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CHAPTER 1 - INTRODUCTION 

Abstract 

Successful pregnancy that results in live birth only happens to approximately 

30% of fertilized eggs.  Among those pregnancies with live birth, some of them are 

complicated by placental associated diseases which produce a less ideal postnatal 

outcome.  By the ~7th cell division blastocysts implant into the uterus, at which stage 

there are two major cell populations: outer trophoblast cells and inner cell mass (ICM).  

There is also the extraembryonic endoderm lineage which is derived from the ICM, but 

this will not be discussed in detail here.  Multipotent trophoblast progenitor cells or stem 

cells later develop into the placental structure, while ICM contributes to the fetal 

structure, yolk sac and to part of the vasculature of the placenta.  To a certain degree, 

the biology and stress response of blastocyst can be studied and extrapolated from the 

study of its components, i.e. trophoblast stem cells (TSCs) and embryonic stem cells 

(ESCs) derived from the trophoblast layer and ICM respectively of the blastocyst.  

Stress commonly occurs, either psychological, biochemical or physical and complicates 

pregnancy.  Early stress events during pre-implantation embryo development or before 

the establishment of functional placenta through proliferation and differentiation of 

trophoblast progenitor cells, can have long term consequences.  One implication of this 

is the need to optimize in vitro fertilization (IVF) practice by identifying and reducing 

stress.  Stress study and management can also benefit normal fertile women because 

natural pregnancy may also encounter episodes of acute/chronic stress that can either 

end the pregnancy or make the remainder of pre- and post-natal development 

suboptimal.  

Mouse placenta and human placenta have much in common, both in terms of 
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structure and molecular regulation.  At this moment, there has not been a successful 

isolation of human placental stem cells.  Mouse TSCs (mTSCs) have been established 

and validated both by in vitro potency and differentiation analysis as well as in vivo 

placental lineages re-population.  We study stress, stress kinase activation and how 

stress affects the cell and developmental biology of cultured mTSCs.  One common 

stress response of stem cells is to differentiate even though culture conditions are 

intended to maintain potency.  Stress-induced differentiation has preference towards 

certain lineages and is reversible with early stress removal.  We speculate that the 

stress response of stem cells is programmed to promote both cell and organismal 

survival when the severity of stress is not too high.  

Background on mTSCs potency and differentiation  

mTSCs are derived from polar trophectoderm (TE) in day 3.5 embryos or 

extraembryonic ectoderm (ExE) from day 6.5 embryos [4].  The potency of mTSCs in 

vivo is maintained by fibroblast growth factor 4 (FGF4) secreted by ICM or embryonic 

ectoderm located next to pTE or ExE, respectively [5-7].  Isolated mTSCs from embryos 

can maintain their potency by external addition of the potency maintaining FGF4 [4] and 

embryonic fibroblast conditioned medium (EMFI-CM) during in vitro culture [4-6].  And 

they retain the capacity to differentiate into all placental trophoblast cell types in 

chimeric embryos after implantation in vivo (Figure 1) [4]. 

In vitro differentiation of mTSC is achieved by removing FGF4 and EMFI-CM 

from culture medium.  The majority of mTSC differentiate into trophoblast giant cells 

(TGCs) upon withdrawal of FGF4 and/or EMFI-CM, although other differentiated cell 

types also arise [8].  TGCs are large polyploid cells that mediate implantation and 
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invasion of the conceptus into the uterus.  These cells stop dividing and exit the mitotic 

cell cycle, but DNA replication continues, resulting in polyploid giant cells, a process that 

is defined as endoreduplication [9].  In vivo differentiated rodent TGCs can have ploidy 

as high as 1024N (10 DNA replications) [2], but normally in vitro and in vivo 

differentiated TGCs are within 32-64N (5-6 DNA replications).  TGCs also produce 

some growth factors and hormones, e.g. mouse placental lactogen 1 (mPL1s; encoded 

by 3 genes), which are the functional equivalent of human chorionic gonadotropin (hCG) 

during early pregnancy.  HCG or PL1 rescues the corpus luteum from involution and 

maintains its hormonal secreting function, especially the secretion of progesterone, 

which prepares the maternal uterus to nutritionally support embryonic growth and 

survival [10, 11].  Normal in vitro differentiation is a highly ordered sequence of events.  

Upon FGF4 and EMFI-CM removal in vitro, by day 1 of differentiation, there is 

Figure 1: Diagram of mouse trophoblast cell lineages and their marker genes. Mural TE give
rise to parietal trophoblast giant cells (P-TGCs) as marked by the expression of Pl1. pTE and
ExE can differentiate into cells populating the placental labyrinth, which is made up of two
syncytiotrophoblasts (SynT) lineages and sinusoidal TGCs (S-TGCs). Tpbpa positive progenitor
cells located in ectoplacental cone (EpC) further differentiate into spongiotrophoblasts,
glycogen trophoblasts and two other TGC subtype, spiral artery-associated TGCs (SpA-TGCs)
and canal TGCs (C-TGCs). Each cell type has a specific set of genes (blue) that allow its
identification and carry out parenchymal function of the lineage [1]. 



4 

 

significant decrease in the expression of genes characteristic of the stem cell state of 

mTSCs, e.g. caudal type homeobox 2 (Cdx2) and estrogen-related receptor beta (Errb) 

[12].  By day 2, there is a nearly complete loss of mRNA for potency related genes 

eomesodermin homolog (Eomes) and fibroblast growth factor receptor 2 (Fgfr2), the 

receptor of FGF4 [4].  Besides the decrease in the expression of potency-related genes, 

the gain of differentiation mRNA markers is also under way.  Syncytiotrophoblast 

marker gene glial cells missing homolog 1(Gcm1), TGC progenitor gene heart and 

neural crest derivatives-expressed protein 1(Hand1) and spongiotrophoblast maker 

gene achaete-scute complex homolog 2 (Mash 2) were induced by day 1 of 

differentiation [8].  The induction of Pl1 happens later. PL1 mRNA is not detected in the 

preimplantation blastocyst.  For in vitro mTSC differentiation, PL1 mRNA expression is 

evident by day 4 of differentiation, and peaks at day 5-6 [13, 14].  

Comparison of mouse and human placenta 

There are comparable features in mouse and human placenta cell structure and 

molecular regulation (Figure 2).  About 70% of genes are co-expressed in mouse and 

human term placenta and 80% of the genes having a phenotype in mouse placental 

development are expressed in human placenta [15].  mTSC and human villous 

cytotrophoblast cells both act as stem cell population and express inhibitor of 

differentiation 2 (ID2) [16, 17].  Forced expression of ID2 inhibits the differentiation of 

cytotrophoblast cells in vitro, while ID2 mRNA is lost during normal mTSC or human 

cytotrophoblast (hCTB) differentiation.  Cell adhesion molecules (e.g. α1β1 integrin) and 

matrix-degrading proteinases, e.g. matrix metallopeptidase 9 (MMP9), plasminogen 
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activator (uPA) that mediate decidua invasion by extravillous trophoblast cells in 

humans are expressed by TGCs in mice [18].  Stimulated by retinoic acid 13 (Stra13) 

transcription factor expression has been detected in hCTB cells that differentiated into 

extravillous-like cells in vitro [19], while in mouse there is Stra13 expression in TGC and 

ectopic expression of Stra13 or Hand1 transcription factor is sufficient to drive TSC 

differentiation into TGC despite FGF4 [8].  This suggests that one way that stress forces 

differentiation is by increasing the expression of transcription factors that are necessary 

and sufficient to induce differentiation.  A cautionary note is that transgenic 

overexpression may dominate over remaining potency factors due to its non-

physiologically high level, whereas stress-forced differentiation may only require lower 

levels of differentiation factors because there is coexisting loss of potency factor 

proteins.  The characteristic feature of TGC in mice is that they are polypoid.  Human 

invasive extravillous cytotrophoblast are also polyploid [20].  Gcm1 is expressed in a 

subset of noninvasive cells in the labyrinth of mice and required for the differentiation of 

Figure 2: Comparative anatomy of
human and mouse placenta.
Maternal-fetal blood exchange
occurs in labyrinth of mouse
placenta, comparable with human
chorionic villi. Spongiotrophoblast
cells lie between the labyrinth and
outer layer of giant cells,
corresponding to the cytotrophoblast
column of human placenta.
Endovascular trophoblast giant cells
and glycogen trophoblast cells
invade maternal decidua, perform
similar function as endovascular
extravillous trophoblast and
interstitial extravillous trophoblast do
in human placenta [2]. 
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syncytiotrophoblasts [21].  In humans, Gcm1 activates the transcription of syncytin gene, 

which is required for cell fusion to form syncytiotrophoblasts [22].  But note that 

immediately after implantation in humans, there is already syncytiotrophoblast 

differentiation on the surface of the placenta that erodes capillaries and creates blood 

filled lacunae.  It is these first syncytiotrophoblasts that make hCG.  This happens 

before the development of floating and anchoring villi later in first trimester.  For 

research purposes, tissues from human placenta during the early stages of pregnancy 

are difficult to obtain and at this moment, there is no human trophoblast stem cell line 

that can be maintained in vitro.  Good hTSC are highly sought after to enable modeling 

of early post implantation trophoblast development.  There are many similarities 

between mouse and human placenta, and after good hTSCs are made we anticipate 

functionally similar response to cell stress, although timing, cell lineages and exact 

mechanisms may differ.  Currently the functional and molecular similarities make mTSC 

an alternative choice to model the effect of stress on early placentation.  

The challenge of normal pregnancy 

Beside the ongoing endeavor of minimizing in vitro culture stress during IVF/ART 

treatments for infertile women, it is important to realize that successful pregnancy is still 

a relatively difficult event for all fertile women.  Analysis of stress in culture may improve 

IVF treatment for infertility.  Analysis of stress can also potentially improve pregnancy 

success in normal fertile women because most pregnancies miscarry.  It is estimated 

that 70% of fertilized eggs do not result in live birth [23]; 30% of them are lost before 

hCG detection and another 40% are lost after that. In other words, the fate of a fertilized 

egg is much more likely to be failed pregnancy rather than live birth.  

What is so difficult about early embryogenesis that leads to such a high rate of 
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loss?  Chromosome abnormality is a key issue.  Besides that, starting from implantation, 

a unique exponential stem cell growth phase occurs wherein nearly all stem cells 

proliferate and the 1st lineages differentiate in trophoblast stem cells (TSCs) and 

embryonic stem cells (ESCs) to produce nutrition-acquiring function [24, 25].  TSCs are 

first derived from the polar trophectoderm (pTE) and ESCs from the inner cell mass 

(ICM) of the preimplantation blastocyst.  For mTSCs and mESCs, the nutrient-acquiring 

1st lineages are trophoblast giant cells (TGCs) and yolk sac/primitive endoderm, 

respectively.  The exponential growth period continues for 1-3 weeks after the 

blastocyst implants into the uterus in mice and humans.  TSCs first differentiate into 

syncytiotrophoblasts in human and mural TGCs in rodents.  They serve similar functions, 

producing hormone, hCG or PL1 to rescue corpus luteum from involution.  The corpus 

luteum is the primary source of progesterone during the first 7-9 weeks of human 

gestation.  Afterwards, the fetoplacental unit becomes competent in progesterone 

production [26].  HCG must increase exponentially from week 3 in human pregnancy 

through week 7 to support the corpus luteum.  We hypothesize that there must be 

similar exponential growth of hCTBs to support the differentiation of 

syncytiotrophoblasts in order to produce exponential hCG increase.  Any medical 

problem or stress that leads to failure of hCTB growth may cause insufficient hCG 

production and miscarriage.  Progesterone induces high maternal glycogen secretion 

near the surface of placenta to provide sufficient nutrition for the developing conceptus 

[27, 28].  The corpus luteum needs be rescued by the secreted hCG or mPL1 from 

implanting embryos to allow pregnancy to continue.  Low hCG levels in early pregnancy 

has been shown to be the major determinant of low post-implantation progesterone, 

which predicts miscarriage [29].  
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Rapid stem cell growth demands conservation of carbon by Warburg metabolism, 

which is regulated by growth factor signaling instead of caused by dysfunctional 

mitochondria [30].  However, inefficient ATP production by Warburg metabolism makes 

early survival difficult by increasing demands on nutrition.  At implantation the uterine 

glands make vast amounts of maternal nutrition such as glycogen available for the 

developing conceptus, enabling rapid cell growth [31].  The ICM enters Warburg 

metabolism to conserve carbon and uses aerobic glycolysis for ATP production and for 

biosynthesis [32].  pTE in vivo adjacent to ICM or mTSCs in vitro also have low 

mitochondrial respiration and favor glycolysis over oxidative phosphorylation [33, 34].  In 

cultured mTSCs, FGF4 suppresses the mitochondrial electron transport chain and 

increases glycolysis.  Since glycolysis is much less efficient in ATP production 

compared with oxidative phosphorylation and rapid growth requires ATP to drive various 

biosynthesis processes, it is essential for the embryos to acquire vast amounts of 

nutrition at the site of uterine implantation.  The five liters of maternal blood both make 

rapid stem cell growth possible and also make survival difficult.  There must be enough 

1st lineage differentiation to make sufficient amounts of endocrine trophoblast hormones 

across five liters of maternal blood, to sustain maternal progesterone production and 

enable maternal recognition of pregnancy [18, 35].  

Interpretation of pregnancy complicated by stress from the perspective of stem 
cells 

It is clearly a difficult task for embryos to perform normal, successful implantation 

and placentation, but what happens if stress diminishes growth of the embryo and the 

stem cells derived from it?  For both mTSCs and mESCs, stress reduces proliferation 

and potency, and forces stem cell differentiation to create minimal essential nutrition 
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acquisition function mediated by the 1st differentiated lineage [36-38].  Forced 

differentiation occurs in the presence of conditions that normally maintain potency.  In 

other words, stress overrides potency-maintaining conditions and induces differentiation.  

In addition to mESCs and mTSCs, stress-induced potency loss and differentiation is 

also seen in other types of stem cells, e.g., induced pluripotent stem cells (miPSCs) [39], 

hematopoietic stem cells [40], mesenchymal stem cells [41] and melanocyte stem cells 

[42].  As placental stem cells, mTSCs demonstrate unique stress responses.  The effect 

of stress on mTSCs is differentiation preferentially toward the trophoblast giant cell 

(TGC) lineage if FGF4 is present [3].  We have studied stresses such as 

hyperosmolarity and hypoxia below the O2 optimum of 2% for mTSCs [38].  Both types 

of stress induce Hand1 transcription factor and Hand1-dependent PL1 expression [38, 

43], thus inducing the TGC subtype in vitro [13].  Hand1-null mutants die at E7.5 of 

gestation because of defects in TGC differentiation [44].  Thus, despite FGF4 which 

normally suppresses Hand1, stress induces Hand1 which is sufficient transgenically to 

override FGF4 and induce TGC differentiation [8].  Stress also induces loss of mTSC 

potency factors CDX2 and ID2 that block differentiation to produce Hand1 and PL1 [45, 

46].  Cdx2 knockdown increases the expression of Hand1 in the blastocyst [47].  Id2 is 

an inhibitor of differentiation as transgenic Id2 expression blocks the normal 

differentiation of human placental stem cells [17], and transgenic overexpression of 

related Id1 blocks differentiation and PL1 transcription in rat choriocarcinoma cells 

(Rcho)1 [48].  Thus stress preferentially forces TGC differentiation when stress 

upregulates HAND1 and downregulates CDX2 and ID2 potency factor proteins.  We call 

stress-forced differentiation toward PL1-expressing TGCs “prioritized” differentiation 

since later lineages are transiently decreased [33, 49].  It is essential to make a 
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sufficient amount of mPL1, like hCG, for the rescue of the corpus luteum to facilitate 

pregnancy.  Corpus luteum rescue becomes more difficult when stress diminishes cell 

growth.  Greater stem cell fractions must differentiate in order to provide the same 

amount of function as stress doses increase and total stem cell population sizes 

decrease compared with time-matched normal population size.  We call the stress-

induced increased fraction of differentiation toward one immediately-necessary lineage 

from a smaller stem cell population “compensatory” differentiation [3].  Similar potency 

loss and compensatory differentiation was observed in cultured mESC as well as mTSC 

[50, 51].  

Reversibility of stress-induced mTSC differentiation 

Compared with differentiation upon FGF4 removal, hyperosmolar stress at 

400mM sorbitol induces differentiation of TSC by 24h as evidenced by the expression of 

TGC marker gene Pl1 mRNA.  The potency marker genes Cdx2, Errb and Eomes were 

preserved by 50% while Id2 mRNA maintained almost at the same level [49].  Despite 

the preservation of Id2 mRNA, hyperosmotic stress cause loss of ID2 protein as early 

as 1h and it remains low for 24h [52].  The loss of potency factor protein but not the 

mRNA coding for it is not observed in normal differentiation.  400mM Sorbitol is a 

relatively high stress level which caused 75% cell death after 24h treatment.  Cell 

differentiation after 24h of 400mM sorbitol treatment is irreversible as removal of sorbitol 

after that was companied by continued decrease in ID2 protein and increase in PL1 

protein.  However, exposure to milder stress such as 100 and 200mM sorbitol for 24h 

followed by 24h of normal culture medium, there was increase in cell number as well as 

ID2 level [52].  Thus, mild stress induced differentiation may be reversible after stress 

removal.  It has been demonstrated that Id2 is a hypoxia inducible factor (HIF) target 
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gene and can be induced by hypoxia in neuroblastoma cells and hematopoietic stem 

cells [53, 54].  Since Id2 is a key potency maintenance gene and forced expression of 

Id2 inhibits the differentiation of cytotrophoblasts [17], it raises the possibility that 

differentiation under hypoxic stress may be reversible.  

The proliferation and differentiation of placental trophoblast cells at different 
levels of O2 

The level of O2 affects the proliferation and differentiated lineage choice of 

trophoblast cells.  In vitro culture of anchoring villi from human placenta shows that 2% 

O2 promotes cytotrophoblast proliferation and inhibits its differentiation compared with 

20% O2 [55, 56] and 1% O2 facilitates in vitro cultured human cytotrophoblast cells to 

differentiate towards HLA-G expressing extravillous trophoblast cells [57].  Similar to 

human cytotrophoblast, 3% O2 promotes mouse TSC proliferation when FGF4 is 

present [58].  Rodent secondary TGC come from spongiotrophoblast cells.  It has been 

shown that compared with 20% O2, lower O2 levels at 0.5% to 3% O2 enhance the 

expression of spongiotrophoblast marker Tpbpa while the expression of TGC markers 

(Plf, Pl1, Pl2) as well as labyrinthine markers (Gcm1, Tfeb, and Cxcr4) was reduced 

[58-60].  Our lab has demonstrated that 2% O2 is associated with highest growth rate, 

lowest stress kinase (stress-activated protein kinase, SAPK) activation and normal 

maintenance of mTSCs potency during in vitro culture.  And we consider 2% O2 as the 

optimal O2 for mTSC in vitro culture [38].  In summary, O2 is an important determinant of 

trophoblast cell growth and differentiation choice and studies on the effect of O2 in 

human and mouse placental stem cell models are largely in agreement with each other. 

Placental-related disorders affect around one third of human pregnancies, 

primarily including miscarriage and pre-eclampsia [61].  The reasons for these disorders 
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are not well understood.  The cause of preeclampsia and IUGR can be traced back to 

the defect in development and differentiation of trophoblast cells [62].  It has been 

shown that in vitro fertilization is associated with an increased risk for preeclampsia [63].  

In addition, 16% of women treated by assisted reproductive technique (ART) 

experienced early pregnancy loss.  Smoking and transfer of “poor quality” embryos 

were identified as risk factors [64].  These evidences suggest that stress events during 

early embryo development have negative effects on later pregnancy process.  Hypoxia 

stress is frequently seen in women with anemia [65], diabetes [66], smoking [67], sleep 

apnea and living on high altitude [68].  The ability of mESC to adapt hypoxia/anoxia has 

been demonstrated before [69], how mTSC is affected by severe hypoxia is still not 

clear.  Using mouse TSC to study hypoxic stress response will help the understanding 

hypoxic-stress complicated pregnancy.  

Stress and the dynamic of stress kinase activation 

Stress can be defined as any stimuli that negatively affect the ability of cells to 

perform their normal functions, which means self-renewal, differentiation capability and 

differentiation trajectory in the stem cells of implanting embryos.  One feature of cell 

stress response is that stress is sensed and responded to in proportion to stress 

amount by an amount of stress kinase activation.  At this moment, 540 kinases are 

identified to constitute the mouse kinome and 518 kinases in the human kinome.  

Among them, 510 kinases are shared between mouse and human [70, 71].  All kinases 

have a catalytic domain that add phosphate group to their substrates, thus altering the 

activity, half-life and localization of those substrates.  Stress kinases are a subgroup of 

the total kinome that respond to negative stimuli (some respond weakly to positive 

stimuli as well), and adjust cellular processes correspondingly.  AMP-activated protein 
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kinase (AMPK), SAPK and p38 MAPK are some of the examples of stress kinases.  

AMPK is a heterotrimeric complex with a catalytic α subunit whose kinase activity 

is positively regulated by the γ subunit and negatively regulated by the β subunit [72].  

There are two isoforms of α subunit (α1 and α2) in mammals, which are coded by 

different genes, but perform similar functions.  Activation of AMPK requires 

phosphorylation of a critical residue-Thr172 on the α subunit which is mediated by 

serine/threonine protein kinase 11 (LKB1) and Ca2+/calmodulin-dependent protein 

kinase kinase (CaMKK) [72, 73].  The long-established role of AMPK is as an energy 

sensor. It senses the intracellular AMP/ATP ratio via the regulatory γ subunit which 

activates the catalytic subunit and senses glycogen levels through the β subunit which 

negatively regulates the catalytic subunit [74].  Once activated, the general effect of 

AMPK is to decrease ATP-consuming anabolic pathways and increasing catabolic 

pathways [75].  AMPK is unique among the 14 related family members in that it is the 

only one responding to  energy stress [76].  Besides regulating energy status, AMPK 

also plays a role in the development and differentiation of mouse embryos, mTSCs and 

mESCs [46, 77, 78].  It has been shown that activation of AMPK inhibits mESC 

proliferation by inducing G1/S arrest and affects the differentiation of mESCs by 

mediating loss of the potency transcription factor Nanog [79, 80].  Under stressful 

conditions such as exposure to hyperosmotic stress or carcinogenic benzopyrene, 

mTSCs are prone to differentiate, and AMPK is responsible for the loss of ID2 and 

CDX2 under these conditions [45, 46, 52].  AMPK is also involved in ID2 and CDX2 loss 

in the stressed 2-cell stage embryo [46] and stress-induced oocyte maturation [81, 82].  

It has been shown that AMPK agonist drugs and diet supplements which are not 

considered “stressful” previously decrease the potency and growth of 2-cell mouse 
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embryos and blastocysts [83], as well as increase the phosphorylation of acetyl CoA 

carboxylase (ACC) on ser79 (unpublished data, [84]).  The same AMPK agonist drugs 

and diet supplements cause 2-6 fold decreases in mESC growth rates assayed in a 

high throughput screen [85].  Thus understanding stress-forced potency loss through 

AMPK should increase our understanding of noxious stimuli that can cause embryo loss.  

Studies on stress and the effects of stress kinase activation are numerous [86, 

87].  The signaling pathways mediated by stress kinases are not isolated events. 

Instead, they have extensive crossover and are integrated in the global signaling 

network of cells.  Through this, they can regulate multiple cellular processes such as 

cell cycle progression and metabolism etc.  In the meantime, the activities of stress 

kinases are affected by the same processes they have an effect on.  Both the input to 

activate a stress kinase and the output of stress kinase activation are complex and 

embedded in the overall cell signaling network [88].  Therefore, both the dynamic and 

quantitative aspects of the activity of a stress kinase have biological complications.  

While studying the activation of SAPK due to different O2 gradients in mTSCs, we found 

that the stimulation index of SAPK is lowest at optimal mTSC in vitro culture O2 at 2%, 

higher at 20% O2, and highest at O2 < 2%.  More interestingly, compared with the speed 

of activation after mTSCs were moved away from traditional 20% O2 culture, SAPK was 

activated much faster at 1h after moving away from optimal 2% O2 [3].  This observation 

indicates that rapid stress kinase activation is needed to combat sudden environmental 

changes that deviate from optimal condition and further supports that idea that both the 

dynamic and quantitative measure of stress kinase activation reflects how cells respond 

to stress and may have an effect on cell behavior.  
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Optimization of IVF practice 

As a sensitive and integrative readout of cell state, studying stress kinase 

activation can have practice usage.  Optimization of in vitro fertilization (IVF) is one 

example of it. IVF is widely used these days to help couples with fertility issue.  Optimal 

embryo culture environment is critical for embryonic development and consequently the 

success of IVF treatment.  Culture medium optimization is an important part of it.  Over 

the years of advancement in IVF practice, many types embryo culture medium have 

been developed.  Studies of mouse embryos show that for seven media developed over 

the years the historically oldest two activated the highest levels of SAPK and the most 

recently optimized two activated the least SAPK and enabled highest development rates 

from the 2-cell stage to the blastocyst stage [89].  Interestingly, a follow-up study of the 

least and most stressful media showed that SAPK inhibitors improved embryo 

development in least stressful and worsened embryo development in most stressful 

media [90].  Thus stress and stress enzyme analysis provides both markers and 

possible mechanisms of adaptive or maladaptive responses to stress.  Among a few 

culture media that support the best human embryo growth, there has been controversy 

over which one is the best [91].  The parameters that are commonly used to measure 

the outcome of in vitro culture include rate of embryo development to 8-cell stage or 

blastocyst stage, quality of embryos by morphology, the number of cells at the 

blastocyst stage, and implantation rate and live birth rate etc.  Measuring the stress 

response of embryos cultured in different conditions based on stress kinase activation 

will aid the overall assessment of optimal culture environment, especially when the 

difference among various conditions is subtle. 

A successful pregnancy starts with a good quality embryo that can implant 
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normally.  Preimplantation embryo development is also susceptible to environmental 

stress and it carries long-term consequence [92].  IVF involves retrieval of oocytes and 

in vitro culture of human embryos before transferring them back into uterus.  In vitro 

culture subjects the embryos to culture stress they do not encounter in vivo.  

Optimization of IVF has been an area where scientists and clinicians devote a 

significant amount of time and resource to pursue.  This effort is justified because of the 

large need of this technique by the general population.  Since the birth of the first IVF 

baby in 1978, the number of babies born through assisted reproductive technique (ART) 

has reached approximately 5 million [93].  And 12.3% women aged 15-44 have 

impaired fertility (Key Statistics from the National Survey of Family Growth, data are for 

2011-2013. CDC).  The research conducted on IVF improvement involves multiple 

aspects of this practice, for example the culture medium used [94], air quality control in 

embryo culture room [95], methods of embryo cryopreservation [96], and the preferred 

stage of embryo for transfer [97] etc.    Rewarding results have been produced as the 

success rate of IVF has been improving [98].  The transition from traditional 20% O2 

culture to 5% O2 for IVF marks another step forward in the optimization of IVF [99].  

However, it is still too early to conclude that 5% O2 is the optimal O2 for human 

embryo in vitro culture, especially during blastocyst stage.  As mentioned before, 

studies in mouse embryos showed that the two major components of blastocysts, both 

ICM and pTE/TSC, have low mitochondria charge and actively use glycolysis for energy 

production [32-34].  The shift of major energy substrate from pyruvate for early pre-

implantation embryo to glucose at blastocyst stage as well as the higher rate of lactate 

generation at blastocyst stage also reflect the high level of glycolysis [100].  70-80% of 

cells are trophoblast cells in mouse blastocysts [101], which includes trophoblast cells 
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from pTE/TSC and mural TE.  mTSC grows most rapidly at 2% O2 [38].  Taken together, 

these data suggests that the level of O2 needed for blastocyst culture is likely to be 

lower than 5%.  80% of cells in human blastocysts are also trophoblast cells [102].  

Other than the comparison with 20% O2, there is limited data comparing 5% O2 with 

other O2 levels, especially O2 below 5%.  This is an important gap in our knowledge 

since the measured human uterus O2 level at the time of implantation is estimated to be 

around 2-2.5% [103, 104] and presumably the stem cells in the blastocyst are optimized 

for growth at these O2 levels.  Knowledge of blastocyst physiology and the previous O2 

optimization of mTSC suggest that 2% O2 may be optimal for human blastocyst culture 

where the predominant cell type is trophoblasts.  

Aims of dissertation  

1) To investigate the effect of hypoxic stress on mTSCs lineage choice under 

potency maintaining conditions and the reversibility of hypoxic stress-induced 

differentiation. 

2) Determine the best level of O2 among 2%, 5% and 20% for human blastocyst 

culture. 

3) Study the dynamics of AMPK activation in mTSCs cultured under various levels 

of O2 (20%, 2%, 0.5% and 0% O2). 
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CHAPTER 2 - HYPOXIC STRESS-INDUCED MTSCS DIFFERENTIATION AND ITS 
REVERSIBILITY 

(This chapter contains previously published material. See Appendix A) 

Abstract 

Hypoxic, hyperosmotic, and genotoxic stress slow mTSCs proliferation, decrease 

potency/stemness and increase differentiation.  Previous reports suggest a period of 

reversibility in stress-induced mTSCs differentiation.  Here we show that hypoxic stress 

at 0.5% O2 decreased potency factor protein by ~60-90% and reduced growth to nil.  

Hypoxia caused a 35-fold increase in apoptosis at day 3 and a 2-fold increase at day 6 

above baseline.  The baseline apoptotic rate was at 0.3%.  Total protein was never less 

than baseline during hypoxic treatment, suggesting 0.5% O2 is a robust, non-morbid 

stressor.  Hypoxic stress induced ~50% of trophoblast giant cell (TGC) differentiation 

with a simultaneous 5-6-fold increase in the TGC product antiluteolytic PL1, despite the 

presence of FGF4.  Hypoxia-induced TGC differentiation was also supported by 

potency and differentiation mRNA marker analysis.  FGF4 removal at 20% O2 

committed cell fate towards irreversible differentiation at 2 days, with similar TGC 

percentages after an additional 3 days of culture under potency conditions when FGF4 

was re-added or under differentiation conditions without FGF4. However, hypoxic stress 

required 4 days to irreversibly differentiate cells.  Runted stem cell growth, forced 

differentiation of fewer cells, and irreversible differentiation limit total available stem cell 

population.  Were mTSCs to respond to stress in a similar mode in vivo, miscarriage 

may occur as a result, which should be tested in the future.   

Introduction  

Mouse embryos grow exponentially to rapidly accumulate cell mass starting one 
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day before implantation into the uterus and persisting for a week or more after 

implantation [24].  Necessary first differentiated lineages also arise during this rapid 

growth.  Before implantation, trophoblast and embryonic stem cells (TSC and ESC 

lineages, respectively) initiate and allocate [105] in the embryo to further develop into 

extraembryonic and embryonic structures.  Exponential growth starts first in the 

trophoblast lineage [24].  Rapid trophoblast cell growth produces PL1 to maintain 

ovarian function and enable maternal recognition of pregnancy early after implantation 

[35].  This is similar to the function of hCG in early human pregnancy recognition and 

maintenance [106].  

Hypoxia is commonly encountered during pregnancy.  It can happen to 

pregnancies at high altitude [107] or in urban areas due to carbon monoxide (CO) 

pollution.  CO has higher binding affinity to hemoglobin than O2 [108].  Increased CO 

exposure during pregnancy could reduce the amount of O2 delivered to the developing 

fetus by as much as 10% [109].  Cigarette smoking also increases maternal blood CO 

levels [110], which may further compromise O2 delivery to fetus.  Other conditions such 

as hypertension, anemia and pulmonary disease also contribute to fetal hypoxia [111].  

Chronic hypoxia has been associated with intrauterine growth restriction, low birth 

weight, as well as increased cardiovascular diseases in adults [112, 113].  It has been 

reported that embryos derived from females exposed to malnutrition and cortisol only 

during the preimplantation period show slowed growth and negative prenatal and 

postnatal outcomes [92, 114].  The negative impact of stress on early trophoblast cells 

is likely to play a role in that process because aberrations in trophoblast proliferation 

and differentiation at early pregnancy or peri-implantation period is associated with 

adverse pregnancy outcome [62, 115].  Here we used mTSC to model the effect of 
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hypoxia during the peri-implantation period, which is also the period when the majority 

of pregnancy loss happens [23].  Notice that all the external stimuli that cause hypoxia 

in vivo may initiate stress responses in a more complex systemic way.  As a result of 

that, the effect of hypoxia on TSCs in vivo can be modified by the maternal stress 

response.  Here we only study the single variable hypoxia in a reductionist approach 

that reveals the hypoxic response of mTSCs.  

mTSCs have been successfully isolated from polar trophectoderm or 

extraembryonic ectoderm of mouse embryos; their potency and proliferation can be 

maintained in vitro with FGF4 [4].  In vivo differentiation of mTSCs occurs when the cells 

grow away from their FGF4 source [7].  In vitro differentiation happens when FGF4 is 

removed [4].  However, even one day of hypoxic stress has been shown to decrease 

the mRNA level of potency factors and increase that of differentiation markers despite 

the presence of FGF4 and without an overt differentiated phenotype [38].  Other types 

of stress such as hyperosmotic sorbitol and genotoxic benzopyrene can also force 

potency loss and increased mTSC differentiation despite the presence of FGF4 [43, 45, 

52].  Hyperosmotic stress induces global mRNA changes of mTSCs by 24hr that 

emulate normal first lineage TGC differentiation caused by FGF4 removal [49].  

However, hyperosmotic stress-forced differentiation occurs largely in the absence of 

later lineages that would have been induced by normal differentiation with FGF4 

removal.  SAPK mediates hyperosmolar stress-induced HAND1 transcription factor 

protein increase [43], which leads to TGC differentiation and enables PL1 production 

[116].  Hypoxic stress at 0.5% O2 also causes SAPK-dependent increase in Hand1 

mRNA [33].  We hypothesize that long term hypoxic stress diminishes mTSC growth 

and potency, forces TGC differentiation and antiluteolytic PL1 production. 
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There are several subtypes of TGC identified in mouse placenta and not all 

produce PL1.  Parietal TGCs (P-TGC) are characterized as the main subtype 

expressing PL1, while mature spiral artery-associated TGCs (SpA-TGCs) and canal 

TGCs (C-TGCs) do not [13].  It is possible that earlier SpA-TGCs and C-TGCs also 

express PL1 [117].  In support of this, it was shown that TGCs isolated from early 

placenta at day 7 and 9 of pregnancy went through successive stages of PL+, then PL+/ 

PL2+ and finally PL1-/ PL2+ expression [118].  There is emerging evidence showing 

stress forces mTSC and mESC to differentiate primarily toward the earliest lineages [49, 

51]. Hypothetically, hypoxic stress-forced differentiation may also include a large portion 

of PL1+ TGC subtypes. 

Although terminally differentiated TGC do not revert to being stem cells, there is 

evidence suggesting some aspects of stress-forced differentiation can be reversed.  

Hyperosmotic stress produced a reversible ~50% ID2 protein loss [52], while Id2 mRNA 

was preserved during the same period [49].  ID2 is a potency factor which can block the 

normal differentiation of human placental stem cells when over-expressed [17], and 

related ID1 blocks differentiation and Pl1 transcription in rat choriocarcinoma cells 

(Rcho)1 [48].  The signature response of stressed somatic cells is to disassemble 

ribosomes, but save mRNA into stress granules from which the mRNA are freed and 

translated once stress subsides [119].  Loss of ID2 protein while preserving Id2 mRNA 

may enable some reversibility in stress-induced mTSC differentiation.  We hypothesize 

there is a period of reversibility in stress-induced mTSC differentiation, and it would be 

longer than normal differentiation with FGF4 removal.  This would potentially enable the 

stem cell reserve to replenish the placenta during rebound growth after stress.  
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Materials and Methods  

Reagents 

Fetal bovine serum, RPMI1640 (Cat # 21870) and FGF4 (Cat # PHG0154) were 

from Gibco. Heparin (Cat # H3149) was purchased from Sigma Chemical Co.  Primary 

and secondary antibodies used were purchased from the following sources: CDX2 

(CDX2-88, Biogenex), ID2 (SC489, Santa Cruz Biotechnology), Cleaved Capsase-3 

(CS9664, Cell Signaling), B-Actin (CS4970, Cell Signaling), Tubulin (T9026, Sigma), 

anti-rabbit HRP-linked antibody (CS7074, Cell Signaling), anti-mouse HRP-linked 

antibody (CS7076, Cell Signaling), anti-rabbit IgG-TR (SC2780, Santa Cruz 

Biotechnology).  PL1 antiserum is a generous gift of Dr. Soares from University of 

Kansas Medical Center, and it was characterized in [120].  All reagents (cell 

cryopreservation buffer, nucleus isolation solution, RNAase, propidium iodide) used for 

flow cytometry DNA content analysis were contained in the kit purchased from BD 

bioscience (Cat # 340242). 

Cell lines and culture conditions 

The mTSC isolate was gratefully received from Dr. Rossant (Lunenfeld Research 

Institute, Ontario, Canada) [4].  mTSCs were cultured as described previously [121].  

Briefly, RPMI-1640 medium supplemented with 20% FBS, 70% mouse embryonic 

fibroblast conditioned medium (EMFI-CM) and 25ng/ml FGF4 was used for routine 

mTSCs culture at 20% O2.  When the mTSCs reached 70-80% confluence, cells were 

trypsinized and passaged into new dishes 24h before the start of each experiment.  The 

starting cell confluence was ~10%.  The time immediately before the start of experiment 

was designated as time zero (Tzero).  Then cells were moved to pre-equilibrated 

medium at 0.5% O2 or normal differentiation medium without FGF4 and EMFI-CM at 20% 
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O2.  20% O2 culture was carried out in a conventional CO2 incubator.  Hypoxic 0.5% O2 

culture was done in a gas chamber equilibrated with commercially pre-mixed gas 

containing 0.5% O2 /5% CO2 /94.5% N2.  

There were two periods of cell culture before flow cytometry.  The first period was 

called the “initial treatment” when 0.5% O2 plus FGF4, or FGF4 and MEFCM removal 

was applied at 20% O2.  The second period was called “fate determination”, which was 

another 3 days of cell culture after the initial treatment.  Fate determination was 

conducted under either potency (20% O2 plus FGF4 and MEFCM) or differentiation 

conditions (20% O2 minus FGF4 and MEFCM).  Initial treatment was 2-5 days for 0.5% 

O2 and 1-4 days for normal differentiation.  After each initial treatment day, one plate of 

cells was trypsinized, resuspended in citrate-DMSO buffer and snap-frozen on dry ice.  

At the same time, two other plates of cells were put into fate determination under either 

potency or differentiation conditions.  After the fate determination period, cells were also 

trypsinized and frozen. 

Nuclear staining and nuclear size quantification by ImageJ 

At the end of each 0.5% O2 treatment day, cells were stained with Hoechst 

33342 (H1399, Molecular Probes) at 5µg/ml for 30 minutes in a CO2 incubator.  

Afterwards, images were taken with a DM-IRE2 fluorescence microscope (Leica, 

Germany).  The “Analyze Particles” function of ImageJ can quantify the size of the blue 

stained nucleus in each image.  All images were taken at 10X magnification. Nucleus 

size of ~2000 nuclei from normally maintained mTSCs were measured.  There is 

variation in the nucleus size of the normal undifferentiated mTSCs.  The size range 

between “mean ± 2SD” was calculated.  Nuclei with values above or below “mean ± 

2SD” were individually checked against their appearance in the fluorescence image in 
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order to make sure the low values truly represent an intact nucleus instead of debris or 

cells in the middle of mitosis where their nuclei appear as two small separated groups of 

blue staining.  Furthermore, nuclei with a large size were inspected to confirm they were 

from individual spontaneously differentiated giant cells and not several nuclei mistakenly 

counted as one.  Based on that, we arbitrarily set the size range with high and low cut-

off values for normal stem cells.  Nuclei with size measurement above the high cut-off 

value were considered to represent a giant cell.  Blue stain with size below the low cut-

off value were considered too small to be an intact nucleus and excluded in the final 

giant cell percentage calculation.  The same standard was used for all experimental 

groups, and at least 2500 nuclei were measured to generate the giant cell percentage. 

Western blot  

Cells were washed twice with ice-cold PBS (SH30256, Fisher Scientific) and 

lysed with RIPA buffer (PI89901, ThermoScientific).  15-30 µg of whole–cell extracts 

were separated on a 4-20% SDS-PAGE gel (Cat #4561094, Bio-Rad) using Bio-Rad 

Mini Format 1-D Electrophoresis Systems and transferred to nitrocellulose membrane 

using Bio-Rad Mini Trans-Blot Electrophoretic Transfer Cell.  The sizes of the probed 

proteins are 38kD for CDX2, 15kD for ID2, 30-35kD for PL1, 17kD for Cleaved 

Caspase-3, 45kD for B-Actin and 52kD for Tubulin.  Every blot carrying transferred 

proteins was cut into multiple pieces containing each probed protein (B-Actin was re-

probed after stripping off CDX2 using the same piece of blot).  The location of each 

protein on the blot was estimated based on its size relative to protein ladder (Cat # 

LC5800, ThermoFisher) and amido black staining showing band shape.  Afterwards, the 

blots were blocked at room temperature (RT) for 1h with 5% fat-free milk (Cat 

#1705016, Bio-Rad) and incubated with CDX2 (1:1500), ID2 (1:400), PL1 (1:500), 



25 

 

Cleaved Caspase 3 (1:500), B-Actin (1:1200) or Tubulin (1:10000) antibodies overnight 

at 4°C.  The next morning, the blots were washed and incubated in horseradish 

peroxidase (HRP) conjugated secondary antibody (1:10000) at RT for 90 minutes. 

Primary and secondary antibodies were diluted in 2% fat-free milk/TBST.  The protein 

bands were visualized using enhanced chemiluminescence (ECL) (Amersham).  

ImageJ was used to quantify the intensity of the bands from proteins of interest and 

normalized to loading control.  Value for time zero was arbitrarily set as “1” to show fold 

changes due to treatment. 

Immunofluorescence  

Cell culture was done on sterile coverslips.  At each end point, the coverslips 

were washed with PBS and fixed with 3% paraformaldehyde for 25 minutes, quenched 

with 0.1M glycine, permeabilized with 0.25% Triton X-100 for 12 minutes and blocked 

with 3% (w/v) BSA for 45 minutes at RT.  Incubation with mono-clonal mouse PL1 

(SC376436, Santa Cruz) antibody at 1:100 dilution or Cleaved Caspase-3 (1:200) was 

carried out at 4°C overnight.  Then the coverslips were washed and incubated with anti-

mouse IgM-TR (SC2983, Santa Cruz) or anti-rabbit IgG-FITC (554020, BD Pharmingen) 

at 1:400 dilution for 90 minutes at RT.  Images were taken with a DM-IRE2 fluorescence 

microscope (Leica, Germany) using Simple PCI image acquisition software 

(Hamamatsu, Sewickley, PA). 

RNA Isolation and Quantitative Reverse Transcription-PCR (qRT-PCR) 

Total RNA was isolated using Rneasy Mini Kit (Qiagen) and treated with Dnase. 

cDNA was prepared using QuantiTect Reverse Transcription Kit iScript (Qiagen), and 

assayed using SYBR Green by 7500 fast instrument (Applied Biosystems).  Each 

independent biological experiment was performed four times and all genes were 
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normalized to 18S rRNA.  Relative mRNA expression levels were determined by the 

ΔΔCT method.  Fold change of individual genes was determined by comparison to 

expression in cells cultured at 20% O2 potency conditions.  Primers used were shown in 

Table 1.  All primer pairs were checked for specificity using BLAST analysis and thermal 

dissociation curves to ensure amplification of a single product. 

Table 1 List of primers for potency and differentiation markers 
Gene 
abbreviation Gene Name Primer sequence 

TSC Potency Markers 
Cdx2 Caudal type homeobox-2 F 5′ GCCACCATGTACGTGAGCTAC 3′  

R 5′ ACATGGTATCCGCCGTAGTC 3′ 

Id2 DNA-binding protein inhibitor2 F 5’ TCAGCCTGCATCACCAGAGA 3’ 
R 5’ CTGCAAGGACAGGATGCTGAT 3’ 

Elf5 E74 like ETS transcription factor 5 F 5’ GTGGCATCCTGGAATGGGAA 3’ 
R 5’ CACTAACCTCCGGTCAACCC 3’ 

Fgfr2 Fibroblast growth factor receptor 2 F 5’ CGGCCTCTATGCTTGTACTG 3’  
R 5’ CGTCTTCGGAGCTATCTGTGT 3’ 

Differentiation markers 

Hand1 Heart- and neural crest derivatives 
expressed protein1  

F 5’ GGATGCACAAGCAGGTGAC 3’ 
R 5’ CACTGGTTTAGCTCCAGCG 3’ 

Tpbpa Trophoblast specific protein alpha F 5′ CGGAAGGCTCCAACATAGAA 3′ 
R 5′ TCAAATTCAGGGTCATCAACAA 3′ 

Gcm1 Glial cells missing-1 F 5′ CATCTACAGCTCGGACGACA 3′  
R 5′ CCTTCCTCTGTGGAGCAGTC 3′ 

Pl1 Placental lactogen 1 F 5′ CCAGAGAATCGAGAGGAAGTCC 3′  
R 5′ ACCAGGTGTTTCAGAGGTTCTT 3′ 

Pl2 Placental lactogen 2 F 5′ CCAACGTGTGATTGTGGTGT 3′  
R 5′ TCTTCCGATGTTGTCTGGTG 3′ 

Plf Proliferin F 5′ TGTGTGCAATGAGGAATGGT 3′  
R 5′ TAGTGTGTGAGCCTGGCTTG 3′ 

Ctsq Cathepsin Q F 5′ AACTAAAGGCCCCATTGCTAC 3′  
R 5′ CAATCCCCATCGTCTACCC 3′ 

Syna Syncytin-A F 5′ TACTCCTGCCCGATAGATGA 3′  
R 5′ CCGTTTTTCTTAACAGTGGGT 3′ 

Loading Control 

18S 18S ribosomal subunit F 5′ CGCGGTTCTATTTTGTTGGT 3′  
R 5′ AACCTCCGACTTTCGTTCTTG 3′ 

 
Flow cytometry analysis 

On the day of flow cytometry analysis, cells were quickly thawed at RT.  Cell 

nucleus isolation and staining was done following the manufacturer’s instructions [12].  
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Flow cytometry was carried out using a BD LSR II flow cytometer (BD Biosciences) and 

the FACSDiva 6.0 software (BD Biosciences).    

Statistical analysis 

All experiments were performed in at least three replications.  Data were 

analyzed using SPSS version 22.0.  Independent t-test was used for the comparison 

between potency and differentiation culture group in fate determination experiments.  

One-way ANOVA was used for the comparisons among treatment days.  Data were 

logarithm transformed to meet the assumptions of one-way ANOVA when such 

assumptions were violated.  Dunnett’s or Tukey’s post hoc tests were performed 

following significant one-way ANOVA to further investigate the differences between 

treatments and time zero control or among different treatment days, respectively.  

Values are presented as means +/- standard error (SE).  P<0.05 indicates statistical 

significance.    

Results  

To test the hypothesis that hypoxic stress diminishes mTSC growth, we 

compared cell mass accumulation at 20% and 0.5% O2 with FGF4 present. Normal 

stem cell culture at 20% O2 + FGF4 produced a 4-fold increase in total protein after 2 

days (p < 0.05), while hypoxic mTSC showed near zero cell mass increase after 6 days 

(Figure 3A).  Although 1 to 2 days of 0.5% O2 treatment increased total protein amount 

compared with day 0, there was significantly more cell growth in the 20% O2 condition.  

Normal stem cell culture was ended at 2 days because by that time cells had already 

become confluent.  There was significant increase in apoptosis starting from day 2 of  

0.5% O2 treatment, peaking at day 3 with around 35-fold increase as indicated by the 

level of cleaved caspase-3 analyzed by western blot (Figure 3B).  On day 6, the level of 



28 

 

apoptosis was around 2-fold over background.  We next studied the fraction of apoptotic 

cells at baseline and day 3 or 6 of 0.5% O2 treatment using cleaved caspase-3 

immunofluorescence (Figure 3C).  The baseline level of apoptosis was 0.3%.  The 

fraction of apoptotic cells at day 3 was 14.6% and 5.7% at day 6 (p < 0.05, ANOVA 

followed by Dunnett’s post hoc test).  

Figure 3: 0.5% O2 restricted mTSCs 
cell growth assayed by protein 
measurement and induced apoptotic 
response assayed by cleaved 
caspase-3. (A) compares cell growth 
at 0.5% O2 with 20% O2, (B) shows the 
level of apoptosis over 1 to 6 days of 
0.5% O2 culture compared with day 0 
baseline, (C) is the quantification of the 
fraction of apoptotic cells at the 
indicated days by immunofluorescence. 
Blue: Hoechst; Green: Cleaved 
caspase-3. Microbar indicates 200µm. 
(*) indicates statistical difference was 
found in treatment groups compared 
with 0 day control (p < 0.05). (a) 
indicates significant difference in cell 
growth between 20% and 0.5% O2 at 
day 1 and 2 of stimulation. 
 

 

 

 

 

 

 

 

 

To test the hypothesis that hypoxia forces differentiation despite the presence of 

FGF4, we next stained the cells cultured at 0.5% O2 with nuclear staining dye Hoechst 
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33342 to observe the formation of TGC.  The fraction of TGC during 6 days of 0.5% O2 

culture was quantified and compared with starting day 0.  There was a significant 

increase in TGC% starting from 2 days of 0.5% O2 exposure (p < 0.05).  TGC% 

increased then plateaued at ~50% by day 4-6 (Figure 4).  There was no statistical 

difference in TGC% among 4, 5 and 6 days of 0.5% O2 culture.  

Figure 4: 0.5% O2 forced 
approximately 50% of TGC 
differentiation from mTSCs by day 6. 
Panel (A) shows the quantification of 
TGC% over 6 days’ period of 0.5% 
O2 culture. (B), (C) and (D) are 
examples of the nucleus staining 
image taken at day 0, 3 and 6 
respectively. Micron bar in (B) 
represents 200µm. (*) indicates 
where statistical significance was 
found compared with 0 day control 
(p < 0.05). (a) Indicates significantly 
higher TGC% at 4-6 day of 0.5% O2 
exposure compared with 2-3 day.  
 

 

 

Consistent with the observation of increased TGC%, CDX2 and ID2 potency 

proteins were significantly decreased by day 2 of 0.5% O2 treatment (Figure 5A).  At 

day 6, CDX2 and ID2 were decreased by ~90% and ~60% respectively, compared with 

unstressed mTSCs at day 0.  PL1 increased 5-6fold at day 5 and 6 of 0.5% O2 culture 

compared with day 0 (p < 0.05) (Figure 5B).  O2 at 0.5% induced comparable levels of 

PL1 at 6 days of culture as normal differentiation with FGF4 removal (Figure 5C).  Both 

normal and hypoxic stress-induced differentiation produced PL1-expressing cells and 

TGC formation (Figure 6).  However, 0.5% O2-induced giant cells appeared to be 

smaller and express lower levels of PL1 per cell compared with those PL1-positive cells 

in normal differentiation. 
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Figure 5: 0.5% O2 induced 60-90% of mTSCs potency loss and 5-6 fold gain of TGC 
differentiation marker PL1 that plateaued at day 5-6. The level of CDX2, ID2 and PL1 were 
normalized to B-Act. Change in the levels of potency factors CDX2 and ID2 (A), TGC 
differentiation marker PL1 (B) over 6 days of 0.5% O2 culture compared with Tzero. (C) PL1 
expression in 0.5% O2 forced differentiation and normal differentiation with FGF4 removal for 6 
days. (*) Indicates where statistical significance was found compared with 0 day control (p < 
0.05). 
 
 

 
Figure 6: 6 days of 0.5% O2 forced giant cell formation and PL1 expression. Blue: Hoechst; Red: 
PL1. Microbar indicates 200µM. (A) Normal mTSCs with no 1st antibody; (B) Normal mTSCs 
with the same staining procedure as 0.5% O2; (C) 0.5% O2 treatment for 6 days and (D) normal 
differentiation for 6 days (i.e. 20% O2 without FGF4).  
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Next, we analyzed the mRNA expression of marker genes indicating potency and 

differentiation (Figure 7).  The hypothesis was that 0.5% O2 treatment for 6 days would 

cause  loss  of  potency factor mRNA and gain  of  differentiation  marker  genes despite 

 

FGF4, similar to normal differentiation by FGF4 removal.  Cells were cultured for 6 days 

under normal stem cell conditions (20% O2 + FGF4), hypoxic stress (0.5% O2 + FGF4) 

or normal differentiation conditions (20% O2 - FGF4).  The result showed that normal 

differentiation led to significant 5-14 fold decrease in all four mRNA markers indicating 

Figure 7: 6 days of 0.5% O2 treatment forced differentiation, and it was different from normal
differentiation in marker mRNA expression. The relative expression level of each gene was
presented as histogram bars. Black bar indicates normal stem cell culture at 6 days, which was
normalized to 1. Gray bar and slashed bar indicate the fold change of each individual gene
against normal stem cell control at 0.5% O2 treatment and normal differentiation respectively.
The upper black box “A” shows the 4 potency marker genes and the lower black box “B” shows

the 8 differentiation marker genes. (*) Indicates there was statistical difference with normal stem
cell control. “#” indicates marginal p-value compared with stem cell control (p = 0.052 for
Hand1, p = 0.072 for Tpbpa). “a” indicates there was significant difference between 0.5% O2-
induced and normal differentiation. 
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potency (Cdx2, Fgfr2, Id2 and Elf5) compared with normal stem cell control. In contrast, 

hypoxic stress led to significant loss of Elf5 and Id2 mRNA, but not Cdx2 and Fgfr2.  

Marker genes indicating differentiation were also significantly increased in normal 

differentiation, which include Hand1, Syna, Pl1, Plf, Ctsq, and Tpbpa.  There was at 

least a trend to a significant increase in all of these genes in hypoxic stress forced 

differentiation, with close to statistical significance for Tpbpa (p = 0.072).  Hand1 and 

Gcm1 were increased significantly at 6 days of 0.5% O2 treatment and were even 

higher than under normal differentiation.  There was a 600-fold increase in Pl2 under 

normal differentiation, but Pl2 did not increase at 0.5% O2 culture.  Overall, the 

decrease in the mRNA expression of potency markers and the increase in the 

expression of differentiation markers supports that 0.5% O2 induced TSC differentiation, 

despite the presence of FGF4. 

We next tested the hypothesis that stress-induced differentiation has a longer 

period of reversibility than normal differentiation with FGF4 removal.  Figure 8A shows 

the experimental design.  As the major differentiated lineage at 0.5% O2 or normal in 

vitro differentiation, we focused on quantifying TGC formation.  It takes 40-50h for 

mTSCs or rat trophoblast cells to double their ploidy during TGC differentiation [4, 122].  

The 3 day fate determination period was chosen to allow 1-2 cycles of DNA 

endoreduplication for TGC detection.  TGC% after potency or differentiation fate 

determination conditions was compared.  The “day of irreversible differentiation” was 

defined as the day of initial treatment, after which when cells are moved to fate 

determination culture, the fraction of TGC is comparable between potency and 

differentiation conditions.  The rationale is that after the irreversible differentiation day, 

cells have lost their ability to maintain stemness by responding to FGF4, and TGC 
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commitment will not be affected by the further presence or absence of FGF4.  We found 

that with 2 days of FGF4 removal and 3 days of fate determination afterwards, TGC% 

was significantly higher than day 0 baseline in both potency and differentiation 

conditions, but were not significantly different from each other (p=0.26, Figure 8B).  

Thus 2 days was considered to be the day of irreversible differentiation for normal 

differentiation. In contrast, mTSCs did not commit irreversible differentiation until 4 days 

of hypoxic treatment (Figure 8C).  After 2 or 3 days of initial 0.5% O2 treatment, there 

was a higher TGC% after fate determination in differentiation conditions compared with 

potency conditions, suggesting that there were still stem cell reserves after 2 or 3 days 

Figure 8: Irreversible differentiation
happened at 4 days of 0.5% O2 exposure
and at 1-2 days in normal differentiation
with FGF4 removal. (A) Diagram of
experimental design. Time in the X-axis
indicates the duration of initial normal
differentiation (B) or 0.5% O2 (C)
treatment. The Y-axis indicates
percentage of cells with DNA > 4N. For
each treatment day, there were 3
columns. The black column on the left
represents percentage of cell with DNA >
4N after initial treatment; the grey column
in the middle represents initial treatment
plus 3 day fate determination in
differentiation conditions; the lighter grey
column on the right represents initial
treatment plus 3 fate determination in
potency conditions. The first comparison
was made between each treatment group

with the 0 day control using (*) to indicate
statistical difference (p < 0.05). After every
initial treatment day, a second comparison
was made between fate determination in
potency and differentiation conditions with
(a) indicating statistical difference. 
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of 0.5% O2 treatment, which responded to FGF4 in potency conditions and did not 

commit to TGC differentiation.  

To further test the day of irreversible differentiation, we next examined whether 

irreversibility was also reflected in the markers indicating potency (e.g., CDX2, ID2) or 

TGC differentiation (e.g., PL1).  The experimental design was the same as Figure 8 

except instead of using flow cytometry to detect cells with DNA > 4N, CDX2, ID2 and 

PL1 proteins were measured.  If irreversible differentiation had not happened yet, fate 

determination at potency conditions should promote higher CDX2 and ID2, and lower 

PL1 compared with differentiation conditions.  If irreversible differentiation has occurred 

after the initial treatment, the level of potency protein and PL1 expression should not 

differ between potency or differentiation fate determination conditions.  

Two initial treatment days, the irreversible day and one day before were chosen 

for protein marker analysis.  It was day 3 and 4 of 0.5% O2 treatments (Figure 9A, 9C), 

day 1 and 2 of normal differentiation (Figure 9B, 9D).  Each initial treatment plus two 

subsequent fate determination conditions together form a subgroup as indicated by a 

transposed bracket on top of the histogram bar.  After the day of irreversible 

differentiation (4 days of 0.5% O2 or 2 days of normal differentiation), fate determination 

in potency or differentiation conditions generated similar levels of CDX2 as shown in the 

second subgroup of Figure 9A and Figure 9B.  In contrast, before the irreversible day 

(i.e. 3 day of 0.5% O2 treatment or 1 day of normal differentiation) potency conditions 

promoted higher CDX2 protein levels than differentiation conditions during fate 

determination as shown in the first subgroup of each figure (Figure 9A, 9B).  Another 

potency factor, ID2, did not show the same pattern of change as CDX2.  For both 0.5% 

O2-induced and normal differentiation, there were no differences in average PL1 
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expression after fate determination between potency and differentiation conditions on 

either day studied (Figure 9C, 9D). 

 
Figure 9: Changes in the level of potency (CDX2, ID2) and differentiation (PL1) protein markers 
after 3 or 4 days of 0.5% O2 treatment; 1 or 2 days of normal differentiation. The first histogram 
bars in (A), (B), (C) and (D) show baseline protein level at day 0. In (A), the next three histogram 
bars following day 0 form a subgroup showing 3 day of initial 0.5% O2 treatment, 3 day of initial 
0.5% O2 followed by 3 day culture in differentiation conditions, and 3 day of initial 0.5% O2 
followed by 3 day in potency conditions. The last three histogram bars form another subgroup 
showing results after 4 days of 0.5% O2 treatment. Each subgroup is indicated by a transposed 
bracket on top of the histogram bars. (C) has the same experimental design as (A), but shows 
PL1 level.  (B) and (D) have the same structure as (A) and (C). The only difference was that the 
initial treatment was FGF4 removal for 1 or 2 days. The first comparison was made between 
each treatment group and day 0 baseline using (*) to indicate statistical difference (p < 0.05). 
The second comparison was made between fate determination in potency and differentiation 
conditions within each subgroup using (a) indicating statistical difference in the level of CDX2, 
(a’) indicating statistical difference in the level of ID2. (#) in C indicates marginal significant PL1 
increase compared with 0 day (p = 0.058).  
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Discussion  

The effect of hypoxic stress on mTSCs with FGF4 present was studied.  We 

found that 0.5% O2 decreased growth and forced differentiation, but the duration of 

reversibility in 0.5% O2-induced differentiation and normal differentiation were not the 

same.  Hypoxia decreased the mRNA expression of potency markers and increased the 

expression of differentiation markers in mTSCs despite the presence of FGF4.  We 

showed for the first time that 0.5% O2-induced differentiation has a longer reversible 

period, but ultimately irreversible differentiation happens despite the presence of FGF4.  

Hypoxia reduced mTSC growth was reflected in the virtually nil net accumulation 

of protein.  However, TGC differentiation and the associated larger cell size may mean 

protein amount might not correspond exactly to cell number.  Prolonged 0.5% O2 

exposure and TGC differentiation caused cells to become fragile to pipetting. 

Trypsinization for cell counts may lead to disproportionately more cell loss with longer 

0.5% O2 exposure.  So lysing cell in situ for protein measurement was adopted as a 

trade-off to avoid this problem.  Apoptosis was analyzed at 0.5% O2 treatment to gain a 

better understanding of the nature of the stress hypoxia imposed on mTSC.  Standard 

culture conditions at day 0 only created 0.3% apoptosis by immunofluorescence for 

cleaved caspase 3, which echoes the nearly invisible cleaved caspase-3 protein band at 

day 0 in western blot analysis.  In light of this, the ~35 fold increase of cleaved caspase-

3 by immunoblot at day 3 would still represent a fairly low level of involved cells (i.e. 

35fold x 0.3% = 10.5%), and this is corroborated by the slightly higher estimate by 

immunofluorescence at day 3 (14.6%).  Similarly immunofluorescence reports more 

involved cells than immunoblots at day 6, ~5.7% vs 0.6% (baseline x ~2fold), 

respectively.  It is not clear what the reasons are for the higher estimates of involved 
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apoptotic cells assayed by immunofluorescence than immunoblot for days 3 and 6.  

Either estimate, confirmed by direct observation at the microscope, suggests that 0.5% 

O2 provides a TSC culture model that is not highly morbid at day 6 when many final 

tests of differentiation were performed.  

Differentiation was reflected in the formation of TGC, the loss of potency factors, 

and the gain of differentiation marker PL1.  Since spontaneous TGC differentiation and 

PL1 expression can happen in normal stem cell maintenance, it is possible the 

observations might be in part due to the artifact of extended culture.  However, we think 

stress-induced differentiation is more likely to be the reason.  The cells started as stem 

cells at day 0.  During passages prior to the start of treatment, stem cells were enriched 

because giant cells being more adhesive to the culture dish tend to get lost during short 

trypsinization.  This was reflected in the low PL1 level at day 0 baseline, so PL1 

expression and TGC formation was due to the effect of hypoxia on the cells.  We 

previously estimated the average nuclear ploidy of cells after 7 days of in vitro culture 

based on morphology, and found that 20% O2 + FGF4 for 7 days produced average 

nuclear ploidy 2.3N.  However, after 7 days of normal differentiation, the average ploidy 

was 29.1N, and 0.5% O2 treatment for 7 days (without FGF4 in that case) produced an 

average ploidy 12.4N [33].  Thus, even with prolonged culture, stem cells are the 

dominant population in normal potency conditions.  The finding of ~90% loss of CDX2 

and ~60% loss of ID2 after 6 days of 0.5% O2 culture is more likely due to differentiation 

instead of artifact, same for PL1 expression, especially when we know, based on 

morphology, that ~50% of cells were giant cells after 6 days of 0.5% O2 treatment.  In 

addition, the level of PL1 after 6 days of 0.5% O2 treatment or normal differentiation was 

comparable.  



38 

 

To assess the effects of normal or hypoxic stress-induced differentiation, mRNA 

marker analysis after 6 days of 0.5% O2 treatment or normal differentiation was 

compared with normal mTSC maintenance culture after the same period of time.  The 

result further supports the contention that it is the hypoxic stress that induced the 

differentiation.  The loss of Id2 and Elf5 under 0.5% O2 stress was comparable to 

normal differentiation.  Elf5 was identified as a reliable marker for undifferentiated TSC 

[123].  However, unlike the uniform decrease of all 4 potency markers in normal 

differentiation, Cdx2 and Fgfr2 mRNA was preserved during TSC culture at 0.5% O2.  

There was only 10% CDX2 protein remaining after 6 days of 0.5% O2.  Stress 

maintained high levels of vestigial mRNA for FGF4 signaling.  We detected the Fgfr2c 

isoform of Fgfr2, the mRNA splice form that specifically recognizes FGF4 [124].  

Different types of stress such as heat shock, oxidative stress, ischemia or viral infection, 

trigger sudden translational arrest, but preserve mRNA in stress granules [125, 126].  

Hypothetically when stress subsides, the multiple processes involved in mRNA 

biogenesis will not be needed to re-establish cell identity, which may contribute to the 

reversibility in stress-induced differentiation.  There is a possibility that cells at 0.5% O2 

are still responsive to FGF4, but the signaling pathway used for maintaining potency 

after FGF4 binding to FGFR2 is inhibited.  

Markers indicating TGC and syncytiotrophoblast differentiation (Pl1, Pl2, Plf, Ctsq, 

Syna) were upregulated in both normal and stress-forced differentiation.  However, the 

levels of those markers were much higher in normal differentiation conditions than in 

stressed cells.  It suggests that 0.5% O2 forces differentiation but cannot fully sustain it, 

as reported previously [33].  Interestingly, Tpbpa, the marker of spongiotrophoblast and 

glycogen trophoblast cell differentiation [127] was highly upregulated by both 0.5% O2-
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induced and normal differentiation and its levels comparable between the two conditions.  

Tpbpa positive spongiotrophoblasts can act as precursors for secondary TGC and 

glycogen trophoblast differentiation [128].  Tpbpa upregulation under hypoxic conditions 

has also been reported elsewhere [129].  Hypoxic inducible factor (HIF) functions to 

enhance spongiotrophoblast differentiation and simultaneously inhibits secondary TGC 

formation from spongiotrophoblast progenitors [130], which may explain the 

approximately 200fold increase in Tpbpa seen under 0.5% O2.  HAND1 mediates the 

differentiation of all TGC subtypes [13] and its mRNA was significantly upregulated by 

hypoxia forced differentiation, higher than normal differentiation.  GCM1 mediates the 

differentiation of syncytiotrophoblasts and its mRNA was significantly increased by 0.5% 

O2 treatment.  For normal differentiation, Gcm1 was not high at 6 days of FGF4 removal, 

which agrees with previous reports that show Gcm1 only has a transient increase at 

around 2 days of FGF4 removal and by 6 or 7 days, its level goes down again [8, 33].  

Accompanying that is the significant increase in mature syncytiotrophoblast marker 

Syna, which suggests that by 6 days of normal differentiation, cells have passed the 

intermediate stage and committed to terminal differentiation.  The relatively high levels 

of Hand1, Gcm1 and Tpbpa together with the low terminal differentiation marker Pl1, 

Pl2, Plf, Ctsq and Syna at 0.5% O2 suggest that hypoxia drives cells toward 

differentiation, but more cells are in the intermediate stage of differentiation than under 

normal differentiation at day 6.  

Spontaneous differentiation is a common phenomenon in normal TSC 

maintenance culture.  Compared with stem cell control, the relative fold change of each 

differentiation marker in stress-induced or normal differentiation would be influenced by 

its level in the stem cell maintenance control.  For example, the 10-fold increase in Pl1 
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compared with the approximately 300 fold increase in Tpbpa and over 600fold increase 

in Pl2 under normal differentiation condition may be the combined result of a higher 

induction of Pl2 and Tpbpa at 6 days of normal differentiation and a lower stem cell 

control baseline.  Hypothetically, if there were 5% of cells expressing Pl1 in normal stem 

cell control at day 6, it would not be possible for stress-induced or normal differentiation 

to produce a more than 20 fold change above the 5% background.  And in stem cell 

maintenance condition, we did consistently observe lower Ct value for Pl1 than Pl2 and 

Tpbpa during qPCR, which suggests that it is possible there were higher Pl1 mRNA 

expression than Pl2 and Tpbpa in stem cell maintenance conditions.   

The reversibility of mTSC differentiation was also studied on a molecular level.  

Fate determination in potency conditions did not promote higher level of CDX2 

compared with differentiation conditions after the irreversible differentiation day, in 

contrast to the higher CDX2 level in potency fate determination after the reversible day. 

CDX2 is essential for trophoblast lineage establishment in mouse blastocyst and in vitro 

mTSCs maintenance, since mTSCs cannot be isolated from Cdx2 mutant mouse 

embryos [131].  Cdx2 knockdown leads to upregulation of Hand1 [47], which positively 

regulates Pl1 promoter and is necessary [8] and sufficient [44] for first lineage TGC 

differentiation.  Thus, irreversible CDX2 loss suggests loss of stemness and 

corroborates the irreversible differentiation day characterized by flow cytometry.  Both 

molecular and morphological markers define the reversibility of stress-induced or 

normal differentiation.  

The level of PL1 being similar at the end of the fate determination between 

potency and differentiation conditions, after both day 3 and 4 of 0.5% O2 treatment, day 

1 and 2 of normal differentiation is intriguing because before the irreversible day, there 
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was a higher TGC% after fate determination in differentiation conditions. We suspect 

that FGF4 supported higher level of PL1 expression per cell in a smaller fraction of PL1-

secreting cells under potency fate determination conditions.  FGF4 is required to 

maintain the stemness of mTSCs [4].  However, after differentiation, FGF2 has been 

shown to increase PL1 expression through ERK and the p38MAPK signaling pathway 

[132] in Rcho1 cells, a rat trophoblast model that can be maintained in proliferative state 

or induced to differentiate and express PL1 [133].  Thus, FGF signaling may both 

maintain potency before differentiation, and increase differentiation marker PL1 

expression after differentiation. 

It should be noted that the day of irreversible differentiation does not mean that 

absolutely all the cells are committed to differentiation with no stem cells left on that day.  

However, the stem cell reserve after the irreversible differentiation day is not substantial, 

and after a 3-day fate determination period, the minimal stem cell reserve was not able 

to change the overall trend toward TGC differentiation and TGC%.  Moreover, there was 

approximately 5-fold rise and plateau of PL1 in mTSC lysates due to stress-induced 

differentiation.  Zero cell growth and irreversible differentiation, together with plateaued 

PL1 is unlikely to sustain pregnancy if in vivo stress responses happen in a similar way.  

In vitro differentiation of TGC and increased PL1 expression go through an ordered 

sequence similar to in vivo circumstances [134], suggesting that this “reductionist 

approach” to study how stresses affect in vitro mTSCs may resemble the effects of 

stresses on placental stem cells in vivo.   

The preparation of cell suspension for flow cytometry analysis has an inherent 

tendency to underestimate the proportion of giant cells, especially giant cells with DNA 

content >64N due to nuclear fragmentation and increased adherence to culture surface 
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that causes trypsin-resistance [122].  We found that under stress conditions, cells were 

more vulnerable to handling and there was more nuclear fragmentation.  This is why 

there was a discrepancy in TGC% as estimated by measuring nuclear size or by flow 

cytometry.  Nevertheless, flow cytometry is fast, and the same sample preparation 

procedure and machine settings were used for all samples.  It defined the day of 

irreversibility and the results were further supported by the potency protein assay for 

CDX2, which showed irreversible loss after 4 days of hypoxic stress or 2 days of FGF4 

removal. 

Using nuclear size measurement to define TGC% circumvents the potential 

problem of fragmentation and loss of larger trypsin-resistant cells.  However, it may also 

underestimate the level of differentiation because there could be small differentiated 

cells expressing PL1, which have been shown to exist under hyperosmotic stress [43].  

In addition, there may also be non-stem cells with small nuclei - such as the 2N nuclei of 

multi-nuclear syncytiotrophoblasts.  The mRNA marker analysis provides insights into 

the lineages formed under hypoxia forced differentiation.  However, we are not able to 

infer the population size of each lineage, since the mRNA copy number per cell for each 

marker is unknown.  The reversibility of differentiation was studied based on TGC 

differentiation, because it is the major differentiated lineage, and non-TGC differentiated 

lineages were not accounted here. 

Another limitation is the interpretation of in vitro-derived data.  For the in vivo 

situation, hypoxia can be buffered to a certain degree by the endometrium and other 

distant maternal organ systems, which is able to integrate and mount adaptive 

responses to local hypoxia [135, 136].  Using this reductionist approach, useful insight 

has been gained concerning the responses of isolated mTSCs to hypoxia.  The 
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embryonic response to the same level of hypoxia may not be exactly the same between 

in vivo and in vitro.  Findings here suggest the hypothesis that hypoxia, or other 

stresses may slow growth and force irreversible differentiation in vivo, which can lead to 

miscarriage even without high level of cell death.  In vitro findings and the resulting 

hypotheses will need to be tested in vivo in the future.  
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CHAPTER 3 - COMPARISON OF 2%, 5%, AND 20% O2 ON THE DEVELOPMENT OF 
POST-THAW HUMAN EMBRYOS 

(This chapter contains previously published material. See Appendix B) 

Abstract 

The purpose of this study is to investigate the effect of 2%, 5%, and 20% O2 on 

post-thaw day 3 human embryo culture until blastocyst stage.  155 day 3 human 

embryos were used. 120 out of 155 embryos were recovered after thawing.  Viable 

embryos were distributed into 2%, 5%, or 20% O2 groups and cultured for 2.5 days.  At 

the end of culture, blastocyst formation was assessed and then embryos were collected 

for RT-qPCR or immunofluorescence cell number and apoptotic analysis.  We define 

blastocyst formation as there is visible blastocoel at the end of 2.5 days’ culture.  58.7% 

(27/46) of surviving day 3 embryos formed blastocyst at 2% O2, 63.6% (28/44) at 5% O2 

and 66.7% (20/30) at 20% O2.  The difference in blastocyst formation rates was not 

significant.  Average blastocyst cell number was 119.44 ±11.64 at 2% O2, 142.55 ± 

22.47 at 5% O2 and 97.29 ± 14.87 at 20% O2.  Average apoptotic rate was 4.7% ± 0.4% 

for blastocyst formed at 2% O2, 3.5% ± 0.7% at 5% O2 and 5.8% ± 1.1% at 20% O2.  

Apoptosis rate was significantly lower for blastocysts formed at 5% O2 (p < 0.05).  

Compared with gene expression levels at 5% O2, which were arbitrarily set as “1”; 20% 

O2 is associated with significantly higher expression of pro-apoptotic bcl-2-like protein 4 

(Bax) (2.14 ± 0.47), glucose-6-phosphate dehydrogenase (G6pd) (2.92 ± 1.06), 

superoxide dismutase 2/mitochondrial (MnSOD) (2.87 ± 0.88) and heat shock 70 kDa 

protein 1 (Hsp70.1) (8.68 ± 4.19).  For all genes tested, no significant differences were 

found between 2% and 5% O2.  The result suggests that development of cryopreserved 

human embryos from day 3 to blastocyst stage benefits from culture at 5% O2. 
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Introduction 

Optimizing O2 level for human IVF culture 

Compared with 20% O2, 5% O2 has been reported to improve embryo 

development for multiple species, reviewed in [137].  For human embryos, studies on 

the effect of O2 during cleavage stage development showed controversial results.  Some 

work demonstrated advantage of 5% O2 [138] [139], while others reported no difference 

in clinical outcome between 5% and 20% O2 [140-142].  It is suggested that 5% O2 is 

more likely to exert a beneficial effect on post-compaction stage of preimplantation 

development [142].  When 5% O2 was applied from the day of oocyte retrieval to 

blastocyst stage, improved embryo development and pregnancy outcome was 

demonstrated in multiple prospective randomized studies [143, 144].  The recent 

Cochrane review also showed that 5% O2 is related to increased live birth rate [99]. 

Overall, current evidence supports the use of 5% O2 in human embryo development, 

especially at post-compaction stage or from fertilization throughout blastocyst stage.   

The effect of O2 below 5% on embryo development in animal models 

The advantage of 5% over 20% O2 on animal embryo development has also 

been well documented [145, 146].  However, studies on the effect of O2 lower than 5% 

in embryo development are scarce, with inconclusive and species-dependent results. 

O2 at 2.5% to 5% was found to be optimal for in vitro culture of 1-8 cell stage mouse 

embryos retrieved from pregnant female to blastocyst stage [147].  But when 2% O2 

was applied for in vitro cultured mouse embryo only from morula to blastocyst stage, 

increased embryo resorption and decreased fetal weight were reported at day 18 of 

pregnancy [148].  For bovine embryos, starting from insemination to morula or 

blastocyst stage, 5% O2 appears to be superior to 2-2.5% or higher O2 in advancing 
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blastocyst cell number, though developmental rate to morula and blastocyst stage was 

similar among different O2 levels [149, 150].  However, when 2% O2 was applied to 

bovine embryo culture only from day 5 to 7, no difference was found in blastocyst 

formation rate or total cell number compared with 7% or 20% O2 [151], and another 

study reported 2% O2 is optimal for bovine embryo development at this stage[152].  For 

rabbit embryos, culture at 1% and 5% O2 from 1 cell stage to blastocyst produced 

similar rate of hatching blastocyst and comparable blastocyst cell number, and both O2 

levels were superior to 20% O2 [153].  Thus, the effects of O2 on embryo development 

are species-specific and information gained from animal studies does not necessarily 

inform optimization of O2 for human IVF.  Moreover, O2 effects are stage-specific and 

each stage may require a different O2 optimum.  It is possible that the beneficial effects 

of O2 at one stage may be confounded by the harmful effects of the same O2 at another 

stage, so there is a need to optimize each embryonic stage separately.   

Effects of O2 on embryo development are not always reflected in the rate of 

morula or blastocyst formation, which can be similar; while at the same time blastocyst 

quality measures, including cell counts, expression of molecular markers, or in vivo 

developmental outcomes after implantation were different at various O2 levels [148-150].  

Thus, the effect of O2 on embryo development cannot be fully appreciated by 

morphological standards alone.  Additional criteria are needed.  Re-implantation, post-

implantation development, and birth data would be the best standards.  But when it 

comes to human embryos, this is not always practical or possible, especially when the 

benefit or harm from certain intervention is uncertain.  The use of molecular markers, 

cell growth and apoptotic rates etc. ex vivo methods is necessary to obtain a better 

understanding of O2-dependent effects on embryo development.  



47 

 

Several lines of evidence suggest that O2 less than 5% may be more beneficial 

for human embryo development compared with 5% O2, which are enumerated below. 

Improvement of IVF has long relied on a “back to nature” approach [154].  Human 

uterine luminal O2 level was reported to be ~2% throughout the menstrual cycle [103], 

although a later work showed some variation in O2 level ranging from 0.8%-5.7% with 

an average of 2.5% [104].  It is likely that human embryos are exposed to O2 below 5% 

near implantation into the uterus and in vitro culture of embryos can be done at O2 

below 5%, especially at later developmental stage when the embryo has already 

reached uterus, which approximates the post-compaction stage [155].  Thus in our 

study, the comparison on the different effect of O2 in human embryo development was 

done at post-compaction stages. 

The objective of this study is to investigate the effect of 2%, 5% and 20% O2 on 

the development of cryopreserved day 3 embryos after thawing to blastocyst stage.  

The outcome measures include blastocyst formation rate, total cell number of blastocyst, 

apoptosis rate and mRNA expression of molecular markers indicating oxidative stress 

and adaptive responses, apoptosis, glucose uptake and cell connection.  

Representative mRNA markers in these areas have been commonly used to reflect 

stresses that embryos are subjected to or embryo quality.  Examples are mRNAs of 

apoptosis marker pro-apoptotic bcl-2-like protein 4 (Bax) [156], heat shock protein (Hsp) 

70.1[157, 158] and anti-oxidative pentose phosphate pathway enzyme glucose-6-

phosphate dehydrogenase (G6pd) [159] and anti-oxidant superoxide dismutase 

2/mitochondrial (MnSOD) [160].  Glucose transport Glut1 is normally required for 

embryogenesis and it is often measured when comparing different culture medium 

composition [158] [161].  Cell connexin protein CX43 is a gap junction protein and it has 
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been reported to be higher in in vivo derived embryos [162]. 

Materials and Methods  

Embryo source 

Some patients seeking IVF treatment at the First Affiliated Hospital of Sun Yat-

Sen University who have healthy live birth donated their day 3 cryopreserved embryos 

for research.  Written informed consent was obtained from all participants before the 

usage of their embryos.  The Institutional Review Board (IRB) of the First Affiliated 

Hospital of Sun Yat-Sen University approved the study (IRB #: First Affiliated Hospital of 

Sun Yat-sen University 2012 (280)).  

Thawing of day 3 embryos 

155 day 3 embryos developed at 20% O2 were utilized in this study.  Slow 

programmable freezing was used for the cryopreservation of these embryos [163].  The 

freezing standard for day 3 embryos was cell number ≥4, all blastomeres have equal 

size or the difference in cell diameter is < 20% and fragmentation < 20%.  Embryos 

were thawed at room temperature.  Straws containing embryos were removed from 

liquid nitrogen and exposed to air for 30 seconds, then in 30oC water bath for 30 

seconds.  Embryos were then put into the following solutions in sequence: 0.5 M 

sucrose for 10 minutes, 0.35 M sucrose for 5 minutes (1:1 mixture of 0.5 M and 0.2 M 

sucrose), and 0.2 M sucrose for 5 minutes.  After that, embryos were transferred into 

HEPES solution and assessed for viability before they were put into 3 different O2 levels 

for blastocyst culture.  The embryo thawing kit was purchased from SAGE In vitro 

Fertilization (ART-8016, CT). 

Distribution of embryos 

Embryos from women of similar age (± 2yr) and causes of infertility (male or 
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female causes) were treated as a pool and each straw containing cryopreserved 

embryo in the pool was assigned a number.  A random number was generated among 

the number of straws.  Thawing of embryos started from that number and the 

distribution into 2%, 5% and 20% O2 group was done by embryologists in a cyclical 

manner.  The first thawed straw of embryos was distributed to 2%.  The straw number 

immediately following the first straw was distributed to 5% and the next to 20% O2, with 

subsequent allocations following the same order.  Both CO2 incubator and triple gas 

incubator used were the same size incubator from ASTEC co. LTD, Model No: APC-

30D and SMA-30DR, Japan.  Surviving embryos after thawing were defined as having 

no less than 4 intact blastomeres, no more than 50% fragmentation, and blastomere 

size (cell diameter) less than 50% difference [164].  Media used for cleavage embryo 

culture before cryopreservation and post-thaw culture were from Vitrolife G-series 

culture media (Vitrolife, Sweden), G-1 PLUS and G-2 PLUS respectively.  Surviving 

embryos were cultured for another 2.5 days without change in media.  At the end of 

blastocyst culture, blastocyst formation and blastocyst grade were recorded.  Blastocyst 

grading system proposed by [165] was adopted to assess blastocyst quality.  Blastocyst 

formation was determined if there was presence of visible blastocoel.  Good quality 

blastocysts were defined as expanded or further developed blastocysts with inner cell 

mass at grade A (tightly packed, with many cells) or grade B (loosely grouped, with 

several cells), and trophectoderm at grade A (many cells forming a cohesive epithelium) 

or grade B (few cells forming a loose epithelium).  

Gene expression analysis 

The technique for gene expression in a small amount of starting materials has 

been described [166].  It frequently involves pre-amplification of the starting cDNA for 
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subsequent analysis.  The efficacy and fidelity of the pre-amplification method we used 

here has been demonstrated elsewhere [167] and it has been used in mouse embryo 

study [168].  The accuracy and sensitivity of doing RT-qPCR on crude cell lysate in 

situations where a limited number of cells are available for RNA purification has been 

demonstrated by Van Peer et al [169].  The method reported by Van Peer et al was 

adopted here because single blastocysts were used for gene expression analysis.  

After observation, blastocyst scores were recorded, and embryos of similar 

quality in the three O2 groups were used for gene expression analysis. 8 blastocysts 

from 2% O2, 8 from 5% O2 and 6 from 20% O2 were used for this purpose.  Blastocysts 

were put into 0.5% (w/v) pronase (10165921001, Roche) for 3-5 minutes to remove 

zona pellucida, washed in PBS and transferred into 0.5 ml microcentrifuge tubes 

individually.  RNA extraction and gene expression analysis was done according to 

manufacturer’s protocol.  Briefly, 25µl lysis buffer with DNase I was added to each 

blastocyst and incubated for 5 min, followed by stop solution for 2 min at room 

temperature.  20µl lysate was used for each 50µl reverse transcription (RT) reaction. 

12.5µl cDNA from RT was used for pre-amplification PCR (4384267, ABI).  Reaction 

condition for pre-amplification PCR was 95°C 10 min, then 10 cycles of 95°C 15s 

followed by 60°C 4 min.  Pre-amplification products were diluted 5 times in 1 X TE buffer 

(93302, Sigma) for further use. RT and pre-amplification PCR were carried out by 

GeneAmp PCR System 9700 (ABI).  

Expressions of target genes Bax, Glut1, Cx43, MnSOD, G6pd, Hsp70.1 and 

reference genes glyceraldehyde-3-phosphate dehydrogenase (Gapdh), 14-3-3 protein 

zeta/delta (Ywhaz) and succinate dehydrogenase complex (Sdha) were determined by 

real time PCR in 7500 Real Time PCR System (ABI) using TaqMan Gene Expression 
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Assays 4331182 [Hs00414514_m1/BAX/, Hs00892681_m1/GLUT1/, 

Hs00167309_m1/MnSOD/, Hs00166169_m1/G6PD/, Hs04187663_g1/HSP70.1/, 

Hs02786624_g1/GAPDH/, Hs03044281_g1/YWHAZ/, Hs00417200_m1/SDHA/] and 

4448892 [Hs04259536_g1/CX43/].  The real time PCR was carried out in a final volume 

of 20μl, containing 5μl of diluted cDNA.  Cycling program was set at initial hold at 95°C 

for 10 min, followed by 40 cycles of denaturation at 95°C for 15 s, annealing and 

extension at 60°C for 1 min.  Other than the specified reagents, all reagents used were 

included in Taqman Gene Expression Cells-To-CT Kit (4399002, ABI).  Fold changes in 

gene expression were determined using 2-ΔΔCt method [170] and all mRNA expression 

values were normalized to the geometric average of three reference genes. 

Immunofluorescence  

19 blastocysts from 2% O2 (1 hatched blastocyst was lost during handling), 20 

from 5% O2 and 14 from 20% O2 were used for immunostaining.  They were fixed in 4% 

paraformaldehyde (Sojubio, China) for 30 min followed by 0.5% (v/v) Triton X-100 1h.  

The embryos were then washed 3 times in 0.5% (w/v) PBS-BSA (Sigma) for 10 min 

each time.  Blocking was done with 10% FBS (Invitrogen) for 45 min.  All the previous 

procedures were carried out at room temperature.  1:50 Rabbit monoclonal anti-human 

active caspase 3 (Cat # 700182, Molecular Probes) was incubated at 4°C overnight.  

After 3 X 10 min wash in 0.1% (V/V) PBST, the embryos were incubated with 1:1000 

anti-rabbit second antibody (Cat # A10040, Molecular Probes) at room temperature for 

1h.  After counterstaining with DAPI (Cytocell, UK) for 15 min, the embryos were 

micrographed using a fluorescence microscope (Olympus BX61, Japan).  Total cell 

number was counted based on DAPI staining.  Apoptotic cells were indicated by active 

caspase 3 staining [171].  Apoptosis rate was calculated as apoptotic cell number 
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divided by total cell number. 

Statistics 

Distribution and frequency data were analyzed using the heterogeneity chi-

square test.  Gene expression levels were compared by one-way ANOVA followed by 

Dunnett’s post hoc test with the 5% O2 group as reference group.  Data for G6pd was 

square root transformed to meet the normality assumption for ANOVA.  Cell number 

and apoptosis rates were logarithmic transformed to satisfy normality assumption and 

analyzed using one-way ANOVA followed by Dunnett’s post hoc test.  Values are 

presented as means ± S.E.M. 

Results  

155 day 3 embryos donated by 21 couples were included in the study. 120 

embryos survived the thawing procedure, with recovery rate 77.4%. 46, 44 and 30 of 

surviving embryos were distributed into 2%, 5% and 20% O2 group respectively and 

cultured for 2.5 days.  The reasons for sub-fertility in these couples were: sperm 

dysfunction 38.1% (8/21), tubal disease 57.1% (12/21) and unexplained infertility 4.8% 

(1/21).  Two patients with tubal disease had concomitant polycystic ovarian syndrome 

(PCOS) and 1 case was combined with endometriosis.  One couple had a combination 

of male infertility and endometriosis.  Mean (± standard deviation [SD]) age for the 

female donors was 32.62 ± 3.48yr.  Age was classified into < 30, 30-35, and > 35 

groups.  There was no significant difference in age distribution for the embryos assigned 

to the three O2 groups (Table 2).  Cell number of the embryos at thaw was also grouped 

into three categories namely 4 cells, 5-7 cells and 8 or more cells.  There was no 

significant difference in embryo cell number distribution among the three O2 groups 

(Table 3).  The rates of blastocyst formation and good quality blastocysts based on 
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Gardner blastocyst grading system (Material and Methods) were not statistically 

different among three O2 groups (Table 4).  

Table 2: Maternal age distribution of embryos among 3 O2 levels 

 

 

Table 3: Cell number distribution of post-thaw human embryos among  
3 O2 levels 

  

 

Table 4: Rate of blastocyst development at different O2 levels 

 
 

To test for the O2 level that best supports embryonic development from day 3 to 

blastocyst stage, we first assayed the total number of cells and the apoptotic rate of 

blastocysts after 2.5 days in culture.  Average blastocyst cell number was 119.44 

±11.64 at 2% O2, 142.55 ± 22.47 at 5% O2 and 97.29 ± 14.87 at 20% O2.  Average 

apoptotic rate was 4.7% ± 0.4% at 2%, 3.5% ± 0.7% at 5% O2 and 5.8% ± 1.1% at 20% 

O2.  Highest cell number and lowest apoptotic rate was observed in blastocysts cultured 
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at 5% O2 (Figure 10A, 10B).  There was significantly higher rate of apoptosis at 20% O2 

(p < 0.05, ANOVA).  Intermediate in both cell numbers and apoptotic rate were embryos 

cultured at 2% O2.  Average cell number was not significantly different between 2% and 

5% O2, but rate of apoptosis was higher in 2% O2 (p < 0.05, ANOVA and Dunnett’s post 

hoc test).  Representative human embryos cultured at 2%, and 20% O2 were presented 

in Figure 11, which showed the assay for apoptosis and cell number by using cleaved 

caspase 3 and DAPI immunofluorescent staining. 

Figure 10: Average blastocyst cell number and apoptosis 
rate. Blastocyst cell numbers were not significantly different 
among the three O2 groups. Apoptosis rate was significantly 
lower in 5% O2 compared with 2% and 20% O2. (A) 
Embryos were cultured from thawed day 3 embryos for 
another 2.5 days to blastocyst stage. This figure shows 
average blastocyst cell number in each group. (B) 
Apoptosis was significantly lower at 5% O2 (p < 0.05) but no 
difference was found between 2% and 20% O2. Original 
data was log transformed and comparison among three 
groups was done by one-way ANOVA followed by 
Dunnett’s post hoc test. Distinct letter (a) and (b) on top of 
the histogram bars indicate signficant difference between 
the comparison groups (p < 0.05). Data is presented with 
average ± S.E.M. 

 

Figure 11: Representative 
blastocysts cultured at 2% or 20% 
O2 with nuclear and apoptosis 
staining. (A) and (D) Active 
caspase-3 staining of apoptosis for 
blastocysts cultured at  
2% and 20% O2 respectively. (B) 
and (E) Same embryos as in (A) 
and (D) respectively, showing 
DAPI staining of nucleus. (C) and 
(F) Merged image of A and B, D 
and E. Micron bar represents 
25um.   
 
 
 

We next measured mRNA markers of apoptosis (Bax), oxidative stress and 
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adaptive response (MnSOD, G6pd, Hsp70.1), glucose transport (Glut1) and cell 

connection (Cx43).  RT-qPCR was used to assay embryos at the end of 2.5 day culture.  

Compared with gene expression level at 5% O2, which are arbitrarily set at “1”, the fold 

change (mean ± S.E.M) of gene expression levels for Bax was 2.14 ± 0.47 at 20% O2 

and1.20 ± 0.26 at 2% O2; for Glut1 was 2.23 ± 1.32 at 20% O2 and 1.06 ± 0.35 at 2% O2; 

for Cx43 was 0.86 ± 0.15 at 20% O2 and 0.88 ± 0.04 at 2% O2; for MnSOD was 2.87 ± 

0.88 at 20% O2 and 1.21 ± 0.31 at 2% O2; for G6pd was 2.92 ± 1.06 at 20% O2 and 

1.25 ± 0.24 at 2% O2, and for Hsp70.1 the fold change was 8.68 ± 4.19 at 20% O2, and 

1.34 ± 0.33 at 2% O2.  Of six markers assayed, four were significantly higher at 20% O2 

compared with 5% or 2% O2 namely: Bax, MnSOD, G6pd, and Hsp70.1 (p < 0.5, 

ANOVA followed by Dunnett’s post hoc test) (Figure 12).  Two markers, gap junction 

protein Cx43 and Glut1 were not significantly different for embryos cultured at all three 

O2 levels, and all markers were not significantly different in embryo cultured at 5% and  

2% O2. 

Figure 12: The mRNA expression level of 6 marker genes showed no significant difference 
between 2% and 5% O2. The mRNA levels of Bax, MnSOD, G6pd, and Hsp70.1 were 
significantly higher 
in 20% O2 than in 5% 
O2. Data were 
anlayzed using 
ANOVA followed by 
Dunnett’s post hoc 
test. Same pair of 
letters (a) and (a) 
indicate no 
significant 
difference between 
the comparison 
groups. Distinct 
letters (a) and (b) 
indicate signficant 
difference (p < 0.05). 
Data is presented 
with average ± S.E.M. 
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Discussion 

Summary of findings 

The study here indicates that culture of cryopreserved human embryos from day 

3 to blastocyst stage has highest growth, lowest apoptosis, lowest oxidative and heat 

shock stress at 5% O2.  The opposite happened at 20% O2.  Our results are in 

agreement with past studies on the effect of 20% or 5% O2 in human IVF [99] and 

support the current use of 5% O2.  

Mathematical modeling of oxygen diffusion in static culture suggests that mouse 

embryos are likely to derive sufficient oxygen by diffusion alone, but human embryos 

may become marginally hypoxic when cultured at 5% O2 [172].  However, this model 

did not include the effect of convection in facilitating oxygen exchange.  Another study 

by Baltz et al indicates that in static culture, convection is faster than diffusion and 

would serve to mix the culture microdrops so that anoxia cannot develop [173].  

Convection is driven by temperature difference, which is quite haphazard as it can be 

influenced by routine procedures such as opening the incubator door and embryo 

observation etc.  That is why it is not included in the modeling by Byatt-Smith et al [172].  

Also mathematical modelling of the balance between oxygen supply and oxygen 

consumption by cultured embryos is influenced by the estimation embryo oxygen 

consumption rate, which is not a constant and exhibits a non-linear relationship with 

oxygen concentration [174].  So it is not a replacement of directly studying the effect of 

O2 on embryo development experimentally.  Here we reported the effect of 2% O2 on 

human post-compaction preimplantation embryonic development, which hasn’t been 

mathematically modeled or experimentally studied before.  

Interestingly we found that except for a slightly higher apoptosis rate, 2% O2 was 
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not significantly different from 5% O2 in other measures of embryo quality, in contrast to  

20% O2.  At this point, we don’t know whether the slightly increased apoptosis rate at 2% 

O2 carries any clinical significance.  Overall, it is sufficient to conclude that using the 

current static culture system, optimal O2 level for post-compaction stage human embryo 

development is less than 20%. 5% is the best O2 level among the three O2 tested based.  

However, it does not rule out the possibility that optimal O2 for human IVF is not within 

the tested three and it may also be a range rather than a specific O2 level.  This is 

especially true when it comes to different culture medium formulas, as their varied 

compositions of antioxidants and free radical scavengers may alleviate the detrimental 

effect of less ideal O2 in different degrees. 

Discussion of markers 

Bax was high only at 20% O2.  Bax is a marker of apoptosis and it was 

associated with poor human oocytes and embryos quality [156] where improper culture 

increased Bax.  This indicates that 20% O2, but not 2% or 5% O2, increases apoptosis 

at the end of post-thaw culture.    MnSOD is an antioxidant enzyme located in 

mitochondria, participating in the transformation of toxic superoxide produced during 

mitochondrial respiration. 20% O2 has been shown to increase the expression of 

MnSOD [160].  The higher level of MnSOD in embryos cultured at 20% O2 suggests the 

existence of oxidative stress and corresponding increase in anti-oxidative response.  

G6pd is a critical enzyme in the pentose phosphate shunt, which supplies 

NADPH reducing power for anti-oxidative response.  Higher level of G6pd was 

observed in embryos cultured in vitro compared with in vivo and embryos cultured at 

higher O2 level [159].  Similar to MnSOD, the biological significance of G6pd is to 

increase the antioxidant capacity of blastocysts cultured at 20% O2, which would cause 



58 

 

more reactive oxygen species (ROS) production. 

Heat shock proteins are molecular chaperones assisting the correct folding of 

cellular proteins [175].  HSP70.1 is one of the heat shock protein family members.  It 

mediates cellular stress response and has been used to measure embryonic stress 

caused by suboptimal culture conditions [157].  The mRNA level of Hsp70.1 was shown 

to be higher in in vitro derived embryos compared with in vivo generated counterparts 

[159].  The increase of Hsp70.1 in embryos cultured at 20% rather than 2% or 5% O2 

indicates that 20% O2 is a more stressful culture condition.  

Glucose enters cell either by an active process via sodium coupled glucose 

transporters or by facilitative glucose transporters.  GLUT1 is one of the thirteen known 

members of the facilitative glucose transporter family [176].  It is expressed in human 

embryonic stem cells [177] as well as human oocyte and 2-12-cell stage embryos [178].  

We did not find differences in Glut1 mRNA expression among the 3 O2 groups.  This 

result is surprising because Glut1 is a downstream target of HIF and lower O2 has been 

reported to increase Glut1 mRNA expression in bovine and mouse blastocysts [151, 

179].  We speculate that the composition of trophectoderm and ICM in blastocyst 

formed at different O2 and the activation status of HIF may account for the lack of 

difference here.  First of all, 2% O2 culture is related to lower percentage of cells 

allocated to trophectoderm [151] and there is more Glut1 expression in trophectoderm 

than in ICM in bovine blastocyst [180].  The lack of difference in Glut1 here may be the 

result of lesser percentage of trophectoderm cell number at lower oxygen O2.  Secondly, 

the primary goal of this study was to investigate the possibility of optimal O2 below 5%, 

so all the markers chosen were in one way or another reflecting embryo development 

and quality.  We did not look at other HIF responsive genes to know exactly the 
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activation status of HIF.  Lastly, Glut1 is associated with embryo quality, even when O2 

is not a variable [158].  Since blastocysts of similar morphological appearance in the 

three O2 groups were chosen for gene expression analysis, which may also contribute 

to the lack of difference in Glut1 expression. 

CX43 is a gap junction protein used in cell communication.  At blastocyst stage, 

co-expression of Cx26, Cx45 and Cx1 with Cx43 was found in human embryos [181].  

There is redundant expression and functional compensation between connexins [182].  

Transcription level of Cx43 is higher in in vivo produced embryos than in vitro ones 

[162].  We did not find any difference in Cx43 expression among three O2 groups.  It 

could either be that the gap junction function of blastocysts cultured at different O2 levels 

is similar, or that Cx43 expression doesn’t respond to O2 levels. 

Our study here is unique in showing 2% O2 is not significantly different from 5% O2 

for most outcomes measured.  It suggests the need of O2 in human post-compact stage 

embryo culture is relatively low.  The same is true for rat embryos, for which oxidative 

phosphorylation is not required for blastocyst formation [183].  mTSCs are derived from 

the pTE of blastocyst.  TSCs have highest potency and growth, lowest differentiation at 

2% O2 [38].  And cultured TSCs have relatively low mitochondrial activity and active 

aerobic glycolysis [33] compare with later in vitro differentiated lineages.  Compared 

with TE, inner cell mass (ICM) of mouse blastocyst have even lower oxygen 

consumption [184].  Human embryonic stem cells (hESCs) derived from blastocyst ICM 

proliferated well at 3-5% O2 as they did at 21% O2, and growth was only slightly reduced 

at 1% O2.  Potency and the ability to form embryoid were enhanced by hypoxic culture 

[185].  Taken together these data indicate a preference for 2-5% O2 in TSC and ESC 

culture, which argues for the potential application of less 5% O2 in post-compaction 
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embryo development, since TSC and ESC are the essentially the trophectoderm and 

ICM component of blastocyst.  

Limitations and future studies 

All the donated day 3 human embryos used in this study were cultured at 20% O2 

before cryopreservation.  It is possible that 20% O2 culture during the first 3 days and 

cryopreservation itself may have an adverse effect on subsequently embryo 

development after thawing, even though this effect is equal in three O2 groups.  Since 

there are only a few studies investigating the effect of O2 below 5% on animal embryo 

development and none on human, it is unethical to apply any O2 below 5% in human 

IVF before having a good understanding of its role on embryo quality and development.  

That necessitates the use of spare embryos donated by patients and we can only use in 

vitro indicators of embryo quality such as apoptosis and mRNA expression of stress 

related genes instead of re-implantation and observing long term development.  

Compared with the studies on the effect of 5% versus 20% O2 in human embryo 

development, which can be carried out in clinical setting without sacrificing the 

experimental embryos, we are limited by a relatively small sample size.  Despite that, 

our result agrees that 5% is optimal for post-thaw cleavage stage human embryo culture 

among the 3 O2 groups tested and interestingly, we found that 2% O2 is not as 

detrimental as 20% O2.  

Future studies need to have a larger sample size, and it would be informative to 

look at the molecular mechanisms mediating O2 effect, such as oxygen consumption 

rate, extracellular acidification rate, glucose and amino acids transport as well as the 

action of HIF.  O2 level during cleavage stage embryo culture should also be taken into 

consideration, preferably at 5% O2 [186].  Furthermore, we think that unlike the 
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progression from 20 to 5% O2, the possible progression from 5% O2 to a new optimum 

at < 5% O2 may require microfluidics to supply constant nutrition and provide waste 

removal [187].  Studies on mouse TSCs showed that at the growth-optimizing 2% O2, 

the consumption of nutrients and accumulation of acidic metabolites is much faster, 

requiring frequent medium change [33].  It is also important to establish toxicity below 

the optimum as for mouse TSCs, stress increases and growth rates decreases rapidly 

below the O2 optimum [38]. 
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CHAPTER 4 - DEPARTURE FROM OPTIMAL O2 LEVEL FOR MTSCS 
PROLIFERATION AND POTENCY LEADS TO RAPID AMPK ACTIVATION 

(This chapter contains recently accepted data for publication. See Appendix C) 

Abstract  

Previous studies showed that cultured mTSCs have most rapid proliferation, 

normal maintenance of stemness/potency, least spontaneous differentiation and SAPK 

activation at 2% O2 compared with traditional 20% O2 or hypoxic (0.5% and 0% O2) 

conditions.  Switching away from 2% O2 induced fast SAPK responses.  Here we tested 

the dose response of AMPK in its active form (pAMPK Thr172P) at 20-0% O2 and 

whether pAMPK has similar rapid change when mTSC culture are switched away from 

optimal 2% O2.  There was a delayed increase in pAMPK level at ~6-8h after switching 

away from 20% to 2%, 0.5%, or 0% O2.  Switching from 2% O2 to 20%, or 0.5% and 0% 

O2 led to rapid increase in pAMPK in 1h, similar to previously reported SAPK response 

when departing from 2% O2.  12h of 0.5% O2 exposure lead to cell program change in 

terms of potency loss and suppressed biosynthesis as indicated by the level of 

phosphorylated inactive acetyl CoA carboxylase (pACC).  Phosphorylation of ACC was 

inhibited by AMPK inhibitor Compound C, but potency loss was not.  The result 

suggests an important aspect of stem cell biology, which demands rapid stress enzyme 

activation to cope with sudden change in external environment from least stressful (2% 

O2) to stressful conditions.  

Introduction  

AMPK is an essential stress kinase [188]. AMPK activation inhibits cell growth 

through mammalian target of rapamycin (mTOR) and cell cycle checkpoints etc., to 

promote cell survival in time of stress, reviewed in [189].  Moreover, AMPK mediates 
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loss of potency in ESCs and TSCs [46, 52, 80].  Similar AMPK-mediated 

stemness/potency loss was found in early mammalian 2-cell and blastocyst stage 

embryos as well, in response to multiple types of stress [46, 52, 83].  AMPK blocks 

Warburg metabolism in favor of oxidative metabolism and this blocks the induction of 

pluripotency [190, 191].  Although stress-induced high levels of AMPK cause 

differentiation, increasing AMPK activity in diabetic mice can improve blastocyst 

development [192].  Besides potency regulation, AMPK also has important role in the 

metabolic regulation of early mammalian embryos and their stem cells [3, 193] as is 

known in somatic cells.  

Stemness can be maintained at an O2 niche ≤ 5% and often 2-3% [194-196].  It 

was previously established that 2% O2 is the optimal O2 level for mTSCs in vitro culture 

by four criteria; lowest stress (SAPK activation) and differentiation, highest growth rate 

and maintenance of potency [38].  Stress forces stem cell differentiation, which has 

been observed in ESCs and iPSCs [37, 39].  Stress-induced differentiation has been 

characterized in mTSCs as well [197].  In screens for the protein kinases that mediate 

the stress response of mTSCs, many kinases inhibitors were used and it was found that 

stress-induced differentiation is mediated through SAPK which does not affect potency; 

and that AMPK mediates potency loss [43, 52].  SAPK mediates increase of Hand1 

mRNA, favoring giant cell differentiation and PL1 expression, and suppressing later 

chorionic lineages by decreasing Gcm1 mRNA [3, 33].  PL1 is the hormone mediating 

maternal recognition of pregnancy in rodents [198], the functional equivalent of hCG in 

human and interferon-like protein in sheep and cattle [199].  As O2 level in mTSCs 

culture were switched up or down from 2%, SAPK had rapid 1h maximal induction 

compared with much slower SAPK activation when O2 was switched from 20% to other 
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O2 levels.  

Our hypothesis is that stress induces fast change in the activity of stress kinases 

and they consequently function to adjust developmental and metabolic programs.  

Rapid turnover is a feature of many intracellular regulatory and signaling proteins to 

enable prompt responses to extracellular or intracellular signals and cessation of 

responses upon signal removal.  The products of protooncogenes, growth factors and 

inflammatory cytokines are some of the examples [200, 201].  The major regulation of 

AMPK activity inside the cells is by reversible phosphorylation of threonine 172 (Thr172) 

within the catalytic α subunit, which activates AMPK [202].  Not surprisingly, AMPK 

activity also has fast turnover [203].  The level of pAMPK (phosphorylation of AMPKα at 

Thr172) is often used to indicate AMPK activity [204] and it corresponds with the 

phosphorylation of its canonical metabolic substrate acetyl CoA carboxylase (ACC 

Ser79) [205, 206].  ACC catalyzes a rate-limiting reaction in fatty acids synthesis [207]. 

AMPK phosphorylates ACC at Ser79 and inactivates it, which is an important branch of 

metabolic regulation by AMPK [208]. 

Given the central role of AMPK in regulating metabolism and its emerging role in 

mediating differentiation, we studied the dynamics of AMPK activation in response to O2 

changes using mTSCs as a model.  Here we hypothesize that AMPK also has lowest 

activation at 2% O2 like SAPK, and that AMPK has faster activation when mTSCs are 

switched away from 2% O2 compared with 20% O2.  Since AMPK was found to mediate 

potency loss and regulate ACC phosphorylation (Ser 79) due to hyperosmolar stress 

and genotoxic stress [45, 52], we also tested the hypothesis that hypoxic stress induces 

potency loss and inhibits anabolic metabolism as exemplified by ACC (Ser79) 

phosphorylation, and that AMPK is responsible for it. 
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Materials and Methods 

Reagents 

Fetal bovine serum, RPMI1640 and FGF4 were from Gibco (Grand Island, NY). 

Heparin was purchased from Sigma Chemical Co. (St. Louis, MO).  Compound C was 

purchased from EMD Millipore (Billerica, MA) (Cat# 171260).  The following antibodies 

used were from cell signaling (Danvers MA): pAMPK (CS 2535), pACC (Ser79) (CS 

3661), β-Actin (CS 4970), anti-rabbit HRP-linked antibody (CS 7074), anti-mouse HRP-

linked antibody (CS 7076).  Tubulin (T 9026) antibody came from Sigma (St. Louis, 

MO). ErrB and ID2 antibody were purchased from R&D systems (PP-H6705) and Santa 

Cruz Biotechnology (SC-489) respectively.  Anaerobic bags to create 0% O2 were from 

Hardy Diagnostics (Santa Maria, Ca) (AN010C). 

Cell lines and culture conditions  

The mouse trophoblast stem cell isolate was a gift from Dr. Rossant (Samuel 

Lunenfeld Research Institute, Ontario, Canada).  mTSCs were cultured as described 

previously [33, 121].  Routine culture condition is at 20% O2 with 25ng/ml FGF4 and 

70% embryonic fibroblast conditioned medium.  The cells were passaged approximately 

24h before the start of each experiment to allow recovery from passage stress.  In the 

group of experiment where cells were switched from 20% O2 to other O2 levels, culture 

after passage was conducted at 20% O2.  Alternately if cells were planned to be 

switched from 2% O2 to other O2 levels, they were passed into 2% O2 for 24h.  The 

starting cell confluence was around 20-30% before the switch.  After switching, cells 

were cultured for various length of time and lysed for immunoblot analysis. 20% O2 

culture was conducted in a conventional CO2 incubator.  2% and 0.5% O2 were 

achieved using commercial gas mixture containing 2% O2 /5% CO2 or 0.5% O2 /5% CO2 
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balanced with N2.  All culture media were pre-equilibrated for 24h in specified O2 levels 

before use.  

Western blot  

Cells were washed twice with ice-cold PBS, and lysed with RIPA buffer (Thermo 

Scientific).  50 µg of whole–cell extracts were separated by electrophoresis on a 4-20% 

SDS-PAGE gel using Precast TGX mini gels (Biorad) and then transferred to PVDF 

membranes using a Bio-Rad Semi-dry Transfer Cell.  We found semi-dry transfer was 

not very efficient in transferring ACC (280 kD) and wet transfer was conducted in this 

case using a Bio-Rad Trans-blot cell.  The membranes were blocked with 5% fat-free 

milk at room temperature for 1h, and probed with primary antibody at 4°C overnight.  

The dilution of each antibody was pAMPK (1:250), ErrB (1:1000), ID2 (1:300), pACC 

(1:1000), β-Actin (1:1500), and Tubulin (1: 20000).  Horseradish peroxidase (HRP) 

conjugated secondary antibody (1:15000) was incubated at room temperature for 1.5h.  

Primary antibodies were diluted with 3% BSA/TBST, secondary antibodies with 2% fat-

free milk/TBST.  The protein bands were visualized using enhanced 

chemiluminescence (ECL) (Amersham). 

Statistical analysis 

Data collected over three independent experiments were subjected to SPSS 

version 22.0 for distribution examination and statistical analysis.  Treatments were 

compared to control using one-way ANOVA.  If statistical significance were found, 

ANOVA was followed by least square significance (LSD) post hoc test.  Data on 

changing O2 levels away from 20% O2 to 2% O2 (9 time intervals) were logarithm 

transformed to meet the normality assumption of ANOVA before analysis.  Values are 

presented as means ± standard error of the mean (S.E.M).  Differences between 
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Figure 13: Switching O2 from 20% to 2%,
0.5%, or 0% led to increase in pAMPK level at
6h. mTSCs were cultured as indicated, lysed,
fractionated by SDS-PAGE, and probed with
antibodies to pAMPK thr172. ACTB was used
as loading control. Histograms show the
average pAMPK level of 3 independent
biological experiments with error bars indicating
standard error. (A) Switching from 20% to 2%
O2 led to a delayed increase in pAMPK level to
~4 fold over baseline at 6h and remained at the
higher level until 12h.(B) Change from 20% to
0.5% O2 led to an increase in pAMPK to ~5fold
over baseline at 6h and reached peak ~10fold
at 12h. “*”indicates statistical significance
compared with time zero at 20% O2. (C) After
changing from 20% to 0% O2, pAMPK level
increased to ~5 fold at 6h and reached peak ~9
fold at 12h over baseline. “*” indicates
statistically significant compared with time zero.

treatments were considered significant if p < 0.05.  

Results 

During the study of SAPK activation, we found that 2% O2 enabled a growth rate 

of 2.5-fold higher than 20% O2 for mTSCs in vitro culture, but the media was very acidic 

by 24h [38].  So in this experiment, the time final after switching away from 20% O2 was 

set to be 12h.  The switch from 20% to 

lower O2 levels was designed to emulate 

the changes that might occur during re-

implantation of in vitro cultured embryos 

into normal or hypoxic implantation sites.  

The kinetics of AMPK activation was 

investigated after changing from 20% O2 to 

2% O2 (Figure 13A), 0.5% O2 (Figure 13B) 
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or 0% O2 (Figure 13C).  There was a consistent increase in pAMPK level starting by 6h 

in all O2 groups.  For the 20% to 2% O2 switch, pAMPK level fluctuated at around 4-fold 

change throughout the 12h period once it reached this level by 6h (Figure 13A).  After 

switching to 0.5% or 0% O2, pAMPK level continued to increase and the peak was seen 

at 12h (Figure 13B, Figure 13C).  Total AMPK protein levels did not change after the 

three sets of switch away from 20% O2 during the period studied (Figure 14).  Thus 

switching away from 20% O2 produced an increase in pAMPK level consistently starting 

at 6h independent of what new O2 level the cells were switched into.   

Figure 14: Switching O2 from 20% to 2%, 0.5%, 
or 0% did not change the level of total AMPK. 
mTSCs were treated in the same way as 
described in Figure 13. Total AMPK was probed 
and normalized to ACTB. (A) switch from 20% to 
2% O2; (B) switch from 20% to 0.5% O2; (C) 
switch from 20% to 0% O2. 
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Since there was rapid proliferation and metabolic waste accumulation when cells 

were cultured at 2% O2 [38], here we took advantage of AMPK as a reporter of 

metabolic stress to evaluate how often medium should be changed when cells are 

cultured at 2% O2.  The result showed that changing to 2% O2 did not activate AMPK by 

1-3h, but pAMPK became high between 6 to 8h and maintained at high level throughout 

the 12h period (Figure 15).  This result suggests that the intake of nutrients and 

accumulation of metabolic waste may have already become evident and sensed by the 

cells after 6-8h of 2% O2 culture.  Without microfluidic equipment to provide constant 

nutrient support and waste removal, it would be difficult to routinely culture mTSCs at  

2% O2.  Currently in vitro culture of mTSCs is still commonly carried out at 20% O2 [121], 

and it does not pose a problem to the isolation, maintenance or in vivo differentiation 

capability of mTSCs [4]. 

Figure 15: pAMPK 
reached peak level at 8h 
after changing from 20% 
to 2% O2, and then 
stabilized at ~5fold 
change during the 12h 
period. pAMPK level was 
normalized to ACTB. “*” 
indicates statistical 
significance compared 
with time zero. 

 

It should be noted that even though switching away from 20% O2 to 2%, 0.5% 

and 0% O2 all produced higher pAMPK level after 6-8h; the biological processes 

underlying the increase are unlikely to be the same.  It is likely that the high pAMPK 

level seen after 6-8h of 2% O2 reflects the metabolic needs initiated by rapid cell 

proliferation.  There was minimal net cell growth in 0.5% and 0% O2 group, as reported 

previously in mTSCs [38].  Increased pAMPK supposedly reports other signals raised 
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Figure 16: Changing O2 from 2% up to 20% or
down to 0.5% or 0% led to rapid increase in
pAMPK at 1h. (A) Switching away from 2% to
20% O2 induced rapid increase in pAMPK level at
1h but it returned to baseline level at 24h. “*”
indicates statistical significance compared with
time zero. (B) Switching away from optimal 2% to
0.5% O2 induced rapid increase in pAMPK level
at 1h. There was ~2.5 fold change over baseline
2% O2 by 1h and maintained throughout the 24h
period although no statistical difference was
found. (C) Changing away from optimal 2% to
0% O2 induced rapid increase in pAMPK level to
~2.5 fold over baseline at 1h and maintained to
24h. No statistical difference was found. 

by hypoxic stress other than the need of biosynthesis for cell division in these conditions.  

Further studies are needed to investigate the mechanisms underlying pAMPK increase 

in each condition.  

To test the hypothesis that moving away from the least stressful 2% O2 would 

also induce faster AMPK activation like SAPK, the kinetics of AMPK activation was 

studied in a similar time frame as SAPK [38].  0.5, 1, 2, 3 and 24h time points were 

chosen.  Four early time points (0.5, 1, 2, 3h) were selected to detect when AMPK 

activation first happens. 24h after switching 

away from 2% O2 was also studied to 

compare with the published SAPK data.  

The result showed that pAMPK level was 

near maximum after switching away from 2% 

O2 for 1h, no matter what O2 level cells were 

changed into.  The switches from 2% O2 to 

20%, 0.5% or 0% O2 were shown in Figure 

16A, 16B, 16C respectively.  Total AMPK 
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protein levels did not change after the three sets of switch away from 2% O2 during the 

period studied (Figure 17).  Interestingly the 2% to 20% O2 switch increased pAMPK 

significantly at 1-3h, but by 24h pAMPK level returned to baseline (Figure 16A).  This 

indicates that changing away from least stressful 2% O2 to 20% required a rapid 

response of AMPK.  But unlike the stressful O2 levels below 2%, cells eventually 

adapted to 20% O2 and pAMPK level went down.   

Figure 17: Switching O2 from 2% to 20%, 
0.5%, or 0% did not change the level of 
total AMPK. mTSCs were treated as 
described in Figure 16. Total AMPK was 
probed and normalized to ACTB. (A) 
switch from 2% to 20% O2; (B) switch from 
2% to 0.5% O2; (C) switch from 2% to 0% 
O2. 
 

 

 

 

 

 

 

 

 

 

 

 

The maximal stimulation index in the switches away from 2% to other O2 levels 

was only about 2-3 fold whereas it was about 8-10 fold after the switches away from  
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20% O2 as shown in Figure 13.  It was so even when the terminal O2 after the switch 

was the same.  This is mostly likely due to the difference in the level pAMPK between  

2% and 20% O2 at 0h baseline before the switch.  Since 2% O2 facilitates faster cell 

proliferation than 20% O2, it is possible that the high metabolic need of mTSCs cultured 

at 2% O2 before switch has already led to a higher pAMPK baseline.  As a result, the 

relative fold-change of pAMPK over 2% O2 baseline was smaller (Figure 16).  

In Figure 18A, we superimposed the dynamic and magnitude of pAMPK based 

on data gathered in Figure 13 and Figure 16.  It shows average pAMPK level after 12h 

of different O2 treatment compared with 0h baseline.  pAMPK was lowest at 20% O2 and 

Figure 18: O2 stresses induced an S-
shaped curve for pAMPK and a U-shaped
curve for pSAPK, but activation of both
enzymes was most rapid when O2 was
switched away from the least stressful 2%
O2. (A) Summary of the pAMPK dose and
kinetic responses to changes in O2 levels
based on the data presented in Figure 13
and Figure 16. The tail of the arrow is the
O2 level at time zero before the switch,
and the head of the arrow is the level of
O2 cells were switched into. mTSCs
responded to culture at 20%, 2%, 0.5%
and 0% O2 with an S-shaped pAMPK
dose-response curve with maximal
increase of ~10-fold over baseline after
12h of culture. Red bar shows activation
of AMPK due to hyperosmolar stress. (B)
Summary of the SAPK dose and kinetic
responses to changes in O2 levels. This is
based on a published figure and it is cited
with permission [3]. The tail of the arrow
is the O2 level at time zero before the
switch, and the head of the arrow is the
level of O2 cells were switched into.
pSAPK level was lowest at 2% O2 and it
increased rapidly within 1h when the cells
were switched away from 2% O2. Switch
from 20% to 0% produced a slower
activation of SAPK. 

A

B
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highest at 0.5-0% O2 with an approximately 10-fold change.  pAMPK level at 2% O2 was 

between 20% and 0.5-0% O2, which produced a S-shaped curve.  The speed of pAMPK 

(Figure 18A) activation after moving away from 20% or 2% O2 to other O2 levels 

mimicked the pSAPK response in a similar experimental condition (Figure 18B) which 

was cited with permission from a previous publication [3].  Sudden change in O2 from 

least stressful 2% to either higher or lower O2 induced rapid AMPK and SAPK activation 

at 1h.  It took around 6-8h to increase the level of pAMPK and pSAPK when cells were 

moved from 20% O2 to 0% O2. 

The stem cell state of mTSCs is characterized by the expression of potency 

factors.  Loss of potency predisposes to differentiation.  We investigated the biological 

consequence of hypoxic exposure at 0.5% O2 on the level of mTSCs potency ID2 and 

ERRB (Figure 19A).  12h was chosen because pAMPK reached peak level at 0.5% O2 

Figure 19: Hypoxia at 0.5% O2 significantly increased the level of pACC and decreased the
protein level of potency factor ERRB. mTSCs were cultured for 12h at 20% O2, 0.5% O2 or 2%
with or without 10uM compound C. Increased pACC level due to 0.5% or 2% O2 exposure was
mitigated by compound C, however the loss of ERRB at 0.5% O2 was not reversed. “*” indicates
statistical significance compared with time zero. 
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in 12h.  Also, in order to study whether inhibition of AMPK can reverse potency loss, we 

needed to choose a time point when potency loss had already happened.  There was 

no appreciable potency loss in earlier time points before 12h (4h and 8h) at 0.5% O2 

culture (Figure 20).  mTSCs culture at 0.5% O2 for 12h leads to a significant ~50% loss 

of ERRB and ~35% loss of ID2 which was not significant.  AMPK inhibitor compound C 

did not reverse the loss of ERRB due to hypoxic stress.  Thus, the hypothesis that 

stress induces potency loss was supported.  But unlike other stressors, inhibiting AMPK 

cannot reverse hypoxic stress-induced potency loss.  Consistent with the previous 

report [38], mTSCs maintain their potency at 2% O2 (Figure 19B).  After 12h of 2% O2 

culture, levels of ERRB and ID2 were comparable to 0h 20% control.  Unexpectedly, 

adding 10µM compound C to 2% O2 culture significantly decreased the level of ID2 by 

approximately 45%.  There was a significant ~4 fold and 2.7 fold increases in the level 

of ACC (Ser79) phosphorylation after 12h of 0.5% and 2% O2 culture respectively.  The 

increase in pACC is consistent with the increase in pAMPK as shown in Figure 15, 

which is more likely to reflect the need of active metabolism than pathologic hypoxia.  

Figure 20: Time course of mTSCs potency loss at
0.5% O2 culture. Cells were switched from 20% O2

at time zero to 0.5% O2 for 4, 8 or 24h. The level of
potency factor ERRB and ID2 were probed and
normalized to Tubulin at each time point. “*”
indicates statistical significance compared with time
zero. 
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Because unlike 0.5% O2, after 12h of 2% O2 treatment, the level of potency factors were 

comparable to 20% control.  The increase in pACC at 0.5% O2 was reversed ~50% by 

AMPK inhibitor compound C, while the increase of pACC at 2% O2 was reversed 

completely by compound C. 

Discussion 

AMPK mediates profound changes in mTSC metabolic and 

stemness/differentiation balance [3].  pAMPK levels increased rapidly when cultured 

mTSCs were switched from optimal 2% O2 to hyperoxic 20% O2 or hypoxic 0.5% O2 at 

1h, though the stimulation index is not as high as switching away from 20% O2.  The 

highest stimulation index of both pAMPK and pSAPK occurred at 0-0.5% O2 (Figure 18), 

suggesting that hypoxia at below 2% O2 is more stressful for mTSCs than higher level 

of O2 at 20%.  Since the stimulus response of an enzyme is a product of speed (e.g. 

“direness” index) and magnitude (e.g. stimulation index), the most powerful AMPK 

response occurred when mTSC was switched from 2% O2 to hypoxic stress below 2% 

O2.  The finding that switching away from less ideal 20% O2 induced slower activation of 

AMPK at 6-8h while switching away from the least stressful 2% O2 induced fast AMPK 

activation is interesting.  We call the similar kinetic pattern of relatively faster AMPK and 

SAPK response a “direness response” when switching away from optimal 2% O2.  The 

rapidity of change in stress enzyme activation after switching away from the least 

stressful 2% O2 may reflect the profound stress initiated by deviating from this condition.  

In times of noxious environmental stimuli, cells must decide quickly to adapt or the cells 

will die.  AMPK and SAPK play important roles in sensing environmental cues and 

determining cell fate [209, 210].  

Both as stress kinases, AMPK and SAPK do not always respond to stress in the 
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same way [211].  SAPK is ubiquitously expressed and activated by multiple types of 

stress, including UV, hyperosmolarity, ischemia/reperfusion injury and TNFα etc [3].  

SAPK participates in intracellular signaling pathways controlling cell proliferation, 

differentiation, apoptosis, cytoskeletal integrity etc. reviewed in [209].  For AMPK, first 

and foremost, it is kinase functioning in maintaining ATP balance by regulating anabolic 

and catabolic metabolism [188].  The relative higher level of pAMPK at 2% O2 may be 

due to the depletion of energy substrate and/or accumulation of acidic metabolic waste, 

or it happened in anticipation of energy need for rapid cell proliferation [212].  At 2% O2, 

the increase in pACC was not accompanied by loss of potency, supporting the different 

state cells were in compared with 0.5% O2.  Further studies are needed to elucidate the 

mechanism of AMPK activation when switching to the least stressful 2% O2. 

Many kinases demonstrate early and late activation and have distinct 

downstream events at different activation time [213-216].  During the study of mTSC 

response to hyperosmolar stress by microarray, we found that early stress response (30 

minutes of sorbitol treatment) is to downregulate highly changing mRNA (all 31 genes 

with significant change were downregulated).  While by 24h, 158 genes were 

upregulated and 130 downregulated, including genes involved in cell cycle, apoptosis, 

macromolecular synthesis and differentiation [49].  The direct effect of AMPK was not 

investigated in the microarray study.  Since AMPK is activated under hyperosmolar 

stress [46] [43], it is likely to have a role in the hyperosmolar stress-induced change.  If 

the rapid early response has been successful, cells may regain their balance after 

stress subsides or if stress maintains, larger scale change in transcription, cell cycle, 

differentiation may follow and lead to irreversible cell program change.  In early mouse 

embryos as well as mTSCs and mESCs, AMPK downregulates potency factors under 
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hyperosmotic and genotoxic stress [45, 52] and predisposes to differentiation.  The fact 

that switching from 2% to 20% O2 induced early pAMPK increase but eventually it fell 

back to baseline is informative.  It suggests that cells are capable of coping with sudden 

environmental change, and if the new environment is not too stressful, they regain their 

balance.  

To further understand the biological consequence of hypoxic stress and AMPK 

activation, we studied the levels of potency factor ID2 [17] and ERRB [4, 217] in cells 

cultured at traditional 20% O2, 0.5% O2 or 2% O2 and the effect of AMPK inhibitor. ID2 is 

mTSCs stemness marker and a key potency maintenance gene.  Forced expression of 

ID family protein inhibits the differentiation of human cytotrophoblasts [17].  ERRB is 

also a mTSC stemness marker and it is involved in the chorionic lineage specification 

after implantation [217].  With FGF4 removal, normally differentiated mTSCs lose 

expression of ID2 and ERRB [4, 33].  0.5% O2 drove ID2 and ERRB downregulation 

despite potency maintaining growth factor FGF4, but AMPK inhibition did not reverse 

potency loss at 0.5% O2.  Unlike the minimal effect of compound C on the level of 

ERRB and ID2 at 20% and 0.5% O2, both potency factors were reduced by compound 

C at 2% O2, though the decrease in ERRB did not reach statistical significance.  We 

know AMPK activity was inhibited by compound C at 2% O2 since the level of pACC 

(Ser 79) was significantly reduced.  ACC carries the classical AMPK substrate motif 

[218] and the level of ACC phosphorylation at Ser 79 indicates the activity of AMPK.  

However, besides being an AMPK inhibitor, compound C is known to have AMPK 

independent effect on multiple cellular processes, such as cell cycle progression [219], 

mitochondrial respiration [220] and autophagy [221].  What unique metabolic feature 

mTSCs have at 2% O2 makes them more susceptible to the effect of compound C 
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awaits further studies to elucidate. 

The hypothesis that stress drives mTSCs differentiation remains the same for 

hypoxic stress as for hyperosmolar stress and genotoxic stress [45, 52].  Hypoxia 

inhibits anabolic metabolism as represented by the inhibition of lipid synthesis by 

inducing ACC phosphorylation and inactivation.  ACC is a rate-limiting enzyme in the 

very early step of lipid synthesis [207].  Compound C partially blocked the 

phosphorylation of ACC at Ser79, suggesting AMPK regulate metabolism at hypoxia via 

similar mechanisms as for other stressors [3].  The unique feature about hypoxic stress 

is that it affects the essential cellular energy production process.  The energy level of a 

cell is a fundamental signal, regulating every aspect of cell metabolism and it must be 

tightly regulated.  AMPK sits at the center of cellular energy regulation by affecting 

multiple anabolic and catabolic pathways [188, 222].  Even for normal in vitro cell 

culture, occasional stress exists and AMPK function is needed.  Knockdown of AMPK 

catalytic α subunits leads to reduced cell growth in SM10 mouse placental progenitor 

cells [193].  Inhibiting AMPK function may compromise the ability of mTSCs to adapt to 

hypoxic stress and lead to severely maladaptive hypoxic cells where loss of potency 

factor proteins becomes irreversible.  

Limitations of study and future directions 

Here we studied the dynamics of AMPK activation and found switching away 

from 20% O2 activated AMPK at a slower speed compared with the least stressful 2% 

O2.  We did not study the upstream events that mediate the early (1h) and late (6-8h) 

AMPK response and how 2% O2 differs from 20% in causing that change.  Since 2% O2 

is associated with faster mTSCs proliferation (~7h doubling time), the process of 

transcription, translation and DNA replication etc. should be more active at 2% O2.  
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Bacterial studies showed that fast growing cells operate close to their optimal energy 

efficiency [223], which is necessary to support the biosynthesis during cell proliferation 

[224, 225].  We speculate that the demand of high energy turnover associated with fast 

cell growth may make the cells more susceptible to perturbations in the environment.  

An alternate hypothesis is that healthier cells cultured in the least stressful environment 

are inherently more capable of sensing stress and mounting on rapid adaptive response.  

Future studies are needed to test these hypotheses.  And different stem cell types and 

stimuli should be used to gain an understanding of whether this is a generalized 

phenomenon.  
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CHAPTER 5 - CONCLUSIONS AND FUTURE DIRECTIONS 

This work studied the effect of hypoxic stress on mTSCs under potency-

maintaining conditions and for the first time we quantified the level of stress-induced 

differentiation in mTSCs and investigated its reversibility.  The effect of stress during the 

peri-implantation period and its possible implications for pregnancy outcome is a 

relatively understudied area compared with the period during gametogenesis or 

organogenesis [226].   The finding that stress causes reduced cell growth is not 

surprising though it is extremely important because exponential growth is normal during 

the peri-implantation period [24] and lasts until 3 weeks post-conception in human [25].  

Exponential placental stem cell growth is necessary to support the exponential increase 

in HGC at early pregnancy, the failure of which is the hallmark of miscarriage.  What is 

new is that there is a large fraction of mTSC differentiation (> 50%) forced by hypoxic 

stress and that this differentiation becomes irreversible differentiation without much 

apoptosis (Chapter 2).  Stress-diminished TSC growth rates and increased irreversible 

differentiation would lead to stem cell depletion and miscarriage if these results occur in 

vivo.  The placenta is an essential organ supporting the advancement of pregnancy.  If 

stress diminishes placenta size or imbalances the differentiation trajectory of placental 

stem cells, the developing embryo or fetus would either suffer from insufficient nutrient 

supply and produce small than gestational age baby or when stress is severe, 

miscarriage may happen. 

Chapter 2 investigated the effect of hypoxia on mouse placental stem cells after 

the lineage segregation of ICM and TE, which happens at the blastocyst stage.  mTSCs 

are used because there are no existing well-characterized human placental stem cells 

yet.  Human induced trophoblast stem cells (huiTSCs) may be possible as mouse 



81 

 

(m)iTSCs have been recently produced and we wrote an commentary comparing how 

two labs produced these high quality miTSCs [227].  This modeling can potentially help 

the understanding of placental pathology after implantation and how pre-implantation 

may synergize with post-implantation stress.  

Improper O2 can be a stressor at any stage of pregnancy since fertilization.  

Chapter 3 explored the effect of three levels of O2 (2%, 5% and 20%) on human embryo 

development until blastocyst stage.  5% O2 turns out to be the optimal O2 among the 3 

tested for human blastocyst culture, specifically to the embryos thawed after 3 days of 

20% O2 culture since oocyte retrieval and then cryopreservation.  It has been reported 

that 20% O2 can have persisting negative effects on mouse blastocyst development 

despite only being used during the first 2 days of culture before being switched to 5% 

O2 for blastocyst culture [186].  Thus 20% O2 for cleavage embryo culture can be a 

confounding variable for the study reported in Chapter 3.  Caution should be taken 

when extrapolating the result to conditions other than the one tested here, such as 

continuous in vitro culture from fertilization to blastocyst stage without cryopreservation, 

or 5% O2 used during cleavage stage embryo culture.  There is a decreasing gradient of 

O2 as embryos are transported from fallopian tube to uterus, until it reaches ~2% in 

human uterus.  The time when embryos reach the uterus corresponds to the post-

compaction stage of human embryo development, which is also the stage studied in 

Chapter 3.  The application of < 5% O2 would be most relevant at this stage.  However, 

although 2% O2 is not as detrimental to human embryo culture at this stage as the 

traditional 20% O2, it is not superior to 5% O2 either.  

There are three possible reasons for this. One is that 2% O2 in vivo is not the 

same as 2% O2 during in vitro culture.  In the later scenario, gas phase O2 reaches 
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embryos incubated in a drop of medium overlaid by oil layer through passive diffusion 

and occasional convection if there is temperature variation.  If the rate of O2 delivery 

from gas phase to the embryos is not fast enough to satisfy the need of embryo growth, 

local hypoxia can be created around the surface of the embryos.  In this case, even 

though O2 is 2% in gas phase, embryos may still suffer from hypoxia [172].  Another 

possible reason is the restraint of energy substrate supply and waste removal 

associated with static culture.  Blastocysts are highly active in anabolic metabolism and 

flexible in using glycolysis for ATP synthesis and providing building blocks for 

macromolecular synthesis to support rapid growth.  2% O2 may force a higher level of 

glycolysis.  Due to the inefficiency of glycolysis in ATP production compared with 

mitochondrial oxidative phosphorylation, the rate of glucose consumption and lactate 

accumulation would be higher at 2% O2.  Static culture limits nutrient supply and can’t 

provide effective waste removal.  This may prevent any advantageous effect that can 

possibly be seen at 2% O2. In order to investigate the effect of lower O2 on embryo 

development with minimal confounding factors, microfluidic equipment will be needed in 

the future.  These conclusions are supported by the data in Chapter 4, where optimal O2 

supports rapid growth but it also leads to activation of AMPK between 6-8h, an outcome 

that would decrease anabolism and growth.  A third reason is that 2% may not be most 

favorable until TSCs and ESCs arise which occurs in the last 24hr of the 2.5 day culture 

after thaw.  

Chapter 2 and 3 investigated the effect of O2 stress on placental stem cell 

behavior or embryo development mainly on a cellular level in terms of growth, apoptosis 

and differentiated lineage choice.  Stress is associated with the activation of stress 

kinases.  In Chapter 4, the dynamic of stress kinase AMPK activation at 20% to 0% O2 



83 

 

was studied in mTSCs at different O2 levels and switches.  There are three aspects of 

stress kinase activation, which are quantity (stimulation index), quality (the molecular 

effects of the activated stress kinase mediated by its substrates) and speed.  

Stimulation index and biological consequence of stress kinase activation are often 

studied while studies on the speed of stress kinase activation are relatively lacking. 

 Interestingly, we found that moving away from the optimal 2% O2 for mTSCs in 

vitro culture is associated with rapid activation of both AMPK and SAPK at 1h compared 

with the relatively slower activation of them when moving away from the traditional 20% 

O2 for mTSC culture.  This is important because AMPK and SAPK are implicated in the 

stress response of oocytes, embryos, ESCs and TSCs.  SAPK can slow S phase DNA 

replication and cause increase in differentiation-mediating transcription factors, while 

AMPK slows anabolism and transition from G1 to S phase and often mediates potency 

loss.  We think fast stress kinase activation is a built-in stress response mechanism, 

reflecting the capability of healthy cells to rapidly adapt to stress.  Also, 0.5% and 0% O2 

are associated with the highest level of AMPK and SAPK activation, even though it is 

only a small decrease of O2 from 2% to 0.5% or 0%.  This suggests that there is a fine 

line between optimal O2 and toxic hypoxia.  Thus, special caution should be taken when 

optimizing O2 for in vitro culture or analyzing the many causes of hypoxic stress at the 

implantation site.  

There are several future directions to go into for each of the studies presented in 

Chapter 2, 3 and 4.  First of all, in vitro modeling needs to be tested in vivo.  Secondly, 

we can take advantage of the flexibility of mTSCs to undergo stress-forced 

differentiation and the high level of cells participating in forced differentiation to develop 

a high throughput screen (HTS) for in vitro pregnancy toxicant screening.  Also, there is 
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a need to make human TSCs that are multipotent and stable like mouse TSC.  For the 

optimization of IVF, in order to better mimic the physiological environment embryos are 

exposed to in vivo, microfluidic equipment may be necessary to provide constant 

renewal of nutrient and removal of waste, as well as mixing of O2.  The underlying 

mechanism mediating rapid stress kinase activation after moving away from optimal O2 

and its biological significance await further elucidation.  Whether the speed of stress 

kinase activation corresponds to the suitability of a culture condition in which cells are 

maintained before environmental perturbation needs to be tested in multiple types of 

cells and stress kinases before it can be generalized. 

First of all, there is a need to test in vivo the findings of in vitro modeling.  In this 

dissertation, we did single factor hypoxia in vitro modeling.  In vivo hypoxia will most 

likely present with a more complex phenotypes and mechanisms, because the maternal 

side also actively participates in hypoxic stress response through multiple organ 

systems.  The result of that is the direct effect of hypoxia may be modified, and 

secondary indirect effects of maternal hypoxic responses may be transmitted to the 

conceptus.  In addition, the pericellular O2 level during in vitro culture is likely to be 

lower than 0.5% O2 due to cellular respiration and the limitation of O2 diffusion in 

aqueous solution.  It may or may not reflect the level of hypoxia trophoblast cells can be 

exposed to in vivo.  And medium change during in vitro culture may create some effects 

of reoxygenation and variation of O2 levels albeit the medium change process is very 

rapid. However, we do expect reduced growth and forced differentiation to happen in 

vivo under stressful conditions just as in vitro, but the extent to which in vitro stress 

responses can be recapitulated in vivo will vary depending the type and severity of 

stress applied.  An illustration of predicted stress effects on embryos in vivo during peri-
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implantation period is shown in Figure 21.  

Figure 21: Prediction of the effect of stress on peri-
implantation mouse embryos. ExE is labeled with 
Cdx2, which indicates it is where TSCs reside. FGF4 
secreted by the ICM derivative (blue cells) maintains 
the stemness of TSCs in the approximate 10 cell 
diameters limited by diffusion of FGF4 [7]. The 
comparison between A and B shows stress causes 
forced differentiation, as indicated by the green 
differentiated cells in the TSC stem cell field (B) where 
normally all cells should express stem cell markers 
(A). The comparison between C and D shows that 
stress reduces proliferation. The cells that are actively 
proliferating are presented in red color. (D) shows the 
percentage of proliferating cells at any given time is 
smaller in stressed embryo compared with unstressed 
ones (C). 
 
 
 
 
 
 
 
 
 
 
 
 

Secondly, studying the stress response of mTSCs and quantifying the level of 

stress-induced differentiation not only aids the understanding of the possible 

mechanisms underlying early pregnancy loss, the results also suggest that mTSCs may 

be used to detect potential pregnancy stressors.  However, the methods employed in 

Chapter 2 won’t suit this purpose because it is too time-consuming.  Constructing mTSC 

line carrying reporters of differentiation (e.g. PL1 promoters that drive reporter genes) 

and/or potency promoters driving reporter genes, can be use in an automated method 

such as a plate-reader to record the change in potency/differentiation balance based on 

reporters after various exposures or doses.  This will provide a rapid way to do 

preliminary screening for potential pregnancy toxicants and help hypothesis 
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development and prioritization of slower and more expensive in vivo testing.  For 

example, common maternal pathologies such as endometriosis, PCOS and 

hydrosalpinx [228] increase the chance of miscarriage through traditional stress 

mechanisms including ROS, bacterial infection, and inflammation.  Nontraditional stress 

mechanisms such as maternal stress hormones, malnutrition, hypoxia, pollutants and 

unsuspected drug- or diet supplement-induced effects can also increase miscarriage 

risk.  Reporter based rapid cell fate analysis in response to different combinations of 

stimuli can yield insights on what combinations of stress may be most detrimental and 

thus should be avoided. 

In addition, reporter mTSC lines will enable the study of reversible differentiation 

to be conducted on the level of individual cells.  In fact the studies in Chapter 2 

supported a third patent for our lab’s proposed use of ESC and TSC lineage potency 

and differentiation reporters to identify toxic doses of drugs, cosmetics, diet 

supplements and manufactured compounds.  The study on the reversibility of 

differentiation presented in Chapter 2 is a population based study.  We defined the 

irreversible differentiation day as day 4 of 0.5% O2 treatment and day 2 after FGF4 

removal.  However, we don’t know the state of individual cells and what key regulators 

mediated the transition from reversible to irreversible differentiation.  The size of 

subpopulations of cells responding to stress by changing growth, potency and 

differentiation status will be greatly expedited by reporter TSCs.  Using reporter mTSC 

and flow cytometry cell sorting, cell subpopulations can be quantified and individually 

studied to learn the molecular mechanism of irreversible differentiation.  One example is 

that there were small cells expressing PL1.  These PL1+ small cells can be sorted to 

study whether, and when their differentiation is reversible.  Once the time of 



87 

 

irreversibility is determined on individual cell level, these cells can be sorted and tested 

for program changes that may mediate irreversibility by using NextGen RNA 

sequencing and bioinformatic analysis. 

Another unanswered question is whether mTSC will demonstrate different 

hypoxic stress-forced differentiation behaviors when they are passaged and maintained 

at optimal 2% O2 before the start of 0.5% O2 treatment.  We know that the level of 

potency factors were comparable between 20% and 2% O2 when mTSCs were cultured 

in potency-maintenance conditions.  However, since switching from 2% or 20% O2 

produced different stress kinase responses, and the O2 decrease from 2% to 0.5% is 

much smaller than from 20% to 0.5% O2, it would be interesting to test whether and how 

much 0.5% O2 induced mTSC differentiation is different when starting at different O2 

baseline.  

Despite the many similarities between mouse and human placenta, it is important 

to realize that no animal model can cover all the aspects of implantation and early 

human placentation.  The amount of embryo loss in mouse is much smaller than that in 

human [229].  For human, the majority of pregnancy failures happen around the time of 

plantation.  50% of the time, it is natural selection process to prevent genetically 

abnormal embryos from developing to term.  At other times, it is likely the inadequate 

development and differentiation of pTE and the first lineage syncytiotrophoblasts that 

facilitate implantation contributes significantly to this [230].  The lack of understanding in 

the initial differentiation events during early human placental development impairs our 

ability to understand how inadequate placentation occurs and how to intervene.  All 

trophoblast lineages are considered to arise from TSCs.  Isolation of mTSC greatly 

facilitated the understanding of mouse placentation.  However, isolating human TSC 
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(hTSC) turns out to be more difficult.  Attempts to isolate hTSCs from pTE in blastocyst 

or first trimester cytotrophoblasts from EVT and term placenta villus have not yielded 

successful results, same for the induction of hTSC from hESCs and iPSCs, as reviewed 

previously [231].  The current hTSC models cannot maintain hTSCs in undifferentiated 

state for more than a few hours, and also lack the ability to control hTSC differentiation 

specifically towards the three major human placental cell lineages (cytotrophoblast, 

syncytiotrophoblasts and extravillous trophoblast).  Recently, there are reports showing 

successful induction of mTSCs from somatic cells through direct reprogramming without 

going through an intermediate Oct4 positive stage [227, 232, 233].  Finding the correct 

combination of transcription factors and making hTSCs through direct reprogramming 

may prove to be another route worth trying. 

For the O2 optimization of IVF, if low level of O2 is to be tested, changing the 

current static culture to microfluidic culture may be necessary.  Clinical parameters such 

as embryo cell number and rate of blastocyst formation have been frequently shown to 

be not sufficient in indicating the best embryos or the best culture conditions.  More 

sensitive markers of stress, such as stress kinase activation and molecules reflecting 

the mechanism underlying different culture outcomes should be included in the 

investigation. 

Our study and resulting interpretation on the dynamics of AMPK activation is 

based on the previous knowledge of how mTSCs react to O2 ranging from 20 to 0% O2 

in terms of growth and potency maintenance as well as the known role of AMPK in 

integrating metabolism and stemness regulation.  What are unknown are the upstream 

kinases that mediate the rapid and delayed activation of stress kinases and how they 

are differentially regulated by various levels of O2.  In other words how do stress 
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enzymes sense stress, do they require protein-protein interaction that is not enzymatic 

as well as activation by upstream kinases?  Many stress kinases also work as part of a 

membrane or cytoskeletal “workbench” that facilitates substrate access.  Does this 

occur in the nucleus?  This would be an interesting area of future study.  In addition, the 

phenomenon of rapid stress kinase activation when mTSC culture deviates from optimal 

culture condition compared with suboptimal culture condition need to be tested in other 

cell types and using different stimuli other than O2 before it can be generalized.  The 

downstream events after the rapid and delayed AMPK activation, as well as the different 

biological outcomes of AMPK activation at 2% O2 compared with 0.5% or 0% O2 need 

to be investigated in a systematical way using non-candidate approach, such as 

proteomics or microarray/RNA-seq. 
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APPENIX D 

Exploring protein kinases that mediate hypoxia-induced mTSC potency loss 

AMPK and hypoxia-induced mTSC potency loss  

The role of AMPK in metabolic and potency regulation in mTSC, mESCs and mouse 

embryos has been studied in Chapter 4. We hypothesized that AMPK mediates 0.5% O2-

induced potency loss in mTSC. The involvement of AMPK in mTSC potency loss after 12h of 

0.5% O2 treatment was investigated by using AMPK inhibitor Compound C in Chapter 4. The 

result showed that Compound C effectively inhibited ACC phosphorylation at Ser79, which 

represents the reversal of AMPK-mediated decrease in anabolism. However, potency loss was 

not reversed, at least at 12h of hypoxic exposure. Here hypoxic stress exposure was extended 

to 1 day and 3 days, and both AMPK inhibitor Compound C and agonist Compound A were 

used to further test the relationship between AMPK and potency loss. The levels of ErrB and 

ID2 were significantly or near significantly reduced by 1 and 3 days of 0.5% O2 exposure. 

However, neither Compound A nor Compound C affected the level of potency proteins at 20% 

O2 or 0.5% O2 at both 1 day (Figure D1) and 3 days (Figure D2). Thus, hypoxia-induced mTSC 

potency loss is not mediated by AMPK. 

Figure D1: Non AMPK-dependent 
mTSC potency loss after 1 day of 
0.5% O2 exposure with the 
presence FGF4. mTSC were 
cultured at 20% or 0.5% O2 for 1 
day with FGF4 present. AMPK 
antagonist Compound C and AMPK 
agonist Compound A was used in 
each O2 condition. ErrB and ID2 
were detected by western blot and 
normalized to Tubulin. “*” indicates 
significant decrease in the level of 
potency factors after 1 day of  0.5% 
O2 compared with 20% O2 culture. 
“#” indicates marginal statistical 
significance (p = 0.07 for 0.5% 1d, p 
= 0.09 for 0.5% 1d + 5µM 
Compound A).   
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Figure D2: Non AMPK-dependent 
mTSC potency loss after 3 days of 
0.5% O2 exposure with the 
presence FGF4. mTSC were 
cultured at 20% or 0.5% O2 for 3 
days with the same treatment as in 
Figure A1. “*” indicates significant 
decrease in the level of potency 
factors after 3 days of  0.5% O2 
compared with 20% O2 culture. 
Neither Compound C nor 
Compound A significantly affected 
the level of potency factors at both 
20% and 0.5% O2. 

 

Activation of selected protein kinases by hypoxic stress and/or their potential role in mTSC 
potency/differentiation regulation 

 Knowing AMPK is not the mediator of mTSC potency loss under hypoxic condition; we 

hypothesized that activation of other stress kinases by hypoxia may be responsible for it. 7 other 

protein kinases were selected and tested for their involvement in 0.5% O2 induced mTSC 

potency loss by using inhibitors for these kinases. These kinases are either known to be 

activated by hypoxic stress and/or related to placental cell potency/differentiation regulation. 

Phosphoinositide 3-kinase (PI3K)/ RAC serine/threonine-protein kinase (AKT) is activated by 

hypoxia and protects cancers against apoptosis in hypoxic condition [234]. PI3K/AKT is also 

activated during mTSC and Rcho-1 differentiation [235]. ID2 is negatively regulated by PI3K in 

differentiating Rcho-1 cells [236]. AKT phosphorylates and inhibits glycogen synthase kinase-3 

(GSK3). Except for regulating glycogen synthesis, GSK3 is also implicated in multiple other 

biological processes, such as transcription and protein synthesis [237]. Among the many GSK3 

substrates, cyclin D1 and c-Jun are of particular interest to mTSC. Cyclin D1 is involved in the 

transition from mitosis to endoreduplication during TGC differentiation [122]. GSK3 

phosphorylation of cyclin D1 leads to its proteasomal degradation [238]. GSK3 dependent 

phosphorylation of c-Jun inhibits its binding to DNA, thus decreasing activator protein 1 (AP-1) 

transcriptional activity, which is required for TGC-specific gene expression [239].  

Hypoxia activates ERK1/2, p38MAPK, and SAPK in endothelial cells [240]. 
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FGF4/ERK1/2 is critical for mTSC potency maintenance. However, upon mTSC differentiation, 

there is activation of ERK1/2 upstream kinase MEK1/2, which promotes TGC differentiation. 

Adding MEK1/2 inhibitor U0126 to mTSC during differentiation culture inhibits TGC 

differentiation and PL1 expression and promotes syncytiotrophoblasts differentiation [241]. 

ERK1/2 and the p38MAPK signaling pathway also increase PL1 expression in differentiated 

Rcho1 cells [132]. The activation of SAPK in the regulation of stress-induced mTSC 

differentiation has been discussed in Chapter 4.  Hypoxia also decreases translation, partly 

through protein kinase R-like endoplasmic reticulum kinase (PERK) signaling pathway [242]. 

Protein levels of NANOG, ERRB decrease rapidly due to translation inhibition in mESC. When 

translational control is nonspecific and global, it affects the levels of labile proteins preferentially 

[243]. mTSC potency factors have relatively short half-life (ID2 ~ 15min, CDX2 ~ 6h, ERRB ~ 

12h) [244, 245]. These proteins may be more susceptible to the inhibition of protein synthesis.  

For the above reasons, PI3K, AKT, GSK3, SAPK, MEK1/2, p38MAPK, PERK were 

included in the screening for protein kinases that mediate mTSC potency loss at 0.5% O2. The 

initial screen showed that inhibition of SAPK or MEK1/2 at 0.5% O2 cannot increase the level of 

potency factors ErrB and ID2 at 0.5% O2 (Figure D3), and they were excluded from further 

experiments. 

 
Figure D3: SAPK and MEK1/2 inhibitor did not increase the level of potency factor ErrB and ID2 when 
added to 0.5% O2 culture. Number of replication (n) =1. mTSCs were cultured at 0.5% O2 for 24h or 48h 
with FGF4 present. (A) 0.5% O2 culture for 24h, with or without SAPKi and MEK1/2 inhibitor. (B) 0.5% O2 
culture for 48h. Western blots were used to detect the expression of each protein. The SAPK inhibitor 
used was SP600125 (Cat # S5567, Sigma) and MEK1/2 inhibitor used was U0126 (Cat # 19-147, 
Calbiochem). 



96 

 

For the other 5 kinases (PI3K, AKT, GSK3, p38MAPK and PERK), triplicated experiment 

were conducted at 2 days with inhibitors for each kinase added to 0.5% O2 culture. The 

inhibitors were preloaded for 1h before 0.5% O2 treatment. 0.5% O2 exposure for 2 days 

significantly reduced the level of potency protein ErrB and ID2. Among the inhibitors used, 

inhibition of GSK3 showed ~50% reversal of ErrB or ID2 loss at 0.5% O2 and inhibition of 

p38MAPK showed ~25% reversal of ErrB loss, which were statistically significant (independent 

sample t-test, p < 0.05). Two different inhibitors were used for GSK3 and p38MAPK (Figure A4). 

Both inhibitors of p38MAPK reversed ErrB loss at 25-30%, without much effect on ID2 loss. 

Different inhibitors of GSK3 showed distinct effects; with Bio significantly reversing ID2 loss and 

SB415286 significantly reducing loss of ErrB. Table D1 shows the average level of potency 

factors after different treatments, p value for each comparison and % reversal of 0.5% O2 

induced potency loss due to inhibitor treatment. 

 
Figure D4: Level of potency factor ID2 and ErrB after 2 days of 0.5% O2 exposure compared with 20% 
O2 and the effect of kinase inhibitors. Cells were maintained in 20% or 0.5% O2 for 2 days with FGF4 
present. Inhibitors of different kinases were added to 0.5% O2 culture. Potency proteins were detected by 
westernblot and normalized to Tubulin. “*” indicates statistical significance compared with 20% O2. “a” 
indicates statistical significance compared with 0.5% O2 without inhibitors. “#” indicates marginal p value 
when compare with 0.5% O2 without inhibitors. MK: MK2206 (Cat # S1078, Selleckchem), pan AKT 
inhibitor. Bio: Bio (Cat # B1686, Sigma), GSK3 inhibitor. SB4: SB415286 (Cat # S2729, Selleckchem), 
GSK3 inhibitor. SB2: SB203580 (Cat # S1076, Selleckchem), p38MAPK inhibitor. BIRB: BIRB796 (Cat # 
285983-48-4, Calbiochem), p38MAPK inhibitor. PERKi: GSK2656157 (Cat # 504651, Calbiochem), 
PERK inhibitor. Wort: Wortmannin (Cat # W1628, Sigma), PI3K inhibitor. 
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Table D1: Level of ID2 and ErrB after 2 days of 0.5% O2 exposure compared with 20% O2 
and the effect of kinase inhibitors.  
Kinase inhibited Treatment Average ± S.E.M P Value (vs 20%) P Value (vs 0.5%) % reversal 

ID2 

20% O2, 2 days 1.00 ± 0.00 N/A < 0.01 N/A 

0.5% O2, 2 days (0.5% 2d) 0.40 ± 0.12 < 0.01 N/A N/A 

AKT 0.5% 2d + 2uM MK2206 1.35 ± 1.13 0.78 0.49 N/A 

GSK3 0.5% 2d + 5uM Bio 0.85± 0.05 0.07 <0.05 45 

GSK3 0.5% 2d + 20uM SB415286 1.16 ± 0.88 0.87 0.49 N/A 

p38 MAPK 0.5% 2d + 20uM SB203580 0.38 ± 0.07 < 0.01 0.92 N/A 

p38 MAPK 0.5% 2d + 5uM BIRB796 1.03 ± 0.81 0.97 0.52 N/A 

PERK 0.5% 2d + 5uM GSK2656157 0.86 ± 0.71 0.86 0.59 N/A 

PI3K 0.5% 2d + 1uM Wortmannin 0.92 ± 0.72 0.92 0.55 N/A 

ErrB 

20% O2, 2 days 1.00 ± 0.00 N/A < 0.01 N/A 

0.5% O2, 2 days (0.5% 2d) 0.22 ± 0.04 < 0.01 N/A N/A 

AKT 0.5% 2d + 2uM MK2206 0.60 ± 0.38 0.39 0.42 N/A 

GSK3 0.5% 2d + 5uM Bio 0.32 ± 0.07 < 0.01 0.19 N/A 

GSK3 0.5% 2d + 20uM SB415286 0.78 ± 0.19 0.37 <0.05 57 

p38 MAPK 0.5% 2d + 20uM SB203580 0.46 ± 0.10 <0.05 <0.05 25 

p38 MAPK 0.5% 2d + 5uM BIRB796 0.50 ± 0.16 0.10 0.08 29 

PERK 0.5% 2d + 5uM GSK2656157 0.45 ± 0.13 <0.05 0.07 23 

PI3K 0.5% 2d + 1uM Wortmannin 0.44 ± 0.18 0.09 0.17 N/A 

Yellow highlighted cells are the p value and % reversal of potency loss after using GSK3 inhibitors. Green 
highlighted cells are the p value and % reversal of potency loss after using p38MAPK inhibitors. Only 
statistically significant cells were highlighted. 

Of the kinases screened, GSK3 appears to be the most interesting one since inhibition 

of GSK3 reversed the highest, ~50% of potency loss. “S/TxxxS/Tp” is the consensus substrate 

motif of GSK3, ErrB and ID2 do not appear to be the direct targets of GSK3 phosphorylation 

[246]. There are two GSK3 isoforms encoded by distinct genes identified in mammals: GSK3α 

and GSK3β. The two isoforms have significant redundancy in function. GSK3α double knockout 

doesn’t produce any phenotype while GSK3β double knockout lead to no live birth due to 
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cardiomyocyte hyper-proliferation and defect in cardiac outflow tract development after E13.5 

[247].  GSK3 has constitutive kinase activity and it is often negatively regulated by upstream 

kinases, such as AKT, PKA, p70 ribosomal S6 kinase (p70rsk), p90 ribosomal S6 kinase (p90rsk). 

And GSK3 often exerts negative effect on its substrate-mediated downstream signaling, 

reviewed in [248].  

GSK3 plays an important role in stem cell potency regulation. GSK3 phosphorylates β-

Catenin and sends it to proteasomal degradation. Inhibition of GSK3 by Bio activates Wnt/β-

Catenin signaling pathway, which promotes the pluripotency maintenance in both hESC and 

mESC [249], as well as the stem cell state of mesenchymal stem cells (MSCs) [250]. In terms of 

trophoblast and placental development, in vivo studies show that Wnt/ β-Catenin signaling is 

essential in placental vascularization, chorio-allantoic attachment and labyrinth development 

[251]. In addition, GSK3 negatively regulates cell cycle progression, inhibits cell proliferation and 

it is pro-apoptotic. Through these mechanisms, GSK3 is involved in cell stress responses [246]. 

GSK3 induces apoptosis in response to noxious stimuli such as DNA damage [252], hypoxia 

[253], removal of growth factors and [254], heat shock [255]. Despite the role of GSK3 in cell 

cycle and cell proliferation regulation which seems similar to AMPK, the potential and known 

direct GSK3 substrates do not overlap with AMPK in most cases [246].  

PI3K/AKT signaling pathway is one of the upstream kinases that regulate the activity of 

GSK3. Activation of PI3K/AKT inhibits the activity of GSK3 [256]. However, inhibition of either 

PI3K by Wortmanin or AKT by MK2206 did not further decrease potency level at 0.5% O2.  

There are two possible explanations for this. One is the effectiveness of Wortmanin and 

MK2206 at the dosage used haven’t been proven to be effective in mTSCs at 0.5% O2 culture. 

All the dosages of kinase inhibitors used in this experiment were empirically based on literature 

reading. Secondly, it is possible that PI3K/AKT only play a minor role in regulating GSK3 activity 

in this experimental setting. Note that all chemical kinase inhibitors have non-specific off target 

effects, the complex interplay among all the kinases that are potentially affected by Wortmanin 
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and MK2206 in mTSCs at 0.5% O2 may also contribute to the result seen here. For example, 

besides being a PI3K inhibitor, Wortmanin also has direct inhibitory effect on GSK3β and MEK1. 

MK2206 has direct inhibitory effect on MEK1 and p38MAPK during cell-free in vitro assays.  

Further experiments are needed to first test whether there were increased levels of 

active GSK3 at 0.5% O2 in mTSCs. If so, when and how much its negative regulation 

mechanisms were disabled as well as to what degree the inhibitors used blocked the activation 

of GSK3. Inhibitor studies provide a rapid way for screening candidate kinases. However, 

results and conclusions from inhibitor studies need to be confirmed by research using more 

specific methods such shRNA knockdown or gene knockouts. This is important because there is 

a possibility that the effects seen by using kinase inhibitors are not mediated by the kinase we 

intend to inhibit. For example, both p38MAPK inhibitors used also inhibits SAPK and p90rsk. 

Both GSK3 inhibitors used also inhibit the activities of 20 other kinases by > 50% during in vitro 

cell-free assay. AMPK and p90rsk are among the 20 kinases inhibited by both Bio and SB415286. 

p90rsk can be inhibited by all 4 inhibitor used to inhibit p38MAPK or GSK3 and p90rsk protein is 

expressed in mTSC. In addition, how GSK3 acts on potency regulation in mTSC needs to be 

explored. It can be indirect regulation through its role in metabolic or transcriptional regulation or 

direct regulation by increasing the proteasomal degradation of potency factors. Indirect 

regulation would be more complicated to elucidate experimentally, while direct regulation 

through proteasomal degradation can be studied initially through the use of proteasome 

inhibitors. 

On the non-specific effects of kinase inhibitors 

Knowing the off-target effects of an inhibitor can help to plan an experiment and interpret 

result. Information on off-target effect of certain inhibitors can be found in two reviews [257, 258]. 

More extensive information can be found at http://www.kinase-screen.mrc.ac.uk/kinase-

inhibitors. The website curates 140 recombinant protein kinases (PKs) and 243 commonly used 

single transduction inhibitors. Assays were done in cell-free buffered systems to test direct 
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kinase-substrate phosphorylation. Take AMPK inhibitor Compound C as an example. Besides 

its inhibitory effect on AMPK, 10uM Compound C also activates ERK1 and inhibits the activity of 

67 other kinases by 50% or more. Moreover, the kinase that 10uM Compound C inhibits the 

most is not AMPK. AMPK only ranks 31 on the list of kinases which Compound C has an 

inhibitory effect on. Compound A is an AMPK agonist. 10uM Compound A activates AMPK as 

well as apoptosis signal-regulating kinase (ASK)1 with similar efficacy. Also, 10uM compound A 

inhibits the activity of 7 kinases by more than 50%. Thus, it is important to know the off-target 

kinases of an inhibitor, which may lead to results that cannot be accounted for by the kinase we 

intend to inhibit. Knowledge on the expression level of the off-target kinases in a specific cell 

type is also essential in understanding their potential confounding effects. Interestingly, though 

Compound C and Compound A are used as AMPK antagonist and agonist respectively, both of 

them inhibit receptor-interacting serine/threonine-protein kinase  (RIPK)2. Caution should be 

taken when interpreting symmetrical antagonist and agonist experiments testing for AMPK or 

any other kinase effects. 
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APPENDIX E 

Mitochondria inhibition and mTSC differentiation in terms of potency loss and TGC 
formation 

 
0.5% O2 decreases mTSC mitochondria charge 

O2 is mainly used for mitochondrial respiration in a cell. NADPH oxidase and prolyl 

hydroxylase domain-containing proteins (PHDs)  catalyzed enzymatic responses are examples 

of intracellular O2 usage other than mitochondrial respiration. We have previously demonstrated 

that 0.5% O2 decrease mTSC mitochondria charge after 7 days of FGF4 removal compared with 

20% O2 [33], suggesting the need of O2 in normal mTSC differentiation. Hypoxia at 0.5% O2 

reduces mTSC potency and forces differentiation, suggesting a certain amount of O2 is needed 

for mTSC potency maintenance as well.  We suspect that one way which 0.5% O2 causes 

mTSC potency loss is through inhibition of mitochondrial function. Our hypothesis is that 

mitochondrial function is required to maintain the potency of mTSCs. We test this hypothesis by 

using chemicals inhibiting mitochondrial ETC and detecting the level of potency factors. But 

before that, we ask whether mitochondrial charge is decreased at 0.5% O2. Figure E1 shows 

that 2 days of 0.5% O2 decreases mitochondrial charge compared with 20% O2 as indicated by 

JC1 staining. The white circle highlighted a group of cells with similar size and nuclear staining 

intensity between 20% and 0.5% O2 to demonstrate that 0.5% O2 decrease mitochondrial 

charge (compare C and G, D and H). Note the one spontaneously differentiated TGC in 20% O2 

and its high mitochondrial charge with some perinuclear concentration (yellow arrow). It agrees 

with our previous finding that differentiated TGCs have higher mitochondrial charge [33]. 

Inhibition of mitochondrial electron transport chain induces differentiation 

We hypothesize that experimentally inhibiting mitochondrial ETC is sufficient to cause 

mTSC differentiation despite mTSC culture at 20% O2 and in the presence of FGF4. The 

mitochondrial electron transport chain (ETC) is made of 4 complexes and there are inhibitors for 

each complex. Here we used antimycin A and sodium azide, which are inhibitors of complex III 
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and complex IV respectively, which leads to ETC block and decreased ATP synthase activity. 

Figure E2 shows that both antimycin A and sodium azide treatment overrode potency 

maintaining condition at 20% O2 and induced TGC differentiation despite FGF4.  

Figure E1: mTSC mitochondrial charge 
was reduced by 0.5% O2 after 2 days of 
treatment with the presence of FGF4. 
Cells were cultured at 20% or 0.5% O2 
conditions for 2 days and stained with 
2ug/ml JC1 and 5ug/ml Hoechst 33342 
for 30 minutes in a CO2 incubator. Blue 
(A and E): Hoechst staining showing 
nucleus. Green (B and F): mitochondrial 
charge independent JC1 staining. Red 
(C and G): charge dependent JC1 
staining. D and H are merge images of A, 
B, C and E, F, G respectively. All pairs of 
micrographs for a given fluorescence 
type were acquired at the same 
exposure. A, B, C, D show cells cultured 
at 20% O2; E, F, G, H show cells 
cultured at 0.5% O2. Scale bar in A 
equals 200 µM. 
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Figure E2: Inhibition of mitochondrial 
ETC induces TGC differentiation 
despite the presence of FGF4 at  
20% O2. Cells were cultured at 20% 
O2, 0.5% O2, 20% O2 + 2.5 µg/ml 
antimycin A or 20% O2 + 2.5mM 
sodium azide for 2 days with the 
presence of FGF4. Afterwards, cells 
were treated with 5µg/ml Hoechst 
33342 for 30 minutes in a CO2 
incubator for nucleus staining. Scale 
bar equals 200 µM. 
 

 

 

 

We next analyzed the levels of potency factors CDX2, ERRB and ID2 after 2 days of 

normal stem cell maintenance (20% O2 + FGF4) or antimycin A and sodium azide treatment. 

The result is shown in Figure E3. 0.5% O2 induced mTSC potency loss has been shown in 

multiple places in previous chapters, so it was not done here. We found that the loss of ErrB 

due to Antimycin A treatment was not significant. Other than that, both antimycin A and sodium 

azide induced significant loss of mTSC potency factors CDX2 and ID2 (ANOVA followed by 

Turkey post hoc test, p < 0.05). Thus inhibition of mitochondrial ETC is sufficient to induce 

potency loss in mTSC, which indirectly points to the 

role of normal mitochondrial function in mTSC 

potency maintenance. 

Figure E3: Inhibition of mitochondrial ETC leads to 
potency loss in mTSC. mTSCs were cultured at 20% O2 
with FGF4 present for 2 days, with or without 
mitochondrial inhibitor antimycin A (AA) (2.5 µg/ml) or 
sodium azide (NaN3) (2.5 mM). At the end of culture, 
whole-cell lysates were subjected to western blot protein 
analysis. All potency proteins were normalized to loading 
control Tubulin. Potency level at 20% O2 with no inhibitor 
was arbitrary set as 1. Statistics was done by ANOVA 
followed by Turkey post-hoc test. “*” indicates significant 
decrease in potency level compared with no treatment 
control.  

20% O2 + FGF4 
2days

0.5% O2 + FGF4 

Antimycin A + FGF4 Sodium Azide + FGF4 

20% O2 + FGF4 
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Figure E4: Mitochondrial inhibitors and 0.5% O2

is associated with higher net cellular ATP level.
mTSCs were treated as described in Figure A7.
At the end of culture, cells were lysed for ATP
measurement (Cat# A22066, ThermoFisher
Scientific) using luciferin–luciferase
bioluminescence based assay according to
manufacturer’s instruction. ATP value was
normalized to total protein measurement. “*”
indicates statistical significance. 

Knowing that mitochondria inhibition leads to potency loss, we next tested whether ATP 

production is compromised by mitochondrial inhibition, which subsequently caused potency loss. 

Figure E4 shows the level of ATP at 20% O2, 20% O2 with either antimycin A or sodium azide 

treatment, or 0.5% O2 after 2 days of culture with FGF4 present. Unexpectedly, instead of 

reduce the level of ATP, both antimycin A and sodium azide treatment increased the total 

cellular ATP level, like 0.5% O2 did. It has been shown that under hypoxic condition, cellular 

energy consuming processes such as transcription and translation are inhibited [259]. 

Presumably these changes are made in an attempt to combat the initial ATP shortage caused 

by sudden disruption of mitochondrial oxidative phosphorylation. But later on as more changes 

are made by the cells due to prolonged hypoxia or mitochondrial inhibition; we hypothesize that 

the inhibited ATP consuming pathways may not be fully recovered. ATP levels reflect the 

balance between production and usage. The higher net ATP level we see here is more likely to 

be the result of reduced usage than increased production, because starting from 2 days of 0.5% 

O2 exposure, there was no net cell growth observed. Cell growth is an energy consuming 

process where both the synthesis of macromolecules and cytokinesis for mitosis require ATP. 

We speculate that reduces usage is due to a stalled program whereby differentiation is induced 

by hypoxic stress, but not supported. This is similar to elevated ATP after 7 days of hypoxic 

stress with FGF4 removal [33]. Measuring of ATP production through glycolysis and oxidative 

phosphorylation by measuring extracellular acidification rate (ECAR) and the oxygen 
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consumption rate (OCR) will clarify this question. If the total ATP production through glycolysis 

and oxidative phosphorylation are not increased, the increased net ATP level would be the 

result of reduced usage. Overall, it appears that shortage of ATP is not the reason for potency 

loss at either 0.5% O2 or after inhibiting mitochondrial ETC at 2 days. However, this does not 

exclude the possibility that there was temporary decrease of ATP at the beginning of 

mitochondria inhibition before 2 days. What we do know is that the loss of potency factor under 

hypoxia is a progressive process (as shown in Chapter 2, more potency loss at day 3 and 4 of 

0.5% O2 exposure than day 1 and 2; in Chapter 4, no potency loss before 12h). Thus it is safe 

to conclude that loss of potency under hypoxia is not directly related to shortage of ATP in the 

long run. Whether that is case for mitochondrial inhibition via using chemical inhibitors will 

necessitate an experiment testing the time course of potency loss in parallel with ATP level 

upon the initiation of mitochondrial inhibitors.  

Coenzyme Q10 (CoQ10) cannot reverse 0.5% O2 induced mTSCs potency loss  

ROS can act as cellular signaling molecules. Increased ROS production was observed 

in the normal differentiation of mTSC [33]. Hypoxia was shown to increase ROS production in 

various studies [260, 261]. Mitochondria ETC and membrane bound NADPH oxidase (NOX) are 

the major source of ROS production, though other enzymes such as xanthine oxidase also 

contribute to the production of ROS [262]. Regarding to the mechanism of ROS production in 

hypoxia, the explanations are still tentative. Mitochondrial complex III has been suggested to 

serve as an O2 sensor and increase superoxide production at low O2 levels [263].  CoQ10 acts 

as an electron carrier between complex I, II and complex III in mitochondrial ETC [264], and it is 

also an antioxidant protecting mitochondrial inner membrane [265]. We hypothesize that ROS 

may be one of the mediators that induce hypoxia-forced mTSC differentiation, if so, adding 

antioxidant to 0.5% O2 culture should reduce the potency loss seen in this condition.  

Figure E5 shows that 2 days of 0.5% O2 exposure significantly reduced the level of 

mTSC potency factors CDX2 and ID2 in potency maintaining conditions as reported previously. 
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However, increasing dosage of CoQ10 did not demonstrate protective role in preventing 

hypoxia-induced mTSC potency loss. Except for being an antioxidant and functioning in ETC, 

CoQ10 has multiple other roles as well, such as acting as a modulator of inflammation and 

mitophagy, biosynthesis of pyrimidine nucleotides, increasing ATP production efficiency etc.,  

reviewed in [266]. The lack of effect of CoQ10 in 0.5% O2 induced potency loss suggests that 

O2 shortage has profound effects on mTSC, which cannot be reversed despite the versatile role 

of CoQ10. Another possibility is that the amount of CoQ10 that reached mitochondria is limited. 

CoQ10 is lipophilic and it accumulates in cell membrane until it reaches saturation. Thus the 

amount of CoQ10 that eventually reaches mitochondria is only a small proportion of the amount 

applied to cell culture. Moreover, much of the CoQ10 that reached mitochondria will be 

concentrated in outer membrane and not available to ETC, which is located on the inner 

membrane of mitochondria [267]. Other inhibitors or scavengers of ROS need to be tested 

before we can get a definite conclusion on the role of ROS in hypoxia induced mTSC potency 

loss. In addition, it will be necessary to measure the total amount of ROS in hypoxic culture and 

compare that with normal to know whether it is increased in our system. The generation of ROS 

requires O2 and 0.5% O2 may be too low to allow the ROS generating enzymatic reaction to 

happen. 
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Figure E5: CoQ10 does not prevent 0.5% O2 induced mTSC potency loss under potency maintaining 
condition. mTSCs were cultured at 20% or 0.5% O2 with FGF4 present for 2 days. Increasing dosages of 
CoQ10 from 2.5uM to 40uM were added to 0.5% O2 culture for the same duration. CoQ10 was dissolved 
in DMF at a concentration of 10mM as stock solution. Whole-cell lysates were collect for protein analysis 
by western blot. The last lane shows solvent control with DMF at 1:250 dilution. “*” indicates statistical 
significance compared with 20% O2 control. “#” indicates marginal p value (p = 0.07). None of CoQ10 
dosage used significantly increased potency level compared with 0.5% O2. 
 

It is clear that 0.5% O2 induced mTSC potency loss is associated with abnormal 

mitochondrial function. However, the molecular basis of this connection is not established. 

Besides being a cellular energy factory, mitochondria can also act as a signal hub.  Signals 

emitted from stressed mitochondria include ROS, RNS (reactive nitrogen species), calcium, 

cytochrome C, biosynthetic intermediates (e.g. acetyl CoA, α-ketoglutarate) etc., and these 

signals consequently regulating multiple aspects of cell physiology and metabolism [268]. The 

spectrum of change hypoxia induced on mitochondria and their subsequent effect on the 

potency/differentiation program of stem cells call for further elucidation.  

Neither of the single interventions we employed here (kinase inhibitors, antioxidant) 

effectively reversed hypoxia induced mTSC potency loss suggests a wide-range of cellular 

processes were affected by hypoxic stress. And indeed there is evidence supporting this. First 

of all, hypoxia is known to cause global repression of transcription and translation through 

multiple mechanisms, such as chromatin modification and inhibition of transcription and 
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translation initiation complex assembly [259]. Secondly, the change of cellular metabolism 

favoring glycolysis and catabolism, as well as signals emitted by  stressed mitochondria will also 

have wide spread effect on the cells. In addition to the general inhibition of transcription, there is 

also selective activation of transcriptional factors by hypoxia and they mediate increased 

transcription of a wide range of genes involved in various cellular processes. HIF is a prominent 

example, and the downstream effectors of HIF regulate cellular energy metabolism, stemness/ 

proliferation, epithelial to mesenchymal transition, tumor invasion, redox homeostasis and 

apoptosis etc. [269]. There are many other transcriptional factors known to be activated by 

hypoxia, to name a few, nuclear factor kappa-B (NFκB), the mediator of inflammatory and stress 

responses; cyclic AMP response element binding protein (CREB), which regulates a diverse 

array of genes implicated in cellular  metabolism and signal transduction; AP-1, which 

coordinates with other transcription factors such as HIF-1 and NFκB to regulate the activation of 

hypoxia-sensitive genes [270]. Any of those above mentioned changes mediated by hypoxia 

can have a wide range of possible downstream effects. The interaction between them makes 

the picture even more complex. Thus, before targeted intervention to prevent hypoxia-forced 

differentiation, it is imperative to have a global view of the cellular processes affected by hypoxia 

through “omics” approaches. And it is also important to remember many of the hypoxia induced 

changes are intended to help the cells survive hypoxia. Forced stem cell differentiation is only 

one aspect of the survival response. Attempts to prevent differentiation by manipulating one or 

multiple branches the hypoxia affected processes may jeopardize cell survival as well.  
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APPENDIX F 

Using mass spectrometry to attempt to detect AMPK-dependent substrates in 
mTSC responding to hypoxic stress  

AMPK is activated by hypoxia in mTSC as shown in chapter 4 and the importance of 

AMPK in metabolism and stem cell potency regulation has also been described in previous 

chapters. Many of the AMPK substrates that mediate its metabolic effects have been 

extensively studied. Those substrates that connect AMPK to non-metabolic effect, such as 

potency regulation are largely unknown. It is unlikely to be a direct effect because the potency 

factors we detected in the previous chapters such as CDX2, ErrB and ID2 do not possess the 

currently recognized AMPK substrate motif (or GSK3 motif). The emerging roles of AMPK in 

previously unrecognized cellular pathways and the increasing effort to develop new drugs 

(especially when almost all new drugs are AMPK agonists) targeting this kinase make it 

essential to fully understand the AMPK substrate network in different cell types and disease 

states. The AMPK substrate repertoire has been investigated in muscle cells [271], hepatocytes 

[218] and pancreatic cells [272]. There hasn’t been a detailed report on the substrates for AMPK 

in mTSC.  

Here we investigated the potential AMPK substrates in mTSC under hypoxic stress 

using mass spectrometry (MS). Short treatment duration was used to capture AMPK-dependent 

phosphorylation and avoid the extensive AMPK-independent changes hypoxia may exert on 

cells after prolonged exposure. Figure F1 shows the time course of AMPK activation at 20% and 

0.5% O2 over 1h’s time with 15 minutes intervals. The first peak of AMPK activation (pAMPK 

Thr172) happened at 30 min with around 2-fold increase above baseline and it went down again 

at 1h. Similarly, the level of AMPK substrate pACC (Ser79) had significant increase at 30 min 

and 45 min of 0.5% exposure (Figure F2). Based on that, 30 min of 0.5% O2 treatment was 

chosen as the experimental duration.  
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Figure F1: Time course of AMPK activation over 1h’s time shows that the first AMPK peak happened at 
30 min of 0.5% O2 treatment. Starting at 0h, cells were changed to medium pre-equilibrated with 20% or 
0.5% O2 for 15, 30, 45 or 60 min and collected at the end of treatment for western blot analysis. 
Histogram presents the fold change of pAMPK over 0h baseline. One-way ANOVA followed by Dunnett’s 
post-hoc test was used for statistics. “#” indicates there was marginal statistical significance over 0h 
baseline (p = 0.07). 
 
 
 
 

Figure F2: Time course of AMPK substrate pACC level over 1h’s time shows that the first significant 
increase in pACC happened at 30 min of 0.5% O2 treatment. Cells were treated and analyzed the same 
way as Figure A10 except that pACC instead of pAMPK was detected here. 
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Then we tested the minimal effective dosage of two AMPK inhibitors, compound C and 

arabinoside A (Ara A) in inhibiting AMPK activation in 0.5% O2 treated mTSC. Data was 

presented in Figure F3. 0 to 10uM of Compound C were tested, and 5uM Compound C was 

chosen because it is the minimal effective dosage that significantly reduced the level of AMPK 

substrate pACC (Figure F3A). 0 to 4uM of Ara A were tested and similarly, 2uM of Ara A was 

chosen (Figure F3B) as the dosage to be used for MS sample preparation.  

Figure F3: Dose response of Compound C and Ara A in reducing the level of pACC in 0.5% O2 treated 
mTSC. mTSCs were pre-incubated with different dosages of compound C or Ara A for 1h and 30 min 
respectively, before the start of 0.5% O2 treatment and continued throughout the 30 min of 0.5% O2. At 
the end of each treatment, whole-cell lysates were collected for western blot protein analysis. pACC was 
normalized to loading control Tubulin. ANOVA followed by Dunette’s post hoc test was used for statistics. 
“*” indicates statistical significance compared with no drug control group.  

After deciding the treatment time and AMPK inhibitor dosages, 4 groups of samples 

were prepared for MS. The 4 groups are: 1) 20% O2 for 30 min; 2) 0.5% O2 for 30 min; 3) 0.5% 

O2 + 5uM Compound C for 30 min; 4) 0.5% O2 + 2uM Ara A for 30 min. 100mm tissue culture 

dish was used for each group. mTSC reached ~ 75-80% confluency at the time of cell lysate 

collection, which equals approximately 15 million cells. RIPA buffer plus two protease and 

phosphatase inhibitor cocktails (Cat# P8340 and # P5726, Sigma) (Cat# 78445, Fisher scientific) 

were used to lyse the cells. 2ml of lysis buffer was used for each dish. Afterwards, whole-cell 

lysis was subjected to sonication for 30 seconds x 3. Then the cell lysates were transferred to 

our collaborator’s laboratory on ice for further processing in preparation for MS. The amount of 
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total protein in each sample was measured by Bradford Protein Assay. Equal amount of protein 

was used for every sample. Each sample was divided into 2 groups for MS, one for protein 

identification without enriching phosphopeptides, one for phosphosites identification after using 

TiO2 beads to enrich phosphopeptides [273].  

For total protein identification, the inclusion criteria are: 1) There should be at least 2 

unique peptides for each protein to call that particular protein has been identified; 2) every 

protein should show up in at least 2 of the 3 replicates. If a potential protein does not meet these 

two standards, it is excluded from the final data set. For phosphosite identification, first of all, 

only those phosphosites with localization probability > 0.75 were included. Secondly, only 

peptides that show up in at least 2 of the 3 replicates were included. The statistical method for 

the three set of comparison “0.5% vs 20% O2”, “0.5% + Compound C vs 0.5% O2” and “0.5% + 

Ara A vs 0.5% O2” was independent T-test, p < 0.05 was considered to be statistically significant. 

The summary of MS result is presented in Table F1. 

Table F1: Summary of MS protein and phosphosites identification 

Total Identified PhosphoSites 5433 

High Confident Sites (Localization prob > 0.75) 4081 

Total Identified Proteins (Localization prob > 0.75) 1269 

Significantly Changed PhosphoSites 0.5% vs 20% O2 228 

Significantly Changed PhosphoSites 0.5% + Compound C vs 0.5% O2 310 

Significantly Changed PhosphoSites 0.5% + Ara A vs 0.5% O2 241 

Significantly Changed Proteins 0.5% vs 20% O2 227 

Significantly Changed Proteins 0.5% + Compound C vs 0.5% O2 442 

Significantly Changed PhosphoSites 0.5% + Ara A vs 0.5% O2 454 
 

There were 228 phosphosites that were significantly (p < 0.05) changed due to 0.5% O2 

treatment. 111 phosphosites were upregulated and 117 were downregulated by 0.5% O2. 

Among the 310 significantly changed phosphosites due to effect of Compound C, 86 were 

downregulation and 224 were upregulation. 78 phosphosites were downregulated and 163 
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upregulated by Ara A. The immediate effect of AMPK on its substrates is to increase their 

phosphorylation level. Thus we expect the potential direct AMPK substrates are among the 111 

upregulated phosphosites due to 0.5% O2 treatment. Compound C and Ara A are AMPK 

inhibitors. We used both of them because each one has considerable off-target effects.  

We expect the high confidence AMPK substrate phosphosites would satisfy 3 standards: 

1) upregulated due to 0.5% O2 treatment compared with 20% O2; 2) downregulated by 

Compound C; 3) downregulated by Ara A. There were 36 phosphosites showed > 2.0 fold 

increase due to 0.5% O2 treatment, and they belong to 24 proteins. Among those 36 

phosphosites, there was only two, T591 of AAK (AP2-associated protein kinase 1, regulates 

clathrin-mediated endocytosis) and S1303 of SRRM2 (Serine/arginine repetitive matrix protein, 

involved in pre-mRNA splicing) that were decreased by both Compound C and Ara A. These 

two phosphosites can be potential direct AMPK substrate. Another 11 phosphosites (S595 of 

TRIM8, S26 of MCM2, S104 of RRP8, S23 and S25 of DDX27, S281 and T298 of RALGPS2, 

S655 and T654 of CTNNA1/2, T1224 of AHCTF1, S528 of NOP56) were upregulated by 0.5% 

O2, but only decreased by one inhibitor, either Compound C or Ara A.  

Unfortunately, ACC at Ser79, the canonical AMPK substrate, which was shown to be 

significantly upregulated by 0.5% O2 treatment and downregulated by both Compound C and 

Ara A was not found among the total 4081 identified phosphosites. This suggests a large set of 

potential AMPK substrates may not be detected in this experiment. For total protein data, we 

checked a set of proteins of particular interest to mTSC such as potency factors ID2, CDX2, 

FGFR2, ELF5, EOMESs, ERRB; TGC differentiation mediators STRA13 and HAND1; hypoxia 

responsive proteins HIF1α, HIF1β and Von Hippel-Lindau disease tumor suppressor (VHL) to 

see whether they are detected. Only CDX2 was detected in this list of proteins (1/11). Of the 8 

kinases we investigated in Appendix F, MEK1/2, p38MAPKα, AKT1, GSK3β, PI3K catalytic 

subunit beta isoform were detected in total protein data set; SAPK, AMPK and PERK were not. 

Interestingly, there was significant increase in the total protein level of AKT1 (2.7 fold) and 
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significant decrease in the total protein level of GSK3β (38%) after 30 min of 0.5% O2 treatment. 

The phosphorylation level of AKT1 and GSK3α (GSK3β was not detected by MS after 

phosphosites enrichment) was not affected by 0.5% O2. Thus, kinase regulation can be on 

protein level, even when stress exposure is short. The most important thing about proteomic 

data collected by MS is to increase the detection sensitivity. In addition, the fact that multiple 

known AMPK substrates, including Ser79 of ACC were not detected by MS suggests it is 

possible that AMPK is not highly activated in our system. Even though through western blot 

analysis, increased level of pACC was detected due to 0.5% O2 treatment, we don’t know what 

the fraction of pACC (Ser79) is compared with total ACC. If the fraction is very small, mass 

spectrometry may not be able to pick it up. The same logic applies to other known AMPK 

substrates. If the overall effect of AMPK is not strong, a tiny amount of AMPK-dependent 

phosphorylation may not be detected due to their low representation in the whole library of 

phosphopeptides. 

Both Compound C and Ara A have profound effect on of mTSC at 0.5% O2. The number 

of significantly changed phosphosites due to 0.5% O2 treatment was 228, which is the result of 

combined effect of multiple kinases including AMPK. The number of significantly changed 

phosphosites due to Compound C or Ara A at 0.5% O2 condition was 310 and 241 respectively, 

which are larger than the number produced by 0.5% O2 treatment. Similarly, the number of 

significantly changed proteins due to 0.5% O2 treatment was 227, while the number of 

significantly changed proteins due to Compound C or Ara A at 0.5% O2 condition was 442 and 

454 respectively. This suggests both inhibitors have many off-target effects other than their 

inhibitory effect on AMPK. GSK3α is an example of off-target effect. Both Compound C and Ara 

A significantly increased the level of phosphorylation at S278 of GSK3α, which is a known target 

of mammalian target of rapamycin (mTOR) [274], while 0.5% O2 alone does not have an effect 

on this phosphosite. Thus results obtained from inhibitor study should preferably be validated by 

other methods as well.  
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 Low level of oxygen (O2) occurs physiologically during in vivo embryo 

development.  As developing embryos moving from fallopian tube to uterus, oxygen 

level gradually decreases to ≤ 5% at the time of blastocyst implantation.  Blastocysts 

are made of two major cell populations, trophoblast cells and inner cell mass, from 

which trophoblast stem cells (TSCs) and embryonic stem cells (ESCs) are derived 

respectively.  TSCs serve as placental stem cells that later on proliferate and 

differentiate into placenta.  Previous study has shown that 2% O2 is the optimal O2 level 

for mTSC in vitro growth and potency maintenance, which agrees with their low O2 

niche in vivo.  Pathological hypoxia can happen to embryos in pregnancy complicated 

by certain medical conditions such as sleep apnea, anemia, hypertension or suboptimal 

living conditions such as high altitude or with carbon monoxide pollution. 

 Here we study the effect of hypoxia at 0.5% O2 on mTSC proliferation and 

differentiation.  We found that 0.5% O2 reduces the growth of mTSC without high levels 

of apoptosis and forces differentiation despite the potency maintaining conditions.  

Hypoxic stress induced differentiation has a preference toward trophoblast giant cells 
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(TGCs) lineage.  As a matter of fact, at the end of 6 days’ 0.5% O2 culture, 

approximately 50% of cells became TGCs.  One essential function of TGCs is to 

secrete placental lactogen 1 (PL1), the hormone that rescues corpus luteum function 

and maintains pregnancy. Increased PL1 expression was found in 0.5% O2 induced 

differentation.  Compared with normal differentiaiton with fibroblast growth factor 4 

(FGF4) removal, hypoxic stress induced differentiation has a longer reversible period, 

which eventually becomes irreversible with prolong hypoxic exposure.  We think that 

stress induced differentiation initially serves to increase the chance of organimal 

survival by providing essential parenchymal function; but with prolonged stress, reduced 

growth and irreversible differentiaiton caused stem cell depletion would lead to 

miscarriage.  

 The study on the effect of 0.5% O2 on mTSC with FGF4 present is to model how 

pathological hypoxia might affect embryo development during the peri-implantation 

period.  We also studied what can potentially be the optimal O2 for in vitro human 

blastocyst culture before implantation.  2%, 5% and 20% O2 were compared.  2% is the 

O2 level in human uterus at the time of implantation.  5% is the current standard O2 for 

human in vitro embryo culture and 20% is the tradition O2 level that has been used for 

30 years since the start of in vitro fertilization (IVF) practice.  We found that 20% O2 is 

most detrimental to post-thaw day 3 human embryo culture to blastocyst stage and 5% 

O2 is most beneficial. 2% and 5% O2 are remarkably similar to each other in terms of 

blastocyst cell number and stress related gene expression.  However, 2% O2 slightly 

increased the level of apoptosis compared with 5% O2.  Potential confounding factors 

from 20% O2 used at the first three days of culture before cryopreservation and 

insufficient nutrient supply associated with static culture may contribute to the result 
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seen here. 

 We next investigated the effect of O2 on the dynamic of AMP-activated protein 

kinase (AMPK).  AMPK is a central regulator of enegry metabolism and there are 

increasing evidences showing it is also related to stem cell potency regulation.  We 

found that departing from optimal 2% O2 for mTSC in vitro culture induced fastest 

activation of AMPK, regardless which new O2 level cells were switched into.  The speed 

of AMPK activation is similar to stress activated protein kinase (SAPK) when departing 

from 2% O2.  The highest magnitude of AMPK and SAPK activation was observed in 

hypoxic O2 at 0.5% and anoxia.  We think the speed of stress kinase activation reflects 

the starting cellular state while the magnitude of stress kinase activation reflects the 

final cellular state.  Both speed and magnitude of stress kinase activation are important 

indicators of the environment cells are subjected to.  Interestingly, we found that at 2% 

O2 AMPK was activated at 6 - 8h of mTSC culture, which probably reflects the need to 

change medium frequently in order to supply sufficient nutrition for the rapid cell 

proliferation at 2% O2.  
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