
Wayne State University

Wayne State University Dissertations

1-1-2017

Toward Human-Like Automated Driving:
Learning Spacing Profiles From Human Driving
Data
Syed Ali
Wayne State University,

Follow this and additional works at: https://digitalcommons.wayne.edu/oa_dissertations

Part of the Other Mechanical Engineering Commons

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in
Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Ali, Syed, "Toward Human-Like Automated Driving: Learning Spacing Profiles From Human Driving Data" (2017). Wayne State
University Dissertations. 1774.
https://digitalcommons.wayne.edu/oa_dissertations/1774

http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1774&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1774&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1774&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1774&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/304?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1774&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/oa_dissertations/1774?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1774&utm_medium=PDF&utm_campaign=PDFCoverPages


TOWARDS	HUMAN-LIKE	AUTOMATED	DRIVING:	
LEARNING	SPACING	PROFILES	FROM	HUMAN	DRIVING	DATA	

by

SYED ALI

DISSERTATION

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

2017

MAJOR:  Computer Engineering

Approved By:

_______________________________
Advisor                                               Date

________________________

________________________

________________________



© COPYRIGHT BY
SYED ALI

2017
All Rights Reserved

	



ii

DEDICATION	

      To my parents, wife and daughter



iii

ACKNOWLEDGEMENTS	
First and foremost, I would like to thank my committee members; Dr. Abhilash Pandya,

Dr. Le Yi Wang, Dr. Darin Ellis and Dr. Feng Lin for their guidance in this research. Special thanks

to Dr. Abhilash Pandya for his support and guidance from the first day I walked into his lab

through the past several years, and for his support in directing this research. Thanks to my

colleagues at DENSO and at General Motors for all their support and encouragement. I wanted

to acknowledge Dr. Shawn Hunt for his support and guidance in formulating the research

problem. Special thanks to all the CARES team members for providing critical feedback on the

research material.

Lastly, but most importantly, I wanted to thank my entire family for their unconditional

support and encouragement through this journey. Every one of you had a positive impact and

were a source of support throughout this journey.



iv

TABLE	OF	CONTENTS	
Dedication ..................................................................................................................................ii

Acknowledgements ................................................................................................................... iii

List of Figures........................................................................................................................... viii

Chapter 1: Introduction and Motivation ....................................................................................1

1.1 Motivation......................................................................................................................2

1.2 Research Aim..................................................................................................................4

1.3 Specific Research Objectives...........................................................................................6

1.4 Dissertation Outline........................................................................................................8

Chapter 2: Background ...............................................................................................................9

2.1 Relevant Literature .........................................................................................................9

2.2 Automated Vehicle System Overview ...........................................................................10

2.3 Human-Like Path Formulation and Path Following .......................................................13

 Trajectory as an Optimization Problem ...............................................................14

 Learning Techniques Applied to Driving and Path Selection ................................18

2.4 Chapter Summary .........................................................................................................23

Chapter 3: Research Enabling Test Platform: Tools and Techniques ........................................25

3.1 Physical Test Platform ..................................................................................................25

 Test Track ...........................................................................................................25



v

 Test Track Map ...................................................................................................26

 Acquiring Vehicle Pose and Motion Information .................................................29

 Data logging........................................................................................................35

3.2 Data Pre-processing......................................................................................................38

 Correlating Data Samples ...................................................................................38

 Calculating Lateral Offset and Road Radius .........................................................40

 Lane Change Active Flag .....................................................................................42

 Time-To -Collision ...............................................................................................42

 Tying it all Together ............................................................................................43

3.3 Simulation Test Platform ..............................................................................................45

 Modeling Road Environment ..............................................................................47

 Modeling Vehicle Dynamics ................................................................................48

 Simulating a Driving Scenario with Obstacle .......................................................50

3.4 Chapter Summary .........................................................................................................52

Chapter 4: Learning from Human Driving Data.........................................................................54

4.1 Collecting Human Driving Data .....................................................................................54

 The Driving Task .................................................................................................54

 Positioning of Target Vehicles on the Test Track .................................................55

4.2 Data Attribute Reduction..............................................................................................59



vi

4.3 Feature Scaling .............................................................................................................64

4.4 Feature Selection..........................................................................................................65

4.5 Model Selection and Training .......................................................................................68

 Selecting an Appropriate Learning Algorithm for a Problem ...............................68

 Metrics to Evaluate Model Performance.............................................................71

 Comparing Model Performance ..........................................................................73

 Model Training ...................................................................................................75

4.6 Spacing Profile as a Constrained Optimization Problem ................................................75

4.7 Chapter Summary .........................................................................................................77

Chapter 5: Results and Discussion ............................................................................................79

5.1 Spacing Profile as a Constrained Optimization Problem versus a Learning Problem ......79

5.2 Metrics to Measure Similarity between Predicted and Observed Data .........................80

 Cross-Correlation ................................................................................................81

 Coefficient of Variation .......................................................................................82

5.3 Performance for Retained Data Samples ......................................................................83

 Test Data 1: Straight-West ..................................................................................85

 Test Data 2: Straight-to-curve - South .................................................................87

 Test Data 3: curve-to-straight-North ...................................................................88

 Test Data 4: straight-to-curve-North ...................................................................89



vii

 Test Data 5: in-curve-North ................................................................................90

 Test Data 6: curve-to-straight-South ...................................................................91

5.4 Discussion on Model Performance for Test Data ..........................................................92

5.5 Conclusion ....................................................................................................................95

Chapter 6: Research Contributions and Future Work ...............................................................97

6.1 Summary of Contributions ............................................................................................97

6.2 Limitations of this Research and Future Work ..............................................................98

Appendix A: Vehicle Kinematic Model ................................................................................... 101

Appendix B: Lateral Vehicle Dynamics Model ........................................................................ 106

Appendix C: Research Information Sheet ............................................................................... 110

References .............................................................................................................................. 113

Abstract .................................................................................................................................. 122

Autobiographical Statement .................................................................................................. 124



viii

LIST	OF	FIGURES	
Figure 1: The automated vehicle (blue) intending to make a left turn. The driver of the automated

vehicle has his own expectation of what gap size for oncoming traffic is safe before
initiating left turn. Similarly, the driver of the vehicle on the oncoming lane has his
own perception of what is a safe and acceptable gap for the AV to make a turn in
front of it. ...............................................................................................................3

Figure 2: Vehicle increasing its space from an oversized truck traveling in neighboring lane (top).
Stopped cars in the neighboring lane(bottom). Drivers in the neighboring lane
typically tend to increase spacing and slow down or even switch lanes in
anticipation of someone cutting in from the stopped lane. ....................................4

Figure 3: The driver of the ego-vehicle (blue) changing lane for a stationary vehicle(white) in lane.
The overall spacing profile consisting of lateral spacing along the travel direction
that the ego-vehicle kept from the target vehicle is shown in red. This research
aimed to learn the spacing profile of the ego-vehicle driver from the stationary
target vehicle. ........................................................................................................5

Figure 4: Relevant technical areas in understanding Human-Centric Automated Driving. ............9

Figure 5: A simplified overview of Automated Vehicle Architecture. The Sensing and Perception
system feeds in environmental information such as sensed objects, their perceived
intended path, range of sensing and quality of sensed information among others.
The Planning and Behavior system plans a path considering several aspects within
its understanding such as human-like driving and passes on trajectory information
to the control system. The control system provides commands for the lateral and
longitudinal control of the vehicle by considering motion commands from the AV
system as well as the inputs from the driver. ........................................................10

Figure 6: Driving space represented as a cost map. The cells that were predicted to be occupied
based on the detection and motion estimation of preceding vehicle represented
with a high cost (shown in red), whereas cells with low probability of being occupied
by preceding vehicle based on its perceived motion represented with a lower cost
(shown in orange). ...............................................................................................12

Figure 7: Lead vehicle reference path (red-dashed line) and optimized ego-vehicle path (black-
solid line). The distance from obstacle and lateral acceleration were costs
considered while trying to follow the lead-vehicle’s path. ....................................17

Figure 8:Learning from demonstration framework [21]. The policy set π is derived by observing
teacher demonstrations for a state set. The learned policy is applied to perform
actions (a’) by observing state pair (z’) of the world. ............................................18



ix

Figure 9: Hand-tuning versus learning system. System performance comparison for perception
and planning using hand tuning vs. learning [23] ..................................................19

Figure 10: Human-like driving in a traffic-free environment consisting of a  learning component
that learns parameters from human driving data and the planning component that
generates a trajectory based on learned parameters [24] ....................................20

Figure 11: Speed model for a tight curve 21.............................................................. [24]	ݐℎ݃݅ݐܯ

Figure 12: Driver speed profile versus learned speed profile while traveling path of a given
curvature [24] ......................................................................................................22

Figure 13:Observed (blue) versus generated trajectory (red) from learning policy [25]. ............23

Figure 14: Two lane oval test track at Fowlerville Proving grounds of FT Techno of America .....26

Figure 15: Lane attribute definition along the road. The inner solid line of the right lane (along
the travel direction) – labelled line 1, center dashed line – lane 2 and the outer solid
line of the left lane – line 3. Attributes measured along the road cross section at
each of the lane line marks were latitude, longitude, altitude and radius. ............27

Figure  16:  GPS  map  of  the  test  track  lanes  shown  in  UTM  coordinates,  with  zoomed  in  view
showing the lane lines (right) ...............................................................................28

Figure 17: Center point between p(1,i) and p(2,i), also defined as the inner-lane centerline used
as the zero lateral offset. ......................................................................................29

Figure 18: A simple illustration to understand GNSS-based position resolution [28]. (a) Knowing
our range from point A, we can only know that we are somewhere around this point
along the sphere of radius equal to the range. (b,c) We can resolve our position
ambiguity by knowing our range from points B and C. ..........................................31

Figure 19: GNSS Signal Propagation [28]. Satellite A’s signal is blocked by the infrastructure
surrounding the receiver, whereas multipath signal propagation is being seen by
the signal from Satellite B. ....................................................................................32

Figure 20: RT 3003 by OxTS (left). Vehicle frame definition (right) with X facing forward, positive
Y to the right of vehicle (passenger-side) and positive Z as downwards into the
ground. ................................................................................................................33

Figure 21: RT 3003 vehicle installation. Primary and secondary antennas can be installed on the
roof using magnetic mounts (left), whereas the RT can be installed in the rear
passenger area using a strut provided by OxTS for temporary installations. .........34

Figure 22: RT 3003 setup. The RT unit operating in RTK mode with a local base station corrections
received over a wireless link. The system processes and outputs motion and pose



x

data at 100Hz via CAN. The CAN data can be logged on a PC using Vector CANtech
hardware and software. .......................................................................................36

Figure 23: Database configuration (dbc) file for a subset of messages provided by RT 3003 ......36

Figure 24: Data sample of an RT log from two different vehicles plotted on a test track map. The
data samples from the two vehicles were time aligned using GPS time. ...............39

Figure 25: Calculating the distance to inner lane center and extracting the radius of the road. .41

Figure 26: Distance calculation to target vehicle. Distance between the two vehicles is calculated
based on the Euclidean distance between the origin of RT units in each vehicle...43

Figure 27: Plot of various data attributes to help analyze the data more effectively. (a) Ego-vehicle
lateral offset(m), with data point labelled where the ego vehicle TTC from the target
vehicle was 0. (b) Ego-vehicle lateral offset(m) from the target vehicle rear. (c) Ego-
vehicle lateral offset from target vehicle center. (d) Ego-vehicle speed (mps). (e)
Ego-vehicle lateral acceleration (mps2). (f) Ego-vehicle radius while crossing target
vehicle. (g)Ego-vehicle TTC, with lane change start and end points highlighted. (h)
Simulated ideal radar sensor showing when the target was in Field of View, (i) Lane
change active flag .................................................................................................44

Figure 28: Key aspects to consider when simulating a driving environment ..............................46

Figure 29: Simulated Test Track in PreScan (Top). Zoomed-in view of the road model of the East
section of the track (bottom-left). Also shown are some of the editable properties
of the road, such as number of lanes, lane width, lane mark type etc. (bottom-right).
 .............................................................................................................................48

Figure 30: Vehicle dynamics models in PreScan [12]. The 2D model uses a bicycle model combined
with a vehicle  roll  model.  The 3D model  on the other hand had a more detailed
vehicle model representation with 10DoF between spring and unsprung masses.
 .............................................................................................................................49

Figure 31: Simulated driving scene in PreScan to capture initial sample data to review the driving
dynamics under various scenarios and to prepare the software processing
environment for actual test data. (1) Ego-vehicle approaching target vehicle while
traveling in the inner lane. (2)-(3) Ego-vehicle changing lane to pass the target
vehicle. (4) Ego-vehicle returned to inner lane. ....................................................51

Figure 32: Simulated vehicle data. Input velocity (top left) and steering angle (top right), vehicle
longitudinal (bottom left) and lateral accelerations (bottom right) while following
the commanded steering. ....................................................................................52

Figure 33: The driving scenario used in this study. The driver was asked to the drive ego-vehicle
in the inner lane at a pre-defined velocity, change lane as deemed safe and



xi

comfortable when the target vehicle was encountered in the lane and return to the
inner lane when deemed safe after passing the target vehicle. ............................55

Figure 34: Test track sections created based on road radius trend.  Target vehicle 1 was positioned
at locations within sections I, II, III and VIII, while target vehicle 2 was positioned at
locations within sections IV, V, VI and VII..............................................................56

Figure 35: The arithmetic mean of the velocities for the drive samples. ....................................57

Figure 36: Target vehicle (1 and 2) positions on the track, with an underlay of samples of the ego-
vehicle driving path in cyan color. ........................................................................58

Figure 37: Selected samples of the drive data with the ego-vehicle making a lane change and
passing by the target vehicle shown from various sections of the track. ...............58

Figure 38: As part of the data attribute reduction, the driving data set was reduced from the
original captured set of 37 attributes to a subset of 13. The information provided by
some of the data attributes that were initially captured and did not make it to this
list, were retained by the transformed predictors. Other attributes that did not
make it to this set were deemed not significant in providing information for the
driving case being studied. ...................................................................................62

Figure 39: Ego-vehicle making a lane change for an unplanned obstacle (shown in red) on the test
track prior to coming back to the inner lane and making a lane change for the target
vehicle. Since pose and motion data for this unplanned vehicle were not
represented in the predictor set, using this segment of data for training can
adversely affect the learned model’s performance as there is no predictor
supporting the reasoning as to why the ego-vehicle made this lane change. ........63

Figure 40: An excerpt from the data log highlighting data samples that were removed from the
training set as part of pre-processing step due to erroneous data. .......................64

Figure 41: Evaluating model performance against various combinations of predictors. root mean
square error was used to evaluate model performance. A selected combination of
4 predictors (green) provided the best model performance. ................................66

Figure 42: Tradeoff between a learning algorithm’s flexibility and its interpretability [46]. .......68

Figure 43: Summary of Learning Algorithms and some of their characteristics [44]. ..................70

Figure 44: Performance of various models measured by comparing the predicted to the observed
values, measured in terms of MSE, RMSE and R2 using 5-fold cross validation. The
model built using bagged trees provided the best performance. ..........................74

Figure  45:  Six  of  the  data  samples  were  held  back  as  test  set,  one  from  each  of  the  labelled
sections ................................................................................................................75



xii

Figure 46:Comparison of optimized versus predicted path. (Top)Optimized path with center of
lane as desired path, without TTC as a cost, (bottom) optimized path with center of
lane as desired path with TTC included as cost. ....................................................80

Figure 47: (top) Reference driving data sample and the same sample shifted to the right by 300
samples, (bottom) max correlation observed at time delay of 300 samples, whcih
was the shift applied to the reference data. .........................................................82

Figure 48: TTC versus lateral offset for four different drive samples. Data samples 6 and 23 have
very  similar  trends  and  dispersion,  hence  close  CV  values  of  0.54  and  0.52
respectively. .........................................................................................................83

Figure 49: A detailed illustration of how to interpret the plots that will be presented later in this
chapter. ................................................................................................................84

Figure 50: Test data 1 -(a)This sample was selected from straight-West, section V of the road. The
ego-vehicle was driving straight while making the lane change for the target vehicle.
(b) Average velocity for this sample was 86.81 KPH. Ego-vehicle velocity(left) and
lateral acceleration profile (right). (c) (top) Observed versus predicted lateral offset
compared with sample's own group in gray and (bottom) compared with all the data
samples from all groups .......................................................................................86

Figure 51: Test data 2 -(a)This sample was selected from straight-To-Curve, section II of the road.
The ego-vehicle was getting into the curve while making the lane change to the
target vehicle. (b) Average velocity for this sample was 82.89 KPH. Ego-vehicle
velocity(left) and lateral acceleration profile (right). (c) (top) Observed versus
predicted lateral offset compared with sample's own group in gray and (bottom)
compared with all the data samples from all groups. ...........................................87

Figure 52:  Test  data 3 -(a)This  sample was selected from Curve-To-straight,  section VIII  of  the
road. The ego-vehicle was driving out of the curve before making the lane change
for  the  target  vehicle.  (b)  Average  velocity  for  this  sample  was  86.66  KPH.  Ego-
vehicle velocity(left) and lateral acceleration profile (right). (c) (top) Observed
versus predicted lateral offset compared with sample's own group in gray and
(bottom) compared with all the data samples from all groups..............................88

Figure 53: Test data 4 -(a)This sample was selected from the Straight-To-Curve, section VI of the
road. The ego-vehicle was driving into the curve while making the lane change for
the target vehicle. (b) Average velocity for this sample was 87.75 KPH. Ego-vehicle
velocity(left) and lateral acceleration profile (right). (c) (top) Observed versus
predicted lateral offset compared with sample's own group in gray and (bottom)
compared with all the data samples from all groups. ...........................................89

Figure 54: Test data 5 -(a)This sample was selected from the in-curve, section VII of the road. The
ego-vehicle was driving into the curve while making the lane change for the target



xiii

vehicle. (b) Average velocity for this sample was 90.24 KPH. Ego-vehicle
velocity(left) and lateral acceleration profile (right). (c) (top) Observed versus
predicted lateral offset compared with sample's own group in gray and (bottom)
compared with all the data samples from all groups. ...........................................90

Figure 55: Test data 6 -(a)This sample was selected from the curve-to-straight, section IV of the
road. The ego-vehicle was driving along the curve while making the lane change for
the target vehicle. (b) Average velocity for this sample was 113.58 KPH. Ego-vehicle
velocity(left) and lateral acceleration profile (right). (c) (top) Observed versus
predicted lateral offset compared with sample's own group in gray and (bottom)
compared with all the data samples from all groups. ...........................................91

Figure  56:  Model  performance  against  the  six  test  samples  in  terms  of  RMSE.  For  sample  1,
although the RMSE is slightly higher than the RMSE for the remaining samples, the
predictions are still well within the bounds of the lateral offset of remaining data
sets within that same group. ................................................................................92

Figure 57: Cross correlation of the predicted lateral offset and the test sample shown as Xcorr_NN
and Xcorr_Reg for neural network and bagged trees models respectively.
Additionally, the maximum and minimum values for the cross-correlation of the test
sample  is  presented  with  its  own  group  data  set  given  as  Xcorr_GrpMax  and
Xcorr_GrpMin respectively. ..................................................................................93

Figure 58: Delay in samples, calculated based on maximum cross correlation between the
predicted and observed data for models by Neural Network and Bagged Trees
shown as delay_NN and delay_Reg respectively. In comparison, the delay measured
between the test sample and the rest of its group members is presented as
delay_GrpMax and delay_GrpMin for the maximum and minimum delays
respectively. .........................................................................................................94

Figure 59: Bicycle model used to derive kinematics of vehicle motion..................................... 101



1

CHAPTER	1:	INTRODUCTION	AND	MOTIVATION	
If the actions of an Automated Vehicle (AV) are not like human drivers, it can cause

misinterpretation or confusion among other road users, which may lead to a hazardous situation.

Consider for example Google’s self-driving vehicle’s accident that occurred with a municipal bus

in 2016 [1]. Google’s self-driving vehicle was planning to turn right at an upcoming intersection

while travelling in the right turn lane when it sensed sandbags in its path ahead. To drive around

the sandbags, it planned to merge into the lane to its left. While it was waiting to merge into the

lane, it sensed a gap between a municipal bus and truck. It assumed that the municipal bus would

slow down to let it merge in. With that assumption, the self-driving vehicle initiated moving

towards the left lane.  As an experienced human driver, we speed up and try to match the speed

of the traffic in the lane we plan to merge in before we begin moving in. This self-driving vehicle

on the other hand initiated its attempt to move into the lane where traffic was travelling at 15-

20 mph while it was moving only at 2 mph.  The bus driver assumed that since the self-driving

vehicle was travelling at such slow speed, it was not going to attempt to merge in and the bus

driver continued to drive without slowing down to create extra gap to let the self-driving vehicle

merge in. The self-driving vehicle continued to drive towards the left lane at 2mph and ended up

hitting the bus on the side. This was an example where the intention of the AV system as

portrayed by its actions were not perceived as such by the human driver. The main reason for

this confusion was self-driving actions were not human-like and because it made an incorrect

assumption about the intention of the human driving the municipal bus. This example highlights
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the need for self-driving vehicles to perform actions like human drivers to safely integrate with

mixed traffic involving human drivers.

1.1	Motivation	

Among the various challenges involved in integrating self-driving vehicles into our existing

traffic, understanding the intentions and needs of human beings involved in this eco-system is

arguably the most challenging aspect. The involvement of human beings in this eco-system

ranges from being an occupant or driver of an automated vehicle, to being a driver or occupant

of other vehicles that are around the Automated Vehicle or in the form of other road users such

as pedestrians and cyclists. Realizing the intention and comfort zones/ranges of these humans

entails understanding many interactions. Among some of the key interactions are (1) intentions

of other human drivers around the automated vehicle, (2) an automated vehicle’s ability to gauge

how its intentions are being perceived by other human drivers and (3) to understand the

expectations of the automated vehicle’s driver and its passengers.

Consider the scenario shown in Figure 1 below of an automated vehicle planning to make

a left turn. The driver of the AV would have his/her own perception of what a safe gap size for

the oncoming traffic should be before initiating the lane change. In contrast to the driver’s

perception of safe gap size, the AV system may very well be able to make a left turn with a tight

gap in between the two oncoming vehicles, but that would make the human driver in the AV

uncomfortable. It may also cause discomfort and misjudgment by the drivers of other vehicles,

leading to a hazardous situation.
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Figure 1: The automated vehicle (blue) intending to make a left turn. The driver of the
automated vehicle has his own expectation of what gap size for oncoming traffic is safe before

initiating left turn. Similarly, the driver of the vehicle on the oncoming lane has his own
perception of what is a safe and acceptable gap for the AV to make a turn in front of it.

There are numerous other driving behaviors that human drivers demonstrate in their day-

to-day driving which can directly be attributed to their perception of safe driving and what they

find comfortable. Examples of human driving behavior that are closely related to a driver’s

perception of comfort and safety include, (1) increasing the distance from an oversized truck

traveling in a neighboring lane (Figure 2, top), or (2) slowing down and increasing the space from

stopped traffic in a neighboring lane during rush hour (Figure 2, bottom). With the tremendous

onboard sensing capability inside a future AV [2, 3], it can sense the position and motion of the

truck in the next lane to a high accuracy and drive with optimal (minimal) spacing from it.  This

optimality might be uncomfortable for the passengers of the AV or even the driver of the truck

causing unnecessary stress or even accidents.
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Figure 2: Vehicle increasing its space from an oversized truck traveling in neighboring
lane (top). Stopped cars in the neighboring lane(bottom). Drivers in the neighboring lane
typically tend to increase spacing and slow down or even switch lanes in anticipation of

someone cutting in from the stopped lane.

Similarly driving at highway speeds next to a lane with stopped vehicles may be well

within the capability limits of an AV, but that would not be perceived as safe and comfortable by

the driver and occupants. Therefore, for AV technology to be accepted by its users and for these

vehicles to safely integrate with traffic involving human drivers, it needs to drive within the

context and understanding of human drivers. Learning these complex behaviors is challenging

and there needs to be a methodology which allows these systems to learn from human

demonstration.   One  of  the  main  tenants  of  this  thesis  is  to  show  a  use  case  of  such  a

methodology.

1.2	Research	Aim	

The driving use-case considered in this research is shown in Figure 3. Consider a two-lane

road where a subject vehicle (referred to as the ego-vehicle, ℎ௘௚௢) was travelling in the inner݁ݒ
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lane. The ego-vehicle is shown in blue in this figure. A stationary vehicle (consider a broken-down

vehicle) in the ego-vehicle’s lane is shown in white. The driver of the ego-vehicle must then pass

the stationary vehicle (hence forth referred to as the target vehicle, ℎ௧௔௥௚௘௧) by switching lanes݁ݒ

temporarily to the outer lane.  Can an AV system learn how a human driver performs this lane

switch and the spacing he maintains while passing by the target vehicle?

Figure 3: The driver of the ego-vehicle (blue) changing lane for a stationary
vehicle(white) in lane. The overall spacing profile consisting of lateral spacing along the travel
direction that the ego-vehicle kept from the target vehicle is shown in red. This research aimed

to learn the spacing profile of the ego-vehicle driver from the stationary target vehicle.

As the driver of the ego-vehicle approaches this stationary vehicle and drives around it,

he/she will keep a certain longitudinal and lateral spacing from this vehicle. This spacing profile

that the driver of ego-vehicle would maintain from this target vehicle could vary depending on

several factors such as the speed of approach to ℎ௧௔௥௚௘௧݁ݒ , road conditions (e.g. slippery or dry),

road geometry (e.g. curved versus straight or undulated road) and the driver’s perception among

others.

The  aim  of  this  research  was  to  learn  the  spacing  profile  that  the  ego-vehicle  driver

maintained from ℎ௧௔௥௚௘௧݁ݒ , while driving at highway speeds and traveling on straight as well as

curved roads. This is a simple example for which a learning strategy/methodology is developed

here.  This methodology could potentially be used to study other variations for instance, non-
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pass stationary target vehicles, different times of the day, different weather conditions, driving

on roads with more than two lanes or on roads with different elevations.

The specific questions for this research were:

1. What are the factors that affect a human driver’s spacing profile as he/she approaches

and drives around a stationary target vehicle?

2. Can a model be learned from human driving data that represents his/her spacing

profile from other vehicles?

3. What would be the difference between the spacing model that has been learned from

human driving data as compared to computing the spacing profile as an optimization

problem?

1.3	Specific	Research	Objectives	

The first objective of this research was to develop the research platform that would

facilitate studying a driver’s spacing profile. This research platform consisted of hardware

components, data capture components, data analysis software, and an extensive simulation

environment. The hardware platform consisted of instrumenting vehicles to capture the pose

and motion profile of each of the vehicles involved in this study. An extensive software toolchain

was also prepared to process and analyze the simulated and real-world driving data. To better

understand the driving environment and the type of data that would be helpful in studying this

research problem, a simulation environment was created. This simulation environment consisted

of a) a road track, b) ego vehicle and c) target vehicles. The simulated road track was created to

match the actual road that was intended to be used in this research. The vehicle dynamics model
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fidelity was chosen to represent the aspects of the driving dynamics that were of primary interest

for this research such as vehicle lateral acceleration.

The second objective of this research was to formulate a Learning from Demonstration

(LfD) methodology what would allow the identification of a set of features that represent an ego-

vehicle driver’s spacing profile. This involved capturing real-world test-track driving data,

processing all the different data attributes and finding a small subset of features that showed

strong correlation to driver’s spacing profile. This was achieved by employing feature selection

techniques in machine learning.

The third objective of this research was to teach a model that will be able to provide the

spacing profile from a stationary target vehicle that matches an ego-vehicle’s driver spacing

profile within a pre-defined statistical tolerance. Developing the model involved exploring several

different machine learning algorithms to learn this non-linear regression profile.

The fourth and final objective of this research was to compare the output from the

learned model with the output from a constrained optimization formulation of the same

problem, i.e. representing the driver’s spacing profile. Researchers in the past attempted to

formulate the representation of human-like driving as an optimization problem. In this fourth

objective, an objective function was formulated using cost criteria that partially consisted of

features that were learned in this research. Additional constraint criteria were defined to

represent the driving environment similar to that used in the learning problem. Finally, a

comparison of the spacing profile generated by the two approaches (i.e. spacing profile predicted

by the learned model and the optimized spacing profile) resulting from the same driving

scenarios are presented.
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1.4	Dissertation	Outline	

The outline of the remainder of this dissertation is as following: Chapter 2: presents the

background to automated driving with a focus on human-like automated driving. Three of the

most relevant research results from the literature search are discussed in this chapter. Chapter

3: details the test platform, including the software and hardware platforms, along with

information concerning the software tools to analyze the data. Chapter 4 discusses the driving

task that was used in this research, formulation of the spacing profile as a learning problem, the

data pre-processing pipeline and determining the models that represent the driver’s spacing

preferences. The spacing profile was also formulated as a constrained optimization problem and

presented in this chapter. This formulation of spacing profile as an optimization problem was

done to compare it with the learning approach. The results of spacing profile as a constrained

optimization problem compared to spacing profile by the learned model are presented in Chapter

5. The performance of the learned models against unseen data is also presented in this chapter.

Lastly, the summary of the research contributions of this thesis, along with the limitations of this

research and future work are discussed in Chapter 6.
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CHAPTER	2:	BACKGROUND	
This chapter presents an overview of the literature search that was conducted as part of

the background research in order to better understand the gaps that existed in the learning of

human-like driving. In the later part of this chapter, a review of some of the key literature related

to this research is discussed.

2.1	Relevant	Literature	

The topic of human-like automated driving touches upon many subject areas within the

field of automated driving or ground robotics in general. The figure below (Figure 4) shows some

of  the  subject  areas  that  were  considered  as  part  of  the  literature  search  to  gain  broader

understanding regarding what had been accomplished in the development of automated driving

systems that considered the human aspect, including human comfort needs and acting in human-

like ways.

Figure 4: Relevant technical areas in understanding Human-Centric Automated Driving.
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2.2	Automated	Vehicle	System	Overview	

The various systems within an Automated Vehicle can be broadly categorized based on

their functionality into sensing and perception, planning behavior and actuator control (Figure

5).

Figure 5: A simplified overview of Automated Vehicle Architecture. The Sensing and
Perception system feeds in environmental information such as sensed objects, their perceived
intended path, range of sensing and quality of sensed information among others. The Planning
and Behavior system plans a path considering several aspects within its understanding such as
human-like driving and passes on trajectory information to the control system. The control system
provides commands for the lateral and longitudinal control of the vehicle by considering motion
commands from the AV system as well as the inputs from the driver.

Sensing and Perception

The role of the sensing and perception system as the name suggests is to sense the

environment internal to and outside of the AV. A large selection of sensing modalities is generally

employed within the sensing and perception category including a) monocular and stereo-vision
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camera systems, b) long-, medium- and short-range Radio Detection And Ranging (RADAR)

sensors, c) ultrasonic sensors, d) Light Imaging Detection And Ranging (LIDAR) sensors e) Global

Positioning System (GPS) receivers f) Inertial Measurement Units (IMU) of various accuracy and

resolution g) Vehicle-to-other (V2X) communication devices, and h) High-Definition (HD) maps

among others.

The sensing of the environment internal to an AV would typically consist of occupant

monitoring systems that monitor the state and attention of the driver. The driver monitoring

systems sense and perceive various actions of the driver using sensors such as IR cameras that

are mounted on top of the steering wheel facing the driver [4, 5]. Some of the common

applications of driver monitoring systems include detecting a drowsy or inattentive driver among

others.

The sensing of the environment external to an AV can include a wide variety of sensors

depending on the application. The long-range RADARS for example have been widely used in the

Adaptive Cruise Control (ACC) feature [6, 7, 8] to sense other vehicles up to 180 meters in front

of  the AV [9].  The camera systems on the other hand have been widely  applied to almost  all

aspects of external environment sensing; from sensing lane marks in front of and around the

vehicle, to detecting traffic signs, road-side curbs, other vehicles, bicyclists and pedestrians

among others [10]. The LIDAR sensors have been considered as a key enabler for automated

driving [11]. A combination of camera with LIDARS and of RADAR with LIDARS have been used in

applications ranging from vehicle and pedestrian detection to detecting drivable areas [12, 13,

14].
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Another technology that complements all the other sensors discussed thus far and that

facilitates functions within the AV such as localization and path planning among others, is HD-

maps [15]. These highly detailed maps of the road and surrounding infrastructure allow AVs to

see beyond their local onboard sensing. They also support other sensing functions such as traffic

light identification and sign recognition in challenging urban scenarios. In [3], there is a detailed

overview of sensing and perception; from different sensors, to multi-sensor data fusion and

functions and applications that use these data.

Planning and Behavior

The role of the planning and behavior system within the AV framework is to provide a

feasible trajectory towards the destination that is collision-free, meets a certain energy and/or

time criteria and considers occupant comfort among other criteria. For a planning system to plan

a path, the driving environment as perceived by the sensing and perception system needs to be

represented in a way that a planner can search through to find the best path. Among the

environment representation techniques is the cost map [16] (shown in Figure 6), where the

environment is represented in terms of cost for each cell by considering the pose and motion

information of the obstacles around the AV.

Figure 6: Driving space represented as a cost map. The cells that were predicted to be
occupied based on the detection and motion estimation of preceding vehicle represented with a

high cost (shown in red), whereas cells with low probability of being occupied by preceding
vehicle based on its perceived motion represented with a lower cost (shown in orange).
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Among the various planning techniques is separating the search space into near, mind

and far areas, where lattice of varying resolution/dimension is employed in each of the areas

[17]. In the lattice space near the AV for example, the AV is represented in a higher dimensional-

space such as its position (ݕ,ݔ), velocities (̇ݔ, ,ݔ̈) accelerations ,(ݕ̇ As we move .(ߠ) and heading (ݕ̈

to mid-area lattice, the search space dimension can be reduced to position and velocities, while

far area can be reduced further down to position only. This allows searching through a reduced-

dimension search space and creating a long-term plan that fulfils short and long-term driving

goals. A detailed overview of the state-of-the-art in planning techniques is provided in [16].

Actuation Control

The role of the actuation control system is to minimize the error to the desired trajectory

provided by the planning system. The actuation control system is responsible for generating

steering and acceleration commands to their respective Electronic Control Units (ECU) in a

vehicle. Several control algorithms ranging from classical to modern control techniques have

been applied to control the vehicle to a desired trajectory [18, 19].

2.3	Human-Like	Path	Formulation	and	Path	Following	

There are several systems within an automated vehicle that play an important role in

mimicking human driving; from perception of the environment to control of the actuators. The

human-like aspects within the perception of the environment includes being able to sense and

estimate the intention of other road users in a similar manner to human drivers. The planning

system takes the perceived environment, driver’s preference, and energy and time criteria

among other factors to formulate a safe trajectory that would allow the AV to traverse through

the available free space around the automated vehicle to reach to its destination. The planning
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system is a critical contributor and in some sense the primary responsible system towards

human-like driving since it formulates the path and subsequently a trajectory that the AV should

follow.

The trajectory formulated by the planning system is then used by the control system to

determine its error at a certain look-ahead distance (assuming preview-based control scheme),

which is used to determine what its next set of lateral and longitudinal control commands should

be to minimize the error along the desired trajectory. The control system may additionally

encompass factors of human-like control such as considering the lateral and longitudinal forces

that the vehicle may experience while travelling on the desired path. The following sections, 2.3.1

and 2.3.2 provide an overview of some of the relevant literature where research is focused on

human comfort and human-like driving. The research work presented in section 2.3.1 focuses on

safety and comfort within the control system framework, whereas the work referenced in section

2.3.2 can be generalized as part of a planning system within an automated vehicle.

Trajectory	as	an	Optimization	Problem	

In [20] Dongwook et al. focused on providing safe and comfortable automated driving

when unexpected obstacles, such as a broken-down vehicle, were experienced in the lane while

driving on inner-city streets. Their problem definition can be generalized as given a lead vehicle’s

path and other vehicles in the vicinity of the subject vehicle, what would be the series of steering

control commands that would provide a safe and comfortable drive.  A LIDAR sensor mounted

around the front of the vehicle was used to detect the leading vehicle and other obstacles in the

driving environment. The Extended Kalman Filter (EKF) was used to track the leading vehicle’s

position and motion data. The state vector data representing the lead vehicle data is given by:
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ݔ = 	 ൣ ௫ܲ,௥௘௟ , ௬ܲ,௥௘௟ , ௥௘௟ߠ ௣௥௘ݒ, , ௣௥௘ߛ ,ܽ௣௥௘, ௣௥௘̇ߛ ൧ [2-1]

And the measurement vector is given by

ݖ = ൣ ௫ܲ,௥௘௟ , ௬ܲ,௥௘௟ , ௥௘௟൧ߠ
் [2-2]

In designing a steering controller, the authors had the objective of following the lead

vehicle, while keeping a safe distance from obstacles and keeping lateral acceleration within

certain pre-defined comfort and safety limits. They used Model Predictive Control (MPC) to

design this steering controller. The state equation for the ego-vehicle was represented as,

ߦ = ൧ܻ				ܺ				̇߰				߰				ߚൣ [2-3]

where, ,represents vehicle side-slip	ߚ ߰	heading, ߰̇	yaw rate and (ܺ,ܻ)	the position of

the ego-vehicle. The bicycle model (see APPENDIX B: Lateral Vehicle Dynamics Model) was used

to represent the vehicle state as:
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[2-4]

The vehicle trajectory based on control input (ݑ) as the steering angle ௙ߜ  was generated

from the output variables in the inertial reference frame was:

ߟ = ቂ0 0 1 0
0 0 0 1

ቃ . ߦ = [ܺ					ܻ]் [2-5]

Given current stateߦ଴, MPC computes the optimal control sequence by [௞ݑ]

solving the following optimization problem:



16

௠௣௖ܬ	݁ݖ݅݉݅݊݅ܯ ቀൣߦ௞൧௞ୀ଴
ே

, ቁ[௞ݑ]

for, ௞ାଵߦ					(݅) − ݂ௗ௧(ߦ௞, (௞ݑ = 0

(݅݅)											݀௠௜௡ − ݀௦௔௙௘௧௬ ≥ 0

(݅݅݅)														ห߰̇	ห −
ܽ௬௠௔௫

௫ݒ
≤ 0

where N was the look-ahead horizon.

The cost function for the above optimization problem was given as;

௔ܬ = (ேߟ߂)߶ + ෍ൣߟ߂)ܮ௞ (௞ݑ, + ௞ఛߣ ௞ାଵߦ} − ݂ௗ௧(ߦ௞ , {(௞ݑ
ேିଵ

௞ୀ଴

+ ௢௕௦(݀௠௜௡)ܩ௢௕௦ߤ + ߰̇൯൧	௔௬൫ܩ௔௬ߤ

[2-6]

where and (݊݅݉݀)ݏܾ݋ܩ are penalty functions (given below) on the control input (̇߰	)ݕܽܩ

and yaw rate and ,ݏܾ݋ߤ .are their weighting functions respectively ݕܽߤ
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[2-7]

The figure below (Figure 7) shows the lead vehicle (red) reference trajectory ௥௘௙,௜ߟ	 ௜ୀ଴
ே . The

resulting optimized ego-vehicle trajectory (	ߟ௜ ௜ୀ଴
ே )	based on the above-defined criteria is shown

as the black solid-line.
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Figure 7: Lead vehicle reference path (red-dashed line) and optimized ego-vehicle path
(black-solid line). The distance from obstacle and lateral acceleration were costs considered while
trying to follow the lead-vehicle’s path.

The authors discussed the simulated results for inner-city slow-speed driving with the

optimized trajectory, but did not discuss the feasibility of this approach for high-speed driving.

Among other challenges at higher speeds, it would be difficult to extend this technique in deriving

an optimized trajectory over a longer preview distance in real-time. A longer preview distance is

essential for safely and comfortably controlling a vehicle travelling at higher speeds. Additionally,

a more detailed model would be needed to appropriately represent the motion and distribution

of  forces  at  higher  speeds  and  in  highly  dynamic  situations.  That  is  possibly  why  a  real-time

implementation of such a strategy that uses detailed vehicle dynamics has not been seen in the

real-world environment [16]. The authors also used fixed parameters such as distance to the

obstacle for the optimization criteria. At slower speeds, the human occupants may be

comfortable in driving closer to an obstacle, but using the same distance from an obstacle can be

unsafe and discomforting at higher speeds. Some other metrics such as headway and time-to-

collision ( 3.2.4 ) are more appropriate for such use as they account for distance with respect to

the speed difference between a host and target vehicle.
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Learning	Techniques	Applied	to	Driving	and	Path	Selection	

Learning  from  Demonstration  (LfD)  [21],  also  known  as  robot  programming  by

demonstration or apprenticeship learning, is a class within machine learning that has been

gaining attention in recent years in respect of developing automated vehicle systems. In control

systems, such learning-based systems can be referred to as Adaptive Optimal Control systems

[22]. The idea in such a learning-based system is that the system tries to learn necessary actions

given a state by observing a teacher perform the action, shown as teacher demonstrations (D) in

figure below.  The learning system derives policies (π) from the observed state of the system and

the action demonstrated by the teacher. This learned policy set is then used to perform actions

(a’) based on world observations (z’).

Figure 8:Learning from demonstration framework [21]. The policy set π is derived by
observing teacher demonstrations for a state set. The learned policy is applied to perform actions
(a’) by observing state pair (z’) of the world.

Such learning-based systems can prove to be very effective, especially in cases where a

system is represented by a complex set of equations that have many parameters. In contrast to

the typical hand tuning of these parameters by an expert, the system can learn these parameters

based on observations. Learning system parameters, in contrast to hand tuning has been proven

to provide better results compared to hand tuning [23].
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Figure 9: Hand-tuning versus learning system. System performance comparison for
perception and planning using hand tuning vs. learning [23]

Tianyu  et  al.  [24]investigated  the  creation  of  a  human-like  motion  profile  using  LfD

techniques. They collected driving data from two drivers while driving through an increasing level

of tight turns; highway, urban and parking lot driving in a traffic-free environment. The block

diagram in Figure 10 shows the process of generating a human-like reference trajectory. The path

was derived using smoothness and curvature reduction criteria, whereas the speed model was

parametrized and the parameters were learned from human driving data.
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Figure 10: Human-like driving in a traffic-free environment consisting of a  learning
component that learns parameters from human driving data and the planning component that

generates a trajectory based on learned parameters [24]

The path model was derived as following the center line with the following form:

௜ݏ} , ௜ߠ,[௜ݕ,௜ݔ] ,{௜ߢ,

Where ௜ݏ , ,[௜ݕ,௜ݔ] ௜ߠ ௜ߢ,  represented the longitudinal station along the lane, global

position, heading and path curvature respectively. The bumps created between two waypoints

were smoothened independently for ௜ݕ	݀݊ܽ	௜ݔ  yielding

௜ݏ} , ,∗௜ݔ] ,∗௜ߠ,[∗௜ݕ {∗௜ߢ

While taking sharp turns (high curvature), drivers tend to reduce the maximum curvature

by using the available part of then lane, which was represented as ௜݋ , lateral nudge (offset) to the

centerline given by:

{௜݋} =
݊݅݉݃ݎܽ

{௜݋}
෍ฬ

௜݌ − ௜ିଵ݌
௜݌| − |௜ିଵ݌ −

௜ାଵ݌ − ௜݌
௜ାଵ݌| − |௜݌

ฬ ௜݌		݁ݎℎ݁ݓ			, = ൤
∗௜ݔ − .௜݋ sin ∗௜ߠ
∗௜ݕ + .௜݋ cosߠ௜∗

൨

The Lavenberg-Marquardt algorithm was used to solve the optimization problem giving

the reference path.

In terms of speed model, Tianyu et al. observed that human drivers tend to slow down

ahead of approaching a tight curve. To model this cautious human behavior of slowing down

ahead of the tight curve, maintaining the low speed while crossing the maximum curvature on
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the turn and then increasing speed again, the authors proposed following speed model for tight

curves:

{௜ݒ} = (ࡽ,{௜ߢ})௧௜௚௛௧ܯ

where, ࡽ = ௠௜௡ݒൣ , ,୼ݏ ݈௩ , ෤ܽ௟௢௡ , ሚ݀௟௢௡൧
்

The following figure shows the speed profile model for tight curve and the parameters

used in the model shape profile where ;ࡽ ௠௜௡ݒ  represents the minimum velocity that drivers

reach before reaching the maximum curvature and maintain that over path length ݈௩. The

parameters ෤ܽ௟௢௡and ሚ݀௟௢௡  represent longitudinal acceleration and deceleration respectively. The

parameters of this model were learned from human driving data with the following least-square

formulation:

෡ࡽ =	 ௔௥௚௠௜௡
ொ ฮ൛ݒ௜௛௨௠௔௡ൟ − ฮ(ࡽ,{௜ߢ})௧௜௚௛௧ܯ

Figure 11: Speed model for a tight curve ௧௜௚௛௧ܯ 	[24]	

 In order to improve smoothness of speed profile generated by the above model, the

interpreted jerk was constrained below ݒ̈ ௟݆௢௡iteratively as; |ݒ̈| ≤ ௟݆௢௡.
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The comparison of the final path and speed profile generated by the path and speed

model is shown in Figure 12. Although the results show good fit to the driver data, these models

were created for traffic-free environment and no consideration to driving style in environment

with other road users. Additionally, this study did not consider any influence of surrounding road

structure either.

Figure 12: Driver speed profile versus learned speed profile while traveling path of a
given curvature [24]

Markus et al. [25] employed the LfD approach to learn a driving style using human driving

data. The authors modeled lane change driving style as a cost function consisting of longitudinal

and lateral accelerations, longitudinal and lateral jerk, curvature, desired speed, center of lane,

distance to obstacle center and following distance. A feature-based inverse reinforcement

learning was used to find the model parameters that reflected the human’s driving style the best.

The learned model was then used to compute the trajectories while driving in automated mode.

Figure 13 shows the generated trajectory from the learned policy (red) plotted against the

observed trajectory (blue). Although any statistical measure for the quality of fit of the generated

trajectory versus the observed trajectory was not provided in this study, the authors concluded

that the trajectories generated from the model did not fit the observed trajectory perfectly.
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Another conclusion presented by the authors was that the observations did not meet the defined

optimality criteria for any cost function that was a linear combination of the feature set.

Figure 13:Observed (blue) versus generated trajectory (red) from learning policy [25].

Although the resulting trajectory did not fit the demonstrated trajectory well, the authors

noted that they could learn the magnitude of the features that contribute to the driver’s comfort.

The feature set employed by the authors was quite extensive but lacked two components that

were identified to be important in our research; 1) lateral distance of the host vehicle from the

obstacle along the travel direction and 2) relative velocity/acceleration with respect to the

obstacle. The relative velocity could have also been captured if the authors had considered time-

to-collision information. It is our assumption that perhaps the lack of these two features in their

model resulted in the performance deficiencies in the generated trajectory.

2.4	Chapter	Summary	

This chapter provided an overview of the automated vehicle system architecture. The

automated vehicle system was presented as a combination of sensing and perception, planning

and actuation control systems. Some key technologies and methodologies within each of these

systems were discussed. Some of the literature relevant to this research was also discussed. Two

primary areas of research that focused on human comfort or human-like driving were detailed.

At first, a review of the trajectory optimization technique was presented where the authors
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considered safety and comfort criteria to find an optimized path given a lead vehicle path. After

that a review of some of the recent work that employed learning from demonstration techniques

in learning a human-like driving style was given. While other researchers have attempted to

derive a human-like path preference using learning from demonstration techniques, these

studies were lacking in respect of a) providing human-like selection in a driving environment that

included traffic or b) they were not able to fit the observed trajectories.

In the next chapter, the research platform is presented, consisting of both the hardware

and software components. The physical test environment, consisting of the test track and the

instrumentation that was used to gather vehicle data is explained. This is followed by an overview

of the simulation platform and the software environment prepared to process and analyze the

captured data.
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CHAPTER	3:	RESEARCH	ENABLING	TEST	
PLATFORM:	TOOLS	AND	TECHNIQUES	

The research hardware and software test platforms, along with software tools created to

support the various stages of this research are discussed here.  The discussion includes the, test

environment, instrumentation used, data gathering techniques, pre-processing and the

simulation environment.  These tools allow the gathering and processing of data and are

discussed in detail within this chapter.

3.1	Physical	Test	Platform	

Test	Track	

For  this  study,  we  wanted  to  use  a  road  that  would  simulate  areal-world  driving

environment, while being able to park target vehicles in a lane without creating a safety risk. An

automotive proving ground is ideal for such a requirement. Fowlerville proving grounds by FT

Techno of America, FTTA [26] is one such facility that has tracks which have been built to city

roads and highway specifications. This facility has therefore been extensively used within the

automotive industry for the development and testing of active safety such as ACC, Lane Keep

Assist (LKA) and Collision Mitigation Braking (CMB) features among others.

From the several tracks that this facility offers, the “Oval Track” was used for this study

(Figure 14). This was a 4.827km (approximately 3 miles) long track, consisting of two lanes each

with a width of 3.6m. As the name suggests, this track was a closed oval shaped course, consisting

of straightway on the East and West side of the track. Each of the straightways were roughly

1370m in length. The road curve on the South end of the track had a radius of 300m, whereas

the North end of the curve had a decreasing radius from 457m to 300m. These radii are similar
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to those that can be encountered in highway driving, thereby allowing comfortable continuous

driving at highway speeds of 112 kph (70mph).

Figure 14: Two lane oval test track at Fowlerville Proving grounds of FT Techno of America

Test	Track	Map	

Real-Time Kinematic (explained in section 3.1.3.2 ) quality positional information for

points along the track was used to extract the road geometry. Consider a point which(ଵ,ଵ)݌

represents the first point, while point represents the last point(ଵ,௡)݌ n on the inner lane line as

show in Figure 15. Similarly points ,(ଶ,ଵ)݌ and points (ଷ,ଵ)݌ ,(ଶ,௡)݌ represent the first and last(ଷ,௡)݌

points of the center lane line and outer lane line, respectively. The lane line mark point ௜ୀଵ:ଷ(௜,௝)݌
௝ୀଵ:௡

consisted of latitude (߶), longitude (ߣ) and radius (ܴ) along the road travel direction.

௜ୀଵ:ଷ(௜,௝)݌
௝ୀଵ:௡ ∶= {߶௜

௝ , ௜ߣ
௝ ,ܴ௜

௝}௜ୀଵ:ଷ
௝ୀଵ:௡
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Figure 15: Lane attribute definition along the road. The inner solid line of the right lane
(along the travel direction) – labelled line 1, center dashed line – lane 2 and the outer solid line of
the left lane – line 3. Attributes measured along the road cross section at each of the lane line
marks were latitude, longitude, altitude and radius.

The position measurements were converted from geodetic coordinates to Universal

Transverse Mercator (UTM) coordinates. UTM is an international location reference system that

provides an approximated two-dimensional representation of the three-dimensional surface of

the Earth. This coordinate system converts the Earth’s surface into a two-dimensional plane by

dividing the Earth’s surface into 60 equally spaced vertical planes or zones. The UTM coordinate

system consists of vertically running parallel lines, referred to as Easting and horizontally running

parallel lines, referred to as Northing, with each parallel line equally spaced 1000m apart forming

1000m2 squares.

The planar approximation formula to convert from geodetic coordinates to UTM is as

follows:
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ݔ = ൫߶ − ߶௢௥௜௚௜௡൯ ∗ ݎ ∗ cos(߶) ∗ ݅݌ 180ൗ

ݕ = ൫ߣ − ௢௥௜௚௜௡൯ߣ ∗ ݎ ∗	
݅݌

180ൗ

[3-1]

where,߶௢௥௜௚௜௡ , ௢௥௜௚௜௡ߣ  and are the latitude, longitude in degrees, minutes and seconds and the ݎ

earth’s radius in meters. ߶ and are the measurement latitude and longitude points that are to ߣ

be converted to x and y respectively.

Figure 16: GPS map of the test track lanes shown in UTM coordinates, with zoomed in view
showing the lane lines (right)

The plot above (Figure 16, left) shows test track lane lines plotted using UTM coordinates

of the test track points ௜ୀଵ:ଷ(௜,௝)݌
௝ୀଵ:௡. The image on the right shows a zoomed-in view of a segment

of the North-West part of the straightway. In addition to the three lane line boundaries, an

additional line, labelled the inner-lane centerline is shown. The points for this line were derived

by calculating the mid-point between the respective points on the inner-line and center-line. This

line was selected as the lateral offset origin, with the inner-line, center-line and outer-line

boundaries at -1.8 m, 1.8 m and 5.4 m respectively.

X

Y

Inner-line boundary

Inner-lane centerline

Center-line boundary

Outer-line boundary
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(ܮܥܫ)	݈݁݊݅ݎ݁ݐ݊݁ܥ	݈݁݊ܽ	ݎ݁݊݊ܫ = ൤
(ଶ௫,௜)݌		+	(ଵ௫,௜)݌

2 ,
(ଵ௬,௜)݌ (ଶ௬,௜)݌		+	

2 ൨
௜ୀଵ

௡

where ݊ = ௧௥௔௖௞௅௘௡௚௧௛
௜௡௖௥௘௠௘௡௧஽௜௦௧௔௡௖௘

  ,  with trackLength of 4827m and

incrementDistance of 0.5 m.

[3-2]

Figure 17: Center point between p(1,i) and p(2,i), also defined as the inner-lane
centerline used as the zero lateral offset.

Acquiring	Vehicle	Pose	and	Motion	Information	

To minimize the errors in pose and motion information, as well as to have data periodicity

at a high rate, Oxford RT 3003 [27], an off-the-shelf integrated GPS/INS system was selected.

Table 1 lists the specifications for the RT-3000 family. There are several modes listed under

position specification namely SPS, SPBAS, DGPS and RTK. Among these, Real Time Kinematic (RTK)

can provide centimeter-level positional accuracy. The following section briefly explains how the

Y

X

௢௙௙௦௘௧ݐ݈ܽ

0 (ଵ,௜)݌

(ଶ,௜)݌

(ଷ,௜)݌

Inner lane centerline as 0
lateral offset
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position information is resolved based on the information received from satellites. The RTK

system helps to enhance the position measurement accuracy.

Table 1: RT3000 Family Specification. RT3003 was used for pose and motion information
in this study

3.1.3.1	Global	Navigation	Satellite	System	(GNSS)	

As a general concept, GNSS-based systems calculate the distance between a receiver and

satellite by calculating the time it takes for the signal to travel from the satellites to the receiver.

With distance measurement from a single satellite, we know that the receiver antenna is

somewhere on a sphere with a radius equal to the range measurement, ௥ଵ. If we now also knowߩ

our distance measurement from a second satellite ௥ଶ, our receiver is at either of the twoߩ

locations, x or y, where the two radii are ௥ଵ andߩ ௥ଶ. If we know that we are at a distanceߩ ௥ଷ fromߩ

a third satellite, we can only be at one position x, where each of the three spheres meet (see

Figure 18). This process of resolving the position is known as “triangulation”. This simple

explanation facilitates our discussion regarding how RTK operates. In understanding GNSS based
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position information, it is critical to understand that in actual practice, we need at least four

satellites to be able to resolve our position accurately. Details of how this information is derived

is given in [28, 29]. The references also provide an in-depth understanding of GNS systems.

Figure 18: A simple illustration to understand GNSS-based position resolution [28]. (a)
Knowing our range from point A, we can only know that we are somewhere around this point
along the sphere of radius equal to the range. (b,c) We can resolve our position ambiguity by

knowing our range from points B and C.

The accuracy when calculating the range from the satellites is influenced by several

factors including the electronics on the receiver-side, the ionospheric delays and the multi-path

caused by surrounding infrastructure around the receiver’s location among others. Figure 19

shows an example of some of the challenges that must be accounted for during GNSS signal

propagation from a satellite to a receiver. The receiver in this example is situated next to a tall

building. While the receiver has a direct line of sight to satellite A, the signal from this satellite

can be refracted due to ionospheric delays. This same satellite’s signal may additionally be

received by the receiver due to reflection from the building (multi-path). The signal from a second

satellite, satellite B, may be blocked and reflected away from the receiver due to the building
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structure.

Figure 19: GNSS Signal Propagation [28]. Satellite A’s signal is blocked by the
infrastructure surrounding the receiver, whereas multipath signal propagation is being seen by

the signal from Satellite B.

3.1.3.2	Real-Time	Kinematic	(RTK)	

Real-Time Kinematic (RTK) is a technique that employs carrier-based ranges that are

orders of magnitude more precise than code-based ranges. The basic concept in RTK is to

minimize or remove errors that are common between the vehicle (also referred to as rover in the

context  of  RTK)  and  a  fixed  GNSS  reference  station,  also  known  as  the  base  station.  A  rover

enhances its position accuracy by using algorithms that incorporate corrections received from

the base station in combination with its own measurements from available satellites, thereby

providing centimeter-level position accuracy.

3.1.3.3	Oxford	RT	3003	

The RT 3003 is an inertial and GPS navigation system, which was developed by Oxford

[27]. This GPS/INS system is heavily used within the automotive industry for applications that

spread across many different systems within a vehicle – from vehicle dynamics related work to

Satellite A Satellite B
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testing Advanced Driver Assistance Systems. The RT unit consists of three angular rate sensors,

three accelerometers, a GPS receiver and required processing all within a compact box as shown

in  Figure  20.  Internal  to  this  system  are  the  algorithms  that  allow  Kalman  filtering  and  other

alignment algorithms. A more precise measurement is achieved with Kalman filter monitoring

and updating of these measurements using GPS.  Under good driving conditions, defined by a

combination of factors including number of available satellites and GPS fix among others, the RT

3003 can account for biases from its inertial sensors. Similarly, under challenging GPS conditions,

it can use measurements from its inertial sensors to correct the GPS measurements.

Figure 20: RT 3003 by OxTS (left). Vehicle frame definition (right) with X facing forward,
positive Y to the right of vehicle (passenger-side) and positive Z as downwards into the ground.

In addition to the coupling of GPS and INS measurements, this system also supports a

dual-antenna configuration. In this system, the RT measures the difference in position to further

solve GPS ambiguities. This dual antenna configuration also supports the provision of high-

accuracy heading information in low dynamic driving conditions. The FTTA test facility has a base

station location on the facility, not far from the oval track, thereby allowing the RT to operate in

RTK mode on the track. This allows absolute positional accuracy to within a few centimeters to

be obtained while driving on the track.
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3.1.3.4	RT	Setup	in	Vehicle	

This section discusses RT installation and setup in a vehicle. OxTS provides a mounting

strut that can be quickly installed in the rear passenger seating area supported by locking a lever

in the strut after extending it to push against the vehicle floor and ceiling panel. Figure 21 shows

the placement of the dual antennas on the roof. The dual antennas provided with the RT system

typically have magnetic mounts, making them easy to install on the roof. It is best to maximize

the distance between the antennas, for example, by placing the primary antenna towards the

Figure 21: RT 3003 vehicle installation. Primary and secondary antennas can be installed
on the roof using magnetic mounts (left), whereas the RT can be installed in the rear passenger

area using a strut provided by OxTS for temporary installations.

front of the roof, while placing the secondary antenna near the rear-end of the roof. At the same

time, care should be taken to ensure that the two antennas are on same flat plane which requires

that the extreme front and rear end of the roof where the roof shape typically starts to bend in

a passenger car be avoided. Finally, power can be applied to the RT unit through the cigarette

lighter port available in the vehicle.
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The next step after installing the antennas and the RT unit is to enter the extrinsic

parameters related to the antenna and RT unit using the software provided by OxTS. This requires

several different measurements, including the separation distance between the antennas, their

height from the RT and the RT unit’s height above the ground and from the rear axle. The final

step after entering this information is to calibrate the system. A calibration routine involves

powering the system up and driving the vehicle in a figure eight pattern as well as at higher

speeds which include high dynamic turns that would allow the RT system to warm up and to

calculate its IMU biases.

Data	logging		 	

The RT data logging setup is shown in Figure 22 .The RT system processes and transmits

data using Controller Area Network (CAN) [30] protocol with an update in measurement every

10  ms.  This  translates  into  a  maximum  spacing  interval  between  two  data  samples  of

approximately 0.3m while driving at highway speeds (assuming 31 m/s). There are several off-

the-shelf tools available that can be used to log CAN data. CANalyzer, a software tool by Vector

[31] is among the most widely used CAN tool within the automotive industry and was also used

to log RT data in this research.
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Figure 22: RT 3003 setup. The RT unit operating in RTK mode with a local base station
corrections received over a wireless link. The system processes and outputs motion and pose
data at 100Hz via CAN. The CAN data can be logged on a PC using Vector CANtech hardware

and software.

A database configuration (dbc) file is a standard file format that contains definition of the

CAN network, the ECUs connected on the CAN network and the messages and signals on a CAN

bus. This information is necessary to decode raw data received on the CAN bus into physical data.

Figure 23 shows a sample dbc file with a subset of the messages that are relevant for this research

Figure 23: Database configuration (dbc) file for a subset of messages provided by RT 3003

RT3003
“rover”

Base station

Vector CANalyzer Trace
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from among all of the available messages that RT 3003 provides. The signal information within a

logged data sample can be decoded using its dbc file and data can be extracted from CANalyzer

into several formats including comma separated values (CSV) or a mat file [32]. Either format can

be easily imported into MATLAB for further processing. There are several modes with which data

can be logged in CANalyzer – continuous logging was done in the ego-vehicle throughout the test

(details of the driving scenario are discussed in 4.1.1 ). On the other hand, data were only logged

in the target vehicles as they moved to a new location. Since RT data in each vehicle were logged

independently, a common reference or label in the logged data was needed to align the data

samples from different vehicles. The GPS time, which is acquired and reported within the data

stream transmitted by RT over CAN, was used as a common reference to sync data from different

vehicles. The following list of signals was exported for each data sample and later used in MATLAB

to align data between the logs from the ego and target vehicles.

Data Content Units

Date and Time year, month, day, s, min, hr
Latitude, Longitude degrees, degrees
Velocity (forward, lateral) m/s, m/s

Accelerations (forward, lateral, down) m/s2 , m/s2 ,m/s2

Heading, Pitch, Roll degrees, degrees, degrees
Angular accelerations (forward, pitch, yaw) deg/s, deg/s, deg/s
Track Curvature 1/m

Table 2: List of signals extracted from CAN data logs and exported into MATLAB for
further processing
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3.2	Data	Pre-processing		

A highly important step before inferring information from data is to thoroughly analyze

the data and perform a pre-processing step. Depending on the characteristics of the data

collected, this step may include data correlation in cases where multiple samples were collected

from various participating entities. In addition, different mathematical operations are needed to

(1) cleanse data, (2) to create newer relations with the data (which usually requires subject

matter knowledge) that may help us to gain more insight into the data and (3) to identify and

remove any erroneous data that can occur due to equipment malfunction or external

interference in a controlled test. This section discusses the data pre-processing steps that were

performed to prepare the data for further analysis.

Correlating	Data	Samples	

Since data samples from each of the participating vehicles were recorded with

independent logging systems, data samples from these vehicles had to be correlated.   This was

done by iterating through the ego-vehicle data samples and using the included GPS time-stamps

as part of each of the vehicle data trace to find time aligning pairs between the target vehicle and

ego-vehicle samples. A MATLAB script (m-script) was developed to search through the target

vehicle data to find samples that time aligned with the GPS time in the ego-vehicle data trace.

Since both target vehicles may have data samples that were captured in the same GPS time range

as the ego-vehicle data sample, final selection of the matching pair of target vehicles for any given

ego-vehicle path trace was done based on the shortest Euclidean distance to the ego-vehicle

path. The matching pairs were then plotted and manually reviewed as a last step to confirm that

correct ego and target vehicle pairs were selected. The following figure () shows one such sample
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trace with the ego-vehicle path trace and its time-aligned pair of target vehicle data plotted to

obtain confirmation on whether the pairing was done correctly. A database file was created as

an output from this step that contained the ego-vehicle data sample start and end index, with its

matching target vehicle pair for each of the trails performed on the test track. A CSV export of

this database is shown in Table 3.

Figure 24: Data sample of an RT log from two different vehicles plotted on a test
track map. The data samples from the two vehicles were time aligned using GPS time.



40

Table 3: Sample excerpt from a CSV file export of the database that was created after
aligning start and end samples of ego-vehicle data for each test trial and its time-aligned pair of

target vehicle indexes.

Calculating	Lateral	Offset	and	Road	Radius	

The next step after aligning the data samples between the ego and target vehicles was to

calculate the lateral offset from the inner lane centerline and to correlate the radius of the road

against each sampled position of the ego and target vehicles. For either of these calculations,

centerline data sample that correlates with the sampled ego or target vehicle position had to be

determined. Assuming the ego-vehicle position for the jth sample to be From	௘௚௢(݆).݌ ,(݆)௘௚௢݌ a

line perpendicular to the lane was drawn. The point where this line intersected the centerline

was referred to as ௜௡௧௘௥௦௘௖௧(݆) . The݌ Euclidean distance between ௘௢௚(݆)and݌ ௜௡௧௘௥௦௘௖௧(݆) was used݌

to calculate the lateral offset, latoffset (see Figure 25). Similarly, where this line intersected the inner

lane line (assuming the ith point of line p1,݌(ଵ,௜)), the radius of the road associated with that point

(ܴଵ௜ ⊂ was used as the radius of the road the ego-vehicle was traveling on for the sample	((ଵ,௜)݌
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௘௚௢(݆). The intersection to the inner lane line was also needed to calculate the radius at a certain݌

distance ahead of vehicle.  At this stage of data pre-processing, the road radius at headways of 1

through 5 secs was extracted for every sampled ego-vehicle point. Since the target vehicles in

this study were stationary, only the road radius associated with their sampled positions was

extracted and stored in a structure for later use.

Figure 25: Calculating the distance to inner lane center and extracting the radius of the
road.
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Lane	Change	Active	Flag	

Lane change active (laneChangeActive) flag was created to observe its relationship with

the other labels/factors in the driving environment. This flag was created based on the logic

presented in code segment 1.

Code 1: Algorithm logic for creating lane change start label

The pseudo code above describes the detection and creation of a lane change start label.

The lane change end label was created with a similar logic flow, with the exception that this time

we had to look for the lateralOffset to either get to 0 or close to it (in driving samples where the

ego-vehicle did not return to a lateralOffset of 0 for a long distance after finishing a lane change).

For data samples from the lane change start label to the sample before the lane change end label,

the laneChangeActive flag was set (1). For all other samples, the flag was reset to 0.

Time-To	-Collision	

Time to Collision (TTC) refers to the time to impact if the current driving conditions

continue [33]. TTC has been widely used in active safety applications, from use in Forward

Collision Warning (FCW) to active braking in Automatic Emergency Braking (AEB) [34]. Time to
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collision is a ratio of the distance to the target vehicle and the relative velocity between the ego

and target vehicle:

ܥܶܶ = 	 ,ℎܸ݁݋݃݁)݀ (ݐ݁݃ݎܽݐ
,ℎܸ݁݋݃݁)ݒ∆ ൘(ݐ݁݃ݎܽݐ [3-3]

where, d(egoVeh, target) is the Euclidean distance between the measurement origin point of the

ego-vehicle and that of the target vehicle (Figure 26).

Figure 26: Distance calculation to target vehicle. Distance between the two vehicles is
calculated based on the Euclidean distance between the origin of RT units in each vehicle.

Tying	it	all	Together	

As a final step in the data pre-processing phase, all the processed information from the

previous steps for  each ego-vehicle  and associated target  vehicle  data sample was plotted.  A

sample plot is shown in Figure 27. The plot in Figure 27 (a) shows the lateral offset of the ego-

vehicle plotted against the longitudinal (travel) distance to the target vehicle. The red circle

marker in  this  plot  as  well  as  the remaining plots  in  this  figure shows the same point  in  time

where the TTC with the target vehicle was zero, i.e. the ego-vehicle was positioned next to the

target vehicle in an adjacent lane. This helped in visualizing the data trends among different plots.

For example, the speed of the ego-vehicle at TTC equal to zero was 23.67 while the lateral ,ݏ/݉

acceleration was 0.44 ݉ ଶൗݏ  . The small black markers shown around the longitudinal distance

markers 100 and -200 in the plot in Figure 27 (c) show the lane change start and end points. The
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logic to determining the data samples that qualify for an active lane change session is discussed

in detail in section 3.2.3 . The data samples starting from the lane change start sample to the lane

change end sample were assigned lane change active (1) state, as shown in Figure 27 (i).

Similarly, the plot in Figure 27 (g) shows the TTC for the ego-vehicle for this entire data

sample. The two red circles in this plot around sample numbers 2200 and 900 are to highlight the

lane change start end samples. These lane change start and end points can be correlated

between the plots in (c) and (g) to visually analyze whether any relationship exists between the

lane change start point, lateral distance of the vehicle and TTC.

Figure 27: Plot of various data attributes to help analyze the data more effectively. (a)
Ego-vehicle lateral offset(m), with data point labelled where the ego vehicle TTC from the
target vehicle was 0. (b) Ego-vehicle lateral offset(m) from the target vehicle rear. (c) Ego-

vehicle lateral offset from target vehicle center. (d) Ego-vehicle speed (mps). (e) Ego-vehicle
lateral acceleration (mps2). (f) Ego-vehicle radius while crossing target vehicle. (g)Ego-vehicle

TTC, with lane change start and end points highlighted. (h) Simulated ideal radar sensor
showing when the target was in Field of View, (i) Lane change active flag
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Lastly, the plot in Figure 27 (i) was created by simulating a sensor with a horizontal Field

of View (H-FoV) of 90 degrees. This plot shows whether the target vehicle was in FoV (1) or not

(0). The motivation behind creating this plot was to determine whether the target vehicle was

within the viewing range of a typical in-vehicle obstacle detection sensor from the point that the

lane change start was defined [35]. This is important because we may be able to show a strong

correlation of certain features to a desired output using specialized instrumentation, but we may

not be able to extract the same features from a production sensor. That in turn would make it

difficult to extend the research to a larger platform of production vehicles.

3.3	Simulation	Test	Platform	

Although the final model in this study was developed using the driving data captured from

the physical test platform discussed in previous section, a simulated environment was also

created at the initial stages of this research. Typical to any real-world development, it is an

effective strategy both cost and effort-wise to develop the initial concept in simulation, and to

prepare the development environment for handling various aspects of real-world data. In

addition, a validated model can also become a source of data as collecting actual data in every

different driving configuration and speed can be expensive and potentially dangerous.
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Figure 28: Key aspects to consider when simulating a driving environment

The extent to which a real-world driving environment should be modelled is dependent

on the application and research objective. If the intent is to develop a control scheme framework

for vehicle platooning [36], a longitudinal vehicle dynamics model [37] that allows the study of

the impact of longitudinal spacing would be sufficient. Even when the intent is to study

longitudinal and lateral spacing of the vehicle from other obstacles, varying road geometries, a

detailed vehicle dynamics representation is useful.  A model that reflects longitudinal as well as

lateral driving dynamics, real-world sensor models as well as appropriate means to take driver

input, all become relevant. When studying how someone drives through a given environment

and what factors influence their choices, a simulated driving environment does not provide the

driver the same feel as what they would experience while driving in the real-world. Even if all the

other aspects of real-world driving conditions can be simulated, the sense of severity of the

actions performed in a simulated environment would be completely different than how a person

would behave or react in a real-world environment. Similarly, the forces acting on the vehicle

and perceived by the driver while driving, which have a great impact in our driving styles, are
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tremendously expensive to re-create in simulation and often impractical. For these reasons,

driver input data in simulated environments were only used as for the visualization of testing

parameters and as a proof-of-concept towards creating an accurate simulation.

Modeling	Road	Environment	

There are several off-the-shelf environment modeling tools available for Advanced Driver

Assistance Systems (ADAS) and automated driving related environment development. Some of

the well-known names in the automotive industry include PreScan [38],  IPG Automotive [39],

Eelektrobit [40], dSPACE [41] and CarSim [42] among others. More recently, the Robot Operating

System (ROS) [43] has also become popular for creating simulators focused on automated

driving.

For  this  research,  PreScan  was  chosen  as  the  simulator  for  modeling  the  road

environment as it supports nearly all aspects of simulated environment creation – from modeling

the environment, to sensors, vehicle dynamics and driver input. PreScan provides built-in models

for different types of road geometries and provides an intuitive interface to adapt these road

models to match the real driving environment. Another useful utility built into PreScan is the

ability to import a GPS track to create a road model. The test track GPS map was imported using

this  utility  to  create  the  oval  track.  The  road  created  from  the  imported  GPS  track  was  then

further edited to adjust the road attributes such as the number of lanes, lane width, lane mark

type etc. (Figure 29).
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Figure 29: Simulated Test Track in PreScan (Top). Zoomed-in view of the road model of
the East section of the track (bottom-left). Also shown are some of the editable properties of the

road, such as number of lanes, lane width, lane mark type etc. (bottom-right).

Modeling	Vehicle	Dynamics	

The path taken by a vehicle and the lateral forces experienced by it while traveling on a

given path were important factors in this study. The performance of several different vehicle

models was therefore studied and compared to data from the actual vehicle to ensure that the

longitudinal and lateral forces produced within the simulated vehicle model were closely
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representative of real-world driving dynamics. Figure 30 shows a 2D and a 3D version of the

vehicle dynamics model implemented in PreScan [38].

Figure 30: Vehicle dynamics models in PreScan [12]. The 2D model uses a bicycle model
combined with a vehicle roll model. The 3D model on the other hand had a more detailed vehicle

model representation with 10DoF between spring and unsprung masses.

The 2D vehicle dynamics model in PreScan was a combination of bicycle model and model

for vehicle roll motion. There are several assumptions made in the bicycle model of the vehicle

such as a constant turning radius and a zero slip angle at both front and rear wheels [37]. These

assumptions hold true for turns of constant radius and slow speed driving (< 5 m/s), but are not

valid for high-speed driving. The 2D model was therefore not considered further. The 3D vehicle

dynamics model in PreScan has a much more elaborate vehicle dynamics model. It has for

instance 10 Degrees of Freedom (DoF) between sprung and unsprung masses. Although our study

did not consider vehicle travel in the Z-direction, this 3D model also incorporated a dynamics

model for Z-motion of the vehicle (Figure 30). Reference [37] describes a detailed overview of

vehicle longitudinal dynamics, including Z-motion. This 3D vehicle dynamics model was used and
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several model parameters of this model were tuned to match the test vehicle such as vehicle

mass, its track width, moment of inertia etc. The result of the simulated vehicle travelling through

the scenario used in this study is discussed in the next section.

Simulating	a	Driving	Scenario	with	Obstacle	

After the creation of the road environment, and selecting and tuning the vehicle dynamics

model, the next step was to simulate a driving scenario as intended in this research. Figure 31

shows the simulated drive scene of the ego-vehicle traveling in the inner lane on a straight road,

changing lane for the stationary vehicle in the lane and then returning to the inner lane. The

reference path for this simulated scene was created using the path definition tool in PreScan,

whereas the path following (steering control) was done by the path follower model in PreScan.

Figure 32 shows the longitudinal and lateral accelerations experienced by this vehicle.
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Figure 31: Simulated driving scene in PreScan to capture initial sample data to review the
driving dynamics under various scenarios and to prepare the software processing environment
for actual test data. (1) Ego-vehicle approaching target vehicle while traveling in the inner lane.

(2)-(3) Ego-vehicle changing lane to pass the target vehicle. (4) Ego-vehicle returned to inner
lane.

(1)

(2)

(3)

(4)

target vehicle

ego-vehicle

ego-vehicle

ego-vehicle
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Figure 32: Simulated vehicle data. Input velocity (top left) and steering angle (top right),
vehicle longitudinal (bottom left) and lateral accelerations (bottom right) while following the

commanded steering.

3.4	Chapter	Summary	

This chapter provided a detailed review of the research platform developed and

employed in this research. As part of the simulation platform, a road model was created in

PreScan’s modeling environment. This road model was similar to the physical test track that the

data were later captured from. Two different variants of vehicle dynamics models, i.e. 2D and 3D

dynamics models were explored in PreScan. The simulated vehicle dynamics response was

compared against the actual vehicle drive data. The simulated vehicle dynamics model was tuned

based  on  the  parameters  of  the  test  vehicle  including  vehicle  weight,  wheel  base  etc.  It  was

observed that, with same velocity input as was recorded in the actual test vehicle, the lateral

acceleration of the simulated vehicle closely followed that of the actual vehicle. This simulated

model  was  used  to  capture  the  simulated  ego-vehicle’s  pose  and  motion  data  to  be  able  to

analyze and process the data from the physical test track.
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As part of the physical platform, three test vehicles were instrumented with Oxford RT to

acquire pose and motion data from each vehicle. The driving data were captured on a test track

in Fowlerville Proving Grounds. The data set from the ego and test vehicles was aligned using a

GPS time stamp. Data pre-processing was done to transform the data and to create a number of

attributes such as the lateral offset, Time-To-Collision and Lane Change Active Flag. Finally, a data

visualization interface was created in MATLAB where various data attributes were plotted to

observe and to further analyze the trends and to find any possible relationships between the

different data attributes.

In the next chapter, details of the driving task are presented. The formulation of the

learning problem is then discussed, followed by details of the various data pre-processing steps

prior to feature selection. The feature selection process is then discussed and a feature set

comprising of four features that showed strong correlation in being able to represent the spacing

profile was identified. Finally, numerous learning algorithms were explored and a model was

learned to predict a driver’s spacing profile.
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CHAPTER	4:	LEARNING	FROM	HUMAN	DRIVING	
DATA	

The next step after preparing the test platform was to capture human driving data on the

physical test platform and to learn the spacing profile from these data. This chapter discusses the

detailed steps involved in collecting the data and then learning user preferences from that driving

dataset. The chapter is broken down into (1) the explanation of the test scenario, (2) collection

of the drive data, followed by (3) analyzing the driving data, (4) performing feature selection and

lastly (5) learning the driver’s spacing profile using the selected features. In the last section of

this chapter, the spacing profile is formulated as a constrained optimization problem. This was

done to discuss and contrast the spacing profile as a learning problem versus a constrained

optimization problem. The two approaches are compared and discussed in the next chapter.

4.1	Collecting	Human	Driving	Data	

The	Driving	Task	

The driver selected for this study was a licensed driver, who also had the training required by

the test track to drive on the course. The following is a description of the instructions given to

the driver. More information on the overview of the task along with the IRB that was given to the

driver prior to this study can be found in the research information sheet (see Appendix C).

1. The driver was asked to drive in the inner lane of the two-lane track and

instructed to drive at a certain velocity ௗ௘௦ݒ = {55, ℎ defined at the݌݉	{70	

beginning of each test. This velocity was to be manually maintained to the best

of the driver’s ability.
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2. Two target vehicles were parked at different locations on the inner lane at the

beginning of each test session. The positions of the target vehicles were not

disclosed to the driver (and were randomly distributed). The driving line of sight

allowed the driver to see any given target vehicles at headݕܽݓ ≥ After .ݏܿ݁ݏ5

the ego-vehicle passed a target vehicle, that target vehicle was either moved to a

new location or kept parked at the same location.

3. The driver was instructed to change the lane when the target vehicle was

encountered in the inner lane. When it was deemed safe and comfortable the

driver was to change lanes and return to the inner lane after passing the ego-

vehicle and continue driving at .ௗ௘௦ݒ

Figure 33 shows the driving task, with the ego-vehicle (blue) making a lane change around

a stationary target vehicle (white) and returning to the inner lane.

Figure 33: The driving scenario used in this study. The driver was asked to the drive ego-
vehicle in the inner lane at a pre-defined velocity, change lane as deemed safe and comfortable
when the target vehicle was encountered in the lane and return to the inner lane when deemed

safe after passing the target vehicle.

Positioning	of	Target	Vehicles	on	the	Test	Track	

The test track was divided into four sections, each on the East and West sides of the track,

with a total of eight sections based on the road radius trend for determining where the target

vehicles should be positioned. The four segments on each of the East and the West sides of the
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track were; (1) beginning of the curve where the road curve was finishing and turning into a

straight road, (2) middle of the curve, where the road was straight, (3) start of the curve from the

straight road and (4) the curved part of the road. These were referred to as follows: curve-to-

straight, straight, straight-to-curve and in-curve respectively, as shown in the Figure 34 below.

Figure 34: Test track sections created based on road radius trend.  Target vehicle 1 was
positioned at locations within sections I, II, III and VIII, while target vehicle 2 was positioned at

locations within sections IV, V, VI and VII.

The original intent was to have the vehicles positioned among all of the locations equally, but

due to limited track time (and the curved sections being much shorter than anticipated), we

collected fewer samples on the curved section of the road as compared to the straightways. We

recorded 67 sample of the ego-vehicle driving by the target vehicles on straight (East, West)

sections of the road, while 28 samples were captured on the curved sections, as shown in Table

4.

Track Segment #  % of Total Samples

Straight (East, West) 67 70.53%
Curved (North, South) 28 29.47%

Table 4: Number of samples in straight versus curved sections of the track
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In regard to speed, the following plot shows the average velocity for each drive sample.

Although the driver was instructed to drive at ௗ௘௦ ofݒ  55  and  70  MPH,  since  the  speed  was

manually controlled, the speed range during a given drive sample could be seen to be in the range

of ௗ௘௦ݒ ± ℎ. A total of 54 drive laps of passing the target vehicle (57%) were conducted at݌݉	5

55 mph, while 39 (41%) drive runs were conducted at 70 mph. Two drive runs (samples 89 and

90) were conducted at around 40 mph, but since completing the full lap around the course at this

speed took roughly 10 minutes between setting up and driving, it was not feasible to capture a

significant number of samples at slower speed for this test. The primary focus was therefore kept

at highway speeds of 55 and 70 mph.

Figure 35: The arithmetic mean of the velocities for the drive samples.

Figure 36 shows the location of the target vehicles on the track. Target vehicle 1 is shown

in blue(+), whereas target vehicle 2 is shown in red(o). The cyan solid line shows the path trail of

the ego-vehicle from all the drives. Due to the zoom scale used to show all of the target vehicles

on this plot, multiple drive runs almost appear to take the same path, which was not the case.
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Figure 37 shows samples of the ego-vehicle during the lane change maneuver while passing the

target vehicle at four different sections of the track.

Figure 36: Target vehicle (1 and 2) positions on the track, with an underlay of samples of
the ego-vehicle driving path in cyan color.

Figure 37: Selected samples of the drive data with the ego-vehicle making a lane change
and passing by the target vehicle shown from various sections of the track.



59

4.2	Data	Attribute	Reduction	

There are instances where an attribute does not reflect the conditions being studied.

Careful consideration therefore needs to be given in removing data attributes that could

potentially confound the modeling of that data and effect the model complexity and training

time. Another benefit of data reduction prior to model training is in cases where the data may

have a degenerative distribution [44]. Depending on the learning algorithm being used, removing

such predictors can provide significant improvement in model performance and stability.

It is generally good practice to review the data in detail before moving on to modeling

with it. Some of the aspects to consider are looking for outliers or abnormal trends in the data,

perhaps due to equipment malfunction, recording errors or an abnormal event during data

collection [8]. Such data samples can adversely impact a model’s inferring ability. Similarly, there

may be chunks of data that were gathered as part of the overall test, but that may not have any

impact on the learning problem at hand and are therefore unnecessary to include as part of the

training data.

This section discusses several aspects of the reduction including (1) reduction of the

predictor set, (2) identifying and removing outliers and (3) selecting segments from the data

samples that are of relevance to the training algorithms. The driving data collected from the test

track can be divided into three main categories:

1. Ego-vehicle pose and motion data

This category contains the driving data pertaining to the ego-vehicle. These data include

for instance the x, y position in UTM coordinates defining also its accelerations and orientation
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information. The complete list of data captured of the ego-vehicle can be represented as

follows:

Position and Motion Data: ௜ݔ}
௝, ௜ݕ

௝, ௜ݖ
௝ , ௜ݔ̇

௝ , ௜ݕ̇
௝ , ௜ݖ̇

௝ , ௜ݔ̈
௝ , ௜ݕ̈

௝ , ௜ݖ̈
௝}	

Orientation Data: ൛߮௜
௝ , ௜ߠ

௝ , ௜߰
௝ , ߮̇௜

௝ , ௜ߠ̇
௝ , ߰̇௜

௝ , ௜ߜ̇
௝ൟ

,݁ݎℎ݁ݓ ݅	 ∶= 	1: 	݆	݀݊ܽ,(݈݁݌݉ܽܵܽݐܽ݀)ℎݐ݈݃݊݁ ∶= 	1: 95	

2. Target vehicle pose and motion data

The data captured for the target vehicles were identical to the ego-vehicle, which can be

represented as following:

Position and Motion Data: ,௝ఒݕ,௝ఒݔ} ,௝ఒݖ ,௝ఒݔ̇ ,௝ఒݕ̇ ,௝ఒݖ̇ ,௝ఒݔ̈ ,௝ఒݕ̈ 	{௝ఒݖ̈

Orientation Data: ൛߮௝ఒ , ௝ఒߠ ,߰௝ఒ , ߮̇௝ఒ, ,௝ఒߠ̇ ߰̇௝ఒ, ௝ఒൟߜ̇

,݁ݎℎ݁ݓ ݆	 ∶= 	1: 	,	ݏ݈݁݌݉ܽݏ	݈ܽݐ݋ݐ	ℎ݁ݐ	ݎ݋݂	95

	ݕ݈݁ݒ݅ݐܿ݁݌ݏ݁ݎ	2	ܽ݊݀	1	ℎ݈݅ܿ݁݁ݒ	ݐ݁݃ݎܽݐ	݃݊݅ݐ݊݁ݏ݁ݎ݌݁ݎ	{1,2}߳ߣ	݀݊ܽ

3. Lane Mark Information

For each of the lane marks, the position in terms of UTM coordinates x and y was

calculated, along with the road radius at each sampled point, which can be represented as:

,௞ଵݔ} ௞ଵ,݇௞ଵ}௞ୀଵ௡ݕ , ,௞ଶݕ,௞ଶݔ} ݇௞ଶ}௞ୀଵ௡ and ,௞ଷݕ,௞ଷݔ} ݇௞ଷ}௞ୀଵ௡

for the inner, center and outer lanes respectively, where k is the sampled point at 0.5m intervals

along  the  road  travel  direction.  For  more  details  on  how  the  lane  data  are  represented,  see

section 3.1.2 .

The captured attributes from the ego-vehicle, target vehicles and lane mark information,

along with the transformed data set (discussed in the Data Pre-processing, section 3.2 ) were
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further analyzed to determine if this attribute set can be reduced to a smaller subset. Figure 38

shows the complete data set that was originally captured. It was determined that for the process

of learning from these data, the driving environment in this study could be appropriately

represented with a data subset of 13 attributes. These 13 attributes include features that were

captured directly from RT as well as some of the transformed attributes from this dataset such

as the TTC. The following is a list of the selected attributes at this stage of the feature reduction:

ݎݐݐܣݐ݈ܿ݁݁ݏ ௘௚௢ݔ̇	}	= , ௘௚௢ݕ̈ , 	߰̇௘௚௢ ,ܥܶܶ,ܸܶݐݏ݅݀, ௘௚௢ݏ݋ܲݐ݈ܽ , ௘௚௢ݎ , ௘௚௢భೞݎ	 ,	

௘௚௢_ଶ௦ݎ , ௘௚௢_ଷ௦ݎ , ௘௚௢_ସ௦ݎ , ௏்ݏ݋ܲݐ݈ܽ , 	்݇௏}	

[4-1]

For  some  of  the  attributes  that  were  excluded  during  this  selection  process,  the

information they provided was retained by the transformed attributes. Consider TTC and

lateralOffset as an example. TTC captures the longitudinal positioning of the ego-vehicle from the

target vehicle in its range measurement, thereby eliminating the need to consider the

longitudinal position of the ego-vehicle and that of the target vehicle individually. The TTC

measurement also takes into consideration the ego and target vehicle velocities as part of its

relative velocity calculation, thereby eliminating the need to separately bring the target vehicle

velocity into the predictor set.

Similarly, the lateralOffset predictor considers the x and y positions of both the inner lane

line and the center lane line, as both are used in calculating the inner lane center line, which is

what  the  lateral  offset  was  calculated  from.  As  for  the  remaining  attributes  that  were  not

selected at this stage, they were not used because they were not relevant in providing key

information related to the driving scenario being studied. For example, the ego-vehicle z-

direction motion and z-acceleration were not considered as we knew that the driving
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environment did not have too much variation in the z-direction. Similarly, although initially

captured and analyzed, the longitudinal acceleration and longitudinal jerk were not selected as

the ego-vehicle was driving at a steady speed in all the tests. Similarly, since the target vehicles

were only being studied while they were stationary, their velocities and accelerations were not

relevant and were therefore removed from the selected attribute set.

Figure 38: As part of the data attribute reduction, the driving data set was reduced from
the original captured set of 37 attributes to a subset of 13. The information provided by some of
the data attributes that were initially captured and did not make it to this list, were retained by
the transformed predictors. Other attributes that did not make it to this set were deemed not

significant in providing information for the driving case being studied.

Another important aspect while preparing the data for training is to look for data samples

that may not be properly represented by the predictor set and may adversely impact the learning

process. Consider the example shown in Figure 39. The ego-vehicle encounters an unplanned

vehicle on the inner lane just before approaching target vehicle 1 and makes a lane change to

pass this “intruder”.
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Figure 39: Ego-vehicle making a lane change for an unplanned obstacle (shown in red) on
the test track prior to coming back to the inner lane and making a lane change for the target
vehicle. Since pose and motion data for this unplanned vehicle were not represented in the
predictor set, using this segment of data for training can adversely affect the learned model’s
performance as there is no predictor supporting the reasoning as to why the ego-vehicle made
this lane change.

It is to be kept in mind that no information regarding this intruder vehicle was represented

by the predictors. Therefore, using this segment of lane change data where there was no target

vehicle present as represented by the predictors, would adversely affect the model learning.

Similarly, using the remainder of the segment, shown on the left in this plot, may also be

problematic as the path and motion profile of the driver in this case may be very different than

in the normal/planned driving scenario. A few of such data samples were noted in the data log

as erroneous data and manually eliminated from the training data set, shown in Figure 40.
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Figure 40: An excerpt from the data log highlighting data samples that were removed
from the training set as part of pre-processing step due to erroneous data.

4.3	Feature	Scaling	

For problems involving multiple features, ensuring that the features or predictors are on

the same scale, i.e. have same range of values, can be helpful for models that use gradient

descent to converge. Examples of some of the learning algorithms that benefit from features

being on the same scale include Partial Least Squares and Neural Networks [46]. Among some of

the well-known standardization techniques are Z-score normalization and min-max scaling [44,

47, 48].

Standardization or Z-score normalization rescales features to have zero mean (ߤ ∶= 0) and

standard normal distribution (ߪ ∶= 1). This is achieved by subtracting the average predictor value

from all the values. This results in all the values having a zero mean. The resulting values are then

divided by their standard deviations, resulting in all values having a standard deviation of one. Z-

score calculation for feature vector :can be represented as ࢞

ࢠ = 	
	࢞ − ߤ	
ߪ

[4-2]

The Z-score standardization was applied to all  the feature vectors  in  this  study before

moving on to the next step of feature selection.
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4.4	Feature	Selection	

For learning problems that have high-dimensional data, selecting a smaller subset of

features for use in the model construction can be helpful in (1) increasing model accuracy, (2) in

reducing the model complexity and (3) in reducing overfitting by enhanced generalization [45,

44]. The process of selecting a subset of features is referred to as Feature Selection or Subset

Selection.

There are two main approaches that can be employed for subset selection: wrapper

methods, also known as best subset selection methods attempt to the find the predictor set that

provides the best model performance by exhausting 2௣predictor combinations, where is the ݌

total number of predictors. In other words, this method uses all the predictor sets individually as

the learning algorithm inputs and evaluates the performance of the model derived using each.

This method usually works well for problems that do not have large sets of predictors to

begin with. For problems containing high-dimensional predictor set, this technique suffers from

computational limitations [46]. As an example, for a problem containing 20 predictors, there

would be over a million combinations of predictor sets to develop the model for and then

compare performance of those models. Root Mean Squared Error (RMSE) is generally used as a

performance measure in evaluating model performance among others [44].

Unlike wrapper methods, filter methods are evaluated with predictive models and only

the predictors that pass certain criteria are then used in developing the final model. A thorough

review of the filter methods is provided in [49].

Since the number of predictor set being considered for the learning problem in this

research was comparatively small (a total of 13 predictors selected before feature selection, with
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5 of them being the road radius at different headways, leaving 8 unique predictors), the wrapper

method was employed for feature selection, with a decision tree approach [44] used as the

learning algorithm.

Figure 41: Evaluating model performance against various combinations of predictors.
root mean square error was used to evaluate model performance. A selected combination of

4 predictors (green) provided the best model performance.

A sample of the predictor set combination and RMSE value for their respective models

are shown in Figure 41. The search space explored for feature selection started with 13

predictors. The minimum number of predictors considered were 3, as the driving environment

was not appropriately represented for any predictor combination below 3 based on subject

matter knowledge. One of the goals in the overall learning process was to use the predictors that

are least expensive in terms of acquiring them in real-world vehicles, ones that are less noisy and

that can be measured relatively accurately.
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Looking at the model performance, the highest number of predictors, 13, provided

reasonable performance, but that could also have been due to model overfitting. As mentioned

before, some of the predictors could be meta-predictors that intrinsically include other

predictors. The overfitting with 13 predictors becomes obvious as we move to a lower number

of predictor combinations. The predictor sets of 4 and 5 provided similar performance as that of

the 13-predictor combination. Finally, reviewing the performance with combinations of 3

predictors resulted in erratic RMSE values. Based on these results, a selected group of 4

predictors provided the best RMSE and was selected as the feature set. For combination of 4

predictors, radius of the road at 1, 2 and 3 seconds provided the same RMSE value. Since, like the

road radius of public highways, the road radius of test track changed gradually, this may have

caused the radius values at headways of 1 through 3 secs ahead of the ego-vehicle to be close

enough to each other to have the same significance in the model performance. The authors of

[50] studied driver gaze to determine where drivers look when they drive and concluded that we

look at the road 1 to 2 secs ahead of us in determining our steering correction. Based on this

study, in combination with the observation that the radius at headways of 1 through 3 secs was

providing the same model performance, the radius of the road at 1 secs of headway was selected.

The final predictor set from the feature selection step was as follows:

࢖ = ,࡯ࢀࢀ,࢕ࢍࢋ̇࢞} {࢙૚࢕ࢍࢋࡾ,ࢂࢀ࢙࢕ࡼ࢚ࢇ࢒ [4-3]
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4.5	Model	Selection	and	Training	

Selecting	an	Appropriate	Learning	Algorithm	for	a	Problem	

To select an appropriate model for any prediction problem, it is important to understand

the solution that is being learned with respect to the ability of the chosen learning algorithm.  At

one end of the spectrum are the algorithms that are restrictive in their predictive ability, but are

more interpretable. Figure 42 provides a selected list of algorithms, plotted on a scale showing

how flexible versus interpretable each of the listed algorithms is. An example of such a learning

algorithm would be linear regression, where one can easily understand the relationship of the

predicted value ܻ, to each of the predictors, ଵܺ, ܺଶ…ܺ௣, but this learning algorithm, as its name

suggests, can only provide accurate models for problems where the predictors have a linear

relationship to the predicted value.

Figure 42: Tradeoff between a learning algorithm’s flexibility and its interpretability [46].

On the other hand, a highly flexible model such as bagging trees that can represent a

complex, non-linear relationship between the predictors and the output can be very difficult to

interpret. Figure 42 shows a plot of flexibility versus interpretability and lists several algorithms.
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Towards the left in this plot are algorithms that are highly interpretable, but low in their flexibility

to be able to model complex and non-linear relationships among the predictors and the observed

value. As we move towards the right of this plot, we increase the leaning algorithm’s flexibility

and ability to model complex relationships, but these models become harder to interpret.

Therefore, depending on the complexity of problem at hand, the relationship between the

predictors and the output, and the desire to be able to infer the relationship between the input

and output, can determine the appropriate learning algorithm for a given problem.

There is a large selection of learning algorithms available for regression problems (see

Figure 43 for a summary of algorithms). For a given learning problem, if we have an intuition of

the trends of our data and what type of relationship exists between the predictors and the

observed value, we can be more effective in selecting an appropriate learning scheme. For

example, if we have intuition based on the data we have reviewed that the observed value would

be a linear cost function of some combination of the predictors, we can try some of the less

flexible, but more interpretable, algorithms such as linear regression. In the case of a learning

problem that involves a very large set of predictors, identifying such relations can be challenging

or unfeasible. In such cases, a slew of learning algorithms can be explored by developing models

using various algorithms and the performance of these models can be studied further to narrow

them down to an algorithm that would work best for that problem. Both MATLAB and Weka [25]

have such exploration features available where several learning algorithms can be selected to

train against a given dataset and model performances can then be further evaluated using

metrics that are discussed in the next section. A list of learning algorithms is provided in Figure
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43. Among other aspects, a learning algorithm’s ability to perform feature selection and its data

pre-processing capabilities are all listed in this table.

Figure 43: Summary of Learning Algorithms and some of their characteristics [44].

During the data pre-processing stage, it was observed that the predictors do not have a

linear relationship with the lateral offset. Knowing that our learning problem was that of a non-

linear regression, bagged trees and neural networks [19] were at first used to build the model.

To see if a slightly less flexible algorithm might also provide acceptable performance, a few such

algorithms were used to develop the model. The performance of each of the developed models

was then compared with the performance of bagged trees and neural networks. Among the

various learning algorithms attempted were; 1) Linear Regression, 2) Quadratic Support Vector

Machines (SVM), 3) Cubic SVM, 4) Fine Gaussian SVM, 5) Simple Tree, 6) Boosted Trees, 7) Bagged

Trees, 8) Neural Networks.



71

An important point to be noted here is that each of the above algorithms were used to

develop a model while using their default parameters for training in MATLAB. The model

performances discussed in the next section therefore do not reflect a given algorithm’s overall

learning capability. Instead, the model performance at this stage should only be treated as a

rough indication of how well a given learning algorithm would perform for the given data. At this

stage in the learning process, the intent is to select an algorithm that provides the right

combination of flexibility, interpretability and predictability. Once an algorithm is selected based

on these requirements, model performance can be further improved by tuning of the various

parameters. The intent of this research was not to find the best tuned model, but rather an

approach to how such a learning problem would be solved, along with a model that represents a

driver’s lateral offset that was acceptable for our use case. Therefore, further effort was not

invested in improving the performance of the models that did not performed well based on the

performance metrics used.

Metrics	to	Evaluate	Model	Performance	

The discussion on model performance can be separated into test error rate and training

error rate [8]. If the available data have been separated into test and training data sets prior to

training, a model’s predictability for unseen data can be estimated by evaluating its performance

against the test set. This method of estimating model performance is referred to as the test error

rate. Since data collected in the real world are usually limited in terms of variability, we can only

gain an estimate of how the model may perform with future unseen data through the test error

rate. The performance of the model estimated through the test error rate is not guaranteed for

all future data because of the limited data set that was introduced to train the model with.
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To evaluate a model’s performance during the training phase, the available data can be

divided into a training set and validation set. During training, the learned model is evaluated

against  the  validation  set  that  was  held  out  prior  to  training  to  estimate  the  model’s

predictability. This method is referred to as holdout validation. If the validation data set always

has the same fixed set of samples from the data, validating model’s predictability using it would

give a limited insight into how well the model would perform. To counter this problem, ݇-fold

Cross Validation (CV) is widely used for model validation. In this approach, the available data are

divided into ݇ groups or folds. In each training iteration, ݇ − 1 folds are used to train and the ݇Th

fold is used as the validation set to evaluate model performance. This process therefore

provides	݇ estimates of model performance, and the mean of these estimates is used as the

overall model performance.

To quantify a model’s predictive capability, we compare the predictions against the

observations and use a metric or a variety of metrics to evaluate the performance. Some of the

common metrics for quantifying a model’s predictive capability are Mean Squared Error (MSE),

Root Mean Squared Error (RMSE) and Coefficient of Determination (ܴଶ) [19, 26]. These metrics

are applicable in either calculating the test or training error rate. The MSE is calculated by

summing the squares of the residuals and dividing them by the total number of samples. RMSE

is then calculated by taking the square root of the MSE. RMSE is generally interpreted as how far

the residuals are from zero. We generally would want MSE and RMSE to be low (ideally zero),

which would indicate a high quality of fit between the predicted and observed values. In the case

of ݇-fold cross validation, we would have	݇ values for .i.e ,ܧܵܯܴ ,ଶܧܵܯܴ,ଵܧܵܯܴ … ௞ܧܵܯܴ	 .

The overall performance estimate is then computed as the average of these values;
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ܥ ௞ܸ = 	
1
݇෍ܴܧܵܯ௜

௞

௜ୀଵ

[4-4]

	To calculate the coefficient of correlation (ܴଶ)	[53], we find the coefficient of correlation

(ܴ = (௑,௒)ߩ = ,ܺ)ݒ݋ܿ ܻ)
௒ൗߪ௑ߪ ) between the actual and the predicted values and square it. ܴଶis

interpreted as how well the observed values are represented by the model, based on the total

variation of the predicted output of the model [54].  All three of these metrics, namely ,ܧܵܯ

and ܧܵܯܴ ܴଶwere used in evaluating model performance in this research.

Comparing	Model	Performance	

The prediction performance of various models was compared using the metrics discussed

in the previous section. Figure 44 shows the performance of the various models that were built

using 5-fold cross validation. The linear regression, as was anticipated, did not perform well, with

a RMSE of 1.23 and ܴଶ of 0.1. The Fine Gaussian SVM model performed well, with RMSE of 0.09

and ܴଶ 0.96. The models trained using Bagged Trees and Neural Nets stood out amongst the

attempted regression algorithms, with RMSE of 0.04 and 0.26 respectively. These two trained

models were tested against the
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Figure 44: Performance of various models measured by comparing the predicted to the
observed values, measured in terms of MSE, RMSE and R2 using 5-fold cross validation. The

model built using bagged trees provided the best performance.
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Model	Training		

To train the final model, a hold-n-out scheme was used, where 6 of the data samples were

retained as test data and the model was trained against the remainder of the data set. As shown

in the figure below, one sample was kept out  from each,  straight-to-curve – South,  curve-to-

straight – South, straight – West, straight-to-curve – North, in-curve – North and curve-to-straight

– North sections. The performance of the model against retained samples is discussed in the next

chapter.

Figure 45: Six of the data samples were held back as test set, one from each of the
labelled sections

4.6	Spacing	Profile	as	a	Constrained	Optimization	Problem	

Calculating the driving path has been treated as a parameter optimization problem by

several researchers [55, 56, 57]. The authors of [20] treated the ego-vehicle driving path as a cost

minimization problem given a lead-vehicle’s path profile. The costs defined in this research were



76

(1) deviation from reference path, (2) distance from obstacle and (3) lateral acceleration. See

section (2.3.1 ) for a detailed overview of the problem definition.  The minimization problem

defined by these authors was re-formulated as follows:

௥௘௙௞ାଵቃ௞ୀ଴ߦቂ	)ܬ	݁ݖ݅݉݅݊݅݉
ே

, (	[௞ݑ] [4-5]

subject to:

௥௘௙௞ାଵߦ − ݂ௗ௧ ቀߦ௥௘௙௞, ௞ቁݑ = 0

݀௞ − ݀௦௔௙௘௧௬ ≥ 0

ห߰̇ห −
ܽ௬,௠௔௫

ܸ ≤ 0

௬ೖߦ − ௠ܲ௜௡ ≥ 0		

௬ೖߦ − ௠ܲ௔௫ ≤ 0

Where ௥௘௙ߦ  is the reference path, ,௞is the steering angle inputݑ ݀௞ is the distance from

obstacle in path,	݀௦௔௙௘௧௬  is the safety distance defined from the obstacle, ߰̇ is the vehicle yaw

rate,
௔೤,೘ೌೣ

௏
 is the ratio of maximum defined lateral acceleration and vehicle forward velocity,

௬ೖߦ is the lateral portion of the path, ௠ܲ௜௡  is  the  minimum  lateral  position  and ௠ܲ௔௫is the

maximum lateral position. To solve this minimization problem, the cost function was structured

as:

෍[ߦ௣௔௧௛௞ + ௢௕௦(݀௞)ܩ௢௕௦ߤ + ௔೤൫߰̇௞൯ܩ௔೤ߤ	 + ௬ೖ൯ߦ௣೘೔೙൫ܩ௣೘೔೙ߤ
ே

௞ୀ଴

+ [௬ೖ൯ߦ௣೘ೌೣ൫ܩ௣೘ೌೣߤ

[4-6]

where,
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௢௕௦(݀௞)ܩ = ൜݀௞ − ݀௦௔௙௘௧௬ , ݂݅	݀௞ − ݀௦௔௙௘௧௬ < 0	
݁ݏ݅ݓݎℎ݁ݐ݋												,0

௔೤൫߰̇௞൯ܩ = 	 ൝ห߰̇ห −
ܽ௬೘ೌೣ

V , ݂݅	ห߰̇ห −
ܽ௬೘ೌೣ

V > 0

0, ݁ݏ݅ݓݎℎ݁ݐ݋

௬ೖ൯ߦ௣೘೔೙൫ܩ = 	 ൜
௬ೖߦ − ௠ܲ௜௡ , ௬ೖߦ	݂݅ − ௠ܲ௜௡ < 0

0, ݁ݏ݅ݓݎℎ݁ݐ݋

௬ೖ൯ߦ௣೘ೌೣ൫ܩ = ൜ߦ௬ೖ − ௠ܲ௔௫ , ௬ೖߦ	݂݅ − ௠ܲ௔௫ > 0
0, ݁ݏ݅ݓݎℎ݁ݐ݋

and ௢௕௦ߤ	 , ௔೤ߤ , ௣೘೔೙andߤ .௣೘ೌೣwere the weights for each of the costsߤ

The above reformulation of the problem was implemented in MATLAB, where fmincon

was used to solve this multi-variable optimization problem. The simplified 2D vehicle dynamics

model [20] was used to represent the vehicle plant model. The resulting spacing profile from this

optimization model is discussed in the next chapter.

4.7	Chapter	Summary	

This chapter presented the methodology and steps performed to learn the spacing profile

from human driving data. The driving task performed by the ego-vehicle driver is explained at

first, followed by explanation of the various sections of the test track, where each of the two

target vehicles were positioned. The several steps taken as part of the data pre-processing are

then discussed including feature reduction, feature scaling and selection. A set of four features

(selectattr) consisting of the ego-vehicle velocity, radius of the road at 2 secs of headway ahead

of the ego-vehicle, TTC with ℎ௧௔௥௚௘௧݁ݒ  and lateral position of ℎ௧௔௥௚௘௧݁ݒ  in the lane were identified

as the features that strongly correlated with being able to represent the ego-vehicle driver’s

spacing profile from ℎ௧௔௥௚௘௧݁ݒ . Several machine learning algorithms were explored to learn the
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non-linear regression problem and the performance of the models developed using them was

discussed.

Before training the models, six data samples were retained from the training set. Two

models were developed using bagged trees and neural networks. Towards the end of this

chapter, a human-like spacing profile was formulated as a constrained optimization problem. In

the next chapter, the spacing profile provided by the optimization function is compared to the

output of the learned model. The performance of the learned model is also discussed in the next

chapter by comparing the model’s predictions to observed data for the six data samples that

were retained during training.
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CHAPTER	5:	RESULTS	AND	DISCUSSION	
This chapter discusses how well the predicted lateral offset matched the observed values

for the six data samples that were retained during training. Since RMSE provides the quality of fit

by taking the difference between each of the predicted sample against the associated observed

sample, time offsets between the predicted and observed values cannot be interpreted using

RMSE. Two other metrics therefore are introduced before critically reviewing the prediction

results. In the last section of this chapter, the optimization criteria that authors in [20] used are

applied in our driving use case and the results are discussed.

5.1	Spacing	Profile	as	a	Constrained	Optimization	Problem	
versus	a	Learning	Problem	

The plots in Figure 46 show a comparison of the spacing profile derived using the

formulated optimization problem (problem formulation discussed in section 4.6 ) shown as an

Optimized Path, while the spacing profile model developed from learning from human driving is

shown as Predicted Path. The reference path given to the optimization problem in this example

was the lane center. In Figure 46 (top), although the optimized version navigates around the

obstacle, the profile is not like the human spacing profile, shown in the figure as Driver Path.

Recall that TTC was identified as an important predictor of the driver’s spacing profile in this

research (see section 4.4). The bottom plot in Figure 46 shows the optimized spacing profile with

the TTC added as a cost to the optimization problem. Although the optimized response does not

completely follow the human profile while returning to the lane, it follows a human-like trend

closely while approaching the target vehicle. Based on the improvement in the optimized profile

due to adding one feature that was identified as a signification predictor for the `human spacing
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profile, it can be assumed that by updating the cost structure of the optimization problem by

further applying the feature set and trends learned from human driving, we may be able to

formulate the constrained optimization problem to reflect the human-like spacing more closely.

Further study is needed to consider other practical factors such as the optimization model’s

ability to return an optimized path within a pre-defined application time.

Figure 46:Comparison of optimized versus predicted path. (Top)Optimized path with
center of lane as desired path, without TTC as a cost, (bottom) optimized path with center of

lane as desired path with TTC included as cost.

5.2	Metrics	to	Measure	Similarity	between	Predicted	and	
Observed	Data	

The model performance metrics discussed thus far are evaluated by the squared error

between a predicted point and its respective observed point to estimate the quality of a model’s

fit. To measure the similarity between two signals that may have a time lag between them, two

other metrics, the cross-correlation and coefficient of variation, are introduced in this section.
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These metrics will be used along with the other model performance metrics discussed in previous

sections, to discuss model performance against the six data samples that were retained.

Cross-Correlation	

Cross-correlation provides a measure of similarity between two random sequences as a

function of a time lag applied to one of them. Mathematically, cross correlation is defined as [58]:

(݂ ∗ ݃)(߬) ≝ ݐ)݃(ݐ)∗݂ + ݐ݀(߬ [5-1]

where, ݂∗is the complex conjugate of ݂, and ߬ is the lag.

Cross-correlation is used in signal processing applications across many fields, from

automotive applications to interpreting medical scans, from pattern matching to finding the time

delay between two series [30, 31, 32]. An example of its use is in radar systems to find the time

delay between the transmitted and received signal [33]. The motivation of using cross-correlation

in this research is to quantify the similarity in the predicted and observed values in terms of the

cross-correlation magnitude, and to determine the time delay at the maximum correlation point

between the two series.

Consider the lateral offset data from one of the drive samples shown in Figure 47 (top).

This reference sample ,was shifted to the right by 300 samples (ݐ)݂ ݐ)݂ + 300), labelled as ref

shifted by 300. By performing cross-correlation between these two signals, we can expect to get

maximum correlation at a delay of 300, which was the delay that was added to the reference

signal to create the test signal. The cross-correlation plot between these two signals using the

xcorr command  in  MATLAB  is  shown  in  the  bottom  plot  of  Figure  47,  where  the  time  lag  at

maximum correlation can be seen to be 300.
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Figure 47: (top) Reference driving data sample and the same sample shifted to the right
by 300 samples, (bottom) max correlation observed at time delay of 300 samples, whcih was the

shift applied to the reference data.

Coefficient	of	Variation	

Another estimate that provides us some insight into the similarities between two data

series is the coefficient of variation (CV). The CV provides us with a measure of dispersion of a

given data set and is the ratio of the standard deviation of the data set (ݏ) and its mean (̅ݔ) [63]:

௏ܥ = 	 ݏ ൗݔ̅ [5-2]

An important aspect to keep in mind while using CV is that it only provides a meaningful

assessment of the dispersion of data when the values of the variables being measured are

positive, such that ݔ̅ > 0 [34]. A TTC versus lateral offset plot is shown for three different data

samples (6,7 and 23) in Figure 48. Each of the data samples are slightly different from the other

in terms of the trend of lateral offset as it approaches and crosses the TTC of zero. It can also be

seen from the plot that the dispersion of the data among all three samples is slightly different.



83

The CV for the datasets 6, 7 and 23 are 0.54, 0.47 and 0.52 respectively. This tells us that the data

sets 6 and 23 are relatively similar in terms of their dispersion around the mean.

Figure 48: TTC versus lateral offset for four different drive samples. Data samples 6 and
23 have very similar trends and dispersion, hence close CV values of 0.54 and 0.52 respectively.

5.3	Performance	for	Retained	Data	Samples	

The following figure (Figure 49) shows a sample plot and highlights the numerous details

to help understand the information that will be presented in the plots discussed later in this

section. The x-axis is the Time-To-Collision to the target vehicle. TTC has a positive value as the

ego-vehicle approaches the target vehicle, is zero when the ego-vehicle is next to the target

vehicle and has a negative value once the ego-vehicle passes the target vehicle. Mathematically,

this can be written as:

ܥܶܶ ∶= 	൞			
݀൫݌௘௚௢ , ௥௘௟ݒ/௏൯்݌ , ௥௘௟ߠ	݂݅ < ߨ

2ൗ 			
௥௘௟ߠ	݂݅																					,																0	 == ߨ

2ൗ 	
−݀൫݌௘௚௢ , ௥௘௟ݒ/௏൯்݌ , ௥௘௟ߠ	݂݅ > ߨ

2ൗ 	

[5-3]

The Y-axis represents the lateral offset from the center of inner lane, with positive lateral

offset as the vehicle moves towards the outer lane. The three horizontal lines going across the

plot are the borders (lane markers) for the inner and outer lanes. The black line represents the
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retained test sample, while the red and blue lines represent the predicted lateral offset of the

models built using Neural Networks and Bagged Trees respectively. Recall that the test track was

divided into eight sections (section 4.1.2 ) - the gray lines in the plot are for the lateral offset data

of the remaining data samples from the road section that the retained sample was selected from.

Figure 49: A detailed illustration of how to interpret the plots that will be presented later
in this chapter.

The remainder of this section discusses model performance of the six data samples that

were retained during training. Under each sub-section of the retained data samples, the road

section from which the sample was derived will be presented first. Two plots will be presented -

the first plot, as discussed in the previous section, will show the predicted performance with the

observed values, along with the observed values of all the other samples from the retained

sample’s road section group. The second plot will show the same predicted and observed values,

but this time with all the data samples captured during data collection.

Due to the stochastic nature of human driving, slight variations can be observed even in

the data samples from a given group. Therefore, it is not expected that the predictions would
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perfectly match any given observation. A reasonable approach instead would be to compare how

the observed data compare against their own group and then to compare that with each of the

two model predictions.

Test	Data	1:	Straight-West	

(a)

(b)

(c)
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Figure 50: Test data 1 -(a)This sample was selected from straight-West, section V of the
road. The ego-vehicle was driving straight while making the lane change for the target vehicle.

(b) Average velocity for this sample was 86.81 KPH. Ego-vehicle velocity(left) and lateral
acceleration profile (right). (c) (top) Observed versus predicted lateral offset compared with

sample's own group in gray and (bottom) compared with all the data samples from all groups
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Test	Data	2:	Straight-to-curve	-	South	

Figure 51: Test data 2 -(a)This sample was selected from straight-To-Curve, section II of
the road. The ego-vehicle was getting into the curve while making the lane change to the target
vehicle. (b) Average velocity for this sample was 82.89 KPH. Ego-vehicle velocity(left) and lateral

acceleration profile (right). (c) (top) Observed versus predicted lateral offset compared with
sample's own group in gray and (bottom) compared with all the data samples from all groups.

(a)

(b)

(c)
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Test	Data	3:	curve-to-straight-North		

Figure 52: Test data 3 -(a)This sample was selected from Curve-To-straight, section VIII
of the road. The ego-vehicle was driving out of the curve before making the lane change for the
target vehicle. (b) Average velocity for this sample was 86.66 KPH. Ego-vehicle velocity(left) and
lateral acceleration profile (right). (c) (top) Observed versus predicted lateral offset compared

with sample's own group in gray and (bottom) compared with all the data samples from all
groups.

(b)

(c)

(a)
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Test	Data	4:	straight-to-curve-North		

Figure 53: Test data 4 -(a)This sample was selected from the Straight-To-Curve, section
VI of the road. The ego-vehicle was driving into the curve while making the lane change for the
target vehicle. (b) Average velocity for this sample was 87.75 KPH. Ego-vehicle velocity(left) and
lateral acceleration profile (right). (c) (top) Observed versus predicted lateral offset compared

with sample's own group in gray and (bottom) compared with all the data samples from all
groups.

(c)

(b)

(a)
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Test	Data	5:	in-curve-North	

Figure 54: Test data 5 -(a)This sample was selected from the in-curve, section VII of the
road. The ego-vehicle was driving into the curve while making the lane change for the target

vehicle. (b) Average velocity for this sample was 90.24 KPH. Ego-vehicle velocity(left) and lateral
acceleration profile (right). (c) (top) Observed versus predicted lateral offset compared with

sample's own group in gray and (bottom) compared with all the data samples from all groups.

(a)

(b)

(c)
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Test	Data	6:	curve-to-straight-South	

Figure 55: Test data 6 -(a)This sample was selected from the curve-to-straight, section IV
of the road. The ego-vehicle was driving along the curve while making the lane change for the
target vehicle. (b) Average velocity for this sample was 113.58 KPH. Ego-vehicle velocity(left)

and lateral acceleration profile (right). (c) (top) Observed versus predicted lateral offset
compared with sample's own group in gray and (bottom) compared with all the data samples

from all groups.

(a)

(b)

(c)
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5.4	Discussion	on	Model	Performance	for	Test	Data	

The previous section illustrated the model performance against the six test data samples.

The test data were within the speed range of approximately 82 KPH to 113 KPH and included

driving on straight as well as curved sections of the road. As shown in Figure 50 through Figure

55, both the Neural Network and Bagged Trees model performed very well in predicting the

driver’s lateral offset. Figure 56 provides a glimpse into the quantitative analysis of the quality of

fit in terms of RMSE. Most of the RMSE values are well under 50cm except for sample number 1,

where RMSE for the Neural Network-based model was 54cm.

Figure 56: Model performance against the six test samples in terms of RMSE. For sample
1, although the RMSE is slightly higher than the RMSE for the remaining samples, the

predictions are still well within the bounds of the lateral offset of remaining data sets within
that same group.

As discussed earlier, there was variation in the lane change maneuver performed by the

driver even when driving through the same area multiple times. It therefore is more appropriate

to consider the performance with the remaining of lane change samples within the group of

RM
SE
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sample 1 in  addition to the RMSE values.  Figure 50 (c,  top)  shows the predicted lateral  offset

along with the lateral offset for  the remainder of that group. The predictions can be seen to be

well within the bounds of the remaining data samples with this group.

In some cases, the predicted lane change started slightly earlier than the test sample. It

is therefore important to consider the cross correlation along with the time delay between the

predicted and observed lateral offset trend. The cross correlation between the predicted and

observed values for the test samples is presented in Figure 57.

Figure 57: Cross correlation of the predicted lateral offset and the test sample shown as
Xcorr_NN and Xcorr_Reg for neural network and bagged trees models respectively. Additionally,
the maximum and minimum values for the cross-correlation of the test sample is presented with
its own group data set given as Xcorr_GrpMax and Xcorr_GrpMin respectively.

To determine whether these cross-correlation values are within acceptable ranges, the

maximum and minimum cross-correlation values between the test sample and its group is also

presented in Figure 57 as Xcorr_GrpMax and Xcorr_GrpMin respectively. All the cross-correlation

values from both prediction models were observed to be within the bounds of the cross-

correlation of the test sample with its own group.
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Figure 58: Delay in samples, calculated based on maximum cross correlation between the
predicted and observed data for models by Neural Network and Bagged Trees shown as delay_NN
and delay_Reg respectively. In comparison, the delay measured between the test sample and the
rest of its group members is presented as delay_GrpMax and delay_GrpMin for the maximum and
minimum delays respectively.

The delay in data trends between the predicted and observed values can be measured in

terms of offset of the maximum cross-correlation values. These delays are presented for each of

the two models (as delay_NN and delay_RegT) along with the maximum and minimum delays of

the test sample observed within its own group (as delay_Grpmax and delay_GrpMin) in Figure

58. The predicted responses can be seen to be closer to zero much better than the delay

comparison of the test sample within its own group. It can therefore be deduced that the

predicted spacing profile trends were similar to those of the test samples.
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5.5	Conclusion		

In this research, the spacing profile of human drivers in terms of distance from other

vehicles was formulated as a learning problem. The spacing profile was defined in terms of lateral

offset from the lane center and the longitudinal spacing from target vehicles was defined in terms

of Time-To-Collision. Due to the stochastic nature of human driving and possibly a large variety

of factors that can influence human driving decisions, this study focused on a specific use case of

passing a stationary vehicle in the ego-vehicle’s lane.

The ego and target vehicles were instrumented to measure the position and motion

profiles of each of the vehicles. A total of 95 samples of human driving data were captured, each

of which included driving in the inner lane, making a lane change as a stationary target vehicle

was encountered in the inner lane and returning to the inner lane of a test track. Machine

learning techniques were used to identify a feature set that strongly represented the driver’s

spacing profile while passing target vehicles. This feature set consisted of the following four

features: 1) radius of the road two seconds ahead of the ego-vehicle, 2) ego-vehicle’s velocity, 3)

Time-To-Collision with the target vehicle and 4) target vehicle’s lateral position in the lane.

Two models were developed, one using Neural Networks and the other using Bagged

Trees. The predicted values of the models were within statistical significance defined in terms of

RMSE and cross-correlation.  A comparison was done by formulating the spacing profile  as  an

optimization problem, where the objective was to minimize the distance to lane center, while

keeping a safe distance from the target vehicle and keeping the lateral acceleration within a pre-

defined maximum lateral acceleration. Although the optimized path went around the obstacle,

the profile trend did not follow the human driving data well.
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Since Time-To-Collision was found to be a strong predictor in this study, it was added as

a cost to the earlier defined optimization problem. The optimized spacing profile with Time-To-

Collision added as a cost to the optimization problem represented the human spacing profile

much better than the optimized profile that did not include the TTC. The optimized profile output

with TTC was more like the human spacing profile prior to crossing the target vehicle. After

passing the target vehicle, while the optimized spacing profile was within the defined criteria, it

deviated more from the human sample. Although we might be able to achieve reasonable results

in this driving use case by further tuning the optimization model parameters, it becomes

impractical to continue to refine the cost functions and associated weights as we expand the

driving scenarios. On the other hand, learning from the demonstration framework allows us to

continue to expand the model’s capability by re-training it with the expanded driving scenario

data set.

This research provided an end-to-end methodology concerning how to learn a human-

like driving style using learning from demonstration techniques. Although the use case focused

on in this research is a small percentage of overall driving use cases, the methodology presented

here  can  be  extended  to  learning  a  human  driving  style  in  a  large  variety  of  use  cases.  The

predictor  set  identified  in  this  research  consists  of  data  that  can  be  gathered  in  current

production vehicles that are equipped with ADAS features, providing a rather inexpensive way to

capture data and implement human-like spacing profiles in today’s production vehicles.
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CHAPTER	6:	RESEARCH	CONTRIBUTIONS	AND	
FUTURE	WORK	

6.1	Summary	of	Contributions	

Learning from demonstration techniques is becoming more prevalent in the automated

driving industry. For human drivers to yield control to automation, for the occupants to feel safe

and comfortable and for other human drivers to drive with mixed automated traffic, the

automated vehicles  will  need to think and act  like human drivers.  As drivers,  we each have a

different driving style and comfort preference in many different aspects of driving. This research

focused on learning how human drivers space themselves while approaching and passing other

stationary vehicles.

There are three main novel  and key technical  contributions of  this  research:  First,  the

methodology and framework laid out in this research using learning from demonstration

techniques to learn a driver’s spacing profile in the presence of other obstacles is the first to the

best of the author’s knowledge. Several researchers have attempted to learn how human drivers

position themselves in a lane, but in an obstacle-free environment. This research lays out the

methodology from problem definition, to vehicle instrumentation and data collection, followed

by using machine learning techniques to develop models that can present a human driving style

in the presence of other vehicles. Although this research focused on driving around stationary

vehicles, the methodology and framework can be extended to include many other driving

scenarios.

The second technical contribution of this research is in identifying a combination of

features that represents a driver’s spacing profile from other stationary vehicles. This is a
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significant contribution as this is the first research that ties the identified feature set to human

driving data in terms of spacing profile. While formulating the problem, a special focus was given

to information that could be made readily available with the sensing technology available in

today’s vehicles. Each of the identified features can be captured using in-vehicle cameras, radars,

a GPS system and maps, all of which are either available in production vehicles as of this writing

or are expected to be available in the very near future.

The third contribution of this research was the development of a spacing profile model

that can represent a driver’s spacing profile. Although other researchers have attempted to learn

driving style from human driving in a traffic-free environment, to the best of the author’s

knowledge, this is the first model that can provide a human-like spacing profile in the presence

of other vehicles. The learned model is able to predict a human-like spacing profile, while driving

at highway speeds, on straight as well as curved roads and in the presence of other stationary

vehicles.

6.2	Limitations	of	this	Research	and	Future	Work		

While this research laid out the ground work in presenting a human-like profile selection

in the presence of other obstacles, it had a few limitations which will be the next focus of this

research. Some of the limitations of this research included driving on a test track only, using

driving data from a single driver only and in a limited driving scenario, i.e. only considering

stationary target vehicles. The use of a test track for this study was primarily safety driven. A test

track provides an ideal environment for such studies that cannot be conducted safely on a public

road. The ability to park target vehicles in the middle of a lane on a public road is impractical and

unsafe. This safety concern is no longer relevant as we start considering the use cases that involve
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some of the typical non-stationary target vehicle scenarios. Another motivation for selecting the

test track for this study was instrumentation; the RT system that was used in this study can

provide positional information accurate to within a few centimeters in the presence of a local

base station (see section 3.1.3.2 for background on RTK). The FTTA test track had a local base

station installed near the test track. Using this track therefore allowed us to obtain RTK-level

positional accuracy.

To expand this study with other use cases on public roads, the instrumentation to acquire

the ego and target vehicle pose and motion information must be revisited as it is not practical to

equip  every  target  vehicle  with  an  RT  system.  Many  auto  manufacturers  that  are  releasing

vehicles  with active safety features such as  adaptive cruise control  and lane keep assist  have

camera systems [64, 65]. These camera systems are capable of estimating ego-vehicle position

in a lane along with estimating the relative position and motion of other vehicles. Information

from such a camera system with an on-board navigation system will provide comparable

information to the features gathered using the RT system in this study. By replacing a specialized

instrumentation like the RT system used in this study with production sensors readily available in

a vehicle, this study can be expanded to gathering data from multiple drivers from different

vehicles. That would allow us to develop a more generalizable spacing profile model.

While this study looked at stationary target vehicles only, it allowed for the formulation

of a methodology that demonstrates the entire process from problem definition to vehicle

instrumentation, data collection and feature identification, finally leading towards developing a

model that reflects a human-like spacing profile. This methodology can be extended to learning
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many other aspects of human driving, for example a human driver’s ability to estimate risk based

on the motion trend of other vehicles observed over time, among others.
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APPENDIX	A:	VEHICLE	KINEMATIC	MODEL	
Kinematic model of a vehicle is a mathematical representation derived solely based on

geometric relation of vehicle’s motion, without any considerations to the forces that affect it.

Consider the model of vehicle known as bicycle model shown in figure below.

Figure 59: Bicycle model used to derive kinematics of vehicle motion

This is a single-track vehicle model, where two front wheels are combined and

represented as one at A and similarly the two rear wheels are combined and represented at B.

This  assumes that  both front wheels  turn at  the same angle,  which is  a  simplification of  how

actual wheels are designed as these angles are not exactly the same and path travelled by the

two is of different radius as well. in an actual vehicle. Assume that Center of Gravity (CoG) of

vehicle  is  at  C.  Distance  to  the  front  and  rear  axle  from  CoG  is  represented  as ݈௙ and ݈௥

respectively. Global 2D coordinates are represented as (X,Y). Vehicle longitudinal axis makes an

angle ߰ with  X-axis.  The  resultant  velocity  at  vehicle  CoG V makes an angle with vehicle ߚ
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longitudinal axis, known as vehicle slip angle. Front and rear wheel angles are represented as

and	௙ߜ ௥ respectively. Assume that vehicle is taking a turn of radius R (OC), with instantaneousߜ

rolling center O.

This  bicycle  model  assumes  that  the  velocity  vector  at  front  and  rear  wheel  is  in  the

direction of wheel orientation, which implies that front and rear wheel slip angle is zero. This

assumption only holds true when lateral forces generated at tires is small, which is valid when

driving at low speed (< 5݉ ⁄ݏ ). Assuming a constant turning radius, the lateral force acting on

front and rear tires can be expressed as:

௟௔௧ܨ = ݉ܽ = ݉
ܸଶ

ݎ

The angle that vehicle makes traversing the course, can ߛ  be  represented  as  sum  of

vehicle slip angle and heading;

ߛ = ߚ + ߰

Using law of sines on triangle Δܱܤܥ;

sin(ߚ − (௥ߜ
݈௥

=
sin ቀ2ߨ + ௥ቁߜ

ܴ 	
[1]

where, sin(ߚ − (௥ߜ = sin(ߚ) cos(ߜ௥)− cos(ߚ) sin(ߜ௥)	

and, sin ቀ
ߨ
2

+ ௥ቁߜ = cos(ߜ௥)

Replacing the above in equation 1 would yield;

(ߚ)݊݅ݏ (௥ߜ)ݏ݋ܿ − (ߚ)ݏ݋ܿ (௥ߜ)݊݅ݏ
݈௥

= 	
(௥ߜ)ݏ݋ܿ

ܴ

⟺	
(ߚ)݊݅ݏ (௥ߜ)ݏ݋ܿ − (ߚ)ݏ݋ܿ (௥ߜ)݊݅ݏ

݈௥
.

݈௥
(௥ߜ)ݏ݋ܿ = 	

(௥ߜ)ݏ݋ܿ
ܴ

.
݈௥

(௥ߜ)ݏ݋ܿ

By expanding and simplifying the above equation, we get,
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sin(ߚ) cos(ߜ௥)
cos(ߜ௥) −

cos(ߚ) sin(ߜ௥)
cos(ߜ௥) =

݈௥
ܴ

⇔ sin(ߚ)− tan(ߜ௥) cos(ߚ) =
݈௥
ܴ				

[02]

Similarly, by using law of sines for Δܱܣܥ;

sin ቀ2ߨ − ௙ቁߜ
ܴ =

sin൫ߜ௙ − ൯ߚ
݈௙

	
[3]

where, sin൫ߜ௙ − ൯ߚ = sin൫ߜ௙൯ cos(ߚ)− sin(ߚ) cos൫ߜ௙൯	

sin ቀ
ߨ
2 − ௙ቁߜ = cos൫ߜ௙൯		

Replacing them in equation 3,

cos൫ߜ௙൯
ܴ =

sin൫ߜ௙൯ cos(ߚ) − sin(ߚ) cos൫ߜ௙൯
݈௙

	

⇔
sin൫ߜ௙൯ cos(ߚ)− sin(ߚ) cos൫ߜ௙൯

݈௙
.

݈௙
cos൫ߜ௙൯

=
cos൫ߜ௙൯

ܴ 	 .
݈௙

cos൫ߜ௙൯

By expanding and simplifying the above equation, we get,

sin൫ߜ௙൯ cos(ߚ)
cos൫ߜ௙൯

−
sin(ߚ) cos൫ߜ௙൯

cos൫ߜ௙൯
=
݈௙
ܴ

⇔ tan൫ߜ௙൯ cos(ߚ)− sin(ߚ) =
݈௙
ܴ

[4]

By adding equations 2 and 4, we get

				sin(ߚ)− tan(࢘ࢾ) cos(ߚ) =
ݎ݈
ܴ

− sin(ߚ) +tan൫ߜ௙൯ cos(ߚ) = 	
݈݂
ܴ	
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⇒ tan൫ߜ௙൯ cos(ߚ)− tan(ߜ௥) cos(ߚ) =
݈݂ + ݎ݈
ܴ 	

[5]

⟺ ൛tan൫ߜ௙൯ − tan(ߜ௥)ൟ cos(ߚ) =
݈݂ + ݎ݈
ܴ

⇔ 	ܴ =
݈௙ + ݈௥

൛tan൫ߜ௙൯ − tan(ߜ௥)ൟ cos(ߚ)
		 [6]

Rate of change of vehicle orientation on a curve can be given by,

߰̇ =
ܸ
ܴ

Replacing ܴ by equation 1-5 would yield,

߰̇ =
ܸ൛tan൫ߜ௙൯ − tan(ߜ௥)ൟ cos(ߚ)

݈௙ + ݈௥
			

[7]

In order to derive a relation for side slip angle,ߚ, multiplying equations [2] and [4] by ݈௙and

݈௥respectively, followed by subtracting resulting equation [4] from [2] as following:

{sin(ߚ)− tan(࢘ࢾ) cos(ߚ)}. ݈௙ =
݈௥
ܴ . ݈௙

ቊ+⏟
ି

tan൫ߜ௙൯ cos(ߚ)−⏟
ା

sin(ߚ)ቋ . ݈௥ = +⏟
ି

݈௙
ܴ 	 . ݈௥

൫݈௙ + ݈௥൯ sin(ߚ) − ൫tan(ߜ௥) cos(ߚ) + tan൫ߜ௙൯ cos(ߚ)൯ = 0

⟺ ൫݈௙ + ݈௥൯ sin(ߚ) = ൫tan(ߜ௥) cos(ߚ) + tan൫ߜ௙൯ cos(ߚ)൯

⇔ ൫݈௙ + ݈௥൯ sin(ߚ) = ൛tan(ߜ௥) + tan൫ߜ௙൯ൟ cos(ߚ)

⇔ ൫݈௙ + ݈௥൯ tan(ߚ) = ൛tan(ߜ௥) + tan൫ߜ௙൯ൟ

⇔ tan(ߚ) =
൛tan(ߜ௥) + tan൫ߜ௙൯ൟ

൫݈௙ + ݈௥൯
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⇔ ߚ = tanିଵ
൛tan(ߜ௥) + tan൫ߜ௙൯ൟ

൫݈௙ + ݈௥൯
						

[8]

As noted earlier, the relationships for rate of change of heading (also referred to as ‘yaw

rate’) ߰̇ and side –slip angle derived in equations [6] and [7] are solely based on geometric ߚ

relations and therefore are beneficial in representing these two terms in situations where

additional frictional forces and disturbances are at minimum. This is true only at low driving

speeds. Similarly, the assumption that velocity at each wheel is in the direction of each wheel is

no longer valid at higher speeds. Therefore, a vehicle model based on the dynamics of vehicle

motion thus has to be derived to represent driving at higher speeds.
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APPENDIX	B:	LATERAL	VEHICLE	DYNAMICS	
MODEL	

A bicycle model shown in Figure 59 is the basis for deriving lateral dynamics model in this

section [37]. The two degrees of freedom considered for deriving this model are the lateral

position of vehicle (ܻ) and heading(߰).  Applying Newton’s second law of motion along vehicle

Y-axis would yield,

݉ܽ௬ = ௬௙ܨ + ௬௥ܨ 			 [0-1]

Where ݉ is vehicle mass in kg, ܽ௬ is the inertial acceleration along y-axis in ݉ ⁄ଶݏ  acting

at vehicle CoG, ௬௙represent lateral forces inܨ௬௙andܨ ܰ acting on front and rear tires respectively.

Solving for moment balance about z-axis would yield,

௭߰̈ܫ = ݈௙ܨ௬௙ − ݈௥ܨ௬௥ [0-2]

Where ௭ܫ is the moment of inertia along z-axis, ݈௙and ݈௥are distances in ݉ from CoG to the

front and rear axle respectively. The forces acting on front and rear tires are found to be

proportional to the tire slip angles for low slip-angles. Consider front wheel angle ௏௙ߠ௙ andߜ , the

angle that front wheel makes with vehicle longitudinal axis as. Front wheel side slip angle ௙canߙ

be written as,

௙ߙ = 	 ௙ߜ − ௏௙ߠ 	 [0-3]

The lateral tire forces on the front wheel can therefore be written as,

௬௙ܨ = 	௙ߙఈ௙ܥ2 [0-4]

⟺ ௬௙ܨ = ௙ߜఈ௙൫ܥ2 − 	௏௙൯ߠ [0-5]

Where, ఈ௙ܥ is the cornering stiffness of front tire. The factor of 2 is to account for the two

front tires.
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Assuming a non-steering rear wheel, ௥ߜ ≈ 0. Rear tire side-slip can similarly be

represented as,

௥ߙ = ௏௥ߠ− [0-6]

The lateral tire forces on rear tires can be given as,

௬௥ܨ = ௥ߙఈ௥ܥ2 [0-7]

௬௥ܨ = (௏௥ߠ−)ఈ௥ܥ2 [0-8]

where,ܥఈ௥ 	is the cornering stiffness of rear tires. Factor of 2 is to account for the two rear

tires.

௏௙ߠ  and ,௏௥can be calculated by the following relationshipߠ

௏௙൯ߠ൫݊ܽݐ = ௬ܸ + ݈௙߰̇
௫ܸ

	

using small angle

approximation,

௏௙ߠ	⇒ = ௬ܸ + ݈௙߰̇
௫ܸ

[0-9]

(௏௥ߠ)݊ܽݐ = ௬ܸ − ݈௥߰̇
௫ܸ

using small angle

approximation,
௏௥ߠ	⇒ = ௬ܸ − ݈௥߰̇

௫ܸ

[0-10]

Substituting from [0-9] and [0-10] into [0-8] and [0-5] respectively would yield,

From eq. [0-5] we get, ௬௙ܨ = ௙ߜఈ௙൫ܥ2 − 	௏௙൯ߠ

⟹ ௬௙ܨ = ఈ௙ܥ2 ቆߜ௙ −
௬ܸ + ݈௙߰̇

௫ܸ
ቇ	

⟺ ௬௙ܨ = ௙ߜఈ௙ܥ2 −
ఈ௙ܥ2

௫ܸ
௬ܸ −

ఈ௙݈௙ܥ2
௫ܸ

߰̇ [0-11]
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Similarly from eq.

[0-8],

௬௥ܨ = (௏௥ߠ−)ఈ௥ܥ2

⟹ ௬௥ܨ = ఈ௥ܥ2 ቆ−
௬ܸ − ݈௥߰̇

௫ܸ
ቇ

⟺ ௬௥ܨ = −
ఈ௥ܥ2

௫ܸ
௬ܸ +

ఈ௥ܥ2 ݈௥
௫ܸ

߰̇ [0-12]

From equation [0-1], we have the following relation,

݉ܽ௬ = ௬௙ܨ + ௬௥ܨ 			

Substituting [0-11] and [0-12] in the above equation,

݉ܽ௬ = ௙ߜఈ௙ܥ2 −
ఈ௙ܥ2

௫ܸ
௬ܸ −

ఈ௙݈௙ܥ2
௫ܸ

߰̇ −
ఈ௥ܥ2

௫ܸ
௬ܸ +

ఈ௥ܥ2 ݈௥
௫ܸ

߰̇			

݉ܽ௬ = ௙ߜఈ௙ܥ2 −
ఈ௙ܥ2 + ఈ௥ܥ2

௫ܸ
௬ܸ −

2݈௙ܥఈ௙ − 2݈௥ܥఈ௥
௫ܸ

߰̇

Inertial acceleration ܽ௬	is influenced by lateral motion acceleration and centripetal ݕ̈

acceleration	 ௫ܸ߰, i.e. ܽ௬ = 	 ݕ̈ + ௫ܸ߰. Replacing ܽ௬in the above equation with this expression and

changing ௬ܸ  to ;ݕ̇

+ݕ̈)݉ (߰ݔܸ = ௙ߜఈ௙ܥ2 −
ఈ௙ܥ2 + ఈ௥ܥ2

௫ܸ
−ݕ̇

2݈௙ܥఈ௙ − 2݈௥ܥఈ௥
௫ܸ

߰̇

ݕ̈ + ௫ܸ߰ =
݂ߜ݂ߙܥ2
݉

−
݂ߙܥ2 + ݎߙܥ2

ݔܸ݉
ݕ̇ −

݂ߙܥ2݈݂ − ݎߙܥݎ2݈
ݔܸ݉

߰̇

ݕ̈ =
݂ߜ݂ߙܥ2
݉

−
݂ߙܥ2 + ݎߙܥ2

ݔܸ݉
ݕ̇ − ቆ ௫ܸ +

݂ߙܥ2݈݂ − ݎߙܥݎ2݈
ݔܸ݉

ቇ ߰̇
[0-13]

Similarly, from equation [0-2]. We have the following expression,

௭߰̈ܫ = ݈௙ܨ௬௙ − ݈௥ܨ௬௥

Substituting [0-11] and [0-12] in the above equation,
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௭߰̈ܫ = ݈௙ ቆ2ܥఈ௙ߜ௙ −
ఈ௙ܥ2

௫ܸ
௬ܸ −

ఈ௙݈௙ܥ2
௫ܸ

߰̇ቇ

− ݈௥ ൬−
ఈ௥ܥ2

௫ܸ
௬ܸ +

ఈ௥݈௥ܥ2
௫ܸ

߰̇൰

௭߰̈ܫ = 2݈௙ܥఈ௙ߜ௙ −
2݈௙ܥఈ௙

௫ܸ
௬ܸ −

2݈௙ଶܥఈ௙
௫ܸ

߰̇ +
2݈௥ܥఈ௥

௫ܸ
௬ܸ −

2݈௥ଶܥఈ௥
௫ܸ

߰̇

௭߰̈ܫ = 2݈௙ܥఈ௙ߜ௙ −
2݈௙ܥఈ௙ − 2݈௥ܥఈ௥

௫ܸ
−ݕ̇

2݈௙ଶܥఈ௙ + 2݈௥ଶܥఈ௥
௫ܸ

߰̇

߰̈ =
2݈௙ܥఈ௙ߜ௙

௭ܫ
−

2݈௙ܥఈ௙ − 2݈௥ܥఈ௥
௭ܫ ௫ܸ

−ݕ̇
2݈௙ଶܥఈ௙ + 2݈௥ଶܥఈ௥

௭ܫ ௫ܸ
߰̇

[0-14]

The above derive relations for lateral vehicle dynamics model can be represented in state

space form as:

݀
ݐ݀
൦

ݕ
ݕ̇
߰
߰̇

൪ =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
0 1 0 0

0 −
݂ߙܥ2 + ݎߙܥ2

ݔܸ݉
0 − ௫ܸ −

݂ߙܥ2݈݂ − ݎߙܥݎ2݈
ݔܸ݉

0 0 0 1

0 −
݂ߙܥ2݈݂ − ݎߙܥݎ2݈

ݔܸݖܫ
0 −

2݈݂
ܥ2

݂ߙ
+ ݎ2݈

ݎߙܥ2

ݔܸݖܫ ⎦
⎥
⎥
⎥
⎥
⎥
⎤

൦

ݕ
ݕ̇
߰
߰̇

൪

+

⎣
⎢
⎢
⎢
⎢
⎡

0
݂ߜ݂ߙܥ2
݉
0

݂ߜ݂ߙܥ2݈݂
ݖܫ ⎦

⎥
⎥
⎥
⎥
⎤

ߜ

[0-15]

As mentioned earlier, the vehicle model represented above is based on 2D bicycle model.

It is to be kept in mind that this is a simplified representation that considers vehicle as a single

point mass, is valid under linear operation range of tires and does not consider any vertical forces
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APPENDIX	C:	RESEARCH	INFORMATION	SHEET	
Title of Study: Vehicle Driving Data Collection on a Test Track at Normal Driving Speeds

Principal Investigator (PI): Syed Ali
Electrical and Computer Engineering
248-506-6892

Purpose:
You are being asked to be in a research study to help understand driver’s spacing preference

from other vehicles on the road because you meet the study criteria of having a valid driver’s

license, 5 years of driving experience and are familiar with Fowlerville proving ground test track.

This study is being conducted at Wayne State University and data will be collected at Fowlerville

Proving Grounds, which is one of the few test tracks used on daily rental basis for drive tests by

the automotive industry.

Study Procedures:
If you take part in the study, you will be asked to drive vehicle on Fowlerville test track. While

you will be driving, vehicle position and motion data will be automatically recorded on a device

(GPS/IMU integrated system) that is installed in the vehicle.

You will  be asked to drive on the inside lane of the two-lane test track, while maintaining

driving speeds of 45, 55 or 65 MPH to the best of your ability. You will be advised on what speed

to drive on before the beginning of every test drive.

There will be a second stationary vehicle on the inside lane. You will be able to see this vehicle

well before 500 meters. You should change your lane to the outside lane as approaching the

other vehicle at a distance you deem safe and comfortable. Once you pass the vehicle, you should

return to the inner lane at a point you consider safe and comfortable.
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You have the option of terminating any or all of the driving task requested above if you deem

it unsafe or is uncomfortable for you at any point.

You are expected to visit Fowlerville proving ground once for half a day period.

Benefits
As a participant in this research study, there will be no direct benefit for you; however,

information from this study may benefit other people now or in the future.

Risks
There are no known risks at this time to participation in this study.

Costs
There will be no costs to you for participation in this research study.

Compensation
You will not be paid for taking part in this study.

Research Related Injuries
In the event that this research related activity results in an injury, treatment will  be made

available including first aid, emergency treatment, and follow-up care as needed. Care for such

will be billed in the ordinary manner to you or your insurance company. No reimbursement,

compensation, or free medical care is offered by Wayne State University. If you think that you

have suffered a research related injury, contact the PI right away at 248-506-6892.

Confidentiality:
All information collected about you during the course of this study will be kept without any

identifiers. You will be identified in the research records by a code name driver A, B etc or

number. There will be no list that links your identity with this code.

Voluntary Participation /Withdrawal:
Taking part in this study is voluntary.  You are free to not answer any questions or withdraw

at any time. Your decision will not change any present or future relationships with Wayne State

University or its affiliates.
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Questions
If you have any questions about this study now or in the future, you may contact Syed Ali or

one of his research team members at the following phone number 248-506-6892. If you have

questions or concerns about your rights as a research participant, the Chair of the Institutional

Review Board can be contacted at (313) 577-1628. If you are unable to contact the research staff,

or if you want to talk to someone other than the research staff, you may also call the Wayne

State Research Subject Advocate at (313) 577-1628 to discuss problems, obtain information, or

offer input.

Participation
By conducting the test driving, you are agreeing to participate in this study.
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For automated driving vehicles to be accepted by their users and safely integrate with

traffic involving human drivers, they need to act and behave like human drivers. This not only

involves understanding how the human driver or occupant in the automated vehicle expects their

vehicle to operate, but also involves how other road users perceive the automated vehicle’s

intentions. This research aimed at learning how drivers space themselves while driving around

other vehicles. It is shown that an optimized lane change maneuver does create a solution that

is much different than what a human would do. There is a need to learn complex driving

preferences from studying human drivers.

This research fills the gap in terms of learning human driving styles by providing an

example of learned behavior (vehicle spacing) and the needed framework for encapsulating the

learned data. A complete framework from problem formulation to data gathering and learning

from human driving data was formulated as  part  of  this  research.  On-road vehicle  data were

gathered while a human driver drove a vehicle. The driver was asked to make lane changes for

stationary vehicles in his path with various road curvature conditions and speeds. The gathered
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data, as well as Learning from Demonstration techniques, were used in formulating the spacing

profile as a lane change maneuver. A concise feature set from captured data was identified to

strongly represent a driver’s spacing profile and a model was developed. The learned model

represented the driver’s spacing profile from stationary vehicles within acceptable statistical

tolerance. This work provides a methodology for many other scenarios from which human-like

driving style and related parameters can be learned and applied to automated vehicles.
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