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CHAPTER 1 Introduction

1.1 Back ground & Motivation

Strongly correlated systems is a fascinating topic in condensed matter physics. Among

them, vanadium dioxide(VO2) is a strongly correlated material which shows metal-insulator

transition(MIT) near room temperature(340K)[10]. Early studies have revealed its first order

transition nature[10, 11]. Electric transport behaviors as well as optical properties undergoes

a tremendous change in the transition[12–14]. These makes VO2 attractive as a potential

functional material in optical switch and semiconductor applications[15, 16]. On the other

hand, the transition mechanism of VO2 is a puzzle for decades. In comparison to traditional

correlated Mott insulators, VO2 also undergoes a huge structural phase transition(SPT) from

rutile to monoclinic phases at 340K[10]. Numerous studies have shown strong evidences to

support both mechanisms. Structure transition mechanism is supported by optical evidences

[17–20]. As for interaction driven mechanism, tungsten doping effects[21] and extreme pres-

sure experiment[22] successfully changes the interaction strength to tune the transition.

Nowadays researchers tend to believe both mechanisms contribute to the transition[23, 24].

They occur at identical temperature which hinders researcher to distinguish them. Recent

advances have been made thanks to the synthesis of single crystal VO2 by Guiton’s group[5].

With a cleaner and simpler system to study, Ruan’s group has implanted optical color depth

and TEM diffraction to observe MIT and SPT accordingly. Two transitions can be well

distinguished with placing single crystal VO2 on certain types of substrates [25].

Among research works have been done to study transition mechanisms, few have been

done using transport measurements. Even though transport is ideal to study the electronic

structure with rich physics, a thorough search of the relevant literature yielded the following:



2

only two related article measuring hall effect on VO2[26, 27]; limited number of studies used

carrier density tuning method (field effect) on VO2 also encounter extremely difficult[28, 29]

and it remains an open question whether it is due to strongly correlated interaction or short

screening length limits the penetration of field effect[30].

To gain a better understanding of the MIT in VO2 and obtain the electronic structure

during the transition, we focus on utilizing quantum capacitance measurement to study

VO2. Quantum capacitance measurement was firstly proposed for probing the electronic

structure[31] and have successfully revealed strong interaction in GaAs two-dimensional elec-

tron system[32]. Our work has demonstrated a unique method to extract quantum capac-

itance from a large resistive sample using a home made bridge. The accurately measured

capacitance yields density of states(DOS) near Fermi energy which manifests a rapid growth

when temperature raises up, as expected for approaching metallic state. Our work is the

first experimental study to probe during MIT in VO2 and is important for unraveling the

long-standing mystery behind the driving mechanism for this phase change. Additionally,

the bridge method for measuring the quantum capacitance in a highly resistive sample can

be readily applied to other systems that exhibit a MIT, which is universal to many systems.

The electron-electron interactions are universal in many systems. Besides Mott insulator

which is due to the competition between on-site Coulomb repulsion and transfer integral,

2D charge carriers in confined quantum well also demonstrate behaviors due to e-e interac-

tions. These are fascinating phenomena, but not yet well understood [33–36]. Researchers

seek to understand the role of e-e interactions in ground state. One major question is can

e-e interactions be strong enough to drive 2D charge carriers into lattice structure such as

Wigner crystal [37] or Wigner glass [38–40]. For such systems, the Coulomb energy EC com-
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petes with many other factors, such as the kinetic energy EF , disorder potential, polarizing

magnetic field, etc. One of the major challenges to experimental progress in this area, is the

difficulty in fabricating high purity systems with dilute charges. Furthermore, making Ohmic

contact to dilute charge systems represents a significant challenge. A significant portion of

this work is to fabricate ultra-high purity devices using both doped p-type GaAs/AlGaAs

quantum square wells and un-doped (capacitively induced holes) heterojunction gated field

effect transistors (HIGFETS). These samples demonstrate excellent mobility at low charge

densities [41]. These systems allow us to identify pinning behavior in the reentrant insulating

phase near filling factor ν = 1/3 in the fractional quantum Hall regime and several signatures

of WC without suffering from localization effects [42]. Additionally, these samples provide a

unique opportunity to probe the transport between two edges of a topological insulator that

are perfectly separated by a bulk insulating phase in a corbino-disk-like geometry for integer

filling factors in the quantum Hall regime[43]. These studies are critical to understanding

the physics of strongly correlated charges and their relation to topological phases, which is

a fascinating area of intense current research [44–48].

The content structure of this thesis as follows: Chapter 1 introduces the physics of

strongly interacting systems discussed in this thesis. Chapter 2 presents the fabrication

method. Chapter 3 contains the cryogeneic techniques as well as measurement methods we

implement. Chapter 4 introduces VO2 and discusses the quantum capacitance measurement

results on polycrystalline VO2. In Chapter 5 we use single crystalline VO2 to study the

transition. Chapter 6 and 7 represents the result we have from GaAs correlated systems and

graphene.
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1.2 Theory

1.2.1 Electron in solid, Non-interacting electrons

The behavior of electrons inside solid has been studied for decades. Numerous models

have been created for different systems. People started with simple free electron model: For

free electrons in metal, in Schrodinger equation, there is no potential energy term. The

density of state for 3D can be written as:

g(E)dE =
V

2π2~3
(2m)

3
2E

1
2 dE (1.1)

Similarly, we can get 2D and 1D density of state. Integrating density of state up to Fermi

energyEF yields the total number of electrons(N), which gives us a formula of Fermi energy

as a function of N:

EF =
~2

2m

(
3π2N

V

) 2
3

(1.2)

Considering the transport behavior, Drude applied kinetic theory of gases to electrons in

metal. It can be described as: j = σE and σ =
ne2τ

me

= neµe

The above model gives a good approximation and it’s been widely used. To extend

this model to include ions in solid, Born-Oppenheimer approximation is made to decouple

electron and ion. The ion and electron has a large mass ratio(2000∼500000) which makes

ion relatively static to electron. Another approximation is mean field approximation, which

lets one electron treat the interaction from other electrons through an average field. With

these approximations, band theory takes the ion potential into account.

The effect of periodic lattice potential on dynamics of the conduction electron wave-
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packets can be taken into account by using effective mass me to substitute the real mass of

electron in the equation of motion. The equation of motion for electrons:

~
dk

dt
= −eE (1.3)

and group velocity can be written as v =
dω

dk
=

1

~
dE

dk
, Combining these together it gives:

dv

dt
=

1

~
d

dt

(
dE

dk

)
=

1

~
d2E

dk2

dk

dt
= − 1

~2
d2E

dk2 eE (1.4)

Also using me
dv

dt
= −eE, finally we can define effective mass as:

me = ~2(
d2E

dk2
)
−1

(1.5)

The band theory has been successfully used in many cases in solid state physics[49]. It well

distinguishes insulator and conductor, and it gives guidance for engineering the properties

of materials. However, people discovered in special cases[50] band theory gives the invalid

result.

In certain system[51], when provided with large amount of random disorder, it turns

out to be an insulator even there is zero band gap. Anderson studied this disorder driven

insulating which is called Anderson Localization. The electron is in phase coherent with

its time reversal state. This coherent interference traps electron at the disorder site. The

phase coherence can be changed by applying magnet field, which breaks the time reversal

symmetry.

In disorder free systems, for example single crystal VO2 and ultra clean GaAs/AlGaAs
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herterojunction, localization of carriers happen as well and leads to insulating behavior.

This tells us there are other effects we should take into account which is shown in following

section.

1.2.2 Strongly correlated system

When dealing with the interaction among electrons, band theory treats electron-electron

interaction in mean field approximation: one electron feel an averaged electric field which

is from other electrons around. Is this always true? In most cases, when electron-electron

interaction is not dominant effect, it will be overwhelmed by other effects(electrons kinetic

energy). The mean field approximation works well when dealing with these cases. For some

systems, when interaction between electrons becomes comparable to its kinetic energy, we

have to take into account the interaction to get a complete picture.

1.2.3 Hubbard model and Mott transition

Hubbard model is widely used to describe the transition from metal to insulator in Mott

insulator. It illustrates interacting particles on a lattice. In modern ab initio calculations,

the local density approximation is improved by introducing a Hubbard U term to include

on-site repulsion effect[52] in transition metal.

For electrons inside solid, tight-binding model only includes the hopping term. Hubbard

model has been improved by taking strong interactions into account. Although in most cases,

it gives qualitative answer. It successfully predicted Mott insulators which is insulating due

to the repulsion between in site electrons.

Hubbard model takes an extra term called on-site repulsion in Hamilton. Which is due

to the coulomb repulsion between electrons from same atomic orbitals. As shown in Figure.

1.1, in band theory, there is only the kinetic term which decides hopping(or tunneling) be-
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havior. However, by introducing on-site repulsion, Hubbard model considers the competition

between hopping and on-site repulsion. Although Hubbard model only considered adjunct

site hopping integral and Coulomb repulsion, it is the simplest effective model to take the

interaction into account.

+ + +

E
ne

rg
y

Tunneling Interaction

Periodic Potential from ions

Figure 1.1: Diagram for Hubbard model

The Hamiltonian can be written as:

H = Ht +HU = −
∑
<i,j>σ

tijc
†
jσcjσ + U

∑
i

ni↑ni↓ (1.6)

The first part Ht is called transfer(hopping) integral, which stands for kinetic energy

term. Second part HU is Coulomb repulsion term called Hubbard U. The typical Mott

insulator comes from transition metal oxides, amorphous semiconductors, etc[53, 54]. The

system is an insulator when electron-electron Coulomb interaction is larger than its kinetic

energy. Why most Mott insulators happens at transition metal oxides? To answer this
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question, we have to consider their sub band structure. For transition metal oxides, their

3d band and 2p band has a large gap. When there 3d band is half filled, the Ht is much

smaller than those system which has a larger overlapping between out shell band and inner

band. In this situation, Ht becomes comparable to HU term. When HU is strong enough

,it becomes a correlated insulator. This behavior can be tuned by external gating, carrier

injection[10, 55, 56], ultra high pressure as well as doping.

1.2.4 Anderson localization

Energy

x

Figure 1.2: Anderson localization picture: Constructive interference of back scattering.

The phenomenon of Anderson localization happens at the ground state. The Anderson

localization happens due to the large amount of random disorder. The resistivity tempera-

ture dependence of Anderson localization follows Arrhenius hopping. It is predicted as the

activated behavior where ρ ∝ exp (T0/T ). This provides us with the right way to distinguish

the Anderson insulator from Wigner crystal.

1.2.5 Wigner crystallization

Wigner crystal is a solid state phase of electrons. The cause of Wigner crystallization is

similar to Mott insulator. Electrons crystallize when Coulomb interaction dominates the ki-

netic energy. The system indicates insulating behavior. The Wigner crystallization normally



9

requires ultra low temperature to lower the kinetic energy. For example, the first observation

of Wigner crystal is observed on Helium surface where electrons form solid[57]. Compared

Figure 1.3: Two dimensional Wigner crystal[1]

with Mott insulator which electrons localize at ion lattice site, Wigner crystallization hap-

pens when electrons form its own lattice. It happened when electrons are confined within

energy potential. As for the Wigner crystal on Helium surface, a potential well formed by

the combination of the image potential and repulsive barrier to penetrate into the liquid[57].

The electrons is not moving freely in the 2D surface before Wigner crystallization happens.

As an intermediate step, two dimenstional electron gas goes into Fermi liquid before goes

to Wigner crystal. With the prove that Wigner crystal exists, naturally the next question

is whether Wigner crystal exist inside solid. To achieve Wigner crystal, we need a large rs

value. Several theoretical predictions gives minimum rs for Wigner crystallization in differ-

ent systems[58, 59]. All rs requires to be at least the order of 10. One of the ideal systems

people have been found to realize Wigner crystal is quantum well formed in GaAs/AlGaAs
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heterojunction. To be able to reach the Wigner crystal, normal it needs to reach a low

density to tune up the rs. From Derude’s formula: σ = neµ, when density is too low, there

is a trouble to measure electrical signal since the conductivity σ goes down. The only way

to resolve this is to achieve a high mobility to compensate the effect from low density. Since

GaAs/AlGaAs has a very high mobility, therefore it is an ideal candidate for achieving this

goal. Another reason is that GaAs/AlGaAs heterojunction has an almost ideal interface, this

fact limits the possibility for the disorder driven Anderson localization. The Wigner crystal

are predicted to have a resistivity temperature dependence behivor follows Efros Shklovskii

hopping. It is a non-activated behavior where ρ ∝ exp (T0/T )1/2. This provides us the very

important way to distinguish Wigner crystal from Anderson insulator.

1.3 VO2 introduction

VO2 is a strongly correlated material. It attracts attention due to its near room tem-

perature Metal insulator transition(MIT). VO2 undergoes transition from insulator to metal

around 340K[10]. The resistivity during the transition changes many orders. There are

only few materials has MIT transition near room temperature: VO2(340K), NbO2(1080K),

Ti2O3(410K), and V2O3(150K)[10, 60]. Among them, VO2 shows closest transition temper-

ature to room temperature. It also shows first order transition which happens with abrupt

properties changes on electrical conductivity, optical transmittance. These features make

VO2 potential for electronic applications including fast switches, sensors, memories.

The electron-electron interaction in VO2 can not be ignored when study the electrical

properties. However, electron-electron interaction is not the only mechanism for transition.

The structure of VO2 changes from monoclinic insulator to rutile metal. The transition hap-

pens with hysteresis. Depending on the crystal structure, the hysteresis can be progressive
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Phase Symmetry Lattice Constant(Å) Angle
Rutile P42/mnm(D14

4h) aR=4.55 bR=4.55 cR=2.86 90◦,90◦,90◦

Monoclinic P21/c,(C5
2h) aM1=5.38 bM1=4.54 cM1=5.75 90◦,122.6◦,90◦

Table 1.1: Rutile and Monoclinic phase comparison

for multi-grain sized VO2[10], or cascade for single crystal VO2[5]. Although the hysteresis is

not favored for application, there is no good method can suppress the hysteresis effectively.

1.3.1 Physical and electronic structure of VO2

The phase transition is a first order transition. When temperature belows Tc(340K),

VO2 is in monoclinic (P21/c) phase. The characteristics of this phase is the V4+-V4+ pairs

in c axis have alternate separations of 2.63Å and 3.12 Å as shown in left of Figure 1.5.

Compared with the rutile metal phase when temperature is higher than Tc, the V4+-V4+

pairs has a fixed separation of 2.86Å. The structural difference causes the number of V4+ in

unit cell doubled from metal phase to insulator phase. However, since the monoclinic phase

now has almost as twice length on c axis. This makes the experimental observable change

rather smaller. In fact on single crystal VO2, the experiments[61, 62] work has shown there

is about 1% expansion from rutile phase to monoclinic phase.

Table 1.3.1 shows the lattice comparison.

The band gap of VO2 has been studied by different means, the optical studies shows:

the band gap is 0.2∼0.3 eV for rutile metal state; for monoclinic insulating state, optical

band gap is 0.6∼0.7 eV[12, 63]. The relationship between MIT and electronic structure of

VO2 are qualitatively explained by Goodenough in 1971[64]. In this work, he proposed the

Peierls-type structurally-driven MIT model to explain the MIT behavior. The vanadium

atom has electron configuration [Ar]4s23d5, this atom bound to two oxygen atoms has the
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1s22s22p4 configuration. Four electrons of vanadium fill oxygens’ shell. The Vanadium atom

has a single electron left near its fermi level. The electrons in O atom form a closed shell

and lie below the fermi level. Because of the anistropic crystal field. The level where the

electrons reside are split into two level manifold(eg) and three level manifold(t2g). The t2g

state again splits into d// and dπ states. The d// and dπ states overlap with d// filled with

a single electron on the bottom. Fermi level lies in d band, which makes it rutile metal

phase as shown in Figure 1.4. As for the monoclinic phase, the V4+-V4+ paring parallel to

the c-axis splits the d// band into bonding and antibonding states. An energy gap about

0.6eV∼0.7eV is formed between 3d// band and 3d∗π band in Figure 1.4 (a).

Figure 1.4: VO2 band diagram

1.3.2 Mott transition vs Peierls transition

The challenging to study VO2 transition is complicated by the entanglement of Mott

transition vs Peierls transition(Structure transition). As discovered by Morin in 1959[10],

VO2 has been the focus of research. However, when VO2 electronic structure changes with

temperature, its structures also changes. Both transition happens about the sample temper-

ature( 340K). There has been a long debate about which transition dominate the transport

properties as well as optical properties[17, 65–69]. Recently, the synthesis of single crystal
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3.12
3.12

2.63

2.86
2.86

Figure 1.5: VO2 Crystal structure: Left: Monoclinic insulating phase; right: Rutile metallic
phase
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VO2[61] has enabled another approach to study at VO2 metal insulator transition.

1.4 GaAs introduction

Another strongly correlated system used in this study is GaAs/AlGaAs heterostructures

as shown in Figure.1.7 (a). Aluminum gallium arsenide (AlxGa1−xAs) is a semiconductor

nearly the same lattice constant as GaAs. It has larger bandgap than GaAs. The x in the

formula above is a number between 0 and 1. This indicates an arbitrary alloy between GaAs

and AlAs. The advantage of GaAs/AlGaAs heterostructures is that the mismatch of the

lattice between GaAs and AlAs is very small (AlAs’s lattice constant is 0.15% larger than

GaAs’s) in Figure.1.7 (a). This allows the heterostructures formed in GaAs/AlGaAs to have

very little impurity and induced strain. As a result, it has the highest electron mobility in

record. The highest mobility record of GaAs/AlGaAs heterostructures is 36, 000, 000 cm2/ Vs

[70]. To make a comparison, the highest mobility in MOSFET is roughly 80, 000 cm2/ Vs.

The device we used in our study is confined electrons in two dimensions. Normally by

tuning the dimensions of system, we expected different physical properties. For example,

the magnet moments and local volume have different in various dimentions[71]. The single

electron device is based on zero dimension electrons[72].

After two type of semiconductors are placed in contact to form the heterostructure, re-

arrangement of mobile carriers which occur near the compositional junction. As a result,

electrons move from the semiconductor with the higher Fermi-level to the other, and an

electric field is produced to balance this transfer. At end an equal fermi level is reached. The

built in potential tilts the conduction band at the interface to have a local energy minimum,

a confined quantum well is formed as illustruted in Figure.1.6. Another type of quantum

well can be created by applying sandwich structure(AlxGa1−xAs-GaAs-AlxGa1−xAs).
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Figure 1.6: Quantum well formation: two bulk material in contact. Equilibrium of Fermi
level bend the conduction band

Most GaAs/AlGaAs heterostructure has a delta doping layer next to it. Delta doping

supplies charge carriers, usually Carbon for P doping and Silicon for N doping. Delta doping

is known to cause much less imperfection than normal doping method. However, this small

sacrifice of quality becomes critical in situation to distinguish Anderson localization(disorder

caused) or Wigner crystallization(interaction caused). To achieve almost no imperfection is

to grow undoped GaAs/AlGaAs heterostructures. For this type of structure, there is no

intrinsic dopant. Carriers are only capacitively induced by a metal gate, and the carrier

density is controlled by the gate voltage. This is the concept of a HIGFET illustrated in

details in Chapter 6.
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(a) (b)

Figure 1.7: a) GaAsAlGaAs interface TEM pictures. b)Mobility improvement of GaAs.[2]
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CHAPTER 2 Fabrication

2.1 Basic of fabrication

2.1.1 Shadow method

Shadow masking is a simple technique. The masks we have designed are 1 inch diameter

circular stainless steel sheet. The patterns are created by intense laser burning. This method

usually has been used in large sample and making contacts to it. This method is usually used

in making thin film like sample. The masks are in pair. One mask for growing sample(Figure

2.1 a), the other mask for making contacts(Figure 2.1 b). Mask shown in Figure 2.1 a is

used to attach to the substrate wafer, the sample material will be evaporated on to the

substrate through the opening on mask. When the growth is done, the substrate has the

thin film in the shape shown in Figure 2.1 a. Next step, mask in Figure 2.1 b is used. Three

small patterns on the rim serves as the alignment mark. The masks and wafer need to be

well aligned to guarantee the location of the contacts on right position. The contacts are

made by thermally depositing metals(We use Au/Cr.). The contacts deposition will form

the same shape as the pattern in Figure 2.1 b. This method has been used to make VO2

polycrystalline sample on SiO2 substrate. Figure 2.1 c shows a finished 1 inch wafer with

various patterns on it.

2.1.2 photolithography

Photo-lithography is the first step in nano-fabrication. All the modern computer chips

are manufactured by Photo-lithography. In industry, the Extreme Ultraviolet Lithogra-

phy(EUV) is used to make the fabrication resolution approaching 10nm[73]. At Wayne state

university, our lithography equipment(MJB-3) has a resolution of 0.6µm. Most times the

resolution we can approach is also limited by the microscope on MJB-3. Consider all these
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(a) (b) (c)

Alignment
mark

Alignment
mark

Figure 2.1: a) Shadow mask for sample thin film deposition. b) Shadow mask for metal
contacts deposition. c) Finished sample with contacts on it.

factors, we have an estimated accuracy of 2 µm aligning the pattern. Below are several steps

for the photo-lithography, the schematic diagram is illustrated in Figure 2.10:

2.1.3 Clean room environment

Our devices are all fabricated in a class 100 cleanroom in physics department at Wayne

state university. The temperature and humidity are well controlled in desired range by

airtech system. The temperature in our clean room is 68±2◦F. The humidity is controlled

48±3%. The condition is crucial for the success of fabrication.

2.2 Fabrication on GaAs device

The GaAs wafer used in our lab are provided by our collaborators from Princeton Uni-

versity and Sandia National Laboratories. The wafers are made with well defined layered

structures form GaAs-AlGaAs quantum well(See Figure 2.3). The works we did in Wayne

state university include making the raw wafer into different electronic device for various

measuring purpose.

The fabrication includes the following major steps:Lithography, Etching, Metal deposi-

tion, Making Ohmic contacts. Following illustrates these steps.
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Figure 2.2: Clean room environment
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Figure 2.3: Example of
GaAs layered structure.
Next to the layer mate-
rial shows the thickness of
each layer. The 30X and
70X stands for the repli-
cate times.
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2.2.1 Lithography

The purpose of lithography is to make a thin film (1∼2 µm) material with certain pat-

terns. The opening on the pattern exposes the sample surface. This part of the sample can

be etched away and deposit metal to make Ohmic contacts.

Spincoat

Spin coating is a common techniques for applying thin films to substrates. It is widely

used in industries and research. It can quickly and easily produce uniform films, the thickness

ranging from a few nanometres to a few microns. In our fabrication, firstly, spin coat the

sample with photo-resistor. The photo resistor is dropped on sample which form a dome

shape in Figrure 2.4 a. Then the substrate is rotated at high speed on spinner and the most

of photo resistor fly off the substrate(Figure 2.4 b). For a large wafer spin coating, the air

is blowing from top on to the photo resistor. In our lab, we don’t apply air flow since the

samples we use have a small size(<1cm2). After spin, the photo resistor left on substrate

forms an uniformly thin film. The photo resistors we commonly used in our clean room

are AZ4620 and Shipley S1811/S1813. Both are negative photoresistor. The spin speed-

thickness relation can be found in photoresistor data sheet. A good estimation can be done

using t ∝ 1√
ω

. We normal use a thickness larger than 1µm photoresistor.

Soft-bake

After spin-coated, the photoresistor need to be soft-baked before using. Solvents can be

removed during Soft Baking. The photoresistor becomes photosensitive only after softbaking.

The baking time and temperature varies with photoresistor type. See the Table 2.1 for

soft bake details. The soft baking temperature and time need to be well controlled. Over
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Figure 2.4: Spin coat substrate with
photo resistor

baking can degrade the photosensitivity of photoresistor. Under baking can prevent UV

light during the exposure procedure. If the sample has been soft-baked but left in a high

moisture environment for a long time, it is necessary to soft bake it again.

Photoresistor bake type temperature(◦C) time(s)
AZ4620 soft 95 95
AZ4620 hard 105∼110 180∼300
S1811 soft 115 60
S1813 soft 115 60

Table 2.1: Table to test captions and labels

Expose pattern

To expose pattern, we use Karl Suss MJB3 mask Aligner to align the pattern on the

mask to the sample. After alignment, a 365nm UV light is uniformly exposed to the sample.

The expose time can be derived from formula: Dose
UV intensity

The photoresistor specific required

dose can be found from the photoreisitor data sheet. The typical exposure time used in our

samples is ranging from 15 to 27s.

Development

After exposure, the sample can be developed using developer. The developer used for

GaAs is AZ400K diluted with DI H2O at ratio 1:5. The development time can be found in
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Figure 2.5: Karl Suss
MJB3 MASK ALIGNER

photoreisitor data sheet. To develop the photoresistor, the exposed sample is immersed into

a baker with developer. To have a rough estimated develop time for large patterns(visible).

We develop until exposed pattern become clear and wait for extra 5s before immerse into DI

water.

Hard-Bake(post expose bake)

The hard-bake is used to harden the resist image after development. Similar to soft-

baking, during this step sample will be put on surface of hotplate. This step will make

photoresistor withstand the harsh environments of etching. Usually high temperatures are

used (100C - 120C). Such high temperature will crosslink the resin polymer in photoresistor.

By doing this, the photoresistor image becomes more thermally stable. Hard-bake also helps

to improve photoresistor adhesion to the wafer surface. The only photoresistor we have been

used for hard-bake is AZ series. The temperature and baking time is shown in Table 2.1.
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Etching

Etching on GaAs devices are all done by using wet etching. The enchant are made of

H2O2, H2SO4, H2O in a ratio of 4:5:16. Two type of etching condition has been used in this

thesis:

Etching in the light: Etching in the light is more generally used define a hall bar pattern

on the sample. For p-doped sample, photoresistor protect the hall bar pattern, the rest will

be etched away by using etching in the light, leave buffer substrate. For undoped HIGFET

sample, the light etching will etch away the area except the gate region.

Etching in the dark: Dark etching is only used for HIGFET contacts etching in this work.

As shown in Figure 2.6, the dark etching has a slight low etch rate(8.66 nm/s) than light

etching rate(8.99 nm/s). However, the profile of dark etching are different from light etching.

Figure 2.6: Etching rate at different conditions (Room temperature at 69.2◦F , humidity at
47%)
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Figure 2.7: Etching profile
observed by using SEM

2.2.2 Metal deposition

Thermal evaporation of metal

Deposition of metal can make ohmic contact to the sample. The developed sample has

photoresitor patterns. These patterns has opening like windows allow the evaporated metal

to go through. Sample is anchored to a round metal plate inside vacuum chamber(Figure

2.8 a). This plate can rotate and tilt to a certain angle. Metal source is heated with a large

current to evaporate. During the evaporation, the thickness of deposition is recorded by a

film thickness monitor down to 1Å. The depositing instrument we used in our lab is nano

36, with powerful turbo pump it can quickly pump down to 3E-8 torr. This level of high

vacuum is helpful for making a good deposition. Also, a good vacuum can prevent the metal

from oxidization during the evaporation. During each deposition, the chamber pressure of

Nano 36 is under 2E-6 torr. There are two type of metal deposition. The contact metal and

gate metal deposition. Deposition recipes are listed in Table 2.2.

Liftoff

Liftoff is the last step in lithography. Finally, after the deposition is done, the sample
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Figure 2.8: Kurt Lesker Nano36 deposition system platform

Device type material 1 thickness(nm) material 2 thickness(nm)
p-GaAs contact AuBe 95 Au 5
p-GaAs gate Cr 30 Au 15

HIGFET contact AuBe 160 Au 10
HIGFET gate Cr 30 Au 15
n-GaAs contact AuGe 70 Au 5
n-GaAs gate Cr 30 Au 15

Table 2.2: Table of metal deposition

will be soaked into acetone to remove the photoresistor. There are a few factors can effect

the liftoff, which need to be considered. The first thing is the exposed pattern need a good

undercut wall to guarantee the liftoff. The idea of under cut is shown in Figure.2.9. This

corresponds to the develop step in Figure.2.10. If the under cut is not good enough, the

deposited metal can connect as one whole piece, and acetone wont go though the metal to

clean the photoresistor. Secondly, the surface has to be kept as clean as possible. If there are

dust or small dots on the surface. They can pin the photoresistor when during liftoff. Lastly,

The metal deposition has to be done in a sufficient low pressure, otherwise, the thermal
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evaporated metal particles can carbonize the photoresistor.

Vertical side walls Undercut side walls

Figure 2.9: Undercut walls(right) vs no undercut wall(left), The black color is substrate, the
blue color is photoresistor

Spin coat sample 
surface with 
photoresistor

UV expose

Develop

Metal depositionLift Off

Figure 2.10: Major photo lighography procedures

2.2.3 Making Ohmic contact

The Ohmic contacts are important for a working electronic devices. To make an ohmic

contact. After lift off, the device will be put into forming gas and annealed at high temper-

ature to overcome the Schottky barrier.

For p-doped GaAs device sample, annealing has been done at 485◦F for 10 minutes. The

chamber has been preconditioned with flushing forming gas. The forming gas used in our
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(a) (b)

GaAs p-dop 
substrate

after Etching

Metal contacts

Figure 2.11: Anti-Hall bar sample fabrication

lab is 5%H2+95%N2. When sample surface temperature reached 485◦F , the forming gas

stops flushing and the chamber pressure stays around 350 mbar.

2.2.4 Three types of GaAs sample

Anti hall bar sample

Figure 2.11 shows the anti hall bar sample fabrication. The p-doped GaAs sample is

photolighography with light green pattern in Figure 2.11 a. Then elsewhere is etched down

below 2D hole layers(About 500 nm for p-type GaAs sample used in this work). After etching,

only the square-donut part has a 2D hole layers, elsewhere is left with semi-insulating GaAs

bulk substrate layer(Figure 2.3). After this square donut, another lithography need to open

12 windows on the metal contacts area shown in Figure 2.11 b. The mask is used has to

be in pair with the first mask. The patterns are self alighed through the alignment mark.

Finally the contacts need to be annealed with forming gas at certain temperature to form

ohmic contacts.

GaAs HIGFET sample

HIGFET stands for Heterostructure Isolated Gate Field Effect Transistor. In this work,

HIGFET is GaAsAlGaAs without doping. Unlike doped GaAs material, HIGFET has no
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(a) (b) (c)

Contacts Gate

Figure 2.12: GaAs HIGFET sample fabrication

intensional doping, all the carriers comes from field effect. The HIGFET sample has a heavily

doped layer on surface which is grown by MBE. This heavily doped layer serves as the top

gate. To fabricate HIGFET, we firstly make a standard Hall bar using photolithography.

Then the Hall bar area is protected and elsewhere is etched down, the etching depth depends

on the sample structure. After etching, the sample is shown in Figure 2.12 a. This step will

guarantee only the Hall har area has the 2D interface. The following step is depositing

metal contacts and annealing. The metal thickness, annealing time and temperature are

tricky parameters which need to be fine tuned to obtain a functioning device. Details about

this step is discussed in Chapter 6. After contacts have been made, the final step is depositing

metal to the gate. Since the same itself has a heavily doped layer, we only need to deposit

metal to the surface. Note this step is not deposting the gate, depositing two square as

shown in Figure 2.12 c can prevent surface oxidation as well as making it easier for wiring.

Gated p-type GaAs sample

The gated p-type GaAs sample is a standard hall bar measurement setup with a metal

top gate. To fabricate this type of sample, metal contacts are firstly deposited on surface

of GaAs. Contacts are annealed at 485◦C for 10 minutes to form ohmic contacts. Secondly,
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a top metal gate is deposited in the center of the sample. The position of metal gate

is controlled by alignment mark. Then, another lithography is used to make a layer of

photoresistor to protect the area connecting metal contacts and metal gate. Lastly, etching

removes the the uncovered area. Both photoresistor protected and metal protected area will

stay. The p-doped GaAs sample we used in our research has no heavily doped surface layer.

In another words, the metal gate defines the 2D carrier area. The gate has to be made before

etching away the unprotected material so that the 2D carrier is well covered by metal gate.

This way reduces the gap or any misalignment between top gate and 2D layer. The contacts

have to be produced before top gate, otherwise, annealing contacts will short the top gate

to 2D layer.

Metal 
contacts(a) (c)(b)

GaAs

Top
metal gate

Figure 2.13: Gated p-GaAs sample fabrication

2.3 Fabrication on VO2 device

There VO2 devices in this work include VO2 film based and VO2 nanobeam based. For

VO2 film, making a device is not difficult. Even without lithography, putting silver paint on

VO2 film yields good contacts. This section focus on the fabrication of VO2 single crystal

nanobeams.
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2.3.1 Polycrystalline VO2 preparation

Vanadium dioxide thin film can be synthesized from metal-organic chemical vapor depo-

sition method[74], physical vapor deposition[75], pulsed laser deposition(PLD), sputtering

and sol-gel[76–78].

In this thesis, VO22thin film was deposited through pulsed laser deposition on the SiO2

thin layer. Our thin film VO2 sample is from Dr. Nelson Sepúlveda’s group in Michigan

State University. As shown in Figure 2.14, the substrate was placed into a vacuum chamber

with oxygen gas pressure at 20 mTorr. A metallic vanadium target was ablated using a

KrF excimer laser was ablated by excimer laser pulses with energy of 352 mJ per pulse

(fluence of ∼2 J/cm2) and a frequency of 10 Hz. A ceramic heater used to heat the sample

was maintained at 595 ◦C through 25 min deposition. Following the deposition, 30 min

annealing process was performed with the same deposition conditions[79]. The single crystal

nanobeam of VO2 in this thesis is synthesised by physical vapor deposition[5]. The schematic

for physical vapor deposition is Figure 2.15, V2O5 powder source is placed in a ceramic boat

located in the center of a tube furnace setup, and a silicon substrate with SiO2 covered surface

is placed 3 ∼ 5cm away from the edge of the boat in the downstream direction. Argon flows

into the tube at a constant rate as a carrier gas, and a mechanical pump maintains the

tube in vacuum. Then, the furnace temperature is ramped to 900 ∼ 950◦C in 30 min,

and is maintained for 30 min before cooling down naturally. The flow parameter has to be

controlled to make single crystal VO2 nanobeam. The thickness and width of nanobeam are

usually from 40 nm to 2 µm. The length can goes up to hundreds microns.



31

Pulsed laser beam

Heater

SiO2 
substrate

V2O5 
target

Chamber 
Window

Vacuum 
Chamber

Figure 2.14: Schematic of Pulsed laser deposition of Polycrystalline VO2

2.3.2 Single crystal VO2 preparation

Our single crystal VO2 nano beam is provided by our collaborator from Dr. Jie Yao’s re-

search group at the University of California, Berkeley and Jiwei Hou from Tsinghua university

at Beijing. Vanadium dioxide single crystal nano beam are grown at a rather high tempera-

ture 900-1100◦C[5]. Although this temperature is lower than melting point of SiO2(1600◦C),

this temperature soften SiO2 substrate and embedded VO2 into the SiO2, which results in

a large strain along the c-axis. This external strain cause the transition temperature much

higher and the transition is not sharp. To reduce this strain effect. Buffered oxide etch(BOE)

is used to etch a very thin SiO2 layer. After the SiO2 around VO2 nanobeam is reduced ,

some VO2 nanobeams then become loosely bonded to the substrate and therefore can be

transferred on to another SiO2 substrate using micro-manipulator.
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Figure 2.15: VO2 single crystal nanobeam synthesis diagram

The transferred sample has adhesion with the new substrate. Compared with the original

substrate where the VO2 nanobeams grown, the strain are much less. As shown in Chapter

5, the transition are rather different.

2.3.3 Sample transfer

The VO2 single crystal nanobeam has a grown temperature 900 ∼ 950◦C. This condition

makes the VO2 single crystal nanobeam embedded in the substrate and has a large strain

comes from the substrate. A few works[5, 61, 80] has demonstrated that embedded VO2

single crystal nanobeam has a ”poor” transition behavior. To avoid this, we have to transfer

the sample from original substrate to a new substrate. By doing this, the strain will be

greatly reduced. All our measurement on single crystal VO2 nanobeam are based on the

transferred sample. The Figure 2.17 compared the sample before and after transfer. To

transfer the sample, we used PC pick up method.

2.3.4 Lithography

The lithography on VO2 can only been done by using developer MF319, the devel-

oper AZ400K for GaAs will react with VO2. To work with MF319 developer, we choose
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Figure 2.16: Embedded VO2 nanobeam vs Strain free VO2 nanobeam

S1811/S1813 as our photoresistor for masking. The thickness of VO2 nanobeam can ranges

from 20nm up to 2µm[30]. In our work, most tested VO2 nanobeam are chosen to be around

1 µm. Wth this, we need a thicker photoresistor by using slower spin speed. Then soft bake

at temperature according to Table 2.1. The following procedures are standard includes:

exposure contacts with UV, develop the photoresistor, thermally deposit metal contacts,

liftoff.

VO2 thin film SiO2

Top 
gate

hBNVO2 
nanobeam

P-doped Si(a) (b)

Figure 2.17: VO2 capacitance sample: a) Thin film VO2 on Si substrate, the p-doped sub-
strate serves as bottom gate. b) Single crystal VO2 with top gate and bottom gate.

Another thing to note is depends on the sample surface cleanness, the liftoff are different.
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The cleaner the sample surface started with, the easier and better liftoff will be. For those

sample surface is not perfect, metal deposition need thinner to ensure the success of liftoff.
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CHAPTER 3 Measurement techniques

3.1 Transport measurement

3.1.1 Ohmic contact

After fabrication, next step needs to check if the sample’s contacts are Ohmic. When you

create a junction between a metal and a semiconductor, some interesting things can happen.

The Schottky barrier forms in between the interface, and it may stops the charge carriers to

flow easily.

EF

Metal Semiconductor
EC

EV

x

I

ΦB

E

V

Ohmic

Non-Ohmic

(a) (b)

Figure 3.1: (a) Schottky barrier forms between metal insulator junction with a height of ΦB.
(b) Ohmic contact I-V curve(orange) vs non-Ohmic contact I-V curve(blue).

One simple way to test if the juction is ohmic is to measure its I-V characteristics. As

shown in Figure 3.1(b), Ohmic contacts shows linear I-V dependence. When it is non-Ohmic,

the I-V dependence is non linear. Another way to check if the sample contacts are Ohmic is

to compare the resistivity from four terminal measurement and two terminal measurement.

Suppose we have four terminal on sample, if two terminal measurement and four terminal
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measurement shows same level of resistivity, the contacts are Ohmic. If the two terminal

resistivity is much higher, the contacts are normal not ohmic. The validity is illustrated

in section below. One advantage of using this method is to protect the sample. Some of

our sample are fragile to electrical current. We limit our current to 1nA for protecting

these samples. With this small excitation, comparing four terminal and two terminal AC

resistivity is more feasible.

3.1.2 Four terminal and two terminal measurement

The mostly used measurement techniques in this thesis is four terminal measurement

as shown in Figure 3.2 a, where a current is driven between opposite side contacts while

the voltage is measured across two adjacent corner contacts(Vxx). The voltage dividing

the current yields resistance. Compared with four terminal measurement, two terminal

measurement has a source and drain. The resistivity can be obtained using the voltage

divide the current going through.

If the sample contact is not good, the two terminal measure result differs from four

terminal measurement. Four terminal result is significant smaller than two terminal result.

The reason is when performing four terminal measurement, suppose the contacts are bad,

the current will not choose to pass though the voltage since they have a higher resistance

than the sample bulk. Without current pass though, there is no voltage drop on bad voltage

contact. This way the difference of voltage between two voltage reflects the real voltage drop

on the sample.

When doing two terminal measurement(Figure 3.2 b) and suppose the contacts are not

ohmic. As current is running from 1 to 2, the bad contact makes voltage drop across contacts

it self. Then the measured voltage from voltage meter does not reflect the real voltage drop
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Figure 3.2: Four terminal measurement setup

across the sample.

3.1.3 AC Lock-in amplifier

Lock-in amplifier is a commonly used in transport measurement. It can detect a small

signal among tons of noise. Depending on the setup, the lock-in can measure a signal when

the noise level is 106 times larger than signal level. The principle of lock-in comes from

orthogonality of sinusoidal functions.

Assume the noises have signals at frequency fi, the real signal f1 together with other fi

multiplied by reference sinusoidal function of frequency f1 and integrated over a time much

longer than the period of the two functions, except f1 signal , the rest frequencies signals

result in zero. Noise is eliminated in this way.

3.1.4 Quantum hall measurement

Quantum hall effect has been discovered in 1971. A detailed description of quantum hall

effect can be found in book by Stone[81]. The main idea is: when sweeping magnetic field,

the Fermi energy will be tuned through different Landau levels. This makes longitudinal

resistivity stays 0 at most time except when the Fermi energy is crossing one Landau level,
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Figure 3.3: Lock-in amplifier

the longitudinal resistivity reflects the bulk behavior. As for the Hall resistivity, it equals

to the number of Landau levels lower than the Fermi level times the quantum resistance. It

equals to the number of edge channels.

Fermi 
level

Landau 
levels

Edge Edge

X

E

Figure 3.4: Left:Landau levels and fermi energy in a quantum hall system. Right, the
longitudinal resistivity and Hall resistivity as function of magnetic field in integer quantum
hall effect

The standard setup to do a quantum hall measurement is called Hall bar in Figure 3.5.

The current is uniformly applied through the source and drain leads. The longitudinal
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resistivity which is the green peaks in Figure 3.4 is measured by monitoring Vxx in Figure

3.5. The hall resistivity which is the red plateau in Figure 3.4 is measured by monitoring

Vxy in Figure 3.5.

When magnetic field is applied, left edge and right edge are both dissipation state, this

point, there is no state where the carriers can scatter into, so it appears the same potential on

each side. For understand the hall resistivity plateau, suppose the magnetic field is coming

out of page in Figure 3.5, electric field is supplied from bottom current lead to top. The

Lorentz force makes carriers turns in a way which obey right hand rule. We can easily figure

out that the right voltage contacts has the same potential as bottom lead and left has same

as top. The conductance between them is through the quantized edge channels. It starts

with a lot of edge channels at low magnetic field. As magnetic field increases, Landau levels

spacing increases, which led to less edge channels cross Fermi level at edge. As we can see

in Figure 3.4, after 11T, the ρxy reaches h/e2. The resistivity value h/e2 is called resistance

quantum which is about 25813Ω. One resistance quantum means there is one channel for

charge carriers at the edge.

This is the integer quantum hall effect. It can be well understood with the framework of

Landau energy splitting and edge channel conducting. An interesting question comes, what

will happen if we increase the magnetic field after the hall resistvity already reaches h/e2?

It turns out into another interesting yet not well understood phenomena which is known

as fractional quantum hall effect. Where the number of edge channels turns out to be

not integer! As shown in Figure 3.6, there could be 1/3 of channel conducting! What

happened? To understand the fractional quantum hall effect, again, we have to consider the

correction effect. It is caused by electron-electron interaction together with magnetic flux
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Vxx

Vxy

Figure 3.5: Quantum Hall measurement schematic

which forms into composite fermions. This is still not a completely understood area and a lot

of active research is still going on. It attracts fundamental research as well as applications.

For example, 5/2 state which is known to obey non-abelian particle statistics, is a promising

candidate to pave the way to realizing an experimental platform for quantum computing[82].

Details of fractional quantum hall effect is out of the scope of this thesis work. The this

work uses integer quantum hall effect to characterize the 2D carriers as well as to drive the

carriers into a strong interacting state.

3.2 Low temperature

There are a few cryogenic systems used in this study: Leiden He3/He4 dilution refriger-

ator; Quantum design PPMS system; Lakeshore flow cryostat. The PPMS system and flow

cryostat can goes down to near 3K, which is good to use for pretest sample. Flow cryostat

can also be used for high temperature. The dilution refrigerator is used to achieve a tem-

perature of mK range. At which temperature we can measure intrinsic transport behavior

of electrons.
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Figure 3.6: Fractional Quantum Hall effect.[3]

3.2.1 He3/He4 dilution refrigerator

The Figure 3.7 shows a dry dilution re-fridge system. The system is pre-cooled to 3K

with a pulse tube. It takes 2 days to cool down to 3K. This procedure doesn’t cost any

Helium loss. Then circulation of He3/He4 mixture can cool the lowest plate to 5mK. As

shown in Figure 3.7, it is a complicated system with different stages at fixed temperature.

The system also has a superconducting magnet on the bottom. The sample is inserted

from the top of the fridge. The inserting need to be slow to avoid sudden temperature

jump on the sample. Sample has to stay at each temperature stages until fully thermalized

before lowing to next stage. The sample measured at mK temperature allow us to do a

transport measurement. In quantum hall measurement, the magnetoresistance (ρxx) and

Hall resistance (ρxy) is measured at a low frequency less than 20Hz. To avoid noise, low pass

filter are built on each single line on the probe.
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Figure 3.7: Structure of inset of dilution refrigerator with different cooling stage
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During last a few years’ measurement using dilution refrigerator, we have been improving

the cooling power on the sample. Several small methods can significantly lower the sample

temperature. For example: using silver paint to glow the sample onto the sample holder

instead of vacuum grease; glue the signal cable to the sample holder; gold plate the sample

holder surface. Currently used sample holder is shown in Figure 3.8 a. It is made with

Figure 3.8: a) Currently used sample holder. b) Helium-3 cell sample holder for better
cooling purpose. c) Helium-3 cell fillempty control system

copper and critical areas are coated with gold. During the measurement, sample is mount

to the sample holder and contacts connect to singal pins on sample holder. This pins finally

connects to other connectors on the probe which sends the signal out. The heater pins is
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used to run current so the resistive wire(red wire in Figure 3.8 a) can heat up the holder.

This is method to probe properties-temperature dependence at mK range. The screw is used

to anchor the holder to the end of the probe. A better cooling design is using Helium-3 cell

in in Figure 3.8 b. Instead of mounting sample on sample holder. Sample is immersed in

helium inside the cell chamber. This way sample is cooled through contacting helium instead

of bottom contacting holder. During measurement, the fridge is firstly cooled down to mK

temperature. Then the He chamber is filled external Helium 3. To fill the cell and empty,

another control system we made needs to be used in Figure 3.8 c. This cooling system is

still under test and will serve our measurement in future.

3.2.2 Flow cryostat

The flow cryostat we used in our lab is made by Cryo Industries company. Depends on the

coolant, it can be used at liquid Helium temperature as well as liquid Nitrogen temperature.

The one we have also can be used above room temperature. During cooling, coolant goes

in from coolant inlet and comes out from outlet. The line coolant travels are isolated from

main vacuum chamber where sample sits. Although it is designed to use both helium and

nitrogen, we rarely use liquid helium due to the high cost. To measure sample at liquid

helium temperature, normally we use our dilution refrigerator which is a closed Helium cycle

system. Sometimes we also use PPMS which consumes liquid helium in a rather slow rate.

Signal feed through can be used to run desired measurement. The temperature use another

set of feed through to either maintain at certain temperature or ramp temperature at fixed

rate.

The original flow cryostat we bought from company has signal feedthough which is con-

nected with all the twisted signal lines. This is good to lower the noise by reducing the
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flux through any possible loops. However, the signal lines are not coaxial lines, they are

conducting line covered with insulating material. In our quantum capacitance measurement,

using coaxial line for signal is critical. To achieve this, we modified our flow cryostat and

implemented four coaxial signal line. In Figure 3.9 a, the alumina window is from the man-

ufacture. We opened four through holes and installed lemo feedthrough. Figure 3.9 b shows

the finished parts. These lemo feedthroughs connect to coaxial cables inside vacuum chamber

which serves as the signal line.

Figure 3.9: Flow cryostat

3.2.3 Physical Property Measurement System PPMS

PPMS is short for Physical Property Measurement System. It is a very popular mate-

rial characterization system from Quantum design company. It has build-in magnatic field,

lock-in, etc. Since the PPMS is a black box system, it’s quite easy to learn how to use

it. It is also time saving, most measurement can be set in measurement sequence and the
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computer will run it automatically. The disadvantage is it’s almost impossible to do cus-

tomized measurement. For example, hall measurement can be done using PPMS. However,

the measurement channels are limited. Another drawback is that PPMS has no coaxial line,

which makes quantum capacitance impossible. To do customerized measurement, we made

a BNC adaptor box which covert the PPMS signal feedthrough pins into BNC connectors

and setup the measurement using external instruments.

Figure 3.10: PPMS system

3.3 Quantum Capacitance measurement

Quantum capacitance is first proposed by Luryi in 1988.[31] Normally when we have two

metal plates, the capacitance between them is decided by
ε0A

d
. This is called geometric

capacitance since it only varies with the dimensions of the capacitors. Now, if one of the

metal plate is replaced by a semiconductor plane. The capacitance is not simply
ε0A

d
. The

band structure makes the charging and discharging on the semiconductor plate different as

metal plate. There is extra energy that cost by charging or discharging the energy band. This

effect makes the real sample capacitance contains two parts in series: geometric capacitance

and quantum capacitance. With carefully designed measurement schemes, we can get the
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quantum capacitance in our system. There has been reported quantum capacitance in various

2D systems including graphene[83], GaAs[84], LAO[85].

3.3.1 Basic principle

For a normal capacitor, both plates are metals which have infinite density of states.

In this condition, we have the simple formula for capacitance. What if one plate becomes

semiconductor? Without infinite density of states, charging one plate is not straight forward.

Let start with relationship between change of charge and potential[86]:

∂q = CTotal ∗ ∂(µec/e) (3.1)

Here µec stands for electrochemical potential of the electrons. Which is different from chem-

ical potential(Fermi energy). The electrochemical potential is calculated by µec = eVgate.

Electrochemical potential is the total potential, including both the chemical potential and

the electrostatics energy[87]:

∂µec = µc + eΦ (3.2)

In the equation above, µc stands for chemical potential, eΦ stands for electrostatics energy.

Now if we plug this expression into Equation 3.1, we will get following:

∂q = CTotal ∗ (∂(µc/e) + ∂Φ) (3.3)

Now rearrange this equation, devide both left hand side and right hand side by CTotal and

∂q, we will get:

C−1Total =
1

q

∂µc
∂q

+
∂Φ

∂q
=

1

Cquantum
+

1

Cgeo
(3.4)
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3.3.2 Capacitance measurement

Now let’s take a look how to extract quantum capacitance experimentally. In several

reported systems[83, 85], quantum capacitance are much larger than geometric capacitance.

From the Equation 3.4 above, this means the variance of quantum capacitance cause a very

small effect on the total capacitance. To be able to measure it, we need to sufficient resolution

to capture small changes on total capacitance. Since a large voltage can overrun the chemical

potential through electrochemical potential which basically changes the density of states in

the system, the most important requirement is to use small signal to run the measurement.

Most commercial impedance instrument can easily have a capacitance resolution of smaller

than fF. For example, Agilent 4284A Precision LCR Meter can measure capacitance down to

0.01 fF. However, in measuring such a small capacitance, typically it needs an input signal

larger than 0.1V and frequency larger than 10KHz to well resolve a capacitor less than

1pF. Therefore, the high voltage signal limits this LCR meter in measuring the quantum

capacitance. High frequency also limits the measurement for large resistive sample. The

details are shown in Chapter 4.

Ratio transformer bridge

To be able to use a small excitation and still gain enough resolution, the right setup is to

use a bridge. We have built three type of bridge for measurement. The first bridge is using

ratio transformer, the simplified measurement schematic is shown in Figure.3.11. The left

arm has two inductors with tunable inductance with an accuracy of 1E-8 on ratio. The ideal

is to tune the ratio between L1 and L2 to null the balance voltage (voltage across middle

point of inductors and middle point of capacitors). By doing so, we know the ratio of Cs

Cr
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Figure 3.11: Schematic for capacitance bridge.

through L1
L2

. Capacitor Cr is a standard reference capacitor with fixed capacitance. For the

Lock in amplifier
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reference
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transformer
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Figure 3.12: Ratio transformer bridge measurement circuit.

real setup, the circuit is complicated than drawing in Figure. 3.11. Figure. 3.12 has more

details on the measurement circuit setup. During the measurement, the lock in supplies the

drive signal. The divider is used to gain a better signal resolution. The signal is applied

to the circuit through a ratio transformer. Notice by using ratio transformer to apply the

signal, the measurement circuit and signal drive instrument are using different grounding
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setup. For the ratio standard, the balance point is grounded. Then on the right arm of the

bridge, the voltage at point between sample and reference is measured relative to ground. It

should be close to 0 indicating a balance state.

Balance point can be written as follows:

Vb = Vs[
Zr

Zs + Zr
− jωL2

jωL1 + jωL2

] (3.5)

In the equation above, Zr = Rr − j 1
ωCr

stands for reference impedance, Zs = Rs − j 1
ωCs

stands for sample impedance. If we substitutes these and simplify the equation. We will get

the following equation:

Vb = Vs[(
Cr

Cs + Cr
− L2

L1 + L2

)− j ωCrRs

4
] (3.6)

On the right hand side of Equation. 3.6, the first part is determined by sample ca-

pacitance, which corresponds to the in phase signal when measuring balance point. The

second part is determined by sample resistance which corresponds to out phase signal. Not

this result of simplification is based on assumptions: Cr is close to Cs and Rs and 1/ωC is

comparable.

During operation, there are two ways to obtain the sample capacitance. First method

at each state, adjust the L1/L2 ratio to make Vb to 0. Then ratio of L1/(L2 + L1) gives

Cr/(Cs + Cr), therefore we can get Cs. However, in the real test, it is not feasible to adjust

L1/L2 a thousand of times to measure one sample. So normally what we do is balance at

one state, and then change the state while recording the balance point. The state can be



51

changed by external parameters, for example changing tempeatrue of VO2 can drive it from

insulating state to metallic state.

Active bridge

There is one drawback of with a non-zero balance voltage Vb. The validate of derivation

is based on the ideal assumption that measuring instrument, preamp has an infinite input

impedance. However, in real case, the instrument also has an finite impedance. When Vb is

not zero, rather than two components on the balance point, the impedance of preamp also

can let current pass through. This effect is not a trouble when Zs and Zr is much smaller

than Zm(preamp impedance), which is the situation for polycrystalline VO2. However, when

Zs is much larger than Zm, we have to think take this into account. This situation happens

when we are measuring capacitance of single crystal VO2. There are two ways we figured

Lock in amplifier
Preamp

reference Sample

inout

~ ~
VL VR

Figure 3.13: Active bridge circuit schematic.

out to deal with this situation. One way is derive the balance point voltage again with

considering the instrument impedance term. Then compare it with Equation. 3.6 we can

get a correction term. Another way is to keep Vb always at 0V. By doing so, the impedance

from instrument is not effect the measurement.

To do so, we need to consider a new bridge setup in Figure. 3.13. Different than ratio
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transformer bridge in Figure. 3.12, this setup has no ratio standard. On reference side,

there is a signal VL. On sample side, there is a signal VR which is 180 degree phase different

relative to VL. With fixed VL, we can adjust VR to make monitor lock-in reading go to zero

to achieve balance. Once a balance point is reached, we can calculate sample capacitance by

using VL, VR and Cref . The VL and VR are controlled by computer program , and reading

from Lock-in amplifier feeds back to computer. The earlier stage of this bridge is shown in

Figure. 3.14. The reference signal inputs into two multipliers. The function of multiplier is

to multiply the input signal amplitude with a number m between 0 to 1. The accuracy of the

m is decided by the digits of the multiplier. For example, the multiplier used in Figure. 3.14

(b) is LTC1650 which has 16 bits. The relative resolution is then 1/216 ∼ 10−5. This means

if we have signal of 1V, the relative resolution we have will be 10µV. This is a very high

resolution since the capacitance measured is determined by these two signal and the value

of reference capacitor. We have successfully tested this setup and can obtain the sample

capacitance. In our measurement, we have measured sample capacitance down to 10−15F

level.

Later on, we switched Figure. 3.14 (b) to use DDS(direct digital synthesis) functional

generator. The differences are: Original one is analog signal and the DDS is digital signal;

Original one has 16 bits resolution and DDS only has 14 bits. Although the DDS sacrifices

the resolution, it is more noise proof and less electrical hazardous to other instrument.

3.4 Gating and dielectric

In transport measurement, gating has been widely used to introduce external electric

field which can change the carrier density in the device. In our work, the gate has been used

mostly for capacitance measurement.
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Figure 3.14: Circuit for active bridge. (a) Circuit diagram. (b) The picture of real component
of the dotted circled area in (a).

There are two type of gates used in this thesis, the bottom gate and top gate. The bottom

gate has been used in both VO2 thin film and nanobeams. For thin film polycrystalline VO2

grown on SiO2 on p-doped Si, the SiO2 serves as the dielectric layer, heavily p-doped Si as

the metal gate. The schematic is shown in Figure. 3.15(a). The SiO2 has a stable thermal

relation, which makes the geometric capacitance formed has a slightly linear decrease with

increasing the temperature.

p-doped Si

VO2 thin film SiO2

VO2 

nanobeam Gold hBN

(a) (b)

Figure 3.15: VO2 gating scenario: (a) gating thin film,(b) gating nanobeam
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For the top gate method, multi layers of hBN has been used as the dielectric material.

The hBN we applied on our sample range from 10 to 20nm thickness. As shown in Figure.

3.15(b), the hBN is on top of VO2 single crystal nanobeam, another gold contact is deposited

on hBN to make a gate. The reason to use the top gate scenario is the sample are rather

small compared with the metal contacts. If we want to measure the capacitance between

sample and bottom gate, the capacitance will be dominate by the metal contacts area. To be

able to resolve this issue, we have to use a top gate and bottom gate together. By grounding

the p-doped bottom gate during the measurement, the coupling between the top gate and

the metal contacts are greatly suppressed.
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CHAPTER 4 Study on Polycrystalline VO2

Part of the result of this chapter have been published in 2014[4].

Metal insulator transition of VO2 attracts interest due to near room temperature transi-

tion and potential applications. The transition of VO2 is first order which shows discontinuity

in the derivative of the Gibbs free energy(G) vs phase parameters(In VO2 the phase parame-

ter is temperature). The insulator phase and metal phase locates at different local minimum

shown in Figure 4.1. Two minimum are in different energy levels. This causes different

energy barriers when transit from one to another. In Figure 4.1, from phase 2 to phase 1,

the system has to overcome a much larger energy barrier than from phase 1 to phase 2. This

explains the resistivity-temperature hysteresis in VO2. On VO2 sample studied in this work,

when the resistivity is measured as a function of temperature, sweeping up and sweeping

down temperature are not in a same trace. This results a hysteresis shown in Figure 4.4.
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Figure 4.1: Schematic diagram of the free energy as a function of phase parameter.[4]
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4.1 Polycrystalline VO2 characteristics

The polycrystalline VO2 thin film used in this research is grown on silicon-dioxide/p-

doped silicon substrate via pulsed laser deposition. The average thickness of VO2 in this

study is 130 nm. Pulsed laser((10 Hz repetition rate and 350 mJ pulse energy, λ =248

nm)) was used to ablate a metallic vanadium target, the temperature at the substrate was

maintained at 595 ◦C. The other conditions were very similar to those reported previously.[79]

Contacts to VO2 are made by using silver paint. Contacts to the back gate ( heavily doped

Si substrate with a resistivity 15 mΩ cm) are made by soldering indium at 450 ◦F. The SiO2

dielectric thickness is ∼285 nm.

Heat reservoir (Copper)

P-doped Si
SiO2

VO2

285 nm

Electrically 
Insulating

Contacts

Figure 4.2: Diagram of the polycrystalline VO2 capacitance device[4].

4.2 Challenges

There are several challenges need to be addressed to characterize quantum capacitance.

From introduction part, in order to calculate Cq(T ), we need to determine Cgeo(T ). Normally

Cq is large in the metallic regime, which results a smaller contribution to the Ctot and is

difficult to resolve its variance. Finally, as resistance rises by orders of magnitude, it can

easily couple with any stray impedance and distort the capacitance measurement.

Although the commercial capacitance measurement instrument(HP 4284a) can reach a
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Figure 4.3: (a) Bridge setup (b) Impedance component in the circuit.[4]

resolution down to a few ten Atto fara range, it requires high voltage and large frequency to

operate on such a high resolution. Both high AC voltage and large frequency causes issues.

The issuses caused by large frequency are explained in 4.3. Since the quantum capacitance

resolves density of states(DOS), the high AC voltage applied on sample can capacitively

introduce large fluctuation on charge carrier density. Once this fluctuation on density is

comparable to the systems’s intrinsic charge carrier density, this is no resolution on the

band structure. An extreme example will be using too large AC voltage can make the MIT

transition happens lower than TC(340K).

These challenges are overcome by using a homemade bridge capable of resolving capac-

itance changes to 1 fF (about 0.001% of the total capacitance). Through a careful fre-

quency dependence measurement, we identify not only the geometric capacitance (which

varies slightly with T ), but also a range of frequencies for which the capacitance measure-

ment is unaffected by the increasing resistance. Cq is then resolved from a finite hysteresis

that develops between Cs and Cgeo in the transitioning and insulating states. We find that
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the DOS drops drastically below the MIT, corresponding to the opening energy gap below

the transition temperature.

4.3 Measurement Method

A capacitor is formed between VO2 film and silicon-dioxide/p-doped silicon substrate

underneath.[Figure. 4.3]. The SiO2 dielectric has thickness of 285 nm. Area of the film is

obtained from optical microscope, it is roughly 6 mm2 so expected geometric capacitance

is εA/d ≈ 700 pF in the metallic regime (Assuming SiO2 dielectric constant ε = 3.7ε0).

Ohmic contacts to the VO2 are made using small silver paint droplet. Contacts to the

back gate are made from indium soldered at the side, which shows a contact resistance

approximately 10 Ω. All measurements are performed at high vacuum (≈ 10−5 mbar) in

flowcryostat chamber isolated from vibration. A PID controled heating loop at rates of

0.1 - 0.3 K/min with resolution 0.01 K. Excellent thermal contact between the substrate

and thermal reservoir eliminates T lag at such low ramp rates.

The bridge measurement resolves resistance and capacitance as shown in Figure. 4.3(a).

Before each measurement, we ramp the sample to high temperature(T = 360 K) where the

VO2 is in metallic state, and bridge is balanced by adjusting the components L1, L2, Rr

and Cr. After balancing, Rr and Cr are then fixed and held at room temperature. Vb(T ) is

measured as the sample undergoes a thermal cycle.

The goal is to resolve the quantum capacitance by accurately measuring sample capac-

itance Cs and VO2 sheet resistance Rs by monitoring the balance point voltage Vb. Under

certain conditions, changes in Cs stands for the real part of balance voltage, and changes in

Rs appears in imaginary parts of Vb. For this measurement, one challenge is that Rs has a

few orders of magnitude changes, at high frequency since the impedance are closer to each
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other, this can easily overrun the sensitivity to Cs even for a small amount of mixing be-

tween Re[Vb] and Im[Vb]. Now let’s take a look how to avoid mixing by choosing appropriate

measurement frequencies.

The sample total impedance model Zs is shown in Fig. 4.3(b). There are totally four

components forms Zs, in addition to Cs and Rs, the SiO2 dc resistance R, and the capacitive

coupling C ′ between different points of the film (C ′ . Cs occurs mostly through the gate)

have been included. Frequency f must be large enough that capacitive coupling is much

greater than conduction through the dielectric, yet small enough that the signal-induced

in-plane voltage drop across the VO2 remains negligible compared to the gate potential.

Impedance Zs then simplifies to a capacitor with equivalent series resistance (ESR) Zs ≈

Rs + (iωCs)
−1. Under these conditions,

Vb ≈ Vs

[(
Cr

Cs + Cr
− L2

L1 + L2

)
− iωCrRs

4

]
. (4.1)

This greatly aids the data analysis since Cs and Rs are separated into the real and imaginary

components of Vb, as described above.

Finally, the terms of Eqn. 4.1 are inverted to express Cs and Rs. The film resistance

is Rs = −4Im[Vb]/ωCr. In the present sample geometry, it would be difficult to accurately

convert Rs to resistivity, so this has been left as an extrinsic parameter in the results. For the

small capacitance changes observed [dCs/ (Cs|360 K) ≈ 0.05%], Re[Vb] is linearly proportional

to changes in Cs:

dCs = Cr
(1− x)2

Vs
Re[Vb] (4.2)
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where x = L2/(L1 + L2) is set to seven digits accuracy by ratio transformer. This propor-

tionality constant is obtained from the Taylor expansion of Eqn. 4.1 with respect to Cs.

Below, the decoupling of Re[Vb] and Im[Vb], the independence of Re[Vb] on f , and the linear

f dependence of Im[Vb] are all used to identify the range of f for which Eqn. 4.1 is valid.

4.4 Results

Figure 4.4 demonstrates Resistance measured by using 2-terminal probe method(green

line) has a very good agreement with resistance extract from bridge. excellent agreement

between Rs obtained using the bridge and results from a 2-terminal in-plane measurement

R2t. Consistent with previous findings [88], both configurations demonstrate a hysteresis

ranging from about 335 K to 350 K where resistance changes by several orders of magnitude.

Compared to single crystal results [25, 61], this transition is somewhat smoothed by the

film’s polycrystalline structure [Figure 4.4]. The bridge measurement is performed at several

frequencies ranging from 15.5 Hz to 185.8 Hz. Figure 4.5 confirms the linear relationship

Im[Vb] ∝ f . These findings support the above analysis leading to Eqn. 4.1.

The ability to resolve changes in Cs as distinct from Rs depends on the amount of mixing

between Re[Vb] and Im[Vb]. Figures 4.6(a) and 4.6(b) display both signals Re[Vb] and Im[Vb]

as functions of T [note the change in units from (a) to (b)]. For larger f , the real and

imaginary traces have almost the same shape, indicating that f is outside the range for

which Rs and dCs can be decoupled as discussed above.

Figure 4.6(c) confirms that sensitivity to dCs is overrun by changing film resistivity at

87.8 Hz and 185.8 Hz, where Re[Vb] is nearly a single valued function of Im[Vb]. However,

slightly decreasing f is sufficient to decouple Re[Vb] and Im[Vb] as demonstrated in the inset.

For traces below 30 Hz, Re[Vb] changes by up to 80% at fixed Im[Vb], is non-monotonic, and
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Figure 4.4: Comparison of standard in-plane 2-terminal technique (green line) with bridge
technique (scatter plots) for measuring sheet resistance. Arrows distinguish between heating
and cooling cycles. The in-plane measurement is shown on a semi-log plot in the inset.[4]
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Figure 4.5: Confirms linear relationship Im[Vb] ∝ f from Eqn. 4.1.[4]

lies completely within a region where even the high-f measurements are relatively indepen-

dent of Im[Vb]. Thus, the low-frequency trace allows capacitance changes across the MIT to

be resolved without significant distortion by the changing film resistivity.

Figure 4.6(d) displays the capacitance changes dCs calculated from the data in panel

(a) according to Eqn. 4.2. Regardless of f , all traces collapse onto a single curve in the

metallic regime where Cs = Cgeo. This allows the smooth T -dependence of Cgeo to be

identified and extrapolated below the MIT as a dashed line. In this region, the 15.5 Hz

and 27.6 Hz measurements overlap nearly perfectly. For this range of f over which Cs is

frequency independent, Eqns. 4.1 and 4.2 are validated.

Figure 4.7 focuses on the 15.5 Hz result from above. Panel (a) reproduces the data from

Figure 4.6(d) with estimated geometric contribution (dashed line). To both has been added

a constant, the total capacitance measured at the balance point, C360 K
s = 693.1 pF. Dotted

error bars indicate uncertainty in Vb, which drifts up and down within a narrow range on
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Figure 4.6: (a),(b) Re[Vb] and Im[Vb] as functions of T . Note the change in scale from µV to
mV. (c) Re[Vb] as a function of Im[Vb] is a monotonic nearly single-valued function for high
frequencies. Inset highlights low frequency measurement where mixing is eliminated. (d)
Capacitance changes dCs as a function of T . The slope of all traces in the metallic regime
gives the T dependence of Cgeo which has been extrapolated below the MIT as a dashed
line.[4]
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Figure 4.7: (a), (b), and (c) Cs, C
−1
q and Cq as functions of T . In (c), only a portion of the

thermal cycle is shown, since larger Cq cannot be resolved. [4]
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the time scale of a few hours or more when the sample is at fixed temperature. This is much

smaller than the observed hysteresis, and only affects our ability measure the sign of Cq in

the metallic regime [as shown in panel (b)]. Panels (b) and (c) display dµ/dn and dn/dµ

with the associated uncertainty.

Figure 4.7(b) demonstrates the finite energy cost for charging the film by amount dn

during a charging cycle. For this measurement, dn = 3 × 109 cm−2 is 3 or more orders of

magnitude less than than the carrier density n (discussed below). The charging energy [at

most (dµ/dn)dn = 6 meV or 70 K] is then a small perturbation of the system, far less than

the thermal energy at the MIT. Though clearly positive in the insulating regime, the sign

of dµ/dn becomes difficult to determine as the metallic state is approached. To increase the

resolution of Cq requires much thinner, high quality dielectric which is experimentally difficult

to achieve. Thus, the possibility of negative compressibility κ = n−2dn/dµ, a signature of

strongly correlated charges previously observed in other systems [84, 85], requires further

investigation.

Figure 4.7(c) displays the DOS on a linear scale over the range for which sign(dµ/dn) can

be determined. With increasing T the DOS grows very large, as expected for metal. Below

the MIT, dn/dµ shows only slight temperature dependence. The slope changes abruptly at

the transition point and cannot be fit to a power-law or exponential dependence on T . In

fact, the concave of the slope changes sign from positive to negative upon cooling, suggesting

a cross-over between different mechanisms at the transition.
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CHAPTER 5 Study on Single crystal VO2 nanobeam

5.1 Background

The synthesis and characterization of VO2 single crystal nanobeam has been firstly re-

ported by Park’s group[5]. Compared with polycrystalline VO2, the metal insulator tran-

sition in single crystal VO2 are rather abrupt. It is more like a step function(Figure.5.1 b)

when resistance is measured as a function of temperature. The abrupt transition comes from

its single crystal nature. To understand it, we need to take a look why polycrystalline VO2

has a smooth transition. The smoothed transition on polycrystalline VO2(Figure.4.4 inset)

is due to its multi-grain structure. Although all grains favor at same transition temperature,

they are in different shape and size and are surrounded by other grains. The build in strains

for each grain of VO2 are different. Several studies have shown this can be an significant

effect on MIT behavior for VO2[6, 61, 80]. Polycrystalline VO2 contains numerous sizes of

grains. The observed transition on it is due to the averaged effect. As for single crystal

VO2, the single crystal phase yields should yield one transition. This is the reason why the

transition on single crystal VO2 is similar to a step function.

Several studies have been done to study the transition mechanism of single crystal VO2.

Resistance measurement[30, 61] has revealed the strain plays an important role in the metal

insulator transition. Following research has demonstrated by engineering the strain on VO2

nano beam[6], the transition can be controlled. Optical measurement from Ruan’s group[25]

has demonstrated the structural phase transition and Mott transition have different transi-

tion temperature and can be well separated. The Mott induced transition shows no hysteresis

and structural phase transition has a hysteresis. Several groups have reported the gating

of VO2 single crystal nanobeam[89, 90]. One scenario[90] is atomic layer deposition of 20



67

nm high-K deictic material. This method provides an electric filed of 108V/m. With this

large electric field, the resistivity of single crystal VO2 changes about 10%. This again

demonstrated the notorious hardness of gating VO2. Another scenario of gating uses ionic

liquid[91] has demonstrated a significant transition(two order of magnitude) by tuning the

electric field.

Although much have been done to study single crystal VO2, transport measurement is

mostly focused on resistivity measurement. Non measurement has revealed it electronic

structure. Our work here is aiming at resolving its electronic structure by using quantum

capacitance measurement. Before we go there, we take a look at Characteristics of single

crystal VO2 and some other effects we have observed.

5.2 Single Crystal VO2 Characteristics

Figure 5.1: Left:Resistivity measurement on strained VO2 on substrate; Right: Resistivity
measurement on strain free VO2

As mentioned, strain plays an important role in VO2 MIT, Figure 5.1 shows the transport

measurement on strain free VO2 comparing with strained VO2. Single crystal VO2 embedded
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into the SiO2 substrate during the growth, this introduce an tremendous build in strain.[61]

The single crystal VO2 is grown on [100] direction, which also corresponds to the lattice

C-axis.[61] As shown in Table 1.3.1, at high temperature, CR=2.86 Å compared with low

temperature CM1=5.75 Å. At low temperature monoclinic, each unit cell contains as twice

atoms as high temperature rutile phase. Consider these together, the sample has about 1%

changes along its C-axis. For SiO2, the thermal expansion coefficient is 0.55-0.75×10−6/K.

At the temperature range from 300K to 360K, SiO2 stays almost same length compared

with VO2. This mismatch cause an tremendous external force to hold VO2 through the

adhesive interaction between the nanobeam and the substrate. To reduce the strain, after

growth, VO2 is mechanically transferred onto a new substrate(see Chapter 2). Although the

Van der Waals force still exists after VO2 transferred to new substrate, it has been proven

orders smaller than the strain caused by embedding[30]. The strain free single crystal VO2

demonstrates a change on resistivity larger than 4 orders and the transition happens within

a quite narrow temperature range < 0.1◦C(Figure 5.1.b). In fact, it happens so quick that it

resembles a step function. Compared with strain free single crystal VO2, Figure 5.1.a shows

measurement on a single crystal VO2 embedded in the SiO2. The MIT is observed, it also

shows hysteresis(Red curve for heating, blue curve for cooling). However the resistance trace

are not smooth. This is a poor transition even compared with polycrystalline VO2. Further

study has been done to investigate the stain effect on single crystal VO2 nanobeam.[61, 80]

Figure 5.3.a shows at 373.15 K, nanobeam exhibited a striking periodic bright dark pattern.

The pattern can persist between ∼ 343K and ∼ 423K. This pattern can exist in a large

range of temperature is due to the strain comes from the substrate. The periodic bright

dark pattern configuration represents the lowest-energy the system can reach by balancing
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[100]

2.86 2.86

Figure 5.2: Growth direction of Single Crystal VO2

between the elastic energy and the domain wall energy.

5.2.1 Ohmic Contact

Ohmic contact is always important to start a good transport measurement. As for VO2,

the Ohmic contact to polycrystalline VO2 is straightforward. So far, we have achieved

ohmic contacts using different type of metal(Cr+Au, silver paint). For single crystal VO2

nanobeam, the contacts can easily degrade after a few thermal cycles since the sample itself

undergoes shrinking and expanding during the thermal cycles. This weakens the metal

attached to it. The thicker metal, the harder for the contacts to degrade. This is why

several published works[30, 61, 92] use a few hundred nano meters thick contacts. Silver

paint and indium also have proved to be effective contacts. However, the quality is not as

good as metal deposition.[92]
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Figure 5.3: a), b)Optical image of single crystal VO2 near transition temperature shows
different color alternating strips.[5] c) Schematics of insulating metallic alternating stripes.
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5.3 Strain effect

Unlike polycrystalline VO2, single crystal VO2 suffers a lot from strain effect. The Figure

5.1 shows the resistivity-temperature dependence difference between strained and strain free

single crystal VO2. This may cause some problems in our capacitance measurement as shown

in latter sections. In fact, the strain effect is so tremendous that it has been used as a method

to engineer metal insulator transition in VO2. Since the single crystal VO2 has a very good

mechnical properties, the external force can be applied on it without breaking it. In our test,

we have bent single crystal VO2 beam into 180 degrees with an arch radius of 10 µm. In

Figure 5.4, Wu’s group has demonstrated using uni-axial external stress to engineerly create

insulating domains along single-crystal beams of VO2, and to observe the transition at room

temperature.

Figure 5.4: The green arrow indicating the direction of external force applied by tungsten
needle. The orange color is the insulating domain.[6]
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5.4 Light effect

Light effects on VO2 has been studied for many years[7, 93–98]. Most research works

focus on using infrared laser to make VO2 undergoes transition[96–98]. The power intense

laser generates large amount heating which makes it difficulty to distinguish the real cause

of the transition.

Wu’s group has demonstrated the small dose of UV light(LED) gating on VO2[7, 95].

Their devices are made from the VO2 nanobeam on the original grown substrate. Which

makes the VO2 has been used in their work has large embedded strain.

To further study the light effect on VO2 single crystal nanobeam. We used strain released

samples under different wavelength light. The light source used in our experiment is LED.

Similar as previous reported research on stained single crystal VO2[7, 95]. The current

through the LED is controlled by Keithley 6221 DC current source. The LEDs we have tested

are yellow(585nm), red(650nm), green(530nm), UV(365nm). The yellow, red and green light

show no effect on the VO2 transition. As for the UV light, the transition shifted about 1K

down. The UV light used in this measurement has a power about 3.3 mW/cm2(Estimation

of UV power used in this work: The UV led has a max power of 1W, the light source and

sample are spatially separated 2cm. The UV led has a view angle of 120◦.). The same

effect has been observed on two samples. This effect is rather different from Wu’s work[7].

As shown in Wu’s paper[7], around the transition, the resistance with UV and without UV

shows more than two orders changes. In our device, it the resistance shows no changes with

and without UV light, while the position of transition shifted about 1.5K. One explanation

is the VO2 studied in Wu’s work[7] has been embedded in SiO2 substrate. When shining UV
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light, the UV light helps to soften the SiO2 which partially release some strain.

(a) (b)

Figure 5.5: UV light effects on VO2 transition. Left figure shows the strained VO2 single
crystal nanobeam have transition with and without UV light[7]. Right figure shows the
similar condition as left when the strain is released

5.5 Capacitance on VO2 single crystal nanobeam

5.5.1 Challenges

Compared with Polycrystalline VO2, VO2 nanobeam has much less effective area as a

capacitor. Figure 5.6 is an image of a working device. The area of the device is less than

26µm2. As an estimate, the geometric capacitance is:

C =
ε0A

d
= 8.85 10−12

2× 10−6 × 20× 10−6

30× 10−9
F = 9.44× 10−15F (5.1)

Since quantum capacitance are normally larger than the geometric capacitance[4, 31, 85].

The geometric capacitance gives us an estimation of the expected level of capacitance we need

to resolve. From Equation 5.1. This is on an order of 10fF. With such an small estimated

capacitance to measure, the difficulty comes from a few aspects: Firstly, inside a general

length BNC cable, the capacitance between the center pin and its grounding shell is ∼pF



74

level. The larger impedance on sample can easily force a signal goes from center pin of BNC

cable to ground through the grounding shell instead through sample. Second, the substrate

is 300nm SiO2 on top of doped Si. The doped Si can form an capacitor with contact and

top gate. These two capacitor then add in series to each other. The capacitance between

contact and top gate and in parallel to sample capacitance. The last challenging is when

using a balancing bridge to perform the measurement. The instrument which measures the

balancing point will introduce another impedance which is normally smaller than sample

impedance at operation frequency range.

To resolve the resolve the first challenge, we balanced at each temperature point. This

makes balance point always stays at 0V relative to ground. This way, there is no potential

difference across the BNC center pin and shell. To eliminate the affection from substrate, the

doping layer can be grounded. This way, the contact-substrate capacitor and gate-substrate

capacitor are well shield to each other. Lastly, to monitor the balance point state without

introducing a smaller impedance instrument. We applied a current preamp instead of a

voltage preamp in polycrystalline VO2 capacitance measurement. The current preamp will

drive the balance point to a virtual ground. Then there won’t be any drop of voltage on the

measuring instrument.

5.5.2 Result

Figure 5.7 focus on measurement at frequency 523Hz. The sample capacitance jumps up

∼0.4% at 340K. As mentioned in Chapter 1, at high temperature, the VO2 is 1% shorter

than low temperature. Since these two changes are in opposite directions, this helps us to

eliminate crystal structure change as a cause. Although the capacitance jumps happens

about the sample temperature as the resistivity transition, resistivity transition is not effect-
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Figure 5.6: (a) Optical image of single crystal VO2 capacitor device. The dielectric is multi-
layer hBN, the VO2 nanobeam and top gate form an capacitor. The thickness of hBN is
around 30nm. The length of VO2 nanobeam underneath hBN is about 20µm. (b) Schematic
of side view of the same device.

ing our observation. The resistance of VO2 ranges from 2∼10 MΩ depends on the length.

The capacitive impedance XC = 1/2πfC is about 24 GΩ in Figure 5.7(at 523Hz). The

total resistance is less than 0.05% of capacitive impedance in the sample. Compared with

capacitance measurement on polycrystalline VO2, it is not possible to figure out an accurate

effective area. Except the difficulty to measure the width of the sample, the capacitance

formed is between a rod and a metal plate rather than two parallel plates. This hinders

us to obtain the exact value of dn/dµ in a standard unit of eV−1cm−2 or dµ/dn in unit of

eVcm2. However, it still shows us the trend at transition in an arbitrary unit. In polycrys-

talline VO2, it takes >5K for the DOS to increase from almost zero to very large. In Figure

5.7 b, Cq indicates a sudden jump of DOS at 340K. The jump is so rapid that there is no
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(a)

(b)

Figure 5.7: (a) Sample capacitance(black line) and fitted geometric capacitance(red line)
as a function of temperature.(b) Quantum capacitance Cq.

data point is taken between two states.

However the result above still may suffer from the strain since the VO2 used here is

underneath hBN layer and metal gate. To verify our result, we have been working on

another design to make the hBN as a gate underneath VO2(see Figure 5.8). In this design,

the capacitor is formed between VO2 and its bottom metal gate, this way the strain are

supposed to be significantly reduced. Note the VO2 is made longer than the bottom metal

gate width to guarantee after MIT transition the geometric capacitance is not effected due

to shrink of sample. Due to technical difficulties, we haven’t yet achieve an working device
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in this setup.

hBN
Dielectric

bottom 
gate

Contact
VO2 

Substrate(a) (b)

30μm

hBN
Dielectric

Contact

bottom 
gate

VO2 

Figure 5.8: (a) Optical image of single crystal VO2 capacitor bottom gate device. This is
an unfinished device, another layer of deposition need to be done on the contacts area. (b)
Schematic of side view of the same device.
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CHAPTER 6 Study on GaAs HIGFET

In chapter 7, p-doped GaAs is discussed. As mentioned, one drawback of using doped

GaAs system is doping may introduce disorders into system. Although delta doping can

significantly increase carrier mobility by suppressing the disorder[99], the sacrifice of quality

is unavoidable. The disorders caused by doping could trigger Anderson localization[51]

when probing interaction driven insulating behavior. To eliminate the disorder driven effect,

we have to use as less disorder as possible. Hertostructure insulating gated field effect

transistor( HIGFET) is ideal for this purpose. There is no artificial doping in HIGFET, the

2D quantum well is better protected. The charge carrier is introduced from the contacts by

field effect(gating).

By applying positive or negative voltage on the top gate, the carrier can be either p type

or n type. Also the contacts materials have to be different for different charge carrier types:

AuBe is used for p-type contacts, AuGe is used for n-type contacts. In most of our sample,

we used p-type carrier. The primary reason is holes in GaAs has a effective mass a few

times larger than electron[100]. Which makes it easier to reach a larger rs value to which

can create a strongly correlated system to study.

6.1 Challenging

Although HIGFET has the advantage to study interaction driven phenomenon, it is

challenging to fabricate a good working HIGFET device. The gate is made by MBE grown

of a heavily doped GaAs layer on top. When we do gating, the gate area has to cover all

the area of 2D layer in order to avoid the edge-bulk effect. In another words, the gate area

spans as large as 2D carriers.

The challenging part comes from making Ohmic contacts without shorting to the gate.
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Figure 6.1: (a) The profile after etching, (b) Metal contacts deposition, (c) After annealing,
metal contacts have a good Ohmic contacts with 2D layer and have a safe distance from top
gate, (d) After annealing, contacts metal are too close to top gate.

As shown in Figure 6.1 a, the distance between 2D layer and gate is 600∼800nm. After

deposition of metal contacts, these contacts has to be annealed to have an ohmic contact to

2D layer.

The thicker distance will increase the difficult of dark etching profile. The isotopic etch-

ing can make part of top gate breaks. With this narrow distance, we have to control the

parameters to make the metal have a Ohmic to 2D layer yet keep a distance from top gate.

If the distance between gate and of etching depth, deposition metal thickness, annealing

temperature and time. The only way is to etch down the surface of contacts area, make the

etched area a little lower than 2D carrier layer. Then deposit metal and let metal diffuse to

the 2D layer. This means we have to let the contact metal material diffuse enough to have a

good ohmic contacts while not too far to have a potential short to the gate. When the dis-

tance between top gate and annealed metal contacts are too short, the leakage usually don’t
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Figure 6.2: The optical image of a working HIGFET device

happen at low bias. However, to capacitively obtain large enough density, usually >1.2V is

required. With this bias, the leakage can easily occur with a short distance between top gate

and contacts. These make the fabrication of HIGFET rather challenging. As a matter of

fact, the first working device comes after 80 trials on different parameters. Figure 6.2 shows

the optical image of a working HIGFET device.

6.2 Results

The Figure 6.3 shows the turn on characteristics of a HIGFET. To protect the device,

a voltage drive AC signal of 100µV is used. Prior to the device turning on, it has a huge

impedance, the voltage source is essential for device protecting. The the current between

drain and source ISD is measured by monitoring the voltage on 1KΩ resistor in series with

HIGFET.

The turn on test has been done at 5K, the result is shown in Figure 6.3. For a working
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Figure 6.3: HIGFET turn on test. The inside is a schematic of testing circuit.

device, the device starts to turn on at 1.1V and fully turns on when bias is larger than 1.2V.

The ISD promptly jump to a few nA range when bias approaching 1.2V. For instance, when

ISD=2nA, the sample resistance is around a few ten KΩ.

Quantum hall effect is followed to characterize the sample at a lower temperature. As

we can see from Figure 6.4, quantum hall effect has been observed under different biases.

The charge carrier densities varies with tuning the gate bias. Unlike using SdH oscillation

to calculate density shown in Chapter 7, HIGFET doesn’t show SdH oscillation. There are

two possible reasons: one is the density in HIGFET are much lower than doped sample,

another reason could comes from the high temperature. The p doped sample is measured

at an upgrade cooling setup which yields an lower temperature. The density is calculated

from the slope of the hall resistivity using p =
1

e

dB

dρ
, and results are shown in Table 6.1.

At bias 1.24V, the sample barely turns on and the hole density is 2 orders smaller than the
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Gate bias(V) dρ/dB(Ω/T ) hole density(cm−2)
1.24 5323800.64 1.17×108

1.3 61793.93 1.01×1010

1.4 53480.88 1.18×1010

1.5 35515.41 1.76×1010

1.6 31155.08 2.01×1010

Table 6.1: HIGFET density at different gate bias voltage

rest. The non uniformity of charge carriers at this voltage is too high which shows no hall

plateau. Even at 1.3 volts, the sample shows dramatic increasing on ρxx and ρY xx, and there

is no hall plateau. The increasing on ρY xx indicating the resistance measured are jumping

out of the scope and capacitive coupling are becoming evident.

Our ultimate goal is to capture the resistivity-temperature dependence relation. This tells

us whether the system is an insulating system or a conducting system. In our measurement

result as shown in Figure 6.5, the plateau appeared as temperature goes lower than 100mK.

This is not as expected since various density should behave differently. This observation is

due to the cooling power. Although the temperature showing on the graph is measured by

a precision carbon thermometer mounted on the sample stage. The sample is mounted on

sample stage by gluing using silver paint. The sample it self is not cooled as well as the

thermometer. At a few mK range, the electron phonon interaction is largely suppressed.

The only cooling comes from the metal contacts. This is not sufficient enough.

In another words, although the Figure 6.5 shows temperature well below 100mK, the real

temperature on the carrier may be much higher than that. So the plateau we see in Figure

6.5 is because the temperature is not changing on sample, but changing on thermometer.

To avoid this situation, an helium cell need to be used. The design is using a cell filled

with liquid helium and sample is immersed inside the liquid helium. By doing so, we would
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be able to maximize the cooling power on the carrier. This part we are still working on and

is our future plan in probing the interaction driven state at low temperature.
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Figure 6.5: Temperature dependence on HIGFET
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CHAPTER 7 Other measurement results

In this chapter, the measurement on p-doped GaAs 2D system as well as on graphene

will be discussed. Part of the result of this chapter have been published in 2014[8].

7.1 p-GaAs

7.1.1 Density calculation using SdH oscillations

The sample used in this work is a two dimensional hole system. We kept stringent

fabrication standard to ensure the cleanness and high quality of device. For p-doped sample,

it is more plausible to deploy to study interaction driven effect. This is due to the larger

effective mass of hole than electron in GaAs system. Parameter rs = (m∗e2)/(4π~2ε)(pπ)−1/2

is generally used as an indicator for the interaction among experimental physicist. It is the

ratio of the Coulomb energy and Fermi energy. When it reaches its critical value, the system

can be dominated by coulomb interaction.

Figure 7.1: Shubnikov-de Haas (SdH) oscillations of p-doped GaAs sample[8]

Since rs is linear to m∗, it is important for us to calculate the precision value of effective

mass m∗. Figure 7.2 shows the low field Shubnikov-de Haas (SdH) oscillations. For SdH
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oscillations, Figure 7.2 plot the longitudinal resistivity ρxx as a function of inverse of magnetic

field(1/B). The ρxx oscillates in a period:

∆(
1

B
) =

e

h
· gs
p

(7.1)

In above equation: e and h are constants; gs is spin degeneracy factor(constant=2);

p stands for density in hole system. Using this equation, we can get the hole density in

the system. Compared with hall effect measured density, this method can achieve a more

accurate value for density.

By plotting the ρxx as a function of 1/B, we have Figure.7.2. The inset is an Fourier

analysis result. As we can see, the peak is well established and lies on 0.94 T. It has been

demonstrated in GaAs hole system, there exist heavy hole and light hole when the density

is beyond 7×1010cm−2.[101]. In our sample, the density is lower than this limit[102–104].

With this, we can get the density by using Equation 7.1. The hole density obtained in our

system is 4.5×1010cm−2[102].

Figure 7.2: Observed SdH oscillations for the two samples, the magnetic field in the range
between 8.5 T−1 and 15 T−1. In the insets are shown the Fourier spectra of the oscillations,
the dominant peaks and their frequencies values [8].
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7.1.2 Effective Mass in the Valence Band of GaAs quantum well

From SdH oscillation, effective mass can also be obtained accurately[104]. In the research

work Tsuneya Ando and Yasutada Uemura did in 1975[105], they explicitly illustrated how

the relate effective mass with longitudinal resistivity:

ρxx(B) = ρxx(0)

[
1− 4 cos

(
EF
~ωc

)
·D(m∗, T ) · E(m∗, τq)

]
(7.2)

where ρxx(0) is zero field resistivity; E(m∗,τq)=exp(−π/ωcτq); D(m∗,T) is the Dingle fac-

tor when the B field is low D(m∗,T)=ξ/sinh ξ with ξ=2π2kBT/~ωc [106]. In the temperature

region that we are exploring, we can use the approximation for which ln(sinh ξ) ∼ ξ, This

can helps us to simplify Equation.(7.2). Now, m∗ can be extrapolated from :

ln

(
∆ρxx
T

)
= C − 2π2kB

~eB
m∗T (7.3)

The data are fitted into the Equation.7.2. The residual square R2 >0.995

The fitted m∗ are shown in Figure.7.4. For the two sample in our measurement, m∗

slightly changes with density. In the density we are considering, the Hartree potential(e-e

repulsion) does not have a significant contribution to the Hamiltonian. With this consider-

ation, the dependence of m∗ on p is caused by the position of Fermi energy of 2DHS[103].

7.1.3 Anti-Hall bar bulk break down result

The Anti-Hall bar fabrication has been mentioned briefly in chapter 2. The reason it is

named as Anti-Hall bar is that, compare with Hall bar, Anti-Hall bar has two edges. Which

creates two topologically separated edge states. Anti-Hall bar is similar to Corbino-disk

geometry, with more contacts enables characterizing sample with quantum hall effect. In
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Figure 7.3: Variation of the logarithm of the longitudinal resistance with the temperature
and its fit with the Dingle factor for different magnetic fields for respectively[8]

Figure 7.5(j), a DC signal and AC signal is added together and applied between the inner

edge and outter edge. The magnetic field is held at 2T where integer quantum hall state ν=1

is reached. Note the choice of inner contact and outer contact doesn’t change the result since

all the same edge contacts are equal potential. As shown in Figure 7.5(e), at ν=1, the DC

voltage needed to break down the insulating bulk is as large as 10mV. When the system is

deviated from ν=1, the break down becomes easier and easier. At ν=0.92 in Figure 7.5(i), it

becomes almost conducting through all the DC bias with a little bump at 0V DC bias. This

system provides us an unique opportunity to probe the break down between topologically

isolated states in two dimensions. It turns out that tunneling resonant contributes the break

down mechanism which is discussed in more details in Refs. [43]
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Figure 7.4: Effective mass fitted at different magnetic field strength[8], sample B is a similar
sample with density p=4.9×1010cm−2, Inset shows our result compared to previous data
obtained through cyclotron resonance measurements [9]

7.2 Graphene result

A natural graphene has been fabricated with a terminal on it. Dirac point slightly changes

from 3.7V to 4V from room temperature to 4K. The quantum hall measurement performed

on graphene is on fixed magnetic field(7T in Figure 7.6 a) and sweeping the gate bias. When

we do the quantum hall effect on GaAs, the electrons are in Landau level: En = ~ωc(n+ 1
2
).

Cyclotron frequency is decided by magnetic field: ωc = Be
mc

. Sweeping magnetic field changes

the Landau level spacing, so the a contact Fermi level can go through each Landau levels. In

graphene, with a fixed magnetic field at 7T, the Landau level spacing is fixed. By changing

the top gate, we tune the density in graphene, which changes the Fermi level.
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Figure 7.5: (a)-(i) Differential resistance with variours filling factors, (j) Experimental setup
for measuring the bulk conduction properties with separated edges (k) I-V curve from DC
measurement at ν = 1
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CHAPTER 8 Summary and future plan

8.1 Summary

In our research we have successfully demonstrated quantum capacitance measurement

on two dimensional as well as one dimensional VO2 system. Quantum capacitance measure-

ments resolves dµ/dn in the system, which indicates the density of states changes trends

during the transition. Lithography is the foundation to fabricate a functional electronic de-

vice. High resolution capacitance bridge enables us to probe the small change in capacitance

at an extremely low excitation level. By carefully choosing the right measuring parameter,

we successfully extracted quantum capacitance from the system. Our work has indicates

tremendous suppress of dn/dµ on VO2 when lowering the temperature. This agrees well

with a band-gap opening at low temperature. Electronic compressibility also indicates a

strongly correlation effects at lower temperature.

The Shubnikov de Haas oscillations of p-GaAs dilute 2DHS have been observed. The

analysis shows the system with a density p =4.3- 4.8×1010cm−2. Effective mass of hole in

system has also been studied by measuring the SdH oscillations-temperature dependence.

The results yield 0.30-0.50 me when magnetic field is range from 0.08 to 0.250 T. These

results are important to study strongly interacting systems when coloumb repulsion becomes

significant.

8.2 Future plan

The single VO2 capacitance measurement have been done is using hBN covered VO2.

This may cause an external strain which effect our result. To verified whether the strain

cause an effect, a bottom gate sample need to be measured where gate is underneath VO2.

Only by doing so, we can eliminate the strain effect. In the mean time, the bridge resolution
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at low frequency needs to be improved. We have done work in making femto Fara reference

capacitance which can help to reach a balance.

The HIGFET measurement is incomplete due to the instrument repayment and upgrade.

The future plan on HIGFET system includes probing lower temperature dependant behavior.

The other part is applying quantum capacitance measurement on HIGFET. This method

are potentially able to illustrate details on electron interactions.
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Among strongly correlated systems, vanadium dioxide(VO2) shows metal insulator tran-

sition(MIT) near room temperature(340K). Both Mott transition and structural transition

contribute to the MIT in VO2. To gain a better understanding of the changing electronic

structures, we perform quantum capacitance measurement. Quantum capacitance measure-

ment has already yielded insight into a variety of systems, including the negative com-

pressibility for strongly interacting charges in GaAs two-dimensional charges. Our work

demonstrates a unique method to accurately distinguish the quantum capacitance from large

resistance changes at the MIT by using a home-made capacitance bridge. We observe a steep

increase in the density of states (DOS) near Fermi energy as the sample approaches a metal-

lic state upon heating. Our work is the first experimental study directly to probe the DOS

during the MIT in VO2 and is important for unraveling the long-standing mystery behind

the driving mechanism for this phase change. Additionally, the bridge method for measuring

the quantum capacitance in a highly resistive sample can be readily applied to other systems

that exhibit a MIT, which is universal to many systems.

The consequences of electron-electron interactions are far-reaching and universal to many
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systems. Present research seeks to understand the role of e-e interactions and whether these

can drive a strongly correlated ground state such as Wigner crystal or Wigner glass. One of

the major barriers to experimental progress in this area is the difficulty of fabricating high

purity samples with dilute charges. Furthermore, making Ohmic contact to dilute charge

systems represents a significant challenge. A significant portion of this work is to fabricate

ultra-high purity devices using both doped p-type GaAs/AlGaAs quantum square wells and

un-doped heterojunction gated field effect transistors (HIGFETS). These samples demon-

strate excellent mobility at low charge densities, allowing us to identify pinning behavior

in the reentrant insulating phase near in the fractional quantum Hall regime and also to

probe the transport between two edges of a topological insulator. These studies are critical

to understanding the physics of strongly correlated charges and their relation to topological

phases, which is a fascinating area of intense current research.
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