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PREFACE 

Vascular smooth muscle cells(VSMC) are the major cell type in the tunica media of the aorta. 

The many layers of the smooth muscle cells intertwined in the extracellular matrix provide structural 

integrity to the vessel wall. Smooth muscle cells maintain the caliber of the blood vessel by maintaining a 

contractile phenotype and secreting the extracellular matrix under normal physiological conditions. These 

cells are special, as they are not terminally differentiated. Under injury or cellular stress condition, they 

can switch from the contractile phenotype to a proliferative phenotype referred to as the synthetic 

phenotype. This switch, called the phenotypic modulation is accompanied by loss of contractile markers 

like smooth muscle α actin, myosin heavy chain and SM22α and increased deposition of the extracellular 

matrix components. This repair process often turns pathogenic and leads to apoptosis of the smooth 

muscle cells.  

Though many different signaling pathways have been elucidated, there still exists a knowledge 

gaps in linking the various signaling processes to the phenotypic modulation, with endoplasmic reticulum 

stress being a comparatively new player in the field of cardiovascular diseases. Our preliminary data 

showed that Sm22α was one of the most downregulated genes in this stress response. SM22α is also 

known to be downregulated in various cardiovascular diseases like aneurysm and atherosclerosis, which 

supports the need to study its regulation in detail under the stress conditions. We studied ER stress and 

SM22 in aortic aneurysm background as it includes atherosclerosis as a pathological manifestation and 

downregulation of SM22α. We used in vivo, ex vivo and in vitro techniques to study SM22’s protective 

role and the mechanism under ER stress. 
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                        CHAPTER 1: INTRODUCTION 

1. Aortic aneurysm 

Aorta is the largest blood vessel in the body, carrying oxygenated blood. Aneurysms occurring in 

the aorta are called aortic aneurysms. Aortic aneurysm and dissections are a major cause for mortality, 

responsible for nearly 14,000 deaths in the US every year[1]. An aneurysm is a permanent focal dilatation 

of an artery to 1.5 times its normal diameter[2]. Depending on the region of the aorta that it occurs, they 

are identified as thoracic (TAA) or abdominal aneurysm (AAA). AAA represents most of the aneurysms 

that occur. TAA are rare and have a strong familial inheritance pattern. Syndromes associated with 

aneurysm include Marfan syndrome(MFS), familial thoracic aortic aneurysms and dissections (TAAD), 

Ehlers-Danlos syndrome (EDS), Loeys-Dietz syndrome (LDS), bicuspid aortic valve (BAV), and 

neurofibromatosis type 1 (NF1)[3]. The pathophysiology of aneurysms is defined by degradation of the 

vessel vasculature and loss of smooth muscle cells. The role of matrix metalloproteinases in the 

extracellular matrix degradation is well studied [4-6]. The weakened vessel is hence predisposed to 

dilation and rupture. The loss of smooth muscle cells in the aneurysmal tissue is attributed to apoptosis 

probably from elevated levels of ROS and DNA damage[7].The smooth muscle cells also repress the 

expression of the contractile genes and undergo a change in phenotype. This phenotypic switch might be 

the deciding factor for the cell survival. Mechanisms associated with this switch may hold the key to 

inhibit smooth muscle loss in the aneurysm tissue. 

2. Vascular smooth muscle cells in cardiovascular diseases and the role of phenotypic modulation. 

Vascular smooth muscle cells (VSMCs) are specialized cells that maintain the balance between 

vasoconstriction/vasodilation for the smooth functioning of the blood flow distribution. SMCs in the adult 

blood vessel possess a low rate of proliferation and express a unique repertory of contractile genes and 

signaling molecules that confers the ability to maintain the contractile phenotype[8]. VSMCs possess the 

ability to change their contractile phenotype to a synthetic phenotype. This switch is called phenotypic 



2 

 

 

 

modulation. The synthetic phenotype is characterized by an increase in proliferation, migration and 

increased synthesis of extracellular matrix[9]. The cells respond to a wide range of vasoactive stimuli by 

switching phenotype during pathology. Teleologically, this plasticity was probably a survival response to 

injury and stress. Under most pathological conditions though, this plasticity predisposes the cells to 

detrimental signaling and progression of vascular diseases. VSMC phenotypic modulation is a defining 

feature of many cardiovascular pathologies like aneurysms[10-12] and atherosclerosis[13-15]. One of the 

hallmark features of the synthetic or dedifferentiated phenotype is the loss of contractile markers like 

smooth muscle α actin, myosin heavy chain and SM22α [9]. Advances in the clinical and animal model 

studies have identified the synthetic phenotype in a wide range of pathologies like arteriopathy of diabetes 

and chronic kidney diseases[16-18]. The dedifferentiated cells depending on the environment may acquire 

additional phenotypic changes making them inflammatory[19, 20], adipogenic[16], osteogenic[16, 21] or 

osteochondrogenic[16, 21]. This pathogenic phenotype comes as a drawback for the high plasticity that 

these cells possess. 

Research by previous lab members have helped establish the fact that the downregulation of the 

contractile gene expression plays an active role in the pushing the cells towards the pathogenic 

phenotype[22, 23]. My work aims at studying the regulation of one such contractile gene Sm22α during 

endoplasmic reticulum(ER) stress response(Fig.1). 
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3. Cytoskeleton, Extracellular matrix and aortic aneurysm 

 In addition to their contractile capacity, VSMCs possess important secretory properties that 

ensure the synthesis and repair of various ECM components that regulate the structure of the vascular 

wall (collagen, elastin, fibrillin, fibronectin). Importantly, VSMCs can interact directly with the different 

ECM components through cell-surface integrin receptors, G-protein-coupled receptors and the discoidin 

domain receptor family. The fundamental unit of the cytoskeleton--cell receptor--ECM complex regulates 

 

Figure 1 Vascular smooth muscle cells undergo phenotypic modulation in the cardiovascular 

diseases including aortic aneurysm.Vascular smooth muscle cells(VSMCs) are characterized by 

high expression of contractile marker genes.VSMCs are not terminally differentiated and undergo 

phenotypic modulation under many pathological conditions.The synthetic phenotype is marked by 

reduced expression of the smooth muscle markers and increased expression of inflammatory and 

osteogenic marker genes. The cells transform from spindle shaped to a cobblestone morphology.The 

cells also becomes more proliferative and migratory.(https://www.nhlbi.nih.gov/health/health-

topics/topics/arm/types) 
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the function of the aortic wall. Indeed, VSMCs can transform mechanical stimuli into biological 

responses (also known as mechanotransduction), leading to intracellular responses (cytoskeletal 

rearrangement and stress fiber alignment) and extracellular changes (synthesis, alignment and repair of 

ECM components) that, in turn, can communicate directly with the cell.[24-27]. Mechanical stimuli are 

transmitted via integrins from the elastin to the intracellular compartment, which can lead to activation of 

biochemical signal activation and contraction of the contractile unit. The extracellular matrix has an 

important and complex function in maintenance of the integrity of the aortic wall. Elastin and its 

associated microfibrils interact with SMCs as described herein, but elastin also plays a critical role in 

regulation of the development of the aorta. The extracellular matrix also contains microfibril-associated 

proteins, such as fibulin or latent transforming growth factor (TGF)-β1 binding protein, which play a vital 

role in sequestration and regulation of the activity of cytokines, such as TGF- β [25, 28].Collagen fibers, 

primarily type I and III collagen, are also present in the aortic media and contribute to the stiffness of the 

aorta. 

At the cellular and molecular level, the ability of the aortic wall to sense biomechanical forces via 

its unique cell-matrix interactions has an important bearing on its structural integrity and development. 

The aortic wall is constantly exposed to cyclic mechanical loads from pulsatile blood flow, with the 

ascending aorta exposed to forces delivered by the beating heart. Genetic mutations that affect 

mechanosensing via the elastin-contractile unit lead to aneurysm. Elastin, collagen fibers and the 

extracellular matrix (ECM) endure the bulk of stress that is exerted on the aortic wall, which is typically 

100-200 kPa, such that only 3-5 kPa is exerted on the SMCs in the aortic wall. SMCs sense this stress via 

the elastin-contractile unit and regulate and remodel the ECM. In essence, the SMCs sense and monitor 

the mechanical stress of the aortic wall constantly via their contractile thin and thick filaments and 

integrin receptors and accordingly alter their cytoskeletal structure and the composition of the ECM via 
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various signaling cascades. Phenotypically modulated VSMCs are characterized by change in their 

secretory function. This change contributes to the pathology of the aneurysm tissue. 

4. SM22α and its role in pathology of vascular diseases 

SM22α or transgelin is a 22kDa protein was first identified in the chicken gizzard smooth 

muscle[29]. Its known to be expressed abundantly in the smooth muscle cells and at detectable levels in 

the fibroblasts. SM22 has two other homologs SM22β (transgelin 2) and NP22 (transgelin 3/Neuronal 

protein 22). All the homologs are cytoskeletal protein, but they express in different cell types[30, 31]. 

SM22β expresses in the smooth muscle and endothelial cells[30] whereas NP22 expresses in the 

neurons[31]. Structurally SM22 belongs to the calponin protein family. It has a N-terminal calponin 

homology domain(CH) and a C-terminal calponin like repeat. The protein structure has potential binding 

sites for calcium and phosphorylation sites[32]. The crystal structure was described by Li et 

al[33].SM22’s role as an actin binding protein has been well characterized[34, 35]. 

Expression of SM22α has been reported to be downregulated in a variety of carcinomas like 

prostate cancer[36], breast cancer and colon cancer[37, 38]. SM22α’s expression is also downregulated in 

cardiovascular diseases like aortic aneurysm[39] and atherosclerosis[40] as part of the phenotypic 

modulation of the smooth muscle cells. Sm22s role in modulating contractility in the SMCs is shown in 

Sm22 knockout mouse model[41, 42].  Sm22-/-  mice on the contrary have normal blood pressure, heart 

rate and vascular morphology[43]. SM22 is thus thought to be compensated under homeostasis but may 

play a role in a stress condition. My work focuses on regulation of SM22α under ER stress. ER stress is 

reported to be activated in cardiovascular diseases like atherosclerosis[44], aortic aneurysm[45] and 

vascular calcification[46, 47]. 
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5. Endoplasmic reticulum stress and Cardiovascular diseases: 

The ER stress is the cellular stress response associated with the functioning of the ER. The 

endoplasmic reticulum is an organelle required for many essential processes in the cell including protein 

synthesis, post translational modifications, synthesis of phospholipids and steroids, regulation of calcium 

homeostasis and many more[48]. The ER is a dynamic organelle and interacts with a wide range of other 

organelles including Golgi[49],Mitochondria [50],the Plasma membrane[51] and Nucleus. Disturbances 

in any of the major functions mainly the protein folding leads to a stressed ER. The stress caused due to 

unfolded proteins, triggers a series of signaling cascades termed the Unfolded Protein Response(UPR) 

[52].ER stress has been shown to be required for many physiological processes like insulin secretion from 

pancreatic β cells[53] and osteoblast maturation during bone formation[54, 55]. The UPR activation 

involves 3 distinct steps:1) Attenuation of protein translation to avoid buildup of misfolded proteins 2) 

Activation of chaperones to help fold the misfolded proteins 3) Activation of ER associated degradation 

to degrade the proteins whose structure cannot be rectified. The signaling is a 3-pronged cascade 

involving PERK (pancreatic ER kinase), IRE1 (inositol-requiring transmembrane kinase/endonuclease 1), 

and ATF6 (activating transcription factor 6). Prolonged interaction of the protein folding system with the 

chaperones activates the downstream apoptotic signaling(Fig.2).  

Presence of ER stress has been established in a wide range of clinical and animal model samples 

of vascular pathologies. Many compounds have been identified that could block atherosclerosis induced 

ER stress. Treatment with some of these compounds were shown to have therapeutic benefits[56, 57]. 

Deletion of myocardin – a transcriptional co-activator caused aortic aneurysm accompanied by ER 

stress[58]. Another study showed deletion of Chop, a signaling molecule of the ER stress process 

prevented aortic aneurysm[59].Attenuating ER stress have been shown to reduce vascular calcification 

[60-62].A recent review discusses  ER stress in cardiovascular disease in detail[63]. However, the 

mechanism of the stress response and vascular remodeling is unclear and needs to be elucidated in detail. 
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Figure 2 Unfolded protein response of the ER has two responses -the adaptive and the apoptotic 

UPR. An overload of unfolded proteins triggers the detachment of the ER chaperone Bip from the ER 

stress transducers and Bip binds to the unfolded proteins. The 3 transducers IREα, ATF6 and PERK 

activate downstream signaling. All the 3 arms of signaling cause nuclear translocation of factors that 

induce gene expression of adaptive response genes. Persistent stress then leads to activation of pro-

apoptotic genes. Upon ER stress IREα, oligomerizes and undergoes autophosphorylation. It cleaves 

XBP1 and its spliced form enters the nucleus. ATF6 undergoes cleavage in Golgi and enter the 

nucleus. PERK also oligomerizes and auto phosphorylates like IREα. PERK then phosphorylates 

elF2α leading to increased expression of ATF4. ATF4 translocated to the nucleus and induces the 

expression of pro-apoptotic factors like CHOP. Phosphorylation of elF2α also leads to activation of 

NF-kB. 
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CHAPTER 2 - RESULTS 

       I. Establishing ER stress and apoptosis in the aortic aneurysms of Sm22-/- Marfan mouse model  

1. Background 

1.1 Marfan Syndrome (MFS) 

Marfan syndrome is one the genetic disorders whose cardiovascular manifestations include 

aortic aneurysm. Marfan syndrome is an autosomal-dominant inherited disease affecting ~1 in 5000 

births[64]. Mutation in Fibrillin-1(FBN1) gene is known to cause (MFS). Fibrillin-1 is one of the 

component of the cellular architectural matrix. Its two major roles in the context of aneurysm include 

– providing tensile strength to the cell and regulating the bioavailability of the cytokine, Transforming 

growth factor beta (TGFβ) via its interaction with latent TGFβ binding proteins (LTBPs)[65]. The 

fibrillin microfibrils can exist as individual structures or associate with elastin to form macro-

aggregates. These elastic assemblies are important to carry out the physiological function like 

maintain the cardiovascular tone[66].Mutations in the Fibrillin gene leads to a compromised elastic 

assembly, predisposing the vasculature to structural incompetency. The defective fibrillin also causes 

increase in the TGFβ in the cell. TGFβ dependent increases in MMP2/9 leads to further breakdown of 

the extracellular matrix[67]. Role of TGFβ in the disease pathogenesis of MFS was established with 

help of the Marfan mouse model. The mouse had a heterozygous mutation for the Fbn1 gene 

(Fbn1C1039G/+)[68].  

       1.2 Marfan - Sm22-/- mouse model 

SM22 expression has been shown to be downregulated in the aneurysm tissue. Our lab made 

a Sm22 deletion in the Marfan mouse to generate a Fbn1C1039G/+: Sm22-/- mouse model. We observed 

increased severity of aneurysm formation in these mice (Fig.3) We used these mice to test for smooth 

muscle apoptosis and presence of increased ER stress signaling by histopathology. 
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1.3 Significance of Ex vivo culture system  

Ex vivo culture system refers to isolation of organs from the organism and culturing them in an 

external environment with minimal alterations of natural conditions. The advantage of this system lies in 

the fact that it allows the cells to be in their natural setting. In aorta, it allows the cells to maintain the 

structural scaffolding with the ECM. It helps reduce the non-aortic signaling crosstalk. 

 

 
Figure 3: Aneurysm mouse model: SM22 deficiency exacerbated the aneurysm 

formation in Marfan mouse (Fbn1C1039G/+). Upper panel: Left -Right: normal aorta from 

Sm22-/- mice, normal aorta from Marfan mouse.  Lower panel: Colored arrows indicate the 

Thoracic aneurysm closer to the heart and Abdominal aneurysm in the lower part of the 

aorta from Fbn1C1039G/+: Sm22-/- mouse. SM22 deficiency leads to a higher incidence and 

severity of aneurysm in the MFS mice. Picture credits: Dr. Xiaohua Dai, Li Li lab 
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1.4 Pharmaceutical ER stress inducers 

There are several chemicals used regularly to induce ER stress. These include tunicamycin, 

brefeldin A and thapsigargin. All of them induce unfolded protein response (UPR) in the ER by creating 

an unfolded protein overload through various mechanisms. Tunicamycin blocks the initial step of 

glycoprotein biosynthesis by inhibiting the enzyme UDP-N-acetylglucosamine-dolichol phosphate N-

acetylglucosamine-1-phosphate transferase (GPT).  Brefeldin A causes accumulation of unfolded protein 

by inducing retrograde protein transport from the Golgi to the ER and blocking transport of proteins from 

the ER to Golgi. Thapsigargin works by decreasing ER store calcium and increasing the cytosolic calcium 

levels in the cell. It does this by inhibiting the sarcoplasmic/endoplasmic reticulum Ca2+-

ATPase(SERCA) which sequesters calcium from the cytosol, thereby raising intracellular calcium. Store 

depletion also secondarily activates plasma membrane channels and causes more influx of calcium into 

the cytosol. As the calcium levels in the ER decrease, the calcium dependent chaperones of the ER lose 

their activity and hence can no longer fold the protein. This leads to overload of unfolded proteins[69, 

70].Thapsigargin has been shown to induce apoptosis[71, 72]. We selected thapsigargin as it induces 

apoptosis, which was the hypothesized endpoint of the cells in our aneurysm model. 

2. Results 

2.1 Aneurysm tissue from the Fbn1C1039G/+: Sm22-/- mice stained positive for apoptosis 

The aneurysm tissue from the Fbn1C1039G/+: Sm22-/- mouse was used to perform the TUNEL assay 

to establish apoptosis. TUNEL assay stands for Terminal deoxynucleotidyl transferase (TdT) dUTP Nick-

End Labeling. TdT is a specialized DNA polymerase and is capable of labelling blunt ends of double 

stranded breaks. The assay uses this ability to label apoptotic cells that undergo severe DNA degradation 

as part of the apoptosis mechanism. The aneurysm tissue was found positive for higher number of 

apoptotic cells compared to the aortic tissue from the WT mice (Fig.4). Extensive degradation of the 

elastin layers can be observed in the aneurysm sample. 
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2.2 Aneurysm tissue from the Fbn1C1039G/+: Sm22-/- mice stained positive for ER stress markers. 

We stained the tissue for Activating transcription factor 4 (ATF4). It is downstream in the PERK 

arm of the ER UPR signaling pathway. We found that the tissue stained positive for higher ATF4 

showing activated ER stress in the aneurysm tissue (Fig.5). We then stained for CHOP, a pro-apoptotic 

factor downstream to the ATF4. CHOP expression was also upregulated in the aneurysm tissue (Fig.6). 

This showed that ER stress induced apoptosis was being induced in the aneurysm tissue. 

 

Figure 4: VSMCs undergo apoptosis in aortic aneurysm tissue from Fbn1C1039G/+: Sm22-/- mouse. 

The apoptotic cells are detected by TUNEL assay. Terminal deoxynucleotidyl transferase (TdT) is 

a specialized DNA polymerase and is capable of labelling blunt ends of double stranded breaks. 

Multiple clinical studies have shown presence of apoptotic VSMCs in the aneurysm samples. Upper 

panel: Aorta tissue from WT mouse. The structural integrity of the elastin fibers can be seen by 

distinct layers. Lower panel: Aorta from Fbn1C1039G/+: Sm22-/- mouse. The aorta tissue from these mice 

undergo extensive degradation. This leads to loss of distinct elastin membrane layers. The black 

arrows point to apoptotic cells.  
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Figure 5: Upregulated ATF4 expression was observed in aneurysm tissue from Fbn1C1039G/+: 

Sm22-/- mouse by IHC: (L)Aortic tissue from WT mouse. (R) Aortic tissue from Fbn1C1039G/+: Sm22-/- 

mouse. N=3Activating transcription factor 4 (ATF4) is upregulated by phosphorylated elF2α. It 

translocates to the nucleus to induce transcription of adaptive genes. In chronic ER stress Atf4 induce 

the pro-apoptotic factor Chop. N=3 

 

 
Figure 6: Upregulated CHOP expression was observed in aneurysm tissue from Fbn1C1039G/+: 

Sm22-/- mouse by IHC: Left panel: Aorta from WT mouse. Right panel: Aorta from Fbn1C1039G/+: 

Sm22-/-.CHOP (GADD153) is ubiquitously expressed at very low levels in the cells. Under non-

stressed conditions, it is present in the cytosol. Robust stress conditions induce elevated levels of 

CHOP and its accumulation in the nucleus. N=3 
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2.3 Sm22α deficiency results in a higher ER stress response in the ex vivo model of aorta culture 

After the activation of ER stress markers were confirmed by immunohistochemistry in the 

aneurysm tissue, we carried out an ex vivo aorta culture. We wanted to test the significance of Sm22 

deficiency in the ER stress process. To test this, we used aorta from WT, Sm22+/- and Sm22-/- mice. The 

aortas were isolated and incubated in culture medium containing thapsigargin. After 24 hrs. of incubation 

RNA was isolated to perform qPCR analysis for the expression of Atf4 and Chop. We found that Sm22α 

deficiency caused a higher expression of Atf4 and Chop (Fig.7). 
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Figure 7 Higher expression of Atf4 and Chop in Sm22 deficient mice aorta-  an ex vivo model. A) 

Atf4 expression by qPCR assay was found to be higher in aortas with Sm22 deficiency. B) Chop 

expression by qPCR assay was found to be higher in aortas with Sm22 deficiency. Aortas were 

isolated form WT, Sm22+/- and Sm22-/- mice. The aortas were then incubated in culture medium with 

thapsigargin for 24 hrs. at 37C. RNA was isolated, and qPCR was performed. Atf4 is downstream to 

Perk and elF2α. The Perk pathway is considered to be the apoptotic arm of the ER-UPR signaling. In 

the initial stages ATF4 upregulates expression of adaptive genes to resolve stress. Once the balance 

shifts towards apoptosis, ATF4 induces the expression of Chop. Chop is a pro-apoptotic factor that 

induces the expression of apoptotic factors downstream. -/- mice. N=3, *** indicated P value <0.001. 
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3. Discussion 

Apoptosis of smooth muscle cells is thought to the primary reason for smooth muscle cell loss in 

aneurysm[73, 74].Among the many stress signals activating apoptosis, ER stress is the lesser known 

pathway in aneurysm. A few studies have shown activation of ER stress in Ang II or Cacl2 induced 

aneurysm[45, 75, 76].Consistent with these studies we show presence of ER stress induced apoptosis in 

our mouse model. This also points to the association of ER stress with aortic aneurysm irrespective of the 

etiology. The results also highlight the role of Sm22α under stress. It suggests that under quiescent 

conditions Sm22α might be compensated but it may play an active role in stress conditions 

II. ER stress triggers a signaling cascade inducing phenotypic modulation leading to apoptosis in 

smooth muscle cells 

1. Background 

The cells need protein homeostasis or proteostasis to maintain optimal functioning of the cells in 

response to various stimuli. Hence the cells have a very sophisticated mechanism of sensing cell changes 

and responding to it. There exists an intricate network of cytosolic proteostasis and organelle proteostasis 

that work together to reduce proteotoxic stress. The cytosolic proteostasis include the chaperones like the 

heat shock proteins to fold the proteins and degradation system like the proteasome pathway to 

unfavorable proteins. The organelle proteostasis include the ER. The ER keeps its protein folding in 

check using the unfolded protein response (UPR). The homeostasis is maintained by the adaptive 

response of the UPR. This function of the UPR tries to resolve the protein overload by increasing the 

expression of the protein folding chaperones. The predominant function of the UPR is to maintain the cell 

function and structure in response to stress. Once the adaptive response proves insufficient to maintain 

normal functioning, the apoptotic UPR signaling is triggered. The main function of this signaling is to get 

rid of the cells whose normal functioning cannot be restored. Cells subjected to severe or chronic stress 

are cleared through this pathway[77]. The trigger, signaling the switch from adaptive to apoptotic remains 
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unclear. Although in most cases, once the balance shifts to apoptotic pathway, several pathogenic 

signaling are also induced. 

The role of long term ER stress has been suggested in the inflammatory and osteogenic signaling 

in many pathologies[63]. There is some research though that suggest that ER stress has an anti-

inflammatory role[78]. Our work aims at highlighting the regulation of cytoskeletal markers in the 

context of ER stress and its associated signaling. SM22α and SMAα are the characteristic cytoskeletal 

proteins of the smooth muscle cell. The most well elucidated gene regulatory mechanism of the smooth 

muscle genes is through SRF/myocardin ternary complex. SRF along with the its transcriptional co-

activator myocardin binds to the CArG boxes in the promoter of the cytoskeletal gene to induce its 

expression. There are many ternary complex factors that compete with the SRF/myocardin complex to 

repress the transcription. 

We treated our cells with 2 pharmaceutical ER stress inducers- 1) tunicamycin (Tm) 2) 

thapsigargin (Tg) and found that they produced similar preliminary results. We chose to continue our 

work with thapsigargin as it causes ER stress through changes in intracellular calcium. Perturbed calcium 

signaling has been implicated in aneurysm pathology[79].Also changes in calcium levels lead to vascular 

calcification through matrix vesicle release by synthetic VSMCs[80]. 

2. Results 

2.1 Chronic ER stress causes a transient upregulation of SM markers  

The smooth muscle cell line was treated with thapsigargin for up to 24hrs. We observed the 

expression pattern of Sm22α and Smaα over the course of 24 hrs. We found that the gene expression was 

transiently upregulated before downregulating (Fig.8). Calponin1(Cnn1), Sm22α, Smaα were among the 

most downregulated cytoskeletal genes. The other smooth muscle genes that were downregulated at the 

24hr time point were vimentin (Vim), Filamentin A(Flna), Myocardin (Myocd), Myosin heavy chain 

(Myh11), Tubulin beta (Tubb) and Transgelin 2 (Tagln 2) (Fig.10). The activation of ER stress was 
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confirmed by the upregulation of of ER stress markers Atf4, Chop (Fig.9 and Fig.11). It was 

accompanied by upregulation of Klf4 and Pdgf-bb expression.ER stress chaperones Calr and Grp78(Bip) 

were also found to be upregulated. Tunicamycin and thapsigargin resulted in downregulation of Sm22α to 

a similar extent. Thapsigargin treatment also caused downregulation of ECM markers – Collagen (Col3a), 

Fibrillin(Fbn1) and Fibronectin(Fn1) (Fig.10). 
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Figure 8: Thapsigargin treatment caused transient upregulation of smooth muscle markers.: A) 

Time dependent gene expression pattern of Sm22 by qPCR assay with thapsigargin treatment. B) Time 

dependent gene expression pattern of Smooth muscle actin by qPCR assay with thapsigargin treatment 

C) Western blot showing upregulation of SM22 at 6 hrs.  with thapsigargin treatment. Upregulation of 

protein was only detected at 6hrs and not at 1-3hrs. Translation follows transcription and delay between 

the processes is a normal phenomenon D) Western blot showing downregulation of SM22 after 24 hrs. 

of 1uM thapsigargin treatment. Increase in the expression of smooth muscle markers might be 

indicative of the adaptive response of the ER-UPR. Loss of smooth muscle markers induce phenotypic 

changes in the smooth muscle cell that could induce pathogenic signaling. The downregulation of the 

proteins probably marks the transition of the adaptive response to the apoptotic branch of the 

signaling.SM22 and SMA are the two characteristic markers of smooth muscle phenotype. N=3-6, P 

value *, ** and *** indicate p<0.05, p<0.01 and p<0.001 respectively vs the control(cntrl) 
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Figure 9: Transient upregulation of smooth muscle markers is accompanied by an increase in 

Klf4, Pdgf-bb and ER stress markers expression. PAC1 cells were treated with thapsigargin for 1-6 

hrs. and RNA isolated for qPCR assays. A) Bar graphs shows an increase in Klf4 expression. B)  Bar 

graphs shows an increase in Pdgf-bb expression. C-D) Bar graphs showing increase in expression of 

Atf4 and Chop expression. Atf4 and Chop are downstream to PERK in the ER-UPR pathway and part 

of the apoptotic signaling. N=3-6, P value *, ** and *** indicate p<0.05, p<0.01 and p<0.001 

respectively vs the control(cntrl). 
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Figure 10: Thapsigargin treatment (24 hrs.) caused downregulation of smooth muscle markers, 

ECM genes and upregulation of ER chaperones: RNA was isolated from PAC1 cells and qPCR 

assay performed. A) Gene expression pattern of smooth muscle genes. All the smooth muscle genes 

that we tested were downregulated with thapsigargin treatment. Sm22 was among the most 

downregulated genes. B) Downregulation of ECM genes with thapsigargin treatment - Col3a, Fbn1 

and Fn1. C) Upregulation of ER chaperones Grp78(Bip) and Calr (Calreticulin). N=3-6, P value *, ** 

and *** indicate p<0.05, p<0.01 and p<0.001 respectively vs the control(cntrl). 
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2.2 ER stress induces an upregulation of transcription factor Klf4 and Mmp9 

ER stress induced the expression of Klf4, Pdgf-bb and Mmp9(Fig.12). We found that Klf4 and 

Pdgf-bb expression is upregulated as soon as 1hr of thapsigargin treatment (Fig.9). The phenotypic 

marker Pdgf-bb is known to induce expression of Klf4 through Sp1 binding to the Klf4 promoter. 

Traditionally Klf4 is known to repress the transcription of smooth muscle markers. Recent studies 

however show that the post translational modification of Klf4 determines its function as enhancer or 
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Figure 11: Upregulation of ER stress markers Atf4 and Chop at gene and protein levels after 24 

hrs. of thapsigargin treatment. A) Upregulation of gene expression of Atf4 and Chop after 24 hrs. 

treatment with thapsigargin in PAC1 cells by qPCR assay. B-C) Immunoblots showing upregulation 

of ATF4 and CHOP protein levels after 24 hrs. treatment with thapsigargin in PAC1 cells. ATF4 is a 

transcription factor downstream of Perk and elF2α. Atf4 translocates to the nucleus and induces 

expression of adaptive response genes initially. Atf4 induces the pro-apoptotic gene Chop. CHOP 

induces other apoptotic genes. N=3-6, *** indicate p<0.001 respectively vs the control(cntrl). 
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repressor. The non SUMOylated Klf4 is known to induce the expression of smooth muscle genes whereas 

the SUMOylated form represses the SM gene expression. This is probably why we see an increase in the 

smooth muscle genes accompanied by increase in Klf4 expression. KLF4 is known to repress the 

expression of smooth muscle markers through several mechanisms. KLF4 binds the CArG box in the 

Sm22 promoter replacing the Sm22 inducing SRF-MYOCD complex. It also recruits HDAC2 to block the 

SRF complex from binding the promoter. KLF4 also represses the expression of smooth muscle master 

regulator MYOCD. MMP upregulation is characteristic of the aneurysm and atherosclerosis pathology. It 

is responsible for the degradation of the vessel wall. Apart from repressing the gene expression of the 

ECM genes, ER stress also degrades the vessel wall by inducing expression of Mmp9 
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Figure 12: Thapsigargin treatment (24 hrs.) caused upregulation of Klf4 and Mmp9. In PAC1 

cells treated with thapsigargin for 24 hrs. A) qPCR showed upregulation of Klf4 and Mmp9. B) 

Western blot assays showed the upregulation of KLF4.  N=3-6, P value * and *** indicate p<0.05 and 

p<0.001 respectively vs the control(cntrl). 
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2.3 ER stress induces inflammation and osteogenic markers 

Thapsigargin treatment induced the inflammation markers Vcam-1 and Ccl2 in the smooth muscle 

cells. Along with markers of inflammation, osteogenic markers were also upregulated. The osteogenic 

genes whose expression was increased were Pit-1, Runx2, Msx2 and Ocn (Fig.13). Some these markers 

are known to bind to Sm22α promoter directly or displace the SRF/MYCOD to repress Sm22α expression. 

Runx2 is a transcription factor whose targets include Ocn. Msx2 is also a transcription factor contributing 

to the vascular calcification. Runx2 and Msx2 regulate expression of many ECM genes. Pit-1 is a sodium 

dependent phosphate transporter whose expression along with Runx2 and Ocn is mediated by the ER 

stress induced transcription factor Atf4. Spliced XBP1 is also known to mediate Runx2 expression. 

Thapsigargin also induced apoptosis at the same time point (Fig.14) 
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Figure 13: Thapsigargin treatment (24 hrs.) caused upregulation of inflammation and 

osteogenic markers in PAC1 cells. A) qPCR assay showing upregulation of inflammation markers-

Vcam-1 and Ccl-2. An increase in the protein folding load leads to accumulation of reactive oxidant 

species which elicit an inflammatory response. B) qPCR assay showing upregulation of osteogenic 

markers – Runx2, Ocn, Msx2 and Pit-1. N=3, P value * and *** indicate p<0.05 and p<0.001 

respectively vs the control(cntrl) 
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Figure 14: Thapsigargin treatment (24 hrs.) causes 
apoptosis in PAC1 cells in a dose dependent manner A) 
Top- Left panel – Bright field, Control PAC1 cells, Right 
panel- Stained for nuclei with Hoechst stain. Bottom-Left 
panel- Bright field, Thapsigargin treated for 24 hrs. at 1uM 
conc., Right panel- Stained with Hoechst stain. The white 
arrows pointing to some of the apoptotic nuclei. B) 
Quantitative analysis of apoptosis induced by 
Thapsigargin. N=3-6, *** indicate p<0.001 vs the 

control(cntrl) 

. 
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2.4 Effect of physiological ER stress inducers on VSMCs 

Free fatty acids (FFA) is one among the many risk factors for the cardiovascular diseases and 

elevated FFAs have been shown to be associated with increased aortic stiffness, seen in 

atherosclerosis[81, 82].Palmitate, a saturated fatty acid accounts for 30-40% of the serum FFAs. Palmitate 

has been shown to alter the extracellular matrix in cultured smooth muscle cells, causing lipoprotein 

deposition and favoring atherogenesis [83]. Palmitate is also known to induce various cellular stress 

responses like endoplasmic reticulum (ER) stress, phenotypic modulation and apoptosis[84, 85]. We 

found that palmitate like thapsigargin induced downregulation of smooth muscle markers along with 

upregulation of Mmp9 and Chop (Fig.15). It is possible that the phenotypic modulation caused by 

palmitate is due to its induction of ER stress in the VSMCs. Further analysis is needed to elucidate the 

mechanism. 

 

 

 

 

 

 

 

 



25 

 

 

 

 

A                                                                                                                                                                                                        

0.0

0.5

1.0

1.5

CNN1ACTA 2

Vehicle

Palmitate 40uM

Palmitate 100uM

***

***

***

***

***

SM22

m
R

N
A

 F
o

ld
 c

h
a
n

g
e

 

B                                                                                C 

             

0

2

4

6

8

**

Vehicle Palmitate
100uM

M
M

P
9
 e

x
p

re
s
s
io

n
 F

o
ld

 c
h

a
n

g
e

                                    

0

1

2

3

4

5

  *

Vehicle Palmitate
 treated

C
H

O
P

 e
x
p

re
s
s
io

n
-f

o
ld

 c
h

a
n

g
e

 

Figure 15: Physiological ER stress inducer palmitate causes phenotypic modulation in PAC1 

cells. Palmitate is a saturated fatty acid that accounts for 30-40% of serum free fatty acids(FFA). 

FFAs have been associated with cardiovascular events. PAC1 cells were treated with BSA conjugated 

palmitate at 40uM and 100uM conc. for 18 hrs. and qPCR assay was performed. A) Smooth muscle 

markers Sm22, Acta2 and Cnn1 gene expression was downregulated in a dose dependent manner. B) 

Mmp9 gene expression was upregulated indicating changes related to phenotypic modulation. C) 

Chop gene expression was upregulated showing the induction of ER stress with palmitate. N= 3-6. P 

value *, ** and *** indicate p<0.05, p<0.01 and p<0.001 respectively vs the control(cntrl). 
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3 Discussion 

Our results consolidate the data that ER stress induces a cascade of pathogenic signaling 

pathways that lead to downregulation of smooth muscle markers leading to phenotypic modulation of 

VSMC. These smooth muscle cells in the synthetic state then progress to apoptosis. The results show that 

a range of factors induced as part of the ER stress response further induce factors that trigger 

inflammation and osteogenesis. The numerous factors involved in these processes have been shown to 

downregulate the smooth muscle marker SM22α in several ways[86-90]. Sm22α was found to be one of 

the most downregulated genes in the stress response. SM22α is also known to be downregulated in 

various cardiovascular diseases like aneurysms[39, 91] and atherosclerosis[40, 92, 93] , making it an ideal 

candidate for further analysis. Our results show upregulation of both phenotypic markers Pdgf-bb and 

Klf4. Pdgf-bb is known to be a potent repressor of SMC genes. Part of its repressor function is shown to 

be mediated through upregulation of Klf4 expression. The phenotypic marker Kruppel like factor 4 

(KLF4) has been shown to downregulate the Sm22 expression through a few different mechanisms. Klf4 

can bind to the two distinct regions of the Sm22 promoter and recruit HDAC2 to interfere with Srf/Myocd 

dependent transcription. KLF4 also represses the expression of Myocd, hence limiting its availability for 

Sm22 expression[86-88]. The transcription factor ATF4 (PERK pathway) has been shown to upregulate 

KLF4 by increasing its transcription and blocking its protein degradation.  

The Perk pathway is also involved in triggering NF-kb mediated inflammation which represses 

Sm22α transcription. The nuclear factor NF-kB induces a repertoire of pro-inflammatory genes which 

include cytokines, chemokines and adhesion molecules. Under normal conditions NF-kB is bound by the 

inhibitory molecule IkBα. PERK induced phosphorylation of eIF2α which induces a translational 

repression to combat ER overload. This repression leads to reduced IkBα leading to less sequestration of 

NF-kB. The free NF-kB then translocates to the nucleus to induce expression of inflammatory markers 

like Vcam-1, Ccl2 etc.  NF-kB has also been shown to bind to CArG box of Sm22α promoter and repress 
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its transcription. A parallel signaling involves degradation of IkBα through IKKα enzyme. IRE1 

dependent regulation of the IKKs basal activity through TRAF2 plays a vital role in IkBα reduction under 

ER stress[94, 95].  

ER stress induced transcription factors ATF4 and CHOP have also been implicated in vascular 

calcification[47, 96].Vascular calcification is the most extreme form of phenotypic modulation in 

SMCs.RUNX2 an osteogenesis specific transcription factor upregulated in two different arms of the ER 

stress response ATF4(PERK pathway) and XBP1(IREα pathway).RUNX2 interacts with SRF thus 

blocking the SRF/MYOCD complex binding on CArG and repressing SM22α transcription[90]. Another 

osteogenic factor involved in SM22α downregulation is PiT-1[97].ATF4 and CHOP (PERK pathway) 

have been shown to regulate type III sodium-dependent phosphate cotransporter, PiT-1 expression 

through interaction with C/EBPβ[47, 89]. Pit-1 has been shown to repress SM22α by methylating its 

promoter[98]. Pit-1 is also known to regulate RUNX2 too, thus amplifying the osteogenic 

effect[99].Palmitate has been implicated in cardiovascular diseases. We show that palmitate has the same 

effect on cytoskeletal markers as thapsigargin. Hence it might be that the phenotypic modulation and 

inflammation caused by palmitate is partly through the ER stress process. 

III Mutational analysis of Sm22α promoter under ER stress 

1. Background 

Sm22α is a 5.4 kb gene located on 11q23.2. It has 5 exons, 1 large and 3 small introns. Cis 

regulatory elements in the Sm22 promoter include two CArG boxes (near and far), Smad binding element 

(SBE) and TGFβ control element (TCE) (Fig.16). Our lab made a series of promoter mutations based on 

these different cis regulatory elements[100]. Many factors induced during inflammation and calcification  
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have been shown to regulate Sm22α expression. To check which binding sites of the promoter was 

involved in its downregulation under ER stress, luciferase assay was carried out to check for SM22α 

expression in cells transfected with different mutants and treated with thapsigargin. Myocardin is the 

master regulator of SM22α expression [101], so we overexpressed Myocardin to see if it could rescue the 

downregulation of SM22α. 

 

Figure 16: Graphical representation of the Sm22α gene-Cis and Trans elements. The Sm22α gene 

is 5.4 kb and located on 11q23.2. It has 5 exons(boxes) and 4 introns(lines) with intron 1 being the 

largest. Several putative promoters are present in the 800bp upstream region. A 1566 bp transcript is 

generated. Entire exon 1, 12 bp of exon 2 and last 432 bp of exon 5 are untranslated. CArG- serum 

response binding box, TCE- TGFβ control element, SBE- SMAD binding element. Figure adapted 

from Gary K. Owens, Meena S. Kumar, Brian R. Wamhoff Physiological Reviews Published 1 July 

2004 Vol. 84 no. 3, 767-801 DOI: 10.1152/physrev.00041.2003 and Assinder, S TAGLN(transgelin) 

Atlas Genet Cytogenet Oncol Haematol. 2011;15(6):477-479. 
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2. Results 

The different plasmid constructs that were used include a full length Sm22 promoter, SBE mutant, 

TCE mutant, CArG near mutant, CArG far mutant, CArG null-TCE mutant and SBE alone. The cells 

were transfected with these plasmids and treated with thapsigargin(Fig.17). We found that SM22 

downregulated in all the cases showing that all the different sites were involved in its repression. SBE site 

was found to be sufficient to repress the expression of SM22 with thapsigargin. Many transcription 

factors induced by ER stress have been shown to bind Sm22 promoter and cause its repression. 

As myocardin can stimulate Sm22 expression through different promoter mutants, we wanted to 

test if it could stop SM22 downregulation in an analogous manner using the luciferase assay We tested to 

see if myocardin overexpression could rescue SM22 downregulation under thapsigargin treatment. We 

found that myocardin overexpression could reduce the downregulation of SM22 in all the cases except 

when CArG far was used. This can be explained by the fact that myocardin induces SM22 at very low 

levels through this mutation. Hence a significant change in regulation could not be observed. 
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3. Discussion 

A consensus sequence motif of nucleotides that form a signal is called a box. The sequence with 

the nucleotides [CC(A/T)6GG] is referred to as the CArG box. Almost all the smooth muscle gene 

promoters have been shown have at least two of these. The CArG boxes play a pivotal role in their 

transcription. SRF has been shown to bind the CArG box selectively in SMCs and myocardin increased 

SRF binding. The binding of the SRF/myocardin complex to the promoter requires some epigenetic 
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Figure 17: Promoter analysis by luciferase assay shows more than one cis element of Sm22 is 

involved in its downregulation under ER stress. Luciferase assay was carried out using the 

different promoter mutants. No single or double mutant could prevent SM22 downregulation with 

thapsigargin treatment. It can be inferred that more than one cis element is involved. The data is 

backed by literature showing various trans elements induced by ER stress capable of binding different 

regions of the Sm22 promoter and repressing its expression. Various promoter mutation plasmids with 

luciferase were transfected into PAC1 cells A) A full length Sm22 promoter was used. B) Promoter 

with mutation in the smad binding element (SBE) is used. C) Promoter with mutation in the TGF 

control element (TCE) is used. D) Plasmid construct with only the SBE site was used. E) Promoter 

with mutation in the CArG near region was used. F) Promoter with mutation in the CArG far region 

was used. G) Promoter with double mutation in the CArG and TCE region was used. Myocardin is 

known to induce SM22 expression through all these promoter mutants. The same effect was observed 

even with thapsigargin treatment. Overexpression of myocardin can block SM22α downregulation to 

some extent under the ER stress condition. N=3 
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modifications. Myocardin/SRF complexes physically interact with H3K4dMe and is sensitive to 

expression levels of myocardin. As expression of myocardin is reduced under ER stress, the SRF binding 

to the chromatin is reduced thus repressing Sm22 expression. Parallelly, Klf4 induced under ER stress can 

bind the TCE site on the promoter and recruit histone H4 deacetylase to compact the chromatin and 

render the CArG box inaccessible to SRF[102]. Myocardin binds to SMAD3 and coactivates the Sm22 

expression via the SBE site. Hence the repression of SM22 expression through this site is caused by 

reduced myocardin availability[103]. NF-kB is also known to bind myocardin preventing the 

SRF/myocardin complex from binding to the CArG box[104]. RUNX2, induced during ER stress also 

binds SRF and inhibits SRF dependent transcription[90]. 

Hence inhibition of SRF/myocardin complex plays a key role in Sm22 repression under ER stress. 

We therefore see an increase in SM22 expression when myocardin is overexpressed. It is possible that the 

ER stress induced repressors are more potent than myocardin and hence myocardin overexpression is not 

sufficient to block the Sm22 repression completely. 

IV. SM22α overexpression can reduce expression of inflammatory and ER stress markers 

1. Background 

SM22α deficiency has been shown to induce inflammation and chondrogenesis in an arterial 

injury model[22, 23].As SM22α expression downregulates under ER stress, we overexpressed SM22α to 

see if it could reduce the expression of inflammation, osteogenic or ER stress markers. We also 

overexpressed myocardin to see if it could reduce the inflammation and osteogenesis. 

2. Results 

We only saw reduction in the expression of ER stress (Atf4, Chop) and inflammation 

markers(Ccl2) but no change in the expression of calcification markers (Fig.18A-B). Myocardin induced 

SM22 expression could only reduce Vcam-1 expression (Fig.18C). It was not enough to reduce Ccl2, Atf4 

or Chop expression.  
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3. Discussion: 

NF-kB has also been shown to repress Sm22 expression in a CArG box dependent manner[104].  

Reduced SM22α works in a loop mechanism to induce inflammation. SM22α is required to form a 

complex with IKBα to sequester NF-kB. Reduced binding of SM22 to IKBα leads to more nuclear 

translocation of NF-kB[105].By overexpressing SM22α, we might be reducing the nuclear translocation 

of NF-kB to some extent and hence we see reduce Ccl2 expression. Reduction in inflammation probably 

also lead to less ER stress shown by reduced expression of Atf4 and Chop. Myocardin could only reduce 

Vcam-1 expression under ER stress.  
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Figure 18: SM22 overexpression can reduce the expression of inflammation and ER stress markers. 

Deficiency of Sm22 has been shown to induce inflammation and elicit a higher ER stress response. Overexpression 

of SM22 by adenovirus in PAC1 cells reduced the expression of ER stress markers Atf4 and Chop. qPCR assay 

showed A) SM22 overexpression reduced the mRNA expression of Atf4 and Chop under Tg treatment B) SM22 

overexpression reduced the expression of Ccl-2. SM22 overexpression only reduced expression of Ccl-2 and not 

Vcam-1. C) MYOCD overexpression on the contrary only reduced the expression of Vcam-1 and not Ccl-2. N= 3-

6. P value *, ** and *** indicate p<0.05, p<0.01 and p<0.001 respectively vs the control(cntrl). 
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V. Cytoskeletal dynamics regulate the ER stress response 

1. Background 

Disruption of actin cytoskeleton has been shown to induce NF-kB nuclear translocation and 

dependent inflammation induction[106, 107].Also Sm22 deficiency has been shown to collapse actin 

cytoskeleton[23].Studies show that inflammation could induce ER stress[108].Hence we treated the cells 

with actin depolymerizer cytochalasin D to see if it induced ER stress. We also observed changes in ECM 

expression during actin depolymerization with latrunculin B. We treated the cells with CytoD and 

thapsigargin to see if ER stress influences this interplay between ECM components and the cytoskeletal 

dynamics. 

2. Results 

Cytochalasin D was sufficient to induce ER stress and when used in combination with 

thapsigargin, caused a more severe stress response shown by the expression levels of Atf4 and Chop 

(Fig.19 A). Depolymerizing actin with CytoD caused upregulation of expression of ECM markers like 

Col3a, Fbn1 and Fn1.This upregulation of ECM proteins is blocked when treated with thapsigargin 

(Fig.19 B). 

3. Discussion: 

SM22α has long been studied as an actin binding protein. The earliest known function was to 

bind actin and help in the formation of cytoskeletal structures like stress fibers[34].Follow up studies 

showed that SM22 deficiency lead to actin cytoskeleton collapse[23]. This cytoskeleton collapse probably 

induced inflammation and inflammation dependent ER stress. 

Dephosphorylation of eukaryotic translation initiation factor 2a (eIF2a) restores protein synthesis 

at the end of the adaptive UPR. It requires a PP1 catalytic subunit and a regulatory subunit, 

PPP1R15A(GADD34)/ G actin[109].Sm22α deficiency is also known to increase the Gactin/Factin 

ratio[23]. Increased availability of G actin allows the complex formation of GADD34, PP1 and actin 
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which dephosphorylates elF2alpha. This helps resume the protein synthesis following its inhibition. It is 

suggested that this might be a pro survival response during transient ER stress but may prove fatal during 

chronic ER stress[110].We show that cytochalasin D treatment alone is sufficient to induce ER stress. 

This can be explained by the fact that cytochalasin D depolymerizes actin by competitive binding to the 

barbed ends. This creates a pool of the G actin and association with the GADD34 [111]. eIF2α is 

dephosphorylated leading to unresolved protein accumulation and probably a switch to apoptotic UPR 

A                                                                          B 

0

2

4

6

8
15

20

25

30

*

**

CHOP ATF4

Thapsigargin

Thasigargin + CytoD

Control

CytoD treated

m
R

N
A

 e
x

p
r
e

s
s

io
n

 f
o

ld
 c

h
a

n
g

e

0

1

2

3 ***

C
n

trl

3
h

r T
g

1
h

r C
yto

D
T
g

+
C

yto
D

F
B

N
1
 e

x
p

re
s
s
io

n

(m
R

N
A

 f
o

ld
 c

h
a
n

g
e

)

 

 

Figure 19: Actin depolymerization with cytochalasin D induces ER stress and upregulation of 

Fbn1 expression. Thapsigargin treatment along with cytochalasin D induces higher ER stress 

and blocks upregulation of Fbn1. A) qPCR assay showed Chop and Atf4 gene upregulation with 

cytochalasin D treatment alone and higher expression when treated with thapsigargin and cytochalasin 

D compared to thapsigargin treatment alone. B) Actin depolymerization causes an increase in Fbn1 

expression probably as a compensation mechanism. This upregulation is blocked under ER stress 

conditions. N= 3-6. P value *, ** and *** indicate p<0.05, p<0.01 and p<0.001 respectively vs the 

control(cntrl). 
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 VI. Drug screen for  natural compounds that can positively regulate Sm22 expression 

 1. Background: 

 As SM22 overexpression showed some reduction in ER stress response and ER stress induced 

inflammation, hence we screened for natural compounds that could increase SM22 expression. The 

potential of SM22 as a therapeutic target is also strenghtened by the fact that SM22 expression is 

downregulated in a number of cancers too.The screen for the compounds was carried out at our 

collaborator- Andrew Fribley’s robotic screen core facility. A repoter cell line using CHO cells 

transfected with Sm22 promoter-luciferase was constructed.CHO cells do not express any SM22 

endogenously.The candidate compounds from the screen were then validated in our mouse fibroblast cell 

line 10T1/2, a progenitor for SMCs.           

 2. Results: 

We found a group of compounds called isoflavenoids which were able to induce Sm22 expression 

(Fig.20). We then verified those compounds in our fibroblast cell line. The fibroblasts were used for the 

reporter as they endogenously express low levels of SM22 unlike the SMCs which express very high 

levels of SM22.This helps detect any small increase in SM22 expression during the drug screen. The cells 

in the preliminary screen wre treaed with the drug for 16-48 hrs. but the same treatment time in the 

fibroblast cells did not yield the same result. Subsequent efforts at earlier time points revealed significant 

and robust increases of Sm22 between 1–6 hours. The proteins levels were found to be upregulated at the 

same treatment time as the screen (Fig.21) 

 3. Discussion: 

 Isoflavones belong to a group of phytoestrogens.Isoflavones are commonly found in soy and red 

clover. Phyestrogens have been shown to have a cardioprotective effect. Two phytoestrogens biochanin A 

and formononetin have been shown to inhibit pdgf induced migration in aortic smooth muscle cells. 
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These among the top hits in our drug screen. We chose to do further analsysis with biochanin A as it was 

shown to be more potent than other phytoestrogens from our list in some instances[112]. 

Biochanin A(BCA) is an O-methylated isoflavone. Its found in red clover, soy, alfalfa 

sprouts,peanuts and in legumes.Biochanin A has been shown to attenuate LPS induced NF-kB activation 

and dependent expression of VCAM-1 and ICAM-1by activating PPAR-γ[113, 114].  

We are proposing that its anti-inflammatory effects could be through the increased expression of 

SM22. The isoflavones have been shown to inhibit the cytochrome P450[115, 116]. The cytochrome 

P450 are a superfamily of hemoproteins. They are either located in the inner membrane of the 

mitochondria or the ER. The enzyme is responsible for metabolising a wide range of endogenous or 

exogenous chemicals and drugs.There are 18 families of CYP genes. Biochanin A has been shown to 

reduce the activity of Cyp2e1 in Ccl4 treatment[117]. This is of significance as , Cyp2e1 gene was found 

to be upregulated in Sm22α-/- mice[118].Hence the isoflavone’s therapeutic properties might be SM22 

dependent and further analysis could lend more significance to SM22’s role in cardiovascular pathologies. 

 



39 

 

 

 

 

 

Figure 20: Flavones and isoflavones were the top hits in the drug screen for Sm22 expression 

inducing agents. 75 hits were parsed to identify compounds amenable to use in cell culture and 

preclinical small animal models, with a preference for known utility for use in humans. Eleven 

flavone compounds were chosen for confirmatory secondary assays based on structural similarity and 

broad reported use in pre-clinical and clinical human studies. Flavones and isoflavones belong to the 

class of phytoestrogen and have effects on CYP450 activity. CYP450 are the enzymes that metabolize 

most of the drugs in the body. Phytoestrogens have been shown to have cardioprotective effect and 

commonly found in soy and red clover. Biochanin A and formononetin have been shown to have anti-

inflammatory effects. 
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Figure 21: Biochanin A upregulated Sm22 expression in the fibroblast cell line 10T1/2. The 
phytoestrogen biochanin A (BCA) was chosen for further scrutiny with experiments focused to 
validate the ability of the primary CHO-SM22-luc HTS assay to identify hits able to modulate SM22 
gene and protein expression. (A)10T1/2 cells were treated with 0.5 or 1.0 uM BCA for 16 – 48 hours 
(same as the HTS) without significant increase in Sm22 gene expression. Subsequent efforts at 
earlier time points revealed significant and robust increases of Sm22 between 1–6 hours. (B)Western 
immunoblot analysis during the same time frame demonstrated that BCA could induce SM22 in a 
time- and dose-dependent fashion. N= 3-6. P value ** and *** indicate p<0.01 and p<0.001 

respectively vs the control(cntrl). 
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CHAPTER 3 -MATERIALS AND METHODS 

3.1 Tissue culture  

Rat pulmonary smooth muscle cell line PAC1 was used for all experiments except for the drug 

screen. For the drug screen validation mouse fibroblast cell line 10T1/2 ( ATCC C3H/10T1/2,clone 

8,CCL-226) was used.The cells were grown and maintained in DMEM (Invitrogen,11995073) 

supplemented with 10% Fetal bovine serum (FBS,Invitrogen, 26140079) , antibiotics pencillin and 

streptomycin (P/S,Invitrogen 15070063) and fungicide ( Invitrogen, 15290026) were used at a final  

concentration of 1%.The cells  in general were grown for 24-48 hrs before any drug treament.PBS 

(#10010049) and Trysin (#25200072) were ordered from Invitrogen.For transfections ,serum free 

medium,opti-MEM (Invitrogen # 31985062) was used. 

Cell passaging and freezing – Cells in T75 flask were washed with PBS. 1ml trypsin is added and 

put in the 37C cell culture incubutor for 3mins. The trypsin is inactivated by adding medium. The cells 

are then split into new flasks.For freezing,the cells are centrifuged and the supernatant discared. Cells 

from a T75 flask are resuspended in 2-3 ml of cell recovery freezing medium(Fisher # 12-648-010 )and 

aliquoted into labelled freezing tubes and placed in the cell freezing box at -80C. To thaw, the cells are 

placed in a 37C water bath for 1 min and then warmed medium is added to the vial. The cells are then put 

in the cell culture flask and allowed to attach overnight. 

3.2 Genotyping and Aorta isolation 

C57BL/6 mice were used for the Sm22 knockout colony.The Sm22 gene is knocked out using 

LACZ insertion.Mouse toe tissue was used to genotype the mice. The tissue was digested overnight in 

100ul of digestion buffer( Viagen,#102-T) with 4ul (20mg/ml) of proteinase k ( 501-PK) at 37C. The 

proteinase K is inactivated by heating the sample on a heating block at 95C for 15 mins.The DNA sample 

is stored at -20C. For genotyping, a reaction mix for a single sample is made using 10ul of  red master 

mix (ASI # C225), 1ul DMSO, 0.4ul of forward primer, 0.4ul of reverse primer and 8.2 ul of water.To 
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this 2.5 ul of digested DNA is added.The primer sequences for genotyping are mentioned in the table 

1.The PCR conditions sre as follows: for Sm22: 94C – 3:00 mins, 94C – 0:30 min, 52C- 0:30, 72C- 0:40, 

39 cycles and then 72C for 10:00 mins. LacZ: 94C – 3:00 mins, 94C – 0:30 min, 58C- 0:30, 72C- 1:00, 39 

cycles and then 72C for 10:00 mins. 

Table 1 : Primer sequences used for genotyping 

SM22 forward  CCCAGCCCAGACACCGAAGCTAC 

SM22 reverse  TCCCTTGGCCTCATTTGTCACCTC 

LacZ forward TACCACAGCGGATGGTTCGG 

LacZ reverse GTGGTGGTTATGCCGATCGC 

              

3.3 Protein isolation  

The protein from cells was isolated using the reagent M-PER from (Thermofisher#78501).The 

cells are washed twice with PBS and then M-Per reagent was added. Protease (Thermofisher#78429) and 

phosphatase inhibitors(Fisher, #PI78443) were added to the M-Per reagent at 1:100 dilution.The cells are 

incubated on ice on a rotor for 5 mins. The cells were then scraped and the lysate collected.The lysate was 

then incubated in ice while shaking for 20-40 mins.The lysate was then centrifuges at ~14000g for 

10mins.The supernatant was transferred to a new tube and stored at -20C. 

3.4 Protein quantification 

The protein quantification was done using the Quant-iT™ protein quantification kit 

(Fisher#Q33212) and qubit benchtop fluorometer from Fisher# Q32857.The pre-diluted BSA standards 

provided in the kit were used. A working solution is prepared by diluting (1:200) the Quant-iT reagent in 

Quant-iT buffer provided in the kit.1 ul of protein sample is added to 199ul of working solution , vortexed 

and incubated for 15 mins. 10ul of standards us added to 190ul of working solution.Readings are taken in 

the fluorometer. 
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3.5Western blot 

Equal amount of whole cell lysates from PAC1 cell or 10T1/2 samples were loaded on a 4-12% 

Bis-Tris NuPAGE Mini-gel (Invitrogen# NP0321) for electrophoresis, followed by transfer onto an 

Immobilon-P membrane (Millipore # IPVH00010). The running (# NP0001) and transfer buffer (#NP 

00061) from Invitrogen was used. The buffers were used at a dilution of 1x. The membrane was blocked 

with 5% milk (Fisher# NC9121673) in TBST for 1 Hr., followed by primary antibody (diluted in milk) 

incubation overnight at 4 °C. The membrane is washed 3 times in TBST for 5 mins and then incubated 

with biotinylated secondary antibody for 2 Hrs. The membrane is washed in TBST again 3 times for 5 

mins. The membrane was subject to enhanced chemiluminescence detection using Super Signal West 

Pico Chemiluminescent Substrate (Thermo # 34080). The primary antibodies used are listed in the Table 

2. 

Table 2. Antibodies used for Western 

Gene   Company Catalog No. Dilution 

Sm22 Abcam ab14106, ab10135 1:1500 

Sma abcam 7817 1:2000 

Klf4 Sigma HPA002926 1:250 

Atf4 Santa Cruz Sc-200 1:200 

Chop Santa Cruz Sc-7351(WB),  

sc-793(IHC) 

1:200 

Β actin Cell signaling technology 4967S 1:1500 

Secondary 

ab 

   

Anti-mouse Southern biotech 

Santa cruz  

1070-05(for sc 7351) 

Sc 2962 

1:2000 
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Anti-goat Santa cruz Sc 2961 1:2000 

Anti-rabbit Santa cruz, sigma Sc 2955, SAB3700941 1:2000 

 

3.6 RNA isolation 

RNA isolation for the cells was carried out using the Direct-zol RNA Miniprep kit from Zymo 

research(#R2073). The cells were treated with trizol and buffers from the kit are used to carry out the 

subsequent steps. For cells grown in a 6 well plate 800ul of trizol was added and incubated for 5 mins. 

The trizol was collected and added to DNase/RNase free tubes with 800ul of 100% ethanol and mixed 

well. The solution was then added to the columns provided in the kit. The columns were centrifuged at 

16000g for 30sec (for all steps except where mentioned). The columns were then washed with 400ul of 

RNA wash buffer and centrifuged. The column was then treated with DNase I (75ul of digestion buffer + 

5ul of DNase I) and incubated at room temperature for 15 mins.400ul of directzol buffer was then added 

to the column and centrifuged and this step was repeated. 700ul of RNA wash buffer was then added to 

the column and centrifuged for 2 mins.50 ul of DNase/RNase free water was added directly to the column 

to elute the RNA. The RNA concentration was determined using the nanodrop ND-1000 

spectrophotometer and stored at -80C. A sample was considered pure enough for experiments if the 

absorbances at 260/280 and 260/230 ratio were at least 1.8 and 1, respectively. 

 For ex vivo organ culture, the tissue was homogenized using a homogenizer. The tissue was 

either used fresh or stored in RNA later solution (Ambion# AM7021) and RNA isolation was carried out 

at a later time point. 

3.7 cDNA preparation 

500ng -1000ng of RNA was used to make the cDNA. The cDNA was synthesized using the 

Superscript II reverse transcriptase (18064014), Random primers (48190011) and buffers from 

Invitrogen.2ul(3ug/ul) of random primer and 2ul of dNTP mix (10mM each, Invitrogen #18427013) was 
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added to 500-1000ng of RNA and volume made up to 23ul with distilled water. The mixture was heated 

to 65C for 5 mins and quick chilled in ice. The contents were briefly centrifuged. 8 ul of 5x buffer and 4ul 

of 0.1M DTT was added. The contents were mixed gently and incubated at room temperature for 2 mins. 

200U of superscript was added. It was incubated at 25C for 10 mins. The mixture was then heated at 42C 

for 50mins. The reaction was inactivated by heating at 70C for 15mins. 

3.8 Quantitative PCR 

Real-time PCR was performed using SYBR Green (Invitrogen # 4385616) on a StepOne Plus 

system (Applied Biosystems). Gapdh and snRNA U6 were used as internal controls in ΔΔCt method. The 

primers were ordered from IDT. The sequences for the primers for mouse and rat are listed in Table 2.A 

total of 10 ul reaction mixture is added to each well.5ul of SYBR and 4ul of primer(2.5uM). To this 1ul of 

cDNA made from 500-1000ng of RNA is used. The reaction run had 3 stages- Holding stage- 95C for 

20sec, cycling stage- 95C for 3 sec, 60C for 30 sec repeated 40 times and Melt curve stage – 95C for 

15sec and 60C for 1 min. 

Table 3 Primer sequences for RT-PCR 

Gene                Forward (5’-3’)                       Reverse (5’-3’) 

RAT   

Sm22 TCCTTCCAGCCCACAAACGACCAA CTTGGACTGCACTTCACGGCTCAT 

Acta 2 GAGAAGCCCAGCCAGTCG ATCTTTTCCATGTCGTCCCAGTTG 

Cnn1 GCGTCACCTCTATGATCCCAAACT GTTGAGCGTGTCACAGTGTTCCAT 

Myocd CAGTGAAGCAGCAAATGACTCGG GTCGTTGGCGTAGTGATCGAAGG 

Flna A ACTGTTTCTAGCCTTCAGGAG GCACAGCATACTTATCTTGGTC 

Vim CGGAAAGTGGAATCCTTGCA CACATCGATCTGGACATGCTGT 

Tubb GCAGTGCGGCAACCAGAT AGTGGGATCAATGCCATGCT 
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Tagln 2 ATTGAGAAGCAGTACGACCCAGAT AGAGGCCTGGATCTTCTTTACTGG 

Myh11 AACGCCCTCAAGAGCAAACTCAGA TCCCGAGCGTCCATTTCTTCTTCA 

Atf4 GGGTTCTGTCTTCCACTCCA AAGCAGCAGAGTCAGGCTTTC 

Chop CCTAGCTTGGCTGACAGAGG CTGCTCCTTCTCCTTCATGC 

Klf4 AGGCACACCTGCGAACTCA ACAGCCGTCCCAGTCACAGT 

Pdgf-bb CGCACAGAGGTGTTCCAGATC CCAGGAAGTTGGCGTTGGT 

Mmp9 TCTTCGACTCCAGTAGACAATCCT ACTTCCAATACCGACCGTCCTTGA 

Grp78(Bip) TCCTGCGTCGGTGTATTC CGTGAGTTGGTTCTTGGC 

Calr GAATACAAGGGCGAGTGGAA GGGGGAGTATTCAGGGTTGT 

Runx2 CAGGTTCAACGATCTGAGATTTGT TGAAGACCGTTATGGTCAAAGTGA 

Msx2 GCCATTTTCAGCTTTTCCAG CCCTGAGGAAACACAAGACC  

Ocn AAGCCCAGCGACTCTGAGTCT GCTCCAAGTCCATTGTTGAGGTA 

Pit-1 CCGTCAGCAACCAGATCAACTC CCCATGCAGTCTCCCACCTTG  

Vcam-1 TGTGAAGGGATTAACGAGGCTGGA GCACACTTCCACAAGTACAGGAGA 

Ccl2 CAGTTAATGCCCCACTCAC GTTTCTGATCTCACTTGGTTCT 

Mouse    

Sm22 TCCTTCCAGTCCACAAACGACCAA TTTGGACTGCACTTCTCGGCTCAT 

Same for 

mouse and 

rat 

  

Gapdh TGAATACGGCTACAGCAACAGGGT TTGTGAGGGAGATGCTCAGTGTTG 

U6 CTCGCTTCGGCAGCACATATACTA CGCTTCACGAATTTGCGTGTCATC 
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3.9 Immunoflorecence  

PAC1 cells attached to chamber slides were rinsed twice with PBS and liquid removed by gentle 

aspiration. The control and treatment groups are on the same slide. The cells were then fixed in -20C 

methanol for 5 mins. The cells were washed with PBS 3 times for 5 mins. The cells were then blocked 

and permeabilized using the blocking solution (1ml chicken serum, 20ul of Triton X-100(Fisher #BP151-

500) and 9ml PBS, vortexed until dissolved) for 1 hr. at 37C.The primary antibody was diluted in 5% 

serum at a dilution of 1: 100.The cells were then incubated 1-2 hrs. at 37C in a moist chamber to prevent 

drying. The cells were then washed 3 times in PBS for 5 mins, then 2 times with 10% serum. The cells 

were then incubated with secondary ab diluted in 5%serum at a dilution of 1:200 for 1hr at 37C in the 

moist chamber. The cells are then washed 3 times with PBS for 5 mins. Cover slips were mounted with 

Vectashield with DAPI (Vector labs# H-1200).  The images were captured using the Nikon Eclipse Ti -

inverted microscope. 

3.10 Immunohistochemistry 

The slides with OCT (VWR, #102094-106) sections was first air dried for 5 mins. The sections 

were fixed in pre-chilled methanol containing 0.3%H2O2 for 10 minutes at -20 °C. Its then washed in PBS 

for 5 mins. The sections are incubated for 20 minutes with diluted normal blocking serum which was 

prepared from the species in which the secondary antibody is made. Blot the excess serum from the 

section. sections are incubated for 30 minutes with primary antiserum diluted in PBS. The slides are then 

washed in PBS for 5 mins. The sections are then incubated with biotinylated secondary antibody for 30 

mins. The slide is then washed in PBS for 5 mins. The slide is the incubated for 30 minutes with 

VECTASTAIN® ABC Reagent (Vector labs, PK-6100). The reagent is made and let to stand for 30 mins 

before use. The slides are then washed in PBS for 5 mins. The sections are then incubated in peroxidase 

substrate for until desired intensity is achieved (The substrate solution should be made just before use). 

slides are then immersed in tap water for 2 minutes to get rid of PBS residue, otherwise you may get high 
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pink background after hematoxylin counterstaining. Its counterstained with Gill’s formula hematoxylin 

for 10 to 20 seconds. slides are then immersed in bluing solution for 1 minute (Bluing solution: 1.5 ml 

NH4OH (30% stock) + 98.5 ml of 70% ethanol), then rinsed in tap water. Immerse into 100% ethanol for 

5 minutes and airdry. Then in xylene for 6 mins and air dry. The coverslip is mounted using permount 

mounting medium. Both positive and negative controls are one single slide. 

3.11 TUNEL assay 

The TUNEL assay was performed using the DeadEnd colorimetric TUNEL system from Promega 

(# G7130). Both the control and test sample sections are located on the same slide.  The slide is immersed 

in 0.85% NaCl for 5 mins at room temperature. The slide is then washed in PBS for 5 mins at RT. The 

sections are then fixed in 4% paraformaldehyde for 15 mins at RT. The slides are immersed in PBS for 5 

mins and repeated.100ul of 20ug/ml proteinase K is added to the tissue sections and incubated for 30 

mins at RT. The slide is washed in PBS for 5 mins at RT. The slide is re-fixed and immersed in PBS for 5 

mins. The sections are then incubated in the equilibration buffer for 10 mins at RT. The biotinylated 

nucleotide mix is thawed on ice and the rTdT reaction mixture is prepared. Each section was covered in 

100ul of reaction mixture (98ul equilibration buffer+ 1ul nucleotide mix+1ul rTdT). For negative 

controls, the rTdT is replaced by deionized water. The slides are incubated in a humidified chamber at 

37C for 1hr.The reaction is terminated by immersing it in 2x SSC for 15 mins at RT. The slide is washed 

in PBS for 5 mins,3 times to remove unincorporated biotinylated nucleotides. Endogenous peroxidases 

are blocked by immersing the slide in 0.3% hydrogen peroxidase solution. It is washed in PBS for 5mins 

3 times. The streptavidin solution is diluted in PBS 1:500 and 100ul is added to each section. The slide is 

incubated for 30mins.the slide is then washed in PBS for 5 mins ,3 times each. The DAB solution should 

be prepared just before use and kept away from light.50ul of DAB buffer is added to 950ul of ionized 

water.50ul of chromogen and 50ul of hydrogen peroxidase is then added to the buffer solution.100ul of 
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this solution is added to each section. The sections are incubated until the desired intensity is achieved. 

The slide is rinsed in water several times and cover slip is mounted.  

3.12  Adenovirus Transfection  

Adenovirus was grown in HEK 293 T cells and harvested. The cells were grown in 10cm dishes 

and let to reach a confluency of 80%. Once the cells had reached the desired confluency, they were 

infected with the virus. The virus positive cells were positive for GFP. The cells were monitored and 

expanded when enough GFP signal was detected(~48 hrs).The virus was expanded in a similar manner to 

5 – 10cm dishes.For harvesting, the cells were collected in a 50ml conical tube.They were pelleted at 

1000rpm for 10mins.The supernantant was discarded.The cells were rinsed in PBS and pelleted at 

1000rpm for 10mins. The cells were resuspended in 10mM Tris, pH 8.1(1ml for each 10cm dish).The 

cells were then lysed in ice/water bath at 37C. This step was repeated a total of 3 times.It was then 

centrifuges at 12000rpm for 10 mins.The supernatant is discarded. The virus is stored at -70C.The virus 

was then used to infect PAC1 cells. Once the cells gave desired GFP signal, the cells were treated with 

Thapsigargin and RNA isolated. 

3.13 Plasmid transfection for MYOCD overexpression 

PAC1 cells were grown in 6 wells plates. Cells were plated at a conc. of 10x104 cells/well. They 

were transfected once they reached 80% confluency. Lipofectamine and Plus reagents (Invitrogen) were 

used.1 ug of plasmid DNA was used to transfect cells in each well of the 6 well plate. Plasmid DNA was 

diluted in 210 ul of Opti-mem and 6.3 ul of plus reagent. It is necessary to dilute DNA in medium before 

the reagent to avoid DNA precipitation. In a second tube 4.2ul of lipofectamine is added to 210 ul of 

media. The tubes are incubated for 15 mins at room temperature. The contents of the two tubes are mixed 

and incubated for an additional 30mins at room temperature. During the incubation, the cells medium is 

removed and washed with serum free medium and 1ml of Opti-mem is added to the cells. The 

transfection mix is then added to the wells and put at 37C in the incubator. After 3 hrs. the medium is 
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changed to normal medium (10% FBS). RNA was harvested 72hrs after transfection. Thapsigargin (1uM) 

was added to the treatment wells 24 hrs. before RNA isolation. 

3.14 Plasmid transfection for Luciferase assay 

PAC1 cells were grown in 96 well plates. The cells were plated at a conc. of 7.5x103/well. They 

were transfected once they reached 80% confluency. Lipofectamine and Plus reagents (Invitrogen) were 

used. For the renilla luciferase pRL-CMV vector from Promega (Cat# 2261) was used as internal control. 

The different promoter mutations are detailed in the publication from our previous lab member[100].In 

tube one, to 10ul of media 1ul of plasmid(50ng/ul), 1ul of renilla plasmid(1ng/ul) and 1ul of plus reagent 

is added. In tube two, 10ul of media and 0.5ul of lipofectamine is added. After an initial incubation of 15 

mins at RT, the contents of the two tubes are mixed and incubated for an additional 15 mins. The reaction 

mixture of total 24.5ul is added to each well. After 3 hrs. of incubation another 125.5ul of normal 10% 

FBS medium is added to the wells. Thapsigargin (1uM) was added to the treatment wells 24 Hrs. before 

the assay. 

3.15 Luciferase assay 

The dual luciferase reporter assay system from Promega (Cat# E 1960) was used. All reagents are 

thawed at room temperature for at least 1 hr. 5x passive lysis buffer was diluted to 1x using distilled 

water. Once the cells in 96 well plates are ready after transfection, the cells are washed with PBS and 22ul 

of passive lysis buffer was added to each well. The plate was put on a shaker for 15 mins. 20ul of the 

lysate is transferred to a white 96 well plate to be read in the luminometer. In this assay the activities of 

firefly (Photinus pyralis) and Renilla (Renilla reniformis or sea pansy) luciferases are measured 

sequentially from a single sample. The firefly luciferase reporter is measured first by adding Luciferase 

Assay Reagent II (LAR II) to generate a luminescent signal. After quantifying the firefly luminescence, 

this reaction is quenched, and the Renilla luciferase reaction is initiated simultaneously by adding Stop & 

Glo® Reagent to the same sample. The firefly luciferase value was normalized using the renilla luciferase 
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value. The lyophilized luciferase assay substrate was resuspended in 10ml of luciferase assay buffer II. 

The 50x stop and glo substrate was diluted to 1x using the stop and glo buffer. Both the final reagents 

were used to prime the tubing of the luminometer before the sample was read. Veritas 96 well 

luminometer was used to read the plate. 

3.16 Chemicals 

Thapsigargin (Sigma # T9033) was diluted in DMSO and 10uM stock solution was prepared. 

Thapsigargin was used at a conc. of 1uM. Cytochalasin D (Sigma # C8273-1mg) was dissolved in DMSO 

and used at a final conc. of 1uM. Palmitate solution was made by conjugating it with BSA. Palmitic acid 

(#P0500-10g) and BSA(#A8806-1g) was ordered from Sigma. BSA was dissolved in DMEM to give 

10%FFA BSA. Palmitic acid was dissolved in ethanol to make 200mM stock solution. 40ul of palmitate 

and 1960ul of 10%FFA-BSA was mixed to make a 4mM stock and incubated overnight at 37C to 

conjugate. 

3.17 High Throughput Screening (Performed by Dr. Andrew Fribley’s lab) 

Cell lines and reporters- CHO-K1 cells (ATCC, Manassas, VA) were grown in F-12 medium with 

glutamax (# 31765-035, Life Technologies, Carlsbad, CA), supplemented with penicillin and 

streptomycin in a standard tissue culture incubator at 37 °C with 5% CO2. A pool of cells was transfected 

with pSM445GL4.21luc2P-puro (SM22-luc) and selected with 1.0mg/ml of puromycin for ten days. For 

screening, a single high-expressing clone that provided Z’ values = 0.7 was identified from the pool.                              

Screening - 5000 CHO-SM22-luc reporter cells were plated onto white 96-well tissue culture plates and 

incubated for 16 hours (overnight) at 37 °C, 5% CO2, prior to compound addition. Compounds from the 

MicroSource Spectrum Collection, containing ~2400 biologically well-characterized small molecules and 

natural products including many FDA-approved drugs dissolved at 10mM in DMSO, were added using a 

high-density replication (HDR) tool on a Biomek FX liquid handler (Beckman Coulter, Brea, CA) in a 

0.05ul volume (DMSO concentration = 0.1% in all wells). All compounds were tested as singletons at 
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final concentration of 10mM. 0.3 uM panobinostat (Pano) or an equal volume of DMSO was each added 

to one row of wells on each plate for assay controls. Sixteen hours later the medium was aspirated to 25 ul 

and 25 ul of Bright-Glo (E2620, PromegaCorp, Madison, WI) was added to each well and allowed to 

come to equilibrium at room temperature for 10 minutes. Luminescence was measured on a Flexstation 3 

multi-mode plate reader (Molecular Devices, Sunnyvale, CA). A hit was defined as a compound able to 

induce luciferase to a level ≥120% of the panobinostat control.  

3.18 Statistical analysis 

Data analysis was carried out in the software GraphPad Prism. Graphs show mean with SEM. 

Where appropriate t-tests or one-way ANOVA with Tukey's or Dunnett's post hoc tests were performed. 

Results were considered statistically significant when p<0.05. Statistical significance is indicated with 

asterisks: * denotes p between 0.05 and 0.01, ** denotes p between 0.01 and 0.001, *** denotes p<0.001. 
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DISCUSSION 

Most of the stress signaling mechanisms in the cell are meant to restore homeostasis by diverting 

resources to the injured or stressed area. In many cases though, the signaling due to several reasons might 

become deleterious and the cells need to switch to a damage control mode. The smooth muscle cells 

inhabiting the vessel wall undergo wear and tear due to mechanical stress and various environmental 

stimuli. As a result, various signaling pathways are activated such as inflammation, oxidative stress and 

cyclic strain signaling. When the cells become overwhelmed and need to stop further damage, they signal 

for apoptosis. Apoptosis when unchecked can lead to loss of tissue viability and irreversible functional 

damage. Hence it is necessary to understand the triggers and factors leading to apoptosis under various 

stress mechanisms. Among the various stress responses in the VSMCs, ER stress seems to be one of the 

lesser studied mechanisms. Its activation in a wide range of cardiovascular diseases, warrants the need for 

further analysis. 

Presence of ER stress (ATF 4 and CHOP) and apoptosis was established in our mouse model of 

genetic stress induced aortic aneurysm. Sm22 deletion was made in the Marfan (MFS) mouse to generate 

a Fbn1C1039G/+: Sm22-/- mouse model. SM22 deficiency has been shown to cause decreased vascular 

contractility but otherwise have a normal development. SM22 deficiency by itself does not have any 

significant impact on aneurysm formation. Excessive TGFβ signaling has been shown to contribute to 

aneurysm formation in MFS mice. Deletion of Sm22 in the Marfan mice exacerbated the aneurysm 

formation. Apoptosis of smooth muscle cells is thought to be the primary reason for smooth muscle cell 

loss in aneurysm[73, 74].Consistent with these studies we show presence of ER stress induced apoptosis 

in our mouse model. This also points to the association of ER stress with aortic aneurysm irrespective of 

the etiology. The results also highlight a potential protective role of Sm22α under stress. It suggests that 

under quiescent conditions Sm22α might be compensated but it may play an active role in stress 

conditions.  
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The PERK arm of the ER stress signaling is thought to be the apoptotic arm of the stress process. 

PERK-dependent phosphorylation of eIF2α enhances ATF4 protein levels during ER stress. ATF4 is 

known to induce the pro-apoptotic factor CHOP. Microarray studies have shown that CHOP is the highest 

inducible gene during ER stress. CHOP protein undergoes phosphorylation at Ser78 and Ser81 by p38 

MAP kinase family. Phosphorylation enhances transcriptional activation and elicits a maximal apoptotic 

effect of CHOP[119]. Deletion mutant analysis of CHOP revealed that bZIP domain is important for 

CHOP-induced apoptosis[120, 121]. 

The effect of ER stress induced signaling in smooth muscle cells was studied. The smooth muscle 

cell line PAC1 was treated with a pharmaceutical ER stress inducer thapsigargin. Thapsigargin has been 

established to induce ER stress dependent apoptosis. Thapsigargin induces ER stress by inhibiting 

SERCA and causing ER store depletion of calcium. SM22α is an actin binding cytoskeletal 

protein.SM22α and SMA are characteristic markers for smooth muscle phenotype. The cytoskeletal 

proteins work in tandem with the extracellular proteins to maintain the mechanical and functional 

integrity of the vessel wall. The expression of several cytoskeletal, smooth muscle and ECM genes with 

thapsigargin treatment was observed. At 24 hrs. treatment point significant apoptosis was observed. 

Hence 24hrs was chosen as the maximum treatment time. All the smooth muscle, cytoskeletal and ECM 

genes observed were found to be downregulated at the 24 hrs. treatment time. A time course analysis of 

Sm22 and Sma showed a transient upregulation at 1-6 hrs. treatment time before downregulation. This 

increase in the expression could be a compensatory mechanism of the adaptive phase of the ER stress. 

Studies have shown that the ER depends on the actin cytoskeleton for their morphology and functions like 

ER-Golgi trafficking[122]. These aspects of the ER play a vital role in the ER-UPR. 

Thapsigargin treatment also results in upregulation of ER stress chaperones calreticulin and 

Grp78(Bip). Calreticulin (CRT) is shown to mediate ECM production by TGFβ in fibrotic 

conditions[123]. As mentioned before excessive TGFβ signaling is present in aneurysm of Marfan mouse. 
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ER stress induced CRT might contribute to excessive amounts of ECM deposition, a characteristic of 

synthetic phenotype of VSMCs. 

The ER stress also induced transcription factors like Klf4, Pdgfbb and metalloproteinase like 

Mmp9. These markers contribute to the switch from contractile VSMCs to the synthetic phenotype. The 

VSMCs in the synthetic state secrete increased amounts of extracellular matrix components to repair the 

vessel wall integrity. Another hallmark of the synthetic state is loss of contractile markers. The 

phenotypic modulation though in most cases proceeds to apoptosis. The apoptosis of the smooth muscle 

cells leads to loss of cells in the vessel tissue which leaves it more prone to damage. The phenotypic 

marker Pdgf-bb is known to induce expression of Klf4 through Sp1 binding to the Klf4 promoter[124]. 

Traditionally, Klf4 is known to repress the transcription of smooth muscle markers. KLF4 is known to 

repress the expression of smooth muscle markers through several mechanisms. KLF4 binds the CArG box 

in the Sm22 promoter replacing the Sm22 inducing SRF-MYOCD complex. It also recruits HDAC2 to 

block the SRF complex from binding the promoter. KLF4 also represses the expression of smooth muscle 

master regulator MYOCD. Recent studies however show that the post translational modification of Klf4 

determines its function as enhancer or repressor. The non SUMOylated Klf4 is known to induce the 

expression of smooth muscle genes whereas the SUMOylated form represses the SM gene 

expression[125]. This is probably why we see an increase in the smooth muscle genes accompanied by 

increase in Klf4 expression 

We checked for parallel signaling mechanism that were induced due to ER stress and ones that 

could also induce phenotypic modulation. We found that the inflammation markers Vcam-1 and Ccl2 

were upregulated. Vcam-1 is a cell adhesion molecule. Cell adhesion molecules are transmembrane 

glycoproteins that mediate cell-cell and cell-extracellular matrix interactions. Ccl-2 is a chemokine. 

Chemokines are a superfamily of secreted proteins involved in inflammation and immunoregulation. In 

cardiac cell Ccl-2 manifests a protective effect by induction of ER stress chaperones. Prolonged exposure 
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to CCL-2 breaks down the protection and results in heart failure[126, 127]. Hence a pre-existing 

inflammation may trigger ER stress as a repair mechanism but may turn pathogenic. The inflammation -

ER stress loop results in extreme response mechanism and ultimately apoptosis. Along with inflammatory 

markers, osteogenic markers were also found to be upregulated. The various osteogenic markers were 

Runx2, Msx 2, Ocn and Pit-1. Runx2 is a transcription factor whose targets include Ocn. Msx2 is also a 

transcription factor contributing to the vascular calcification. Runx2 and Msx2 regulate expression of 

many ECM genes. Pit-1 is a sodium dependent phosphate transporter whose expression along with Runx2 

and Ocn is mediated by the ER stress induced transcription factor Atf4. Spliced XBP1 is also known to 

mediate Runx2 expression[128] 

As discussed earlier all these inflammatory and osteogenic markers contribute directly or 

indirectly to the repression of the contractile markers. Mutational analysis of the Sm22 promoter 

confirmed that many of the cis acting elements in its promoter are involved in its downregulation under 

ER stress. We hypothesized that the downregulation of SM22 contributed to more severe inflammation 

and ER stress as part of the loop mechanism. This was based on published data from our previous lab 

members[22] and confirmed by independent studies[105]. These studies showed SM22 deficiency caused 

inflammation and oxidative stress. We overexpressed SM22 by adenovirus under the ER stress condition 

and found that it could reduce the expression ER stress and inflammation markers. 

Myocardin is known to be the master regulator of smooth muscle genes and myocardin itself is 

downregulated under ER stress. We overexpressed myocardin to see if it would rescue the SM22 

downregulation and dependent pathogenic signaling. Myocardin reduced the downregulation of SM22 in 

all the promoter mutants. Myocardin overexpression reduced Vcam-1 expression but not Ccl-2 or the ER 

stress markers. 

Another aspect of the regulation of contractile markers is the cytoskeletal dynamics. Apart from 

the gene expression, the state of the contractile protein also plays a key role in the signaling process. 
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Sm22 deficiency can collapse the actin cytoskeleton and induce oxidative stress. We used an actin 

depolymerizer cytochalasin D to treat the cells. We found that depolymerizing the actin cytoskeleton was 

sufficient to induce ER stress. The oxidative stress induced due to the actin cytoskeleton collapse could be 

the trigger for inducing ER stress. Adding the depolymerizers along with thapsigargin leads to a higher 

stress response. Another contributing factor is the availability of G-actin. G actin can bind to factors like 

PP1/GADD34 complex to dephosphorylate elF2α and resume global protein translation prematurely. This 

leads to termination of the adaptive phase of the response before the problem has been resolved causing 

higher stress. 

We show that SM22 plays a protective role in the ER stress process and upregulating its 

expression might help downregulate other pathogenic signaling like inflammation and osteogenesis. A 

drug screen was therefore carried out to identify compounds that could increase Sm22 expression. The 

compounds that scored the highest in the drug screen belonged to the group of phytoestrogens called 

isoflavonoids and its metabolites. This class of compounds is known to repress the expression of 

cytochrome P450.Sm22 deficiency is also known to increase cytochrome P450 expression. Hence it could 

be a potential mechanism through which flavonoids increase Sm22 mechanism. Biochanin A, a 

phytoestrogen was chosen to validate the result in the fibroblast cell line, a SMC precursor. Biochanin A 

upregulated Sm22 expression at gene and protein level. The screen is strengthened by studies that show 

the anti-inflammatory role of biochanin A against LPS induced inflammation[113]. Hence Sm22 might be 

a potential drug target to attenuate the pathogenic effects of ER stress. 
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Figure 22: Working model of Sm22 regulation under the ER stress and role of inflammation and 

osteogenic pathways activated under ER stress. The ER stress transducers IREα and PERK activate 

signaling that leads to repression of Sm22 expression. 1)PERK phosphorylates elF2α which activates a 

translational attenuation. This attenuation causes reduced IkBα and SM22 that sequester NF-kB in a 

complex. The free NF-kB translocates to the nucleus to repress Sm22 expression and induce 

expression of inflammatory markers. The Sm22 repression by NFkB then works in a loop mechanism 

to increase translocation of NFkB. 2-3) Downstream to PERK and elF2α is ATF4. ATF4 induces the 

expression of RUNX2 and KLF4. RUNX2 represses MYOCD, the master regulator (positive) of Sm22 

expression. RUNX2 also displaces the SRF-MYOCD complex form the CArG box leading to reduced 

Sm22 expression. RUNX2 also induces the expression of osteogenic markers. XBP1 downstream to 

IREα induces RUNX2. KLF4 works in comparable manner by repressing MYOCD and displacing the 

SRF-MYOCD complex. ATF4 also induces PIT-1 which represses Sm22 by methylating its promoter. 
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CONCLUSION 

Cardiovascular diseases (CVDs) are a major health and economic burden globally.It is estimated 

that >1 in 3 American adults have CVD. Often a person will have more than 1 type of CVD due to 

interdependent complications.Data from 2013 shows that ~2200 people die of CVD every day, averaging 

to one every 40 secs [129].It is estimated that if all the forms of CVD are eliminated the life expectancy 

could rise by 7 years[130]. It is therefore of utmost importance to find therapies to treat these pathologies. 

The CVDs are complicated by a number of secondary signaling processes like inflammation and 

vascular calcification. These symptoms are called atherogenic, indicating the development of 

atherosclerosis. Aortic aneurysms are often accompanied by inflammation and atherosclerosis. This 

subtype is often referred to as the atherosclerotic aneurysm[131].The pathology also differs between TAA 

and AAA due their embryonic origin. The SMCs of the AA retain the genetic programming of the 

embryonic state whereas the SMCs in the thoracic area are populated by cells that can adapt better to the 

rigour and stress of the blood pressure. Hence the cells from these two regions also differ in their response 

to different stimuli[132]. Therefore understanding the pathology at the molecular level is vital. 

The smooth muscle cells are the predominant cell type involved in these pathologies and hence 

the focus is on the unique repertoire of contractile genes that these cells express.The dynamic nature of 

the cells in regulating the expression pattern of these genes is a double edged sword.The phenotypic 

modulation of the cells under stress results in reduced expression of the contractile  markers and increased 

expression of inflammatory and osteogenic markers that lead the cells to apoptosis. The ER stress is a 

multitier signaling pathway. The two phase ER stress response  may be useful to find a time point to 

intervene and stop the adaptive UPR from becoming apoptotic. The downregulation of SM22α under ER 

stress may not be just a passive outcome. Overexpression of SM22 reduced inflammation and ER stress 

markers. It is also regulated by a number of pathways, so there might be more than one path to regulate 

SM22 expression, which gives it an advantage as a therapeutic target. Our drug screen identified 
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phytoestrogens as positive regulators for Sm22 expression.Given that these candidates are natural 

compounds and present in small quantities in the common foods, the chances of toxicity are greatly 

reduced. This might be a benfit for the therapeutic development. 
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FUTURE DIRECTIONS 

Our work shows that the ER stress signaling and the gene regulation of Sm22 is a multitier 

complex signaling cascade. We mainly focussed on the gene expression patterns and gene regulation but 

the ER stress is regulated at many different levels. Role of miRNAs in the stress response is an emerging 

field. miRNAs are small non-coding RNAs that silence RNA and function as post-translational gene 

regulation. Several miRNAs have been identified that work as the stress sensors or regulate other 

trancriptional factors of  ER stress.MiR-211 was shown to be directly induced by PERK[133].MiR-702 

was found to regulate ATF6[134]. So studying the regulatory role of miRNAs under the stress response 

would open up the doors to deeper signaling pathways. 

Another aspect of the project that needs  attention is the epigenetic regulation.As dicussed before 

KLF4 recruits HDAC2 to block the SRF binding to CArG box. Pit-1 also downregulates Sm22 expression 

by methylating the Sm22 promoter. Also the histone acetyltransferase enzyme p300 is recruited to the 

Grp78 promoter under ER stress. It then acetylates histone H4 to activate its expression[135].These are 

just a few examples.The contribution of epigenetics and chromatin remodelling play a very significant 

role in the stress response. 

Another layer of regulation that needs to be taken into account is the post translational 

modification of different proteins involved in the signaling process.SM22α phosphorylation has been 

shown to be the link between actin cytoskeletal remodelling and oxidative stress[136].Though the major 

trasnscritption factors like elF2α have been studied , the downstream proteins still need to be explored in 

detail. 

The newly emerging field though is the exosome biology. Studies have shown that phenotypically 

modulated VSMCs show increased secretion of exosomes.These contain miRNA for inflammatory and 

osteogenic signals.Exosome biogenesis is not clearly understood in this aspect and might be an important 

therapeutic target[137]. 
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Figure 23: Diagrammatic representation of future directions for the project- ER stress in 

VSMCs.1) Drug screen validation- Only one of the drug screen candidate Biochanin A was validated 

in the 10T1/2 fibroblast cell line. Other isoflavones and flavones need to be tested for activation of 

Sm22 expression in the fibroblast cells or stresses VSMCs.2) Epigenetic regulation- KLF4 is known to 

recruit HDAC2 to the CArG site to displace the SRF-MYOCD complex, repressing the expression of 

Sm22.PIT-1 also represses Sm22 expression by methylating its promoter. Hence epigenetic regulation 

might be an important regulation pathway.3) Post translational modification of cytoskeletal proteins- 

AngII has been shown to induce ROS by phosphorylating SM22. How ER stress modifies SM22 post 

translationally might be crucial in the stress response.4) Several miRNAs have been implicated in the 

regulation of the factors involved in the stress process.5) Recent studies have shown that VSMC 

exosomes might play a significant role in calcification of the tissue. Therefore, this novel aspect of 

signaling might be a good direction for the project to move forward.6) Effect of physiological ER 

stress inducers on smooth muscle phenotypic modulation. Physiological stress inducers might be 

clinically relevant to the pathology and hence might be an important aspect of the ER stress project. 
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ABBREVIATIONS 

10T1/2, mouse fibroblast cell line 

ACTA2, smooth muscle α actin; 

ATF4, Activating transcription factor 4 

ATF6, Activating transcription factor 6; 

BCA, Biochanin A; 

bp, base pairs; 

CArG, CC(A/T)6GG; 

CCL2, monocyte chemotactic protein 1; 

cDNA, complimentary DNA; 

CHO cells, Chinese hamster ovary cells; 

CHOP, C/EBP homologous protein; 

CNN1, calponin 1; 

Cyp2e1, cytochrome P450 2e1 

CVD, cardiovascular disease; 

CytoD, cytochalasin D; 

DAPI, 4',6-diamidino-2-phenylindole; 

DMEM, Dulbecco's Modified Eagle's medium; 

ECM, extracellular matrix; 

elF2α, Eukaryotic Initiation Factor 2 α; 

ER, endoplasmic reticulum; 

FBS, fetal bovine serum; 

G/F – actin, globular actin /filamentous actin; 
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GADD34, Growth Arrest And DNA-Damage-Inducible34 

GAPDH, glyceraldehyde 3-phosphate dehydrogenase; 

IF, immunofluorescence; 

IHC, immunohistochemistry 

IKB, I-kappa-B; 

IKK, IκB kinase; 

KLF4, kruppel like factor 4; 

LPS, lipopolysaccharides; 

MMP9, matrix metalloproteinase 9 

MSX2, muscle segment homeobox 2; 

MYH11, smooth muscle myosin heavy chain; 

MYOCD, myocardin; 

NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; 

OCN, osteocalcin; 

OCT, optimal cutting temperature compound; 

PAC1, a pulmonary arterial SMC cell line; 

PBS, phosphate-buffered saline; 

PERK, PRKR-Like Endoplasmic Reticulum Kinase; 

Pit-1, The sodium-dependent phosphate cotransporter; 

PP1, Protein phosphatase 1; 

PPARγ, Peroxisome proliferator-activated receptor gamma; 

PPP1R15A, Protein Phosphatase 1 Regulatory Subunit 15A 

rtRT-PCR, real-time RT-PCR; 

RUNX2, Runt-related transcription factor 2 
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ROS, reactive oxygen species; 

SBE, smad binding element; 

siRNA, small interfering RNA; 

Sm22-/-, Sm22 knockout; 

Sm22+/+, Sm22 wild type; 

TAGLN 2, transgelin 2 

TCE, TGFβ control element 

Tg, Thapsigargin; 

TUBB, tubulin beta 

TUNEL, Terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling; 

UPR, unfolded protein response 

UTR, untranslated region; 

SMA, smooth muscle α actin; 

SMC, smooth muscle cell; 

snRNA, small nuclear RNA; 

SRF, serum response factor; 

VCAM1, vascular cell adhesion molecule 1; 

VIM, vimentin; 

VSMC, vascular smooth muscle cell; 

WB, western blotting. 
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Background: The vascular smooth muscle cells(VSMC) possess the ability to differentiate into a 

synthetic phenotype in response to stress. This phenotypic modulation may be accompanied by 

inflammatory or osteogenic response in chronic stress. The synthetic state is characterized by low levels 

of contractile markers unlike the differentiated state. 

Hypothesis: Endoplasmic reticulum (ER) stress causes phenotypic modulation in VSMCs leading to 

apoptosis. Many transcription factors induced by ER stress contribute to the downregulation of Sm22α. 

Perturbation in cytoskeletal dynamics exacerbates the ER stress response. 

Methods: Ex-vivo culture was used to establish importance of Sm22 in ER stress. In vitro analysis was 

carried out in PAC1 cells to elucidate the signaling induces by ER stress in smooth muscle cells and its 

contribution to the downregulation of Sm22α. 

Results: ER stress caused a transient upregulation of smooth muscle markers during 1-6 hrs. of treatment 

with the ER stress inducer thapsigargin. The downregulation of contractile markers at 24hour of 
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thapsigargin treatment was accompanied by upregulation of phenotypic regulators- Klf4, Mmp9 and Pdgf-

bb, inflammatory markers Vacm-1 and Ccl-2 and osteogenic markers-Runx2, Msx2, Ocn and Pit-1. 

Overexpression of SM22 reduced the expression of ER stress markers (Atf4 and Chop) and inflammation 

marker (Ccl-2). Myocardin overexpression could reduce the downregulation of SM22α. Promoter analysis 

of Sm22α showed that all the cis acting elements were involved in its downregulation under ER stress. As 

our results indicated a protected role of SM22α under ER stress conditions, a drug screen was carried out 

to identify potential regulators of Sm22α.The screen identified isoflavonoids as positive regulators for 

Sm22α expression. Biochanin A, a candidate from the drug screen was subsequently validated in the 

fibroblast cell line 

Conclusion: SM22α plays a protective role in the ER stress condition. Many of the ER stress induced 

factors associate with different cis acting elements in the Sm22α promoter to repress it. Sm22α could be a 

potential drug target to reduce the pathogenic effects of ER stress in cardiovascular diseases. Preliminary 

drug screen suggests that the phytoestrogens – flavonoids and isoflavonoids could be potential candidates 

with therapeutic benefits.  
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