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A new Liu type of estimator for the seemingly unrelated regression (SUR) models is 

proposed that may be used when estimating the parameters vector in the presence of 

multicollinearity if the it is suspected to belong to a linear subspace. The dispersion 

matrices and the mean squared error (MSE) are derived. The new estimator may have a 

lower MSE than the traditional estimators. It was shown using simulation techniques the 

new shrinkage estimator outperforms the commonly used estimators in the presence of 

multicollinearity. 

 

Keywords: Estimation, MSE, multicollinearity, SUR, Liu, simulation 

 

Introduction 

In estimating demand and production functions in economics or patient data over 

time, and similar applications, consider the system of equations to be estimated: 

 

 , 1, ,i i i i i M= + =Y X β ε   (1) 

 

where Yi is a T × 1 vector of observations on the dependent variable, Xi is a 

T × (p + 1) design matrix including the independent variables and the intercept (i.e. 

a vector off ones) and εi is a T × 1 vector that includes the error term which is 

assumed to be normally distributed. Furthermore, we have that M is the number of 

equations in the system, T the number of observations, and p the number of 

explanatory variables.1 If the error terms of the different equations are correlated 

then the most efficient way of estimating the above system of equations is 

seemingly unrelated regression (SUR) method suggested by Zellner (1962). Using 

this method, define Y = [Y1,…,YM]′, X = [X1,…,XM]′, and ε = [ε1,…,εM]′. Define 

https://dx.doi.org/10.22237/jmasm/1556669340
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( )1 2ˆ: −= P σ I , where 
1

ˆ ˆ ˆ:
T

t tt
T

=
= '

σ ε ε  and is estimated by applying the standard 

ordinary least squares (OLS) estimator on each of the ith equations in (1) and then 

calculate the residual series. Then, estimate 

 

 = +PY PXβ Pε   (2) 

 

using the standard OLS equation 

 

 ( )
1

SUR
ˆ '

−

= * * *
β X X X 'Y ,  (3) 

 

where X* = PX and Y* = PY. However, often when estimating system of equations 

we have that β may belong to a linear subspace defined by Rβ = r, where R is a 

q × p matrix of full rank with q < p and r is a q × 1 vector. A restricted estimator 

could be used instead. This may occur, for example in an applied demand system, 

where it is one assumed there is no change in consumer demand if all prices change 

by the same proportion. The restricted SUR estimator discussed in Srivastava and 

Giles (1987) could be used: 

 

 ( ) ( ) ( )
1 1

SUR SUR SUR
ˆ ˆ ˆ− −

−R * * * *
β = β + X 'X R' RX 'X R' r Rβ .  (4) 

 

A problem when estimating the parameters of this type of model is 

multicollinearity. This may for example occur due to the fact that prices of different 

commodities are usually highly correlated with each other. Both 
SURβ̂  and 

SUR
ˆ R
β  are 

instable and they have a large variance. A potential remedy is to apply some 

shrinkage estimator and an attractive method is the Liu type of estimator proposed 

by Liu (1993). The Liu type of estimator combines then the advantage of the Stein 

estimator (the smoothing is a linear function of the smoothing parameter), and it 

has the advantage of the ridge regression (Hoerl & Kennard, 1970a, b) estimator 

(i.e. that the smoothing of each element in 
SURβ̂  is not identical). Therefore, it has 

become more popular and studied in many papers such as Akdeniz and Kaçiranlar 

(1995, 2001), Kaçiranlar et al. (1999), Kaçiranlar (2003), and Alheety and Kibria 

(2009), among others. The Liu type of estimator for SUR models is a generalization 

of the Liu type estimator (Liu, 1993) and may be defined as follows: 

 

 
Liu

SUR SUR
ˆ ˆ

d=β F β ,  (5) 
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where Fd = (X*′X* + I)−1(X*′X* + dI) and I is the Mp × Mp identity matrix. In this 

paper we also suggest the following new restricted Liu type of estimator for SUR 

models in order to overcome the multicollinearity problem: 

 

 ,Liu

SUR SUR
ˆ ˆ

d=R R
β F β .  (6) 

 

Therefore, the purpose of this study is to suggest a new restricted Liu type of 

estimator for SUR models. 

The MSE Properties of Different Estimators 

The MSE of any estimator β̂  for estimating β is defined as 

 

 ( ) ( )( ) ( ) ( )( ) ( )( )ˆ ˆ ˆ ˆ ˆ ˆMSE E D bias bias


= − − = +β β β β β β β β ,  (7) 

 

where ( )ˆD β  is the dispersion matrix. We have the following dispersion matrices 

for SUR, Liu type estimator, restricted SUR and Liu type restricted SUR models, 

respectively: 

 

 ( ) 1

SUR
ˆD −=β S ,  (8) 

 

 ( )Liu 1

SUR
ˆD d d

− =β F S F ,  (9) 

 

 ( )SUR
ˆD =R
β A ,  (10) 

 

 ( ),Liu

SUR
ˆD d d

=R
β F AF ,  (11) 

 

where S = X*′X*, A = S−1 − S−1R′(RS−1R′)−1RS−1, and 
SURβ̂  and 

SUR
ˆ R
β  are 

unbiased estimators of β. The MSE of the different estimators assuming the 

restriction actually holds are 
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 ( ) ( )( ) ( )1

SUR SUR

1

1ˆ ˆMSE tr D tr
J

j j

−

=

= = =β β S ,  (12) 

 

 

( ) ( )( ) ( )( )

( )

( )
( )

( )

Liu Liu

SUR SUR SUR SUR

2
2

2

2 2
1 1

ˆ ˆ ˆ ˆMSE tr D tr

1
1 1

d d

J J
j j

j j
j j j

d
d

 

  = =

 
= + − − 

 

+
= + −

+ +
 

* *
β β F β β F β β

  (13) 

 

 ( ) ( )( ) ( )SUR SUR

1

ˆ ˆMSE tr D tr
J

jj

j

b
=

= = =R R
β β A   (14) 

 

 

( ) ( )( ) ( )( )

( )

( )
( )

( )

,Liu

SUR SUR SUR SUR

2
2

2

2 2
0 0

ˆ ˆ ˆ ˆMSE tr D tr

1
1 1

d d

J J
j j

jj

j j
j j

d
b d



 

 = =

 
= + − − 

 

+
= + −

+ +
 

R R R * R
β β F β β F β

  (15) 

 

where bjj (j = 1, 2,…, J) are the diagonal elements of B which may be defined as 

B = Q′AQ, Q is defined as an orthogonal matrix such that Q′SQ = Λ with 

Λ = diag(λ1,…, λJ) and λ1,…, λJ the eigenvalues of the matrix S, and αj is the jth 

element of the vector α = Q′β*. By comparing the standard Liu estimator in 

equation (13) and the SUR estimator in equation (12), it is clear that it is possible 

to find a value of d so that the decease of the variance is larger than the increase of 

due to the bias (as discussed in Liu, 1993). The completely new type of estimator 

in equation (15) also outperform the traditional restricted estimator in equation (14) 

using the same type of argument (i.e. the decrease of the variance exceeds the 

increase of the MSE due to the bias). Hence, there may be a substantial 

improvement using the new estimator, especially in the presence of 

multicollinearity. The estimation of d is discussed in Liu (1993) where the optimal 

value is derived. The same type of estimator may be used here. 
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The Monte Carlo Simulation 

The Design of the Experiment 

Consider the MSE of the different types of estimators in different empirically 

relevant situations to investigate the finite sample performance, even though 

asymptotically the Liu type of estimators will outperform the traditional methods. 

The core factor varied in the design of the experiment is the degree of correlation 

(ρ2) between the regressors. The strength of the correlation may be varied, and to 

generate the explanatory variables (for example, see Kibria, 2003; Kibria & Banik, 

2016): 

 

 ( )
1 2

21 , 1,2, , ; 1,2, , ; 1,2, ,tji tji tpix z z t T j p i M = − + = = = ,  (16) 

 

where ztji are pseudo-random numbers from the standard normal distribution. 

Consider three different values of ρ2 corresponding to 0.75, 0.90 and 0.99. Use three 

equations in each system and we choose to generate models with two explanatory 

variables. The n observations for the dependent variable are simulated using 

equation (1), where the error terms are generated using the equation εt = Lηt, where 

ηt ~ iid N(0, I), LL′ = Σ, and Σ is a circulant* matrix (more precisely a Toeplitz 

matrix). The following parameter settings generate positive definite covariance 

matrixes: 

 

 ( ) ( ) ( )
3 3 3 3 3 3

circ 0.5, 0.5, 0.2 circ 1, 0.5, 0.2 circ 3, 0.5, 0.2, ,
  
= = =   ,  

 

where the variance of the error term is changed. The restrictions used are the 

following: The restrictions are set to the following for one restriction: 

 

    1 0 1 0 1 0  and 1= =R r ,  (17) 

 

and the following for two restrictions: 

 

 
1 0 1 0 1 0 1

 and 
1 1 0 0 0 0 0

   
= =   

−   
R r .  (18) 

 

The experiment is replicated 10000 times by generating new pseudo-random 

numbers and then the MSE is estimated using the following formula: 
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( ) ( )
10000

1

ˆ ˆ

MSE
10000

r=


− −

=
 β β β β

.  (19) 

 

The simulated MSEs for different values of d and ρ, for variances 0.5, 1, and 3 and 

for one restriction are presented in Tables 1-3, respectively and for variances 0.5, 

1, and 3 and for two restrictions in Tables 4-6, respectively. 
 
 
Table 1. Results when residual variance is 0.5 and with 1 restriction 
 

  d = 1.00  d = 0.75  d = 0.50  d = 0.25  d = 0.00 

ρ n SUR RSUR  Liu RLiu  Liu RLiu  Liu RLiu  Liu RLiu 

0.75 10 0.491 0.161  0.401 0.227  0.334 0.172  0.289 0.139  0.267 0.129 
 25 0.206 0.043  0.176 0.096  0.154 0.077  0.140 0.065  0.134 0.021 
 50 0.074 0.071  0.065 0.035  0.058 0.028  0.054 0.025  0.053 0.020 
 100 0.036 0.012  0.032 0.017  0.029 0.014  0.027 0.012  0.026 0.012 
                

0.90 10 1.023 0.239  0.780 0.406  0.594 0.277  0.465 0.199  0.393 0.170 
 25 0.423 0.265  0.344 0.175  0.284 0.129  0.243 0.102  0.222 0.092 
 50 0.150 0.233  0.128 0.065  0.111 0.051  0.100 0.043  0.096 0.040 
 100 0.073 0.070  0.063 0.032  0.056 0.026  0.052 0.022  0.050 0.020 
                

0.95 10 1.967 1.007  1.397 0.694  0.960 0.424  0.654 0.256  0.481 0.191 
 25 0.798 0.479  0.613 0.296  0.470 0.199  0.371 0.140  0.314 0.117 
 50 0.175 0.030  0.144 0.069  0.120 0.051  0.104 0.040  0.096 0.036 

  100 0.138 0.013   0.117 0.056   0.102 0.043   0.092 0.035   0.087 0.002 

 
 
Table 2. Results when residual variance is 1 and with 1 restriction 
 

  d = 1.00  d = 0.75  d = 0.50  d = 0.25  d = 0.00 

ρ n SUR RSUR  Liu RLiu  Liu RLiu  Liu RLiu  Liu RLiu 

0.75 10 1.179 0.406  0.934 0.598  0.746 0.436  0.615 0.331  0.541 0.281 
 25 0.502 0.135  0.417 0.265  0.353 0.206  0.310 0.168  0.288 0.152 
 50 0.185 0.176  0.157 0.098  0.137 0.079  0.125 0.067  0.119 0.063 
 100 0.091 0.017  0.078 0.049  0.069 0.040  0.063 0.034  0.061 0.032 
                

0.90 10 2.537 3.650  1.869 1.094  1.352 0.707  0.986 0.453  0.770 0.332 
 25 1.084 0.299  0.858 0.486  0.683 0.344  0.560 0.250  0.489 0.205 
 50 0.397 0.072  0.330 0.184  0.280 0.140  0.247 0.112  0.230 0.100 
 100 0.190 0.011  0.161 0.090  0.139 0.071  0.125 0.058  0.119 0.053 
                

0.95 10 4.899 2.586  3.394 1.877  2.233 1.092  1.415 0.582  0.942 0.346 
 25 2.080 1.722  1.560 0.832  1.154 0.534  0.862 0.337  0.685 0.242 
 50 0.764 0.323  0.615 0.324  0.501 0.231  0.422 0.170  0.376 0.140 

  100 0.365 0.062   0.304 0.159   0.257 0.119   0.226 0.093   0.210 0.052 
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Table 3. Results when residual variance is 3 and with 1 restriction 
 

  d = 1.00  d = 0.75  d = 0.50  d = 0.25  d = 0.00 

ρ n SUR RSUR  Liu RLiu  Liu RLiu  Liu RLiu  Liu RLiu 

0.75 10 3.766 1.254  2.911 2.010  2.250 1.424  1.782 1.030  1.508 0.828 
 25 1.611 0.675  1.306 0.890  1.075 0.676  0.919 0.535  0.837 0.468 
 50 0.585 0.548  0.487 0.330  0.415 0.261  0.369 0.218  0.350 0.200 
 100 0.283 0.232  0.238 0.160  0.205 0.128  0.185 0.109  0.178 0.102 
                

0.90 10 8.187 6.728  5.909 3.713  4.140 2.328  2.882 1.399  2.134 0.925 
 25 3.453 2.130  2.674 1.649  2.070 1.140  1.641 0.797  1.387 0.619 
 50 1.264 0.476  1.030 0.624  0.854 0.465  0.735 0.362  0.674 0.314 
 100 0.612 0.362  0.508 0.310  0.430 0.239  0.381 0.194  0.358 0.175 
                

0.95 10 15.652 12.997  10.645 6.463  6.789 3.674  4.081 1.832  2.523 0.936 
 25 6.765 6.690  4.988 2.893  3.598 1.822  2.596 1.098  1.980 0.719 
 50 2.431 0.521  1.916 1.115  1.519 0.781  1.239 0.556  1.077 0.442 

  100 1.163 0.592   0.947 0.551   0.784 0.407   0.673 0.313   0.616 0.268 

 
 
Table 4. Results when residual variance is 0.5 and with 2 restrictions 
 

  d = 1.00  d = 0.75  d = 0.50  d = 0.25  d = 0.00 

ρ n SUR RSUR  Liu RLiu  Liu RLiu  Liu RLiu  Liu RLiu 

0.75 10 0.400 0.183  0.333 0.137  0.289 0.110  0.267 0.103  0.267 0.129 
 25 0.174 0.078  0.152 0.061  0.139 0.051  0.132 0.049  0.134 0.061 
 50 0.065 0.029  0.058 0.023  0.054 0.020  0.053 0.019  0.053 0.023 
 100 0.031 0.014  0.028 0.011  0.026 0.010  0.026 0.009  0.026 0.012 
                

0.90 10 0.774 0.354  0.587 0.234  0.458 0.162  0.387 0.138  0.393 0.170 
 25 0.341 0.152  0.281 0.109  0.240 0.084  0.219 0.076  0.222 0.092 
 50 0.126 0.055  0.110 0.042  0.100 0.035  0.095 0.032  0.096 0.040 
 100 0.064 0.028  0.056 0.022  0.052 0.018  0.050 0.017  0.050 0.020 
                

0.95 10 1.349 0.612  0.925 0.366  0.630 0.214  0.464 0.157  0.481 0.191 
 25 0.621 0.268  0.477 0.176  0.376 0.120  0.318 0.099  0.314 0.117 
 50 0.237 0.105  0.199 0.076  0.172 0.058  0.159 0.051  0.096 0.036 

  100 0.117 0.052   0.101 0.039   0.091 0.031   0.086 0.029   0.087 0.032 

Results 

From Tables 1 to 6, it is always the restricted Liu type estimator that outperforms 

the other estimators. In general, the values of ρ increases, the MSEs also increase. 

It is always the traditional SUR estimator that has the highest MSE followed by the 

restricted SUR estimator. This pattern is especially clear for a high degree of 

multicollinearity. For larger sample sizes and for a low variation of the error term 

there is not much differences among estimators. However, they differ greatly for 

small sample sizes and large error variances. The restricted estimator and the Liu 
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type estimator always have a lower estimated MSE than the traditional SUR method. 

Furthermore, the restricted Liu type estimator has a lower estimated MSE than the 

restricted estimator and the Liu type of estimator regardless of the situation 

evaluated. The Liu type estimators perform better for smaller shrinkage estimator 

d. The benefits are maximized for small sample sizes and when the variance of the 

error term is large. The new restricted Liu type of estimator is superior to the other 

type of estimators and may be recommended to use in empirical applications. 
 
 
Table 5. Results when residual variance is 1 and with 2 restrictions 
 

  d = 1.00  d = 0.75  d = 0.50  d = 0.25  d = 0.00 

ρ n SUR RSUR  Liu RLiu  Liu RLiu  Liu RLiu  Liu RLiu 

0.75 10 0.941 0.509  0.752 0.365  0.620 0.272  0.545 0.230  0.541 0.281 
 25 0.415 0.220  0.352 0.168  0.310 0.135  0.288 0.121  0.288 0.152 
 50 0.157 0.083  0.137 0.066  0.124 0.055  0.119 0.051  0.119 0.063 
 100 0.077 0.041  0.068 0.032  0.062 0.028  0.060 0.026  0.061 0.032 
                

0.90 10 1.908 1.000  1.386 0.638  1.015 0.401  0.795 0.289  0.770 0.332 
 25 0.860 0.442  0.686 0.308  0.563 0.221  0.492 0.179  0.489 0.205 
 50 0.329 0.166  0.279 0.124  0.246 0.097  0.229 0.086  0.230 0.100 
 100 0.163 0.083  0.141 0.064  0.128 0.052  0.121 0.047  0.119 0.053 
                

0.95 10 3.395 1.793  2.231 1.025  1.414 0.528  0.942 0.301  0.942 0.346 
 25 1.568 0.789  1.164 0.500  0.874 0.309  0.697 0.217  0.685 0.242 
 50 0.619 0.305  0.505 0.214  0.425 0.155  0.379 0.126  0.376 0.140 

  100 0.304 0.153   0.257 0.113   0.226 0.088   0.210 0.076   0.210 0.082 

 
 
Table 6. Results when residual variance is 3 and with 2 restrictions 
 

  d = 1.00  d = 0.75  d = 0.50  d = 0.25  d = 0.00 

ρ n SUR RSUR  Liu RLiu  Liu RLiu  Liu RLiu  Liu RLiu 

0.75 10 2.862 1.703  2.222 1.197  1.769 0.858  1.504 0.687  1.508 0.828 
 25 1.305 0.768  1.075 0.574  0.919 0.448  0.837 0.389  0.837 0.468 
 50 0.488 0.287  0.416 0.224  0.371 0.185  0.351 0.169  0.350 0.200 
 100 0.241 0.142  0.208 0.112  0.187 0.094  0.179 0.087  0.178 0.102 
                

0.90 10 5.820 3.381  4.082 2.103  2.845 1.248  2.107 0.814  2.134 0.925 
 25 2.657 1.537  2.058 1.049  1.632 0.720  1.381 0.551  1.387 0.619 
 50 1.032 0.586  0.854 0.432  0.735 0.332  0.673 0.286  0.674 0.314 
 100 0.507 0.289  0.430 0.220  0.380 0.177  0.358 0.159  0.358 0.175 
                

0.95 10 10.683 6.126  6.808 3.451  4.090 1.687  2.529 0.835  2.523 0.936 
 25 4.878 2.756  3.504 1.716  2.516 1.014  1.914 0.650  1.980 0.719 
 50 1.922 1.068  1.528 0.742  1.251 0.523  1.090 0.411  1.077 0.442 

  100 0.958 0.533   0.796 0.391   0.686 0.299   0.628 0.256   0.616 0.268 
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Conclusion 

A new estimator is proposed for the SUR model when estimating the parameter 

vector and it is suspected that β may belong to a linear subspace defined by Rβ = r. 

This is an empirically relevant situation and may be often in applied 

microeconomics when one wants to estimate demand functions such as the almost 

identical demand system (AIDS) or production functions for several countries or 

different industries such as the Cobb-Douglas equation. Other application could be 

to model the tourism demand or actuarial data. Hence, this new estimator has a wide 

variety of applications and may be used when the explanatory variables are highly 

inter-correlated. This new estimator has a lower MSE if there is such a value of the 

shrinkage parameter where the decrease of the variance is larger than the increase 

of the MSE. The new estimator outperforms the traditional estimators in finite 

samples, especially in small samples when the multicollinearity problem is severe. 
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