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CHAPTER 1 INTRODUCTION 

1.1 Pancreatic cancer 

Pancreatic cancer is a condition in which malignant cells are found in pancreatic tissues. 

The pancreas is a 6-inch organ located deep in the abdomen behind the stomach with four 

general regions namely the head, neck body and tail. It is made up of two functional components, 

the exocrine and endocrine pancreas. Pancreatic acinar cells play the exocrine function by 

secreting digestive enzymes which are being released into a system of small ducts that lead to the 

main pancreatic duct. In the digestive system, pancreatic duct and bile duct are connected 

together releasing both pancreatic enzymes and bile into the duodenum to aid in the digestion of 

fats, proteins and carbohydrates. The second functional component of the pancreas is composed 

of small islands of cells called the islets of Langerhans. This endocrine pancreas produces 

hormones, mainly insulin and glucagon into the bloodstream in order to maintain the normal 

level of blood glucose in the body.  

According to the most recent data on cancer mortality in the United States, pancreatic 

cancer is  being ranked as the fourth leading cause of cancer-related deaths in this country[1]. 

Majority of pancreatic cancer cases (95%) emerge from the exocrine part of the pancreas with 

the most common type involving the exocrine part is pancreatic ductal adenocarcinoma (PDAC), 

while the remaining 5% of pancreatic cancer cases are related to endocrine pancreas[2]. 

Although the percentage of incidences for pancreatic cancer is the lowest among other digestive 

systems related cancers, it remains as one of the most fatal malignancies with only eight percent 

of five year survival rate. The American Cancer Society estimated that in 2016, 53070 of new 

cases of pancreatic cancer would be diagnosed  and almost 42000 of deaths are expected due to 
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this disease[1]. Some of the factors that contribute to the high mortality rate include late 

diagnosis, early metastasis of tumors and poor response to treatments [3].  

1.2 The biology of Pancreatic Ductal Adenocarcinoma (PDAC) 

 The cause of PDAC has been widely researched and documented to be resulted from the 

accumulation of genetic mutations and alterations. The consequences from these genetic changes 

consist of over expression of oncogenes, inactivation of tumor suppressor genes and also growth 

factors and their receptors being highly expressed[4,5]. In more than 95% of PDAC cases, K-ras 

mutations appeared as the most common of oncogene mutations. K-ras is a proto-oncogene 

which encodes guanine nucleotide-binding protein. It plays an important role in normal cell 

growth and differentiation[6,7]. Point mutations of K-ras oncogene in codon 12, 13 or 61 

activates an abnormal increase in membrane-bound ras proteins causing an alteration of the 

signal transduction pathway across the membrane leading to an abnormal, uncontrolled cell 

growth of tumor[7]. K-ras mutations are believed to be involved in the early stage of pancreatic 

carcinogenesis[5]. P53 is a tumor suppressor gene located on the short arm of chromosome 17 

that encodes a 53 kDa nuclear phosphoprotein which plays role in the negative regulation of cell 

growth and proliferation. This important  tumor suppressor gene is known to be inactivated in 

pancreatic cancer[8]. Mutations of p53 gene have been reported to exist in 40-70% of pancreatic 

adenocarcinoma cases and it is suggested that its inactivation contributes to carcinogenesis 

through the inhibition of apoptosis. In contrast to K-ras oncogene, it is still inconclusive whether 

aberration of p53 involves in the early or late event in pancreatic cancer[5]. Additionally, 

alterations in CDKN2A and DPC4/SMAD4 tumor suppressor genes are also generally seen in 

PDAC[9,10].  
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In tumor progression, the role of growth factors and their receptors is highly 

significant[11]. Together with genetic mutations of K-ras and p53, over expression of growth 

factors such as EGF, TGF alpha, TGF beta 1-3 and alsofactor receptors including EGF receptor, 

c-erbB-2, c-c-ebB-3, TGF beta receptor I-III is also exist in several kinds of gastrointestinal 

cancers[12]. These anomalies often trigger the tumor growth and enhance the metastatic ability 

of pancreatic cancer cells that may lead to poor prognosis following treatments of this disease[5].  

The growth of tumor in PDAC arises from the ductal epithelium and progresses from pre-

malignant lesion to fully invasive cancer[2]. Pancreatic intraepithelial neoplasia (PanIN) is a well 

known precursor lesion type that can lead to this invasive adenocarcinoma. PanINs are 

proliferations of the smaller pancreatic ducts that can be viewed microscopically and its 

classification represents step by step morphological alterations that happen in the pancreatic 

ductal epithelium. A normal pancreatic duct is characterized by low cuboidal, non-mucinuous 

cells in a single layer formation.  Low-grade PanINs (PanIN-1a and PanIN-1b) are characterized 

by the change from a cuboidal duct epithelium to elongated cells and by the abundant 

accumulation of mucin. PanIN-1a lesion is made up of columnar shape cells with the presence of 

mucin production. PanIN-1b lesion is somewhat identical to PanIN-1a except for its architectural 

difference. PanIN-1b has a papillary, micropapillary or basally pseudostratified architecture. As 

the lesions advance from PanIN-1 to PanIN-2, some nuclear abnormalities have emerged which 

can be viewed under a microscope. The architectural make up of mucinuos epithelial lesion of  

PanIN-2 can either be flat or papillary. Some of the nuclear alterations that can be seen in PanIN-

2 lesion include loss of polarity, nuclear crowding, enlarged nuclei, pseudo-stratification and 

hyperchromatism. PanIN-3 lesion is a pre-invasive form of adenocarcinoma (carcinoma in situ). 

It is architecturally papillary or micropapillary, however, they may also appeared flat. This lesion 
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may form budding into the pancreatic lumen with the observance of severe nuclear atypia and 

some abnormal mitosis[13,14]. 

1.3 Clinical presentation and diagnosis 

 The clinical presentation of the early stages of PDAC can hardly be seen. Symptoms 

presented by PDAC are not exclusive and differ depending on the location of tumor as well as 

the stage of the disease. Although the etiology of pancreatic cancer remains unknown, several 

risk factors have been suggested such as male gender, black race, meat and fat consumption, 

cigarette smoking, pancreatic ductal hyperplasia and chronic pancreatitis. Since the majority of 

tumors develop in the head of the pancreas, obstructive cholestasis is normally manifested. 

Rarely, a pancreatic tumor may also cause gastrointestinal bleeding or duodenal obstruction 

while obstruction of the pancreatic duct by tumor may lead to pancreatitis. PDAC generally 

causes abdominal discomfort, nausea and dull, deep upper abdominal pain. For most patients, 

systemic manifestations of this disease include anorexia, unexplained weight loss and asthenia. 

Other less common manifestations include deep and superficial venous thrombosis, increased 

abdominal girth, panniculitis, gastric-outlet obstruction and depression. Upon physical 

examination, jaundice, temporal wasting, hepatomegaly and ascites may be observed. Patients 

may also have mild liver-function test abnormalities, hyperglycemia and anemia[2,15].  

Commonly, contrast-enhanced computerized tomography (CT) is sufficient to help in the 

diagnosis of pancreatic cancer. Other imaging tests use to diagnose this disease include 

ultrasound and magnetic resonance imaging (MRI). Some other diagnostic tools that are also 

useful are endoscopic ultrasonography and endoscopic retrograde cholangiopancreatography 

(ERCP). In terms of serum biomarker, CA 19-9 is the most commonly used biomarker that has 

demonstrated clinical usefulness for therapeutic monitoring and early detection of recurrent 
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event of pancreatic cancer despite its limitation of not being a solely specific biomarker for this 

disease[16,17]. Recently,  few researchers have identified Survivin, an inhibitor of apoptosis that 

is known to be overexpressed in PDAC as a new potential serum biomarker for this lethal 

disease[18,19]. According to the most recent edition of the American Joint Committee on 

Cancer, pancreatic cancer is staged based on tumor-node-metastasis (TNM) classification. TNM 

information of tumor grade, nodal status and distant metastases is being integrated in assigning 

the stages of pancreatic cancer (stage 0 to IV). Stage 0 is marked by the presence of carcinoma in 

situ while in stage I, tumor is confined to the pancreas.  Once the tumor has grown beyond the 

pancreas, assignment to stage II or stage III will be given depending on the involvement or non-

involvement of major blood vessels or nerves respectively. The final stage of the disease, stage 

IV, is characterized by the spreading of tumor beyond the pancreas to distant sites commonly to 

the liver, lungs and peritoneum[20].  

1.4 Treatment strategies and prognosis 

 Treatment plans for PDAC are limited and mainly determined by the location of the 

pancreatic tumor. The only treatment that is considered curative is through surgical resection of 

the tumor. Unfortunately, this option is only limited to the early stages of PDAC, mostly stage I 

cases and some of cases involving stage II[3,21]. Even in early PDAC stages cases, only 20% of 

PDAC cases can be intervened surgically. In the majority of cases, the removal of tumor through 

surgical procedure is not possible  or the use of surgical techniques alone as curative strategy is 

less beneficial[21]. Some of the most common operative procedures are cephalic 

pancreatoduodenectomy also known as the Whipple procedure and distal subtotal 

pancreatectomy depending on the location of the tumor. The Whipple procedure is commonly 

the procedure of choice for   tumors presence in the head or uncinate process while the latter is 
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performed when the tumor is located the body or tail of the pancreas. In some cases, the 

treatment of PDAC may involve total removal of the pancreas or pancreatectomy. Observations 

from several randomized clinical trials have demonstrated that a more extensive surgical 

resection does not improve survival due to the increase risk of postoperative morbidity[2]. This 

poor prognosis is contributed by several factors including large tumor size, high tumor grade, 

lymph-node metastases and high level of CA 19-9 that continue to elevate persistently in 

postoperative setting[22,23].  

Despite being the only possible curative treatment for PDAC, prognosis following total 

resection of tumor alone in early-stage patients is somewhat disappointing[2]. Data from several 

studies have shown that adjuvant therapy through postoperative administration of chemotherapy 

with either leucovorin  and fluorouracil or gemcitabine improves overall survival[24–26]. In 

addition, the combination of gemcitabine with fluorouracil given as continuous infusion and 

radiation therapy has also shown an increase in overall survival with a median survival of 20 to 

22 months[2,23].  Hence, the use of gemcitabine alone or gemcitabine in combination with 

fluruouracil-based chemoradiation postoperatively can be acknowledged as the standard of care 

for the management of early-stage pancreatic cancer. Interestingly, the emerging use of 

preoperative (neoadjuvant) gemcitabine-based chemoradiation treatment has also been 

demonstrated to be at least as effective as postoperative (adjuvant) treatment in patients with 

resectable pancreatic cancer[27]. As the disease progresses to becoming locally and systemically 

advanced, tumor is no longer resectable. In these cases, treatment is palliative with median 

overall survival ranges from 9 to 10 months. Treatment options diverge from chemotherapy 

alone to combination of treatment with chemoradiation therapy and chemotherapy. Data from 

several randomized trials have established that chemoradiation therapy is better than radiation 
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therapy alone[28,29]. Gemcitabine, a genotoxic drug has been the treatment of choice for 

pancreatic cancer particularly for patients with nonresectable pancreatic cancer.  It is the current 

standard therapy that is known to extend survival by a matter of weeks[30]. Several clinical trials 

have tested the effect of using few new agents in combination with gemcitabine but the reported 

outcomes were not much better. The use of erlotinib as part of combinatorial therapy with 

gemcitabine is so far the only agent that showed a small yet significant increase in survival 

among patients diagnosed with advanced pancreatic cancer. However, this combination is 

reported to have more toxicity compared to the use of erlotinib alone[32]. Thus far, gemcitabine 

regimen or its combination with platinum agent, erlotinib or fluropyrimidine is being practiced as 

the treatment approach  for advanced pancreatic cancer patients[31,32]. 

1.5 Phytochemicals in cancer therapy: Oil Palm Phenolics (OPP) 

 In the hope to combat cancers, researchers are now trying a newer approach through the 

use of naturally occurring substances from plants called phytochemicals. Phenolic 

phytochemicals are plant secondary metabolites playing major role in plant defense mechanisms. 

In the recent years, phenolics have started to draw researchers’ attention for their positive 

impacts on health.  Variety of phytochemicals have been demonstrated to have anticancer 

properties including curcumin, garcinol[33,34], lycopene[35,36], resveratrol[37], 

epigallocatechin gallate (ECGC)[38] and genistein[39,40].   

Oil palm (Elaeis guineensis) is a high oil plant from the family of Arecacea, is mainly 

used for extraction of edible oils from its fruits. Successful recovery from the aquoeus by-

products following palm oil production has identified a water soluble complex rich in phenolics 

and organic acids collectively referred as Oil Palm Phenolics (OPP)[41]. Major components of 

OPP include three isomers of caffeoylshikimic acid (3-,4- and 5-caffeoylshikimic acids), 
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protocathecuic acid and p-hydroxybenzoic acid with the three caffeoylshikimic acid  isomers 

contribute majorly to the total phenolics content of OPP. The representative chemical structure of  

3-,4- and 5-caffeoylshikimic acids is shown in Fig. 1[42,43].  

 

 

 

Fig. 1 Representative structure of the three isomers of caffeoylshikimic acid [43] 

 

OPP has been shown to exhibit antioxidant properties and was reported to display 

positive outcomes in various in vivo studies on both non-PDAC and chronic diseases models 

such as cardiac arrhythmia, atherosclerosis and diabetes without any signs of toxicity[43–47]. 

The antiproliverative effects of OPP were also documented in several types of cancers including 

myeloma and lung carcinoma[45]. In our laboratory, we have recently studied the antitumor 

activities of OPP using two pancreatic cancer cell lines, PANC-1 and BxPC-3. The antitumor 

effects that we observed  from this in vitro study demonstrate the potential use of OPP as a 

treatment modality for PDAC, thus necessitate a further investigation using a clinically relevant 

animal model[48].  
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1.6 KPC transgenic mice as in vivo model to study PDAC 

 The generation of KrasLSL.G12D/+;  p53R172H/+; PdxCretg/+ or KPC transgenic mouse 

model is achieved by crossing mice with a conditional activated Kras allele (KrasLSL.G12D) to 

transgenic strain that expresses Cre recombinase in pancreatic lineages (PdxCregt). This will 

generate a conditionally express mutant allele of the Li-Fraumeni human ortholog, p53R172H. 

Through interbreeding with PdxCretg transgenic animals, activation of both the KrasLSL.G12D 

and the p53R172H happens in tissue progenitor cells of the developing mouse pancreas. The 

development of advanced PDAC in KPC mice happens at an early age and this model has many 

features similar to pancreatic cancer in human. This model developed the full range of PanIN 

lesion that ultimately progresses to pancreatic carcinoma formation. Similar to what is 

commonly observed in humans, majority of KPC mice have metastases to the liver and lungs. 

Moreover, some comorbidities that are associated with human PDAC including cachexia, 

jaundice and ascites also occur in this KPC mouse model[30,49]. 

1.7 Hypothesis and specific aims 

 Our recent work on the anticancer effect of OPP in vitro had highlighted successful 

outcome of OPP in inhibiting pancreatic cancer cells proliferation and growth also in inducing 

cell cycle arrest and apoptosis especially on PANC-1 which is a  K-ras mutated cell line[48]. 

This has led us to hypothesize that OPP would produce a similar effects in PDAC model. Thus, 

we conducted an animal model investigation with the objective to explore the in vivo effect of 

dietary OPP in transgenic mouse model of PDAC. The following specific aims were proposed to 

meet the hypothesis that OPP will display therapeutic effects against PDAC in transgenic mice 

and it will have synergistic effect with chemotherapy drug, gemcitabine when used in 

combination. 
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 Specific Aim I: To evaluate disease progression of Pancreatic Ductal Adenocarcinoma 

(PDAC) and in vivo tumor response following dietary Oil Palm Phenolics (OPP) therapy. 

a) To monitor tumor and cyst growth using MRI technique  

b) To evaluate possible toxicity of dietary OPP by microscopic assessment 

Specific Aim 2: To investigate mouse pancreatic tissue for antitumor activity of OPP by 

histology and gene expression. 

a) To conduct histological assessment of PDAC precursor lesions and markers  

b) To perform gene expression analysis of selected tumorigenesis markers following OPP 

treatment  

Specific Aim 3: To conduct urinary metabolomic investigation of KPC transgenic mice 

following dietary OPP intervention. 

a) To examine the differences in 1H NMR urinary metabolomic profiles with OPP 

treatment using multivariate data analysis 

b) To perform target analysis in identification and quantification of differential 

metabolites 
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CHAPTER 2 METHODOLOGY 

2.1 Animals  

 Forty male, triple mutant, KPC (KrasLSL.G12D/+;  p53R172H/+; PdxCretg/+) transgenic 

mice at the age between 6-8 weeks old were obtained from Van Andel Institute (Grand Rapids, 

MI, USA) for this study. To confirm their genotypes, PCR genotyping of genomic DNA was 

conducted prior to shipment of animals.  Thirty mice that developed pancreatic cancer by KPC 

mutation were used for experimental treatments and ten mice with non-mutated KPC from the 

same litter served as control. Each animal was housed in an individual cage at Wayne State 

University Division of Laboratory Animal Resources (DLAR) facility under standard conditions 

as approved by the Wayne State University Animal Investigation Committee (AIC). All animals 

were kept in the same room with alternating 12 hours light alternating with 12 hours darkness 

under normal humidity and at room temperature.  

2.2 Experimental conditions and protocols 

The study design and experimental conditions are presented in Figure 2. The protocol for 

this study was approved by Wayne State University IACUC (approval number: A 3310-01). 

Upon arrival at the facility, all animals were allowed to acclimatize for one week prior to the 

start of the experiment. Following acclimatization period, KPC mutant mice (n=30) and non-

PDAC control non-mutant mice (n=10) were weighed and randomly distributed into 4 and 2 

experimental groups respectively where the diet was changed to custom made diets (5% OPP or 

isocaloric control diets) with weekly administration of  gemcitabine drug or saline as placebo. 

Thirty mutant mice were randomly grouped into 4 different experimental conditions: KC (n=8) 

(control diet), KP (n=8) (OPP diet), KG (n=8) (gemcitabine), KPG (n=6) (OPP diet + 

gemcitabine) while ten littermates without mutations serving as non-PDAC controls were 



24 

 

assigned into 2 groups: CC (n=5) (control diet) and CP (n=5) (OPP diet). Ad libitum supply of 

diet and water was available throughout the 6 weeks of study. Body weight and diet intake of the 

animals were measured twice weekly. Cage bedding, diets and water were replaced every week 

and their health were monitored regularly. Criteria for early euthanization included 20% weight 

loss or abdominal distention with respiratory distress. 

2.3 Experimental diets 

OPP for this study was provided by Malaysian Palm Oil Board (Kajang, Malaysia) at the 

stock concentration of 1500 mg/ml gallic acid equivalents (GE). Both the 5% OPP and the 

standard purified diets were formulated and produced by Dyets Inc. (Bethlehem, PA). 

Composition of both diets is shown in Table 1. 

2.4 Experimental procedures 

All mice were provided with their respective diets for 6 weeks. Body weight, diet and 

water intake were recorded twice weekly throughout the study duration. Chemotherapy 

injections from 100mg/5ml gemcitabine stock were delivered intraperitoneally to KG and KPG 

groups (5ul/g body weight) once-weekly (Week 1-5) while groups with no chemotherapy 

treatment were given placebo injections of saline (0.85% NaCl). To confirm the presence of 

pancreatic cancer and for disease progression monitoring purpose, MRI scans were conducted at 

week 1 and 5. Urine samples were collected once a week on weeks 2, 4 and 6 for urinary 

metabolomic profiling. Animals were transferred to suspender cages for 24 hours to allow for 

urine sample collection from the bottom of the cages. Upon collection, urine samples were 

centrifuged at 5000 rpm for removal of debris followed by addition of sodium azide (0.01%) to 

prevent microbial growth. Urine samples collected were then measured, aliquoted and stored at -

80°C until further use. Upon completion of the study at Week 6, all animals were kept fasted 
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overnight then euthanized under 80mg/ml Ketamine-20mg/ml Xylazine anesthesia (5ul/g body 

weight) by exsanguination and major organs removal prior to harvesting all major organs 

(pancreas, liver, fore stomach, spleen, kidneys, heart and testes) including tumors. A part of 

tissue from the harvested organs was fixed in 10% neutral buffered formalin to be used for 

histological analyses while the remaining part was flash-frozen in liquid nitrogen then stored at -

80ºC until ready to be used for gene expression analyses. 
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Fig. 2 Study design and experimental conditions 

 

Control groups 

CC: Control mouse, standard purified diet. 

CP: Control mouse, 5% OPP diet. 

Experimental groups 

KC: Pancreatic cancer mouse, standard purified diet + no drug treatment. 

KP: Pancreatic cancer mouse, 5% OPP diet + no drug treatment. 

KG: Pancreatic cancer mouse, standard purified diet + gemcitabine drug treatment. 

KPG: Pancreatic cancer mouse, 5% OPP diet + gemcitabine drug treatment. 

KPC transgenic mice

(KrasLSL.G12D/+; 
p53R172H/+; PdxCretg/+ )

(n=40)

Control groups      
Littermates without          

mutation                         
(n=10)

CC
Regular diet + saline              

(n=5)

CP
OPP diet + saline                   

(n=5)

PDAC groups                 
Mice with mutation       

(n=30)

KC
Regular diet + saline              

(n=8)

KP
OPP diet + saline                   

(n=8)

KG
Regular diet + gemcitabine    

(n=8)

KPG
OPP diet + gemcitabine         

(n=6)
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Table 1 Composition of experimental diets 

 

 

 

 

 

 

5% OPP  added diet Regular purified diet 

Ingredient kcal/g grams/ 

kg 

kcal/kg Ingredient kcal/g grams/ 

kg 

kcal/kg 

Casein 3.58 200 716 Casein, High 

Nitrogen 

3.58 200 716 

L-Cystein 4 3 12 L-Cystein 4 3 12 

Sucrose 4 100 400 Sucrose 4 100 400 

Cornstarch 3.6 347.5 1251.0 Cornstarch 3.6 397.5 1431.0 

Dyetrose 3.8 132 501.6 Dyetrose 3.8 132 501.6 

Soybean Oil 9 70 630 Soybean Oil 9 70 630 

t-Butyl 

hydroquinone 

0 0.014 0 t-Butyl 

hydroquinone 

0 0.014 0 

Cellulose 0 50 0 Cellulose 0 50 0 

Mineral Mix 

#210025 

0.88 35 30.8 Mineral Mix 

#210025 

0.88 35 30.8 

Vitamin Mix 

#310025 

3.87 10 38.7 Vitamin Mix 

#310025 

3.87 10 38.7 

Choline 

Bitartrate 

0 2.5 0 Choline 

Bitartrate 

0 2.5 0 

OPP 0 50 0     
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2.5 MRI scans   

 The progression of PDAC in the experimental animals was tracked by tumor and cyst 

growth using MRI technique.  MRI scans were carried out at two time points, at week 1 and 

week 5 of the study. Prior to MRI scans, all animals were anesthesized by Ketamine-Xylazine 

mixture administered through intraperitoneal injection at 5ul/g body weight. Eye lubricant was 

also applied to prevent corneal desiccation while under anesthesia. MRI scans were conducted on 

Bruker ClinScan 7.0T scanner (Karlsruhe, Germany). T2-weighted images were acquired from 

each animal in both coronal and transverse orientations. Tumors and cysts were indentified and 

measured for volumes by a trained personell of the MRI facility. Following MRI, animals were 

allowed to recover from anesthesia on a heating pad before returning to the animal facility. 

2.6 Histological analyses 

2.6.1 Toxicity analysis  

 Toxicity study was carried out by comparing forestomach and pancreatic tissues H&E 

stained slides of the control animals receiving standard diet (CC) and 5% OPP diet (CP). 

Harvested forestomach and pancreatic tissues from the two control groups were immediately 

fixed in 10% neutral buffered formalin for 24 hours, and then stored in 70% ethanol to prevent 

excess drying of tissue specimens. Specimens were sent to the pathology laboratory at Michigan 

State University for paraffin section preparation and H&E staining. First, specimens were 

embedded in paraffin wax followed by sectioning into 4-5 micron thin slices. Sections were 

mounted onto albumin coated slides, deparaffinized, hydrated and stained with hematoxylin & 

eosin (H&E). Each prepared H&E slide was later examined under the light microscope (Nikon 

Eclipse 80i) for hispatological changes. 
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2.6.2 Histology of PanIN lesions 

 Formalin fixed pancreatic tissues of animals in PDAC experimental groups (KC, KG, KP 

and KPG) were prepared for H&E staining as described above. Observation under the light 

microscope (Nikon Eclipse 80i) was then conducted on the prepared slides. Pancreatic 

intraepithelial Neoplasia (PanIN) lesions were identified and graded microscopically into PanIN-

1, PanIN-2 and PanIN-3 based on morphology and criteria set by reference [13]. Lesions 

observed microscopically were counted for total number and also based on lesion grades, under 

the supervision of Dr. Doina David, pathologist from Wayne State University School of 

Medicine. 

2.6.3 Immunohistochemistry 

 Pancreatic tissues of animals in PDAC experimental groups (KC, KG, KP and KPG) 

were analyzed for expression of tumor promoter (S100P) and tumor suppressor (SMAD4) genes. 

IHC slides were prepared at pathology laboratory at Michigan State University. Formalin fixed 

pancreatic specimens embedded in paraffin wax were sectioned into 4-5 micron thin slices. 

Slices were then deparaffinized with xylene and rehydrated with ethanol followed by pH 

adjustment in Tris Buffer Saline solution with pH 7.4. Epitope retrieval was performed with 

Citrate Plus pH 6.0 buffer using a rice steamer for 30 minutes followed by incubation at 25˚C for 

10 minutes. Endogenous peroxidase was then blocked by 3% hydrogen peroxide treatment for 10 

minutes. For non specific protein blocking, 5% normal normal goat serum in phosphate-buffered 

saline (PBS) was applied for 30 minutes then incubated with Avidin/Biotin blocking system for 5 

minutes each. The slides were incubated with primary antibodies for S100P and SMAD4 for 30 

minutes in blocking solutions using rabbit polyclonal anti-S100P at 1:200 dilution and rabbit 

monoclonal anti-SMAD4 at 1:100 dilution (Abcam, Cambridge, Massachusets, USA) 
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respectively followed by incubation with biotinylated rabbit anti-goat secondary IgG for 30 

minutes (Vector Labs, Burlingame, California, USA). This was followed by incubation of slides 

with RTU Vectastain Elite ABC reagent for 30 minutes. Finally, slides were developed with 

Vector Nova red peroxidase chromogen and counterstained with haematoxylin, washed and 

dehydrated with ethanol, cleared with xylene and mounted. Observation for assessment of gene 

expression was carried out under the light microscope (Nikon Eclipse 80i). 

2.7 Gene expression analyses 

2.7.1 RNA isolation  

Total RNA extraction of pancreatic tissues was performed with a commercial kit 

(RNeasy Mini Kit, Qiagen Valencia, California, USA) according to the manufacturer’s 

instructions.  Briefly, 30mg each of frozen pancreatic tissues were homogenized in trizol reagent 

provided. Homogenates were then kept at room temperature for 5 minutes followed by vigorous 

shaking after the addition of 140 uL of chloroform. Samples were kept at room temperature for 3 

minutes prior to centrifugation for 15 minutes at 12,000 rcf at 4˚C. The upper aqueous phase was 

collected and 525ul of 100% ethanol was added. The mixture was placed in a mini spin column 

and centrifuged at 10,000 rpm for 15 seconds discarding the flow-through. 700 uL of buffer 

RWT was added into columns and centrifuged at 10,000 rpm for 15 seconds. This was followed 

by double wash with 500 uL of buffer RPE, centrifuged at 10,000 rpm for 15 seconds and 2 

minutes respectively.  Spin columns were then transferred to new collection tubes and RNA 

samples were eluted with 40uL of RNase-free water followed by 1 minute centrifugation at 

10,000 rpm.  Isolated RNA samples were quantified and checked for purity using the Nanodrop 

spectrophotometer (Wilmington, Delaware, USA) prior to reverse transcription step for PCR.  
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2.7.1 Reverse transcription and qRT-PCR 

 Reverse transcription for cDNA synthesis was performed using miScript II RT Kit 

(Qiagen GmbH, Hilden, Germany) in 20ul reaction consisted of 4ul 5x miScript HiFlex Buffer, 

2ul miScript Nucleics Mix, 2ul miScript Reverse Transcriptase Mix, 11ul RNase-free water  and 

1ul of template RNA (equal concentrations of 1000 ng/ul for all samples). Reverse transcription 

process was carried out in Eppendorf mastercycler realplex 4 (Eppendorf, Hauppauge, New 

York, USA) at the following temperatures; 37˚C for 60 minutes, 95˚C for 5 minutes and was 

kept at 4˚C until retrieve for immediate use for qRT-PCR analysis or transferred to a -20˚C 

freezer. 

 Three molecular markers (Notch1,CCND1, MMP9), involved in tumor progression were 

tested in a final reaction volume of 25ul that consisted of 12.5ul QuantiTect SYBR Green PCR 

Master Mix, 2.5ul of QuantiTect primer assay (Qiagen GmbH, Hilden, Germany), 9.5ul RNase-

free water and 2ul of cDNA (equal concentrations of 10ng/ul for all samples). qRT-PCR was 

carried out on the Eppendorf mastercycler realplex 4 instrument (Eppendorf, Hauppauge, NY) in 

a 96-well plate (Agilent Technologies) with the following program; initial activation at 95˚C for 

15 minutes, 40 repeats of 3-step cycling: denaturation at 95˚C for 15 seconds, annealing at 55˚C 

for 30 seconds and extension at 60˚C for 30 seconds. Each marker was analyzed in triplicate with 

single non-template control (NTC). Statistical significance for mRNA expression was obtained 

by comparing the ∆CT values normalized against β-actin of treatment groups (KP, KG and KPG) 

to the untreated PDAC group (KC). 
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2.8 Urine metabolomic analysis 

2.8.1 Sample preparation and 1H NMR spectroscopic acquisition 

 Frozen urine samples were thawed and diluted 1:4 with Deuterium oxide (D2O). 640ul of 

each diluted urine sample was mixed with 60ul of 1:9 D2O diluted reference buffer solution 

containing 5mM DSS (disodium-2, 2-dimethyl 2-silapentane-5-sulphonate) and 10mM imidazole 

(Sigma-Aldrich, Mississauga, Ontario, Canada) to make the final volume of 700ul. Samples were 

mixed by vortexing and then transferred into 5mm NMR tubes immediately before NMR 

acquisition. 1H NMR spectra of the prepared samples were acquired at 25̊C using tnnoesy pulse 

sequence with 4-second acquisition time, a sweep width of 6009 Hz and 32K data points on a 

Varian 500 MHz spectrometer equipped with AutoX probe and VNMRJ software. Settings and 

pulse sequence used were in accordance to that of CHENOMX software -1D version 

requirements. A total of 64 scans were collected out for every NMR spectrum to allow for 

optimum intensity build up and noise (random signals without information) reduction.  

2.8.2 NMR spectra pre-processing and multivariate data analysis  

The acquired NMR spectra in the form of free induction decay (FID) files were processed 

using ACD/Spec software (Advanced Chemistry Development Inc., Toronto, Ontario, Canada). 

FID files were fourier transformed to convert the spectra from the time domain to the frequency 

domain. The converted spectra were baseline corrected, autophased and binned into 1000 bins. 

The table of integrals from spectra pre-processing was then imported into Excel and used for 

multivariate data analysis using SIMCA-P+ software (version 13, Umetrics, Sweeden). 

Preceding further analysis, some regions of the spectrum including those corresponding to water, 

DSS and imidazole were excluded. Data were also Pareto-scaled prior to the subsequent model 

generations. Using SIMCA-P+ software, both multivariate pattern recognition techniques, 
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unsupervised (principal component analysis, PCA) and supervised (partial least-squares 

discriminant analysis, PLS-DA and orthogonal partial least-squares discriminant analysis, OPLS-

DA) were employed to the data in order to discriminate sample spectra of different experimental 

groups. The unsupervised method, PCA provides a basic overview for initial exploration of the 

data which aim at revealing the arrangement of the data (spectra) without any class information 

given to the software. A desirable outcome of PCA is a score plot which reveals patterns and 

clusters that can be related to different treatment groups while the loading plot generated from 

the score plot explains the variables (spectral regions) that contribute to the clustering. For the 

supervised methods, PLS-DA and OPLS-DA, class information is included in the analysis. This 

often improves the transparency and interpretability of the model. Additionally, regression 

analysis using orthogonal projections to latent structures (OPLS) was also conducted on several 

investigated variables. Regression analysis enables the evaluation of the relationship between 

urinary metabolite profiles with the variables investigated independently of the metabolomic 

profiles. 

2.8.3 Metabolite target analysis  

Identification and quantification of metabolites responsible for separation in PCA, PLS-

DA and OPLS-DA score plots were carried out using Chenomx NMR Suite software (Chenomx 

Inc., Edmonton, Canada) utilizing a targeted profiling approach. Metabolites were identified and 

measured for their concentrations by fitting the spectral peaks found for each compound in the 

compound library. Statistical tests were conducted to assess the differences in metabolite 

concentrations between groups followed by the exploration of possible metabolic pathways 

involved using KEGG database and MetaboAnalyst software. MetaboAnalyst software utilizes 

pathway enrichment analysis and pathway topology analysis to translate metabolic trends into 
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defined pathways relevant to the study while KEGG provides the molecular wiring diagrams of 

interaction and relations between pathways in biological system. 

2.9 Statistical analyses 

Statistical tests were performed using IBM SPSS Statistics 23 software with statistical 

significance level of 0.05 (p<0.05).  
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CHAPTER 3 RESULTS 

A total of 40 KPC transgenic mice were used for this study. Animals with positive KPC 

mutation (n=30) and littermates without mutation, served as non-PDAC controls (n=10) were 

randomly assigned to a 6-week dietary intervention to investigate the in-vivo effect of OPP on 

PDAC. At endpoint (week 6), all control animals both fed with regular or 5% OPP diet (CC and 

CP groups), completed the treatment (100%). For PDAC experimental groups, each group had 

lost at least one animal before the termination of the study due to death or conditions that 

demanded an early euthanization. Greater than 80% of animals completed this study in the 

untreated, KC (87%), OPP fed, KP (87%) and combination of OPP diet with gemcitabine drug 

treatment, KPG groups (83%), while a lower percentage of animals in the gemcitabine treated 

group, KG completed the treatment (75%; Fig. 3).  

3.1 Body weight and diet intake 

 No significant differences were observed between groups at baseline (week 1) and 

endpoint (week 6) with respect to mean body weight (Fig. 4). For diet intake, data from week 2 

were used as baseline instead of week 1 to allow for initial fluctuation in diet intake due to 

changing from the facility standard chow diet to experimental diets. Similarly, the means of daily 

intake were not found to be significant between groups at both baseline and endpoint (Fig. 5). 
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Fig. 3 Flow diagram of the study 

 

Control groups 

CC: Control mouse, standard purified diet. 

CP: Control mouse, 5% OPP diet. 

Experimental groups 

KC: Pancreatic cancer mouse, standard purified diet + no drug treatment. 

KP: Pancreatic cancer mouse, 5% OPP diet + no drug treatment. 

KG: Pancreatic cancer mouse, standard purified diet + gemcitabine drug treatment. 

KPG: Pancreatic cancer mouse, 5% OPP diet + gemcitabine drug treatment. 

KPC transgenic 
mice (n=40)

Control groups 
(n=10)

CC
(n=5)

Completed    
100% (n=5)

CP
(n=5)

Completed
100% (n=5)

PDAC groups 
(n=30)

KC
(n=8)

Completed      
87% (n=7)

KP
(n=8)

Completed      
87% (n=7)

KG
(n=8)

Completed      
75% (n=6)

KPG
(n=6)

Completed      
83% (n=5)

Endpoint 
Week 6 

Baseline 
Week 1 

Week 5 (Lost weight) 

Sacrificed (n=1) 

Week 5  

Died (n=1) 

 

Week 4 (Lost weight) 

Sacrificed (n=1) 

Week 5  

Died (n=1) 

Week 3  

Died (n=1) 



37 

 

 

 

 

 

 

Fig. 4 Mean body weight. Comparison of mean body weight in KPC mice fed diets 

(regular/OPP) and treated with or without gemcitabine at baseline (week 1) and endpoint (week 

6). Data are expressed as mean±SD. No significant differences between groups observed 

(p>0.05). 
 

 

 

 

 

 

 

 

 

0.0

5.0

10.0

15.0

20.0

25.0

30.0

CC CP KC KP KG KPG

B
o

d
y 

W
e

ig
h

t 
(g

)

Week 1

Week 6



38 

 

 

 

 

 

 

 

Fig. 5 Mean daily diet intake. Comparison of mean daily diet intake in KPC mice fed diets 

(regular/OPP) and treated with or without gemcitabine at baseline (week 2) and endpoint (week 

6). Data are expressed as mean±SD. No significant differences between groups observed 

(p>0.05). 
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Specific Aim 1: To evaluate disease progression of Pancreatic Ductal Adenocarcinoma 

(PDAC) and in vivo tumor response following dietary Oil Palm Phenolics (OPP) intervention. 

3.2 Effect of OPP on tumor and cyst growth 

 To identify the effect of dietary OPP treatment on PDAC progression, T2-weighted 

abdominal magnetic resonance imaging (MRI) was conducted on each animal at week 1 with 

subsequent follow up scans at week 5. Table 2 summarizes the changes in tumor and cyst 

volume in the four PDAC experimental groups (KC, KG, KP and KPG). 

 In PDAC group without treatment (KC), 85% of the observed tumors increased in size. 

Out of the eight tumors monitored, more than half of the tumors grew larger which none 

decreased in size. In KG group, it was found that not all animals receiving gemcitabine drug 

responded to the treatment with only 1 tumor had a reduction in tumor volume following 

chemotherapy drug treatment. 43% of tumors of the animals treated with dietary OPP (KP), 

showed an increase in tumor volume. However, KP group had more tumors that decreased in 

size following the dietary treatment compared to KG group. Remarkably, in the group receiving 

both dietary OPP and gemcitabine drug treatment (KPG), only 14% of the observed tumors was 

found to increase in size. Only one out of seven tumors continued to grow while the growth of 

the remaining tumors was arrested. 

 With respect to cysts, more than half of the cysts in KC group increased in size (80%), 

while KG and KP groups had 67% and 75% of cysts increased in size respectively. Equivalently 

interesting to the data for tumors, the growth of all cysts in KPG group was arrested, none of the 

cysts increased in size. Figs. 6-9 provide the representative images of the MRI scans showing the 

effect of different treatments on tumor and cyst growth. 
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 KC KG KP KPG 

Tumors      

Total number of tumors observed  8 6 7 7 

Number increased in size 6 3 3 1 

Number unchanged in size 2 2 1 2 

Number decreased in size - 1 3 4 

% tumors increased in size 85% 50% 43% 14% 

Cysts     

Total number of cysts observed 5 3 4 3 

Number increased in size 4 2 3 - 

Number unchanged in size 1 - - 1 

Number decreased in size - 1 1 2 

% cysts increased in size  80% 67% 75% 0% 

 

Table 2 PDAC progression of experimental animals. Tracking of PDAC progression by 

monitoring the changes in tumor and cyst volumes at week 1 and week 5 using MRI.  
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Fig. 6 Representative transverse T2-weighted MRI of KC mouse abdomen at week 1 (A), 

and follow up abdominal MRI scan at week 5 (B). MRI image showing an increase in tumor 

volume at endpoint. 

 

 

 

 

 

 

 

 

 

 

Fig. 7 Representative transverse abdominal T2-weighted MRI of KG mouse that responded 

to chemotherapy drug at week 1 (A), and follow up abdominal MRI scan at week 5 (B). 

MRI image showing a decrease in cyst volume at endpoint. 
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Fig. 8 Representative transverse T2-weighted MRI of KP mouse abdomen at week 1 (A), 

and follow up abdominal MRI scan at week 5 (B). MRI image showing a decrease in tumor 

volume at endpoint. 

 

 

 

 

 

 

 

 

 

 

Fig. 9 Representative transverse T2-weighted MRI of KPG mouse abdomen at week 1 (A), 

and follow up abdominal MRI scan at week 5 (B). MRI image showing a decrease in tumor 

volume at endpoint. 
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Taking both data of tumor and cyst growth together, the untreated group had a 77% 

increase of both tumors and cysts in size. Either treatment with gemcitabine or dietary OPP alone 

produced a comparable effect in arresting the growth of half of tumors and cysts, both by 55%. 

The most striking result to emerge from this data is that the combinatorial treatment of dietary 

OPP and gemcitabine drug showed a synergistic effect in slowing the progression of PDAC with 

less than 10% of tumors and cysts increasing in size from week 1 and week 5 of the study (Fig. 

10). 

 

  

Fig. 10 Effect of dietary OPP on tumor and cyst growth. Data are expressed as percentage of 

tumors and cysts that increased in size following a 6-week treatment as monitored by MRI. 
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3.3 Toxicity analysis of OPP in non-PDAC controls 

 In order to exclude any possibilities of toxicity caused by dietary OPP consumed at 5% 

level, fore stomach and pancreatic tissues of non-PDAC control mice fed with OPP (CP) were 

examined microscopically and compared with the normal histoarchitecture of control mice 

receiving regular diet (CC).  

Following six weeks of oral administration of OPP, histologic analysis in regular diet fed 

and OPP fed mice exhibited a normal fore stomach histoarchitecture. Epithelial hyperplasia or 

thickening of the fore stomach lining, hyperkeratosis, ulceration and inflammation associated 

with toxicity was not observed microscopically (Fig. 11). In pancreatic tissue, the similar 

presentation of normal histological structure of pancreas was observed in both CC and CP 

groups. Normal microscopic structure of pancreatic islets (endocrine glands) and also acinar cells 

(exocrine region) can be appreciated in control animals fed OPP, demonstrating no signs of 

toxicity of dietary OPP administered at 5% level (Fig. 12). 
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Fig. 11 Histological analysis of H&E stained fore stomach in control mice fed regular diet, 

CC (A), and 5% OPP diet, CP (B). Histological sections on left panel focusing on glandular 

stomach separated by the limiting ridge from of the fore stomach. Right panel showing similar 

normal fore stomach histoarchitecture in CP animal (below) compared to CC (above) indicating  

no signs of toxicity from 5% OPP administered. GlSt = Glandular stomach, LiRi = Limiting 

ridge, FoSt = Fore stomach. 
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Fig. 12 Histological analysis of H&E stained pancreatic tissue from control mice fed with 

regular diet, CC (A), and 5% OPP diet, CP (B).  Histological sections at 10X magnification 

demonstrate the normal region of endocrine and exocrine of the pancreas without signs of 

toxicity. 
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Specific Aim 2: To investigate mouse pancreatic tissue for antitumor activity of OPP by 

histology and gene expression. 

3.4 Effect of OPP on Pancreatic Intraepithelial Neoplasia (PanIN) progression 

 The morphological alterations in pancreas through histopathological examination 

confirmed the formation of pancreatic cancer precursor lesions, PanINs in all four PDAC 

experimental groups (KC. KP, KG and KPG) by visualization of different lesion grades. PanIN 

lesions were graded into three grades; PanIN-1, PanIN-2 and PanIN-3 according to published 

criteria [13] and their numbers were recorded. Representative observations of the three PanIN 

grades identified in KPC mice of this study are displayed in Fig. 13.  

PanIN-1 is considered as a low-grade PanIN lesion. Among the changes that 

characterized PanIN-1 include the change from a cuboidal duct epithelium to elongated cells and 

by the abundant accumulation of mucin. Nuclei of PanIN-1 are also basally located.  Fig. 13a 

illustrates  PanIN-1 lesion from a gemcitabine treated animal (KG). Basally oriented nuclei was 

observed (arrow A1) together with the presence of supranuclear mucin (arrow A2). As the 

lesions advance from the low-grade PanIN-1 to the higher grade PanIN lesion, PanIN-2, some 

nuclear abnormalities have become visible miscroscopically. The architectural make up of 

mucinuos epithelial lesion of PanIN-2 can either be flat or papillary. Some of the nuclear 

alterations that can be seen in PanIN-2 lesion include loss of polarity, nuclear crowding, enlarged 

nuclei, pseudo-stratification and hyperchromatism. Fig. 13b represents PanIN-2 lesion from an 

animal treated with gemcitabine (KG). A loss in cell polarity of papillary mucinous epithelial 

cells can be appreciated from the micrograph (arrow B1). The highest grade of PanIN lesions is 

PanIN-3. It is the pre-invasive form of adenocarcinoma. Architecturally, PanIN-3 is papillary or 

micropapillary, although they may also appear flat. This lesion may form budding into the 
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pancreatic lumen with the observance of severe nuclear atypia and some abnormal mitosis. Fig. 

13c shows a PanIN-3 lesion from an animal receiving dietary OPP intervention (KP). Arrow C1 

displays the “budding off” of epithelial cells into the lumen. 

 We investigated the effect of various diets and/or treatments given on the overall PanIN 

count, totaling all three different PanIN grades together. As shown in Fig. 14, the average 

number of PanIN lesions detected in untreated group, KC, were significantly higher than all 

treated groups (p<0.05). We observed that, similar to gemcitabine , OPP diet regimen, KP and 

KPG reduced the total number precursor lesions with the greatest reduction was seen in the 

combination of OPP and gemcitabine group (KPG). 
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Fig. 13 Representative H&E stained pancreatic tissue the three PanIN grades in KPC mice. 

(A) PanIN-1 from a KG mouse. Arrow above (A1) pointing at basally located nuclei, arrow 

below (A2) indicates the presence of supranuclear mucin. (B) PanIN-2 from a KG mouse. Arrow 

B1 reveals a loss in cell polarity of papillary mucinous epithelial cells. (C) PanIN-3 from a KP 

mouse. Arrow C1 shows “budding off” of epithelial cells into the lumen. 
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Fig. 14 Effect of dietary OPP and/or gemcitabine on total PanIN lesion count. Data are 

expressed as mean±SE. All three treatment groups had a significantly lower count of total PanIN 

(p<0.05) compared to untreated group, KC. The lowest count was exhibited by group receiving 

both 5% OPP diet and gemcitabine drug (KPG). 
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Further, we broke down total PanIN count into grades. As can be seen from Fig.15, there 

were no significant differences among groups in the average number of PanIN-1 lesions 

(p>0.05).  For PanIN-2, treatment with gemcitabine drug significantly reduced the number of 

PanIN-2 lesion compared to the untreated group, KC (p<0.01). Interestingly, OPP treatment 

alone (KP) and its combination with gemcitabine (KPG) both demonstrated similar ability in 

significantly reducing PanIN-2 count as of gemcitabine drug with greater effect seen in KPG 

group (p<0.05 and p<0.01 respectively). For PanIN-3, gemcitabine treatment significantly 

reduced the number of PanIN-3 lesion compared to the untreated group, KC (p<0.05). Although 

not statistically significant, OPP treatment group was observed to have a lower count of PanIN-3 

compared to the untreated group, KC. However, it is exciting to highlight that the combination of 

OPP with gemcitabine was able to retard PanIN progression as evident from the significant 

reduction of PanIN-3 lesions compared to KC group at same statistical significance as 

gemcitabine (p<0.01). 
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Fig. 15 Effect of dietary OPP and/or gemcitabine on different PanIN grades. Data are 

expressed as mean±SE. Compared to the untreated group, KC, PanIN 2 count was significantly 

lower in all treatment groups; KP (p<0.05), KG and KPG groups (p<0.01). PanIN 3 count was 

significantly lower only in KG and KPG groups (p<0.01). 
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3.5 Immunohistochemical analysis of selected tumor markers 

3.5.1 S100P 

 In PDAC, the calcium-binding protein S100P is the most significantly up regulated 

protein among several other S100 proteins. It can be seen from Fig. 16 that over expression of 

tumor promoter gene, S100P was highly prominent in the untreated group, KC, while a 

satisfactory effect of gemcitabine in lowering the expression of S100P was noticeable in KG 

group. Remarkably, much lower expression was observed in both OPP and OPP-gemcitabine 

treated groups.  KPG group in particular showed the least activation of S100P. Moreover, it can 

also be appreciated from the micrograph that the morphological structure of the pancreas in this 

group receiving combinatorial treatment of OPP and gemcitabine is better preserved compared to 

all other groups. 

3.5.2 SMAD4 

SMAD4 is one of the most potent tumor suppressors of PDAC. As shown in Fig. 17, the 

loss of expression of tumor suppressor gene, SMAD4 was clear in the group without any 

treatment, KC. More adhesion of staining was observed in KG group indicating less inactivation 

of SMAD4 with gemcitabine drug treatment. The anticancer effect following dietary treatment 

with OPP was evident as visualization of a strong SMAD4 protein staining in KP group. 

Furthermore, the combination of OPP with gemcitabine showed a positive labeling of SMAD4 

protein with the strongest immunoreactivity demonstrating the most SMAD4 expression among 

other treatment groups. 
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Fig. 16 Immunohistochemical analysis of the tumor promoter, S100P expression. Less 

expression primarily observed in KP (5% dietary OPP) and KPG (5% dietary OPP and 

gemcitabine) groups compared to the untreated group, KC.  
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Fig. 17 Immunohistochemical analysis of the tumor suppressor, SMAD4 expression. More 

expression observed in KP (5% dietary OPP) and KPG (5% dietary OPP and gemcitabine) 

groups compared to the untreated group, KC. 
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3.6 Gene expression analysis of selected tumor markers 

The mRNA expression of Notch1, MMP9 and CCND1 was examined in pancreatic 

tissues of mice from PDAC experimental groups (KC, KP, KG and KPG) by qRT-PCR.  Gene 

expression levels are presented as ∆CT values normalized against β-actin. Statistical significance 

was calculated by comparing mean ∆CT of each treatment group (KP, KG and KPG) to the 

untreated PDAC group (KC). Since Cycle Threshold, CT is in the logarithmic scale, CT values 

are inversely proportional to the initial amount of target marker present in the sample. Therefore, 

low expression of a particular gene is represented by a high ∆CT value while highly expressed 

genes have low ∆CT values. 

3.6.1 Notch1 

As can be seen from Fig. 18a, compared to the untreated pancreatic cancer group, there 

were no significant differences in the expression of Notch1 in groups receiving OPP or 

gemcitabine treatment alone. However, it was remarkably observed that the OPP-gemcitabine 

combination had a statistically higher ∆CT than the untreated group demonstrating a synergistic 

effect in lowering the pancreatic mRNA expression of Notch1 (p<0.05).  

From our MRI data, we observed that all animals did not respond to gemcitabine and/or 

OPP. Thus, we used this information to further split the gene expression results of these two 

groups into responders and non-responders. By separating OPP responders from non-responders, 

it was revealed that OPP produced a significant down regulation in responder mice compared to 

untreated mice (p<0.05; Fig. 18b). However, the higher ∆CT of Notch1 observed in gemcitabine 

treated responders was not found to be to be significant when compared to untreated mice (Fig. 

18c).  
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Fig. 18 Notch1 regulation by OPP treatment. OPP with gemcitabine (KPG) synergistically 

down regulates Notch1 expression. Data are expressed as delta CT values normalized against β-

actin (mean±SE). CT values are inversely propotional to the initial amount of target marker, 

therefore a higher CT value represents a lower expression level. (A) Notch1 expression is 

significantly lower in KPG group compared to untreated group, KC (p<0.05). (B) Separating 

OPP treated (KP) responders from non-responders reveals a significant down regulation in 

responder mice compared to KC group (p<0.05). (C)  No significant differences in Notch1 

expression among gemcitabine treated (KG) responders and non-responders compared to KC 

group (p>0.05).  
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3.6.2 Matrix metalopeptidase-9 (MMP9) 

Fig. 19 shows the pancreatic mRNA expression of MMP9 following different treatments. 

Treatment with OPP or gemcitabine alone was not found to alter the expression of Notch1 

compared to the untreated group with no statistical differences in mean ∆CT of these groups. 

Likewise to Notch1, the combination of these two agents together significantly reduced the 

expression of MMP9 compared to the untreated group (p<0.05; Fig. 19a). Despite when taken as 

a whole, the levels of MMP9 in OPP treated mice were not significantly differ from non-treated 

controls, a down-regulation was significantly pronounced when OPP responders were separated 

from non-responders (p<0.05; Fig. 19b). On the other hand, upon separating the responders from 

non-responders in gemcitabine group, the up-regulation of MMP9 expression compared to 

untreated controls was not statistically significant (Fig. 19c).  

3.6.3 Cyclin D1 (CCND1) 

 As shown in Fig. 20a, the group receiving combinatorial treatment of OPP with 

gemcitabine had a significantly higher ∆CT then the untreated group (p<0.05). But single 

treatment with OPP or gemcitabine did not change the expression of Notch1. Similar to both two 

markers presented above, this indicates a synergistic down-regulation of pancreatic CCND1 

expression by OPP and gemcitabine together. Unlike the significant down-regulation of MMP9 

and Notch1 observed in OPP responders, the increased mean ∆CT of CCND1 in OPP responder 

group was not statistically significant compared to untreated group (Fig. 20b). The same 

observation was noted upon separating gemcitabine responders from non-responders (Fig. 20c). 
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Fig. 19 MMP9 regulation by OPP treatment. OPP with gemcitabine (KPG) synergistically 

down regulates MMP9 expression. Data are expressed as delta CT values, normalized against β-

actin (mean±SE). CT values are inversely propotional to the initial amount of target marker, 

therefore a higher CT value represents a lower expression level. (A) MMP9 expression is 

significantly lower in KPG group compared to untreated group, KC (p<0.05). (B) Separating 

OPP treated (KP) responders from non-responders reveals a significant down regulation in 

responder mice compared to KC group (p<0.05). (C)  No significant differences in MMP9 

expression among gemcitabine treated (KG) responders and non-responders compared to KC 

group (p>0.05).  
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Fig. 20 CCND1 regulation by OPP treatment. OPP with gemcitabine (KPG) synergistically 

down regulates CCND1 expression. Data are expressed as delta CT values normalized against β-

actin (mean±SE). CT values are inversely propotional to the initial amount of target marker, 

therefore a higher CT value represents a lower expression level. (A) CCND1 expression is 

significantly lower in KPG group compared to untreated group, KC (p<0.05). (B) CCND1 

expression in both OPP treated (KP) responders and non-responders displays no significant 

difference compared to KC group (p>0.05). (C)  No significant differences in CCND1 

expression among gemcitabine treated (KG) responders and non-responders compared to KC 

group (p>0.05).  
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Specific Aim 3: To conduct urinary metabolomic investigation of KPC transgenic mice 

following dietary OPP treatment. 

3.7. Exploration of urinary 1H NMR metabolomic profiles of different groups 

  Differences in the metabolomic profiles of KPC transgenic mice subjected to different 

treatments of dietary OPP and gemcitabine drug in this study were evaluated using proton 

nuclear magnetic resonance spectroscopy, 1H NMR. Spectra separation or discrimination 

analysis was carried out through the use of SIMCA-P+ software utilizing both unsupervised 

(PCA) and supervised techniques (PLS-DA and OPLS-DA). We aimed to look for possible 

distinction of urinary metabolomic profiles in three comparisons detailed below. 

3.7.1 Discrimination analysis of metabolomic profiles between PDAC mice and non-PDAC 

controls 

We began our analysis with unsupervised principal component analysis (PCA) which 

provides a basic overview for initial exploration of the data. The PCA score plot in Fig. 21a 

shows a good separation of the urinary NMR spectra of untreated PDAC mice (KC) and non-

PDAC controls (CC) at study endpoint, week 6.  The first principal component (PC1) accounts 

for the most variation in the data and the subsequent component (PC2) accounts for the second 

most variation in the data. As depicted by the diagram (Fig. 21a), the two groups are being 

clearly separated along the PC1. It is notable that the spectra from CC group, represented by 

circles on the diagram are much closer to each other than the KC group, in which the squares are 

slightly far from each other. This might reflect diversity in metabolomic profile among the 

untreated PDAC animals (KC) based on the progression of the disease. The corresponding 

loading plot in Fig. 21b manifests the regions in the spectra comprising metabolites that are 

influential in the separation of the two groups. Using the supervised technique, PLS-DA score 
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plot shows an even more pronounced separation between the two groups (Fig. 22a). Class 

discrimination for the supervised method improves the transparency and interpretability of the 

model. The variable importance of projection (VIP) plot reveals the 33 regions in the spectra 

including 1.1-2.0, 3.2-3.4, 3.6-3.8, 4.3 and 5.7-5.8 ppm as metabolites that are responsible for the 

clustering by PLS-DA using VIP score of more than 2 (Fig. 22b).  
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Fig. 21 Multivariate analysis of KC and CC groups utilizing the unsupervised method, 

PCA. (A) PCA score plot based on urinary1H NMR spectra of mice with pancreatic cancer, 

PDAC (KC) and non-PDAC controls, (CC) at study endpoint. (B) Corresponding loading plot 

shows important regions (1.1-2.0, 3.2-3.4, 3.6-3.8, 4.3 and 5.7-5.8 ppm) in the spectra 

comprising metabolites that are influential in the separation of the two groups.  
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Fig. 22 Multivariate analysis of KC and CC groups utilizing the supervised method, PLS-

DA. (A) Score plot based on urinary1H NMR spectra of mice with pancreatic cancer, PDAC 

(KC) and non-PDAC controls, (CC) at study endpoint using supervised method, PLS-DA. (B) 

Variable importance in the projection (VIP) plot shows the top 40 most important regions in the 

spectra as metabolites that are responsible for the clustering by PLS-DA.  
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3.7.2 Discrimination analysis of metabolomic profiles with PDAC progression 

In order to understand the changes in the metabolomic profile following the progression 

of pancreatic cancer alone and to identify the responsible metabolites, the similar analysis as 

described above was performed on the NMR spectra of the untreated PDAC group (KC) at week 

2 and week 6. As shown in Fig. 23a, only a certain degree of separation between the two time 

points was observed from the PCA score plot. By visual inspection on the loading plot (Fig. 

23b), it is rather difficult to characterize the ppm regions on the below right quadrant (3.6-3.8, 

4.3, 5.7-5.8 ppm) based on the two time points.  Therefore, supervised classification using 

OPLS-DA was carried out to maximize the separation. As expected, the employment of OPLS-

DA to the model improved the clustering of urinary NMR spectra of PDAC mice at study 

baseline and at endpoint (Fig. 24a). Fig. 24b shows the contribution plot generated from OPLS-

DA score plot. The upper panel displays spectra regions containing metabolites that are present 

at a higher concentration at week 2 (3.6-3.8, 3.7-4.1 ppm) while lower panel is associated with 

week 6 (3.2-3.4, 4.3, 5.7-5.8 ppm). Upon identification, metabolites in these regions could serve 

as possible biomarkers of PDAC progression with potential use for early diagnosis of the 

disease. 
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Fig. 23 Multivariate analysis of KC group at baseline and endpoint utilizing the 

unsupervised method, PCA. (A) PCA score plot based on urinary1H NMR spectra of PDAC 

mice at study baseline, week 2 (W2) and at endpoint, week 6 (W6). (B) Corresponding loading 

plot showing the regions in the spectra comprising metabolites that are responsible for the 

separation of the two time points.  

A. 

B. 
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Fig. 24 Multivariate analysis of KC group at baseline and endpoint utilizing the supervised 

method, OPLS-DA. (A) Better clustering of urinary1H NMR spectra of PDAC mice at study 

baseline, week 2 (W2) and at endpoint, week 6 (W6) with OPLS-DA. (B) Contribution plot 

generated from OPLS-DA score plot. Upper panel displays spectra regions containing 

metabolites associated with W2 while lower panel associated with W6. 

A. 

B. 
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3.7.3 Discrimination analysis of metabolomic profiles following OPP treatment 

To comprehend the metabolic changes following the administration of dietary OPP, the 

spectra from the untreated PDAC group (KC) and OPP treated group (KP) at study endpoint, 

week 6 were compared. In a similar manner, we first generated a PCA model for discrimination 

assessment. The resulting PCA plot (Fig. 25a) illustrates an obvious separation of the two 

groups. PCA loading plot generated from the model identifies the regions in the spectra 

comprising metabolites that are responsible for the clustering (Fig. 25b). Subsequently, the 

separation of the spectra was further enhanced when supervised PLS-DA was performed (Fig. 

26a). At VIP threshold of 2, 31 regions in the spectra including 3.2-3.4, 3.6-3.8, 4.3, 5.7-5.8, 7.1-

7.2 ppm were revealed as metabolites responsible for the spectra discrimination (Fig. 26b). 

  Furthermore, to assess the degree of separation of the urinary spectra of all the four 

PDAC experimental groups, principal component analysis (PCA) was performed. As shown by 

the score plot in Fig. 27, three clusters can generally be identified. Most animals receiving 

dietary OPP treatment alone (KP) and and OPP-gemcitabine combination (KPG) were clustered 

very close to each other away from the untreated PDAC group (KC). It is also observed that KP 

and KPG groups are not clustering together with the gemcitabine treated group (KG). Moreover, 

some spectra of KG animals were detected to be clustered near to the untreated PDAC group 

(KC). This supports our observations of some non-responders to the gemcitabine treatment in our 

MRI and mRNA expression data presented earlier under sections 3.2 and 3.6.  

 

 



69 

 

 

 

Fig. 25 Multivariate analysis of KC and KP groups utilizing the unsupervised method, 

PCA. (A) PCA score plot based on urinary 1H NMR spectra of mice with pancreatic cancer, 

PDAC (KC) and OPP treated (KP) at study endpoint.  (B) Corresponding loading plot 

manifesting the regions in the spectra comprising metabolites that are influential in the 

separation of the two groups.  
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Fig. 26 Multivariate analysis of KC and KP groups utilizing the supervised method, PLS-

DA. (A) Score plot based on urinary1H NMR spectra of mice with pancreatic cancer, PDAC 

(KC) and OPP treated (KP) at study endpoint. (B) Variable importance in the projection (VIP) 

plot reveals the top 40 regions in the spectra as metabolites that are responsible for the clustering 

by PLS-DA.  

A. 

B. 
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Fig. 27 Multivariate analysis of PDAC groups utilizing the unsupervised method, PCA. (A) 

Unsupervised, PCA score plot based on urinary 1H NMR spectra of mice with different 

treatments at study endpoint. (KC = untreated PDAC mice; CC = non-PDAC control mice; KC 

W2 = untreated PDAC mice at study baseline, week 2; KC W6 = untreated PDAC mice at study 

endpoint, week 6; KG = PDAC mice treated with gemcitabine drug, KP = PDAC mice on 5% 

dietary OPP, KPG = PDAC mice on 5% dietary OPP and gemcitabine drug. 
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3.8 Identification and quantification of differential metabolites 

 Chenomx NMR Suite software (Chenomx Inc., Edmonton, Canada) was used to identify 

and quantify the metabolites responsible for separation observed in PCA, PLS-DA and OPLS-

DA score plots. Metabolites were identified and measured for their concentrations by fitting the 

spectral peaks found for each compound in the compound library. The detail alteration trends of 

the profiled metabolites are shown in Table 3. The ratio above 1 indicates an increase, while the 

ratio below 1 indicates a decrease in metabolite concentration between groups. 

Metabolites identified to be significantly changed in PDAC mice (KC) when compared  

to non-PDAC controls (CC) are shown in Fig. 28. Significantly decreased urinary metabolites 

include creatinine, formate and tartrate (p<0.05) whereas the level of urea was significantly 

higher in KC group compared to CC group (p<0.01). Urinary level of urea in untreated PDAC 

group (KC) was found to be significantly lowered with the progression of the disease from week 

2 to week 6 (Fig. 29; p<0.05). 

 As shown in Fig. 30., it was observed that with dietary intervention with OPP (KP), 

urinary concentrations of alanine, creatinine, glycerate, succinate and taurine were significant 

decreased compared to untreated PDAC group (KC). Intervention with the combinatorial 

intervention of OPP and gemcitabine  produced a significant decrease in the similar metabolites 

as intervention with OPP alone; alanine (p<0.01), creatinine, succinate and taurine levels 

(p<0.05).  

 Moreover, as given in Table 3, gemcitabine treated mice (KG) also had a significantly 

lower level of urinary urea compared to untreated PDAC mice (KC)(p<0.05) and OPP-

gemcitabine group (KPG) additionally was observed to have decreased concentrations of glucose 

and ethylene glycol compared to KC group (p<0.05). 
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Metabolites Chemical shift (ppm) KC/CC KC(W6)/KC(W2) KG/KC KP/KC KPG/KC 

Acetate 1.9 2.04 2.31 0.81 0.30 0.27 

Alanine 3.8,1.5 0.55 1.36 0.68 0.28a 0.15b 

Allantoin 8.0,7.3,6.0,5.4 0.61 1.33 0.50 0.26 0.26 

Betaine 3.9,3.3 1.06 1.35 0.50 0.22 0.13 

Choline 4.1,3.5,3.2 0.32 0.51 1.89 0.77 0.46 

cis-Aconitate 5.7,3.1 0.26 2.06 2.16 0.77 0.48 

Citrate 2.7, 2.5 0.24 1.02 1.06 0.72 0.27 

Creatine 3.9,3.0 0.58 2.90 0.60 0.61 0.19 

Creatinine 4.0,3.0 0.51a 1.73 0.97 0.24a 0.22a 

Dimethylamine 2.7 0.52 1.31 1.39 0.34 0.25 

Ethylene glycol 3.7 0.52 0.29 1.14 0.62 0.24a 

Formate 8.4 0.18a 0.87 2.87 1.16 0.25 

Glucose 5.2,4.6,3.9,3.8,3.8,3.8,3.7, 0.53 1.03 0.98 0.39 0.21a 

3.7,3.5,3.5,3.5,3.4,3.4,3.2 

Glycerate 4.1,3.8,3.7 2.74 1.22 2.63 0.35 0.06 

Indole-3-acetate 10.0,7.6,7.5,7.2,7.2,7.2,3.6 0.98 1.53 1.14 0.33 0.20 

Lactate 4.1,1.3 0.72 0.82 0.41 0.33 0.12 

Methanol 3.4 0.69 1.14 1.34 1.19 0.58 

Methionine 3.8,2.6,2.2,2.1,2.1 0.53 2.24 0.58 0.18 0.12 

N-Isovaleroylglycine 8.0,3.7,2.2,2.0,0.9 0.56 0.92 1.54 0.39 0.28 

N-Phenylacetylglycine 8.0,7.4,7.3,7.3,3.7,3.7 1.09 2.05 0.93 0.23 0.14 

O-Phosphocholine 4.6,3.6,3.2 0.30 0.69 1.62 0.17 0.24 

Phenylacetate 7.4,7.3,7.3,3.5 0.42 0.89 0.90 0.56 0.42 

Pyruvate 2.4      

Succinate 2.4 0.43 1.00 0.34a 0.44a 0.28a 

Sucrose 5.4,4.2,4.0,3.9,3.8,3.8,3.8, 2.31 0.72 1.04 0.48 0.10 

3.8,3.8,3.7,3.7,3.6,3.5 

Tartrate 4.3 0.43a 0.91 1.29 0.44 0.23 

Taurine 3.4,3.3 0.51 1.16 1.87 0.31a 0.30a 

Trimethylamine 2.9 0.31 0.87 1.07 0.37 0.39 

Tryptophan 10.2,7.7,7.5,7.3,7.3,7.2,4.0, 0.67 1.32 1.48 0.24 0.21 

3.5,3.3 

Urea 5.8 6.15b 2.18a 0.10a 0.62 1.77 

KC = untreated PDAC mice; CC = non-PDAC control mice; KC W2 = untreated PDAC mice at 

study baseline, week 2; KC W6 = untreated PDAC mice at study endpoint, week 6; KG = PDAC 

mice treated with gemcitabine drug, KP = PDAC mice on 5% dietary OPP, KPG = PDAC mice 

on 5% dietary OPP and gemcitabine drug. 

Table 3 Profiled metabolites based on urinary 1H NMR with fold change differences of 

metabolite concentration between groups (numerator/denominator). The ratio above 1 

indicates an increase, while the ratio below 1 indicates a decrease in metabolite concentration of 

the numerator’s group in comparison to the denominator’s group. ap<0.05; bp<0.01, statistical 

significance is determined using student’s t-test. 
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Fig. 28 Urinary metabolites associated with non-PDAC controls. Urinary metabolites 

identified to be significantly lowered (Table 3) comparing PDAC mice (KC) with non-PDAC 

controls, (CC) at study endpoint, week 6. (A) Creatinine;  (B) Formate; (C) Tartrate; (D) Urea. 

Data are expressed as mean±SE.  Metabolite concentrations of (A)-(C) were statistically 

different at p<0.05, (D) at p<0.01. 
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Fig. 29 Urinary metabolite associated with PDAC progression. Urinary level of urea in 

untreated PDAC group (KC) was identified to have changed by more than 2 folds (Table 3) with 

the progression of the disease from week 2 (W2) to week 6 (W6). Urea level was significantly 

increased with PDAC progression (p<0.05). Data are expressed as mean±SE.  
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Fig. 30 Urinary metabolites associated with OPP treatment. Urinary metabolites identified to 

be significantly lowered at p<0.05 (Table 3) comparing PDAC mice (KC) with mice on dietary 

OPP (KP) at study endpoint, week 6. (A) Alanine; (B) Creatinine; (C) Succinate; (D) Taurine. 

Data are expressed as mean±SE. (A)-(D) were also significantly lowered in mice on OPP-

gemcitabine combination (KPG); (A) at p<0.01, (B)-(D) at p<0.05, (C) was also significantly 

lowered in gemcitabine treated (KG) mice compared to PDAC mice (KC).  

 

 

 

 

 

 

0

50

100

150

200

250

KC W6 KP W6 KG W6 KPG W6

C
o

n
ce

n
tr

at
io

n
  o

f 
 S

u
cc

in
at

e
(µ

M
)

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

KC W6 KP W6 KG W6 KPG W6

C
o

n
ce

n
tr

at
io

n
  o

f 
 C

re
at

in
in

e
 

(µ
M

)

0

100

200

300

400

500

600

700

KC W6 KP W6 KG W6 KPG W6

C
o

n
ce

n
tr

at
io

n
  o

f 
 A

la
n

in
e

 (
µ

M
)

A. B. 

C. D. 

b 

a 

b 

a 

b b 

a 

a 

0

10,000

20,000

30,000

40,000

50,000

KC W6 KP W6 KG W6 KPG W6

C
o

n
ce

n
tr

at
io

n
  o

f 
 T

au
ri

n
e

 (
µ

M
)

b b b 

a 

b b 

a 

a 



77 

 

3.9 Regression analysis 

 Additionally, we also conducted regression analysis in order to evaluate the relationship 

between urinary metabolite profiles with some of the variables such as PanIN lesion count and 

gene expression that we have investigated independently of the metabolomic profiles. As 

depicted by Fig. 31a, correlation resulting from OPLS regression is strong for total PanIN count  

(R2 = 0.6891)  while the association with PanIN-3 count is moderate (R2 = 0.5788; Fig. 32). 

Similar regression analysis on gene expression data revealed a very strong correlation with 

Notch1 (R2 = 0.9417; Fig. 33a) and MMP9 (R2 = 0.8636; Fig. 34a). However, the correlation 

with CCND1 expression was found to be weak (R2 = 0.3446; Fig. 35). Having seen that urinary 

metabolomic profiles of the PDAC mice are correlating very well with Notch1 expression, 

MMP9 expression and also total PanIN lesion count, we further decided to use these interesting 

observations to identify the possible pathway(s) that leads to the beneficial effect of dietary OPP 

on PDAC mice. S-plots are the loading plots associated with multivariate regression analysis. 

Information from the corresponding OPLS S-plots comparing total PanIN count (Fig. 31b), 

Notch1 expression (Fig. 33b) and MMP9 expression (34b) were used for pathway analyses 

discussed in detail in the next section. 
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Fig. 31 OPLS regression of total PDAC lesion, PanIN count with urinary 1H NMR profiles 

of the four PDAC experimental groups at end point. (A) OPLS score plot shows a strong 

correlation (R2=0.6891). (B) S-plot obtained from OPLS model. Arrow B1 points on the regions 

in the spectra correlate with high number of total PanIN with metabolites identified include 

taurine, choline, dimethylamine, N-isovaleroylglycine, creatine and creatinine. Regions 

containing metabolites point by arrow B2 correlate with low total PanIN count identified as 

lactate, glycerate, tartarate, glucose and sucrose. 

A. 

B. 
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Fig. 32 OPLS regression of PanIN-3 lesion count with urinary 1H NMR profiles of the four 

PDAC experimental groups at end point. OPLS score plot shows a moderate correlation 

(R2=0.5788) between urinary profiles and PanIN-3 count. 
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Fig. 33 OPLS regression of Notch1 expression at end point. Regression expressed as 

normalized CT values with urinary 1H NMR profiles of the four PDAC experimental groups. (A) 

OPLS score plot shows a very strong correlation (R2=0.9417). (B) S-plot obtained from OPLS 

model. Arrow B1 points on the regions in the spectra correlate with high CT values (low Notch1 

expression) with metabolites identified include tartrate, phenylacetate and sucrose. Regions 

containing metabolites point by arrow B2 correlate with low CT values (high Notch1 expression) 

identified as taurine, choline, tryptophan, glucose, sucrose and N-isovaleroylglycine. 

A. 

B. 
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Fig. 34 OPLS regression of MMP9 expression at endpoint. Regression expressed as 

normalized CT values with urinary 1H NMR profiles of the four PDAC experimental groups. (A) 

OPLS score plot shows a very strong correlation (R2=0.8636). (B) S-plot obtained from OPLS 

model. Arrow B1 points on the regions in the spectra correlate with high CT values (low MMP9 

expression) with metabolites identified include tartrate, phenylacetate and sucrose. Regions 

containing metabolites point by arrow B2 correlate with low CT values (high MMP9 expression) 

identified as taurine, choline, tryptophan, and N-isovaleroylglycine. 

A. 

B. 
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Fig. 35 OPLS regression of CCND1 expression. Regression  expressed as normalized CT 

values with urinary 1H NMR profiles of the four PDAC experimental groups. OPLS score plot 

shows a weak correlation (R2=0.3446) between urinary profiles and CCND1 expression. 
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3.9 Metabolic pathway analyses following dietary OPP intervention 

 As previously mentioned, in order to identify the metabolic pathway(s) and biological 

relevance of the identified metabolic changes related to Notch1 and MMP9 expression together 

with total PanIN lesion count due to dietary OPP intervention,  the MetaboAnalyst 3.0 software 

and Kyoto Encyclopedia of Genes and genomes (KEGG) database were used.  Metabolites 

identified from each S-plot that correspond to OPLS regression between urinary metabolomic 

profiles and Notch1 expression, MMP9 expression and total PanIN count respectively were 

subjected to MetaboAnalyst 3.0 for pathway analyses.  

Arrow B1on Fig. 31b  points on the regions in the spectra correlate with high number of 

total PanIN with metabolites identified using Chenomx software include taurine, choline, 

dimethylamine, N-isovaleroylglycine, creatine and creatinine while regions containing 

metabolites pointed by arrow B2 correlate with low total PanIN count were identified as lactate, 

glycerate, tartarate, glucose and sucrose. 

As illustrated in Fig. 33b, the regions in the spectra that correlate with high CT values 

(low Notch1 expression) were identified as tartrate, phenylacetate and sucrose (arrow B1). 

Regions containing metabolites pointed by arrow B2 which correlate with low CT values (high 

Notch1 expression) were recognized as taurine, choline, tryptophan, glucose, sucrose and N-

isovaleroylglycine. 

For MMP9 expression, arrow B1 on Fig. 34b points on the regions in the spectra 

correlate with high CT values (low MMP9 expression) with metabolites identified include 

tartrate, phenylacetate and sucrose. Regions containing metabolites pointed by arrow B2 

correlate with low CT values (high MMP9 expression) were identified as taurine, choline, 

tryptophan, and N-isovaleroylglycine. 
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Next, data on the concentrations of identified metabolites quantified using Chenomx 

software were uploaded into the MetaboAnalyst software. MetaboAnalyst software utilizes 

pathway enrichment analysis and pathway topology analysis to translate metabolic trends into 

defined pathways relevant to the study.  

Table 5 lists the significant pathways related to Notch1 expression with dietary 

intervention identified by the MetaboAnalyst software (p<0.05). They include taurine and 

hypotaurine metabolism, primary bile acid biosynthesis, phenylalanine metabolism, 

glycerophospholipid metabolism and glycine, serine and threonine metabolism. Fig. 36 

illustrates the pathway topological analysis from the software. The larger a circle and the higher 

its location on the y axis, the higher impact of a particular pathway. Inspection on the diagram 

indicates that taurine and hypotaurine metabolism has been impacted the most following dietary 

OPP intervention.  

MMP9  expression was found to have the similar significant pathways as Notch1 (Table 

6) while for total PanIN count, only taurine and hypotaurine metabolism, primary bile acid 

biosynthesis and glycerophospholipid metabolism was identified as significant pathways (Table 

7). Interestingly, a similar observation with MMP9 expression and total PanIN count was 

revealed by Figs. 37 and 38 respectively in which taurine and hypotaurine metabolism was 

identified as the most highly impacted pathway.  

 Fig. 39 illustrates the taurine and hypotaurine metabolism pathway from KEGG database. 

Taurine which plays role in this metabolism was observed in our investigation to be significantly 

decreased with intervention of dietary OPP (KP) and OPP-gemcitabine combination (KPG) 

compared to untreated PDAC group (KC). However, taurine level in gemcitabine treated group 
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(KG) displayed an elevated trend compared to KC group but at a non-significant level (p>0.05) 

(Table 3;Fig. 30d). 
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Pathway name Hits p-value –log(p) FDR 

Taurine and hypotaurine metabolism 1 0.007672 4.8702 0.028972 

Primary bile acid biosynthesis 1 0.007672 4.8702 0.028972 

Phenylalanine metabolism 1 0.009657 4.64 0.028972 

Glycerophospholipid metabolism 1 0.027769 3.5838 0.049985 

Glycine, serine and threonine metabolism 1 0.027769 3.5838 0.049985 

Pathway name, hits, significance, –log(p) and false discovery rate (FDR) 

 

Table 5 Metabolites obtained from S-plot that correspond to OPLS regression between urinary 

metabolomic profiles and Notch1 expression were subjected to MetaboAnalyst 3.0 for pathway 

analysis. MetaboAnalyst 3.0 identified highly significant pathways involved. 

 

 

 

 

Fig. 36 MetaboAnalyst 3.0 output illustrating the most predominant metabolic pathways that 

correspond to OPLS regression between urinary metabolomic profiles and Notch1 expression. 

The larger a circle and higher on the y axis, the higher impact of pathway. 
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Pathway name Hits p-value –log(p) FDR 

Taurine and hypotaurine metabolism 1 0.007672 4.8702 0.026852 

Primary bile acid biosynthesis 1 0.007672 4.8702 0.026852 

Glycerophospholipid metabolism 1 0.027769 3.5838 0.04265 

Glycine, serine and threonine metabolism 1 0.027769 3.5838 0.04265 

Phenylalanine metabolism 2 0.030464 3.4912 0.04265 

Pathway name, hits, significance, –log(p) and false discovery rate (FDR) 

 

Table 6 Metabolites obtained from S-plot that correspond to OPLS regression between urinary 

metabolomic profiles and MMP9 expression were subjected to MetaboAnalyst 3.0 for pathway 

analysis. MetaboAnalyst 3.0 identified highly significant pathways involved. 

 

 

 

 
Fig. 37 MetaboAnalyst 3.0 output illustrating the most predominant metabolic pathways that 

correspond to OPLS regression between urinary metabolomic profiles and MMP9 expression. 

The larger a circle and higher on the y axis, the higher impact of pathway. 
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Pathway name Hits p-value –log(p) FDR 

Taurine and hypotaurine metabolism 1 0.007672 4.8702 0.026852 

Primary bile acid biosynthesis 1 0.007672 4.8702 0.026852 

Glycerophospholipid metabolism 1 0.027769 3.5838 0.064795 

Pathway name, hits, significance, –log(p) and false discovery rate (FDR) 

 

Table 7 Metabolites obtained from S-plot that correspond to OPLS regression between urinary 

metabolomic profiles and total PanIN lesion count were subjected to MetaboAnalyst 3.0 for 

pathway analysis. MetaboAnalyst 3.0 identified highly significant pathways involved. 

 

 

 

 
Fig. 38 MetaboAnalyst 3.0 output illustrating the most predominant metabolic pathways that 

correspond to OPLS regression between urinary metabolomic profiles and total PanIN lesion 

count. The larger a circle and higher on the y axis, the higher impact of pathway. 
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Fig. 39 The role of taurine in taurine and hypotaurine metabolism (KEGG database). 
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CHAPTER 4 DISCUSSION 

Pancreatic cancer is currently ranked as the fourth leading cause of cancer-related deaths 

in the United States with the most common type being the Pancreatic Ductal Adenocarcinoma 

(PDAC). PDAC has a poor prognosis with only 8% of 5-year survival rate attributable to lack of 

early detection methods and effective treatments[1,2]. Gemcitabine, a genotoxic drug has been 

the treatment of choice for this lethal disease particularly for patients with nonresectable 

pancreatic cancer. Gemcitabine is a deoxycytidine analog and considered as an 

antimetabolite[50]. Antimetabolites have almost similar structure with chemicals needed for 

normal biochemical activity, but with some differences enabling them to interfere with normal 

cell function. The most significant mechanism of work for gemcitabine is by inhibiting DNA 

synthesis, making it a chemotherapeutic agent of choice[51]. Once being activated inside the 

cell, a single incorporation of deoxynucleotide will prevent chain elongation[52]. Despite being 

the current first line therapy for pancreatic cancer, treatment with gemcitabine remains 

challenging mainly due to the aggressive nature of PDAC with marked chemoresistance in 

addition to notable adverse side effects of the drug. Thus, development of effective treatments 

for pancreatic cancer that are relatively nontoxic from single agents or in combination with an 

established drug treatment is warranted. Several studies have documented a variety of 

phytochemicals with anticancer properties including curcumin, garcinol[33,34], lycopene[35,36], 

resveratrol[37], epigallocatechin gallate (ECGC)[38] and genistein[39,40].  

Oil palm (Elais guineesis) is a high oil plant from the family of Arecaceae. The 

extraction of water soluble materials from the oil palm produces a class of phytochemicals 

including phenolics and organic acids collectively referred as Oil Palm Phenolics (OPP)[41]. 

OPP contains high level of antioxidants and has been shown in our recent in vitro work to posses 
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therapeutic effects against pancreatic cancer[48].  In this study, using KPC mouse-model for 

PDAC, we have investigated the in vivo effect of OPP as a single chemotherapeutic agent using a 

clinically relevant animal model, as well as the combinatorial effect of OPP with gemcitabine as 

a potential pancreatic cancer treatment.  

Histological changes of the nonglandular stomach (fore stomach) such as mucosal 

epithelial hyperplasia with or without hyperkeratosis and inflammation are some of common 

findings following exposure or ingestion of toxic substance. In order to exclude any possibilities 

of toxicity caused by 5% dietary OPP consumption, microscopic examination of fore stomach 

and pancreatic tissues were conducted. We herein report that the administration of dietary OPP at 

5% level was not toxic through histological analysis of fore stomach (Fig. 11) as well as 

pancreatic tissues (Fig. 12) in non-PDAC control animals. Hundred percent survival of non-

PDAC controls on OPP diet during 6 weeks of feeding also serves as indirect toxicity assessment 

(Fig. 3). This confirms the earlier findings by Leow et al. on the safety of oral supplementation 

of OPP[46]. 

Fig. 40 outlines the in vivo effect of OPP and its combination with gemcitabine 

investigated in this present study. Firstly, in this study, we used tumor and cyst growth identified 

by the noninvasive imaging technique, MRI as our output to determine the effect of dietary OPP 

treatment on PDAC progression. The most striking result to emerge from this MRI data is that 

the OPP-gemcitabine combination showed a synergistic effect in slowing down the progression 

of PDAC with less than 10% of tumors and cysts increased in size following treatment (Table 2; 

Fig. 10). On the other hand, a mix of responders and non-responders was observed with   

treatment of either OPP or gemcitabine alone. This provides us with the first indicator that the 

combinatorial therapy of dietary OPP and gemcitabine is greater in benefit than the use of the 
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single agent of OPP or gemcitabine. As mentioned earlier, drug resistance in PDAC is well 

recognized and poor response to gemcitabine drug has been described in several publications. 

Previously, a number of trials including two studies in Japan and one study in Korea have 

reported continued disease progression despite good compliance of gemcitabine treatment in 

advanced pancreatic cancer[53–55]. 

Secondly, we also assessed the potential role of OPP as a chemopreventive agent for 

PDAC. Pancreatic intraepithelial neoplasms (PanINs) are known as the most common precursors 

to PDAC[13,56]. Upon microscopical examination of these lesions, we report that OPP was 

effective at lowering the number of PanIN-2, the lesser of the two kinds of higher grade PanIN 

lesions (Fig. 15). However, the effect was extended to both PanIN-2 and PanIN-3 in the 

combinatorial treatment of OPP and gemcitabine indicating the superior chemopreventive 

potential of this combination  in prolonging the onset of invasive adenocarcinoma and in halting 

the progression of pancreatic cancer precursor lesions to PDAC (Fig. 15).  

Moreover, we have also investigated the effect of OPP on several tumorigenesis markers 

in this study.  Our previous in vitro work on OPP have elucidated the anticancer effect of OPP 

through the suppression of NF- ĸB pathway with favorable regulation of cancer-related marker, 

MMP9 together with several other markers[48]. Here in this study, we started off by 

investigating the effect of OPP on Notch1which is upstream of NF- ĸB. The Notch signaling 

pathway is a fundamental signaling system used by neighboring cells to communicate with each 

other in order to assume their proper developmental role. Notch signaling is involved in the 

cellular developmental pathway including proliferation and apoptosis. As mentioned earlier, 

Notch1 has been described to cross-talk with other major cell growth and apoptotic pathway such 

as NF- ĸB and its high expression has been displayed to inhibit apoptosis[57]. It has also been 
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reported in the study by Wang et al., that down regulation of Notch1 inhibited cell growth and 

induced apoptosis in pancreatic cancer cells[57]. A more recent study by Kunnimalaiyaan et al. 

has also demonstrated  a successful suppression of pancreatic cancer cell growth was achieved 

through the inhibition of Notch1[58]. We observed that single agent intervention with OPP or 

gemcitabine alone did not produce significant down regulation of Notch1(Fig. 18a) which we 

expected due to different responses by responder and non-responder animals as described by our 

MRI data under section 3.2. Upon separating the OPP responders from the non-responders, it 

was revealed that OPP treatment significantly inhibited the expression of Notch1 compared to 

the untreated PDAC animals (Fig. 18b) but the down regulation trend of Notch1 in gemcitabine 

responders was not found to be significant (Fig. 18c).  

Additionally, the expressions of two downstream genes of Notch1; MMP9 and 

CCND1were also evaluated. MMP9 is a zinc-dependent enzyme known to be the agent to 

degrade extracellular matrix components. In cancer, MMP9 is responsible for angiogenesis, 

metastasis and tissue invasion. This current study demonstrates that in OPP responder animals, 

the expression of MMP9 was significantly lowered (Fig. 19b) but not in gemcitabine responder 

animals (Fig. 19c). Moreover, it is also demonstrated that the OPP-gemcitabine combination 

down regulated the level of pancreatic MMP9 comparative to untreated group significantly (Fig. 

19a). This is consistent with our in vitro observation of the anti-invasive effect of OPP through 

inhibition of MMP9[48]. These results provide further support for the hypothesis that OPP is 

capable of arresting metastasis and cell invasion by interrupting MMP9 activity.  

Dysregulation of CCND1 has been linked to the development and progression of cancer 

in general[59]. It is known to be frequently over expressed in PDAC. Cyclins function as cyclin-

dependent kinases subunit regulators forming a complex with CDK4 or CDK6, whose activity is 
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required for cell cycle G1/S transition. Over expression of CCND1 increases proliferation by 

accelerating the cell transit through the G1 phase. Moreover, there are also present evidence that 

CCND1 plays a role in tumor cell migration and posses as a strong prognostic factor in the 

survival of pancreatic cancer patients[60,61]. In this study, we observed that OPP-gemcitabine 

combinatorial treatment significantly reduced the expression of CCND1(Fig.21) thus, suggesting 

the anti-proliferative property of OPP when use in combination with gemcitabine by its ability to 

arrest cell cycle. However, the down regulation trend of CCND1 in OPP responder animals and 

gemcitabine responder animals did not reach statistical significance (Fig. 21b & 21c). 

The anticancer effect of OPP was also evident in immunohistochemical analysis. In 

PDAC, the calcium-binding protein S100P is the most significantly up regulated protein among 

several other S100 proteins. It is known to be mostly related to invasion and metastasis of 

tumor[62–65]. Also, its over expression has been positively correlated with poor prognosis in 

several other types of cancer including gastric, prostate, lung and cholangiocarcinoma[66–69]. A 

recent work by Dakhel et al. has demonstrated that S100P plays a role in resisting the action of 

gemcitabine. They have also presented that S100P  induces the production of MMP9[70]. Here 

we showed that compared to the untreated group, treatment with OPP produced lower expression 

of the tumor promoter S100P and least expression was detected when OPP was combined with 

gemcitabine (Fig. 16). Interestingly, we have also observed the down regulation of MMP9 

especially in the OPP-gemcitabine combination supporting the connection between S100P and 

MMP9 as reported earlier by Dakhel et al.[70].   Conversely, SMAD4 is one of the important 

molecules in TGF-β pathway, which serves as a tumor suppressor of PDAC. SMAD4 is 

exclusive in being the only member of the SMAD family that involves in the biological activity 

of TGF-β mainly in the inhibition of cell growth[71,72]. As reported by several researchers, the 
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loss of SMAD4 expression promotes the advancement of high grade PanIN lesions to PDAC and 

was associated with poor survival. SMAD4 has been suggested as a negative prognostic indicator 

and its expression marks a better survival in patients with pancreatic cancer[73–77]. In this 

study, we presented the chemotherapeutic potential of OPP and its combination with gemcitabine 

which was evident by over expression of SMAD4 in comparison with the untreated group (Fig. 

17).   

The final part of this report has explored the in vivo effect of dietary OPP on PDAC using 

metabolomics approach. Metabolomics is one of the ‘omics’ sciences that focuses on phenotypic 

features from small-molecule metabolite of biological systems[78]. Urinary metabolomics offers 

a non-invasive systematic analysis of potential metabolites in a biological sample allowing for 

biomarker and drug discoveries, identification of perturbed pathways and also serving as 

potential therapeutic targets in oncology generally and specifically for pancreatic cancer 

studies[79,80].  Apart from urine, blood serum and plasma, pancreatic tissue and saliva have also 

been investigated for potential metabolomic PDAC biomarkers[81–86]. In metabolomics, 1H 

NMR spectroscopy is one of the main approaches for data acquisition. It provides quantitative 

information and is reproducible, hence suitable for multivariate analysis.  

Multivariate data analysis using SIMCA P+ software revealed a good discrimination of 

urinary profiles between untreated PDAC animals and non-PDAC controls, and between 

untreated PDAC animals with animals on OPP diet using the unsupervised PCA modeling (Figs. 

21a & 25a). Good discrimination of metabolomic profiles with the progression of PDAC; 

comparing the baseline at week 2 to the endpoint at week 6 was achieved with supervised 

modeling (OPLS-DA) (Fig. 24a). Several metabolites were identified to be associated with the 

spectral discrimination of the three comparisons using NMR Suite Chenomx software. 
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Comparing untreated PDAC group with non-PDAC controls, concentration of urea was found to 

be significantly higher in PDAC animals while the concentrations of creatinine, formate and 

tartrate was lowered. The progression of PDAC from week 2 to week 6 was observed to be 

associated with significant elevation in urinary urea level (Table 3). Out of these metabolites, 

urea, creatinine and formate have been previously reported as potential molecular markers for 

pancreatic cancer whereas tartrate has not been reported before.   

Creatinine is a metabolite involves in creatine metabolism. Several studies have 

previously reported the change on creatinine levels in PDAC. While Napoli et al. in their study 

reported a lower level of creatinine in pancreatic cancer patients [81], OuYang et. al conversely 

reported a higher level of creatinine in pancreatic cancer subjects compared to non-PDAC 

controls[84]. Formate takes part in the metabolism of one-carbon compounds and is typically 

produced as a byproduct in the production of acetate. Metabolomics study by Bathe et. al  

reported higher level of formate in pancreatic cancer patients[87]. Decreased  urea levels has 

been reported previously in the serum of pancreatic cancer patients[88]. It is also known in the 

clinical setting that high urinary secretion of urea can be related to nutritional status and muscle 

wasting. It was observed from our data that urinary level of urea is significantly higher in PDAC 

also with the progression of the disease. A significant reverse in urinary urea level was seen with 

gemcitabine treatment (Table 3). However, the analysis does not enable us to determine the 

correlation between urinary levels or urea with PDAC since urea is the most concentrated 

metabolite in urine and the protons exchange with water. Studies suggested that excretion of 

tartrate majorly comes from dietary sources and only 15-20% being excreted in the urine 

unchanged while most dietary tartrate is metabolized by bacteria especially in the large 

intestine[89,90]. Urinary tartrate has also been investigated as a potential inhibitor of calcium 
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stone formation. A decreasing trend of urinary tartrate was observed in untreated PDAC group 

from week 2 to week 6, also as compared to groups treated with gemcitabine and OPP as a single 

agent therapy (Table 3). Although not statistically significant, this might indicate that PDAC and 

its progression can have a lowering effect on urinary tartrate levels[91]. 

Gemcitabine-treated group was found to have significantly lower urinary concentrations 

of urea and succinate compared to untreated PDAC group. Intervention with 5% dietary OPP on 

PDAC animals produced a significantly decreased level of alanine, creatinine, sucinate and 

taurine compared to untreated PDAC group. PDAC animals receiving the combination of 5% 

dietary OPP with gemcitabine drug had a significantly lower level of of alanine, creatinine, 

succinate and taurine similar to dietary OPP intervention alone, with additional decreased levels 

of glucose and ethylene glycol compared to untreated PDAC group (Table 3).  

Additionally, following OPLS regression analysis, urinary metabolomic profiles of the 

four PDAC groups were found to be strongly correlated with Notch1 expression, MMP9 

expression and total PanIN count (Figs. 31a; 33a & 34a). These interesting observations excite us 

to reveal the pathway(s) associated with the favorable down regulation of the two molecular 

markers and also reduced amount of PDAC precursor lesion with dietary intervention of OPP. 

Metabolites that correspond to OPLS regression between urinary metabolomic profiles and 

Notch1 expression, MMP9 expression and total PanIN count respectively were then subjected to 

MetaboAnalyst 3.0, a web based metabolomics data analysis tool for pathway analyses. Several 

significant pathways were detected including taurine and hypotaurine metabolism, primary bile 

acid biosynthesis, and glycerophospholipid metabolism that were common for Notch1 

expression, MMP9 expression and total PanIN count (Table 5-7) and interestingly, topology 
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analyses  indicate that taurine and hypotaurine metabolism has been impacted the most in this 

dietary study (Figs. 31a; 33a; 34a).  

Taurine is a sulfur containing amino acid derived from cysteine. It has many fundamental 

biological roles, such as conjugation of bile acids, antioxidation, osmoregulation, membrane 

stabilization, and modulation of calcium signaling.  In metabolomics studies, several publications 

have reported an increased level of taurine in pancreatic cancer patients and also in animal 

models[80,82,83,92]. In this present study, compared to untreated PDAC, taurine levels were 

observed to be significantly decreased with intervention of dietary OPP and OPP-gemcitabine 

combination.  This provides as an indicator that taurine plays a major role in the anticancer effect 

exhibited by both interventions of OPP alone and OPP-gemitabine combination with possible 

action through Notch1, since we have also observed a strong correlation between taurine and 

hypotaurine metabolism with Notch1 and also its downstream target, MMP9. Whereas no reports 

to date, were found in the literature describing a connection between Taurine and Notch1, this is 

a future prospect worth exploring. Moreover, in addition to reduced taurine concentration, 

decreased levels of succinate and alanine suggest the possible involvement of energy metabolism 

following dietary OPP intervention. While taurine levels were significantly lowered in the OPP 

and OPP-gemcitabine groups, treatment with gemcitabine displayed a non-significant elevation 

of taurine level. This might suggest that gemcitabine is affecting a different metabolic pathway. 

Gemcitabine (2′,2′-difluoro-2′-deoxycytidine; dFdC) is a deoxycytidine analog with multiple 

modes of action inside the cell. Fig. 41 depicts gemcitabine cellular metabolism and its main 

mechanisms of action. Once being activated inside the cell to its tri-phosphate form, dFdCTP, 

this will be incorporated into DNA, inhibiting  the synthesis of new DNA strands resulting in 

apoptosis of cancer cells. An additional mechanism of action of gemcitabine is self-potentiation 
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by inhibition of enzymes related to deoxynucleotide metabolism. This leads to the lowering of  

dNTP pool, promotes dFdC phosphorylation to dFdCTP and increase the likeliness of dFdCTP to 

be incorporated into DNA[52,93]. Gemcitabine induction of cancer cell apoptosis has been 

reported to be associated with Bcl-2/Bax pathway[94,95].  

 Taken together, our work has led us to the conclusion that oil palm phenolics (OPP) 

exhibit mild anticancer activity when used as a single agent therapy while OPP in combination 

with gemcitabine displays superior therapeutic effects demonstrating potential benefit of dietary 

OPP as part of combinatorial therapy for Pancreatic Ductal Adenocarcinoma (PDAC). 

Observations from this study can be further investigated using larger scale animal studies that 

may lead to a pilot human study. The evidence from this study also opens up to the next stage of 

our research to evaluate the anticancer properties of different OPP fractions in the hope to find 

the effective fraction(s) as potential single agent therapy for pancreatic cancer. 
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Fig. 40 Schematic diagram outlining the molecular targets and in vivo effect of OPP and OPP-

gemcitabine combination in transgenic mouse model of PDAC. Black arrows are associated with 

our previous in vitro observations on OPP [48]. Yellow arrows are associated with in vivo 

regulations with OPP intervention alone, purple arrows are associated with gemcitabine 

treatment while blue arrows are associated with OPP-gemcitabine combination. 
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Fig. 41 Gemcitabine cellular metabolism (A) and main mechanisms of action (B)[50]. hNT: 

human nucleoside transporter; dFdCMP: gemcitabine monophosphate; dFdCDP: gemcitabine 

diphosphate; dFdCTP: gemcitabine triphosphate; dFdU: 2′,2′-difluoro-2′-deoxyuridine, 

dFdUMP: 2′,2′-difluoro-2′-deoxyuridine monophosphate;  dNTP: nucleotide triphosphate. 
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ABSTRACT 
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by 

NURUL HUDA RAZALLI 

May 2017 

Advisor: Dr. Smiti Gupta  

Major: Nutrition and Food Science  

Degree: Doctor of Philosophy 

 Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive form of pancreatic 

cancer with low survival rates partly due to late diagnosis and poor treatment outcomes. The use 

of chemotherapy drug,  gemcitabine alone often provides  minimal benefits. This study explored 

the in vivo effect of oil palm phenolics (OPP), a water-soluble extract from oil palm in transgenic 

mouse model of PDAC and its combination with gemcitabine.  Administration of 5% dietary 

OPP was found to be non-toxic in non-PDAC controls. Compared to single agent therapy with 

either OPP or gemcitabine, OPP-gemcitabine combination showed a superior benefit with 

profound synergistic effect both as chemotherapeutic and chemopreventive agent evident in 

halted tumor and cyst growth, as well as lowered high grade precursor lesion count.  Favorable 

regulation of several tumorigenesis markers through immunohistochemistry (S100P and 

SMAD4) and real-time PCR (Notch1, MMP9 and CCND1) that was partially displayed by OPP 

but was more significant with the combinatorial therapy has provided an insight on the molecular 

targets responsible for the anticancer effect of OPP and OPP-gamcitabine combination . Using 

multivariate analysis software, SIMCA-P+, discrimination in urinary 1H NMR metabolomic 

profiles between groups was revealed. Metabolite profiling has identified decreased levels of 
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alanine, creatinine, succinate and taurine following intervention with OPP and its combination 

with gemcitabine. Metabolomic profiles were shown to be strongly correlated with Notch1 and 

MMP9 expression, also with total precursor lesion count following regression analyses. Finally, 

pathway analyses by MetaboAnalyst software, based on the information from regression 

analyses revealed that taurine, which involved in taurine and hypotaurine metabolism plays a 

major role in the anticancer effect exhibited by both interventions of OPP alone and OPP-

gemitabine combination. Collectively, OPP as a single agent exhibited a milder therapeutic effect 

than the use of OPP in combination with gemcitabine which displayed superior advantage. This 

demonstrates the potential benefit of dietary OPP as part of combinatorial therapy against 

progression of PDAC. 

 

 

 

 

 

 

 

 

 

 

 

 

 



115 

 

AUTOBIOGRAPHICAL STATEMENT 

NURUL HUDA RAZALLI 

EDUCATION: 

B.S in Dietetics, Universiti Kebangsaan Malaysia, Kuala Lumpur (2009) 

M.S in Nutrition and Food Science, Wayne State University, Detroit (2013) 

Post-bachelor certificate in Dietetics, Wayne State University, Detroit (2014) 

 

PROFESSIONAL APPOINTMENTS: 

Dietitian, BESTA Food Services Sdn. Bhd., Malaysia (2009) 

Research Assistant, Universiti Kebangsaan Malaysia, Kuala Lumpur (2009) 

Tutor, Universiti Kebangsaan Malaysia, Kuala Lumpur (2010) 

Lecturer, Universiti Kebangsaan Malaysia, Kuala Lumpur (2014 – present) 

 

PROFESSIONAL AWARDS: 

The Higher Education Public Institution Training Scheme (SLAI) Scholarship, Ministry of 

Higher Education, Malaysia (2011) 

 

PROFESSIONAL ASSOCIATIONS: 

United States Registered Dietitian (RD), (2014 – present) 

The Academy of Nutrition and Dietetics (AND) 

Southeastern Michigan Dietetic Association (SEMDA) 

American Society for Nutrition (ASN) 

Malaysian Dietitian Association (MDA) 

Malaysian Association for the Study of Obesity (MASO) 

 

PUBLICATIONS AND PRESENTATIONS:  

1. Razalli, N. H., Gowthaman, P., Saadat, N., Vemuri, S., Goja, A., Sambanthamurthi,  R., & 

Gupta, S. V. (2016).The effect of Oil Palm Phenolics (OPP) on Pancreatic Ductal 

Adenocarcinoma (PDAC) in transgenic mouse model. FASEB J. 30,147.2 

2. Ji, X., Usman, A., Razalli, N. H., Sambanthamurthi, R., & Gupta, S. V. (2015). Oil palm 

phenolics (OPP) inhibit pancreatic cancer cell proliferation via suppression of NF-κB 

pathway. Anticancer research, 35(1), 97-106. 

3. Abdul Manaf, Z., Kassim, N., Hamzaid, N. H., & Razali, N. H. (2013). Delivery of enteral 

nutrition for critically ill children. Nutrition & Dietetics,70(2), 120-125. 

 

 

 


	Wayne State University
	1-1-2017
	The Effect Of Oil Palm Phenolics (opp) On Pancreatic Ductal Adenocarcinoma (pdac) In Transgenic Mouse Model
	Nurul Huda Razalli
	Recommended Citation


	tmp.1492529050.pdf.M0Gii

