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CHAPTER 1 INTRODUCTION
1.1 Overview

Computer Vision (CV) is a science that aims to electronjcp#irceive and understand an image or a
sequence of images (i.e. avideo) [1]. Popular CV algoritmoiside object/event detection, recognition,
and tracking [2]. CV has been deployed recently in a wide eavfgapplications, including surveillance
and automotive industries. Such CV systems include autmnagleo surveillance [3, 4], Wireless Video
Sensor Networks (WVSN) [5, 6, 7, 8], mobile surveillanceteyss [9], Advanced Driving Assistance
Systems (ADAS) [10], Vehicle-to-Vehicle/Vehicle-to-maktructure (V2V/V2l) video communication
[11], traffic monitoring systems, and other Intelligent isportation Systems (ITS) [12, 13]. According
to a recent report from Tractica [14], the market for CV tembgies will grow from $5.7 billion in
2014 to $33.3 billion by 2019. Surveillance and automotiveustries share over 20% of this market.
According to [15], 245 million video surveillance camerastalled globally in 2014. Over 20% are
network cameras and around 2% are High Definition (HD) camera

This dissertation considers the design of real-time CVesystwith live video streaming, especially
those over wireless and mobile networks. Such systemsdaalideo cameras/sensors and monitoring
stations. The cameras should adapt their captured videsesl lman the events and/or available resources
and time requirement. The monitoring station receivesw/gteeams from all cameras and run CV algo-
rithms for decisions, warnings, control, and/or other@awi Real-time CV systems have constraints in
power, computational, and communicational resources.ni¢teic for the performance of CV systems
is the accuracy of the system in perceiving or extractingiigions of physical objects or events from
pictures (i.e. accuracy for detection, recognition, aadking of object and events). Power consumption
has also become a major concern in CV systems, especialig #raploying battery-operated devices.

In such systems, prolonging the battery lifetimes is a prynudjective due to its great implications in



terms of system cost and availability. In such systems,ggnisr consumed at the source in each of
the three main phases: capturing, encoding, and tranemis§)ue to the limited amount of energy

resources available, power consumption efficiency is ortbemost challenging design factors. Since
video encoding contributes to most of the overall power aorion at the video stations, the encoding
parameter settings used at each station determine theirgquulver consumption and bitrate of the

video. The bitrate determines the quality of the video ardtthnsmission power consumption of the
station.

CV systems are usually real-time. For example, vehiculais¢3fems and automated video surveil-
lance systems are real-time CV systems. Vehicular CV systther detect objects and events that
may represent safety risks to drivers or detect obstaclésffic [13]. Automated video surveillance
systems alert the security guards of any undesired acthgtight on the surveillance cameras. Data
and image processing in CV systems are usually intensiveeaqdres large amounts of computational
resources and memory. For example, a simple camera8fith< 600 resolution can capture more
than one megabyte per second without image compressiomelaampression algorithms require ad-
ditional computational resources [13]. In all these systewideo encoding must be in real-time. The
performance of encoders in terms of quality, bitrate, antbdimg speed is determined by many en-
coding parameters. In a power/bandwidth/time constragmedonment, it is very important to choose
the right settings for the parameters that lead to the optameoding performance in terms of power
consumption, bitrate, encoding speed, and quality [16].

CV systems should adapt the videos according to the dynamaioges in the network and environ-
ment [17]. In addition, CV application can adapt to avaiabhttery charge to prolong the battery life.
Video adaptation has been studied extensively in vide@siirey in general, but little work has been

devoted to computer vision systems. For video streamingriaty of video adaptation techniques have



been studied [18, 19, 20], with the main approaches beimg¢raling and scaling the video Signal-to-
Noise Ratio (SNR), spatial, and/or temporal parameterskR,Sdatial and temporal resolution can be
changed simultaneously for efficient use of resources. Mdsb adaptation techniques considered the
video distortion as the primary metric, leading to muctréitare on rate-distortion characterization and
optimization [21] (and references within). In CV systemawiver, the main objective is enhancing the
event/object detection/recognition/tracking accuradye accuracy can essentially be thought of as the
quality perceived by machines, as opposed to the humanpieateuality.

The shortage in bandwidth as a result of the popularitiigh Definition(HD) videos motivate the
video encoding community to develop the new encoding stahciledHigh-Efficiency Video Coding
(HEVC). This standard required half the bandwidth compaeethe H.264 encoding standard [22] at
the same level of video quality. Unfortunately, HEVC adagitgorithms that have high computational
complexity, which makes the video encoding extremely slod@nsume tremendous amount of power
[22]. Since encoding HEVC videos in real-time is extremdigltenging, it attracts researchers to pro-
pose new methods that speed up the encoding process bytiprg thie results of the high computational
algorithms faster.

In this dissertation, we propose adaptation techniquesdieae encoding computational complexity
while maintaining detection accuracy or video quality. @uposed techniques tradeoff between the
system resources without considerable loss in performafdese techniques require modeling the
resources in terms of video parameters that can adapt bagbd cesources availability.

We model the encoding computation complexity, the powesugorption, and the bitrate. In addi-
tion, we characterize the detection accuracy and the videditg To utilize the resources efficiently
based on our required performance, we develop a model tntes any desired tradeoff in terms of ac-

curacy, bitrate, and energy consumption. We also study atternal encoding parameters on encoding



computation complexity, such as number of reference fraam$ search range.

For HEVC, we develop an algorithm that predicts the size eftifock currently being processed
(CU.urrent) Without exhaustive RDO calculations. Based on the sititylarf recently processe@oding
Units (CUs) in contents and'U,,,r.n: CONtent, our algorithm substitutes RDO for partitioning th
Largest Coding Uni{LCU). To prevent error propagation, we introduce othertenhconditions that
must be satisfied. The content conditions are based on Sham@py ofC'U.,.n: and its neighbors.
Shannon entropy is estimation of the minimum number of laitgiired to encode a group of symbols,
based on the number of occurrence of the symbols in the g&a)2f].

1.2 Main Research Objectives
The main objectives of this dissertation can be summarigddlws:

» Adaptation of live video streams in computer vision sysem

» Modeling and analyzing the power consumption in live vidg@aming systems.

» Developing a history and entropy based LCU partitionirgpathm for HEVC encoding.
1.3 Detailed Research Plan

This dissertation is organized into the following three mgarts.

1.3.1 Adaptation of Live Video Streams in Computer Visi®siedys

We analyze video rate adaptation techniques in CV systamhkjding Automated Video Surveil-
lance (AVS). As in all other video streaming applicationise wideo streams in CV systems should
be adapted to the dynamically changing network conditiofe analyze and compare various video
adaptation techniques in terms of both event/object deteeiccuracy and power consumption. The
rate adaptation techniques include spatial (resolutesed), temporal (frame rate-based), and SNR
(quantization-based). We analyze the impact of upscaliagjaly adapted videos to their original sizes
by using super-resolution techniques at the receiver befpplying the CV algorithm. In addition, we

study the impact of different adaptation combinations. tfr/@nimore, we present an objective function



that provides any desired tradeoff in terms of accuracyatat and energy consumption. By examining
the rates of change in each of these metrics, the functiardahe setting with a larger subsequent drop
in accuracy, a smaller subsequent drop in bitrate, and densabsequent drop in energy.

1.3.2 Modeling of Power Consumption and Bitrate in CV striggn®ystems

We develop an aggregate power consumption metric for vittearsing systems. We model the
video capturing, encoding, and transmission aspects ardlovide an overall model of the power
consumed by the video cameras and/or sensors. This workeleaisrbotivated by Wayne State Multi-
media Lab ongoing work on the power-aware design of autainétieo surveillance systems, which
requires accurate, simple, and appropriate power consomptodels. The model can help in the dy-
namic control of various camera/sensor settings, inctydesolution, frame rate, and quantization to
achieve the best overall tradeoff in terms of power consignpbitrate (and thus bandwidth), and qual-
ity. We also analyze the power consumed by the monitorintpstawhich is due to video reception,
potential video upscaling (to the original video resoloficas capture by the sources), and video de-
coding of all received video streams. For video encodingfagas primarily on H.264 and show that
the model can be generalized to MPEG-4. The performance aafdens in terms of quality, bitrate,
and power consumption are determined by many encoding pseasn The proposed model captures
the following main parameters: resolution, frame rate ntjgation, motion estimation (ME) range, and
number of reference frames. In addition, we model the ouijtrdate of video encoding. The bitrate im-
pacts the medium bandwidth, the video quality, and the tnésson power consumption. We validate
the models through extensive experiments. We analyze termpmmnsumption models of each phase as
well the aggregate power consumption model. The latterlidat@d using two different cameras. The
analysis includes examining individual parameters séglgras well examining the impacts of changing

more than one parameter at a time.



1.3.3 Fast HEVC Encoding by History and Entropy-Based LCHitRaning

HEVC is a recent video encoding standard to overcome thevidtid shortage as a result of the
popularity of HD videos. HEVC adopted numerous new toolghsas more flexible data structure
representations, which include thargest Coding Uni{LCU) andCoding Uint(CU). LCU is a64 x 64
block which can be partitioned down ingo< 8 CUs [22]. In the patrtitioning of the LCU into CUs, a high
computation algorithms are applied, which makes the engpidio low for real-time systems. This part
of the dissertation proposes an algorithm cahistory and Entropy-based LCU Partitionif¢glELP) to
predict the partition of LCU fast instead of the exhaustRage Distortion OptimizatiodRDO) method
in HEVC.

HELP algorithm predicts the partition decision for the iaurrently being processe@Ueyrrent)
based on the weighted average of the termination posgibiliall the spatial and temporal neighbors.
The patrtition decision is to split the block to four blockstoterminate the process of searching for the
optimal partition forCU,,+.nt. The termination possibility is defined as the likelihoodttth'U..rent
will terminate or split based on the decision that has beedenfiar the neighbor block. The neighbor
block is each processed block of the same size that is eghgpdrally co-located or spatially share an
edge or a corner witl'U,,rent- TO prevent error propagation of predicting partition dewn, HELP
uses a second condition based on the conte@fdf,,.....;. The metric for how much information are in
the CU.yrrent 1S the entropy of this block [25].

The prediction is based on the correlation between the gntod CU.yrent, the entropy of its
neighbors, and the partition history of the neighbors. Werowe the encoding speed of the RDO
implemented in HEVC while maintaining the coding efficieranyd video quality within acceptable
degradation. We demonstrate the effectiveness of the peapalgorithm in comparison with RDO and

a published entropy-based algorithm [25] and other exjstigorithms through extensive experiments.



CHAPTER 2 BACKGROUND INFORMATION AND RELATED WORK
In this chapter, we provide background information aboatttiree main parts of the dissertation.
2.1 Video Encoding

2.1.1 Overview of Video Encoding

The main video encoders include MPEG-4 Part 2 Standard fglgiMPEG-4) and MPEG-4 Part
10 Standard (or simply H.264). As shown in Figure 2.5, theeeiencoding process can generally be
divided into the following three high-level stagdsatra and Inter Prediction (Estimatior$tage,Trans-
formation, Quantization and Their Inver&tage, andEntropy CodingStage. In the estimation stage,
both intra-prediction and inter-prediction are used tauoedthe spatial and temporal redundancies in the
video, respectively. Video data contains spatial and tealpedundancies. Therefore, similarities can
be encoded by just considering differences within a frampat{al), and/or between frames (temporal).
The first frame of a sequence or a random-access point isatiypiotra-coded (i.e., without using infor-
mation from other frames). Each block of pixels in an intrarfe is predicted using previously-encoded
neighboring blocks. For all remaining frames of a sequendeebiveen random access points, inter-
coding is usually used, employing block motion compensatiopredict blocks from other previously
encoded frames. The residuals of the intra-prediction atei-prediction are then transformed to the
frequency domain using Discrete Cosine Transform (DCT) PBE-4 or Integer DCT in H.264. (The
residual is difference between the original and predictedks.) Subsequently, the transform coeffi-
cients are quantized, thereby reducing the overall p@tisf the coefficients and possibly eliminating
high frequency coefficients. The quantized transform codefits are entropy coded and transmitted

together with any possible motion vectors (MVs).



2.1.2 Overview of H.264 Standard

As H.264 is the primary focus of this work, let us now discusi imore detail. H.264 employs
many features for more efficient compression and betterbilléyiwith the network environment [26].
Figure 2.6 shows the processing stages of H.264. The pingestages can be described as follows.

One of the main features of H.264 is using multiple refereinames to increase the compression
ratio. It allows up tol6 reference frames. In contrast, MPEG-4 allows one referéacee.

Another feature of H.264 is using variable block-size mot@mmpensation, thereby enabling a
more accurate segmentation of moving regions and highep@ssion ratios. The block size ranges
from 4 x 4 pixels to16 x 16 pixels. In MPEG-4, the minimum block size&sx 8.

When coding a macroblock, an H.264 encoder can choose fromy difierent intra-modes for I-
frames or inter-modes for B- and P-frames. Within each imede, the encoder has a wide choice of
possible MVs, leading to a huge number of options for codimgaaroblock [27]. ThdRate-Distortion
Optimization(RDO) mode selection is an algorithm for choosing the bedtngbmode for each mac-
roblock, based on the bitrate and distortion cost. It is deetioth intra-prediction and inter-prediction.
To select the best encoding mode for a macroblock, the digoréxamines all possible combinations

of intra- or inter-modes. The bitrate cosand distortion cost are combined into a single cast

J=t+gxr. (2.1)

The RDO mode selection algorithm attempts to find the modertiaimizes the joint cost/. The
tradeoff between bitrate and distortion is controlled gy tlagrange multiplier. An empirical approx-

imation of g as a function of quantization parametey i6€ given by

g = 0.8524712)/3 (2.2)



Further details can be found in [27].

H.264 employs a simplified version of the DCT transform. Intipalar, it uses a x 4 or an8 x 8
Integer DCT transform, whereas MPEG-4 use8an8 DCT.

H.264 employs a quantization design, which includes a Litgaic step-size control for easier bi-
trate management by encoders and simplified inverse-gadioth scaling. Two methods are available
for quantization. The first method uses one of two availablengjzation matrices to modify the quan-
tization step-size based on the spatial frequency of th#ficieat, whereas the second method uses the
same quantization step-size for all coefficients. MPEGsé allows for non-linear quantization of DC
values [28].

H.264 provides two options for entropy codingontext Adaptive Binary Arithmetic Codi(@ABAC)
andContext Adaptive Variable Length Codif@AVLC). Both perform lossless compression by intelli-
gently coding the syntax elements in the video stream basdideir probabilities. CABAC compresses
data more efficiently than CAVLC but requires more procagsinthe decoder.

2.1.3 Overview of High-Efficiency Video Coding (HEVC)

The increasing demands étigh and Ultra High Definition(HD and UHD) videos increases the
need for more bandwidth especially in wireless systems. [29jat demand urged the video encod-
ing community to develop the new encoding standard caHagh-Efficiency Video CodingHEVC)
to improve the encoding efficiency while keeping the quadityin H.264 encoding standard [22, 30].
In comparison to H.264, HEVC offers about double the datapression ratio at the same level of
video quality. It supports resolutions up&b92 x 4320. HEVC introduces many different techniques
in order to improve the coding efficiency, including the aauction of an adaptive quad tree coding
[22]. The improved compression performance increasesdh®uatational complexity due to the new
algorithms such as, adaptive quad tree structure, extrafmediction modes, and the comprehensive

Rate-Distortion Optimization (RDO) calculations in sucktaicture.
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HEVC main goal is to improve coding efficiency in HD video syss. In order to achieve that,
HEVC introduces many technigues including an adaptive dresl structure [22, 31] and extra intra-
prediction modes. Unfortunately, these techniques slomndhe encoding process. One way to reduce
such computational complexity is by predicting the CU sas .f Although, several ideas were proposed,
HEVC encoding speed is still slow for real-time applicagon

2.1.4 Adaptive Quad Tree Structure of HEVC

HEVC adopted new features, such as more flexible data stejaithich includes th€oding Unit
(CU), the prediction unit, and the transform unit. In thegoral HEVC encoderRate Distortion Op-
timization RDO algorithm is used for the partitioning of theargest Coding Unit(LCU) into CUs.
Unfortunately, the computation complexity of RDO is extedynhigh for real-time application which
opens the door for sub-optimal LCU partitions that redueeathcoding time.

Frames in HEVC are patrtitioned into LCUs of si@é x 64 in the adaptive quad tree structure of
HEVC [32]. If 64 x 64 CU split, it is divided into four CUs of size32 x 32. In addition, each CU
of size32 x 32 can be subdivided into four CUs with sizes1of x 16. Furthermore, each CU of size
16 x 16 can be subdivided into four additional CUs with sizes of 8. The standard refers tot x 64,

32 x 32, 16 x 16, and8 x 8 partition by depthD, 1, 2, and3, respectively. Figure 2.1 shows quad-tree

CTU structure.

32x32cuU
Depth 1

84x64 CU
Depth 0

8x8 Depth 3

16x16 CU
Depth 2

Figure 2.1: Quad-Tree Structure for LCU
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Figure 2.2 shows the spatial neighbors for ddépth and2. The figure shows that the block currently
being processe@ U....+ent IS surrounded by spatial neighbors with the same size. Thedamg of a
frame in HEVC is processed in z-order from left to right ang to bottom. Figure 2.3 shows the
temporally co-located neighbor of tli&l.......¢ IN the previous frame which has the same size and the

same spatial z-order as th&d/..,,,ren: in the current frame.

Above Above Above
Left ng ht Ab Above
ove
i Above Right Above ||apove| Above
Left Right
Left CB § i @ }- g
W
Left Current g S Lot
Block 2 Under
(c8B) Left

Figure 2.2: Spatial Neighbors of a 64x64, 32x32, and 16x16 {@dpth 0, 1, and 2]

located
cu

Previous Frame Current Frame

Figure 2.3: Temporal Neighbor (Co-located)

2.1.5 Related Work on LCU Partitioning

To increase the encoding speed of HEVC encoder, many tagtsittave been proposed by different
studies. Some of these studies focus only on partitioninggss [25, 33, 29, 34, 35, 36, 37]. Study [25]
suggested an approach based on how much information ismedtaithin the block, which is measured

by a metric called Shannon entropy. For simplicity, we dadittalgorithmentropy-based algorithm,
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we also call Shannon entroatropy in this dissertation.
The entropy value for a CU indicates the amount of informmativat must be encoded by an im-
age/video compression algorithm [24, 38]. The CU entrogye/ét..,.) can be calculated b$hannon

Entropy Equation [24] as follows:

N . .
B = — ; % x log, % (2.3)

where N and f are the total number of pixels in the CU and the total numbeahefoccurrences of
the pixel valuei (frequency ofi), respectively. This equation was introduced ikathematical Theory
of Communicatiorpaper by Claude E. Shannon in 1948 [23]. To increase redgretaamong pix-
els within the same CU, quantization is applied for elimimgtthe noise before evaluating Equation
(2.3). Figure 2.4 shows the pseudocode for the proposedochéth[25]. The entropy-based algorithm
improved the encoding speed to be faster than all otherimgxiatgorithms that intend to do so. The en-
coding speed i8.5 faster than the original RDO algorithm with acceptable agerbitrate. In addition,

the average quality degradation for the proposed methaatinst of the PSNR is negligible.

Start with the first frame
I. Start the encoding process of the first LCU in the frame
Il. Calculate and store eaamtropy value of all possible CUs in LCU&5 different
CUs)
Calculate the totadver age entropy of all possible CUs in the LCU which is the sum
of all entropies divided bg5
IIl. Start at depth 0 with CU of the size 6fi x 64
IV. Use the stored entropy value of the CU
1. If the entropy of CU> 3.5, SPLIT to next CU
2. Else, if the entropy value of Cd 1.2, TERMINATE
3. Otherwise
a. If the entropy value of CU is withifi.15 of average entropf, ERMINATE
b. Else,SPLIT
V. Go to next CU and repeat steps IV until LCU encoding is done
Go to next LCU and repeat Il through V until frame is done
Go to next frame until video segment is done

Figure 2.4: Pseudocode of the Entropy-Based Algorithm
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Study [36] proposed CU early-termination algorithm thdteta advantage of the correlations be-
tween theMean Square Erro(MSE) of prediction residuals and the splitting decisiothia current CU
level. For each CU level, MSE between the prediction bloak #e origin block is compared with an
adaptive threshold. The CU splitting process is terminatatly according to that threshold. According
to the paper, the proposed algorithm achieves up to 34.88¥ag® encoding time reduction.

Study [33] proposed fast CU size decision based on the déitie spatial and temporal neighbors.
Each of the splitting and termination decisions is basedranrhain conditions. Splitting decision for
CU.urrent IS made if either the temporally co-located CU or each of tietial neighbors has smaller
CUs. On the other hand, the termination decision is maddh&eithe temporally co-located CU 8r
or more neighboring CUs does not have any smaller CU. Fordiiting and termination, the current
processed frame should not be | frame. The authors of [3Bheldha reduction in encoding time of 43%
compared to the original HM5.0 encoder for the HD test seceen

Using Support Vector MachinéSVM), study [34] proposed a CU splitting fast terminatidgaa
rithm. CU splitting is modeled as a binary classificationpem, on which SVM is applied. The paper
claimed that the proposed algorithm can achieve about 4ltitn&saving under the low delay profile
setting compared with the HEVC reference software.

In trying to avoid some of the limitation of the depth-basedtition approach [33], study [39] used
Total number of Block§TnB), where it made the decision of splitting/terminatiobased on the total
number of blocks in the neighbors CUs. TnB is based on the eumiiisub CUs that contained within
a certain CU. The author claimed that the total number ofkdquovides more insight int6'U.,,-rent
structure of the neighbors which make the decision of teation/splitting more accurate compared to
the RDO method than the depth approach. TnB algorithm made theidedais follows: first, calculate

the Splitting Possibility(SP) as the total number of sub-blocks in all the neighbolS@f,,.....; divided
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by the maximum possible number of sub-blocks in the same Ciéond, terminate (consider the
current size folCUy.rent) if €ither S P is less thard).1 for depthl, or it is less thar®.4 for depth2. The
author claimed a reduction dft.89% in encoding time compared t8DO that is implemented in the

original software.

2.2 Adaptation of Live Video Streamsin Computer Vision Systems

Most research on video surveillance focused on develogihgst CV algorithms for the detection,
tracking, and classification of objects [40, 41] (and refesewithin) and the detection and classification
of unusual events [42] (and reference within). No work, hasveconsidered the bitrate-energy-accuracy
tradeoffs in CV systems, including AVS.

As shown in Figure 2.5, CV systems, such as AVS, include pialtvideo sources (i.e., cameras
and/or sensors) which stream videos to a monitoring stalime video streaming consists of three main
phases at the video source side: capturing, encoding, amshtission. Due to the complexities of intra-
prediction and inter-prediction, which are used to redimgedpatial and temporal redundancies in the
video, respectively, the encoding phase incurs the highest of power consumption [43]. The main
video encoders include MPEG-4 and H.264. At the receiveraidieneral live video streaming systems,
the streams are decoded and then displayed. In AVS systeensidnitoring station decodes the videos,
potentially upscales them, runs CV algorithms, and perfoappropriate actions, such as generating
alerts, adapting the sources, etc. The power consumed lgdhioring station is of lesser importance
than that by the video sources because the monitoring istegtia full-fledged, outlet-powered system
[43]. The bitrate of a video stream is related to the requivaddwidth and to its quality. The CV
accuracy depends on the quality of the video stream, but Gofithms are less sensitive to quality than
human beings [44].

Adaptation involves selecting the desired capturing ardéimg parameters of various video sources
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Figure 2.5: An lllustration of Computer Vision Systems

to fit bandwidth and/or energy constraints and/or achiev&ireperformance. In CV systems, the accu-
racy of CV algorithm(s) is the most important metric. The mapproaches for video streams adaptation
include changing the video Signal-to-Noise Ratio (SNRatish and/or temporal parameters. The SNR
quality is controlled by changing the quantization paramehereby changing the intensity of pixels.
Video encoders allow setting the quantization parametectly or indirectly by setting the target bitrate.
The spatial and temporal qualities, however, are conttdie changing the frame size (i.e., resolution
or total number of pixels) and frame rate (i.e., number afiea per second), respectively.

For spatially-adapted videos, an upscaling algorithm neayded to restore the videos to their orig-
inal sizes by the monitoring station before applying the @ybeathm(s). Upscaling uses interpolation
to enhance the resolution of an image or video. In this diggen, we analyze the effectiveness in CV
accuracy of popular upscaling (also called super-resmiytalgorithms: Nearest NeighbgrBilinear,
Bicubic Spline andLanczos The first three algorithms consider the closest pixel, theest2 x 2
pixels, and the closedt x 4 pixels, respectively. Spline and Lanczos consider additisurrounding
pixels. New algorithms have been recently proposed in [8}, 4
2.3 Power Consumption in Live Video Streaming

Power consumption is a major concern in live video strearsystems in general and in many-to-one

video live streaming systems in particular. As shown in Feg2L5, many-to one streaming systems in-
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clude multiple video sources (i.e., cameras and/or sengatrish stream videos to a monitoring station.
The sources adapt their capturing and encoding parametsesl lon the current system state, including
available resources. The monitoring station receivesovidieeams from all sources, potentially upscales
the videos to their original resolutions, decodes the \ddamd then runs computer vision algorithms
for determining the appropriate actions, such as conigoiources and generating alerts. The process
at each source involves three main phases: video captwithep encoding, and video transmission.

In this dissertation, we develop power consumption modgléve video streaming systems in gen-
eral and analyzes the power consumed by the monitoringstatimany-to-one systems. The models
capture the impacts of various video capturing and encopargmeters, and thus can help in the dy-
namic control of various camera/sensor settings to achtevédest overall tradeoff in terms of power
consumption, bitrate (and thus bandwidth), and video guali

Let us discuss next the power consumption in each phase sbtinee.

2.3.1 Video Capturing Power Consumption

Cameras include image sensors, which are silicon deviedsépture images. The most popular
sensor type i€omplementary Metal Oxide SemicondugfGMOS). It captures light onto an array of
light-sensitive diodes, with each diode representing drel @mnd converting the light photons into a
charge. Each pixel has its own voltage amplifier and can ke de@actly on anx — y coordinate sys-
tem. Study [47] characterized the power consumption of atsseasor, called PARISI (Programmable
Analog Retin-like Image Sensor I). The total power consuomptor an N x N sensor withV analog

processing units was shown to be given by

Ws=cq N>+ ¢ N, (2.4)
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wherec, and ¢, are constants. Study [48] developed a power consumptiorehfod CMOS image
sensors. The model is similar to [47] but it is more compled mtludes systems parameters and not
only capturing and encoding parameters.

In this dissertation, we consider the popular CMOS sensogsdevelops a power consumption
model based on extensive experiments. Our developed gaptandel is based on that of [47].

2.3.2 Video Encoding Power Consumption

The main video encoders include MPEG-4 Part 2 Standard fglgiMPEG-4) and MPEG-4 Part
10 Standard (or simply H.264). As shown in Figure 2.5, theewiencoding process can generally be
divided into the following three high-level stagdstra- and Inter- Prediction (Estimatiortage,Trans-
formation, Quantization and Their Inver&tage, andEntropy CodingStage. In the estimation stage,
both intra-prediction and inter-prediction are used taedthe spatial and temporal redundancies in the
video, respectively. The first frame of a sequence or a ranatarass point is typically intra-coded (i.e.,
without using information from other frames). Each blockpofels in an intra-frame is predicted using
previously-encoded neighboring blocks. For all remairfragnes of a sequence or between random ac-
cess points, inter-coding is usually used, employing blockion compensation to predict blocks from
other previously encoded frames. The residuals of the-prediction and inter-prediction are then
transformed to the frequency domain using Discrete Cosmasform (DCT) in MPEG-4 or Integer
DCT in H.264. Subsequently, the transform coefficients aantjzed, thereby reducing the overall pre-
cision of the coefficients and possibly eliminating highgftency coefficients. The quantized transform
coefficients are entropy coded and transmitted togethéramy possible motion vectors (MVs).

As H.264 is the primary focus of this dissertation, let us rigcuss it in more detail. Figure 2.6
shows its processing stages. The main features of H.264e&anrbmarized as follows. (1) It allows
using up tol6 reference frames to achieve high compression ratios, cadpeth only one in MPEG-

4. (2) It uses variable block-size motion compensatiorelne enabling a more accurate segmentation



18

of moving regions and higher compression ratios. The bl ainges fromt x 4 pixels to16 x 16
pixels, whereas MPEG-4 has a minimum block sizesof 8. (3) It employs a simplified version of
the DCT transform. In particular, it usestax 4 or an8 x 8 Integer DCT transform, whereas MPEG-4
uses arg x 8 DCT. (4) It employs a quantization design, which includesgarithmic step-size control
for easier bitrate management by encoders and simplifiestsavquantization scaling. (5) It provides
two options for entropy codingContext Adaptive Binary Arithmetic Codif@ABAC) and Context
Adaptive Variable Length Codin@CAVLC). Both perform lossless compression by intellidgmioding
the syntax elements in the video stream based on their piibiesb CABAC compresses data more

efficiently than CAVLC but at the expense of increased prsiogsat the decoder.

Current Frame I_I +
o —l "—v
Current MB - Residual MB Coded bitstream

Transform Entropy

Prediction MB +Quantize Encoder
Intra

Inter Inverse
Prediction Transform

Decoded i !
Loop Filter + Residual MB Quantize

+

Previously
Coded
Frames

Figure 2.6: Block Diagram of H.264 Encoder

When coding a macroblock, an H.264 encoder can choose fromy difierent intra-modes for I-
frames or inter-modes for B- and P-frames. Within each intede, the encoder has a wide choice of
possible MVs, leading to a huge number of options for codimgaaroblock [27]. ThdRate-Distortion
Optimization(RDO) mode selection is an algorithm for choosing the bedtngpmode for each mac-
roblock, based on the bitrate and distortion cost. It is deetioth intra-prediction and inter-prediction.
To select the best encoding mode for a macroblock, the #hgoerexamines all possible combinations
of intra- or inter-modes. The bitrate castand distortion cost are combined into a single cogtby
J =t + gr. The RDO mode selection algorithm attempts to find the moalerttinimizes the joint cost

J. The tradeoff between bitrate and distortion is controbgdhe Lagrange multiplieg. Further details
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can be found in [27].

Much of the work on H.264 dealt with managing the computattomplexity [49, 50]. Study
[51] developed a power consumption model in terms of theesypker instruction and energy per cycle.
In [52] studied the power consumption of video streamingnfremartphones and mobile devices, but
with no model development. Study [53] considered optinid@ascenarios that determine how to as-
sess the encoding parameters, but the study was limited tmiVBEstimation (ME) search algorithms.
Specifically, it compared the bitrate, distortion, and eggber second for each one of these modes. A
power-rate-distortion model of a hardware-based encodsrimtroduced in [54] using the power scal-
able architecture of H.264, considering only integer aadtfonal ME search range and I-frame period.
Study [55] proposed a joint power-distortion optimizatiecheme for real-time H.264 video encoding
under the power constraint. The encoding modules wereetividto basic operation units, such as the
sum of absolute differences (SAD) operations. Subseqgueh# encoding complexity of basic opera-
tion units was determined by summing up the required pracesgles. That study considered only the
ME search algorithm and did not study the spatial and tenhdiects. Study [5] developed a Power-
Rate-Distortion (PRD) framework specifically for a genetileo encoder (that applies to H.263). Study
[56] developed a model for H.263 by measuring the power aopsion of an H.263 encoder running
with Full Search and Fast Search ME algorithms as a functidheobitrate, frame rate, and number of
macroblocks in the frame.

Dynamic Voltage Scaling (DVS) algorithms reduce energyscomption by changing the processor
speed and voltage at runtime depending on the needs of ttentdyurrunning applications. With DVS
technology, the power consumption is a function of procesgdes per second. Therefore, the encoding
complexity can be represented as a function of the numbemogkgsor cycles per second. As in [57, 5,

56, 58, 59], we consider DVS in the model development.
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2.3.3 Video Transmission Power Consumption

Transmission power consumption is affected mainly by tiearielogy or platform, distance, path-
loss or environment, and bitrate. The main factors that ohtfee power consumption in a Wi-Fi plat-
form are the Network Interface Card (NIC) design (includlagout, chip design, transmission output
power, voltage regulations, and modulation scheme),antems between NIC and CPU, and software
protocol design (such as power management and drivers).t Mdke recent work on transmission
power consumption focused on video sensor networks. S&@jydeveloped upper bounds on the life-
time of sensor networks. Study [61] examined the resouritieation behavior of a wireless video
sensor and analyzed its performance under resource dotstr&tudy [62] studied the impact of the
transmission power range on energy consumption for wisedeasor networks. Study [51] analyzed the
power consumption in video sensor networks, using the miadélL]. Study [63] analyzed the impacts
of different transmission power control strategies on ig@ss sensor networks in general, considering
the granularity of power levels.

As discussed earlier, we are interested in developing redadétrms of only the video capturing and
encoding parameters, and thus we simplify previous trasson models, particularly [61], and adapt

them accordingly.
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CHAPTER 3 ADAPTATION OF LIVE VIDEO STREAMSIN COMPUTER VISION
SYSTEMS

3.1 Introduction

In this chapter, we consider the design of real-ti@mmputer Visior{CV) systems in which objects,
events, and/or threats are analyzed automatically by mgn@V algorithms. A primary example of such
systems is Automated Video Surveillance. In these systambiple video sources (i.e., video cameras
and/or sensors) stream videos to a central monitoringmgst€hese systems have constraints, including
those in energy and bandwidth, and thus various video stshiwuld be adapted dynamically based on
the available resources and desired performance. Theaditepts achieved by changing the source
video capturing and encoding parameters, specificallylugsn, bitrate (or quantization parameter),
and/or frame rate. Due to their nature, the main performametic in CV systems is the accuracy of
the CV algorithm(s).

Video stream adaptation has been studied extensively iergevideo streaming systems, but little
work has been devoted to CV systems. Most existing work optatian considered the video distortion
as the primary metric, leading to much literature on rastedtion characterization and optimization
[64, 21, 6, 7] (and references within). As discussed eattiewever, the main objective in CV systems
is the CV accuracy. The accuracy can essentially be thougd the quality perceived by machines,
as opposed to the human perceptual quality metrics suchaks3tgnal-to-Noise Ratio (PSNR), Mean
Squared Error (MSE), and Structural Similarity Index (S$[66]. Only few studies have considered the
impact of video streams adaptation on CV accuracy. Studgddsidered the impacts of rate adaptation
on accuracy, but only for images and only when SNR adaptasia@mployed. Study [44] analyzed
rate adaptation for only MJPEG videos and did not considarenefficient encoders, such as MPEG-
4 and H.264. Moreover, these studies experimented withlshatdsets and did not consider power

consumption. Power consumption is becoming a major conespecially when the video sources are
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battery-powered [43] Study [9] utilized CV algorithms tdfhautomatically prioritize video streams to
solve bandwidth problem in mobile surveillance systems.

In this chapter, we analyze and compare various video steafaptation techniques in terms of
the detection accuracy, bitrate, and power consumptiore drtalyzed adaptation techniques include
spatial tempora) andSignal-to-Noise Rati(SNR), which adjust the spatial video resolution, frame rat
and quantization parameters, respectively. We also amahe impact of upscaling spatially-adapted
videos to their original sizes by using super-resolutiahtéques at the receiver before applying the CV
algorithm. In addition, the we study the impact of differgiteo streams adaptation combinations.

Furthermore, we present an objective function that captilme overall tradeoff in terms of accuracy,
bitrate, and energy consumption. By examining the ratebarfige in each of these metrics, the objective
function also favors the setting with larger subsequenp dnoaccuracy, smaller subsequent drop in
bitrate, and smaller subsequent drop in energy.

We report the results based on o¥ér 000 real experiments, with standard video sequences and a
newly assembled dataset 30 actual security and news videos in a wide variety of spagisblution.
These videos have a total of more thEhhours of recording time. We experiment with two system
types. The first includes a computer running FFmpeg encodgitigan external camera, whereas the
other includes a real surveillance camera with encodinéppeed by a System-on-Chip (SOC). We
study the videos in both H.264 and MPEG-4 encoding standardsssess both tidetection indexand
false positive indexFinding the probability of false positive for videos is adh@ask since it requires
human observations of the videos with the imposed markihgetected faces and manual recordings
of the results.

Themain contributions of this part of the dissertation can be summarized as foll¢ysnalyzing

rate adaptation for H.264 and MPEG-4i:] considering both the detection accuracy and power con-
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sumption, {i) analyzing the performance of various upscaling algorith(i:) analyzing the impact of
the combinations of SNR and spatial adaptations on bitpai@er consumption, and detection accuracy,
and ¢v) developing an objective function that captures the olénadeoff in the adaptation process.
The main results can be summarized as follows. Section & zes various video streams adapta-
tion techniques. Section 3.3 discusses the performandegs¢iosn methodology and Section 5.4 presents

and analyzes the main results. Finally, conclusions amerdia the last section.

3.2 Video Stream Adaptation

3.2.1 Analysis of Various Stream Adaptation Techniques

Providing detailed analysis of various video streams adigpt techniques in their rate-accuracy and
rate-energy characteristics is required for designingotiffe computer vision systems, such as AVS. In
this chapter, we analyze and compare various video stredapgadion techniques in terms of detection
accuracy, required bandwidth, and power consumption. Hadyzed streams adaptation techniques
include spatial, temporal, and SNR. With SNR, the intenkgtsels of the frame can be controlled by
changing the target bitrate or directly changing the qaatitn parameter, both of which are studied
in this chapter. For spatially-adapted videos, we analyzcaling the video frames to increase the
accuracy at the destination by experimenting with five sugsolution algorithms.

We study the videos in both H.264 and MPEG-4 encoding stalsdard analyze the results in terms
of accuracy, bitrate, and source power consumption. Farracg, we consider three metricaverage
detection accuragynumber of detectiongin-normalized detection accuracy), datbke positive index
The first metric, also calledetection indexcan be defined as the number of correctly detected faces
divided by the total number of faces in all video frames. lised for the standard sequences, whereas
the second metric is used for the dataset of actual videaauBedhe total number of faces in each video

is unknown. The false positive index is the probability dééapositive.
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Table 3.1: An Example for lllustrating thé B Eor Model

| First Row of Adaptation Matrix (Accuracy, Bitrate, Energy] 0.99, 32, 2.33] 0.98, 30, 2.29| 0.30, 26, 2.28] 0.05, 11, 2.25]

Second Row of Adaptation Matrix (Accuracy, Bitrate, Engrg

vy0.95, 30, 2.29

0.97, 29, 2.28

0.28,24,2.21

0.04, 10, 2.18

First Row of Objective Matrix

0.68

0.96

0.27

0.04

3.2.2 Proposed Accuracy-Bitrate-Energy Objective Fuorcti

Since different adaptation techniques exhibit differémiracteristics in terms of accuracy, bitrate,

and power consumption, combining various techniques candaly beneficial. Therefore, we develop

an objective function calledccuracy-Bitrate-Energy Objective Functig@l BEo ), which helps in

determining the specific adaptation or adaptation comioinahat can be employed. This objective

function considers the accuracy, bitrate, energy consomgand rate of change of each of them. It takes

an N x M adaptation matrix with rows representing different quantization paranse(er different

bitrates) in increasing order and columns representinfgréifit resolutions in decreasing order. Each

entry is a tuple with accuracy, bitrate, and energy valuesgHe corresponding adaptation. Applying

ABFEpr on the adaptation matrix produces alpjective matrix which includes the overall objective

value for each adaptation combination, with larger valugadppreferred. In addition to favoring higher

accuracy, lower bitrate, and lower energy, the objectiveefion examines the rates of change in each of

these metrics and favors the setting with larger subseglreptin accuracy, smaller subsequent drop in

bitrate, and smaller subsequent drop in energy. To illtesttae impact of the rate of change in accuracy

consideration, if two consecutive rows in the adaptationrimare as shown in the first two rows of

Table 3.1, the second tuple in the first row will have the latgeB3 Eo r value (i.e.0.96) because of the

big drop in accuracy afterwards. The third row in the tablevahthe first row of the objective matrix.
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The overall function can be determined as follows:

A+ D™ (gal+ 1"

ABE =
OF = B+ )P (lgp] + V(B + 1) (jgu| + 1)*

(3.1)

where parameterd, B, F, ga, g, andgg are the normalized detection accuracy, hormalized bjtrate
normalized consumed energy, and the rate of change in edbbrof respectively. Consequently, these
parameters have values in the closed real interval [0, lfs@otsn, p, u, n, ¢, andv are the assigned
weights, with values between and includidgnd1, for the normalized accuracy, normalized bitrate,
normalized consumed energy, and their rates of changesatdpagly. Each of these weights is used as
exponent (i.e. power) in the equation to obtain a valué Gfe. no effect) for the associated factor
(bitrate, accuracy, energy, etc.) when this factor is nasmered by the objective function.

We have the choice of ighoring the rate of change in acculgtnate and/or energy consumption
in the ABEor by choosing zero fon, ¢, and/orv, respectively. In addition, we can ignore the effect
of bitrate and energy consumption by settip@nd « to zeros. The value of each term (A + 1)™,
(lgal + )™, (B+ 1), (lg| + 1)4, (E + 1)*, and(|gg| + 1)¥ is within the closed real interval [1, 2].
The added one to each of these terms is to have no effedtRf,  if the associated factor is zero in
the adaptation matrix.

The rates of change can be modeled by the derivative, whictbeahe second-order derivative,
the first-order derivative, or the diagonal difference oiva-dimensional functiorf (x, y). We use the
diagonal difference because it achieves the lowest exactithe while producing comparable results.
The diagonal difference for functiofi between two successive poirits, y) and(x + 1,y + 1) can be

expressed as follows:

gr(x,y) = flx + Ly +1) = f(z,y). (3.2)
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We discuss next how the weights can be selected and therezarthky time complexity of assessing

ABEor.

Considerations in Weight Assignment

The weightsn, p, u, n, ¢, andv can be preset by system administrators or preferably chdyrggam-
ically based on the current states of the system and moditite. The weights for accuracy, bitrate,
and energy can be adapted based on the detected events/objedlable bandwidth, and remaining
battery level, respectively. As the accuracy in automaiddossurveillance is of utmost importance,
its weight ¢n) should generally be set to a high value and increase evee wioen critical objects or
events are detected. Similarly, the weight for consumedggn@) can be based on the source battery
level, whereas the weight for the bitraig €an be based on the bandwidth utilization of the medium.
For examplex can be set td if the source battery is beyond a certain threshold (suclb#g, to 1 if
the charge is below another threshold (sucB(s), and to a value inversely proportional to the battery
charge otherwise. Likewise, can be set td if the bandwidth utilization does not exceed a certain
threshold (such a80%), to 1 if the utilization exceeds another threshold (sucl®@®), and to a value
proportional to the utilization otherwise. The bandwidtiilization can be measured in terms of the
smoothed channel busy ratiowhich is the percentage of the average time the channdllisated busy
during a given instance of time, as specified in standard&I&E.11p and SAE J2945.1 [66].

The rate of change in the metrics (i.e., accuracy, energybdrate) and are of secondary importance
to the actual metrics, and thus their weights can be set esdina of the weights of the corresponding
metric weights.

Overall Process and Time Complexity
The proposed process for finding the best adaptation cannmatized as follows. During system

calibration and potential re-calibration, the system rdsa short video, including the targets to-be
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detected or recognized. The system then encodes the rdoddd® using various adaptations in terms
of resolution and quantization parameter or resolutionl@trdte. Subsequently, the adaptation matrix
is built by finding the accuracy, consumed energy, and kitfat each adaptation. To avoid manual
inspection of the video streams, the accuracy can be detednélative to the adaptation with the highest
accuracy. The bitrate can be obtained from the encoded wdeereas the power consumption can be
estimated based on the spatial resolution and quantizpacemeter (or bitrate), using the analytical
models in [43]. After the adaptation matrix is generated, dbjective function is applied to obtain the
objective matrix. Finally, a search for the maximum valudha objective matrix is conducted. This
process is repeated only when there are considerable chang®e system (such as used encoder and
system parameters) or the monitored site.

The time complexity depends on the number of generated atitagg. Fortunately, the number of
different adaptation combinations is practicality lintitdue to a small number of supported resolutions
and bitrates. The quantization parameter can also be ctiangertain steps and within a narrow range
of practically appropriate values. In most cases, we neegdmine onlyl0 to 25 different adaptations.
For each adaptation, we need to encode the short video, fifmiganetrics, run the objective function,
and then find the maximum. Assuming, is the number of adaptations in one parameter/dimension
(resolution or bitrate/quantization), the time complgxO(N?). Considering the narrow search space,
searching for the maximum value in the objective matrix darpl/ employ the brute-force approach.
In addition, the adaptation matrix can be pre-filtered basedur knowledge of the available bandwidth
by eliminating those adaptations that exceed the availzdobelwidth.

Whenever the weights in the objective function change dyaalty, the objective matrix should be
recomputed and then the adaptation with the largest vallieevselected. This process is invoked more

frequently than that during calibration and re-calibmafibut no encoding is required at various adapta-
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Table 3.2: Characteristics of Selected Standard Video &ems [Frame ratg0 fps]
| Sequence| Duration (s)| Resolution | # Frames]

Silent 10 CIF 300
Akiyo 10 CIF 300
Deadline 45.8 CIF 1374
Signlrene 18 CIF 540
vtclnw 12 4SIF (VGA) 360

Table 3.3: Characteristics of the Collected Video DataSetrhe rate30 fps]

| Description [ # Videos | Duration (s)| Resolution| # Frames|
Security 100 2857 QVGA 85,710
News 200 66096 QVGA 1,982,880
Total 300 68953 QVGA 2,068,590

tion. The same time complexity applies but the actual coatjorial overhead is negligible compared

with other tasks performed by the monitoring station, idatg running the CV algorithms.

3.3 Performance Evaluation Methodol ogy

3.3.1 Used Video Datasets

We use both standard video sequences Hdreal security and news videos of varying quality.
Table 4.8 summarizes the characteristics of the selectEb\dequences. These sequences are selected
such that each video frame contains exactly one face, thesietplifying the computation of the de-
tection and false positive indices. We do not consider secpgewith resolutions higher tharSIF due
to the considered AVS system and since CV algorithms are si@easitive as humans to resolution
(and quality), as demonstrated in the reported results. et@esolutions and qualities can be used to
save power consumption without significantly sacrificing &¢uracy. We collected tt380 real videos
from YouTube by searching for keywords, such as securitigdm camera, speeches, and news, and then
carefully selecting videos with faces in maost of the franieshle 3.3 summarizes the characteristics of
the collected real videos. As discussed later, for certaimgp consumption experiments, we used a

22-minute video called “Baby Animal Songs by Kidsongs” oadsailable on YouTube.
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3.3.2 Generating Simple Adaptations

We generate various adaptations by applying each adaptattinique individually. For the video
sequences, we use the yuv2avi-p2 program to convert thesegs from raw YUV to AVI format while
preserving the original quality. We use FFmpeg to convéntideos to different spatial, temporal, and
SNR qualities. The adaptations have three dimensionsiapmporal, and SNR. With SNR, the
intensity levels of the frame can be controlled by changhng target bitrate or directly changing the
guantization parameter. We experiment with both optiorthénexperiments.

Each video is evaluated &8 or 310 different quality levels for single adaptation or combirsethp-
tation, respectively, leading to a total of ovit, 000 experiments. The quality levels are obtained by
varying the spatial resolution (i.e., frame size), tempoeaolution (i.e., frame rate), and SNR (i.e.,
guantization parameter or target bitrate). The frame sizaiied to lower settings of the original frame
sizes and these settings vary based on the video type. Tipotalmesolution is varied fronh to 30
fps (frames per second) for all videos. Furthermore, the SBlRng is varied by changing the target
bitrate from1 Kbps t0240 Kbps for all videos. The videos are encoded in a single passuse of the
streaming environment in AVS.

3.3.3 Generating Adaptation Combinations

To analyze combining spatial and SNR adaptations, we endgddes to all the combinations af)
different resolutions andl different SNR qualities. We considdrCIF sequences: Foreman, Mother-
daughter, News, and Silent. We also consider both MPEG-44264 encoding standards.

3.3.4 Conducting Experiments

We experiment with two system typeSystem &andSystem HSystem S includes a computer run-
ning FFmpeg encoding, whereas System H includes a realibamee camera with encoding performed
by a System-on-Chip (SOC). The accuracy and bitrate depemaiply on video content, the used en-

coder, and selected capturing and encoding parameterdiasdid not considerably change from one
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platform to another, whereas the consumed energy depentife arsed hardware as well as the video
content and capturing and encoding parameters. We corisitleH.264 and MPEG-4. For each adap-
tation or adaptation combination, we measure the requioegtpconsumption and determine the bitrate
of the encoded video. Subsequently, we decode the video etedmine the CV accuracy. For the
spatially-adapted videos, we analyze the impact of upsgdhe videos to their original sizes before
running the CV algorithm at the receiver, using five supephation algorithms. We use FFmpeg to
upscale the spatially-adapted videos using lossless @ssipn to ensure that no loss in quality happens
due to compression. We consider face detection, which iger@& algorithm, and use the Viola-Jones
algorithm [67], as implemented in OpenCV library. The cansd power is measured by “Watts Up?
Pro ES AC” Graphic Timer Watt meter.

We use three metrics for the detection accuramyerage detection accuracgumber of detections
(un-normalized detection accuracy), diatbe positive indexThese metrics are defined in Subsection
3.2.1. The false positive index (i.e. the probability osfapositive) is determined by manually observing
in slow motion a small subset of the videos with the imposedkings of detected faces and recording
the results.

In System S, which includes a Dell Inspiron 1525 laptop withliatel Core 2 Duo CPU (Model
T5750) running at 2.00 GHz with 3.00 GB memory, we use two erpental setups:Experimental
Setup land Experimental Setup .IIBoth setups are used to collect accuracy, bitrate, and pooare
sumption results, but the first provides the encoding powasgmption, whereas the second provides
the aggregate power consumption due to capturing, encodimdytransmission. The encoding power
consumption is generally more thad% of the aggregate. In both setups, to minimize the effectlodiot
processes while running the experiments, we run the comypittea bare minimum set of processes and

drivers. In addition, each experiment is repeated four dinaad then the overall results are averaged.
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Furthermore, the power consumption due to other systenepses running on the computer is mea-
sured before each experiment and then subtracted from tddeptawer consumption. In Experimental
Setup Il, an external Webcam Pro 9000 camera is used to femd @ideo, which is then compressed
with FFmpeg using H.264 or MPEG-4. The camera is directeddonaputer screen playing the video
“Baby Animal Songs” (from the beginning to the end) to endinat the experiments can be repeated
without changes in the video content. The distances betweenamera and the monitoring station is
within 1 meter. We initially measure the aggregate power. As in [4&,follow the following pro-
cedure to separate the power consumption due to each pladae (neasure the power consumption
of capturing and encoding and then subtract it from the agdespower consumption to determine the
transmission power consumption. (2) We stream the storéelovithereby no capturing is involved)
from the computer to the destination, measure the poweoapison for this task, and then subtract it
from the aggregate power consumption to assess the cappoimer consumption. (3) We subtract the
capturing and the transmission power consumption fromdigesgate power consumption to determine
the encoding power consumption.

In System H, we use a CMOS networked surveillance cameragdedto the setup a@sxperimental
Setup Il The setup is similar to Experimental Setup Il except forubage of the the Vivotek IP7139
surveillance camera, with built-in 802.11g. The aggregaieer consumption results are based on the
highly accurate power model developed using the same caml@@]. Note that the accuracy and bitrate
are essentially the same as those in the first system for the sapturing and encoding parameters.

In each experiment involving adaptation combination, i@ o constantsn, p, u, n, ¢, andv
represent the weights for the normalized detection acguremmalized bitrate, normalized consumed
energy, and their rates of change, respectively. Thesehtgetgin be selected based on operator prefer-

ences and can be changed dynamically. As a case study, vire setights as followsin = 1, n = 0.1,
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Table 3.4: Comparing Upscaling Algorithms in % DetectiorcA@acy
| Kbps | None [ Neighbor | Bilinear | Bicubic | Spline [ Lanczos]

66 0.00 [ 37.185] 40.375] 40.68[ 41.475] 41.04

220 0.00| 86.485| 85.27| 88.135| 88.395| 88.07

257 | 18.125 91.15| 90.13| 90.16| 90.385| 90.76

| AVG | 6.04] 7161] 7193 72.99] 73.42] 73.29]

p=0.2,¢9=0.2u=0.2, andv = 0.2 for MPEG-4 in the two evaluated systems and= 1, n = 0.1,
p=0.1,¢=0.1,u = 0.1, andv = 0.1 for H.264.
3.4 Result Presentation and Analysis

For experiments with individual adaptation techniqueg, tfdeo parameter that is unchanged by
the adaptation technique is set to its largest value. Urdtsxwise stated, the average results for the
sequences in Table 4.8 are reported.

3.4.1 Effectiveness of Upscaling Spatially-Adapted \ddeo

Let us first discuss the effectiveness of upscaling spgitalapted videos to their original sizes.
Table 3.4 compares various upscaling algorithms in terntkefichieved detection accuracy. Only the
results for H.264 are shown since MPEG-4 videos exhibitlaingiharacteristics. The video sequences
in Table 4.8 are treated as one long sequence, and the adetadition accuracy is reported. Upscaling
algorithms can improve the detection accuracy by a factdrafn the average. The best performers
are Bicubic, Spline, and Lanczos, with Spline achieving hiflghest detection accuracy. These three
algorithms vary in the detection accuracy by at mast% on the average. Based on the tradeoff
between accuracy and time complexity, Bicubic is the bestallperformer, and thus it will be assumed
from this point on, unless otherwise indicated.

3.4.2 Comparing Video Encoding Adaptation Techniques ite&@m®n Accuracy

Figure 3.1 demonstrate that SNR adaptation and the spaitialupscaling exhibit the best rate-

accuracy characteristics. Therefore, changing the bitsgtvarying the quantization parameter or the
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frame resolution has generally the least negative impaaeataction accuracy. Temporal adaptation
performs worse than spatial adaptation because when tee facthe dropped frames will have no
chance to be detected.

Figures 3.1(a) and 3.1(b) compare the rate-accuracy deasdics of the video streams adaptation
techniques under two selected groups of video sequencese 8ach frame has exactly one face, the
detection accuracy changes linearly with the frame ratethaubitrate is not linear with the frame rate
because of the employed compression standards, whichitebguigporal correlations among successive
frames. For the surveillance, security, news and spee@vsjdve use the number of detected faces as
a metric since the number of faces is unknown. The survedland security videos are treated as one
long video and then the total number of detected frames mrteg. Also, news and speech videos are
treated as one long video and then the total number of detéetmes is reported.

Figure 3.1(c) compares the four video streams adaptatmigues for news and speech videos.
These videos have collectively more thamillion faces in their frames. The rate-accuracy curves are
similar to those of the standard sequences.

Surveillance and security videos are the closest to thatesh would expect in AVS systems. Fig-
ure 3.1(d) compares the three video streams adaptationi¢ees for thel 00 surveillance and security
videos. These videos have collectively more ti8an000 faces in their frames. Since the quality of
these videos is generally lower than news and speech vidkaslaptations have somewhat worse rate-
accuracy curves. In addition, the relative performancerapdifferent adaptation techniques remains
unchanged, but the gap between temporal and spatial adagtéecomes narrower, and the gap be-
tween SNR adaptation and spatial with upscaling becometfisantly wider. As explained earlier, the
latter gap is somewhat exaggerated. Since the false pEsstire not considered, this gap is expected to

be somewhat smaller as suggested by Figure 3.2.
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Figure 3.2 compares the false positive index of variousrtiegles. Spatial with upscaling achieves
generally the best in this metric. The variation in the fadesitive index is due to the reduced quality of

the background images.

3.4.3 Comparing Video Encoding Adaptation Techniques imgP@Consumption

In AVS applications, power consumption at the video soursesually a primary concern because
these sources may be battery-operated video cameras arsefitie power consumption in the cap-
turing phase generally depends linearly on the total nurabpixels in the video [43], which is equal
to the frame rate times the number of pixels in each frame s Tépatial and temporal streams adapta-
tions are expected to require lower capturing power consomghan the SNR. In contrast, the power
consumption in the transmission phase depends on the adhi@eo bitrate. Among the three phases,
the power consumption in the encoding phase is the mosffisgmi. Through actual experiments, we
compare the three video streaming adaptation techniguesnts of the aggregate power consumption
in capturing, encoding, and transmission stages. Fig@et®ws that spatial and temporal adaptations
lead to lower overall power consumption as they reduce thgepa@onsumption in the encoding and
capturing phase. The power consumption results vary wélintiplementation, but the general behavior
will not change as long as the hardware employs dynamic geltcaling. The results for MPEG-4
exhibits a similar behavior and thus not shown.

3.4.4 Analysis of Combining SNR and Spatial with Upscalidgptations

Since spatial adaptation with upscaling and SNR adaptatiethe best performers, let us now study
how they can be combined. From this point on, the figures shembrmalized accuraciN( Accuracy
and the normalized consumed energy indéxConsumed EnergylyFor the bitrate, however, we show
what we callmanipulated normalized bitrat@v. N. Bitratg, which is equal t%, wherer andr,,,qx

represent the bitrate and maximum bitrate, respectivehis manipulation fits all the greatly varying
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adaptation matrix bitrates in a smaller range and thus shem tlearly.

Figure 3.4 shows the accuracy, bitrate, and energy consumas$ a function of both quantization
parameter and resolution. In Figure 3.4(a), we notice tl@btcuracy does not change significantly by
varying the quantization parameter, but it changes dramltiby varying the resolution below0%.

On the other hand, in Figure 3.4(b), the bitrate dramatiogtianges for low quantization parameters.
In Figure 3.4(c), the energy consumption is reduced wheredsing the quantization parameter and/or
the resolution by up t&0%. Based on these results, intuitively, we should avoid lowrdization
parameters and resolutions lower th#¥ of the original because of the high rate of change in the
bitrate and accuracy for low quantization parameters anbb¥oresolution, respectively.

3.4.5 Analysis of Utilizing the Proposed Objective Funttio

Let us now discuss the application of the developgdelEo» on combining spatial adaptation with
upscaling and SNR adaptation. Figure 3.5 shows the ABE xnatoduced byA B Ep when varying
both the resolution and SNR (i.e., quantization parametscaling factor).

Figures 3.6 and 3.7 compare the effectiveness of three SKRtisa strategiestHighest SNRLow-
est SNRandModel SNRThe first two refer to selecting the highest and lowest SNEngs, respec-
tively, with the highest settings corresponding to setting quantization parameter/scaling factor to
their smallest values in the studied range, thereby produtie highest quality and accuracy. Note that
the first method produces the best accuracy whereas thedspootuces the best bitrate and energy
consumption. Model SNR, however, is produced by settingqunentization parameter/scaling factor
according toAB Eor for the given resolutions. The results demonstrate howAtBeé o achieves an
accuracy close to the best accuracy while greatly redutiadpitrate and energy consumption.

Figures 3.8 and 3.9 compare the effectiveness of threeutésolselection strategiet:owest Reso-
lution, Highest ResolutiarandModel ResolutionThe first two refer to selecting the lowest and highest

resolutions in the studied range, respectively. Note thatfirst method produces the best bitrate and
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energy consumption, whereas the second produces the lmesa@c Model Resolution, however, is
resolution according tadl BEor for the given SNR settings. These results demonstrateAlRt o »
achieves an accuracy close to the best accuracy while gredilicing the bitrate and power consump-
tion.

Figures 3.10 and 3.11 analyze the effectiveness of thredioations of both resolution and SNR:
Lowest CombinatiorHighest CombinationandModel CombinationThe first two set both parameters
to generate the worst and the best qualities, respectivilyin the studied range, whereas Model Com-
bination sets the parameters in accordance wWiBh=or. The results include three distinct regions or
clusters: one with the highest accuracy values, one witlothest bitrates and energy consumption, and
one with the best tradeoff produced BB Eo . These results demonstrate the great benefits of efficient
adaptation combinations. By combining SNR and spatial &@diap in H.264, a point can be reached
where the energy consumption can be reducedyy and the bitrate bp8%, while maintaining the
accuracy within10% of the highest possible accuracy. In MPEG-4, however, tveep consumption
can be reduced b§0% and the bitrate b99% while maintaining the accuracy withis¥ of the highest
possible value.

Figure 3.12 analyzes the effectivenesdviiddel SNRModel Resolutionand Model Combination
in bitrate-accuracy and bitrate-energy characteristitise figure compares the effectiveness of using
ABFEor for SNR adaptation, resolution adaptation, and their coatimn. These results demonstrate
the great benefits of combining adaptation strategies irffanieat manner.

Finally, let us analyze the results with the surveillancamega. Figure 3.13(a) analyzes the effective-
ness ofLowest Resolutignviodel ResolutionandHighest ResolutionThese results a exhibit similar
behavior as those in Figure 3.9(a), with the main differelpemg in the actual values of power con-

sumption. Figure 3.13(a) analyzes the effectivenedsowfest CombinationModel Combinationand
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Highest CombinationThese results are similar to those in Figure 3.10(b).

3.5 Conclusions

We have analyzed the rate-accuracy characteristics ovfdao adaptation techniques (spatial, spa-
tial with upscaling, temporal, and SNR) by conducting alotxaeriments with both H.264 and MPEG-4
encoding standards, considering nine standard sequendes dataset a300 real security, and news
videos. The results show that SNR adaptation generallyeaehithe best rate-accuracy characteristics,
followed by spatial with upscaling, but the latter perforbater in terms of the false positive index. We
have compared the performance of five upscaling algoritiirhe.results show that upscaling provides
outstanding improvements in the detection accuracy, ibws upscaling algorithms perform close to
one other. The Bicubic algorithm provides the best compserbetween accuracy and complexity.

We have also analyzed the rate-energy characteristicsatibpgemporal, and SNR video streams
adaptations by conducting actual experiments. The reshtie/ that SNR adaptation leads to signifi-
cantly higher power consumption than spatial and tempataptations. Therefore, when power con-
sumption at the video sources is a primary concern (suchAg¢3rsystems with battery-operated video
cameras and/or sensors), spatial adaptation with lateralipg at the receiver is a reasonable choice
as it provides close performance to SNR in terms of deteamuracy but with much lower power
consumption. Combining SNR adaptation and spatial adaptatith later upscaling at the receiver,
however provides the best overall tradeoff.

Subsequently, we have presented an objective functionctitires the overall achieved tradeoff
in terms of accuracy, bitrate, and energy consumption. THjective function favors higher accuracy,
lower bitrate, and lower energy. By examining the rates ahgie in each of these metrics, the objective
function also favors the setting with larger subsequenp déncaccuracy, smaller subsequent drop in bi-

trate, and smaller subsequent drop in energy. The weigh&turacy, bitrate, and energy consumption
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can be set based on operator preferences but within a seteptable ranges and can also be adapted
based on detected events/objects, available bandwiditreamaining battery level, respectively. The re-
sults suggest that we should avoid low quantization pammseind resolutions (specifically resolutions
lower than50% of the original) because of the high rate of change in thexteitand accuracy, respec-
tively. The objective function can be used in the case of glsiadaptation or multiple adaptations. For
single adaptation, the results demonstrate that the dlgeftinction achieves an accuracy close to the
best accuracy while greatly reducing the bitrate and powesamption. For multiple adaptations, the
results demonstrate the great benefits of efficient adaptatimbinations. By combining SNR and spa-
tial adaptation in H.264, a point can be reached where theygmensumption can be reduced &%
and the bitrate by8%, while maintaining the accuracy withit% of the highest possible accuracy.
In MPEG-4, however, the power consumption can be reduceé0fy and the bitrate by9% while

maintaining the accuracy withisf% of the highest possible value.
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CHAPTER 4 MODELING OF POWER CONSUMPTIONINLIVE VIDEO STREAM-
ING SYSTEMS

4.1 Introduction

Power consumption is a major concern in live video streamsirglems in general and many-to-
onelive video streaming systems in particular. A many-to-ameaning system includes multiple video
sources (i.e., cameras and/or sensors) streaming vidaagsdaitoring station. These systems are typical
in video surveillance and wireless video sensor networks § 7]. The monitoring station receives
video streams from all sources and run computer vision glgos for determining the appropriate
actions, such as controlling sources and generating alEntspower is consumed by the source in each
of the following three phases: capturing, encoding, anastrassion. Although power consumption is
of utmost importance when the source is battery-powereiciag power consumption is essential even
when the power is available because video sources consudees@f magnitude more resources than
scalar sensors [68].

In this chapter, we develop an aggregate power consumptmgehfor live video streaming sys-
tems in general and analyze the power consumed by the miagittation in many-to-one systems. We
model the power consumed by the video source in each of tee fitiases and then provide an over-
all model of the power consumed by the source. The developmtkis are based oh 620 different
experiments, each of which is repeated at I8atitnes, totaling more than, 800 actual experiments
This part of dissertation has been motivated by our ongoiatkwn the power-aware design of large-
scale video surveillance systems [69, 70]. That work reguaccurate, simple, and appropriate power
consumption models. The developed models can be used tssabseimpacts of various video cap-
turing and encoding parameters, and thus can help in themdgnzontrol of various source settings,
including resolution, frame rate, number of reference iapmotion estimation range, and quantization

to achieve the best overall tradeoff in terms of power congion, bitrate (and thus bandwidth), and
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video quality. (In automated video surveillance, the cotapuision accuracy can be considered instead
of the quality [69].) Although we experiment with differepliatforms and video contents for validation
purposes, the models do not directly capture the impactsatf &actors as well environmental factors
and communication strategies; all these factors simphstede to changing constants in the developed
models. For video encoding, we develop a power consumptiodeirfor both H.264 and MPEG-4,
capturing the aforementioned parameters. Since tuningugaiparameters is often based on power
consumption, video quality, and bitrate tradeoffs, we tlgv@ model for the output bitrate of video
encoding. The bitrate affects the medium bandwidth, thea/iguality, and the transmission power con-
sumption. Moreover, we analyze the power consumed by thetanmy station due to the reception,
upscaling (to the original video resolutions as capturedhigysources), and decoding of the received
video streams. Furthermore, we analyze many-to-one sgdtetarms of bitrate, video quality, and the
power consumed by the sources as well as the monitoringistatonsidering the impacts of multiple
parameters simultaneously. Although, we consider thelpopli264 and MPEG-4 encoding, this study
can help in deriving models fddigh Efficiency Video EncodinHEVC) and VP8, which have similar
operations.

We validate the developed models through extensive expatsrusing two types of systems and
different video contents. The first includes a regular canagid employs software-based encoding with
FFmpeg/x.264. This system allows better flexibility in cooting the experiments. The second includes
an actual video surveillance camera with a system-on-@g&j for encoding.

The main unique contributions of this part of dissertatiam e summarized as follows. (1) In
contrast with prior studies, we model the power consumedl imi@e phases. (2) We provide the first
aggregate power consumption model in terms of various dagtand encoding parameters, including

guantization, number of reference frames, search rangemation estimation algorithms. Up to our
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knowledge, the impacts on these parameters were not adatypeor work. (3) We develop a model for
the bitrate achieved by video encoding, considering theeaientioned parameters. (4) We validate and
analyze the developed models through extensive experaneasing different types of cameras, systems,
and input videos. (5) We provide a detailed analysis of mangne systems in terms of bitrate, video
quality, and the power consumed by the sources as well abyttaé monitoring station, considering the
impacts of multiple parameters simultaneously. (5) We stwat the overall computation complexity
for all phases can approximately be modeled as a lineariumof the pixel rate (when fixing the other
parameters). The pixel rate is the product of the spatiatamgoral resolutions of the raw video.

The rest of the chapter is organized as follows. Section év2ldps various models. Section 4.3
discusses the setup of experiments and modeling methogd@egtion 4.4 presents the validation results
and provides an overall analysis. Finally, conclusionsdaagvn in the last section.

4.2 Mode Development

In this section, we develop the power consumption modelefmh phase at the source and then
develop the aggregate model. we also develop a model oftifadehiTable 4.1 summarizes the symbols
used in this section.

4.2.1 Modeling of the Power Consumed by Video Capturing

To model the power consumed by CMOS sensors, let us firststayeneralizing Equation (2.4) to
a general mesh of photodiodes and an associated number gfrddBssing units. The per-frame power

consumptiori¥; for a video sensor aNx A/ pixels andK A/D processing units can be given by

Wy=c¢;NM+ e K, 4.1)

wherec; andc;, are constants. Equation (4.1) shows a direct relationstipden the power consumption

in video sensors and the spatial resolution. This equationbe extended to capturing a video by
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Table 4.1: Descriptions of Used Symbols

| Symbol | Description | Symbol | Description |
w Power Consumption (Watt) X Computation Complexity (basic operation)
r Bitrate (Kbit/s) L Pixel rate (pixel/s)
F Frame rate (frame/s) c Constant
N x M | Frame dimensions in pixels P x @ | Dimensions of a macroblock (MB) in pixels
K # Analog-to-Digital (A/D) Units Y # Bits/pixel
R # Reference frames for ME d Distance between sender and receiver (meter)
n Path-loss index in transmission S, S’ | Displacement in pixels or sub-pixel for ME
q Quantization parameter s Scaling Factor
i # | frames in Group of Pictures P # P frames in Group of Pictures
b # B frames in Group of Pictures J Joint cost (db)
t Distortion (db) g Lagrange multiplier
N # Operations v \oltage (volt)
f Frequency (Hz) V # MVs in a macroblock (MB)
A Boolean variable that is eithéror 1

considering the temporal resolution. Thus, the total aémupower consumptiofV~ can be expressed

as follows: W, = FW, = F (¢; NM + ¢, K), whereF is the frame rate. The main players in the
capturing power consumption are the spatial and temposalutton. The impacts of a specific sensor
type, technology, and/or implementation translate to rigiveg the values of) constants in the model.

Our experiments confirm that the equation applies but withdxtitional constant:

We=F(ciNM+ ¢, K)+¢j, 4.2)

wherec; is a constant specifying the power consumed by the sensor mheapturing takes place. The
standby power is also consistent with the findings in [48],this new constant provides a much simpler
way to model it.

To simplify the model, we can utilize the direct relationqshibetweenV or A and K. The value
of K is typically equal toV (but conceptually it might be any fraction of it ad). Furthermore, for a

megapixel camera th&y x M term dominates thé& term. Therefore, the power consumption can be
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expressed as follows¥. ~ c¢; F' N M + c;. The power consumption can also be expressed in terms of
the pixel rateL. The pixel rate is the frame rate multiplied by number of {sxa the frame and thus

can be given by, = F' N M. Consequently, the power consumption can be given by

We = ¢; L + ¢4, (4.3)

wherec; andc; are constants. The bitrate for the raw video is the frame(gizgixels) times the frame
rate (in frames/s) times the number of bits per pixel, and thaan be expressed in terms of the pixel
rate as followsr = LY, whereY is the number of bits per pixel in the raw video. (In our expemts

Y = 12, since we use the 1420 color space). Therefore, the powesuoaption is also linear with the

bitrate.

4.2.2 Modeling of the Power Consumed by Video H.264 Encoding

H.264 has high computational complexity, mainly due to it&,Momplex prediction, and RDO
[71]. Due to this high complexity, intra-prediction (foflames), inter-prediction (for B- and P-frames),
RDO, and mode selections have been active areas of resé&LIS[nce the block size is adaptive, RDO
operates on multiple variable block sizes, different kgradiction modes in I-frames, and different ME
vectors in inter-frames. For each macroblock (MB), RDO fitttks combination (of block sizes and
intra-prediction modes in I-frames and block sizes and M&oss in inter-frames) with the least RDO
costJ (discussed in Subsection 2.3.2), among all possible caatibims. For a specific MB and a
specific combination, the process proceeds in the followtegs: (i) compute the prediction MBji)
compute the residual MB(i:) encode the residual MB (including transformation, quaatiton, and
entropy coding),iv) decode the MB (including inverse quantization and inveraasformation),(v)

reconstruct the MB(vi) compute distortion, antbii) compute the cosf. This process is repeated for
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each combination and then the combination with the minimost will be selected for the MB. The
whole process is repeated for each MB in the frame.

The power consumptioil, dissipated as a result of encoding a raw video that is captoyea
camera is a function of the video encoder computation caxitpleX,.. As discussed in Subsection
2.3.2, the computation complexity of encoding one frameimmarily the sum of the complexities of)(
inter-prediction and intra-predictioni] transformation, quantization, their inverses, recartston, and
distortion and cost computations, and) entropy encoding. Consequently, as in [59, 5], the engpdin
computation complexityX, for F' frames (taking the weighted average of different framessaand)
is given by

Xe - Xinter + Xintra + Xtraquant + Xentropy7 (44)

whereX;,:. is the computation complexity of inter-prediction muliga by the ratio of inter-frames to
the total frames irf" frames, X;,.., IS the computation complexity of intra-prediction muligad by the
ratio of intra-frames to the total frames nframes, X, qquant IS the transformation, quantization, and
their inverses computation complexity férframes, andX.,,:.opy is the entropy encoding computation
complexity for F' frames.

Inter-Prediction ME Computation Complexity

For inter-prediction RDO, a combination of ME vectors andtiple block sizes are searched for the
best cost. A MB can be divided inti@ x 16, 16 x 8, 8 x 16, or8 x 8 blocks. Since eackx 8 block can be
divided further into8 x 4, 4 x 8, or4 x 4 sub-blocks, inter-prediction h&ssize combinations. To select
the best combination for one MB in inter-prediction, the@der performd6+8+8+4+2+2+1 = 41
size combinations, leading td RDO operations, in addition to finding the lowest residuahim search
range for each of these RDO operations.

We can expresX;,,;., as the sum of integer ME complexitX,;cq.,) and fractional ME complexity
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(Xfractional ) :

KXinter = integer =+ Xfractional' (45)

Let us first analyze the integer ME complexity. As discussadiar, block matching estimation and
compensation are used to exploit the temporal locality ajsoiecessive frames in a video by predicting
blocks from previously encoded frames. This process imspartitioning the current video frame into
blocks of pixels and then finding the best matching blockdesh reference frame for each of these
blocks, using a predefined distortion criterion. The bedtiriag block is used for predicting the block
in the current frame. Instead of coding the entire block giheoder includes only the difference between
the two blocks (i.e., the residual) and the associated matietor (MV) specifying the displacement
between the two blocks. For additional details, please tef/3]. One of the commonly used distortion
measure is th&um of Absolute Differenc¢SAD). SAD(V,,V,)) is defined as the SAD for block
located at(x,y) inside the current frame compared to bloBklocated at a displacement o¥(V;)
relative to blockA in the reference frame. It can be found by summing the alesdifferences between
each pixel in blockA and the corresponding pixel in blodR. In the Full Search (FS) algorithm, if a
maximum displacement of pixels in a frame is allowed2S + 1)? locations have to be searched to
find the best match for the current block. For a video with anfsssize of N x M (in pixels) and a
frame rate ofF' and for an encoder that uses a MB sizeFok ( and R reference frames, the integer

ME computation complexityX,cqe Can be given by

N M
Xinteger = F 0O R(25+1)>(2PQ — 14V Xuv), (4.6)

where QP Q — 1) represents the number of SAD operations for the MBs the number of MVs in the

MB, and X,y is the number of operations required to calculate the MV. dlmaber of motion vectors
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is equal to the number of blocks in the MB for a P frame and twheenumber of blocks in the MB for
a B frames. MVs are coded differentially.

Equation (4.6) generalizes Equation (3) in [73] to handldtipie reference frames and consider
the effect of computing MVs. The complexity for computing &NIX 5,v/) includes3 multiplications,3
additions 24 shifts,1 median of3 MVs, and2 subtractions. Since the search rangi$ large compared
to 1, (25 + 1)? can be simplified talS?. V and X, can be regarded as constants (on average) and

P x Qis16 x 16. Hence, X ,icqer CaN be given as

V Xuv
PQ

=~ Cinteger LR 527 (47)

Xinteger = (4F N M RS?)(2 +

),

where the pixel ratd, = F N M.

Let us now develop an ME complexity model for encoders supmpsub-pixel search. Sub-pixel
search considers movements of a non-integer number ofspfbah the reference block. The ME pro-
cess here proceeds in two stages: integer pixel search daggeaarea and a sub-pixel search around
the best selected integer pixel [74]. The complexity depemnl the number of operations for inter-
polating in-between pixels in the block (i.e., pixels at fioteger locations). Figure 4.1 demonstrates
the concept of half-pixel and quarter-pixel motion estiorat First, the encoder finds the best integer
match. Subsequently, the half-pixel positions immedyateixt to this best match are searched. Finally,
the quarter-pixel positions next to the best half-pixelifims are searched [27].

Table 4.2 shows the number of interpolation operationss Thimplexity depends on the accuracy
of the sub-pixel search (half a pixel, quarter a pixel, et€¢he implementation of FS in sub-pixel ME
follows a hierarchical way. For quarter-pixel, eight hpikel pixels around the best integer pixel are

examined first, and then eight quarter-pixel pixels arotediest half-pixel pixel are checked [75]. Note
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Figure 4.1: Half-Pixel and Quarter-Pixel Motion Estimatio

that half-pixel resolution MVs in the Luma component requijuarter-pixel resolution vectors in the
Chroma components (assuming 4:2:0 sampling). Similadgrigr-pixel resolution MVs in the Luma
component require eighth-pixel resolution vectors in theotha components. Assunt# represents
the range of the sub-pixel search in pixels &g and X, represent the numbers of pixel interpolation
operations for half-pixel accuracy and quarter-pixel aacy, respectively. Based on Table 4%,; is
the number of operations in both the first and second rows {8 = X1 /2ruma + X1/4Chroma) @nd

X

p2 IS the number of operations in the third and fourth rows,([¥82 = X /4r.uma + X1/8Chroma)- The

computation complexityX ¢,qciona Of fractional pixel ME can be given by

NM
Xfractional =F P—Q (25[ + 1)2 (2PQ -1+PQ (Xpl + A1/4 XPQ))

~ L(25" +1)% (24 Xp1 + Ay g Xp2), (4.8)

whereA, ,, is a Boolean variable that is eitheor 1 for half- and quarter-pixel accuracy, respectively).
X,1 andX,,» are constants as explained abogéis fixed tol in sub-pixel accuracy motion estimation,
because the search is only one sub-paosition in the surnogrelght directions, whether it is half- or

quarter-pixel accuracy search. TherefoXg,.,.tionq Can be expressed as

Xfractional = Cfractional L7 (49)
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Table 4.2: Per-Pixel Computation Complexity of Interpmiatfor Fractional Pixel ME

InterpolatiognDescription Complexity, # Operations
1/2 Pixel | 6-tap interpolation: a combination of 6 sam-X, /2ruma | 5 add + 4 mul + 1
Luma ples, 3 from each side of a row or a column div
1/4 Pixel | Weighted mean of neighboring pixels and & /4cnromd 2 Mul + 2 add + 1
Chroma constant div
1/4 Pixel | Linear interpolation between adjacent samX 4zumq | 1add+ 1 div
Luma ples: combination of 2 samples, 1 from each

side of a row or a column
1/8 Pixel | Linear combination of 4 neighboring integerX, /schromq 3 add + 4 mul + 1
Chroma pixel positions div

Based on Equations (4.5), (4.7), and (4.9), the total iptediction (both integer and fractional)

complexity for a full searchX;,,;.,- can be given by

Xinter =~ Cinteger LR 52 + Cfractional L7 (410)

wherecinieger aNAC frqctionqr are constants.

Intra-Prediction Computation Complexity

H.264 exploits the spatial correlation between adjaceotKd in intra-prediction. For the Luma
prediction, the prediction block is formed for eathx 4 block or for a16 x 16 block. One mode is
selected from the supported modes, whichd%neodes for at x 4 Luma block,4 modes for a6 x 16
Luma block, andt modes for each Chroma block. The encoder selects the bestusody RDO. As an
illustrating example, in intra-prediction RDO, the numb&émode combinations for one MB§ x 16
pixels) isNg (16 N4 + Ni¢), whereNs, Ny, and N6 represent the number of modes ofsar 8 Chroma
block, a4 x 4 Luma block, and 46 x 16 Luma block, respectively. To select the best mode for one MB
in intra-prediction, the encoder performgl6 x 9 + 4) = 592 RDO calculations [76].

We develop Tables 4.3, 4.4, and 4.5 to assist in computingdh®plexity of intra-mode selection



55

Xinira- These tables also include a brief description of each-imtvde. The complexity can be found
as follows:

N, N,
Xintra = FNM(4NC)(ﬁ x 9+ mlTwm x 4), (4.11)

where N4, Njig, and N, are the average number of operations in each of Tables 43a4d 4.5,
respectively. They represent the number of operations apate a4 x 4 Luma prediction block, a
16 x 16 Luma prediction block, and a® x 8 Chroma prediction block. For exampl®&j;5 x 4 is the
total number of operations in Table 4.4 or the average of gegaiions in the table multiplied by, In
addition, Ny4 x 9 x 16 is the total number of operations in Table 4.3 multipliedlby where16 is the
number of4 x 4 blocks in the MB. Finally4 N, is the total number of operations in Table 4.5. The
total number of operations in each of the three tables atsogeristant, and thu¥;,, N;i4, and N, are

constants. Consequently, the intra-mode selection codityplean be simply given by
Xintra = Cintra L. (412)

Quantization, Pixel Rate, and Bitrate Relationships

For homogeneous video contents, we determine by extengdeximents that the bitrate is linearly
proportional to the pixel raté, and inversely proportional to the quantization parameiea tertain
power, as shown in Figure 4.2. The used experimental setdigdsissed in Section 4.3. Hence, the
bitrater can be expressed as

(4.13)

T = Crate o)

whereq is the quantization parameter and;. is a constant. As expected, the quantization parameter

has a great impact on the bitrate.
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Table 4.3: Number of Operations to Comput¢ & 4 Luma Prediction Block

| Mode | Description | # Operations |
Mode | Vertical: the upper row’s samples are extrapolated vdlyica 4 x 4 copy
0
Mode | Horizontal: the left column’s samples are extrapolatedzuor- | 4 x 4 copy
1 tally
Mode | DC: the block is predicted by the mean of upper row’s and |ef8-1) add + 1 div
2 column’s samples (an average of 8 values for the block) + 4 x 4 copy
Mode | Diagonal Down-Left: the samples are interpolated &54aangle| 4 x 4 x (3 mul + 2
3 between lower-left and upper-right. It rounds the valuehoé¢ | add + round)

neighboring pixels, each divided by an integer
Mode | Diagonal Down-Right: the samples are extrapolated4i’aan- | same as Mode 3

4 gle down and to the right

Mode | Vertical-Left: extrapolation at an angle of approximatgyx 6° | same as Mode 3
5 to the left of vertical, i.e. width/height = 1/2

Mode | Horizontal-Down: extrapolation at an angle of approxirhate same as Mode 3
6 26 x 6° below horizontal

Mode | Vertical-Right: extrapolation or interpolation at an amglf ap- | same as Mode 3
7 proximately26 x 6° to the right of vertical

Mode | Horizontal-Up: interpolation at an angle of approximat#y 6° | same as Mode 3
8 above horizontal

Computational Complexities of Transformation, Quantaat Their Inverses, Reconstruction, Distor-
tion, and Cost

Based on [5], the computation complexi, .qu.n: t0 encode the residual MB (including transfor-
mation, quantization, and entropy coding), decode the MBlding inverse quantization and inverse

transformation), reconstruct the MB, compute distortimg compute the cost can be expressed as

Xtraquant = Fxnzmb Mpyzmbs (414)

where F' is the frame ratem,,..,;, represents the number of nonzero MBs in the video frame,,;

is the computation complexities of the transform, quatitire and their inverses for one nonzero MB.
Note that a nonzero MB is a MB that has nonzero transform aiefiis after quantization. Only nonzero
MBs go through the transformation and quantization prazesalso note that,, .,,; iS constant because

it is a systematic algorithm with a specified number of openat(Table 4.6) and” x m,, ., is directly
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Table 4.4: Number of Operations to Computisax 16 Luma Prediction Block

| Mode | Description | # Operations |
Mode | Vertical: copy row 16 x 16 copy
0
Mode | Horizontal: copy column 16 x 16 copy
1
Mode | DC: average of 32 values for the block (32-1) add + 1 div + 16 X
2 16
Mode | Plane: alinear plane function fitted to the upper and left-6 x 16 x (5 add + 2 mul +
3 hand samples H. and V. Clipping ensufes result < | 1 compare + 1 clip)
255

Table 4.5: Number of Operations to ComputeSax 8 Chroma Prediction Block

| Mode | Description | # Operations |
Mode | Vertical: copy row 8 x 8 copy
0
Mode | Horizontal: copy column 8 x 8 copy
1
Mode | DC: average of 32 values of macroblock (16-1)add +1div+8x8
2
Mode | Plane: a linear plane function fitted to the upper angl x 8x(5 add + 2 mul + 1
3 left-hand samples H and V. compare + 1 clip)

proportional to the bitrate. Therefore,

c c
Xtraquant = Ctraquant " = Ctraquant Crate L/q = Cgnt L/q ) (415)

whereci,qquant aNdc,qre are constants andis the bitrate. The video content coupled with the encoding
algorithm and parameters (such as quantization) impagtuheer of nonzero MBs.

We develop Table 4.6 to determine the complexities of vargiaps. In the table, the steps involving
transform, quantization, inverse quantization, invers@dform, reconstruction, distortion and single

cost are repeated eith&92 times in case of intra-prediction @il times in case of inter-prediction.
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Figure 4.2: Relationships between Bitrate and Pixel Ratebatween Bitrate and QP

Entropy Computation Complexity
The entropy complexityX.,,;-.py Of a frame is linearly proportional to bitrate [S]. Based ajuBtion

(4.13), we can express it as

Xentropy = Centropy T = Centropy Crate L/qc = Chit L/qc- (416)

Overall Power Consumption Model

Based on Equations (4.4), (4.10), (4.12), (4.15), and {§4tthé complexityX. of encodingF’ frames

can be expressed as

Xe - Cinteger LR 52 + (Cfractional + Cintra) L + (ant + cbit) L/qc

= Cinteger LRS? +cr L+ CLq L/qca (4.17)

Wherec;picgers Cfractionals Cintras Cants Chit» CL, @nder, are constantd, is the pixel rate R is the number

of references, and is the search range.

Let us now discuss how the overall power consumption can kehad in terms of encoding com-
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Table 4.6: Nonzero MB’s Complexity(,,..., of Trans. and Qunt.

| Step | Description | # Operations |
Transform # ops to compute transformY( = | (2x (4 mul+ 3 add) x4 x 4 en
AXAT): 1 transpose and 2 4x4 matr(xtries + 16) x 16
multiplications by blocks in macroblock
Quantization # ops to compute quantization (4 mul+3add) x4 x4 x 16 ent

tries

Inverse Quantiza
tion

# ops to compute inverse quantization

(4 mul + 3 add) x4 x4 x 16 ent

tries

Inverse Transform

# ops to compute inverse transfoth=
ATY A: 1 transpose and 2 4x4 matr
multiplications by blocks in macroblock

2x @ mul+3add)x4x4en
xtries + 16) x 16

Reconstruction

# ops to compute the reconstructed m
roblock

14 x4 -1 add)x4x4x 16

Distortion # ops to compute Distortion and the(2x4x4-1+4x4)x16
Sum of Squared Distortion (SSD) be-
tween the original and the reconstructed
macroblock

Single Cost # ops to compute the single cost for thé€l add + 1 mul) x4 x4 x 16

mode combinationy =t + gr

Minimum Cost for
Intra-Prediction

# ops to find the minimum cost among all(1 initialize + 592 x (1 comparg

mode combinations for the macroblock

+ 1 equal)) x 16

h

Minimum Cost for
Inter-Prediction

# ops to find the minimum cost among all(1 initialize + 41 x (1 compare +

mode combinations for the macroblock

1 equal)) x 16

plexity. Asin [5], the power consumptidiv, for the encoder can be expressedlas= c.r v, g foLk,
wherev and fcr x are supply voltage and clock frequeneyy is the effective switched capacitance
of a processor with an energy-scaling feature, such as Digndoitage Scaling (DVS) (discussed in
Subsection 2.3.2). Howeve, is approximately linearly proportional tfy . As in [77], the voltage
(vpvs) and clock frequencyfio 1 i) relationship is given by pys = ¢1 forx + c2, wheree; ande, are
constants. Moreovelfc i is proportional to the computation complexityerx = c3 Xe + ¢4, Where

c1 andcs are constants. Subsequently, the power consumption caxpbessed as

We = Ceff (Ca )(e + Cb)2 (Cd Xe + Ce)

C
(q_{_i(ic)c +C7)L+Cg),
q

% +e3) L+ cq)? ((cs RS +

= ((e1 RS? + CET

(4.18)
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wherec,, ¢, ¢4, Ce, €1, €2, C3, C4, C5, Cg, C7, ANAcg are constants.

From Equation (4.18), we notice that the consumed encodingpdepends on the video parameters
(spatial and temporal resolutions), video content, perém algorithms (for intra and inter prediction,
transform, quantization, etc.), and encoding paramegergh(as the fraction of various frame types in
the GOP, number of reference frames, quantization, and M&e)a The video content coupled with
the encoding algorithm and parameters (such as quantizagicameter) impact the number of nonzero
MBs. The model considers the full search approach and daegimeatly capture optimization tech-
nigues that abort the search early based on some statistiostlaer algorithms, such as fast intra/inter
prediction. The computation complexity of the transfornd guantization and their inverses is directly
proportional to the number of nonzero MBs in the frame, whgcHirectly proportional to the bitrate
and inversely with quantization parameter [78, 58]. The glexity of entropy encoding is directly pro-
portional to the bitrate [5]. Furthermore, the loop filtengalexity is a function of number of MBs and
frame rate. This leads us to conclude that the H.264 contplextdirectly proportional to a weighted

sum of the pixel rate and the bitrate.

General Bitrate Model
The bitrate is a function of pixel rate, quantization pareanenumber of references, and ME search
range. Based on Equation (4.13) and extensive experimeatgzing the impacts of the number of
references and the ME range (including those shown in Fgdiré(b) and 4.7(b)), we can develop a
general model for bitrate as a function of pixel rate, quaattbn parameter, number of references, and
ME search range:
(¢t —csR) (cg —cy S)L

r=c, ’ (4.19)
(g + Cq)c

wherec,, ¢, ¢, cq4, cf, @andc, are constantsl. is pixel rate,R is number of referencesy is the ME

search range, angis the quantization parameter. The linear relationshif &itand.S will be evident
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in the validation results.

4.2.3 Modeling of the Power Consumed by Video Transmission

In the last phase of live video streaming, the video is trattsthto the receiver(s). According to
[60, 61], the powelV; consumed in wireless transmission when it is chosen suththibdit error rate

(BER) at the receiver side is very low can be expressed as

Wiy =(cy +c,d")r, (4.20)

wherec, andc, are wireless model constantsjs the transmission distance,is the path-loss index,
andr represents the transmission bitrate. Equation (4.20) eageheralized for wired transmission by
assuming the path-loss indexs zero. Therefore, the transmission power for wired trassion can be
given by

Wyirea = cr, (421)

wherec is a wire model constant, ands the transmission bitrate. Equations (4.20) and (4.2dipate
that the power consumption of transmitting the video isdiheproportional to the transmission bitrate.

In our experiments of wireless video transmission, we covdd that the model in Equation (4.20)
applies but with an additional constant, specifying the @oeonsumption of the wireless circuit when
no transmission takes place. For the same technologyppiattistance, path-loss or environment, the
model can be simplified as follows:

Wi = (cpr + ¢y), (4.22)

wherec, andc, are constants.
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Table 4.7: Physical Significance of Various Constants
Constadtﬁ?eﬂect the power consumption of |
Cap: DVS circuit capacitance, encoding parameters, encodimgepeonsumption per
Caf pixel, and video content
cops oy | Slope of linear relationship between frequency and voliagBVS circuits and
DVS capacitance
Wireless distance, environment, transmission schemecaptiliring power con
sumption per pixel
Cdp The power consumed by video sensor and transmitter ciratien they are no
active

Cep

4.2.4 Modeling the Aggregate Power Consumption

Equations (4.3), (4.18), and (4.22) can be used to condtra@ggregate power consumption model
for the video source. The aggregate power consubigg, as a function of the resolution and frame

rate can be found as follows:

Wagg = (Cap L + cbp)2 (caf L+ cpp) +cer L+ cos + co 7+ ¢43.

Using Equation (4.13), the model can be simplified to

Wagg = (cap L+ cup)? (cap L + cuf) + cep L + cap, (4.23)

wherec,y, cup, Caf, Cofs Cop, @Ndcg, are constants. Table 4.7 illustrates the physical sigmifiezof
various constants in the aggregate power consumption modé} the main factors are considered.
4.3 Experimental Setup and Validation Methodology

We validate the developed models through extensive expeatsrusing two types of systems. The
first uses a regular video camera and employs software-baseating using FFmpeg/x.264. This
system allows better flexibility in conducting the expemitge The second includes an actual video

surveillance camera with a system-on-chip (SoC) for emmpd\We conduct experiments using three
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experimental setup€Experimental Setupis based on the first system, wher&agperimental Setup |l
andExperimental Setup llare based on the latter, but the input videos for these twpo mall setups,
the consumed power is measured by an advanced power metits: W@g& Pro ES AC.

Figure 4.3 shows Experimental Setup I. To ensure repeataddsurements, a video rendered on a
desktop computer is captured by a Dell Inspiron 1525 laptopputer with an Intel Core 2 Duo CPU
(Model T5750) running at 2.00 GHz with 3.00 GB memaory, 808.Wireless LAN, Ethernet LAN, and
an external video camera (Logitech Webcam Pro 9001). Theereadtcamera is directed to that desktop
computer, which plays a specific movie (from the beginningh®end). The rendered video includes
scenes of five children running and playing in a zoo, with mdefails and fast movements. The camera
feeds the captured video in raw format to the laptop computkich encodes the video with FFmpeg
in the case of MPEG-4 and X.264 in the case of H.264. The videtreamed using VideoLan VLC
streaming server (Version 1.0.5 Goldeney) running on thpder. For validation, we also include
some results using the latest VLC version (VLC 2.2.4) on #maesplatform. The distance between the

server and client is within 1 meter.

(Ce 222
> Access Point

Displayed Video Video Client

to be captured / \’\ (Decodern)
B\

Video Streal:nlng ‘
Server (Encoder)

Figure 4.3: lllustration of Experimental Setup |

We measure the power consumed by the streaming server fédtuad MPEG-4 encoding. For
encoding, we vary the spatial (i.e., frame size) and teniffoea, frame rate) resolutions generally from

160 x 120 up to1280 x 720 and from1 to 30 fps, respectively. For H.264, we also study the effect of
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varying the quantization parameter, the number of refagnand ME range. In each experiment, the
video is played foR2 minutes andtl seconds. The reported power is the average power consumptio
during the entire video period. Each reported value is tleesage ofl 361 power readings, each of which
is obtained during one second of the video. We assume thaltefecoding parameters in both X.264
and FFmpeg except for those that are under study. Spegificall/alidating the model, we assume
the following values, if they are not under study: Number efdkencesR) = 3, ME range(S) =
16, Quantization Parametéy) = 22, Scaling Factor(s) = 22, Frame-Ratg F') = 30, Resolution
(N x M) = 352 x 288, and Maximum Pixel-RatéL) = 3041280 pixel/sec.

To minimize the effect of other processes while running tkgeements, we run the computer with
a bare minimum set of processes and drivers. In additiorhy eqgeriment is repeated four times, and
then the overall results are averaged. Furthermore, thepmamsumption due to other system processes
running on the laptop computer is measured before eachimgmrand then subtracted from the total
power consumption. We initially measure the aggregate paf/i¢he three phases. To separate the
power consumption due to each phase, we follow the follovpragedure. (1) We measure the power
consumption of only capturing and encoding and then subiriom the aggregate power to get the
transmission power consumption. (2) We stream the stodmb\ithereby no capturing is involved) from
the laptop computer to the destination, measure the poweuooption for this task, and then subtract
the amount from the aggregate power consumption to get thieiriag power consumption. (3) We
subtract the capturing and the transmission power consomfsom the aggregate power consumption
to get the encoding power consumption.

In Experimental Setup I, we use for further model validatsoaCMOS networked surveillance cam-
era [5] and [56]. The used camera is Vivotek IP7139, whichadsilt-in 10/100 Mbps Ethernet and

802.11b/g WLAN. The distances between the camera and théariog station is within 1 meter. As
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Table 4.8: Characteristics of Used Standard Video Seqgendexperimental Setup 111
| Sequence| Duration (s) | Resolution| # Frames]

Silent 10 CIF 300
Akiyo 10 CIF 300
Deadline 45.8 CIF 1374
Signlrene 18 CIF 540

the differences in power consumption for different temparad spatial settings can be in a fraction of
a watt, we capture a TV channel with the camera for an avera@é bours in each experiment. The
captured video is streamed to a desktop computer using titbglreaming server that is supplied by
the camera’s manufacturer. The reported power consumitihre average a36, 000 power readings
during the recording and streaming period. We experimetit both wired and wireless transmission.

In Experimental Setup Ill, we conduct experiments to furtady and validate the impact of chang-
ing both the resolution and quantization/bitrate on enapg@iower consumption. This setup has the same
system as Experimental Setup I, but four standard videaesazps are used: Silent, Akiyo, Deadline,
and Signlrene, as described in Table 4.8. We downscale édeth sequence from the original size down
to 10% (specifically, we consider00%, 90%, ..., 10% of the original size). For each of these sizes, we
also produce different quality levels by varying the quzation parameter (frorh to 31). We measure
the power consumption while encoding, and then find thetbibhthe encoded video.

With Experimental Setup lll, we also analyze the power cam#ion at the monitoring station of
many-to-one video streaming systems due to upscaling acodoley. Additionally, we analyze the
quality of the received videos. As discussed earlier, Upgrahe video before decoding, greatly im-
proves video quality. We use the decoded frames to measeigutility compared to the original video.
As a metric for perceptual video quality, we uSwuctural SIMilarity IndexSSIM) [65] between two
images. SSIM improves the popuReak Signal-to-Noise Rati{®SNR) metric by considering the sim-

ilarity of the edges between the two compared images, arglritdre consistent with human visual
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perception. Since the human eye is more responsive to heaghtthan to color, we use only the Luma
(Y) components in the YUV color space. SSIM provides a qualitonstruction metric that considers
the similarity of the edges between the produced image amddthal one, whereas other metrics are

based on computing the mean squared reconstruction error.

4.4 Mode Validation Results and Analysis

To analyze the goodness of the fit for the developed modelsyjseeand repomlormalized Mean
Square Error(NMSE), where the MSE is divided by the product of the meanthefactual and model
values. The raw data of main figures can be fourtdtat//www.ece.eng.wayne.edu/ ~ nabil/
power_modeling/power.html . The results for Experimental Setup | are shown first. Fa@ thi
setup, VLC 1.05 is used unless otherwise indicated. In maigitvireless transmission is assumed un-
less otherwise indicated.

4.4.1 Validation of the Capturing Model

Figure 4.4(a) validates the developed capturing model gEgui (4.2)) and the simplified capturing
model (Equation (4.3)) when both the spatial and temposailugion are varied. The results show that
the model in both forms accurately represents the real hahavigures 4.4(b) and 4.4(c) validate the
model when only the temporal resolution or spatial resotuis varied, respectively.

4.4.2 Validation of the Power Consumption and Bitrate Med##IH.264 Encoding

Figure 4.5 validates the developed power consumption nfodehcoding (Equation 4.18) for vari-
able frame sizes, frame rates, and quantization parameldms bitrate in Figure 4.5(c) is varied by
changing the quantization parameter. Note that the quaitiz parameter has a great impact on power
consumption and bitrate. Figures 4.6(a) and 4.6(b) vaida¢ power consumption model (Equation
4.18) and the bitrate model (Equation (4.19) as the humbegfefence frames is varied, respectively.

Similarly, Figures 4.7(a) and 4.7(b) validate the modelshasME range is varied, respectively. The
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Figure 4.4: Validation of Video Capturing Power Consumiptio

inverse linear relationship of the bitrate with the numbkrederence frames and ME range is clearly
evident.

Table 4.9 shows the constants values for the general powsuogtion model of H.264 (Equation
(4.18)) using Experimental Setup I. For the general bitnadelel (Equation (4.19)), the constant values
on Experimental Setup | are as follows; = 0.0124, ¢ = 3.16, ¢, = 1249.5, ¢y = 17.18, ¢; = 1523.36,

cs = 83.03, andc, = 0.
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4.4.3 Validation of the Power Consumption and Bitrate Med#IMPEG-4 Encoder

Although the proposed power consumption and bitrate mddelencoding (Equations (4.18 and
4.19)) are developed for H.264 due to its popularity andiefiicy, they can be generalized for MPEG-4,
which share most of the features of H.264. Figure 4.8 shoatdibth the developed power consumption
and bitrate models apply for MPEG-4, but with different dansgs. Table 4.10 shows the constant values
for Experimental Setup 1.

4.4.4 Validation of the Transmission Model

Figure 4.9(a) validates the developed transmission motehvboth the spatial and temporal reso-

lutions are varied, whereas Figures 4.9(b) and 4.9(c) shewdsults when varying only the temporal
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or spatial resolution, respectively. The observed vamegtifrom the actual experimental results are pri-
marily due to measurement errors as the power consumednsntiasion is low, when compared with
other phases.

4.4.5 Validation of the Aggregate Power Consumption Model

Figure 4.10 validates the aggregate power consumption Inusitey Experimental Setup | (with
Webcam Pro 9000 and software-based encoding) for both HhRB8MPEG-4. The results for H.264
are shown for both VLC streaming server 1.0.5 and 2.2.4. & hhesults demonstrate the accuracy of

the model and that it applies for H.264, MPEG-4, and differersions of H.264 encoders, but with
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Table 4.9: Constant Values for H.264 Power Consumption Miatigerimental Setup 1]

| Constant| Value | Constant| Value | Constant| Value |
c1 7.437.1079 Co 4.8.107° c3 7.96.10~ 11
4 2.3392.10~% cs 1.58.10~ s 1.46.1073
c7 1.71.10°8 cs 0 c 3.16
Cq 0

Table 4.10: Constants Values for MPEG-4 Power ConsumptiorBitrate Models

| Constant| Value | Constant| Value | Constant| Value |
c1 16.77.10~9 Co 9.86.10~7 c3 0
cy 10.0 cs 2.16.1078 Cg 9.86.10~7
cr 0 cs 0 c 0.5
Cq 3.0 Cn 2.7.1073 Cq 1249.5
cy 17.18 Ct 1523.36 Cs 1522.36

different constant values.

To further validate the developed aggregate power consamptodel, we use Experimental Setup
Il (with Vivotek IP7139 surveillance camera). Figure 4.1bws the validation results for both wired
and wireless transmission. As expected, wireless trasgmigonsumes more power than wired.

4.4.6 Further Validation and Analysis

Since the spatial resolution and quantization parametmajor contributors to encoding com-
plexity, power consumption, and bitrate, let us analyzeatferall behavior and validate the developed
models when varying both parameters at the same time. Bigut® and 4.13 illustrate the overall im-
pacts of spatial resolution and quantization parameteheencoding power consumption and achieved
bitrate, respectively, and further validate the developediels. Similarly, Figure 4.14 shows the SSIM
video quality results by comparing the decoded and theraligiideos. These results demonstrate that
downscaling the spatial resolution before transmissiahthan upscaling to the original resolution by
the monitoring station can significantly reduce power camstion and bitrate without having a consid-

erable impact on video quality for a wide range of downscglavels. By combining quantization and



71

7 T T 7 T T
*  Actual *  Actual
o —=—  Model ] /= Model
g
R oot
c Q
g B
=3 X
: Y
D3 = 3
5 ©
Q. 2.0
[<5]
S
o
o ir 1
% 2 4 & s 10 1 1 15 15 2 % 2 4 & s 10 12 14 1 1 2
Pixel Rate ( Mega pixel/sec) Pixel Rate ( Mega pixel/sec)
(a) Consumed Power, NMSE=0.043 (b) Bitrate, NMSE=0.018

Figure 4.8: Validation of the Spatial and Temp. Effects onB¥@4 Enc. Power Consumption.

spatial resolution adaptations in H.264 encoding, thetatis reduced t®% of the original bitrate and
the consumed power is reduced4% of the original, while reducing the quality to on§8% of the
original. For MPEG-4, the bitrate is reducedit@ and the power is reduced 46 %, while keeping the
quality higher tharv8% of the original.

4.4.7 Analysis of Power Consumption by the Monitoring Stati

Let us now analyze the power consumed by the monitoringostébir receiving, upscaling, and de-
coding the received video streams. Figure 4.15(a) showsahsumed power, whereas Figure 4.15(b)
shows the percentage of power consumption for handling seam by the monitoring station to the
encoding power consumed by the source. Note that the powsuaoeed by receiving, upscaling, and
decoding one stream is smaller thaf Watt and the percentage of the consumed power relative to the
encoding power consumption is smaller ttedh for the spatial resolution of half the original and quan-
tization parameter smaller thaf. The overall power consumed by the monitoring station ietqd to
be proportional to the number of received streams, but rsedatly as the power consumed in receiving

n streams is less thantimes the power consumed by each due to the nature of opedtibe receiver.
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4.5 Conclusions and Future Work

We have developed an aggregate power consumption modévdoritieo streaming systems. The
model can help in the dynamic control of various camerafsessttings, including resolution, frame
rate, and quantization, to achieve the best overall trédedérms of power consumption, bitrate, and
quality. Specifically, we have modeled the video capturerg;oding, and transmission aspects and then
have provided an overall model of the power consumed by thheovsources. We have also analyzed
the power consumed by the monitoring station in many-tosysems due to the reception, upscaling,
and decoding of the received video streams. In addition, ave lanalyzed the perceived quality at the

monitoring station. Moreover, we have modeled the outptrata of video encoding. Furthermore,
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we have validated the developed models through extensperiexents using two different systems and
different video contents.

The main conclusions can be summarized as follows. (1) Theathcomputation complexity for
all phases can approximately be modeled as a linear funofidine pixel rate when varying only the
frame rate and frame size. (2) For high spatial and/or teaipesolution, the video encoding consumes
more tharb0% of the power, while capturing consumes less th#nand transmission less thdfo. (3)
H.264 generally consumes more than three times the powsuowed by MPEG-4. (5) The quantization
parameter affects power consumption in an exponentialdash{6) Other encoding parameters, such

as the number of references and the ME search range, varnpiver gonsumption by up t90%. (7)
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Tuning of parameters must be done based on power consumpitileo quality and bitrate tradeoffs.
(8) The complexities of inter-prediction, intra-predarti RDO mode selection, and sub-pixel search
can be expressed as a linear function of the pixel rate. &ilyilthe aggregate power consumption is
a linear function of the pixel rate. (9) By combining quaatinn and spatial resolution adaptations in
H.264 encoding, the bitrate is reducedl{d of the original bitrate and the consumed power is reduced
to 4% of the original, while reducing the quality to on§8% of the original. For MPEG-4, the bitrate
is reduced td %, the power is reduced 5%, while reducing the quality to only8% of the original.
(10) The power consumed by upscaling and decoding one stogathie monitoring station is smaller
than0.5 Watt per stream in the considered system. The percentapes @fdwer relative to the encoding
power consumption is smaller th&¥ for a spatial resolution of half the original and a quantaat
parameter smaller thei.

In future work, we will adapt the encoding model to other aeters, including High Efficiency Video

Coding (HEVC) and VP9.
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CHAPTER S FAST HEVC ENCODING BY HISTORY AND ENTROPY-BASED LCU
PARTITIONING

5.1 Introduction

The popularity ofHigh and Ultra High Definition(HD and UHD) videos increases the demand
for real-time applications with such standards. These-higiolution videos consume high bandwidth
especially in real-time systems and limited bandwidth cleds) such as wireless systems. That de-
mand urged the video encoding community to develop the neading standard called High-Efficiency
Video Coding (HEVC) to improve the coding efficiency whilgaiming the quality as in H.264 encoding
standard [22, 79].

In comparison to H.264, HEVC offers about double the datapgression ratio at the same level of
video quality. It supports resolutions up 8692 x 4320. HEVC introduces many different techniques
in order to improve the coding efficiency, including the aauction of an adaptive quad tree coding
[80, 22, 81, 82, 31, 30, 29, 34, 35, 36, 37, 32]. The improvanmession performance is the output
of high computational algorithms due to the newly introdli¢echniques such as adaptive quad tree
structure, extra intra-prediction modes, and the commrgiie Rate-Distortion Optimization (RDO)
calculations in such a structure.

HEVC data structure includes thargest Coding Uni{LCU), Coding Unit(CU), prediction unit
(PU), andtransform unit(TU). Frames in HEVC are partitioned into LCUs @f4(x 64) sizes in the
adaptive quad tree structure. If a CU of sigé x 64) splits, it is divided into four CUs of size8% x 32).

In addition, each CU of siz& x 32) can be subdivided into four CUs of sizes o6 & 16). Furthermore,
each CU of sizel6 x 16) can be subdivided into four additional CUs with sizes®#k(8) [80]. In the
original HEVC encoderRate Distortion OptimizatioRDO algorithm is used for the partitioning of the
Largest Coding Uni{LCU) into CUs. Unfortunately, the computation complexitfyRDO is extremely

high for real-time application which opens the door for sytimal LCU partitions that reduce the
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encoding time [82].

In order to reduce the encoding time, many studies have begroged with different techniques.
The different studies can be categorized into the follovapgroaches: dept-based, machine learning,
prediction based on residuals, entropy-based, and totabatof blocks. Study [33] proposed a depth-
based algorithm to exploit spatial and temporal correfetitor fast CU size decision. The decision of
splitting or terminating is based on the depth of the spatia temporal neighbors. The authors of [33]
claim a reduction in encoding time of 43% compared to theimsigHM5.0 encoder for the HD test
sequences.

Using Support Vector MachingSVM), study [34] proposed a CU splitting fast terminatidga
rithm. CU splitting is modeled as a binary classificationigpeon, on which SVM is applied. The paper
claims that the proposed algorithm can achieve about 41.Bn% ¢aving compared with the HEVC
reference software. Study [36] proposed CU early-terrionailgorithm that takes advantage of the
correlations between thdean Square Erro(MSE) of prediction residuals and the splitting decision in
the current CU level. According to the paper, the proposgdrahm achieves up to 34.83% average
encoding time reduction.

Study [25] suggested an approach based on how much infammisticontained within the block,
which is measured by a metric calledtropy. Entropy-based algorithm improved the encoding speed
to be faster than all other existing algorithms that intemdd so. The encoding speed3i$ faster than
the original RDO algorithm with acceptable average bitrate

In trying to avoid the limitation of the depth based partiiitg approach [33], study [39] usdatal
number of Block§TnB), where it made the decision of splitting/terminatioased on the total number
of blocks in the neighbors CUs. TnB is based on the numberhnf3us that contained within a certain

CU. The author claimed that the total number of blocks presichore insight int@ Ul.,ent Structure
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of the neighbors which make the decision of terminatioiittéfy more accurate compared to tROO
method than the depth approach. The author claimed a reduaftii4.89% in encoding time compared
to RDO that is implemented in the original software.

Although the idea of TnB is acceptable, the study was limiteghany aspects. First, from perfor-
mance evaluation perspective, the experiments were basedevalue ofl) P, which does not show
the effect of changing th@ P. In addition, it does not consider Bjontegaard’s metrib@ligh it is very
popular in finding the performance of encoders. The seqeesmeemostly QCIF and CIE} out of 18
are QCIF and CIF), only one sequence was of HD resolution.s€hection of such range of sequences
not only lack wide distribution but also does not cover treohetions that urge for HEVC development.
In addition, QCIF and CIF are not the right sequences for gorithm that make the decision based
on the neighbor decision history, because the existinghbeig are not enough. Second, the so many
schemes listed as contribution are more like the tasks adatplsearching for the right algorithm, no
conclusion for which scheme perform better. The most ingmtrissue is the reduction in encoding time
(or encoding speed), no scheme of [39] study outperform i@ @y-based algorithm. Many items in
the schemes are repeated and some items are included is.offfex main scheme which is the total
number of blocks is not studied well on wide range of HD segasrand QPs with the right metrics to
find the thresholds of termination and splitting at all deptfihird, the study introduced two schemes
with the name (Hybrid). Both schemes are based on the same @dastomized in a way to maximize
the performance for the encoding of the sequences in thg.stifortunately, these sequences are not
chosen from high definition were HEVC is developed for. Houf89] study schemes are based on
statistical analysis. The thresholds in these schemesaasgllon one QP and low-resolution sequences.
It is not clear how these thresholds can change based on QRswidtion. Finally, the dataset that is

used in developing the algorithms and their thresholdsteras@ame dataset that are used for testing.
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Our approach is different from depth-based approach [33jdnsidering same size neighbors in-
stead of considering4 x 64 blocks neighbors. In addition, it is different from depttdanB [39] by
considering entropy-based conditions and entropy-basaghts for the neighbors’ contribution to the
terminating/splitting decision. It is different from eafty-based approach [25] by considering spatial
and temporal neighbors in addition to the conditions thattmsed on the entropy value of the blocks.

In this chapter, we concentrate only on a frame structurepantitioning it to smaller blocks. We
focus on reducing the computational complexity of the aslapguad tree coding by predicting the
optimal LCU partition. This prediction increases the eringdspeed implemented in HEVC while
preserving the coding efficiency and video quality as in HEM® Rate Distortion Optimization (RDO)
option.

In this dissertation, we refer to HEVC with RDO option for fion, simply asRDO. We develop
an algorithm that predicts the size of the block withoutatirg through the exhaustive RDO method.
Our Algorithm decides to split the block or not based on theatation between the content of the block
and the content of the previously adjacent encoded blockpae and time. The algorithm prediction
is based on the weighted average of the decision of thoseeadjalocks (called spatial and temporal
neighbors). To prevent error propagation, we introduceratbntent conditions that have to be satisfied.
The content conditions are based on the entropy of the blodkita neighbors. We demonstrate the
effectiveness of the proposed algorithm in comparison RITFO and entropy-based approach through
extensive experiments. In addition, we compare our algoritvith TnB method discussed above.

The experiments are conductedigidifferent video sequences of resolutions ranging from W@QVG
(416 x 240) up to UHD 3840 x 2160) with up to6 different@ Ps. These sequences are in the raw YUV
color space format. The information contents and levels ofian in such sequences cover a wide

range of details and mobility which cover different spatiad temporal redundancy. The considered
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performance metrics include the average encoding speedytragd&ncoding Speedup Enhancement
(FSE), the averagé&ncoding Time ReductiofE TR), the average bitrate, the averd@gak Signal-to-
Noise RatigPSNR), andjontegaard’s DeltéBD) metric of both bitrate and PSNR.

The rest of this chapter is organized as follows. Sectiord&@uss the proposed algorithm. Sub-
sequently, section 5.3 discusses the performance evatuatethodology. Section 5.4 presents and
analyzes the main results. Finally, section 5.5 presentdhelusion.

5.2 Proposed Algorithm

We develop an algorithm, callédistory and Entropy-based LCU patrtitionin&ELP), to reduce the
encoding time without considerable loss of coding efficjeand video quality performance. Reducing
the encoding time not only increases the encoding speed|dmtowers the power consumption. The
algorithm predicts the size of the CU based on the partitibthe same size CUs in the spatial and
temporal (co-locator) neighborhood that have been prededa addition to neighborhood partitioning
history, another condition has to be satisfied in order tegmeerror propagation. Error propagation
conditions are based on the entropy of the block currentiygoprocessed{U..rrent)-

HELP algorithm predicts the partition decision 16U..,,-.,: based on the weighted average of the
Termination Possibilitf TP) of all the spatial and temporal neighbors. The partitiecision is to split
the block to four blocks or to terminate the process of séagctor the optimal partition for”'Uey.rent-

The algorithm predicts to split the block for four blocks erminate the process of searching for
the optimal partition ofCU,,,--.n: based on the weighted average of TPs of all the spatial anploiein
neighbors, which we calleiermination Possibility Averag@ PA). TP is defined as the likelihood that
CU._urrent Will terminate or split based on the decision that have beadearor the neighbor block. The
neighbor block is each processed block of the same sizesteithier temporally co-located or spatially

share an edge or a corner Wt rent -
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The algorithm uses the fact@fPA to make the decision of terminating or splitting. The TPA
of current blockCU..,+ent 1S based on the decision of partition taken for its neighbadrhis factor
combined withCU.,,..n: €ntropy value is the basis for our termination or splittiregidions. TPA is
defined formally as follows:

N

1
TPA= ——— X ZWZ- x TP, (5.1)

=1 ? =1
whereW; is the weight defined in Equation 5.% is the number of spatial and temporal neighbors, and
T P; is termination possibility for the neighber As shown in Figures 5.1 and 2.2, the variabtan be
1, 2,3, 4, 5, or 6 for spatial and temporal neighbors Co-located, Left, Abogt, Above, Above Right,

and Under Left, respectively.

_ 64x64,
Above Left Above Above Right 32x32, or
16x16
i=3 i=4 i=5
Temporally
Co-located Left CUcurrent
i=1 8

Figure 5.1: lllustration of Spatial and Temporal Neighbors

The termination possibility for each neighbdt?; is equal to0 if CU; has smaller CUs, and it is

equal tol otherwise. Thus]'P; can be represented as follows:

0 if CU; has smaller CUs

1 otherwise

wherei represents spatial and temporally co-located neighbaitsecfame size as 6fU.yrent-
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1

W, = ,
1+ | Entropyeurrent — Entropy;|

(5.2)

wherelV represents the weightyntropycurrent— Entropy;| is the absolute value dEntropycyrrent—
Entropy;). For example, ifEntropycurrent = 1 and Entropy; = 3, then the weight for neighbor at lo-
cation: is equal tol/3 (i.e. W; =1/(1 + |1 — 3]) = 1/3). The weight value is bounded in the closed
real interval [0, 1] to map the correlation strengths frontoarelation to the highest correlation, respec-
tively. The maximum weight has the highest correlatiof,(,, = 1/(1 + 0) = 1) and the minimum
weight has no correlation(,,;, = 1/(1 + oo) = 0). The entropy value for CURntropy.,) can be
calculated based on Equation (2.3) in Chapter 2.

Figure 5.2 illustrates the concept ©fP;. The figure shows &4 x 64 CU which is divided into4
CUs,3 of them are32 x 32. The fourth CU which is the bottom left is divided indidCUs, 3 of them are

16 x 16. The fourth CU which is the top left is divided intbCUs each of them i8 x 8.

TP3 -1 ‘ TP4=1 TP5=1

TP2=0

Figure 5.2: lllustration Of The Concept OF TEW cyyrent iS 16 X 16]

The weighted average @fPs for all the neighbors not only depends on the valug'éf for each
neighbor, but also it depends on the weight)(between that neighbor adU..,.;n:- The higher the

weight the morél" P of that neighbor will affect the termination decision. Faample, if the weights
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for CUsin Figure 5.2 are [W2 £.0, W3 =0.3, W4 =0.1, W5 =0.1]. TPAcvcurrent = [1/(W2+....+
W5)] x [W2x TP24 ...+ W5x TP5] = (1/1.5) x (1.0x 040.3x 1+0.1 x 14+0.1 x 1) = 0.33.
In this example, we notice that the neighbor that has thedsigborrelation i’ = 1) dominates the
decision. The final decision is to split if the error propagatondition satisfied although there are three
neighbors does not have smaller CUs, but they have loweelation withC'U.rent-

The HELP algorithm partitions the LCU based on the followifig A, the value of the entropy for
CU.rrent 1S cOmpared to the average of the entropy of all possiblétioag in the LCU, the entropy
value of the temporally co-located block, and the entrogye/af each of the spatial neighbors. Figure

5.3 shows the pseudocode of our proposed HELP algorithm.

if ( Depth< 3 AND CU Neighbors> 4) //Current CU should be 16x16 or larger and it should have asleb neighbors
/ nitialize .....

depthFactor = 0.1 x Depth; Il The probability of termination is higher for high depthlva

tpFactor = TPA — 0.5; [/ For TPA>= 0.70, Higher TPA value leads to more terminations. For TRA: 0.30, Lower
TPA leads to more splittings

dtFactor = depthFactor + tpFactor; I/ We add the above two factors to simplify the algorithm

/l Terminate Conditions.....
if ((TPA >=0.70) AND // This is the main condition to terminate, it should be ale/agtisfied to terminate
( (entropy of inspected Cl4¢.= 1.2+ dtFactor) OR/ This is the 1st Error Propagation Prevention ConditioB$@C), one
EPPC is enough to terminate
(abs(Entropy Of Inspected CY Average Entropyx= (0.15x Average Entropy- dtFactor)) OR/ 2nd EPPC
(abs(Entropy Of Inspected CY CU Colocated Entropyx= (0.5+ dtFactor)) OR/ 3nd EPPC
((Entropy Of InspectedC W Average Entropyx = (3.5+ dtFactor)) )}/ 4nd EPPC
Terminate// If the main condition and one of the EPPCs satisfies, teaaithe search for optimal size
//Split Conditions .....
else if(TPA <= 0.30) AND // Main split condition
(((Entropy Of Inspected Cl-= (3.0+ dtFactor)) OR/ 1st EPPC
(abs(Entropy Of Inspected CU- Average Entropy)>= (0.15x Average Entropy+ dtFactor)) OR/ 2nd EPPC
((Entropy Of Inspected C4- Average Entropy)> (6.0+ dtFactor)) ) )}/ 3nd EPPC
Split // If the main condition and one of the EPPCs satisfies, dpditdurrent CU tot CUs
else Do Full RDQ/ Use the original RDO method if the above conditions dogsatisfy
/IThe constants are based on [25] statistics tuned by us Kitdepth factor, and TPA value. The 0.15 means splittinpnet
decrease the entropy FU....n: €ntropy and the entropy of the possible smaller CUs are diosach other, 3.0 means th
entropy is high, which means splitting will decrease theay, and 1.2 means the entropy is low, which predict terioma
The constants 3.5 and 6.0 are based on pure statistics byt{8@jd to HELP algorithm.

Figure 5.3: Pseudocode of the HELP Algorithm
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HELP is different from the depth-based approach [33] by arig same size neighbors instead of
considerings4 x 64 blocks neighbors. In addition, it is different from deptidamB [39] by considering
contents based weight for the neighbors and entropy baselitioms. It is also different from entropy-
based algorithm [25] by considering spatial and temporahimrs in addition to the conditions which
is based on the entropy value of the blocks. The conditioasbased on [25] and [39] studies. It
is different from these studies by adapting to depth @melA value. The termination or splitting in
HELP has to satisfif’ P A threshold and one of the entropy conditions which introduogorevent error
propagation. Finally, HELP uses the entropy as a secondiglarandition, whereas [25] and [39] use
them as first conditions to make the decision.

5.3 Performance Evaluation Methodology

We use the following performance metrics to compare varagsrithms: Encoding Speed En-
hancemen(ESE),Bjontegaard Delta-PSNEBD-PSNR) Bjontegaard Delta-RatéBD-Rate),Peak Sig-
nal to Noise RatifP SN R), Encoding Time ReductiafETR), the average bitrate, and the averBgak
Signal-to-Noise RatiPSNR).

HEVC reduces the bitrate to half for the same quality but wéhy slow encoding speed. Thus, the
encoding speed is the main attribute to evaluate HEVC emmaeit algorithms. We propo&coding
Speed EnhancemefESE) metric, which measures the relative enhancemenegirtposed algorithm

to the RDO. ESE can be determined as follows:

ESE — EAencodingSpeed - RDOencodingSpeed (5 3)
RDOencodingSpeed ’
where ESFE is encoding speed enhancementsA over RDO, E A is the algorithm being compared
with RDO, such as TnB or HELP.

As PSNR is not to compare encoding algorithms in both qualitg coding efficiency [83], we
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PSNR

Algorithm 1 RD-Curve

Algorithm 2 RD-Curve

BD-PSNR

Log(Rate)

>

Figure 5.4: lllustration of Bjontegaard BD-PSNR

use a popular metric for evaluation of codecs called Bjraedjanodel. TheBjntegaard Delta-PSNR
(BD-PSNR) metric is used to measure the average PSNR diffesebetween two RD curves obtained
from encoding videos of varying bitrates. BD-PSNR measimedB the average PSNR difference
for the same bitrate, whilBjontegaard Delta-RatéBD-Rate) measures the average percent in bitrate
difference for the same PSNR.

BD-PSNR can be approximated by the difference between thgrals of the fitted two R-D curves
of the algorithms under comparison divided by the integratnterval. For bitrate reduction, we use
BD-Rate metric which is the average bitrate difference kemthe two R-D curves as approximated in
[84, 85, 86].

The BD-PSNR between two RD curves is calculated by the diffee between the area under these

curves divided by the logarithm of the bitrate interval. iatly, we can express BD-PSNR as follows:

BD - PSNR ~

/ " (Da(r) = Dy(r))dr, (5.4)

TH—TL rr
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where BD-PSNR computed between the two fitRate-Distortion(RD) curvesD;(r) and Ds(r), re-
spectively, and;, andrg, determines the higher starting and the lower end ratesdfith curves. They

can be calculated as follows:

rr, = max(min(ry i, ....... TN ) TAN(T2 1, e JT2.Ny)), (5.5)

and

rg = min(max(ry i, ....... ST ), MAZ (T2 1, e JT2N))- (5.6)

wherer refers to the logarithm of the bitrate & log(R)). Figure 5.4 shows graphically how to calculate
BD-PSNR BDpsnR)-
The average bitratBjontegaard Delta-RatéBD-Rate) between two RD curves is the horizontal area

under the curves divided by the PSNR interval, which can Ipecegimated as

BD — Rate ~ 10F — 1, (5.7)
where
1 Du
EF=—— D) — r1(D))dD .
DDy [, (r2D) = ra(D)aD, 5.8)

where D represents the distortion in terms B65 N R, BD-Rate computed between the two fitiedte-
Distortion (RD) curvesr; (D) andry (D), respectively, and;, and Dy determines the higher starting

and the lower end PSNRs of the two curves. They can be cadcutet follows:

DL = mam(mz‘n(Dl,l, ....... s D1 Ny ), min(Dg’l, ....... y DQ’Nl))7 (59)
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and

Dy = min(maz (D11, ....... ,Di N, ),maz(Day, ....... ,Dany))- (5.10)

The PSN R between an original framd and the corresponding encoded framean be given as

follows:

MAX?
MSE "’

PSNR(dB) = 10 x log (5.11)

whereM SE andM AX represent the Mean-Square Error, and the maximum possiaevalue of the
image, respectively. When each pixel is represented as 8Witl X = 255. M SE can be given by

MSE:Zn:iM, (5.12)

. . nxm
=1 i=1

wherem andn represent the width of the image in pixels and the height @frfage in pixels, respec-
tively.

Another important attribute of HEVC partitioning algoritis is the encoding time. The performance
of any proposed algorithm can be measured in terntsnabding Time ReductiofETR). We measure
ETR by the difference between the encoding time of the prepadgorithm and RDO relative to the

RDO encoding time. In Table 5.4, we use ETR for evaluationRESTdefined as follows:

EAencodingTime - RDOencodingTime

ETR =
RDOencodingTime

: (5.13)

where ET' R is encoding time reduction dRDO over EA, E A is the algorithm being compared with
RDO, such as TnB or HELP.
As shown in Table 5.1, we use low delay main with pattern IBBBfgyuration, which use a GOP

of all B frames except the first, which is | frame [87].
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Table 5.1: Unit Definition and Coding Structure

Unit definition
MaxCUWidth :64  # Maximum coding unit width in pixel
MaxCUHeight :64 # Maximum coding unit height in pixel
MaxPartitionDepth ‘4 # Maximum coding unit depth

QuadtreeTULog2MaxSize 5
QuadtreeTULog2MinSize 2
QuadtreeTUMaxDepthinter :3
QuadtreeTUMaxDepthintra :3

# Log2 of maximum transform saregiiadtree-based TU coding (2...6)
# Log2 of minimum transform siaeduadtree-based TU coding (2...6)

Coding Structure

IntraPeriod ;-1 # Period of I-Frame (-1 = only first)
DecodingRefreshType :0 #Random Accesss 0:none, 1:CDBR2:|
GOPSize 14 # GOP Size (number of B slice = GOPSize-1)

We implement the algorithm in the HEVC Test Model, specificelEVC HM 13.0 [88]. To min-
imize the effect of other processes while running the expenis, we run the computer with a bare
minimum set of processes and drivers. In addition, eachrgrpat is repeated three times on each
of the three computers. We consider the results of the maxrigncoding speed of each computer, we
show the encoding speed results of M4800 computer in allrérpats except when we compare the en-
coding speed on different computers Figure 5.14. The quatit the bitrate are deterministic and they
are the same whether with the different experiment on theesamputer or on different computers.

The three computers have the following configuration: (1M Pescision M4700 with x64-based
PC, Intel(R) Core(TM) i7-3840QM CPU @ 2.80GHz, 4 Core(s),@jical Processor(s), 16.0 GB In-
stalled Physical Memory (RAM), and 64-bit Microsoft Winde8.1 pro. (2) Dell Precision M4800 with
x64-based PC, Intel(R) Core(TM) i7-4810QM CPU @ 2.80GHzp4e(s), 8 Logical Processor(s), 32.0
GB Installed Physical Memory (RAM), and 64-bit Microsoft Ndiows 7 Enterprise. (3) HP EliteBook
820 G1 with x64-based PC, Intel(R) Core(TM) i5-4310U CPU @0&Hz, 2 Core(s), 4 Logical Pro-
cessor(s), 8.0 GB Installed Physical Memory (RAM), and @4Microsoft Windows 7 Enterprise.

A description of the main characteristics of each of the ussgliences [89, 90] in testing the al-
gorithm is shown in Table 5.2. To determine the thresholdhefalgorithms, we used a subset of this

sequences. These sequences are €raffic, Basketball_Drill, and Basketball Pass sequences.
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Table 5.2: Characteristics of the Used Standard Video Segse

Sequence Number of | Resolution QP Description
Name Frames
HEVC Test Sequences

crop.Traffic | 150 | 2560 x 1600] 22, 27, 32, 37, 42, 47 HEVC test sequence class A
| Basketball_Drill | 150 | 832x480 [ 22,27,32,37,42, 41 HEVC test sequence class [C
| RaceHorse832x48Q30 | 97 | 416x240 | 32,37,42,47 [ HEVC testsequence class [C
| Basketball_Pass | 150 [ 416x240 | 22,27, 32,37, 42, 4] HEVC test sequence class P
| BlowingBubbles416x24050 | 97 | 416x240 |  32,37,42,47 | HEVC test sequence class P

Other Encoders Test Sequences
Tennis [ 150 | 1920x1080 | 22, 27, 32, 37, 42, 47 FullHD
duckstakeoff 420720p50 | 50 [ 1280x720 | 32 | HD
| duckstakeoff_1080p50 | 50 | 1920 x 1080] 32 | Full HD |
| duckstakeoff_2160p50 | 6 | 3840 x 2160] 32 | Ultra HD |
| parkjoy_off_420.720p50 | 50 | 1280x720 | 32 | HD |
| parkjoy 1080p50 | 50 | 1920 x 1080] 32 | Full HD |
| park joy_2160p50 | 6 | 3840 x 2160 32 | Ultra HD |
720p5Qmobcalter | 60 | 1280 x 720 | 37 | HD

| 720p5Qparkrunter | 60 | 1280x720 | 37 | HD |
| elephantsiream720p24 | 60 | 1280 x720 | 37 | HD |
| life_1080p30 | 60 ] 1920x1080] 37 | Full HD |
| big_buck bunny1080p24 | 60 | 1920 x 1080] 37 | Full HD |

5.4 Result Presentation and Analysis

In the following results, we refer to entropy-based aldonit[25] as ENTROPY. Figures 5.5, 5.6,
and 5.7 show the encoding speed, the bitrate, and the PShifecterely. The figures demonstrate the
encoding performance of the RDO, ENTROPY, and HELP algaritton sequences (Duckake off
and Park joy) each at 720p, 1080p, and 2160p resolution. fiteding speed enhancemdnif E for
the ENTROPY over RDO i8.72 in average, while it id.31 in average for HELP over RDO (Table 5.4).
ESFE of 4.31 means5.31 times faster. The figures show that there is no significamease in bitrate
of applying HELP algorithm and the decrease in PSNR is nixgig Both the coding efficiency and
quality is better with HELP than ENTROPY.

Figure 5.8 shows the encoding speed for different quaitizgiarameters, specifically &P =
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Figure 5.5: Comparing Encoding Speed vs. Resolution wiffeiint Algorithms
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Figure 5.6: Comparing Bitrate vs. Resolution with Differéigorithms

(32,37,42,47). The figure demonstrates (based on Table 5.4) that in geH&laP encoding speed is
5 times the encoding speed of RDO for all sequences & Blé. The encoding speed for ENTROPY
over RDO is3.5. ESEs are4 and2.5 for HELP and ENTROPY over RDO, respectively.

Figure 5.9 shows the bitrate versus quantization paranat@®” = (32,37,42,47). The figure
demonstrates that HELP outperforms ENTROPY in coding efficy.

Figure 5.10 shows the quality for different quantizatiorgpaeters, specifically & P = (32, 37,42, 47).

We note that HELP algorithm outperforms ENTROPY in termswdldy in most of the sequences and
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Figure 5.7: Comparing PSNR vs. Resolution with Differengdyithms

QPs in most of the sequences at most of(ies.

We compare various partitioning algorithms in terms of eliwg speed for different values of QP.
Figure 5.11 shows the encoding speed versus bitrafdPat= (32, 37,42,47). The figure demonstrates
that the encoding speed of HELP is aroung in average faster than ENTROPY.

Figure 5.12 shows the quality versus bitrate4@equences &P = (32,37,42,47). In general in
all the sequences at most of s HELP outperforms ENTROPY in terms of quality.

Figure 5.13 shows Y-PSNR, U-PSNR, V-PSNR, &jdntegaard Deltd BD-PSNR) of ENTROPY
to RDO, HELP to RDO, and HELP to ENTROPY for Tennis sequena@ At= (32, 37,42,47). The
figure shows clearly how HELP maintains a close quality amichta to RDO. The figure also demon-
strates how HELP outperforms ENTROPY in both quality andmgefficiency.

In Figure 5.14, we compare the encoding speed of HELP, ENTR@&#I R DO algorithms on three
different computers for of Tennis sequence. The figure detnates that HELP algorithm outperforms
ENTROPY on the three computers in terms of encoding speeelbittate and the quality have the same
values on each of the three computers, therefore we do nat thiemn.

Based on Table 5.4, we notice that HELEscoding Speed Enhancem¢BSE) is4, which means
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Figure 5.8: Comparing Encoding Speed vs. QP

HELP encoding i$ times faster than RDO algorithm in average, while ENTROPY%E is about2.5
over RDO. We calculate the averagestf F based ont6 different sequences and QPs combination.

The average oBjntegaard Delta-PSNBD-PSNR) is1.416 more for HELP than ENTROPY and
the averag@jntegaard Delta-ratgBD-rate) is34.25 less for HELP than ENTROPY. BD averages are
shown in Table 5.3. Encoding speed enhancement is caldutated on Equation 5.3.

In Table 5.5, we compare HELP algorithm with TnB and RDO. Theogling speeds arz5.64,
50.01, and 125.21, for RDO, TnB, and HELP, respectively. These encoding speedan encoding
speed enhancemehtSE of 1.10 and4.14 for TnB and HELP, respectively. In terms of encoding time

reduction, we notice-0.52 and —0.80, for TnB and HELP, respectively. There is a little increase i
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Figure 5.9: Comparing Bitrate vs. QP with Different Algbrits

bitrate and an unnoticeable decrease in quality. The engagieed i$ and2 times that of the RDO for
HELP and TnB, respectively.

Figures 5.15, 5.16, and 5.17 show the encoding speed, thgehitind the PSNR versus quantization
parameter af) P = (32,37,42,47), respectively. Figure 5.15 demonstrates (based on Tab)eiat in
general HELP encoding speei$ times the encoding speed of TnB for all sequences &) Bi. The
difference in PSNR is not noticeable neither for machinesoimputer vision systems nor for a human
eye. The difference in bitrate does not worth the big diffieesin encoding speed, especially in real-time

applications.

In terms of encoding time reduction, Study [39] demonstrdteat Hybrid-2 performs better than
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Figure 5.10: Comparing PSNR vs. QP with Different Algorithm

all the previous approaches that the author aware off. IheTalé, we compare HELP algorithm with
Hybrid-2 and RDO. The encoding speeds argd, 25.54, and47.05, for RDO, Hybrid2, and HELP,
respectively. These encoding speeds mean encoding speadcementt’SFE of 1.85 and4.27 for
Hybrid2 and HELP, respectively. In terms of encoding timéuaion, the performance are0.68 and
—0.81, for Hybrid2 and HELP, respectively.
55 Conclusions

In this chapter, we have proposed a new algorithm to pantitiGU in HEVC. The proposed al-
gorithm highly enhances the encoding speed with an acdeptigradation in coding efficiency and

quality. Based on the results, the proposed algorithm leadscoding speed df times that of RDO
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Figure 5.11: Comparing Enc. Speed vs. Bitrate at QP = 32,3474

(4 times faster), with an acceptable decrease in quality. éfber, HELP algorithm is a technique that

worth further investigation. In our knowledge, no otherdstapproach as this performance.
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Table 5.3: Comparing the performance of HELP, ENTROPY, ab®RQP = (32,37,42,47)]

Comparing the performance of HELP compared to ENTROPY

Sequence BD-PSNR | BD-RATE | ESEgnrtrory | ESEuerLe
| cropTraffic | 1.744166 |  -42.287112 | 2.64 | 4.59 |
| BasketballDrill | 1.223721 | -30.498920 | 2.44 | 3.98 |
| Basketball_Pass | 0.414357 | -13.296025 | 2.32 | 3.34 |
| Tennis | 3.279842 | -52.946821 | 2.55 | 4.07 |

Average | 1.416 | -3425 | 25 | 4.0
| BD-PSNR and BD-Rate of HELP and ENTROPY compared to RDO

|
| | BD-PSNR | BD-Rate |
Sequence | (ENTROPY to RDO)| (HELP to RDO) | (ENTROPY to RDO)[ (HELP to RDO) |

[ cropTraffic | -3.432821 [ -0.978797 ] 122.299820 [ 32.377698 |
| BasketballDrill ] -2.690911 [ -1.019517 | 87.363419 | 33.589731 |
[ Basketball_Pass]| -2.013280 [ -1.206478 | 60.399920 | 44.395363 |
| Tennis | -4.194577 |  -0502971 | 142.033234 | 15284985 |

Average | -3.09 | -0.92 | 102.94 | 31.4
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Table 5.4: Results of the Proposed HELP Algorithm CompardeNTROPY and RDO.
Enc. Time (sec) Bitrate Y-PSNR Enc. Speed Enc. Speed. EnhH{SE)
Sequence QP RDO Entropy HELP RDO Entropy HELP RDO | Entropy| HELP | RDO | Entropy| HELP | Entropy HELP
Tennis 22 | 95372.141| 27351.042| 16856.919 | 8190.7104 | 9638.992| 9940.888 | 41.4959| 41.3729| 41.3502| 5.66 19.74 32.03 2.49 4.66
Tennis 27 | 80365.181| 22452.981| 14696.994 | 3707.112 | 4711.03 | 4470.504 | 39.4665| 39.1724| 39.2469| 6.72 24.05 36.74 2.58 4.47
Tennis 32 | 71610.691| 20415.191| 13936.386 | 1777.9552 | 2554.211| 2057.2112| 37.1438| 36.5523| 36.872 | 7.54 26.45 38.75 2.51 4.14
Tennis 37 | 60299.066| 16806.003| 12192.248 | 927.9216 | 1594.982| 1023.8992| 34.8245| 33.8703| 34.5745| 8.96 32.13 44.29 2.59 3.95
Tennis 42 | 55990.459| 15626.327| 11970.469 | 498.2128 | 1078.824| 533.7456 | 32.4712| 31.0107| 32.2998( 9.64 34.56 45.11 2.58 3.68
Tennis 47 | 58129.505| 13094.148| 10239.249 256.336 | 745.9488| 267.2448 | 30.0009| 27.7847| 29.8909| 9.29 41.24 52.74 3.44 4.68
duckstake off .420.720p50 | 32 | 12212.131| 3390.473 2083.14 3747.768 | 4320.389| 3916.7424| 31.4885| 31.2376| 31.3579| 14.74 | 53.09 86.41 2.60 4.86
duckstakeoff_1080p50 32 | 27995.864| 7957.518 | 5086.473 | 6373.6704| 7772.87 | 6686.2752| 31.8648| 31.4741| 31.7869| 6.43 22.62 35.39 2.52 4.50
duckstake off_2160p50 32 | 10602.459| 2900.2002| 2252.86687| 20573.92 | 26351.64| 22821.56 | 31.1385| 30.8749| 31.1333| 2.04 7.45 9.59 2.66 3.71
park joy_420.720p50 32 | 10226.912| 2659.2564| 1897.73793| 4653.9936 | 4996.147| 5355.1344| 30.6486| 30.5038| 30.1065| 17.60 | 67.69 94.85 2.85 4.39
park joy_1080p50 32 | 22499.295| 5956.4766| 4300.2694 | 8502.7824 | 9213.998| 9678.0672| 31.5578| 31.4219| 31.1661| 8.00 30.22 41.86 2.78 4.23
park joy_2160p50 32 | 7877.3388| 2004.5917| 1519.34389| 20855.24 | 23379.2 | 22598.44 | 34.9601| 34.7709| 34.8733| 2.74 10.78 14.22 2.93 4.18
720p50 mobcal ter 37 | 7225.816 | 2083.384 | 1292.556 228.66 388.612 | 223.572 | 28.7321| 28.543 | 28.5329( 24.91 | 86.40 | 139.26 2.47 4.59
720p5Qparkrunter 37 | 9988.401| 2775.666 | 1797.232 2129.42 | 2341.968| 2212.58 | 26.2494| 26.0697| 25.96 2.16 7.78 12.02 2.60 4.56
elephantsdream720p24 37 | 7445.16 | 1758.451 | 1574.932 65.2128 | 120.3904| 66.2176 | 50.4844| 49.9978| 50.4283( 2.90 12.28 13.71 3.23 3.73
sinteltrailer 2k 1080p24 | 37 | 9291.08 | 1432.145| 1427.871 302.732 | 315.968 | 314.744 | 58.7828| 57.6284| 57.6474| 2.32 15.08 15.13 5.49 5.51
life 1080p30 37 | 19241.729| 5334.227 | 3113.407 | 6293.164 | 10364.32| 6431.144| 28.8134| 28.3042| 28.6723| 9.35 33.74 57.81 2.61 5.18
big_buck bunny 1080p24 | 37 | 18213.203| 3926.371 | 3747.703 | 195.8656 | 243.5072| 193.6032 | 44.0719| 43.7404| 44.021 | 9.88 45.84 48.03 3.64 3.86
BasketBallPass 22 | 3957.883 | 1164.832| 872.301 786.688 | 855.0528| 1206.0528| 41.0869| 40.9207| 40.5263| 136.44| 463.59 | 619.05 | 2.40 3.54
BasketBallPass 27 | 3205.036| 956.03 719.753 390.1824 | 436.0752| 583.3552 | 37.3088| 37.0794| 36.5698| 168.48| 564.84 | 750.26 2.35 3.45
BasketBallPass 32 | 2979.208 | 879.956 675.043 189.6192 | 224.4992| 260.8464 | 33.8989| 33.5703| 33.0646| 181.26| 613.67 | 799.95 | 2.39 3.41
BasketBallPass 37 | 2511.538 766.35 593.253 94.976 125.264 | 118.384 | 30.982 | 30.5519| 30.2448| 215.01| 704.64 | 910.24 2.28 3.23
BasketBallPass 42 | 2334.305| 715.516 554.309 48.5856 75.4288 | 56.0512 | 28.3772| 27.7852| 27.8724| 231.33| 754.70 | 974.19 2.26 3.21
BasketBallPass 47 | 1943.857 | 615.452 471.858 22.4192 44.6912 | 24.4768 | 26.0727| 25.107 | 25.7986| 277.80| 877.40 | 1144.41| 2.16 3.12
BlowingBubbles416x24Q50 | 32 | 2067.557 | 624.844 500.652 375.699 450.334 | 453.1876 | 31.5452| 31.3166| 30.8273| 87.06 | 288.07 | 359.53 2.31 3.13
BlowingBubbles416x24Q50 | 37 | 1761.922 | 553.286 426.442 169.3773 | 229.0186| 188.1361 | 28.7605| 28.348 | 28.274 | 102.16| 325.33 | 422.10 2.18 3.13
BlowingBubbles416x240Q50 | 42 | 1526.887 | 512.196 376.116 76.9526 | 122.8247| 83.2495 | 26.2705| 25.7176| 26.0033| 117.89| 351.43 | 478.58 1.98 3.06
BlowingBubbles416x24Q50 | 47 | 1361.649 | 444.663 340.33 33.4268 66.2268 | 36.6351 | 24.1875| 23.406 | 24.0144( 132.19| 404.80 | 528.90 2.06 3.00
RaceHorse332x48030 32 | 11586.031| 3288.439 2190.4 1244.207 | 1463.866| 1693.2 | 32.0739| 31.8351| 31.2822| 15.54 | 54.74 82.18 2.52 4.29
RaceHorse332x48030 37 | 9758.988 | 2756.51 1962.031 | 557.8713 | 746.3332| 685.5513 | 29.0911| 28.7356| 28.353 | 18.44 | 65.30 91.74 2.54 3.97
RaceHorse832x48030 42 | 8215.553 | 2334.622 | 1745.518 | 242.4866 | 411.8375| 276.2004 | 26.7241| 26.152 | 26.2637| 21.91 | 77.10 | 103.12 2.52 3.71
RaceHorse332x48030 47 | 6967.909 | 2035.242 1567.1 108.3142 | 255.021 | 118.174 | 25.0192| 23.8818| 24.7504| 25.83 | 88.44 | 114.86 2.42 3.45
BasketballDrill 22 | 17037.458| 4845.346 | 3189.389 | 2237.704 | 2552.163| 3078.3328| 40.318 | 39.8298| 39.8298| 31.69 | 111.45| 169.31 2.52 4.34
BasketballDrill 27 | 13617.474| 3861.338 | 2663.73 1051.2544 | 1248.694| 1410.0896| 37.1319| 36.8684| 36.6297| 39.65 | 139.85 | 202.72 2.53 4.11
BasketballDrill 32 | 12236.089| 3488.113 | 2437.079 | 499.7248 | 645.8128| 647.7488 | 34.2431| 33.9392| 33.7991| 44.13 | 154.81 | 221.58 2.51 4.02
BasketballDrill 37 | 10394.483| 3004.389 | 2127.887 | 255.8688 | 377.5888| 316.1712| 31.7678| 31.2921| 31.3494| 51.95 | 179.74 | 253.77 2.46 3.88
BasketballDrill 42 | 9504.908 | 2814.418 | 1989.936 137.224 247.28 | 160.7024 | 29.3486| 28.6372| 28.9833| 56.81 | 191.87 | 271.37 2.38 3.78
BasketballDrill 47 | 7992.393 | 2432.809 | 1690.403 66.0912 | 163.3712| 73.1968 | 26.7375| 25.7502| 26.464 | 67.56 | 221.97 | 319.45 2.29 3.73
Traffic 22 | 136129.39| 35495.018| 24332.247 | 13839.8416| 15471.31| 17832.435| 41.6225| 41.4666| 41.0539| 3.97 15.21 22.19 2.84 4.59
Traffic 27 | 105110.13| 27945.961| 19011.845| 4845.904 | 5915.118| 6553.4832| 38.7311| 38.5042| 38.164 | 5.14 19.32 28.40 2.76 4.53
Traffic 32 | 97001.769| 26316.265| 17544.513 | 2071.6208 | 2870.504| 2720.5008| 35.9579| 35.605 | 35.3743| 5.57 20.52 30.78 2.69 4.53
Traffic 37 | 83346.158| 23296.681| 15315.877 | 991.0496 | 1672.301| 1197.1808| 33.1703| 32.6754| 32.6663| 6.48 23.18 35.26 2.58 4.44
Traffic 42 | 81936.19 | 23363.896| 14404.968 | 484.2352 | 1109.446| 549.784 | 30.3891| 29.7383| 30.0456( 6.59 23.11 37.49 2.51 4.69
Traffic 47 | 73550.12 | 21370.914| 12719.857 230.128 | 822.1568| 251.2272 | 27.7297| 26.7386| 27.5009| 7.34 25.27 42.45 2.44 4.78
Average
Enc. Time Bitrate Y-PSNR Enc. Speed Enc. Speed Enh.
RDO Entropy HELP RDO Entropy HELP RDO | Entropy| HELP | RDO | Entropy| HELP | Entropy HELP
Avg. All 29377.76 | 8041.08 5463.83 2734.82 | 3380.35| 3167.41 | 33.47 32.95 33.08 | 50.21 | 166.62 | 223.45 | 2.62 4.05
Median. All 10498.47 | 2952.29 2105.51 498.97 838.60 615.55 31.66 31.30 31.32 | 15.14 | 53.91 84.29 2.52 4.07
Enc. Time Red. KT R)
Avg. -0.73
Median 0.72
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Table 5.5: Results of the Proposed HELP Algorithm CompanethiB and RDO.

Enc. Time (sec) Bitrate Y-PSNR Enc. Speed Enc. Speed. EnhHSE) | Enc. Time Red,
Sequence QP RDO TnB HELP RDO TnB HELP RDO TnB HELP RDO TnB HELP | TnB HELP TnB | HELP
Tennis 32 | 71610.691| 33865.491| 13936.386 | 1777.9552| 1821.579| 2057.2112| 37.1438| 37.0999| 36.872 | 7.54 15.95 | 38.75 | 1.11 4.14 -0.53| -0.81
Tennis 37 | 60299.066| 30049.318| 12192.248 | 927.9216 | 936.5648| 1023.8992| 34.8245| 34.7861| 34.5745| 8.96 | 17.97 | 44.29 | 1.01 3.95 -0.50| -0.80
Tennis 42 | 55990.459| 26754.249| 11970.469 | 499.6656 | 504.088 | 533.7456 | 32.4712| 32.4548| 32.2998| 9.64 | 20.18 | 45.11 | 1.09 3.68 -0.52| -0.79
Tennis 47 | 52002.561| 23592.374| 10239.249| 256.336 | 259.8496| 267.2448 | 30.0009| 29.9609| 29.8909| 10.38 | 22.89 | 52.74 | 1.20 4.08 -0.55| -0.80
Avg. | 1.10 3.96 -0.52| -0.80
Traffic 32 | 97001.769| 40578.323| 17544.513| 2071.6208| 2186.275| 2720.5008| 35.9579| 35.8088| 35.3743| 5.57 | 13.31 | 30.78 | 1.39 4.53 -0.58| -0.82
Traffic 37 | 83346.158| 36732.308| 15315.877 | 991.0496 | 1016.787| 1197.1808| 33.1703| 33.0679| 32.6663| 6.48 14.70 | 35.26 | 1.27 4.44 -0.56 | -0.82
Traffic 42 | 81936.19 | 33750.004| 14404.968 | 484.2352 | 491.3152| 549.784 | 30.3891| 30.3443| 30.0456| 6.59 16.00 | 37.49 | 1.43 4.69 -0.59| -0.82
Traffic 47 | 73550.12 | 32055.544| 12719.857 | 230.128 | 229.072 | 251.2272 | 27.7297| 27.7044| 27.5009| 7.34 16.85 | 42.45 | 1.29 4.78 -0.56| -0.83
Avg. | 1.35 4.61 -0.57| -0.82
duckstakeoff_420.720p50 | 32 | 12212.131] 5621.158 | 2083.14 | 3747.768 | 3789.293| 3916.7424| 31.4885| 31.4616| 31.3579| 14.74 | 32.02 | 86.41 | 1.17 4.86 -0.54| -0.83
duckstakeoff_1080p50 | 32 | 27995.864| 12586.495| 5086.473 | 6373.6704| 6435.437| 6686.2752| 31.8648| 31.8535| 31.7869| 6.43 | 14.30 | 35.39 | 1.22 4.50 -0.55| -0.82
duckstakeoff_2160p50 | 32 | 10602.459| 4722.371 | 2252.86687| 20573.92 | 20601.48| 22821.56 | 31.1385| 31.1361| 31.1333| 2.04 | 457 | 9.59 | 1.25 3.71 -0.55| -0.79
Avg. | 1.21 4.36 -0.55| -0.81
park joy_420.720p50 32 | 10226.912| 6966.012 | 1897.73793| 4653.9936| 4719.067| 5355.1344| 30.6486| 30.5916| 30.1065| 17.60 | 25.84 | 94.85 | 0.47 4.39 -0.32| -0.81
park joy_1080p50 32 | 22499.295| 14205.014| 4300.2694 | 8502.7824| 8635.56 | 9678.0672| 31.5578| 31.5093| 31.1661| 8.00 12.67 | 41.86 | 0.58 4.23 -0.37| -0.81
park joy_2160p50 32 | 7877.3388| 3373.226 | 1519.34389| 20855.24 | 21096.92| 22598.44 | 34.9601| 34.9499| 34.8733| 2.74 6.40 | 14.22 | 1.34 4.18 -0.57| -0.81
Avg. | 0.80 4.27 -0.42| -0.81
RaceHorse832x48030 32 | 11586.031| 7101.616 | 2190.4 1244.207 | 1311.756| 1693.2 | 32.0739| 31.8869| 31.2822| 15.54 | 25.35 | 82.18 | 0.63 4.29 -0.39| -0.81
RaceHorse332x48030 37 | 9758.988 | 5359.717 | 1962.031 | 557.8713 | 571.9522| 685.5513 | 29.0911| 28.903 | 28.353 | 18.44 | 33.58 | 91.74 | 0.82 3.97 -0.45| -0.80
RaceHorse832x48030 42 | 8215.553 | 4236.64 1745.518 | 242.4866 | 243.2313| 276.2004 | 26.7241| 26.613 | 26.2637| 21.91 | 42.49 | 103.12| 0.94 3.71 -0.48| -0.79
RaceHorse832x48030 47 | 6967.909 | 3417.015 1567.1 108.3142 | 107.8565| 118.174 | 25.0192| 24.9678| 24.7504| 25.83 | 52.68 | 114.86| 1.04 3.45 -0.51| -0.78
Avg. | 0.86 3.85 -0.46| -0.79
BlowingBubbles416x24050 | 32 | 2067.557 | 1301.48 500.652 375.699 | 386.1361| 453.1876 | 31.5452| 31.4213| 30.8273| 87.06 | 138.30| 359.53| 0.59 3.13 -0.37| -0.76
BlowingBubbles416x24050 | 37 | 1761.922 | 965.002 | 426.442 | 169.3773| 171.7031| 188.1361 | 28.7605| 28.6442| 28.274 | 102.16| 186.53| 422.10| 0.83 3.13 -0.45| -0.76
BlowingBubbles416x24050 | 42 | 1526.887 | 773.309 376.116 76.9526 | 77.7979 | 83.2495 | 26.2705| 26.2226| 26.0033| 117.89| 232.77| 478.58| 0.97 3.06 -0.49| -0.75
BlowingBubbles416x24050 | 47 | 1361.649 | 662.986 340.33 33.4268 | 33.7278 | 36.6351 | 24.1875| 24.1632| 24.0144| 132.19| 271.50| 528.90| 1.05 3.00 -0.51| -0.75
Avg. | 0.86 3.08 -0.46| -0.75
Average
Enc. Time Bitrate Y-PSNR Enc. Speed Enc. Speed Enh. Enc. Time Red,
RDO | TnB | HELP RDO | TnB | HELP | RDO | TnB | HELP | RDO | TnB | HELP | TnB | HELP TnB | HELP
Avg. Al 32290.80 | 14939.53 | 6116.91 | 3397.94 | 3437.61| 378142 | 30.77 | 30.71 | 30.43 | 28.87 | 55.31 | 126.83] 1.04] 4.01 -0.50] -0.80 |

Table 5.6: Results for the Proposed Algorithm Compared torld and RDO.

Enc. Time (sec) Bitrate Y-PSNR Enc. Speed Enc. Speed. EnhHSE) | Enc. Time Red. %

Sequence QP  RDO | Hybrid2 HELP RDO Hybrid2 | HELP RDO | Hybrid2  HELP RDO Hybrid2 HELP Entropy HELP Hybrid2 | HELP
duckstakeoff_ 420720p50| 32 12212.131| 3493.202| 2083.14 3747.768 | 3794.846| 3916.7424| 31.4885| 31.452 31.3579 | 14.73944228 51.5286548 | 86.40801866/ 2.50 4.86 -0.71 -0.83
duckstakeoff_1080p50 | 32 27995.864| 7535.176| 5086.473 | 6373.6704 | 6440.4 | 6686.2752| 31.8648 | 31.8481 31.7869 | 6.429521161 23.88796227| 35.38797906 2.72 4.50 -0.73 -0.82
duckstakeoff 2160p50 | 32 10602.459| 2995.439| 2252.86687| 20573.92 | 20635.88| 22821.56 | 31.1385 | 31.1338 31.1333 | 2.037263164 7.210963068 9.587783587 2.54 3.71 -0.72 -0.79
Avg. 2.58 4.36 -0.72 -0.81

park joy_420.720p50 32 10226.912| 4508.437| 1897.73793| 4653.9936 | 4752.912| 5355.1344| 30.6486 | 30.5368 30.1065 | 17.60062141 39.92514479 94.84976674 1.27 4.39 -0.56 -0.81
park joy 1080p50 32 22499.295| 8824.92 | 4300.2694 | 8502.7824 | 8703.859| 9678.0672| 31.5578 | 31.4664 31.1661 | 8.000250689 20.39678547 41.85784267| 1.55 4.23 -0.61 -0.81
parkjoy_2160p50 32 7877.3388] 2105.021| 1519.34389] 20855.24 | 21167.92] 22598.44 | 34.9601 | 34.9432 34.8733 | 2.7420428 | 10.26118029 14.21666296 2.74 4.18 -0.73 | -0.81
Avg. 1.85 4.27 -0.63 -0.81

Average
Enc. Time Bitrate [ Y-PSNR [ Enc. Speed [ Enc. Speed Enh. [ Enc. Time Red. |
Avg. All 15235.67 [ 4910.37 [ 2856.64 | 10784.5624] 10915.97] 11842.703 31.94305] 31.89672 31.737333[ 859 | 2554 | 4705 | 222 | 431 [ -0.68 | -0.81 |
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CHAPTER6 SUMMARY AND FUTURE WORK
6.1 Summary

This dissertation considers the design of real-time CVesystwith live video streaming, especially
those over wireless and mobile networks. Such systemsdaalideo cameras/sensors and monitoring
stations. The cameras should adapt their captured videsesl lnen the events and/or available resources.
The monitoring station receives video streams from all casiand runs CV algorithms for decisions,
warnings, control, and/or other actions. Real-time CV ayst have constraints in power, computa-
tional, and communicational resources. The metric for #rfopmance of CV systems is the accuracy
of the system in perceiving or extracting descriptions ofgital objects or events from pictures (i.e.
detection, recognition, and tracking accuracy of objeat$ events). We have analyzed and compared
the rate-accuracy and rate-energy characteristics abuswideo rate adaptation techniques in com-
puter vision applications. In addition, we have studieditgacts of different adaptation combinations.
Furthermore, we have presented an objective function ttiatiges any desired tradeoff in terms of
accuracy, bitrate, and energy consumption. The reportdtseare based on realistic experiments con-
sidering both H.264 and MPEG-4, with standard video secegeaad a dataset of 300 actual security,
surveillance, news, and speech videos.

Power consumption has also become a major concern in CVnsystespecially those employing
battery-operated devices. In such systems, prolonginbdtiery lifetimes is a primary objective due to
its great implications in terms of system cost and availgbiln such systems, energy is consumed at
the source in each of the three main phases: capturing, ewgcahd transmission. Due to the limited
amount of energy resources available, power consumptiiciesicy is one of the most challenging
design factors. Since video encoding contributes to mogteobverall power consumption at the video

stations, the encoding parameter settings used at eaicmstatermine the encoding power consumption
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and bitrate of the video. We have developed an aggregaterpmmsumption metric for many-to-one
live video streaming systems. We model the video captuéngoding, and transmission aspects and
then provide an overall model of the power consumed by theovithmeras and/or sensors. The model
can help in the dynamic control of various camera/senstingst including resolution, frame rate, and
guantization to achieve the best overall tradeoff in terfig@er consumption, bitrate, and quality. We
also analyze the power consumed by the monitoring statitichnis due to video reception, potential
video upscaling, and video decoding of all received videeashs. The developed model captures the
following main parameters: resolution, frame rate, quaatiton, motion estimation range, and number
of reference frames. In addition to modeling the power constion, we model the output bitrate of
video encoding. The bitrate impacts the medium bandwidith,video quality, and the transmission
power consumption. We validate the developed models titr@xgensive experiments. The analysis
includes examining individual parameters separately dsexamining the impacts of changing more
than one parameter at a time. Spatial resolution and quadiotizparameters are the major contributors
to the encoding outcome. Therefore, we analyze the effecargying these parameters combination on
encoding outcome.

We have developed an algorithm, calleiistory and Entropy-based LCU partitioningHELP), to
increase the encoding speed of HEVC without consideralsie db coding efficiency and video quality
performance. The encoding speed is arodniimes in average, which is abowt42 the encoding
speed of the fastest encoding speed algorithm which wereefféo by Entropy-based [25]. The coding
efficiency and video quality are still better than entropgémeral. The algorithm predicts the size of the
CU based on the entropy of the current CU and same size CUs spitial and temporal (co-locator)

neighborhood that have been processed.
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6.2 List of Publications

6.2.1 Published:

e Yousef Sharrab and Nabil J. Sarhan. Accuracy and Power @mpitgan Tradeoffs in Video Rate
Adaptation for Computer Vision Applications. In Proceeagtirof the2012 IEEE International Con-
ference on Multimedia & Expo (ICME 2012pages 410 - 415, Melbourne, Australia, July 2012.
Acceptance rate: 30%.

e Yousef Sharrab and Nabil J. Sarhan. Detailed ComparativayAis of VP8 and H.264. In Pro-
ceedings of théEEE International Symposium on Multimedia (ISM 2Q%#3ges 133 - 140, Irvine,
California, December 2012. Acceptance rate: 24.8%.

e Yousef Sharrab and Nabil J. Sarhan. Aggregate Power Congrmiglodeling of Live Video
Streaming Systems. In Proceedings of &M Multimedia Systems (MMSys 2018)slo, Nor-
way, February 27 - March 1, 2013. Acceptance rate: 23.8%.

6.2.2 Under Review:

e Yousef O. Sharrab and Nabil J. Sarhan, “Adaptation of Livded Streams in Computer Vision
Systems” submitted ttEEE Transactions on Circuits and Systems for Video TecyydTCSVT).
e Yousef O. Sharrab and Nabil J. Sarhan, “Modeling and Analg§iPower Consumption in Live
Video Streaming Systems” submitted A&M Transactions on Multimedia Computing, Communi-
cations, and ApplicationSTOMM).
6.3 Future Work

Even with our work, which speed up the encoding process fimegiin HEVC, the encoding speed
still not practical, especially in live video streaming. W@l enhance HELP algorithm to get even
higher encoding speed and smiler coding efficiency and vipledity performance to RDO algorithm.
Our work will not focus only on splitting prediction, but alé will explore intra-prediction modes and

motion estimation. We will use machine learning to predioth sizes and intra-prediction modes that



109

will further enhance the encoding speed without degradati@oding efficiency and quality.
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Computer Vision (CV) has been deployed recently in a widgeaof applications, including surveil-
lance and automotive industries. According to a recentrtefbee market for CV technologies will grow
to 33.3 billion by 2019. Surveillance and automotive industriearshover20% of this market. This
dissertation considers the design of real-time CV systeiitts live video streaming, especially those
over wireless and mobile networks. Such systems includeov@meras/sensors and monitoring sta-
tions. The cameras should adapt their captured videos lmaséte events and/or available resources
and time requirement. The monitoring station receiveswisteeams from all cameras and run CV al-
gorithms for decisions, warnings, control, and/or othéioas. Real-time CV systems have constraints
in power, computational, and communicational resourcesstMideo adaptation techniques considered
the video distortion as the primary metric. In CV systemsyéwer, the main objective is enhancing the
event/object detection/recognition/tracking accurddye accuracy can essentially be thought of as the
quality perceived by machines, as opposed to the humangiaateuality. High-Efficiency Video Cod-
ing (HEVC) is a recent encoding standard that seeks to asldnedimited communication bandwidth
problem as a result of the popularity of High Definition (HDY®os. Unfortunately, HEVC adopts

algorithms that greatly slow down the encoding process,thansl results in complications in real-time
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systems.

This dissertation presents a method for adapting live vatezams to limited and varying network
bandwidth and energy resources. It analyzes and comparestdraccuracy and rate-energy charac-
teristics of various video streams adaptation technigu&dJv systems. We model the video capturing,
encoding, and transmission aspects and then provide anllorerdel of the power consumed by the
video cameras and/or sensors. In addition to modeling th@poonsumption, we model the achieved
bitrate of video encoding. We validate and analyze the paewesumption models of each phase as well
as the aggregate power consumption model through extezgdaiments. The analysis includes exam-
ining individual parameters separately and examiningriygeicts of changing more than one parameter
at a time. For HEVC, we develop an algorithm that predictsdize of the block without iterating
through the exhaustive Rate Distortion Optimization (RD@thod. We demonstrate the effectiveness
of the proposed algorithm in comparison with existing allpons. The proposed algorithm achieves
approximately 5 times the encoding speed of the RDO alguordhd 1.42 times the encoding speed of

the fastest analyzed algorithm.
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