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PREFACE 

Note to the reader: 

 Chapters 2-6 of this dissertation were originally written individually for 

publication in peer reviewed scientific journals, and while much has been added to 

tie the chapters together as a single cohesive document, they were originally 

intended as stand-alone manuscripts. At the time of submission, Chapters 2, 3 and 5 

have been accepted for publication while Chapter 4 is currently in the second round 

of the review process in the journal Medical Dosimetry and the manuscript from 

Chapter 6 is intended to be submitted to the International Journal of Radiation 

Oncology Biology and Physics.   

Chapter 2 was originally published in Medical Physics (2013) under the title 

“Dosimetric comparison of helical tomotherapy treatment plans for total marrow 

irradiation created using GPU and CPU dose calculation engines.”  Chapter 3 was 

originally published in Medical Dosimetry (2016) under the title “Dosimetric 

evaluation of total marrow irradiation using 2 different planning systems.”  Chapter 5 

was originally published in the Journal of Applied Clinical Medical Physics (2017) 

under the title “Single fraction radiosurgery/stereotactic body radiation therapy 

(SBRT) for spine metastasis: A dosimetric comparison of multiple delivery 

platforms”. 
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CHAPTER 1 “OVERVIEW” 

1. Introduction 

Cancer is the second most common cause of death in the United States, 

surpassed only by heart disease, and accounts for nearly 1 of every 4 deaths.  In 

2016 there were approximately 1.7 million new cancer cases diagnosed and about 

600 thousand deaths from this disease in the United States alone1.  Treatment 

options depend on type, location and stage of the cancer and may involve radiation 

therapy, chemotherapy, surgery, hormonal therapy and/or targeted therapy.  With 

about half of all cancer patient receiving radiation therapy, it plays an important role 

in the treatment of cancer and can be used with a curative intent or as a palliative 

treatment to alleviate pain or symptoms.  Due to a combination of improvements in 

early diagnosis and treatment techniques, the 5 year relative survival has been 

steadily increasing over the last few decades.  However, there is still much room for 

improvement in both survival and patient quality of life, and potential future 

improvements from radiation therapy will depend on our ability to better apply and to 

improve our technology and treatment techniques.  This thesis investigates the 

potential improvements possible for a subset of these radiation therapy treatment 

techniques.   

1.1 Radiation Therapy 

Shortly after the discovery of radioactivity by Maria Skłodowska Curie, and its 

ability to kill cancer cells, the first patient was treated with external beam radiation 

therapy.  The applications of radiation to the treatment of tumors have evolved 

tremendously ever since.  Some of the technical innovations include the use of 60Co 
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for teletherapy, followed by the much more complex electron linear accelerator in the 

pursuit of higher energy beams for the ability to treat deep seated tumors.   

Advances in computer technology in the 1970’s and the invention of computed 

tomography (CT), made it possible to image the patient and map the tumor and 

surrounding healthy tissue in 3 dimensions (3D).  At the same time, improvements in 

beam collimation led to the introduction of 3D conformal radiation therapy (3DCRT).  

With the detailed knowledge of the shape and position of the tumor, it was now 

possible to conform the spatial distribution of the prescription dose to the 3D target 

volume, while minimizing the dose to the surrounding healthy organs.  The delivery 

of 3DCRT is typically accomplished with a set of radiation beams positioned at fixed 

gantry angles, which are shaped using a beams eye view of the target volume.  The 

intensity of the radiation beams is usually uniform across the field or may be altered 

by simple fluence modifying devices such as wedges or compensators.  

Subsequently, the introduction of the multi-leaf collimator (MLC),2 largely replacing 

cast blocks for beam shaping, and advancements in dose calculation algorithms, led 

to the introduction of intensity modulated radiation therapy (IMRT).   

1.1.1 IMRT Delivery Techniques 

Intensity modulated radiation therapy is based on the use of optimized non 

uniform radiation beam intensities to deliver highly conformal and uniform dose to 

the target volume while minimizing dose to adjacent normal tissue.  Historically, the 

beam fluence modulation was achieved by compensators, which varied in thickness 

across the plane perpendicular to the central axis.  The limitations of compensators 
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included limited dynamic range of fluence modulation as well as time consuming and 

laborious fabrication of these patient specific devices.   

The first clinical MLC system was the MIMiC collimator which was mounted 

on a conventional linear accelerator as a tertiary collimator.  The beam was 

collimated to a narrow (~ 2cm) slice and the gantry was rotated about the patient in 

an arc mode.  The binary leaves were temporally modulated to vary the beam 

intensity as a function of gantry angle.  Typical treatment consisted of delivering 

several adjacent axial slices.  Due to the serial nature of this delivery, extreme 

accuracy of couch positioning was incredibly important.  Couch positioning errors of 

as little as 1 mm could cause dose errors as high as 20% in the overlap region.3-4 

This approach was initially called tomotherapy which literally means slice therapy, 

but subsequently renamed serial tomotherapy. 

The “Tomotherapy” device proposed by Mackie et al.5-6 used a similar binary 

collimator but delivers helical tomotherapy.  The Tomotherapy machine consists of 

6MV linear accelerator mounted on a ring gantry that rotates around the patient 

while the patient is translated through the bore at constant speed effectively creating 

a helical path of radiation delivery.  The beam is collimated by 64 binary leaves with 

a width of 6.25 mm projected at isocenter, forming a maximum field size in the 

lateral direction of 40 cm.  The leaves are pneumatically driven to either open or 

closed position through 51 “projections” (approximately 7 degrees) of the gantry 

rotation and beam modulation is achieved by varying the time that each leaf is open 

during a projection.  For the inferior-superior direction, a movable set of tungsten 

jaws collimates the width of the fan beam slice to nominal values of 1, 2.5 and 5 cm 
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wide.  More recent models of Tomotherapy machines provide dynamic jaw 

movement, which allows the jaws to move to any position between 0 and 5cm and 

move during the treatment.  Details of this functionality have been described 

previously by Chen et al.7 

Another common technique to produce intensity modulated beam is by the 

use of the conventional MLC.  This type of MLC has a set of leaves on each side of 

the field creating opposing leaf pairs.  The design and shape of the leaves may vary 

from machine to machine, but the principal functions are the same.  Each pair of 

opposing leaves is moved across the field under computer control, with the radiation 

beam on, to produce desired beam modulation.  This type of delivery is termed 

dynamic or sliding window.  Alternatively, beam modulation can be accomplished by 

a series of multiple field segments, called subfields, created by the MLC.  The beam 

is turned off during the leaf motion between the individual subfields.  This method is 

known as step-and-shoot or segmental IMRT delivery.  Another conventional MLC 

IMRT approach, called intensity modulated arc therapy (IMAT), was described by Yu 

et al.8-10 Beam modulation in this approach is achieved by multiple irregular fields 

shaped by the MLC during gantry rotation.  This method required several 

overlapping arcs to attain desired dose distribution.  Otto et al.11 proposed a novel 

aperture-based algorithm to achieve efficient dose delivery in singe dynamically 

modulated arc as opposed to multiple superimposed arcs as in IMAT to achieve 

similar dose distribution with reduced treatment time.   This technique has been 

termed Volumetric Modulated Arc Therapy (VMAT).  VMAT delivery employs 

continuously variable MLC field shape, fluence rate and gantry speed.         
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Finally, an intensity modulated dose distribution can be created by the 

delivery of multiple individual beamlets.  This method was described by Webb12-13 

and is commonly employed using a small x-band linear accelerator mounted on an 

industrial robot.  The beamlet sizes are dependent on the collimation system and 

can range from 5 to 60 mm in diameter and can be circular or 12-sided polygon.  

This type of robotic delivery using a small accelerator allows beamlets to be aimed 

at the tumor from any orientation giving this IMRT delivery method more flexibility 

than any of those previously discussed. 

1.1.2 IMRT Optimization 

All the IMRT delivery techniques described above have in common the ability 

to deliver non-uniform fluence patterns which add up to desired conformal dose 

distributions.  Regardless of the of delivery technique, the optimization of such 

fluence patterns requires significant computational power and is performed using a 

computerized treatment planning system (TPS).  The TPS must be able to create a 

plan which meets the goals of the clinician and these goals are commonly conveyed 

to the treatment planning system as goals or constraints which the TPS attempts to 

meet through a process called inverse treatment planning.  Historically, planning for 

3DCRT was performed in forward planning manner, where beam shape is defined 

by the planner, the dose is calculated and the resulting plan is then evaluated for 

target dose coverage and organs at risk (OAR) dose limits.  Improvements to the 

plan are then performed by changing the geometry of the beam and/or adding beam 

modifiers and new dose distribution is calculated.  The process continues until a 

satisfactory plan is generated.  In inverse treatment planning, the planner specifies 
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the desired outcome and asks the TPS figure out how to achieve that goal.  The 

clinical objectives are commonly specified mathematically in the form of a cost 

function.  The optimization algorithm iteratively adjusts the intensities of all available 

beamlets to minimize the cost function in an attempt to satisfy the constraints set by 

the planner.  Most IMRT optimization systems use dose-volume based criteria and 

commonly use the cost function to minimize the variance between the computed 

dose and the desired dose for each target volume and Organ at Risk (OAR). A 

typical cost function is the sum of the variances for each target and OAR multiplied 

by penalty or weighting factor based on the assigned importance of that structure. 

During IMRT optimization, the dose distribution from each iteration is 

evaluated and used to calculate the cost function before the next iteration can be 

initiated.  Typical treatment plan requires hundreds (for gradient method) to tens of 

thousands (for stochastic method) of iterations to achieve an acceptable results, 

therefore the speed of dose calculation algorithm is extremely important.  Besides 

the speed, the algorithm must also be able to accurately calculate dose in regions of 

complex tissue heterogeneities delivered by conformal beams consisting or small 

beamlets forming steep dose gradients.   

1.1.3 Dose Calculation 

Correction based dose calculation algorithms14-15 do not account for electron 

contamination, transmission through the jaws and MLC, scatter outside the field, 

finite source size and extrafocal radiation generated by the primary collimator. These 

algorithms also lack accuracy in heterogeneous media and are unsuitable for use in 

IMRT dose calculations.  More recent, commercially available dose calculation 
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algorithms that address some of the limitations of the correction based algorithms 

can be divided into two categories: model based and Monte Carlo (MC) based. 

These dose calculation methods are not perfect and still exhibit some limitations in 

accuracy and/or calculation speed, however they have been routinely used in IMRT 

treatment planning.  In order to improve calculation speed without compromising 

accuracy, several attempts have been made to modify the existing calculation 

models while leveraging advancements in computing power.  In 2011, Chen et al. 

presented a novel algorithm for computing collapsed-cone convolution/superposition 

(CCCS) dose on modern graphic processing unit (GPU).16 Results from validation 

and clinical application of this algorithm are presented in chapter 2 of this 

dissertation. 

1.1.4 Prescription Dose and Fractionation 

The mechanical accuracy of external beam therapy machines has improved 

dramatically and sub-millimeter targeting is now achievable.  This presents new 

challenges as well as new opportunities.  For example, the opportunity to see the 

tumor immediately prior to treatment and treat it with high conformity is accompanied 

by the risk of missing the target due to patient or tumor motion.    Once these 

challenges are addressed, delivering highly conformal dose to the target volume will 

result in lower doses to the surrounding healthy organs and lower toxicities.  

Subsequently, the prescription dose, which is usually limited by the OAR toxicities 

can be escalated and potentially offer higher tumor control probability.   

Increasing prescription doses is also possible through fractionation.  Healthy, 

normal tissues and OAR are considered late-reacting tissue cells and have higher 
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propensity for repair than do tumor cells.  By fractionating the prescription dose and 

allowing sufficient time between the fractions for sublethal cell damage repair, the 

healthy tissues will have a higher surviving fraction than the tumor.  Historically, the 

most common fractionation scheme was in 1.8 Gy – 2.0 Gy fractions delivered once 

a day.  The daily separation between the fractions made it not only convenient, but 

also allowed sufficient time for cell damage repair. The fraction size of 1.8 - 2.0 Gy 

was derived from cell survival curves displaying greatest separation between tumor 

and late-reacting normal tissue cells.  

Not all tumors and healthy tissues have the same cell repair characteristics.  

The fractionation sensitivity parameter, α/β, ranges for tumors and healthy tissues 

from 5 Gy to 20 Gy and from 1 Gy to 4 Gy, respectively.  Due to the vast range of 

these values, different fractionation schemes have been proposed and studied.  

Some healthy tissues have very low α/β values and conventional fractional doses 

may not provide optimal therapeutic benefit, thus a hyperfractionated scheme may 

be warranted.  In this scheme, low doses of 1.0 Gy to 1.5 Gy are delivered twice or 

even three times a day for a total dose that is higher than in conventional 

fractionation regimen.  The situation is the opposite for tumors with low α/β ratios, in 

which case hypofractionation may be desirable.  Patients treated with this 

fractionation regimen receive lower prescription dose delivered in a smaller number 

of large fractions typically separated by 2 or more days.  All the fractionation 

schemes depend on the accurate knowledge of the α/β ratios, and their efficacy can 

only be confirmed by clinical trials. 
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1.2   Statement of the Problem  

With the advancements in IMRT dose calculation algorithms and treatment 

delivery methods it is now possible to apply this new technology to challenging 

clinical cases such as total marrow irradiation (TMI) and stereotactic radiosurgery 

(SRS).  The conditioning regimen for bone marrow transplantation (BMT) has 

historically included irradiation of the bone marrow, and total body irradiation (TBI) 

has been employed because the technology was not mature enough to allow 

treatment of the bone marrow only.  TBI treatments have traditionally been delivered 

at extended distances due to radiation field limitations, and dose calculations were 

done very simplistically as most commercial planning systems are not designed to 

handle such calculations at extended distances.  The introduction of Tomotherapy 

machine has overcome some of these limitations.  The capability of treating up to a 

160cm target in the longitudinal direction eliminates the need for treatment at an 

extended distance and/or field matching as it would be required when using 

conventional C-arm linacs.  With IMRT, it is possible to target the marrow and spare 

OARs with what is now known as Total Marrow Irradiation (TMI).  As would be 

expected the very large structures and dose calculation volumes for TMI result in 

significantly larger optimization and dose calculation times for the treatment planning 

system.  This limitation has now been addressed with the introduction of a novel 

Graphics Processing Unit (GPU)-based dose calculation and optimization algorithm.  

The first stage of this work was to evaluate the accuracy and efficacy of 

Tomotherapy’s GPU-based TPS system for the treatment of TMI (Chapter 2) and 

further compare the plan quality and planning efficiency with plans created using the 
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Varian Eclipse TPS (Varian Medical Systems Inc, Palo Alto, CA) using VMAT 

(Chapter 3).   

The process of treatment planning for TMI cases is not without significant 

challenges.  Due to the extremely large target volume, the optimization parameters 

routinely used for other clinical sites are not optimal for TMI plans.  Some of the 

parameters cannot be used to their full extent due to either machine limitations or 

treatment plans resulting in excessive beam-on times.  To address these challenges, 

a comprehensive planning guide for TMI treatments was developed (Chapter 4). 

Before the introduction of dynamic jaws, all the Tomotherapy plans resulted in 

excessive dose spillage in the superior and inferior direction outside the target 

volume.  This issue was especially concerning for small targets and targets abutting 

critical structures located superiorly or inferiorly to the target.  In order to lessen this 

effect, smaller filed sizes were typically used, which resulted in improved plans, but 

at the expense of longer beam-on time.  Dynamic jaws were designed to limit the 

dose spillage and improve the beam-on time without sacrificing plan quality. The 

goal for this part of the study was to determine whether there are significant 

differences in planning and delivery capabilities of Tomotherapy as compared to 

other delivery platforms within the context of RTOG 0631 radiosurgery/SBRT trial 

(Chapter 5). 

Currently there is no consensus on the optimal fractionation and conditioning 

regimen for BMT treatments.  Published results from clinical trials show vast 

differences in treatment methods.  These differences include the use of different 

chemotherapy agents, some of which have a synergistic effect with radiation. 
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Differences in the TBI component alone include differences in the prescription 

doses, number of fractions used, frequency of radiation delivery, dose rates, and 

amount and method of lung shielding. The final goal of this research was to evaluate 

historical published data and, through the use of current radiobiological data and 

modeling, propose new fractionation schemes for TBI/TMI treatments that may be 

expected to be clinically and/or logistically superior to current schemes (Chapter 6). 
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CHAPTER 2 “GPU AND CPU BASED DOSE CALCULATION ALGORITHMS” 

2.1 Introduction 

Bone marrow transplantation (BMT) is commonly accompanied with 

radiotherapy in the form of total body irradiation (TBI). The TBI serves as a 

conditioning regimen and helps with immunosuppression in patients undergoing 

hematopoietic cell transplantation17.  Previous randomized trials have shown 

excellent outcome using TBI as a conditioning regimen18-20.  Higher TBI doses of 

15.75Gy have also been shown to reduce post-transplant relapse rates in patients 

with chronic and acute myeloid leukemia21-22. However, higher doses did not 

improve overall survival due to increased incidence of Graft vs. Host Disease 

(GVHD) and excessive toxicity to organs at risk (OAR) such as lung and liver at 

these dose levels. 

  With the advancement of intensity modulated radiation therapy (IMRT) it is 

now possible to deliver a more targeted form of total body irradiation termed total 

marrow irradiation (TMI). Several institutions have published feasibility studies using 

fixed angle IMRT23, Volumetric Modulated Arc Therapy (VMAT)24-27 and Helical 

Tomotherapy (HT)28-31 techniques.  The objective of the different approaches is to 

deliver the prescription dose to the target volume and spare normal organs.  All 

three IMRT methods were able to deliver the prescription dose while reducing doses 

to OARs by ~30% to 80%23-31.   

  Each delivery technique has some disadvantages.  Fixed angle IMRT and 

VMAT techniques require multiple isocenters to cover the entire treatment volume.  

Each isocenter may require 7-9 static fields or 2-3 arcs for IMRT and VMAT 
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respectively to achieve adequate coverage and OAR sparing. The patient has to be 

repositioned for each isocenter which may compromise intended dose distribution in 

the area of field overlap.  Helical delivery is well suited for treatment of longitudinally 

large fields since field matching in critical areas is eliminated. The additional time 

required for patient repositioning on C-arm linac based systems adds to total 

treatment time, although the beam on time for VMAT is much shorter as compared 

to HT27.  A common weakness for all three planning techniques is the optimization 

and dose computation time.  Han at al.27 reported planning times of about 5 hours 

for eight arc VMAT plans using an Eclipse v8.6 (Varian Medical Systems Inc, Palo 

Alto, CA) planning station using 8 Intel Xeon CPUs at 2.5Ghz with 4 GB of memory.  

The planning time from our TMI study on the TomoTherapy (Accuray Inc, 

Sunnyvale, CA) Hi-Art v4.2 CPU station was about 10 hours utilizing 14 nodes of 

quad core Intel Xeon CPUs at 2.8 GHz with 2GB of memory. 

  Recently, Lu32 has developed a non-voxel-based broad-beam (NVBB) 

framework for optimization and dose calculation.  This system has been 

incorporated in the TomoTherapy planning system utilizing a single workstation with 

one graphical processing unit (GPU) card.  In this study, we compared TMI 

treatment plans between CPU and GPU systems in terms of plan quality and total 

calculation and optimization time.  

2.2 Methods and Materials 

In this study we used an anthropomorphic Rando (The Phantom Laboratory, 

Salem, NY) phantom to create TMI treatment plans with CPU and GPU based dose 

calculation engines.   The computed tomography (CT) images of the phantom were 
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acquired on a large bore Somatom Sensation CT simulator (Siemens, Malvern, PA) 

with 60 cm field of view.  A CT scan was acquired with 5mm slice thickness of the 

entire phantom which does not include upper extremities and ends inferiorly in the 

mid-femur region.  Since the phantom does not have arms, two acrylic cylinders 

filled with water were placed on each side of the phantom to mimic the patient’s 

arms.  In a clinical setting, TMI patients are treated with intensity modulated beams 

from the top of the skull to mid femur and the rest of the lower extremities are treated 

on a conventional linear accelerator with abutting anterior-posterior (AP) and 

posterior-anterior (PA) beams.  Treating the entire patient on the Tomotherapy unit 

is prohibitive due to the limitation of the machine’s longitudinal couch movement.  In 

order to complete the treatment on the tomotherapy unit, a second treatment plan 

would have to be created with the patient simulated in the feet-first position.  

Additional planning, QA, setup and relatively long beam-on-time would be required 

for a site that may not benefit from intensity modulation as there are no critical 

organs at risk in the lower extremities.  Utilizing an AP/PA technique, dose delivery 

and calculation is greatly simplified, and the patient is set up such that the superior 

border of the lower extremity fields matches the inferior border of the Tomotherapy 

treatment.  The CT data was exported to Eclipse (Varian Medical System Inc., Palo 

Alto, CA) treatment planning system for contouring.   

Three different planning target volumes (PTVs) were created. Delineations of 

the PTVs were based on experience from centers currently treating total marrow 

with intensity modulation28,30,33.  PTV1 consisted of all skeletal bone. Since the area 

of interest here is the marrow, contouring the bone provides the necessary margins 



15 
 

 
 

for setup uncertainty.  PTV2 included the skeletal bone with additional 5 mm 

margins.  PTV3 included all skeletal bone with 5 mm margins only on femurs and 

ribs.  Also, the mandible was excluded from the PTV3 to limit dose to the oral cavity.  

The locations of normal organs were approximated by overlaying the images of the 

Rando phantom with a template image set.  While several organs at risk were 

contoured, only the following five major organs were used in optimization and plan 

evaluation: lungs, liver, kidneys, heart and brain.  The CT sets along with contours 

were then exported to the TomoTherapy Hi-Art v4.2 treatment planning system for 

CPU planning and a research treatment planning workstation for GPU planning. 

There were five different treatment plans created.  The plans differed from 

each other not only by the PTV volume chosen for optimization, but also by different 

optimization parameters and machine settings.  Among the machine parameters 

varied in the planning process were longitudinal field width, pitch and modulation 

factor.  The user has three options of field width selection: 1 cm, 2.5 cm and 5 cm. 

Since the contoured volumes are very large in the longitudinal extent, only 2.5 cm 

and 5 cm field widths were evaluated.  The pitch is defined as the fraction of the field 

width that the treatment couch moves in the longitudinal direction during one gantry 

rotation.  The pitch was selected to minimize the thread effect34 and provide a good 

compromise between plan quality and treatment duration.  The initial modulation 

factor was chosen to be either 2 or 2.5 which represent typical values used clinically.  

The modulation factor is defined as the ratio of the maximal open time of any MLC 

leaf to the average leaf opening time for all non-zero leaf opening times.  Table 1 

lists the key parameters for each of the five plans.   
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Plan Field   Mod. Actual Mod. PTV*  
# Width Pitch Factor Factor (CPU, GPU) Set 
1 2.5 0.43 2 (1.761, 1.699) PTV1 
2 5 0.287 2 (1.735, 1.691) PTV2 
3 5 0.287 2 (1.728, 1.677) PTV1 
4 5 0.287 2.5 (2.139, 2.076) PTV2 
5 5 0.287 2.5 (2.176, 2.121) PTV3 

Table 1. Summary of plan parameters. *PTV1 - skeletal bone only, PTV2 - 5 mm 
expansion, PTV3 - 5 mm expansion on Ribs and Femurs only 

 

The prescriptions for all plans were set to 12 Gy and “normal” calculation grid 

was used for dose calculation.  The plans were generated to ensure that 95% of the 

PTV received the prescription dose. Several variations of optimization parameters 

were used to create the plans.  The parameters were set at the beginning of the 

optimization and were not adjusted during the optimization process, which consisted 

of 100 iterations. This process eliminated user dependency of optimization outcome. 

All five plans were optimized and calculated with the same parameters on the CPU 

based planning station and the new GPU based research station.  The new GPU 

system utilizes the TomoHD v136 treatment planning station running on a single 

workstation with quad core Intel i7 CPU at 3.07 GHz and NVIDIA GTX470 graphic 

card. The details of the GPU based dose calculation algorithm were published 

recently by Lu at al.32 and Chen at al.16. 

The plans were evaluated based on D50 and D80 (dose to 50% and 80% of 

the OAR volume, respectively).  The percentage of target coverage by the 

prescription dose is considered a hard constraint in the planning system; therefore 

all PTVs received 12 Gy to 95% of their volumes.  The PTVs were then assessed 

based on V13.2 (volume of PTV receiving at least 13.2 Gy (110% of the 
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prescription)).  A gamma (Γ) analysis35 was performed to compare axial planes 

transecting the OARs calculated by each dose engine.  The two dimensional dose 

distributions were extracted from the plans and exported to RIT software for gamma 

analysis (RIT, Colorado Springs, CO).  The dose planes were exported via the 

Eclipse (Varian Medical Systems, Palo Alto, CA) planning system where the 

matrices were resampled by linear interpolation to 0.5mm resolution. The gamma 

analysis represents the percentage of pixels that agreed within 3% dose difference 

and/or 3mm distance to agreement. Finally, the planning process for the two dose 

engines was evaluated by comparing optimization and dose calculation time as well 

as changes in beam-on time duration between the two systems.   

2.3 Results 

The differences in the OAR doses from CPU based plans and corresponding 

GPU based plans were calculated as a percentage of the prescription dose and are 

summarized in Table 2.  Since all the plans used different machine settings and 

optimization parameters the results are presented by evaluating each plan 

individually.  All D80 and D50 parameters vary by less than 3% of the prescription 

dose with an average difference of 0.8%.  The differences in V13.2 for the PTVs 

were under 3.5% with an average of 1.9% for the five plans.  The average dose 

values for all the CPU and GPU plans for D50 and D80 are as follows: Lung 7.6Gy 

and 6.2Gy, Liver 5.5Gy and 4.6Gy, Kidneys 5.2Gy and 4.6Gy, Heart 5.0Gy and 

4.4Gy, Brain 7.2Gy and 3.6 Gy.  The average PTV volume receiving 13.2Gy 

between all the plans was 2.6%.  The Γ(3%, 3mm)<1 analysis results are presented 
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in Table 3. All of the dose planes satisfied the 90% criterion with an average 

agreement of 97%.  

 
PTV Lungs Liver 

Average 
Kidneys 

Heart Brain 

Plan V13.2 (%) D50 D80 D50 D80 D50 D80 D50 D80 D50 D80 

1 -0.98 -1.8% 1.3% 0.1% 3.4% 0.5% 0.4% 1.6% 2.9% -0.4% 1.5% 

2 -3.17 -1.4% -0.9% 0.0% 1.3% 0.1% 0.5% 1.9% 2.3% -0.1% 0.7% 

3 -0.99 -1.0% -0.9% -0.3% 1.8% -0.2% 0.1% 2.2% 2.8% -0.1% 0.9% 

4 -3.43 -2.2% -1.7% -0.1% 1.3% 0.1% 0.5% 0.6% 0.5% -0.1% 0.7% 

5 -0.98 -1.5% 0.1% 0.7% 2.4% 0.2% 0.2% 2.7% 2.3% -0.3% 1.1% 

Table 2.  Difference in dose relative to 12 Gy.  Formula: (GPU-CPU)*100/12Gy. 

 

Plan Voxels satisfying Gamma Γ(3%, 3mm)<1 GPU vs CPU (%) 

# Lungs Liver Kidneys Heart Brain 

1 95.1% 93.7% 99.2% 92.3% 96.4% 

2 98.5% 97.4% 99.1% 97.1% 95.4% 

3 98.8% 99.1% 99.6% 97.5% 98.8% 

4 91.7% 97.4% 97.6% 97.1% 98.6% 

5 96.1% 92.1% 99.9% 95.5% 99.9% 

Table 3.   Gamma Γ(3%, 3mm)<1 analysis results.  

 

The total optimization and dose calculation times are shown in Table 4.  Total 

times include beamlet calculation, optimization of 100 iterations, full dose calculation 

and final dose calculation for the CPU system. The GPU system does not require 

pre-calculation of the beamlets, therefore total time includes optimization of 100 

iterations, full dose and final dose calculations. The average time for the CPU based 

system was 579 minutes compared to 26.8 minutes for the GPU system.  This 

represents greater than a twentyfold reduction in treatment planning time.  There 

was no difference in calculated delivery times between the two systems.  Beam-on 

time varied based on field width and pitch and ranged between 15min and 28min. 
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             Optimization/dose calculation time (min) 
 CPU GPU 

Plan Beamlet Optimization Final 
dose 

Total 
time 

Optimization Final dose Total 
time 

1 468 105 12 585 26.0 0.5 26.5 
2 453 120 9 582 27.3 0.6 27.9 
3 448 126 11 585 27.0 0.5 27.5 
4 471 111 9 591 27.4 0.6 28.0 
5 457 83 12 552 23.5 0.5 24.0 
   Average 579  Average 26.8 

Table 4.  Optimization/dose calculation time. 

 

2.4 Discussion 

In this study we investigated the plan quality and planning time characteristics 

of dose calculation using the new TomoTherapy GPU based dose calculation 

system and its application in total marrow irradiation.  A recent publication36 has 

validated the new GPU system for use with smaller target volumes with excellent 

results, however similar studies have not previously been performed for very large 

target volumes.  There were very small differences in the quality of plans calculated 

with the GPU based system as compared to CPU based system.  These differences 

could be attributed to the gradient descent nature of the optimization algorithms and 

fixed number of iterations that may stop the process at a slightly different solution 

each time.  Gradient descent techniques are relatively fast, but are susceptible to 

getting stuck in local minima.  Although optimization parameters such as the pitch, 

field size, PTV and OAR constraints, numbers of iterations, etc. entered by the 

planner were identical for plans calculated in both CPU and GPU based planning 

systems, the algorithms are fundamentally different.  The CPU system uses voxel-

based beamlet-superposition optimization framework whereas GPU system uses 

non-voxel-based broad-beam framework, where the objective function and derivative 
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are evaluated on continuous view point.  This eliminated time consuming pre-

calculation and storage of beamlets.  The details of the algorithms were described 

by Lu.32 In addition to the differences in the optimization algorithm, the new GPU 

system uses a novel collapsed cone convolution/superposition CCCS algorithm 

presented by Chen at al.16 which uses tabulated and exponential kernels and takes 

full advantage of the parallel nature of the GPU.  This algorithm uses CCCS for 

accurate dose calculation for one every ten iterations followed by Fluence-Map 

Convolution Broad Beam (FCBB) calculation for the remaining iterations.  The FCBB 

calculates approximates 3D dose by 2D fluence map convolution with 1D ray 

tracing, resulting in orders of magnitude faster calculation than CCCS alone. The 

algorithm uses beam’s eye view coordinate system and is also capable of direct 

treatment parameter optimization.  These differences in the optimization and 

calculation algorithms are most likely the cause for differences in the treatment plan 

quality given the same optimization parameters. 

This treatment site is likely to benefit the most from the use of the GPU dose 

engine since the average computational time is over 9 hours with the current cluster-

based CPU system.  In centers with only one CPU system, the time consuming 

planning of TMI cases can significantly inhibit other clinical work on that system. The 

introduction of GPU architecture in the TomoTherapy planning system will make the 

transition from conventional TBI to TMI treatments more feasible by preserving 

valuable clinical computational resources and providing more flexibility for QA and 

patient start times.   The tremendous increase in planning speed provided by GPU 
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planning would also be extremely useful for potential future implementation of 

adaptive radiotherapy involving on-line replanning. 

This study did not investigate the differences in delivery accuracy of the two 

systems as the GPU system was dedicated only for research and transferring GPU 

plans to our clinical Tomotherapy unit was not possible.  Our prior work on 

commissioning TMI using the CPU based system resulted in delivery accuracy 

similar to all other clinical cases treated on Tomotherapy. Our QA criteria are +/-3% 

for two absolute point dose measurements with small volume ion chambers and 

Γ(3%, 3mm)<1 for >90% of points in a film plane dose distribution. 

Other groups23-27 have studied the use of IMRT and VMAT for TMI.  

Dosimetrically, all of these intensity modulated methods are comparable and offer 

significant improvement in normal organ sparing over traditional TBI treatments.  All 

intensity modulated approaches for treatment of total marrow have some limitations.  

With the larger apertures available from a C-arm linac system, the prescription dose 

can be delivered using VMAT in about half the time27 it takes HT to deliver the same 

dose to a region covered by a single VMAT arc.  However, this advantage is lost 

when comparing total treatment time and not just beam-on time since the linac 

based treatments require several treatment plans to cover the entire target volume.  

The patient has to be repositioned for each isocenter, thus prolonging the total 

treatment delivery time.  Other groups27 have reported limitations on the number of 

total arc degrees when using Volumetric Modulated Arc Therapy (VMAT) for large 

target volumes.  The limitation on total arc degrees will affect the plan quality as only 

one arc can be used in a particular section of the PTV in order to cover the entire 
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treatment volume.  In clinical practice, for other treatment sites, we typically use at 

least two full arcs to achieve good plan quality.  As mentioned in the methods and 

materials section, the portion of the PTV below the mid femurs is treated without 

intensity modulation and simple AP-PA treatment is usually sufficient.  Our 

Tomotherapy system does not have the capability to treat static beams.  Our two 

options are to transfer the patient to a C-Arm linac for the remainder of treatment or 

reposition the patient to feet-first setup and continue the treatment on Tomotherapy.  

Both options add time and uncertainty to the treatment.  The former option requires 

scheduling and transferring the patient to two machines. The latter option adds 

significantly to beam-on time.   

2.5 Conclusions 

We have presented dosimetric and computational results of the GPU based 

TomoTherapy planning system for Total Marrow Irradiation and compared them to 

similar results using the traditional CPU system. The agreement of dose distributions 

calculated with these two systems using the same targets and optimization 

parameters is excellent.  The GPU dose calculation engine overcomes the 

significant time constraint limitations that have been associated with creating 

treatment plans for large target volumes, as it can calculate the plans in fraction of 

time of the traditional CPU system without degradation in plan quality. 
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CHAPTER 3.  “DOSIMETRIC EVALUATION OF TOTAL MARROW IRRADIATION 
USING TWO DIFFERENT PLANNING SYSTEMS”. 

 
3.1 Introduction 

Total Marrow Irradiation (TMI) is an advanced version of an existing radiation 

therapy treatment method called Total Body Irradiation (TBI).  TBI is a radiation 

treatment and conditioning regimen used prior to a bone marrow transplant (BMT).37-

39 Results from previously published randomized trials have demonstrated excellent 

outcome from the use of TBI before hematopoietic cell transplants.18-20 Dose 

escalation has proven to reduce post-transplant relapse rates with chronic and acute 

myeloid leukemia,21,22 however, due to excessive toxicity to OARs, the overall 

survival did not improve.   

Due to the field size limitations on a standard C-arm linear accelerator at 

standard treatment distances, TBI treatments are often delivered at extended 

distanced with (anterior-posterior) AP/PA or bilateral techniques.  These techniques 

traditionally deliver a relatively uniform prescription dose to the entire patient 

including all organs at risk (OARs).  The exception to this is that for higher doses 

and multi-fraction schedules, lung blocks are often used to reduce dose to the lungs. 

Lungs are the critical organs at risk, with pneumonitis being a major cause of 

complications after TBI treatments.  One key study by Volpe, et al.40 established a 

threshold mean dose of about 9.4 Gy to the lungs from TBI treatment, beyond which 

a significant increase in post BMT mortality exists. 

With the advancement of intensity modulated radiation therapy (IMRT) it is 

now possible to deliver a therapeutic radiation dose to bone marrow while 
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significantly reducing the dose to all healthy organs for patients undergoing 

hematopoietic cell transplantation.17,23,25-27,31 However, the attempt to conform the 

dose distribution to the marrow only results in a relatively complicated planning 

process which is quite dependent upon the particular TPS and delivery method 

used.  In this study we report quality and efficiency of TMI plans created on two 

different treatment planning systems for two different delivery modalities using the 

same phantom and structure set. 

3.2 Methods and Materials 

3.2.1 Phantom and contouring 

The patient used for this study was the Rando phantom (The Phantom 

Laboratory, Salem, NY), which represents the full human body, except for the 

extremities.  This anthropomorphic phantom has a human skeleton embedded in 

material that mimics soft tissue. There are also air cavities and low density materials 

in the lungs to approximate the heterogeneities of a human body.  The Rando 

phantom was placed in an immobilization device and simulated in the same manner 

as a TMI patient, including a CT scan of the entire length of the phantom with 5mm 

slice thickness.  As is common in TMI,27 the PTV extended from the most superior 

part of the skull to mid-femur.  Since there are no critical OARs caudal to mid-femur, 

the lower extremities are treated without IMRT using abutting AP/PA fields.   

The CT image set was transferred to the Eclipse (Varian Medical Systems Inc, Palo 

Alto, CA) TPS for contouring.  All bony structures surrounding marrow were included 

in the CTV, with the exception of the mandible, which is not a part of marrow forming 

skeleton.  For the ribs and femurs the PTV was created with 5mm margin.  There 
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was no margin used for all the other bones because CTV is the bone but the target 

is the marrow.  The OARs considered in this study and contoured on the CT image 

included brain, heart, lungs, liver, kidneys, and small bowel. Since these structures 

do not exist in the phantom, they were contoured based on an atlas to approximate 

the size, shape and location of the organs in the Rando phantom.  

3.2.2 Modality and plan objectives 

The Eclipse TPS was used to create a TMI plan using VMAT (Rapid Arc) 

delivery on a Varian iX treatment unit. The CT data set and contours were also 

exported to the VoLO TPS and used to create a helical tomotherapy treatment plan 

on a TomoTherapy Hi-Art treatment unit.  The two planning systems use different 

optimization schemes and different objective function definitions, which makes it 

difficult to set the same planning objectives. Also, the dose delivery methods are 

quite different.  In RapidArc mode, Varian uses volumetric arcs modulated by MLCs 

and stationary couch, whereas TomoTherapy uses helical delivery with binary MLCs 

and continuously moving couch.  The objectives for both treatment planning systems 

were to deliver 1200cGy in 8 fractions to 95% of the PTV and minimize mean dose 

and D10 to OARs. Experienced planners created the treatment plans using planning 

parameters that are commonly used in our clinic as described below. 

3.2.3 TomoTherapy Planning 

Tomotherapy delivery for long treatment fields such as TMI is easier than for 

conventional C-arm linacs since there is no field matching.  The couch movement 

through the bore during delivery allows the entire treatment to be delivered in one 

session as opposed to the multiple sets of fields required for treatment using 
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conventional linacs.  As a result, the Tomotherapy planning in this study was much 

more straightforward than that for Eclipse. 

Many plans were optimized during this study to evaluate the effects of 

variations in field width, pitch, and planning modulation factor (MF) necessary to 

yield a good plan.  Each of these three parameters had only 2 values, and 

represented the most commonly used parameter in our clinic.  Field width was either 

5 cm or 2.5 cm.  Pitch was either 0.287 or 0.430.  Modulation factor was either 2.0 or 

2.5.  The final plan used for this study had parameters of 5cm field width, pitch of 

0.287 and modulation factor or 2.5.  

3.2.4 Eclipse Planning 

The Eclipse portion of the study used Varian Eclipse version 8.9 and was 

planned for a Varian iX linac with Millennium 120 Multi-Leaf Collimator (MLC).  This 

MLC system has 1 cm leaves in the outer portion of the field and 0.5 cm leaves in 

the inner 20 cm of the field.  The optimizer in Eclipse was the Progressive 

Resolution Optimizer (PRO) version 2, which allowed a total beam angle across all 

arcs in one plan of 1500 degrees (just over 4 full arcs). 

Initial plans primarily focused on optimizing the full PTV with either three or 

four full 360° RapidArc arcs.  Each beam had its own isocenter, and the beams were 

arranged to overlap each other on the superior/inferior edges.  Although some three-

arc plans were successfully completed, the three overlapping arcs were found to be 

insufficient to provide good homogeneity within the PTV.   Unfortunately, when 4 full 

arcs were used, the software reached the limit of 1500 degrees per plan and with the 
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very large PTV size; the computational power needs exceeded what was available in 

our workstation.   

Due to these existing software and hardware limitations, the single large PTV 

was divided into four separate PTV's of roughly equal size. PTV1 covered the head 

and neck, PTV2 covered most of the thoracic region, PTV3 covered from about the 

top of the liver to mid-abdomen, and PTV4 covered from about mid-abdomen to 

about mid-femur.  With the single PTV broken into four sub-PTV’s, it was then 

possible to optimize to each PTV individually, thus avoiding the intensive 

calculations necessary to optimize the entire body all at once. 

Two arcs were used for each sub-PTV with initial isocenter placement in the 

middle of each volume along a longitudinal line that would avoid lateral and vertical 

patient positioning shifts when going from one isocenter to the next. This approach 

used two arcs targeting each sub-PTV, with one rotating counter-clockwise, and the 

other rotating clockwise.  This double arc set-up produced better plan quality than 

using only a single arc. Optimization was typically done first on the PTV2 plan in the 

thorax.  The dose was calculated and the plan saved.  Next, PTV1 was optimized 

using the dose from PTV2 as a "base dose" (an Eclipse term).   The base dose is 

the final calculated dose distribution from the PTV2 plan which is brought into the 

PTV1 optimization and is "seen" by the optimizer as existing dose.  Thus the 

optimizer only needs to place dose where no dose already exists, yielding a smooth 

junction between PTV's.  The process continued like this, optimizing with previous 

dose distribution and then calculating the dose for the new PTV.  PTV2 was usually 

first, followed by PTV1, then PTV3 and finally PTV4. The result of these plans was a 
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single plan with eight total beams consisting of four pairs of co-isocentric RapidArc 

beams. 

Several collimator rotation angles were tested.  With the maximum field size 

of 40cm in the longitudinal direction and 16cm in the lateral direction (with collimator 

at 0°), the degree of collimator rotation had significant implications on PTV coverage 

singe the distance between the isocenters was larger than the maximum 16cm field 

width. The arc overlap is necessary to create smooth dose transition between the 

sub-PTVs. With the collimator at 0° there was ample overlap between the beams but 

this geometry failed to provide "tangential" beamlets, which are critical in getting 

dose to structures such as the ribs without overdosing the underlying OARs, such as 

the lungs.   An analysis of this "rib problem" is shown below in figure 1.  Increasing 

the collimator to 45° provided sufficient overlap region to give smooth dose 

distribution between the sub-PTVs, and fairly good but not excellent PTV coverage 

due to some parts of the PTV missing that “tangential” beam.  Finally, rotating the 

collimator to 90° provided excellent lateral coverage but the fields as designed were 

not long enough to overlap with each other as shown in figure 2a. To remedy the 

overlap regions, a carriage shift between the co-isocentric arcs was implemented to 

allow the entire PTV coverage. A schematic of this beam setup is shown in figure 2c. 
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Figure 1.  A schematic of the "rib problem".  Both images show a RapidArc beam at 
two different gantry angles.  Although zero collimator rotation (1a) appears to have 
good coverage, it is too narrow to allow any "tangential" beamlets to the ribs.  Any 
dose to the ribs must also pass through the lungs.  Image (1b) is an example of 90° 
collimator angle, showing how the much wider beam provides excellent access to 
tangential beamlets through the ribs, which avoid the lungs. 

 
Figure 2.  Eight arcs shown in three configurations.  a) with a collimator rotation of 
90°, showing lack of overlap with adjacent fields,  b) with a collimator rotation of 45°, 
showing both good coverage and  good overlap.  (Note that the white areas of the 
body are fully covered as the arcs rotate around the body.)  c) with a 90° collimator, 
but with the beams moved asymmetrically (fields are shown offset left and right for 
clarity).

1a  1b 

(a)  (b) (c) 
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3.3 Results 

Both Eclipse and VoLO plans were normalized to deliver 1200 cGy to 95% of 

the PTV, and evaluated for mean, maximum and D10 PTV doses as well as mean 

dose and D10 to OARs. 

3.3.1 PTV Analysis 

The TomoTherapy plan resulted in superior coverage of the PTV, with a very 

steep DVH curve, increasing only about 100 cGy from the D95 level to the D10 level 

(figure 3).  The Eclipse plan compared favorably with the Tomo plan, but was slightly 

"hotter", increasing about 156 cGy from D95 to D10.  The max doses (table 5) differ 

by 76cGy between the two plans, with 1465 and 1541 cGy for TomoTherapy and 

Eclipse, respectively. 

 
Figure 3.  Doses to PTV, Lung and Small Bowel. 



31 
 

 
 

 D95 Mean Dose D10 Max Dose 

TomoTherapy 1200 1268 1297 1465 

Eclipse 1200 1284 1356 1541 

Table 5.  Dose to PTV, in cGy. 

 

3.3.2 OAR Sparing 

The results of the critical OAR sparing for the two planning systems are 

presented in figures 3 to 5. The mean dose and maximum doses of all OARs 

considered are shown in table 6. The mean dose and D10 to every OAR was 

between 3% to 52% lower for the TomoTherapy plan, with the exception of the small 

bowel, where the Eclipse plan was slightly better. 

 
Figure 4.  Heart and Brain DVHs. 
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Figure 5.  Kidney and Liver DHVs. 
 

Due to its important role in post-BMT toxicity, the primary OARs considered in 

this study were the lungs.  The right and left lungs were considered as a single 

structure for dose analysis.  The mean dose to total lung in the TomoTherapy plan 

was 677 cGy, compared to 864 cGy for Eclipse. It is worth noting that both the 

TomoTherapy and Eclipse plans are below the ~9.4 Gy mean lung dose threshold 

discussed in the Volpe et al.40 paper. 

  
Lung Brain Heart Liver Small Bowel Kidneys 

Mean D10 Mean D10 Mean D10 Mean D10 Mean D10 Mean D10

Tomo 677 1045 723 1146 294 446 496 643 558 690 345 492 

Eclipse 864 1185 1188 1311 489 637 762 973 548 713 720 877 

Difference 22% 12% 39% 13% 40% 30% 35% 34% -2% 3% 52% 44% 

Table 6.  OAR doses in cGy.  Difference shown as (Eclipse-Tomo)/Eclipse. 
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3.3.3 Treatment Planning Time 

Although the time required to create a TMI plan would vary considerably 

based on both the skill of the planner and the speed of the computer used, an 

attempt was made in this study to track time spent on various tasks.  These results 

are given as information for those planning to implement or study TMI in order to 

give a broad idea of times that may be required.   

This process of optimization and dose calculation is from the conclusion of 

beam placement, prescription selection and selection of all optimization parameters 

to the conclusion of all dose calculation steps.  Only software optimization and dose 

calculations times were therefore evaluated. Other tasks that are user dependent 

are not included in the results.  The times are reported for the final plans created by 

each system. 

Final computation time for Tomotherapy which consisted of optimization time 

and final dose calculation time was 0.9 hours. The optimization time took the 

majority of the computational time. The optimizer was run until there was no further 

visual improvement of the DVH with additional iterations.  The objective functions 

were chosen by trial and error to achieve a plan with lowest PTV hot spots and 

lowest OAR doses. 

The Eclipse final plan consisted of four separate plans.  Each sub-plan was 

optimized several times to minimize hot-spots in the overlap regions. The final 

computation times, including optimization and dose calculation for the four plans was 

3.8 hours.  

 



34 
 

 
 

3.3.4 Beam-On Time 

In a simplified case, beam-on time would only be dependent on machine 

output (dose rate) and fraction size (dose).  Beam-on time increases with dose and it 

is inversely proportional to the dose rate.  In the Varian system the dose rate is 

variable and during beam delivery the dose rate is adjusted based on MLC and 

gantry position (in RapidArc mode). The more modulated (complex) the plan the 

lower the dose rate due to maximum MLC leaves speed limitations.  In our study the 

dose rate varied between 200-300 MU/min, effectively delivering each arc in 

approximately 76 seconds for the total of 608 seconds.  The dose rate of 

Tomotherapy is fixed at approximately 860 MU/min. Beam-on time in Tomotherapy 

is dependent on gantry speed, field size and the pitch.  Despite higher dose rate, 

TomoTherapy’s maximum field size is limited to 5cm in the longitudinal direction as 

opposed to up to 40cm for Varian, and due to the helical delivery mode with pitch of 

0.287 the beam-on time was much longer at 1148 seconds.  Older Tomotherapy 

systems were reported52 to have problems with dose rate constancy which would 

affect final dose delivered to the patient.  Our unit is equipped with a Dose Control 

Servo (DCS) system which keeps the output rate steady at 860 MU/min. 

3.4 Discussion 

The TomoTherapy TPS was able to achieve the best PTV coverage and 

superior sparing of most OARs. The helical nature of TomoTherapy delivery along 

with 40cm lateral field size allows the beam to enter from any angle and cover the 

entire PTV in the lateral direction.  With pitch of 0.287, every voxel of the PTV “sees” 

the entry beam over 3 times. In a conventional C-arm gantry linac, the same voxel 
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will only “see” the entry beam once per arc. Tomo plans therefore result in more 

homogeneous dose distribution in the PTV and lower doses to the OARs due larger 

solution space available to the optimizer.  

The differences in the plan quality are presented here for one case only and 

are meant to show general differences between the modalities and their respective 

treatment planning systems.  Individual results of the OARs will be strongly 

dependent on optimization parameters chosen, their weights and priorities.  

Individual planning skillset as well as clinical practice will also influence final 

planning results.   Even if it was possible to set the same optimization objectives 

between the two modalities, the plan differences would still exist due to different 

calculation algorithms.  Eclipse TPS uses analytical anisotropic algorithm (AAA) and 

Tomotherapy utilizes collapsed cone convolution superposition (CCCS) algorithm for 

dose calculations.  The AAA is pencil beam like superposition algorithm that uses 

only analytical functions for calculations.  It makes assumptions that the dose at any 

given point is the sum of contributions of a depth dependent and a lateral part.  In 

heterogeneous tissue the beamlet attenuation and lateral energy kernel are scaled 

based on “equivalent path”. The CCCS is volume based algorithm where primary 

energy is convolved with polyenergetic kernel that describes the energy spread of 

secondary particles and accounts for the lateral transport of energy.  In 

heterogeneous media, the kernels are scaled using mass stopping power ratio and 

mass attenuation coefficient ratio. Both algorithms have been extensively studied 

and compared to the “gold standard” of Monte Carlo (MC) algorithm. Generally, the 
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CCCS algorithm show less deviation from MC as compared to AAA especially in 

heterogeneous tissue.110  

Planning a TMI case in the TomoTherapy software followed routine planning 

processes regardless of the length of the target volume.  However, the planning 

process in Eclipse required matching multiple arcs using multiple isocenters and was 

a cumbersome process.  The sheer size of the PTV required several arcs to achieve 

an acceptable plan but the number of total arc degrees between all arcs in a plan is 

limited to 1500 degrees. The necessity of splitting the PTV in to smaller sub-PTVs 

was laborious and complicated as some of the organs overlapped two sub-PTVs, 

making the choice of optimization parameters for these structures difficult.  The 

complexity of multiple isocenter plans in Eclipse also affects the treatment delivery.  

Although the beam-on time for Eclipse plan for Varian IX linac was just over half of 

that of TomoTherapy, the overall treatment time difference will be significantly 

smaller since for every isocenter, the therapists have to enter the room and 

reposition the patient. 

It would be very difficult to accurately estimate the total time required to plan a 

TMI case on each planning system.  Total time is dependent on the experience of 

the planner and the number of trials to achieve acceptable plan. Tracking total time 

therefore would be user dependent and very subjective. However, the tasks of 

optimization and dose calculation times can be objectively evaluated.  The much 

longer time necessary for Eclipse to optimize and calculate the plans was partly due 

to the different optimization and dose calculation algorithms as well as the need to 

repeat the process for each sub-PTV.  TomoTherapy takes advantage of the parallel 
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nature of the GPU system as described by Lu at al.32 which can process data up to 

20 times faster than comparable CPU based systems.42  Dose delivery validation for 

TMI plans has been previously reported by Hui et al.31 and Corvo et al.43 therefore 

validation measurements have not been performed in this study.  

3.5 Conclusions 

The results of this study have demonstrated that the new TomoTherapy VoLO 

planning station was able to create better TMI treatment plans in terms of PTV 

coverage and OAR sparing.  In addition, the simplicity of planning process as 

compared to multiple plans on Eclipse makes TomoTherapy the better choice for 

planning TMI treatments.  Another advantage of the VoLO system used in this study 

was the ability to optimize and calculate the TMI plan about four times faster than 

Eclipse.  With advancements in the software and continuous improvements in 

computational speed, the planning times may not be a factor in the future.   
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CHAPTER 4 “TOTAL MARROW IRRADIATION: A COMPREHENSIVE 
APPROACH TO TREATMENT PLANNING FOR HELICAL 

TOMOTHERAPY” 
 

4.1 Introduction 

Total body irradiation (TBI) plays an important role as an immunosuppression 

agent in patients undergoing bone marrow transplantation (BMT).17 Traditionally the 

dose is delivered using standard radiotherapy equipment such as linear accelerator 

or Co-60 teletherapy machines. Due to the radiation field size limitations of these 

devices in treating the entire bone marrow, the patients are often treated at extended 

distances taking advantage of the divergent nature of the beam. Patients are 

positioned to be treated either bilaterally or anterior-posteriorly.37-39 Two opposed 

beams deliver the prescription dose specified at the mid-depth with a goal of dose 

uniformity of ±10%.   If the patient thickness varies significantly, additional blocks are 

used to keep the dose uniformity within 10%.  If the beam is delivered uniformly to 

the entire body, as is conventionally performed, every organ at risk receives 

approximately the prescription dose.  With higher doses it is common to use lung 

blocks to reduce the dose to the lungs and decrease the risk of pneumonitis. 

Radiation pneumonitis is the most critical morbidity, and a mean dose of 9.4 Gy to 

the lungs results in a significant increase in post-BMT mortality.40 Although higher 

doses reduce post-transplant relapse, the excessive toxicity in organs at risk 

reduces the overall survival with the traditional two field delivery methods.21,22  

With the use of intensity modulated radiation therapy (IMRT) it is now 

possible to deliver the prescription dose to the bone marrow only, while sparing 

critical organs, a treatment called Total Marrow Irradiation (TMI). Feasibility studies 
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have shown that conventional C-arm linear accelerators23,26,27,44 and 

Tomotherapy28,30,31,42,45 can be used to deliver TMI treatments and provide dose 

reductions of 29%-70% to critical organs relative to conventional TBI treatments. 

One of the major limitations of TMI is the long treatment time necessary to deliver 

these modulated fields. Wielkie et al.23 reported TMI treatment times of nearly 60 

minutes. The majority of this time was spent on patient and treatment field setup to 

deliver the entire plan which consisted of 3 sub-plans. The combined beam-on time 

for the three sub-plans was only 14 min. Tomotherapy beam-on times for TMI have 

been reported28,30,31,42,45,46 with a vast range of 15-50 minutes depending on 

optimization parameters used.  

In this study we used the new Graphics Processing Unit (GPU)-based 

treatment planning system VoLO (Accuray, Sunnyvale, CA) to create TMI treatment 

plans for helical delivery on Tomotherapy.  The plans were created with a range of 

clinically acceptable machine optimization parameters.  The goal of this study was to 

develop a TMI planning guide and aid planners with selection of machine 

optimization parameters to improve the planning results based on desired 

objectives.   A plan quality index (Q) was developed for quantitative analysis of 

relative plan quality which included mean and maximum doses and beam on time.  

4.2 Methods and Materials 

In this study we utilized an anthropomorphic Rando phantom (The Phantom 

Laboratory, Salem, NY) to create TMI treatment plans using the VoLO treatment 

planning system.  The Rando phantom has a human skeleton embedded and is built 

of a material radiologically similar to soft tissue. It extends from head to mid-femur 
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and does not have extremities.  The phantom was placed in an immobilization 

device and simulated for treatment using a large bore Somatom Sensation CT 

scanner (Siemens, Malvern, PA) to acquire a full phantom CT image set with 5mm 

slice thickness.  A planning target volume (PTV) was created by delineating the bony 

skeleton with the exception of the mandible.  An additional margin of 5 mm was 

added to the ribs and femurs to account for motion.  A typical TMI PTV extends from 

the most superior part of the skull to about mid-femur.  It was assumed that since 

lower extremities don’t have critical OARs they would be treated conventionally with 

2 sets of abutting AP/PA fields.  Evaluated organs at risk (OAR) consisted of lungs, 

brain, heart, liver, small bowel and kidneys.  Since Rando does not have any of 

these organs other than lungs, the remaining OAR contours were created by a 

physician to closely approximate their typical size and location.  

Optimization objectives were chosen based on previous clinical TMI cases 

with a goal of reducing the mean dose of OARs to 50% of the prescription dose of 

1200 cGy while delivering the prescription dose to 95% of the PTV.  The user 

selectable machine parameters are the field width, pitch and modulation factor.  The 

field width is defined in the superior-inferior (S-I) direction and, since the PTV is 

extremely large in the S-I direction, only 2.5 and 5cm field widths were evaluated.  

The pitch is defined as the fraction of the field width that the couch moves per gantry 

rotation.  Pitch values in this study were chosen using the following equation: 

p=0.86(1/n) where the 0.86 factor is empirical -- caused by beam junctioning --and 

‘n” is an integer. This pitch equation was originally derived by Kissick et al.34 to 

minimize the ripple effect as a result of helical beam junctioning. The pitch values 
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considered here were obtained for n=1, 2, and 3 corresponding 0.86, 0.43, and 

0.287, respectively. The third parameter evaluated was the modulation factor (MF), 

which is defined as the ratio of the maximum leaf open time to the average leaf open 

time.  Tomotherapy has binary leaves which are either open or closed and the leaf 

openings are defined through 51 “projections” (approximately 7 degrees) of the 

gantry rotation and beam modulation is achieved by varying the time that each leaf 

is open during a projection.  Shorter average leaf open times mean greater 

modulation and result in a larger MF.  The modulation factor is set by the planner as 

a target value for the optimizer (usually 2.0 for clinical cases) and depending on 

target and OAR constraints, the actual value returned by the optimizer for the plan is 

within ~20% of the set value.  Modulation factors used in this study ranged from 1.25 

to 3.0 at 0.25 intervals. 

Using one image set and structure set, each TMI plan was optimized for 100 

iterations after which the final dose was calculated.  The 100 iteration cutoff was 

chosen based on clinical experience that has demonstrated negligible improvements 

to dose-volume parameters when allowing further iterations during optimization.  

Keeping the PTV and OAR objectives the same, the plans were re-optimized with 

varying field size, MF, and pitch. A summary of all parameter value sets evaluated in 

this study is presented in table 7.  

Field Width (FW) 2.5 and 5.0 cm 

Pitch 0.287, 0.43 and 0.86 

Modulation Factor 
(MF) 

1.25 - 3.00 @ 0.25 
intervals 

                Table 7.  Machine optimization parameters. 
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Mean and maximum doses for each structure and delivery time for the 

treatment were compared between plans.  In addition, plan quality index (Q) was 

developed to calculate a relative quality value for each plan. The basic form of 

equation for Q is shown in Eq. 1:    

     ܳ ൌ ቀ∑ ln ቀ
ೝ
ೌ

ቁݓ

 ቁ    (1) 

where, ݅ = PTV and OARs,	ܦ௧ = actual dose achieved, ܦ = Reference dose, and  

 . = weight as presented in table 8ݓ

݅ parameter ܦ ݓ 
PTV Maximum 1320 cGy 2 
Lung Mean 940 cGy 3 
Brain Maximum 1200 cGy 1 
Heart Mean 600 cGy 1 
Liver Mean 600 cGy 1 

Small Bowel Mean 600 cGy 1 
Kidneys Mean 600 cGy 1 

   Table 8.  PTV and OARs constraints. 

 

Mean reference doses were chosen as half of the prescription dose for all 

OARs other than lung. The dose tolerance limits for all OARs studied here except for 

lung are well above the prescription dose of 1200 cGy.  The weights for these OARs 

were therefore set at 1 to have the same relative impact on the quality index.  

Radiation pneumonitis is the most critical morbidity60 therefore the reference mean 

lung dose was set at 940 cGy and the relative weight was chosen as 3.  This higher 

weight for lung mean dose was chosen to have higher impact on the quality index 

and penalize treatment plans that resulted in mean lung dose approaching the limit 
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of 940 cGy. Maximum PTV reference dose was set at 110% of the prescription or 

1320 cGy, based on clinically acceptable dose heterogeneity.   

4.3 Results 

4.3.1 Field Width. 

Plans created with 2.5cm field width had lower PTV mean and maximum 

doses than plans with 5.0cm field width with the same pitch and MF while 

maintaining the prescription coverage of 1200 cGy to 95% of the PTV. Figures 6-7 

show differences in mean and maximum doses between both field widths for two 

combinations of pitch and MF. On average the mean and maximum PTV doses were 

lower for the 2.5cm field width by 0.8% and 4.3%, respectively. Similar results were 

observed for all the OARs.  On average the mean and maximum OAR doses were 

lower for the 2.5cm field width by 4.1% and 4.3%, respectively. 

 
Figure 6. Relative dose difference between FW 2.5 and 5.0cm. Pitch 0.43 & 1.5 MF 
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Figure 7. Relative dose difference between FW 2.5 and 5.0cm. Pitch 0.287 &2.5 MF. 
 

4.3.2 Pitch. 

In general, the mean and maximum PTV and OAR doses decrease with 

decreasing pitch with all other parameters constant. For each reduction in pitch the 

average OAR mean dose was lower by 3.5% and the average maximum dose was 

lower by 2.0%. The PTV resulted in average mean and maximum dose reductions of 

0.8% and 0.7%, respectively, with lower pitch values. Figures 8-9 show two 

representative examples.  
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Figure 8. Relative dose difference between pitch 0.287, 0.43 & 0.86. FW 2.5, 2.5MF. 
 

 
Figure 9. Relative dose difference between pitch 0.287. 0.43 & 0.86. FW 5.0, 1.5MF. 
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4.3.3 Modulation Factor. 

Overall, higher modulation factor resulted in lower mean and maximum doses 

to the PTV and OARs. The effect of changes in MF on plan quality was larger at 

lower MF values.  The relationship between PTV and OAR doses and modulation 

factor is illustrated by figures 10 and 11. For plans with a pitch of 0.86, each change 

in modulation factor of 0.25 changes the beam on time by an average of 10%. The 

same effect is observed in plans with a pitch of 0.43 and MF >2.0. 

 
Figure 10.  Relative dose difference as a function of MF. FW 2.5, Pitch 0.287. 
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Figure 11.  Relative dose difference as a function of MF. FW 5.0, Pitch 0.287. 
 

4.3.4 Beam delivery time. 

With one exception, the beam on time increases with increasing MF and/or 

decreasing pitch for plans with either field size.  At the same time, the plan improves 

with increasing MF and/or decreasing pitch.  Figure 12 shows combined effects of 

the three parameters on beam on time.  The beam on time for 2.5cm FW was 85%-

99% longer than that for 5.0cm FW for the same pitch and MF. 

4.3.5 Plan quality index Q. 

Relative plan quality results combining all three optimization parameters is 

presented in figure 13.  Plans with smaller pitch values and smaller field size 

resulted in higher plan quality index.  Plan quality also increases with MF and 

approaches a plateau at the highest MF studied.  
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Figure 12.  Beam on time as a function of MF.  
 

 
Figure 13.  Plan quality summary. 
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4.4 Discussion. 

In this investigation we demonstrate the effects of user selectable parameters 

(field width, pitch and MF) on relative plan quality keeping all other optimization 

parameters invariant.  As expected, smaller field width provides better control of 

dose distribution in the cranial-caudal direction resulting in lower OAR doses and 

better PTV coverage when these volumes are in close proximity.  With decreasing 

pitch the solution space for the optimizer is increased, resulting in better quality 

plans.  In other words, each voxel is covered by a greater number of rotations in the 

helix when using a smaller pitch, giving the optimizer more choices to find the 

optimal beam fluence. Increasing the modulation factor will also improve plan quality 

by allowing a wider range of leaf opening times between projections, which in turn 

increases the dynamic range of the beam fluence.  

By definition, the modulation factor is a ratio and therefore increasing a low 

MF by 0.25 will have a larger effect on the dose distribution than increasing a high 

MF by the same amount.  The change in beam on time with changing MF is fairly 

linear for plans with 0.86 pitch. There is no effect on beam on time when changing 

MF for plans with a pitch of 0.287 and plans with pitch of 0.43 and MF below 2.0.  

These effects are observed for both field sizes. With low pitch and/or modulation 

factor the gantry has to rotate faster to deliver the prescribed dose because the 

radiation output is not variable.  With pitch of 0.287 the gantry is approaching the 

maximum rotational speed therefore having no effect on the beam-on time with 

changing MF. The same effect is noted for plans with low MF (<2.0) and pitch of 

0.43.   
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Accounting for the ripple effect described by Kissick et al.34 there are only 

three clinically usable values for TMI planning: 0.287, 0.43 and 0.86.  Values larger 

than 1.0 would not provide the necessary beam overlap and plan quality would be 

degraded.  The next smaller value would produce plans with excessive beam on 

time.  One could experiment with other values not suggested here and ignore the 

ripple effect since it may not be clinically significant for the relatively large acceptable 

tolerance in dose heterogeneity for TMI (±10%).  Both the MF and pitch have an 

incremental effect on plan quality as described in the results section.  There is 

significant variation in beam on time as a function of modulation factor for plans with 

pitch of 0.86.  This effect is also observed in plans with pitch of 0.43 and MF above 

2.0.  The pitch selection has the largest effect on beam on time, on the order of 

40%-50%, for plans with the lowest tested MF of 1.25.  The most significant effect on 

beam on time comes from the selection of the field width.  Plans with field size of 

2.5cm had marginally (up to 4.3%) lower doses to PTV and OARs as compared to 

plans with 5cm field width at the expense of significant increases in beam on time.  

The increase in beam on time for the smaller field size plans varied between 85% 

and 99%. 

The figures and data reported here represent planning results of just one 

image set and one structure set and are meant to be used for relative comparison 

between plans with varying parameters.  The absolute OAR and PTV doses should 

not be used for absolute comparison or considered optimal.  The PTV coverage and 

level of OAR sparing will vary from clinic to clinic based on their clinical objectives. 

The beam on time reported in figure 12 is also only representative for our particular 
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case.  With all parameters invariant, the beam on time will depend on the extent of 

the PTV in the cranial-caudal direction due to the nature of helical delivery. 

4.5 Conclusion 

All the optimization parameters have an effect on final plan quality and beam 

on time.  In general as plan quality improves the beam on time increases. Overall, 

plans with 2.5cm field width will result in better quality but it is possible to achieve 

comparable if not better plans with 5.0cm field width by decreasing pitch and/or 

increasing MF. Adjusting the parameters for better plan quality will reach a point of 

diminishing returns. Very long beam on times will compromise patient comfort, may 

cause the machine to overheat and could reduce dose delivery efficiency do to 

highly modulated fluence.   

While it would be difficult to recommend specific optimization parameters in 

general for TMI using Tomotherapy, the results presented here provide a 

compendium of clinically relevant results that can help the planner understand and 

anticipate the relative effects of changes in particular parameters.  In some cases, 

for example pediatric patients under anesthesia, faster treatment may be a priority.  

In cases for which dose escalation is necessary, treatment time might be considered 

less relevant than OAR sparing.  The results presented here not only give results 

representative of what one might achieve for real clinical cases, but also insight into 

how to improve the resulting plan characteristics in particular situations without the 

need for exhaustive planning comparisons varying all of the parameters studied 

here. 
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CHAPTER 5 “SINGLE FRACTION RADIOSURGERY/STEREOTACTIC BODY 
RADIATION THERAPY (SBRT) FOR SPINE METASTASIS: A DOSIMETRIC 

COMPARISON OF MULTIPLE DELIVERY PLATFORMS”. 
 

5.1 Introduction. 

Spinal metastases are a common oncologic occurrence that can have a major 

impact on the cancer patient’s quality of life and functional status.  It is well known 

that radiation therapy is an excellent palliative treatment for spine metastases.  

Currently accepted radiation techniques include a variety of fractionated regimens as 

well as single fraction treatment, which has historically been delivered at a dose of 

8Gy.  Multiple studies have shown these techniques to result in a pain response of 

approximately 60%.47-48 More recent data supports the use of stereotactic body 

radiation therapy (SBRT) or radiosurgery for spinal metastases with fewer fractions 

delivered and greater, more durable responses. Gerszten et al. reported that 86% of 

patients experienced long-term pain improvement and excellent local control utilizing 

SBRT.49 In current practice, an increasing percentage of patients with spine 

metastases can experience long-term survival. As systemic therapy continues to 

improve, it becomes even more important to produce durable pain palliation and 

local control.50 

SBRT is commonly defined as a treatment that couples a high degree of 

anatomic targeting accuracy and reproducibility with very high doses of extremely 

precise, externally generated, ionizing radiation delivered in 5 or fewer fractions to 

an extracranial target. Treatment consisting of one fraction only is referred to as 

radiosurgery.  The use of radiosurgery/SBRT has increased significantly over the 

last several years.  A recent survey of radiation oncologists practicing in the United 
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States reported that 63.9% use SBRT for selected patients, the most common 

treatment locations including lung, spine, and liver.51 As utilization of this technique 

increases, so have the number of platforms designed to deliver such treatment.  At 

our own institution, we have multiple treatment planning and delivery systems used 

for highly conformal SBRT treatments, but no set guidelines for choosing between 

them.  In order to precisely deliver the intended dose and spare adjacent spinal cord, 

these systems require advanced planning and delivery capabilities. The new GPU 

based TPS from Accuray has been shown to be accurate and very fast in planning 

TMI cases and its capabilities will be tested for small and highly conformal targets 

such as in SRS and SBRT, and compared with other modalities.  The systems’ new 

dynamic jaws should further influence plan quality and treatment time.  

Previous reports on modality selection for SRS/SBRT have been published 

for intracranial sites and were either limited to two platforms52 or compared based on 

technical specifications.53  Within this study, we attempt to determine whether there 

are significant differences in planning and delivery capabilities across these 

platforms within the context of the current RTOG 0631 radiosurgery/SBRT spine 

trial.  Therefore we designed sample spine metastasis cases within a phantom 

model and generated radiosurgery treatment plans for five different planning and 

delivery systems.  We hypothesized that, while each modality would be able to meet 

the constraints of RTOG 0631, there would be differences in dose to critical normal 

tissue, treatment time, and dose fall off that may assist in the choice of delivery 

system based on characteristics of the individual case and target shape/volume. 

 



54 
 

 
 

5.2 Methods and Materials 

Radiotherapy treatment simulation was performed on an anthropomorphic 

thorax/abdomen phantom (Integrated Medical Technologies, Troy, NY) using a 40-

slice CT scanner with 1.5mm slice thickness. Sample spine radiosurgery plans were 

created using idealized target volumes created on the phantom.  Target volumes 

were designed using the Eclipse (Varian Medical Systems, Palo Alto, CA) treatment 

planning system in accordance with parameters in the International Spine 

Radiosurgery Consortium Consensus Guidelines for Target Volume Definition in 

Spinal Stereotactic Radiosurgery54 and the recommendations of RTOG 0631. Four 

distinct target volumes representing typical case presentations of spine metastases 

were contoured in both the thoracic and lumbar spine of our anthropomorphic 

phantom. Target volume "A" included a single vertebral body, target volume "B" 

included all elements of a single vertebral level completely encircling the spinal cord, 

target volume "C" included only the spinous process of a single vertebral level, and 

target volume "D" included two consecutive vertebral bodies (figure 14). The spinal 

cord was contoured as a structure approximately 7mm in diameter, contained 

centrally within the bony limits of the spinal canal.  The contoured cord was designed 

to reflect the average cord size of our previous ten radiosurgery spine patients who 

were planned using fusion of MRI or CT myelogram as well as measurements 

reported in the literature.55 To ensure comparability, each contour and image set 

was communicated unaltered from Eclipse to each of the other treatment planning 

systems through DICOM-RT. 
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Figure 14.  Axial representations of target volumes (Red) and spinal cord (Green) 
along with sagittal image of target “D” to illustrate its extent across two vertebral 
levels. 

Dose objectives and constraints were designed to meet those required for 

RTOG 0631 and the target was prescribed 16Gy in a single fraction.  Briefly, 

planning requirements included the following: at least 90% of the target volume 

receives the prescribed radiosurgery dose; hotspots outside the target were limited 

to 105% within 1cm of the target volume and 110% anywhere outside the target. 

Spinal cord constraints included 10Gy to 10% of the partial spinal cord defined as 5-

6mm above and below the target, the total volume of spinal cord receiving 10Gy was 

restricted to below 0.35cc, and the absolute maximum dose to the spinal cord was 

restricted to 14Gy to a volume of no more than 0.03cc.  Additional OAR constraints 

included cauda equina volume of <0.03cc receiving 16Gy, and <5cc receiving 14Gy.  

The total lung was limited to a volume of less than 1000 cc receiving 7.4 Gy.  A point 

dose of 110% of the prescribed dose was allowed outside the target volume as long 

as it was less than 0.03cc, which is an acceptable variation per the protocol. 

With these objectives, single fraction radiosurgery plans were designed for 

each target to be delivered with CyberKnife (CK) with Iris collimator (Accuray, 

Sunnyvale, CA), Tomotherapy with TomoEDGE™ dynamic jaw (Tomo) (Accuray 
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Sunnyvale, CA), Vero (BrainLAB, Feldkirchen, Germany and Mitsubishi Heavy 

Industries, Tokyo, Japan), and Varian TrueBeam (Varian Medical Systems, Palo 

Alto, CA), the latter utilizing RapidArc (RA) in standard and flattening filter free (FFF) 

modes.  The plans for each system were designed by experienced dosimetrists and 

physicists responsible for planning clinical cases on these systems.  Within the 

constraints listed, the planner was asked to design the best possible plan with 

priority on the spinal cord constraints.  The planners were blinded to the planning 

techniques and results of other modalities so as to not influence their results.  Each 

institution chose planning (dose calculation algorithm, grid size, etc.) and machine 

parameters (number of fields, pitch, gantry angles, etc.) according to their clinical 

practice.   

For the Varian TrueBeam RapidArc with and without flattening filter plans, the 

Eclipse (v. 10.0.39) treatment planning system was used to create two complete 

arcs. Dose calculation was performed using the Analytical Anisotropic Algorithm 

(AAA) using a 2.5mm dose grid.  The iPlan (v. 4.1.2) treatment planning system was 

used to create the Vero treatment plans, utilizing a 2mm dose grid. Thirteen 

coplanar IMRT beams were uniformly distributed through 360 degrees, and the 

Monte Carlo dose algorithm was used. For Cyberknife, the MultiPlan (V 5.1) 

treatment planning system was used with the Monte Carlo Algorithm with high 

resolution and a 1.0mm x 1.0mm x 1.5mm grid for dose calculation. For the 

TomoEdge plans, the Tomotherapy VoLO (v. 5.0.0.0) treatment planning system 

was used with a 2mm grid size used for dose calculations. 
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We analyzed these plans with priority on the dose to 10% of the partial spinal 

cord and dose to 0.03 cc of the spinal cord. The Paddick dose gradient index (PGI), 

defined as the ratio of the volume encompassed by half the prescription dose to the 

volume encompassed by the prescription dose, was used as a measure of the 

steepness of the dose gradient around the target.56 Once we confirmed that each 

system was able to meet all of the target goals of the protocol, we compared these 2 

cord metrics along with their ability to limit the dose to other surrounding tissues 

using the PGI. 

5.3 Results. 

A total of 40 plans were generated for the cases listed above (eight for each 

platform – one for each lumbar and thoracic target).  Each system was able to 

generate plans delivering the prescription dose to 90% of the target volume while 

meeting all the constraints of RTOG 0631. RA and Tomo achieved the most 

homogeneous dose distribution within the target.  D95 was on average 99.5% and 

99.2% of the prescription dose for RA and Tomo, respectively.  D95 results for CK 

and Vero were on average 93.0% and 95.2%, respectively.  Target volume C, which 

was the smallest of the targets, showed the most variability between modalities.  For 

example, the maximum cord dose to 0.03cc was 13.1Gy for RA-FFF versus only 

7.7Gy for Vero. Both Vero and CK had lower cord doses and sharper dose falloff 

than the other modalities for target C. On average, as displayed in figures 15-22, CK 

was able to achieve the lowest cord doses overall and also generated the sharpest 

dose falloff as indicated by the Paddick gradient index.   
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Figure 15.  Lumbar Target A. 
 

 
Figure 16.  Lumbar Target B. 
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Figure 17.  Lumbar Target C. 
 

 
Figure 18.  Lumbar Target D. 
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Figure 19.  Thorax Target A. 

 

 
Figure 20.  Thorax Target B. 
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Figure 21.  Thorax Target C. 

 

 
Figure 22.  Thorax Target D. 
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Figure 23 provides a visual representation of the dose distribution created by 

each modality for the two most complicated cases, B and C.  Treatment times varied 

widely depending on the modality utilized.  On average, treatment can be delivered 

faster with RA-FFF and Tomo, compared to RA, Vero and CK (table 9).  It should be 

noted that we are reporting treatment times for Tomotherapy Edge with dynamic 

jaws.  Treatment times for Tomotherapy with static jaws were 3 to 5 times longer 

than with Tomo Edge depending on the target.   

 
Figure 23.  Isodose distribution for Targets B and C (Red) and their relationship with 
the spinal cord (Purple).  Isodose line are as follows: 16.8 Gy – Orange; 16.0 Gy – 
Black; 14.4 Gy – Green; 12.0 Gy – Light Blue; 8.0 Gy – Dark Blue. 
 

Modality          Average  (min)                Range (min) 

RA            9.5                               7.2-11.2 

RA-FFF            4.4                               3.5-4.9 

Tomo            6.0                               5.0-6.8 

CK           58.1                            32.0-85.0 

Vero           19.1                            15.0-24.5 

Table 9.  Average beam on times across all targets for each modality. 
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5.4 Discussion 

With the rapid innovation that is characteristic of the field of radiation 

oncology, it is important to ensure that adoption of new technology is done with a 

priority on safety.  The delivery of high doses per fraction with radiosurgery/SBRT 

decreases our margin for error compared with traditional fractionated radiation.  

Especially in spine radiosurgery/SBRT cases with tumors adjacent to the spinal 

cord, it is critically important to minimize dose to normal structures while at the same 

time maintaining the ability to deliver adequate dose to the target.  In our study we 

have shown the dosimetric results of a representative set of cases planned with 

multiple delivery platforms.  These do not by any means encompass the wide variety 

of cases seen in clinical practice, nor do the 40 plans generated in our study 

represent the capabilities of other planning teams.  Additionally, we recognize that 

small inaccuracies in patient setup and variability in actual treatment delivery can 

have serious and significant consequences that could far exceed the differences 

between modalities that are presented here.  Indeed, evaluation of the relative ability 

of each of these systems to accurately deliver these treatment plans is critical in 

determining whether there is any real advantage to one over another.   

In an associated quality assurance analysis study, 57 both ion chamber and 

film were used to measure delivered dose for all plans on each modality presented 

here.  The results of these measurements were exceptional, specifically that all ion 

chamber measurements were within 3.3% of the dose predicted by the respective 

treatment planning system and all modalities yielded film gamma pass rates better 

than 96% at 2%/2mm.  Finally, while we identified situations in which some systems 
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provide a dosimetric advantage in treatment plan characteristics for a particular 

SBRT spine treatment, it is not clear if these differences would translate into a 

clinical advantage.   

We believe that the ability of CK to achieve overall superior dosimetric results 

comes from use of the smallest aperture and a greater number of possible beam 

orientations. The CK was the only modality in this study that used non-coplanar 

beams.  The difference between the Vero and TrueBeam results could be attributed 

to the number of beams since 13 coplanar beams were used for the Vero plans and 

only 2 arcs were used for the TrueBeam plans. Both machines have an MLC leaf 

width of 5mm.  Also, Burghelea et al.52 showed that smaller aperture and non-

coplanar beams produce plans with better conformity and dose gradient for small 

targets. Both TrueBeam and Vero could benefit from using non-coplanar beams.  In 

addition, the use of the high definition MLC (HDMLC), which has 2.5mm leaf widths, 

could be expected to further improve dosimetric results for the TrueBeam plans. 

The main objective of this study was to meet or exceed the dose constrains of 

RTOG 0631 protocol.  Each institution was able to choose optimization and machine 

parameters according to their clinical practice. Although, all institution met all of the 

constraints of the protocol, there were differences in dose gradient outside the 

target.  These differences can be attributed to different planning techniques.  Some 

institutions adhere to common standards when it comes to hot spots within the target 

and limit them to 110% of the prescription.  This protocol does not have any 

requirements for dose heterogeneity within the target.  Allowing higher hotspots 

within the target, as it’s commonly done in linac based or Gamma Knife SRS 
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treatments, would result in steeper dose gradients outside of the target.  The 

difference in the dose gradient between the modalities could have been minimized if 

all the institutions followed the same planning techniques.  The results presented 

here may also be influenced by the difference in dose grid size used by each 

platform.  Other studies suggest that variation in dose calculation for grid sizes used 

in our study could be around 2-3%.58-59 

Depending on the goals of treatment, the order of importance of the treatment 

plan metrics we reported might vary.  For example, in the case of a terminal patient 

with significant difficulty lying in the treatment position, the physician might decide 

that a short treatment time is more important than a sharp dose gradient or the 

potential risk of late neurologic complications.  However, a patient with a better 

prognosis might tolerate the treatment well, and in that case lower doses to critical 

structures would justify a longer treatment time.   

5.5 Conclusion. 

While all treatment modalities tested were able to create and very accurately 

deliver treatment plans meeting the dose constraints of RTOG 0631, we observed 

variations that may impact system selection based on individualized treatment goals. 

Certain modalities performed better than the others for specific target shapes and 

locations. Vero and CK excelled in treating small volume targets. CK had the 

sharpest dose falloff and achieved the lowest overall spinal cord doses at the 

expense of longest treatment time. Treatment delivery time was fastest for TB-FFF 

and Tomo.  These findings could provide guidance in the process of determining 
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which of the available modalities would be preferable for the treatment of spine 

metastases. 
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CHAPTER 6 “ANALYSIS OF DOSE FRACTIONATION REGIMENS FOR TOTAL 
BODY IRRADIATION BASED ON INTERSTITIAL PNEUMONITIS RISK 

FACTORS.” 
 

6.1 Introduction 

Total body irradiation (TBI) is an important component of the conditioning 

regimen for patients undergoing bone marrow transplantation (BMT) for a variety of 

hematological malignancies.37,38,39,60  While post-transplant relapse rates have 

improved with radiation dose escalation, overall survival has not improved due to 

excessive treatment related toxicities.21,22  These toxicities, therefore, are the most 

important factors in determining the chemotherapy and radiation treatment 

regimens.  The most common acute toxicities include nausea, vomiting, parotitis, 

mucositis and xerostomia.  These are usually preventable with drugs or the 

symptoms resolve on their own.  One of the most significant complications of TBI 

conditioning regimen is interstitial pneumonitis (IP) due to its relatively high 

incidence rate and potential for mortality.  The incidence of grades 3/4 IP following 

BMT which includes a TBI regimen is between 0% and 73% and higher occurrence 

has been correlated with total lung dose, fractionation scheme and dose 

rate.21,22,40,43,45,61-99  It is also known that alkylating chemotherapy agents have a 

synergistic effect on lung toxicity when combined with radiation.100   

 It is difficult to determine the overall IP risk factors from studies reported by 

individual institutions because of variation in conditioning regimens as well as 

inconsistent reporting of methods and materials.  Until relatively recently, lung dose 

statistics in the literature were reported with a large degree of uncertainty due to 

relatively simple treatment planning methods and the lack of three dimensional dose 
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information.  A literature review by Sampath et al.100 found IP correlation with 

Cyclophosphomide (Cy) and lung dose, although the lung dose correlation did not 

hold for studies that used multiple fraction per day regimens.  In this study we plan to 

use a database of over three thousand patients from 42 published manuscripts 

presenting data on incidence of IP following TBI for BMT, to quantify a lung dose 

response for IP, and to relate it to dose fractionation schemes.   

6.2 Methods and Materials 

 Data for this study was obtained from PubMed search engine and included all 

published manuscripts that had IP, BMT, TBI or TMI as nonabbreviated key words.  

Only those studies with IP incidence explicitly reported by dose fractionation 

regimens were included in the analysis.  Studies were only included if crude 

incidence of IP was reported.  IP related mortality rates were excluded from this 

study.  There are many factors that contribute to lung toxicities and it’s hard to 

distinguish radiation induced IP from another etiology.  The majority of studies 

analyzed here had TBI/TMI and chemotherapy regimen, therefore all IP etiologies 

grade 3 and 4 were included in this study.  The regimens containing a radiation 

component only were treated as zero chemotherapy-dose in the database.  The 

follow-up time associated with the reported IP incidence rates was not used as factor 

in the analysis.  

 The following variables were obtained from the papers: IP incidence rate, total 

radiation dose, number of fractions, lung shielding, lung dose, lung dose per 

fractions, number of fractions per day, interfraction interval, lung dose rate, 

chemotherapy agent and Cyclophosphamide (Cy) dose.  The fractional lung dose 
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was calculated by dividing reported lung dose by the number of fractions.  If lung 

lose was not reported, it was assumed the lung received 100% of the prescription 

dose.  In some cases, lung dose was estimated from given information about lung 

blocks either as percent shielding or half value layer (HVL).  The lung dose was then 

converted to EQD2 – biologically equivalent dose in 2 Gy fractions using equation 2, 

as follows: 

       (2) 

 

where D is total lung dose, d is fractional lung dose and α/β is a term from the linear-

quadratic model used to quantify the fractionation sensitivity of tissues. The values 

of α/β tested in the analysis ranged from 2Gy to 4Gy.101,102  In order to account for 

possible incomplete repair of lung tissue in fractionation schemes that required 

multiple fractions per day, the lung dose was further converted to EQD2_repair using 

equation 3: 

 

             (3) 

 

Hm in equation 3 is a term used to describe incomplete repair based on time 

between fractions and repair half time.  Lung dose rate was calculated using this 

simple formula: 

 

 

2ܦܳܧ ൌ ܦ ∗
ሺ݀  α/βሻ
ሺ2  α/βሻ

 

ݎ݅ܽ݁ݎ_2ܦܳܧ ൌ ܦ ∗
ሺ݀ሺ1  ሻ݉ܪ  α/βሻ

ሺ2  α/βሻ
 

݁ݐܽݎ	݁ݏ݀	݃݊ݑܮ ൌ ݈ܽ݊݅݉ܰ ݁ݏ݀ ݁ݐܽݎ ∗
ሺ݈݃݊ݑ ሻ݁ݏ݀
ሺ݈ܽݐݐ ሻ݁ݏ݀
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If a range of dose rates was provided, then the mean of the range was used in the 

analysis.  The most prevalent chemotherapy agent was Cy with nearly 80% of 

studies reporting its use.  The use and frequency of Cy and other chemotherapy 

agents are listed in figure 24.  Due to the limited and variable use of the other 

chemotherapy agents, only Cy was used as a variable in our analysis.   In the end, 

our data set included 42 articles that consisted of 88 patient cohorts and 34 unique 

fractionation regimens.   Figures 25 - 26 show the frequency and distribution of 

these regimens.  The range of all parameters studied here is listed in table10.   

 

 
Figure 24. Frequency and type of chemotherapy used.  
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Figure 25.  Radiation prescription histogram. 

 

 
Figure 26.  Dose per fraction histogram. 
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Parameter Range 

Lung EQD2 (Gy) 3.9-26 
Lung EQD2_repair (Gy) 4.2-26 
Number of fractions 1-13 
Dose per fraction (Gy) 
Fractions per day 
Lung dose rate (cGy/min) 
Cy dose (mg/kg) 

1.2-10 
1-3 

2.2-425 
0-200 

Table 10.  Range of parameters used in the analysis. 

 
 

The first goal of this study was to determine whether the following variables 

are statistically significant predictors of IP – (i) lung EQD2, (ii) EQD2_repair, (iii) 

dose rate and (iv) Cy dose.  Using SPSS statistical software package, version 20.0 

(SPSS, Chicago, IL) we performed a multivariate analysis (MVA) of the data by the 

step-wise Cox logistic regression.  In logistic regression analyses, logarithm of the 

odds of the event (incidence of IP) is taken as the response variable and is 

regressed on selected predictor variables as defined by the conceptual framework of 

the model. The form of the regression model is as follows: 

Log (p / (1-p)) = β0 + β1 X1 + β2 X2 + ……………+ βk Xk + ε, where β0 is the intercept 

and βi is the slope of logit coefficient corresponding to the predictor variable Xi. 

Overall significance of the fitted model is done using Wald’s Chi-square test. 

Significance of the logit coefficient or equivalently, odds ratio (OR) estimates are 

also calculated using Wald’s Chi square test. Here we test the null hypothesis Ho : βi 

= 0 (Odds ratio = 1) against the alternative hypothesis H1: βi ≠ 0 (Odds ratio = ≠ 1). 

Predicted probability of incidence of IP is computed using the expression,  

Estimated p = eβ0 + β1 X1 + ………+ βk Xk
 / (1 + eβ0 + β1 X1 + ………+ βk Xk

 ) 
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Cox regression analyses were performed using two different models. These 

models differ in terms of predictor variables included and also the data set (subset) 

used to fit and validate the model. Model I is formed using selected predictor 

variables (i) LungEQD2_repair, (ii) dose rate, and (iii) Cy dose.  Model II is built 

using the predictor variables - (i) LungEQD2, (ii) dose rate, and (iii) Cy dose.  

Model 1: Log (p / (1-p)) = β0 + β1  LungEQD2_repair + β2  dose rate + β3  Cy dose + ε1 

Model 2: Log (p / (1-p)) = β0 + β1  LungEQD2+ β2  dose rate + β3  Cy dose + ε1 

Using the models, dose response curves were generated for different fractionation 

schemes.   

6.3 RESULTS 

Table 11 below reports a summary of Cox logistic regression results for 

model I. This model has all the patients irrespective of chemotherapy agents used 

and the treatment (radiation or radiation & chemo). Hosmer Lemeshow test which 

assesses whether or not the observed event rates match expected event rates 

indicate that the overall model fit is good (p = .065).  Calculated probability values of 

p > 0.05 indicate that model’s observed and predicted events do not differ 

significantly.  Table 3 reports logit coefficient estimates and the associated odds 

ratio for the selected predictor variables Cy dose, Lung EQD2_repair and dose rate.  

Cy dose taken as a continuous predictor variable in the model reports significant 

association with incidence of IP. Estimated associated OR = 1.006 (95% CI (1.003, 

1.009)). This indicates that an increase of one unit in the Cy dose reports an 

average increase of 0.6% in the odds of incidence of IP adjusting for the effect of 

other predictors.  EQD2_repair taken as a continuous predictor variable in the model 
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reports significant association with incidence of IP. The estimated associated OR = 

1.024 (95% CI (1.002, 1.046)). This indicates that an increase of one unit in the 

LungEQD2_repair results in an average increase of 2.4% in the odds of incidence of 

IP adjusting for the effect of other predictors.  Lung dose rate taken as a continuous 

predictor variable in the model reports no significant association with incidence of IP.  

 
 B S.E. P  OR 95% CI for OR 

LungEQD2_repair .024 .011 .029 1.024 1.002 1.046 

Dose Rate .001 .001 .485 1.001 .999 1.003 

Cy dose .006 .002 <.001 1.006 1.003 1.009 

Constant -2.759 .278 .000 .063   

Table 11.  Cox logistic regression results for model I. OR=odds ratio, S.E. = standard error 

 

Results from model II are very similar to model I and are presented in table 12 

below.   

 B S.E. P  OR 95% CI for OR 

EQD2 .030 .011 .004 1.031 1.010 1.052 

Dose Rate .001 .001 .437 1.001 .999 1.003 

Cy dose .006 .002 <.001 1.006 1.003 1.010 

Constant -2.865 .279 <.001 .057   

Table 12.  Cox logistic regression results for model II. OR=odds ratio, S.E. = standard error 
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Figures 27-28 respectively show EQD2_repair response functions for all 

fractionation regimens and multi-fraction per day regimens along with discrete data 

points.  The model of predicted lung pneumonitis as a function of mean lung dose 

(MLD) obtained from QUANTEC103 is included in the figures for comparative 

purposes (orange line).    QUANTEC’s data reports MLD for radiotherapy treatments 

with a typical prescription of 60 Gy in 2Gy fractions.  Therefore, MLD of 30Gy would 

suggest lung receiving 1Gy per fraction.  The reported MLD was converted to EQD2 

using equation (2) and the resulting predictive model is represented as “QUANTEC 

EQD2” in color blue on the graph.  The size of the data points (green) represents 

relative size of number of patients in the study. 

 
Figure 27.  Lung EQD2_repair response function for all fractionation schemes. 
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Figure 28.  Lung EQD2_repair response function for multiple fraction per day 
schemes. 
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poor prediction of actual IP rates.  In the case of the logistic fit to multi fraction 

regimen data, the curve predicts 11% and 30% chance of IP for zero dose and 50Gy 

EQD2, respectively.  This prediction does not correlate well with clinical data 

analyzed in this study.  We removed the data from single large fraction regimens as 

these regimens are not common anymore.   Modeling the resulting data was proven 

to be even more difficult as the remaining data points were clustered together with 

even less points at end of the spectrum of dose or IP rates.   

 We did not find dose rate to be an independent risk factor for IP.  We 

investigated this predictor as a continuous as well as categorical variable and we did 

not find correlation between dose rate and IP.  We also looked at a number of 

subsets of the data including fractionated and single fraction regimens. Some 

studies found lung dose rate being a risk factor for IP for single fraction 

myeloablative (>8Gy) dose of TBI.64,104  Reports by Peters et al.105,106 state that the 

dose rate is of little importance for fractionated (2Gy) treatments since cell death 

results predominantly from non-repairable single hit killing.  Our analysis agrees with 

other studies that have found no effect of dose rate on IP for dose rates up to 

8.9cGy/min and doses up to 12Gy.70,107  In contrast, studies by Crruthers et al.86 and 

Corvo et al.108 reported correlation of dose rates >7.5cGy/min and >6cGy/min to IP 

for fractionated treatments, respectively.  There seems to be a threshold lung dose 

for fractionated treatments below which dose rate has no effect on IP rates.  Girinsky 

et al. suggested that the dose rate only relates to IP when total lung dose exceeds 8-

9Gy.  This statement could be supported by the data from City of Hope 
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Comprehensive Cancer Center45,98 that show no IP rates for doses of up to 7.9Gy 

and instantaneous dose rates of 850 cGy/min. 

The majority of the fractionation regimens consisted of 2 or 3 fractions per 

day. We have separately analyzed all patients in the database as well as the subset 

of these patients receiving multiple fractions per day. Historical TBI treatments of a 

single large fraction are not common anymore and we did not analyze them 

separately.  Sampath et al.100 was able to find a lung dose response for treatments 

delivered in a single fraction only but the results may not be applicable to multi-

fraction per day treatments frequently used now. 

The large dispersion of the data points as seen in figures 27 and 28 is 

potentially the main cause of the dose response prediction failure.  Inconsistent 

institutional reporting and limited data for high IP incidence rates or low lung doses 

most likely contributed to the failed probability model.  Our data did not contain any 

studies with patients receiving lung dose below 4.2Gy and the IP rate of 34% or 

more was observed in only 57 out of 2384 patients.  In addition, most of the lung 

dose reported is estimated from surface measurements due to lack of three 

dimensional dose information.  Some of the data was reported as an average with a 

wide range which could have negatively affected the prediction model.  Variability of 

lung shielding methods and frequency may also contribute to inaccurate reporting of 

lung dose.  The use of chemotherapy agents within conditioning regimens was 

evaluated for total reported dose only regardless of its concurrent or sequential use 

with TBI.  Another cause of data spread may be due to differences in reported IP 

diagnostic criteria.   
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Analysis of the discrete data points shows a lung dose threshold of 7.6Gy 

(EQD2_repair, a/b=3Gy, repair half-life = 4hr) that clearly separates studies with no 

IP toxicities within multiple fractions per day regimens (figure 28). This dose 

threshold was validated using statistical method of recursive partitioning with 

essentially the same results.  This dose threshold corresponds to EQD2_repair 

doses of 7.2Gy and 7.7Gy for α/β values of 2Gy and 4Gy respectively.  The studies 

that define that threshold report the use of cyclophosphamide of at least 100mg/kg.  

Accounting for the synergistic effect of Cy with radiation and the resulting dose 

modifying factor of 1.2 (for 120mg/kg) calculated by Sampath et al.100 the 7.6Gy 

threshold observed in our study is equivalent to 9.1Gy (EQD2_repair) for regimens 

that do not use Cy or similar alkylating agent.   

From our analysis we estimate that a lung EQD2_repair of 7.6Gy delivered in 

2Gy fractions twice a day with at least 6 hours separation between the fractions and 

Cy of 120 mg/kg should result in negligible probability of IP.  Using the most 

prevalent fractionation regimen of 12Gy delivered in 2Gy fractions BID and 

120mg/kg of Cy as an example, one can achieve the threshold lung dose by 

reducing the lung dose by 33% or more either through blocking or intensity 

modulation.  It is also possible to increase fractional dose and reduce the number of 

fractions and achieve the same EQD2 for marrow while keeping the lung dose under 

the 7.6Gy threshold by delivering fractions once a day and allowing full repair of lung 

tissue between fractions.   Using an α/β value of 3Gy, lung tissue repair half-life of 4 

hours and 33% lung block for all fractions, one can change the fractionation regimen 

to only 3 daily fractions of 3.54Gy without sacrificing marrow dose or lung toxicity.  A 
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similar fractionation scheme of 3 x 3.33Gy has been proposed by Della Volpe et al.40 

In their study they found a lethal pulmonary complication (LPC) rate of 3.8% for 

patients that receive a MLD of less than 9.4Gy.  They suggest keeping the MLD 

below 9Gy which is equivalent to 10.8Gy EQD2 in order to keep LPC rate below 5%.  

Based on our research, the threshold value of 7.6Gy should prevent IP grade 3 or 4 

and it’s easily achievable with lung block or intensity modulation.   

6.5 CONCLUSION 

 Our analysis of 3194 patients that underwent a BMT conditioning regimen 

that included many different radiation and chemo regimens, indicates that lung dose 

and Cy dose are statistically significant predictors of development of IP.  The 

prediction model does not accurately reflect the IP rates of published data, 

especially in the high and low range of lung doses.  Inconsistent and incomplete 

institutional reporting required a lot of assumptions which resulted in vast dispersion 

of the data points and resulted in inaccurate prediction model.  We were, however, 

able to identify a lung dose threshold of 7.6Gy (EQD2) and 120mg/kg of Cy that 

should result in negligible IP toxicities of grade 3 or higher.  We did not find any 

evidence that increase in dose rate would increase IP incidence.  

As with all retrospective analyses, these findings may provide guidance in 

lung dose constraints or fractionation selection, but they must be validated with 

prospective studies.  The fractionation schemes greatly depend on the accurate 

knowledge of the α/β ratios and lung tissue repair half-life.  Our predicted lung 

threshold dose is based on lung α/β value of 3Gy.  This threshold will change if more 

current and accurate α/β value for lung becomes available.  The calculations 
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presented here also assume incomplete repair model for BID treatments with 

fractionations separated by 6 hours and lung tissue repair half time of 4 hours.  Care 

should be exercised when applying the threshold dose to compute alternative 

fractionation regimes. 
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CHAPTER 7 “CONCLUSION” 

7.1 Summary of findings. 

The series of studies presented here represent evaluations of novel treatment 

planning optimization and dose calculation algorithms and their applications for 

complex sites such as TMI and SBRT.  In addition to validating GPU algorithms and 

developing structured planning processes for TMI, we evaluated fractionation 

schemes and lung toxicity based on historical published data and current 

radiobiological models.  

The first objective of this research focused on validating the new GPU based 

TomoTherapy treatment planning system and its feasibility in extremely large target 

volumes.  Using three different target volumes for TMI treatments and several 

combinations of machine optimization parameters, we created plans on both CPU 

and GPU based systems, keeping the optimization constraints and number of 

iterations the same.  We demonstrated that despite the algorithms being 

fundamentally different, the difference in plan quality between the systems was very 

small.  The differences were most likely the result of the gradient descent nature of 

the optimization algorithms and fixed number of iterations that may stop the process 

at a slightly different solution each time.  Our results are consistent with other 

studies36 that validated the GPU based system for smaller target volumes.  It was 

also shown that the new algorithm is about 20 times faster than the old planning 

system.  This is a significant improvement since it previously took about 9 – 10 hours 

to optimize and calculate TMI plan creating a bottle neck and impeding clinical work 

flow.    
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In the second aim of this study, discussed in chapter 3, we focused on 

comparing the dosimetric and computational results of TomoTherapy’s GPU 

planning system with another rotational modality, specifically Eclipse’s VMAT.  The 

first clear advantage of Tomotherapy’s helical mode of delivery for treatment of TMI 

was the ability to create one plan for the entire target volume (target volume being 

from head to mid femur).  VMAT plan had to be split up into four isocenters and each 

sub-plan had to be optimized separately adding complexity and affecting the overall 

plan quality.  Thanks to the larger aperture, the VMAT plans resulted in much shorter 

beam on time, however that benefit was reduced when overall treatment time was 

considered due to the need to set up each of the four VMAT sub-plans individually.  

We also demonstrated superior plan quality using the GPU system in terms of PTV 

hot spots and OAR sparing.  However, the inferior plan quality for VMAT plans was 

attributed to the software limitations, which precluded the sum of all VMAT arc 

degrees from exceeding 1500.  With this limitation, most of the voxels in the target 

volume were “exposed” to only one arc limiting the solution space available to the 

optimizer.  With improvements in TPS computing power, this limitation will not be a 

factor in the future. While VMAT plans with additional arcs should in theory be able 

to achieve plans comparable to those from TomoTherapy’s GPU based system, the 

additional arcs will increase overall beam on time, minimizing the advantage of 

VMAT’s faster treatment time.  We have also reported overall optimization and 

calculation times of 0.9 hours and 3.9 hours for TomoTherapy and Eclipse, 

respectively.  The difference in the computational speed comes mainly from 

TomoTherapy’s parallel nature of the GPU system. 
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The work that followed chapters 2 and 3 represented an attempt to provide 

planning and optimization standards aimed at designing a comprehensive planning 

guide for TMI.  We have demonstrated the effects of field width, pitch and 

modulation factor on relative plan quality.  In general, the plan quality improves with 

smaller field size, lower pitch or higher modulation factor.  However, the gain in 

relative plan quality is offset by an increase in beam on time.  The most significant 

effect on beam on time comes from the selection of the field width. We have also 

shown that there is no change in beam on time with change in MF for plans with a 

pitch of 0.287 and plans with pitch of 0.43 and MF below 2.0.  We developed a plan 

quality index “Q” to quantify the relative differences between the plans.  This quality 

index shows that the relative improvement in plan quality starts to plateau for all 

plans reaching a MF of 3 or higher.  In other words, increasing MF past 3 will add to 

beam on time without much benefit to plan quality improvement.  The development 

of this planning guide clearly illustrates the limitations of machine optimization 

parameters for planning of TMI.  This reference is a useful guide for TomoTherapy 

users that are currently planning or intend to start TMI treatments. It describes the 

effects of user selectable parameters on the treatment plan and can eliminate the 

need for exhaustive planning trials in order to improve the plan quality or shorten the 

beam on time. 

 In the next aim of this study we investigated the capability of TomoTherapy’s 

GPU based planning system for small and complicated SBRT target volumes.  We 

planned cases based on the RTOG 0631 protocol and compared the dosimetric 

results against other modalities and their respective planning systems.  We 
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demonstrated that the GPU based system was able to create plans that met the 

dose constraints of RTOG 0631.  However, plans created on Cyber Knife and Vero 

were able to further reduce dose to OARs in some cases.  For CK, this may have 

been a result of the use of non-coplanar beams.  We have also shown that beam on 

time for TomoTherapy equipped with dynamic jaws was on average 6 minutes which 

was much faster than all the other modalities except RA FFF.  The results in this 

chapter show that the new GPU based planning system along with TomoTherapy 

equipped with dynamic jaw can create high quality SBRT treatment plans 

comparable to or better than other systems and deliver the treatment faster than 

most other modalities.  

 Finally, the last aim evaluated the possibility of utilizing different fractionation 

schemes for TMI/TBI treatments without increasing lung toxicities and maintaining 

bone marrow target dose.  We have demonstrated that lung EQD2 and Cy are 

predictors of IP.  The reported data was inconsistent and in some cases incomplete 

between the institutions and contributed to dispersion of the data. There was also 

limited information on IP rates for high and low range of the lung doses. These 

factors, we believe, contributed to the resulting dose response prediction that does 

not accurately represent clinical data.  However, we were able to identify a dose 

threshold from the discrete data points below which no IP cases were reported.  This 

dose threshold of 7.6Gy (EQD2_repair) was obtained from multi fraction per day 

regimens and was based on α/β value of 3Gy and lung tissue repair half-life of 4 

hours.  Alternative fractionation schemes that may be clinically or logistically more 

desirable can be derived from this threshold dose by using EQD2 equation and 
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appropriate values of lung tissue fractionation sensitivity and half-life repair time.  

This study did not find the dose rate to be related to the development of IP at any 

dose levels.  
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ABSTRACT 

CLINICAL APPLICATIONS OF ADVANCED ROTATIONAL RADIATION 
THERAPY 

by 

ADRIAN NALICHOWSKI 

May 2017 

Advisor: Dr. Jacob Burmeister  

Major: Medical Physics  

Degree: Doctor of Philosophy 

Purpose:  With a fast adoption of emerging technologies, it is critical to fully 

test and understand its limits and capabilities.  In this work we investigate new 

graphic processing unit (GPU) based treatment planning algorithm and its 

applications in helical tomotherapy dose delivery.  We explore the limits of the 

system by applying it to challenging clinical cases of total marrow irradiation (TMI) 

and stereotactic radiosurgery (SRS).  We also analyze the feasibility of alternative 

fractionation schemes for total body irradiation (TBI) and TMI based on reported 

historical data on lung dose and interstitial pneumonitis (IP) incidence rates.  

Methods and Materials:  An anthropomorphic phantom was used to create 

TMI plans using the new GPU based treatment planning system and the existing 

CPU cluster based system.  Optimization parameters were selected based on 

clinically used values for field width, modulation factor and pitch.  Treatment plans 

were also created on Eclipse treatment planning system (Varian Medical Systems 

Inc, Palo Alto, CA) using volumetric modulated arc therapy (VMAT) for dose delivery 

on IX treatment unit. The constraints ware selected to ensure that at least 95% of 
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the PTV received the prescription dose while minimizing the doses to OARs which 

consisted of lungs, heart, liver, kidneys, brain, and small bowel.   Resulting plans 

were evaluated based on plan quality, optimization and dose calculation times,   and 

beam on times.  Gamma indices (Γ) were also used to compare planar dose 

distributions between the planning systems. In addition a plan quality index (Q) was 

developed for quantitative analysis of relative plan quality which included mean and 

maximum doses.  The GPU planning systems was also evaluated for single fraction 

radiosurgery/SBRT capabilities.  Treatment plans were created for spine metastases 

based on national protocol RTOG 0631 and the dosimetric results were compared to 

four other modalities.  

A retrospective review was performed of 42 publications that reported IP rates 

along with lung dose, fractionation regimen, dose rate and chemotherapy.  The 

analysis consisted of nearly thirty two hundred patients and 34 unique radiation 

regimens.  Multivariate logistic regression was performed to determine parameters 

associated with IP and establish does response function. 

Results:  The results showed very good dosimetric agreement between the 

GPU and CPU calculated plans.  A gamma analysis Γ(3%, 3 mm) < 1 of the GPU 

plan resulted in average of 97% of calculated voxels satisfying Γ < 1 criterion as 

compared to baseline CPU plans.  The optimization/dose calculation time with the 

new GPU system is about 20 times faster than with the CPU system.  Is was also 

about 4 times faster than Eclipse treatment planning system while achieving superior 

OAR dose sparing ranging from 3% to 52%.  Analysis of optimization parameters 

showed increase in plan quality index (Q) with lower pitch, smaller field size and 
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higher modulation factor.  The beam on time increases with increasing plan quality 

index and associated optimization parameters with the highest effect observed with 

field size.   

The results from SBRT study show that GPU planning system can maintain 

90% target coverage while meeting all the constraints of RTOG 0631 protocol.  

Beam on time for Tomotherapy and flattening filter free RapidArc was much faster 

than for Vero or Cyberknife. 

Retrospective data analysis showed that lung dose and Cyclophosphomide 

(Cy) are both predictors of IP in TBI/TMI treatments.  The dose rate was not found to 

be an independent risk factor for IP.  The model failed to establish accurate dose 

response function, but the discrete data indicated a radiation dose threshold of 

7.6Gy (EQD2_repair) and 120 mg/kg of Cy below which no IP cases were reported. 

Conclusion:  The TomoTherapy GPU based dose engine is capable of 

calculating TMI treatment plans with plan quality nearly identical to plans calculated 

using the traditional CPU/cluster based system, while significantly reducing the time 

required for optimization and dose calculation.  The new system was able to achieve 

more uniform dose distribution throughout the target volume and steeper dose fall 

off, resulting in superior OAR sparing when compared to Eclipse treatment planning 

system for VMAT delivery.  The machine optimization parameters tested for TMI 

cases provide a comprehensive overview of the capabilities of the treatment 

planning station and associated helical delivery system.  The new system also 

proved to be dosimetrically compatible with other leading modalities for treatments of 

small and complicated target volumes and was even superior when treatment 
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delivery times were compared.  These finding demonstrate that the advanced 

treatment planning and delivery system from TomoTherapy is well suitable for 

treatments of complicated cases such as TMI and SRS and it’s often dosimetrically 

and/or logistically superior to other modalities.  The new planning system can easily 

meet the constraint of threshold lung dose established in this study.  The results 

presented here on the capabilities of Tomotherapy and on the identified lung dose 

threshold provide an opportunity to explore alternative fractionation schemes without 

sacrificing target coverage or lung toxicity.      
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