2+   doped coaxial PCL/PLGA (1:1) - PVA  
nanofibers. EDAX was analyzed several Sr 

(
r2+   clusters on  

the sheath   
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We further compared the microstructure and tensile strength of coaxial 3D 

PCL/PLGA (1:1)-PVA NFs with and without Sr. The fibrous and 3D structure of 

coaxial NFs (Figure 38 A and B) and Sr2+ doped coaxial NFs (Figure 37 C and D) 

were observed by LSCM. Based on the height images (400x), VK-Analyzer 

software was used to measure the total pore volume and the individual pore 

volume of each sample. The total pore volume of the Sr2+ doped coaxial NFs was 

significantly higher than the NFs without Sr2+ (p<0.05) (Figure 38).   

Figure  37.   Laser intensity images of coaxial PCL/PLGA  
(1:1) - PVA NFs (A) and Sr 

y
r
y

2+   doped coaxial PCL/PLGA (1:1) - 
PVA NFs (C). 3D images of coaxial PCL/PLGA AA  (1:1) - PVA  
NFs (B) and Sr rr2+   doped coaxial PCL/PLGA (1:1) - PVA NFs  
( D) by LSCM at 400x magnification. Images scanned by ( ) y
Ameer Al-Shawk  



 

 

 

For pore volume distribution (Figure 39), in the range of <100,000 µm3, the 

pore amount percentage of coaxial NFs was higher than the NFs with Sr2+; 

whereas in the range of >100,000 µm3, the pore volume amount of coaxial NFs 

with Sr2+ (54%) was much higher than the other one (18%).  Combined these 

data together, the coaxial NFs with Sr2+ had looser structure than the NFs 

without Sr2+. The looser structure of Sr2+ doped coaxial NF directly decreased its 

ultimate tensile stress (~0.1 N/mm2), which was significantly lower than the 

ultimate tensile stress of the coaxial NFs without Sr2+ (~0.6 N/mm2) (p<0.05) 

(Figure 40).  

Figure 3 8.   The total pore volume of Sr r2+   doped  
coaxial PCL/PLGA (1:1) - PVA NF was significant  
( p<0.05) higher than coaxial NFs  (n=3). 3D scanning  
data measured by Ameer Al-Shawk  
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Strontium (Sr2+) release study  

Figure  39.   Pore volume distribution of Sr r2+   doped  
coaxial PCL/PLGA (1:1) - PVA NFs and coaxial  
PCL/PLGA (1:1) - 

( )
PVA NFs. 3D scanning data measured 

By Ameer Al-Shawk  

Figure 4 0.   The ultimate tensile stress of coaxial  
PCL/PLGA (1:1) - PVA NFs was significant (p<0.05)  
higher than the Sr r2+   doped coaxial PCL/PLGA (1:1) - 
PVA NFs, n=3.   



 

 

ICP-OES results confirmed that Sr2+ ions were released from coaxial NFs 

when incubated in an aqueous environment. Figure 41 presented a cumulative 

Sr2+ ions release curve. Initial burst release was still found within 6h incubation, 

in which the maximum Sr2+ ions release was 32.25 ppm at 4 hour (Figure 41).   

  

Thereafter, a steady Sr2+ ions release was observed at following time 

points. Overall, the Sr2+ ions were released constantly over 2 month. The Sr2+ 

ions concentration measured at last time point (2 month) still had 11.01 ppm.  

The SEM images of the Sr2+ doped coaxial NFs before (Figure 42 A and D) and 

after (Figure 42B and E) degradation revealed different morphology. After 

degradation, the fibers were bundled together (Figure 42 B), and clear gaps were 

found on the sheath for Sr2+ ions leak out (Figure 42 D, red box). The images of 

degraded coaxial NFs without strontium were showed in Figure 42 C and D. No 

Figure  41.   The cumulative Sr r2+ release curve in 2 month, n=3.   
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gaps were founded in these NFs, and the inner fiber was exposed after sheath 

degradation (Figure 42D).  

  

In vitro cellular study—indirect contact  

The MC3T3-E1 cells were firstly treated by five eluents based on the 

release curve (Table 2).   

Name  Eluent-1  Eluent-2  Eluent-3  Eluent-4  Eluent-5  

Collected time  4 hour  1 week  2 week  3 week  4 week  

Concentration 

(µg/ml)  

32.25  11.01  9.53  8.75  6.28  

  

Figure  42.   SEM images of Sr r2+ doped coaxial PCL/PLGA (1:1) - PVA NFs  
before degradation (A and D), and after two - month degradation (B and E). The  
gap formed after Sr 

(
r2+   cluster release (red box in E). No gaps found in  

degraded pure coaxial PCL/PLGA (1:1) - PVA NFs (C and F).   



 

 

Table 2 List of five eluents for cell treatment 

 Negative control groups were the cells treated by the eluent of pure coaxial NFs 

(without Sr2+) collected by corresponding time points. The NFs with or without 

Sr2+ were non-toxic to the cells, as demonstrated by undetectable LDH activity in 

the culture medium at different time points (Data not shown). We found that the 

DNA concentrations in cells cultured on NFs with Sr2+ were lower than that in 

cells cultured on NFs without Sr2+ (control), especially for the cells treated by 

eluent-2 and eluent-4 (p<0.05) (Figure 43 A). However, on 7 days in culture, the 

DNA concentrations of Sr2+ ions treated groups were increased. Except eluent-5 

group, the Sr2+ ions treated cells’ amounts were higher than negative control 

groups (Figure 43B).   

  

Figure 4 3.   3  day (A) and 7 day (B) normalized DNA percentage (%) of  
MC3T3 - E1treated by eluents collected after degradation of coaxia l  
PCL/PLGA (1:1) - PVA NFs and Sr r2+ doped coaxial PCL/PLGA (1:1) - PVA  
NFs at 4 hour, 1, 2, 3, and 4 weeks respectively (n=3) (p<0.05). The DNA  
concentration of each group divides that of control group (without eluent  
treatment) to normalize data. Control group   was 100%.   
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AKP enzyme activity was found to vary under the influence of difference 

Sr2+ concentration (Figure 44). Overall, the higher AKP concentration was found 

in the groups treated by Sr2+ ions contained eluent. It meant Sr2+ ions stimulated 

cell differentiation. In eluent-1 and -2 treatment group, the cell differentiation level 

of Sr2+doped NFs group was significantly higher than the control (100%) and 

negative control groups respectively (p<0.05) (Figure 44).  

 

In vitro cellular study—direct contact  

In this study, the MC3T3-E1 cells were directly cultured on the NFs. The 

negative control group was the pure coaxial NFs, and the control groups means 

cell directly grown on culture well plate. Overall, the cell number of control groups 

was higher than other groups on 3 days (Figure 45A); whereas on 7day, the cell 

Figure  44.   N ormalized AKP percentage of MC3T3 - E1  
treated by eluents collected  at different time points  
after degradation of coaxial PCL/PLGA (1:1) - PVA NFs  
and Sr 

g
r

g
r2+ doped coaxial PCL/PLGA (1:1) - PVA NFs  

( n=3) (p<0.05). Control group was 100%.   
  



 

 

amount in three groups was similar (Figure 45B). At day 3, the cell amount on 

Sr2+ doped NFs was significantly higher than the cell amount on NFs without Sr2+. 

Like the in direct contact study, the Sr2+ enhanced the cell differentiation. The 

highest AKP enzyme concentration was found in Sr2+ doped NFs  (p<0.05) 

(Figure 46).   

  

Figure  45.   3 day (A) and 7 day (B) DNA concentration (ng/ml) of MC3T 3 - E1  
grown on culture plate  ( control), coaxial PCL/PLGA  (1:1) - PVA NFs and  
Sr r2+ doped coaxial PCL/PLGA (1:1) - PVA NFs respectively, n=3, p<0.05.   
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Discussions  

Strontium ions can enhance osteogenesis by stimulating differentiation 

and function of osteoblast-like cells (Schumacher, Lode et al. 2013, Meka, Jain et 

al. 2016). Locally delivery of Sr2+ ions from bone substitutes for tissue 

regeneration is considered a promising approach since it could help to avoid the 

side effect of high dose treatment (Schumacher, Lode et al. 2013).  In this study, 

the influence of Sr2+ ions doped coaxial 3D PCL/PLGA-PVA NFs on proliferation 

and differentiation of MC3T3-E1 cells was investigated in three steps. The in vitro 

Sr2+ ions release study; the cellular response to the Sr2+ ions contained eluents 

and cellular response in direct contact with the NFs were studied separately.  

Firstly, we developed controllable Sr2+ release nanofibers. To accelerate 

the degradation rate of our previous developed coaxial PCL-PVA NFs being used 

Figure  46.   Normalized AKP concentration (nmol/  
µg/ml) of MC3T3 - E1 grown on culture plate (control),  
coaxial PCL/PLGA (1:1) - PVA NFs and Sr r2+ doped  
coaxial PCL/PLGA (1:1) - PVA NFs respectively, n=3,  
p<0.05.   



 

 

for Ti implant coating(Song, Seta et al. 2017), we added PLGA to the sheath 

solution (PCL) and developed coaxial 3D PCL/PLGA-PVA NFs that is expected 

to better match the osseointegration period (~ one month). The degradation rate 

of NFs is closely related to drug release kinetics (Song, Yu et al. 2013).  For 

these NFs, we can adjust either the poly lactic acid (PLA) poly glycolic acid (PGA) 

ratio of PLGA or the ratio of PCL to PLGA to achieve ideal degradation rate. The 

degradation of PLGA is simply hydrolysis of the ester bonds in to lactic and 

glycolic acid (Lu, Peter et al. 2000). The higher content of hydrophilic glycolic 

acid units facilitates the absorption and diffusion of water, which results in the 

faster degradation (Crouch AS 2009). The degradation rate of PLGA (50:50) is 

about one month, which matches the osseointegration time in vivo. For this 

reason, the PLGA (50:50) was chosen for this study. We further defined the 

optimal ratio of PCL to PLGA.  The PLGA with shorter degradation period should 

increase the degradation rate of PCL and PLGA mixture; at the same time, the 

PCL could decrease the period of PLGA degradation. The weight of three coaxial 

NFs with different PCL/PLGA ratio remained relatively constant within one month 

of degradation in water, followed by a dramatic change at 3 month (Figure 34). 

The remained NFs were conversely proportional to the amount of PLGA. About 

60%, 40% and 10% NFs remained for PCL/PLGA (4:1), PCL/PLGA (1:1), and 

PCL/PLGA (1:4) at 3 month.  Since PCL needs much longer time to degradation, 

we believed the main weight lost of the coaxial NFs was caused by PLGA 

degradation.  Lichu Lu et al. found that the weight of PLGA (50:50) porous foams 

with 90% porosity were dropped 40% after 10 weeks incubation in PBS, and 
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before 8 weeks the weight change was slightly (Renwen Zhang 2004). Their 

findings of the PLGA degradation kinetics were similar to our results. We finally 

selected PCL/PLGA (1:1) mixture as the sheath solution, because this formula 

enables to create clear sheath/core structure. Although its degradation rate in 

vitro was slower than osseointegration in vivo, the degradation rate in vivo should 

be increased by autocatalytic effect that will be further evaluated in a planned in 

vivo animal model testing.  

SrCl2 as Sr2+ source was added into both sheath and core materials. The 

driving force of Sr2+ release out of the NFs is gradient concentration. In diffusion 

across a barrier (sheath), the driving concentration gradient is between the 

reservoir (core) and the release environment, which are separated by a barrier 

(sheath). The barrier with slower degradation rate should inhibit burst release of 

drug and prolong the release period. However, the burst release was still 

founded in Sr2+ release curve, where Sr2+ concentration was about 11, 21 and 32 

µg/ml (ppm) at 1, 2 and 4-hour time points (Figure 41). The concentration 

dramatically decreased at 6-hour time point (6.9 µg/ml), and then the 

concentration fluctuated between 6 to 11 µg/ml by following time points. In the 

TEM image (Figure 36), many Sr2+ clusters were observed in the sheath. As long 

as the NFs incubated in water, the Sr2+ from the cluster diffused first, which left 

many gaps in the sheath (Figure 43 E). The Sr2+ from the core fiber would 

release out of the sheath via these gaps. Thus, incomplete sheath structure 

resulted in the burst release of Sr2+.  In addition, compare to the coaxial NFs 

without Sr2+, the Sr2+ doped NFs had looser structure with higher total pore 



 

 

volume (Figure 38) and larger pore volume (Figure 39) because of much lower 

fiber formation efficiency of Sr2+ doped NFs. The larger pore and porosity 

enhanced contact surface between water and NFs(Lu, Peter et al. 2000). It also 

accelerated Sr2+ release. Although the burst release was observed in our 

developed NF system, the merit of these NFs was constantly released Sr2+ over 

2 months. We believe this character should satisfy our requirements.  

Indirect cell culture was performed first to evaluate the impacts of culture 

medium eluents collected at defined time points (containing different 

concentration of released strontium and other degraded products) on pre-

osteoblastic MC3T3-E1 cells.  Five types of eluents collected at 4 hour, 1, 2, 3 

and 4 weeks after NF incubation was chose (Table 2). Their Sr2+ concentration 

was 32.25, 11.01, 9.53  8.75, and 6.28 µg/ml respectively. The final 

concentration for cell treatment was diluted 10 times by adding 10% (v/v) of 

eluent into cell medium, which means the concentrations were 3.225, 1.101, 

0.953, 0.875 and 0.628 µg/ml corresponding to each time point.  Sr2+ can trigger 

mitogenic signal for promoting cell proliferation and survival by act as an agonist 

for the calcium-sensing receptor (CaSR)(Pi and Quarles 2004, Caverzasio 2008, 

Brennan, Rybchyn et al. 2009). It had been reported that the Sr2+ concentration 

between 0.5-5mM  (44-440 µg/ml) is required for the enhancement of osteoblast-

like cells activity in vitro (Morohashi, Sano et al. 1994, Lopez-Hallman 2013). The 

Sr2+ concentrations we used were much lower than this range. Generally, on 3 

day, the cells were not sensitive to the various concentration of Sr2+ (Figure 43A); 

on day 7, the cell amount on Sr2+ positive group was increased (Figure 43B), 
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especially in eluent-1 group, the cell amount increased more than 2-folder on day 

7 comparing to day 3 under the treatment of 3.225 µg/ml Sr 2+ (Figure 43). M. 

Schumacher et al. studied the impact of Sr2+ concentration of up to 10mM on 

human bone marrow derived meschnchymal stem cells (hMSCs) by adding 

different amount of SrCl2 (Schumacher, Lode et al. 2013). They concluded that 

constantly adding Sr2+ over 14 days with the concentration between 0.01 to 0.1 

mM (0.8-8.8 µg/ml) benefited cell proliferation (Meka, Jain et al. 2016).  They 

also found the amount of hMSCs did not obviously increased by higher 

concentration of strontium under shortly exposure (1-7 days) of strontium 

(Gittens, McLachlan et al. 2011). This findings could explain the slightly cell 

number change on 3 day. Another research also summarized this conclusion 

(Gittens, McLachlan et al. 2011). The amount of hMSCs on PCL nanofiber did 

not increase by treating more strontium on 1 and 7 days; at day 14, significant 

higher cell amount was observed on PCL/SrC20 (240 ppm) than on PCL/SrC10 

(120 ppm) (Meka, Jain et al. 2016). Thus, a continuous exposure (over 7 days) to 

certain amount of strontium is important for osteoblast-like cell proliferation in 

vitro. Another interesting finding from Figure 43 was the amounts of cells on NF 

and NF with Sr2+ was lower than the control groups (100%).  We thought ions of 

medium might be slightly alternated followed by NFs degradation. It was not toxic 

to cell, but might affect its growth. The effect of Sr2+ on osteogenic differentiation 

was evaluated by AKP assay (Figure 45). The AKP enzyme activity was vary 

under the influence of different Sr2+ concentration. In eluent-1, eluent-2 and 

eluent-3 groups, the AKP enzyme activities of strontium positive group was 



 

 

higher than both control (100%) and negative control group, in which a maximum 

was found in eluent-1 group (Figure 44). Lower strontium concentration 

treatments were found slightly stimulating effect on pre-osteoblasts cell 

differentiation. Our results were in agreement with several related researches. M. 

Schumacher et al. found the optimal strontium concentration on hMSCs 

osteogenic differentiation was 0.1mM(Schumacher, Lode et al. 2013); Braux et al. 

found a maximum osteogenic marker expression on primary human osteoblast 

cells under 0.05mM (4 µg/ml) Sr2+ treatments (Braux, Velard et al. 2011). 

However, other studies found osteoblast-like cells could be differentiated better if 

treated by higher Sr2+ concentration, such as 2mM (Barbara, Delannoy et al. 

2004, Yang, Yang et al. 2011) and 1mM (Barbara, Delannoy et al. 2004). Overall, 

the differentiation of osteoblast cells is sensitive to the concentration of Sr2+. The 

optimal Sr2+ concentration is vary to different cell and to different release 

materials.   

The last step of this study was cellular response in direct contact with NFs. 

It is different from the indirect contact study by culturing cells in the presence of 

culture medium eluent.  By culturing cells directly on the NF matrix, the cell 

response was affected by both the NFs microstructure and the chemical 

components of NFs. In addition, the Sr2+ released from NFs was accumulated 

until the replacement of cell medium.  On 3 days, the cell amount on Sr2+ doped 

NFs was significantly higher than the amount on NFs (p<0.05) (Figure 45A); on 7 

day, the cell amount on Sr2+ doped NFs was still higher and close to control, but 

was not significant (Figure 45B). Based on Sr2+ release curve, the accumulated 
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Sr2+ concentration within 3 days (~80 µg/ml) should be much higher than 3 to 7 

days (~10 µg/ml).  The higher strontium concentration (within positive influence 

range) could better stimulate cell proliferation. In 7day culture group (Figure 45B), 

the strontium concentration for cell treatment was not constant, especially in the 

second period (3-7 day after changing medium) the strontium concentration was 

not high enough to keep high proliferation. Moreover, the looser structure of Sr2+ 

doped NFs could help the cell proliferation as well  (Chapter 2). Combined these 

factors may explain the results of Figure 46. Like the in direct contact study, the 

cell amount on NFs groups was lower than the control group on 3 day. As 

mentioned above, the degradation products as well as pH change might reduce 

the cell proliferation. In addition, limited by method of Picogreen assay probably 

cell lysate was incomplete on NFs groups, and some DNAs were still trapped 

inside the nanofiber matrixes. This also resulted in lower DNA concentration 

tested on NF groups.  The cell proliferation on Sr2+ doped NFs was significantly 

higher than other groups. We believed positive effect of Sr2+ and looser structure 

of the NFs assisted the cell differentiation.   

In conclusion, the coaxial 3D Sr2+ doped PCL/PLGA (1:1)-PVA NFs could 

sustain release strontium over 2 months. The released strontium had positive 

effect on pre-osteoblast cell differentiation. For proliferation, the stimulating effect 

may be more obvious with higher and longer strontium concentration treatment. 

In future, the system should be adjusted to reach a strontium release with longer 

time and higher concentration, especially in the later period. To realize this, on 

one hand we could increase the strontium amount in NFs; on the other hand, we 



 

 

could choose different types of strontium source to remain a complete sheath 

structure during the initial period of degradation, such as SrCO3 nanoparticles 

(Meka, Jain et al. 2016). Further studies, such as application NFs on Ti implant, 

in vivo test of toxicity, cell adhesion; proliferation and differentiation of the 

strontium doped NFs and investigation of the osseointegration capability of the 

coaxial NFs coated Ti implant via previous established rat tibia impact model are 

necessary to evaluate these nanofibers.      
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CHAPTER 5 CONCLUSION AND FUTURE WORKS  

Nanofiber (NF) is a promising material for orthopedic implant coating to 

enhance osseointegration as it mimics the nanofibrous collagen network of bone 

cell extracellular environment. Recently we reported that Ti implant fabricated 

with Dox doped coaxial PCL/PVA NFs coating significantly enhanced the new 

bone formation at the bone-implant surface and considerably inhibited the 

bacterial growth up to 8 weeks after implantation using a rat tibia implantation 

model. We believe that the implant with a NF coating has a great potential for the 

enhancement of implant early osseointegration.   We propose that a coaxial NFs 

can be used a periprosthetic delivery tool of different drugs. However, the 

limitations of previous implant NF coating matrix include the lack of desired 3D 

structure, and the slower degradation rate that did not match to the 

osseointegration physiology in vivo (~one month). In the thesis, we aimed to 

develop 3D coaxial NFs as implant coating to further improve the efficiency of 

early osseointegration. We have developed and defined an optimal formula of 

coaxial PCL-PLGA/PVA NFs with desired microstructure (pore size, pore volume 

and interconnectivity) and physiochemical properties (surface rough ness, 

mechanical strength, and faster in vitro degradation rate).  In addition the in vitro 

osteogenic cell behavior (adhesion, proliferation and differentiation) has been 

extensively investigated using a pre-osteoblastic MC3T3 cell line.    

Firstly, as described in Chapter 2, we have developed an automatic 3D 

nanofibers collector. Based on the coronal charge effect and multi-stacking 

principle, the 3D PCL NFs were formed during electrospinning process. In 



 

 

addition, we were able to alter the properties of 3D NFs through collector 

movement. The PCL NFs thickness, surface roughness, pore size/volume and 

porosity were proportional and gradient increased due to the increase of the 

collector movement velocity. We observed that the stiffness of single nanofibers 

was increased due to the increased rate of the collector movement because a 

higher crystallinity rate is formed during electrospinng. This technique overcame 

the drawback of electrospinning, which used to fabricate dense and flat 

membrane, and broaden the application of electrospun NFs for the tissue 

engineering application.   

Secondly, we chose three types of cells related to bone formation, 

including pre-osteoblast cell (MC3T3-E1), pre-osteoclast cells (RAW) and stem 

cells (ASCs). We were interested in the cells behaviors on four types of NFs with 

different physiochemical properties. We further defined the optimal moving speed 

for coaxial NFs fabrication based on cellular study. The cells were very sensitive 

to the different living environments. The MC3T3-E1 and ASCs performed 

significantly higher proliferation on NF-high than other NFs (p<0.05); and the 

MC3T3-E1 differentiated level was also higher on NF-high because looser 

structure and higher material stiffness helped cell attachment and nutrition 

exchange. However, the RAW cells prefer the growth on the NFs with relatively 

dense structure (smaller pore size and porosity).  We propose that the RAW cells 

have much smaller size volume as compared to RAW cells and ASCs. Therefore, 

RAW cells lack enough contacts with surrounding NFs matrix if they were grown 

on a NF matrix with larger space and pore sizes.  We selected 3D NF matrix with 
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the large pore size and porosity (NFs-high) as the optimal formula for implant 

coating matrix based on the following considerations:  

• The pre-osteoblasts, bone-forming cells, performed the best proliferation 

and differentiation on the NFs with larger pores (NFs-high).  

• The stem cells (present in the bone marrow) are the main cells that will 

interact with implant surface coatings. We observed that stem cells 

showed the highest activity when cultured on the NFs with larger pores 

(NFs-high).  

• However, the pre-osteoclasts (RAW cells) are less inactive when cultured 

on the NFs with larger pores (NFs-high) than that in denser NFs matrix.  

Taken together, we propose this new implant surface 3D NF coating matrix will 

provide an extracellular environment that will stimulate bone forming cells 

growing in while slowing down the activities of pre-osteoclasts.   

Thirdly, in the last chapter, we imported PLGA to the PCL/PVA coaxial 

system to accelerate degradation rate; and developed strontium doped coaxial 

3D PCL/PLGA (1:1)-PVA nanofibers. The coaxial NFs enabled to control 

strontium release time. The Sr2+ was released from coaxial NFs over 2 month 

and the concentration was relatively constant. The released Sr2+ especially at 

higher concentrations had positive effects on the proliferation and differentiation 

of MC3T3-E1 by using indirect contact study approach. In the direct contact 

study, the strontium doped coaxial 3D NFs benefited MC3T3-E1 differentiation 

because of Sr2+ effect and the looser NF structure.   



 

 

We believe these coaxial NFs had great potential as the implant coating. It 

has ideal microstructure and good mechanical properties for pre-osteoblasts and 

stem cells growth; meantime it is not desired for pre-osteoclasts proliferation and 

differentiation. Additionally, it is a controllable drug release system. It 

successfully released Sr2+ over 2 month with relatively constant concentration. 

Thus it should be promising release system for peptides, proteins, and antibiotics 

release. In the next step, we will develop a rotating device that provides a real 

time of 3D NF coating during electrospinning process. The 3D NFs will directly 

deposit on the titanium (Ti) pins without disturbing its microstructures. The direct 

deposit also increases bonding strength of NFs and underline Ti surface.  We will 

test the cellular behaviors of other cells such as bone marrow stromal stem cells 

and endothelia cells that are closely involved in the process of implant 

osseointegration. Finally, the therapeutic efficacies of implant surface 3D NF 

coating (with and without drug embedding) will be evaluated in our established 

rat model of tibia implantation.    
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DIMENSIONAL (3D) NANOFIBER COLLECTER AND IT’S APPLICATION TO 

ORTHOPEDIC IMPLANT COATINGS 
 

by 

LIANG CHEN  

December 2017   

Advisor: Dr. Weiping Ren  

Major: Biomedical Engineering  
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 Orthopedic implants might not directly unite with bones especially in 

compromised patients even if they have been appropriately fixed. The lack of 

early osseointegration would lead to the failure of the orthopedic implant. A 

“bone-like” implant surface is urgently needed to accelerate osseointegration. 

Electrospun nanofiber (NF) is a promising implant coating due to its highly 

porous nanoscale structure. It mimics the collagen I nanofibrous network of bone 

tissue; meanwhile it has been widely used as a drug delivery device. However, 

its compact and dense structure is not ideal for cell growth. Our strategy was to 

develop a functional three-dimensional (3D) NF implant coating to enhance 

osseointegration. Firstly, based on a coronal discharge effect 3D 

polycaprolactone (PCL) NF-zero, -low, -mid, and –high were fabricated by a self-

developed automatic 3D NF collector with different collector movement speeds. 

Simply, the properties of the 3D PCL NFs were altered by the different speeds of 

the collector movement. The thickness, pore sizes/volumes, porosity and surface 
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roughness of NFs were proportional to the moving speeds; and the fiber stiffness 

was increased by a faster movement due to higher fiber crystallinity. Cells should 

be very sensitive to the changes of living environments. With the aim to 

investigate how cells choose their preferred environments and to define the 

optimal NFs for drug release, we cultured pre-osteoblast MC3T3-E1 cells, pre-

osteoclast RAW cells and rat adipose derive stem cells (ASCs) on the four types 

of NFs and studied the proliferation, distribution and differentiation of these cells. 

The looser structure, higher surface roughness and stiffness of the NF-high 

enhanced the proliferation and distribution of preosteoblasts and ASCs. 

Additionally, they had a positive effect on the differentiation of pre-osteoblast 

cells. Interestingly, the RAW cells preferred the dense NFs and had a higher 

proliferation. Combining the results above, we chose NF-high as the optimal NF 

for the drug delivery device study. Finally, we imported PLGA to the previously 

developed PCL/PVA coaxial system to accelerate degradation and developed 

strontium doped coaxial 3D PCL/PLGA (1:1)-PVA nanofibers. The coaxial NFs 

enabled the control of strontium release. The Sr2+ was released from the coaxial 

NFs over 2 months and the concentration was relatively constant. The released 

Sr2+ had a positive effect on the proliferation and differentiation of preosteoblast 

cells in both indirect cell contact and direct cell contact studies. We believe these 

coaxial NFs have a great potential as implant coatings. We will test the 

osseointegration efficiency of NF coated Titanium implants in a rat tibia defect 

model in the future.  
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