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CHAPTER 1 – INTRODUCTION 

Parkinson’s disease (PD) is a progressive neurodegenerative movement disorder 

characterized by specific loss of dopaminergic neurons in the substantia nigra pars 

compacta region of the midbrain. In the year 1817, James Parkinson originally described 

this disorder in a systematic manner as ‘shaking palsy’ (1). He described the symptoms 

of the disease in his early paper titled, “An Essay on the Shaking Palsy,” as “involuntary 

tremulous motion with lessened muscular power, in parts not in action and even when 

supported; with a propensity to bend the trunk forwards, and to pass from a walking to a 

running pace: the senses and intellects being uninjured” (1). Until 1877, the condition 

continued to be referred to as ‘paralysis agitans,’ when French neurologist Jean Charcot 

coined the term “Parkinson’s Disease” (2). However, it was not until 80 years later that 

the characteristics that eventually defined the disease came to the forefront during 

anatomical investigations that showed brain lesions in the post-mortem mid-brains of PD 

patients (2). Over the years, unraveling the underlying cellular mechanisms that 

particularly render the dopaminergic neurons vulnerable has been a subject of intense 

research. 

Following Alzheimer's disease, PD is the second most common neurological 

disease in both the USA and other industrialized nations, affecting over 1 million people 

in the USA itself (3). Apart from the specific degeneration of dopamine neurons, formation 

of protein aggregates called Lewy bodies is another major pathohistological hallmark 

commonly associated with the disorder (4). Lewy bodies are cytoplasmic inclusion bodies 

primarily containing intraneuronal protein deposits such as α-synuclein, ubiquitin, 
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neurofilaments and tau protein (5). Recent articles have suggested that such protein 

aggregates are not restricted to the substantia nigra or midbrain (6).  

Loss of dopamine (DA) neurons primarily affects the motor functions leading to 

symptoms such as bradykinesia, resting tremor, rigidity and postural instability among 

others (3). Accompanying motor deficits are also non-motor issues such as sleep 

disturbances, depression, anxiety and cognitive impairments (7,8). 

Epidemiological studies have revealed that most PD cases (90%) are sporadic and 

have a late onset with the median age of onset being around 65 years (9). Such cases 

that do not have a known genetic basis are also termed as idiopathic forms of PD. The 

remaining ~10% of cases are characterized by early onset and are typically associated 

with familial forms of PD (10). Development of Parkinsonian syndrome in such individuals 

has been attributed to mutations in several identified genes. Some of the genes known to 

be involved in such familial forms are α-synuclein (SNCA), ubiquitin C-terminal hydrolase 

(UCH-L1), parkin (PRKN), leucine rich repeat kinase-2 (LRRK-2), phosphatase and 

tensin homologue induced putative kinase 1 (PINK1), C57 peptidase (PARK7 or DJ-1), 

and probable cation-transporting ATPase 13A2 (ATP13A2) (11,12). Recent evidence 

however has suggested genetic predisposition as a risk factor for non-familial forms of 

PD (13).  

Parkinson’s disease represents a final outcome that involves complex interactions 

between multiple factors which surround the innate vulnerability of dopaminergic neurons 

in the nigro-striatal pathway. There are a number of factors known to contribute to 

neurodegeneration, such as dopamine oxidation (14,15), oxidative stress (16-18), 

mitochondrial dysfunction (19-21), genetic defects (11,12) and microglial inflammation 
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(22,23). Although multiple players have been implicated in the progression of the disease, 

the specific mechanisms connecting these disparate aspects have been elusive. 

Environmental factors such as pesticides and toxins directly induce both oxidative 

damage and mitochondrial dysfunction (24,25). Occupational uses of herbicides, 

exposure to organic solvents, carbon monoxide, and carbon disulfide, and more 

generally, industrialization, agricultural environment, well water, plant-derived toxins and 

bacterial and viral infection are all suggested to play roles (26-30). A number of cellular 

toxins are known to induce high-affinity specific inhibition of mitochondrial complex I or 

proteasomal inhibition, viz., rotenone, paraquat, epoxomicin, 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP). These toxicants have been popular study models for 

Parkinson’s disease due to their ability to mimic the specific loss of dopamine neurons 

(31-33). MPTP is known to cross the blood brain barrier easily after its systemic 

administration and gets converted to an actively toxic metabolite 1-methyl-4-phenyl-2,3-

dihydroxypyridinium ion (MPP+) by the enzyme monoamine oxidase-B (MAO-B). The 

metabolite MPP+ is selectively taken up into dopaminergic neurons by the dopamine 

transporter (DAT), where it is thought to irreversibly inhibit complex I of the mitochondrial 

respiratory chain, thereby producing selective degeneration of nigral dopamine cells (34-

36). Rotenone, on the other hand, is a well-known universal inhibitor of the mitochondrial 

respiratory chain. It inhibits the transfer of electrons from complex I to ubiquinone (37). 

What makes the rotenone model particularly interesting is, although it also leads to the 

formation of Lewy bodies, it is still not known how rotenone specifically targets 

dopaminergic neurons.  
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Mitochondrial dysfunction has long been implicated in the etiology and 

pathogenesis of Parkinson’s disease. Apart from defective respiration, perturbations in 

mitochondrial dynamics such as alterations in mitochondrial morphology and intracellular 

trafficking, are also involved. Chronic depletion of antioxidant defenses such as 

glutathione due to mitochondrial complex I impairment is suggestive of the interplay 

between oxidative stress and mitochondrial dysfunction. Mitochondrial damage may 

result from oxidative stress and, vice versa, its impairment may also enhance ROS/RNS 

release into the cytosol (38,39).  

Oxidative stress is also one of the major pathological factors involved in 

Parkinson’s disease. It is defined as a condition where the formation and accumulation of 

reactive oxygen and/or nitrogen species are favored over their removal, due to the 

defense mechanisms being overwhelmed. Factors such as proteasome pathology, 

microglial activation, neuro-inflammation and mitochondrial dysfunction, also identified as 

potential candidates in PD, have been closely associated to oxidative stress. Analysis of 

postmortem brains from PD patients revealed enhanced oxidative stress in the 

nigrostriatal dopaminergic neurons with a decreased ratio of GSH/GSSG (40), 

augmented levels of iron (41), increased lipid peroxidation (42), elevated keto-protein 

formation (43) and DNA oxidation (44). A relation has been shown in various animal 

models and in brains taken from deceased PD patients between neuronal destruction in 

the brain and the generation of massive oxidative stress. Betarbet et al. developed an in 

vivo rotenone-treated rat model for Parkinson’s disease (45). The rotenone-treated rats 

exhibited chronic inhibition of complex I of the mitochondrial electron transport chain in 

the brain. Moreover, the model exhibited highly specific neurodegeneration of nigrostriatal 
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dopaminergic neurons along with the symptoms characteristic of PD – Lewy body 

formation, motor deficits, hypokinesia and rigidity.  

Of late, the role of oxidative stress in Parkinson’s disease has been highly 

controversial. A major contention has been that the appearance of the oxidative 

biochemical markers may be due to some other causative factor involved in neuro-

degeneration, rather than the reverse (46,47). Thus the question whether oxidative stress 

is involved as the cause or consequence of the neurodegeneration of PD is still wide 

open. Also, the fact that many non-dopaminergic pathways are affected in the process 

has brought into question the significance of dopamine oxidation as the causative agent 

of oxidative stress. Therefore, it is imperative to differentiate between the cause and the 

consequence, to elucidate the mechanism underlying dopaminergic cell death in order to 

understand the etiology of Parkinson’s Disease. 

Dopaminergic neurons comprise 1% of the total brain neurons, but they control 

numerous functions in the brain. Some of the critical functions where dopaminergic 

neurons play a role are movement, motivation and reward, learning, emotion, cognition 

and pain pathways (48). They originate in the ventral tegmental area, in the substantia 

nigra and in the hypothalamus. These dopamine neurons project their axons to other 

areas of the brain building a complex neuronal network encompassing four major 

pathways. First, the mesolimbic pathway that connects the ventral tegmental area to the 

limbic system, controls memory and motivating behaviors. Second, the mesocortical 

pathway projects to the frontal cortex and surrounding structures. Third, the 

tuberoinfundibular pathway secretes hormones such as prolactin by connecting the 
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hypothalamus to the pituitary gland. And fourth, the nigrostriatal pathway, in which axons 

project from the substantia nigra to the striatum, controls the motor functions. 

The synthesis of dopamine takes place in the cytoplasmic compartment by the 

action of tyrosine hydroxylase (TH) on the amino acid tyrosine. In this hydroxylation step, 

tyrosine hydroxylase is a monoxygenase enzyme that uses tyrosine and molecular 

oxygen as substrates and tetrahydrobiopterin and iron as co-factors. This is the rate 

limiting step in the biosynthetic pathway of dopamine. The resulting product, L-3,4-

dihydroxyphenylalanine (L-DOPA), is then decarboxylated by aromatic amino acid 

decarboxylase (AADC) to dopamine. Once dopamine is formed, it is rapidly sequestered 

into synaptic vesicles by the action of vesicular monoamine transporter 2 (VMAT2), where 

low pH prevents its auto-oxidation. When dopamine is released in to the synaptic cleft, 

the dopamine transporter (DAT) ensures rapid DA reuptake (49). If free dopamine levels 

in the cytosol or synaptic cleft exceed transport capacity, it can be metabolized via 

enzymatic or non-enzymatic oxidative pathways.  

Studies with animal models, neuronal cell lines and also various post mortem brain 

studies have hinted at the potential role of dopamine and/or its metabolites as 

endogenous neurotoxic agents, influencing redox balance, ROS production and oxidative 

stress (14,15,50,51). This may be due to redox cycling of catechols, leading to increased 

generation of detrimental ROS. The catechol ring (ortho-dihydroxybenzene) of dopamine 

contributes significant toxicity to its structure. Hasegawa et al. showed that oxidized 

catechol metabolites cause apoptotic death of dopaminergic neurons and this process 

was exacerbated by alpha-synuclein, a major constituent of Lewy bodies (15). Moreover, 
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these metabolites could form adducts with alpha-synuclein leading to α-synuclein 

oligomerization, disruption of mitochondrial membrane potential and cell death (52). 

The oxidation of dopamine gives rise to quinone formation, both semi-quinone as 

well as ortho-quinone. DA oxidation can result in the formation of radicals (semi-quinones) 

and quinones via one- and two-electron oxidations, respectively (53-57). This process is 

enhanced in the presence of metal ions such as iron, copper, or manganese by Fenton 

chemistry leading to increased production of reactive oxygen/nitrogen species. Research 

has shown that dopamine cytotoxicity is primarily due to the formation of dopamine 

quinone (54,58), which is more powerful and toxic than quinones produced from other 

catecholamines. Also, intrastriatal injection of dopamine to normal rats in a dose-

dependent manner results in formation of lesions in the corpus striatum that was found to 

be mediated by quinone formation (58,59). The dopamine quinone also reacts with the 

sulfhydryl group of cysteine possibly leading to protein modification (55,60,61). Thus, 

these oxidized dopamine metabolites create a potentially damaging environment for 

dopaminergic neurons.   

The cells affected in PD are centers of dopamine (DA) synthesis, storage, and 

metabolism. The concentration of dopamine and its turnover within the neurons of the 

nigro-striatal pathway is very high (48). Consequently, these neurons are under an 

immense oxidative stress threat even in their resting state. Thus the intracellular 

metabolism of dopamine is a potential source of oxidative stress, capable of exerting 

toxicity by directly damaging cellular macromolecules such as proteins and DNA, and 

depleting oxidative defenses through redox cycling (57,62,63).  
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Therefore, the intent of our research is to study the redox cycling mechanism of 

dopamine oxidized metabolites and investigate the mechanism by which they cause 

oxidative stress. Our hypothesis is that the death of dopaminergic neurons in Parkinson’s 

disease is caused by oxidative stress created by redox cycling of dopamine oxidation 

products. To test this hypothesis, I pursued the following specific aims: 

I. How do redox cyclers compare in different modes of redox cycling? 

II. Does dopamine oxidize to form cytotoxic compounds capable of redox cycling? 

III. What is the underlying mechanism of cell death? 
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CHAPTER 2 – MATERIALS AND METHODS 

Oxygen consumption assay for redox cycling 

Redox cycling was measured at 37ºC in 4 ml of 50 mM potassium phosphate, 1 

µM EDTA, pH 7.4 using a YSI Model 5300A Clark-type oxygen electrode. O2 

concentration was calibrated using glucose and glucose oxidase. Zero O2 was 

determined by injecting a sodium hydrosulfite solution into the sample chamber until no 

further decrease was observed. 

Isolation of heart mitochondria 

Mitochondria were isolated from veal heart by a modification of the method of Blair 

(64). Heart muscle (300 g) was diced and homogenized in 400 ml of 0.25 M sucrose, 0.01 

M Tris-Cl, 1 mM Tris succinate, 0.2 mM EDTA, pH 7.8 (sucrose solution) at 4°C. After 

filtering through a double layer of cheesecloth and adjusting the pH to 7.8 with 2 N KOH, 

the mince was centrifuged for 15 min at 1200 x g. The supernatant was then centrifuged 

for 15 min at 26,000 x g. The pellet was resuspended and centrifuged two more times, 

then resuspended in 10 ml of sucrose solution, divided into fractions and frozen at -40°C. 

Mitochondrial protein concentration was determined using the BCA protein assay using 

bovine serum albumin as a standard. The efficiency of the isolation procedure was 

validated by checking the succinate-dependent membrane potential as an indicator of 

mitochondrial function and integrity of the inner mitochondrial membrane. 

Fluorescence assay of NADH oxidation 

Oxidation of NADH was observed by recording the fluorescence using a Perkin 

Elmer spectrofluorometer set at an emission wavelength of 460 nm and an excitation 

wavelength of 350 nm. The fluorometer was equipped with a water-jacketed cell holder 
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that maintained the sample temperature at 37ºC. The reaction sample included 2 ml of 

phosphate buffer (pH 7.0) containing heart mitochondria and 1.25 mM KCN. NADH was 

added to a final concentration of 100 µM. After recording  a stable initial fluorescence, 

NADH oxidation was begun by adding 3-MAQ (50 µM final concentration).   

Absorbance assay of superoxide production 

Production of superoxide was measured by recording the absorbance increase 

caused by reduction of partially acetylated cytochrome c. Partially acetylated cytochrome 

c (Sigma) is reduced by superoxide but, unlike native cytochrome c, it is not a good 

substrate for mitochondrial enzymes. The assay was performed by recording absorbance 

at 550 nm on a Shimadzu UV160V spectrophotometer. The reaction mixture included 2 

ml of phosphate buffer (pH 7.2)   containing heart mitochondria, 1.25 mM KCN, and 

partially acetylated cytochrome c (100 µg/ml). After recording baseline for 25 sec, NADH 

was added to a final concentration of 500 µM.  

Preparation of HOCD and cysteinyl-dopamine 

HOCD was prepared by adding dopamine and cysteine (250 µM and 300 µM final 

concentrations, respectively) and 100 units of tyrosinase to 4 ml of F12K medium without 

serum at 37ºC. After stirring for 15 min, NaOCl was added to 1 mM. The product was 

sterilized by filtration and used immediately for experiments with PC12 cells. Cysteinyl-

dopamine was made in the same way except addition of NaOCl was omitted. 

Concentrations of these dopamine products are given as the original dopamine 

concentration. 

Measurement of cytotoxicity 
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Toxicity of redox cyclers was measured using the trypan blue exclusion assay. 

PC12 cells (ATCC Cat# CRL-1721.1, RRID: CVCL F659) were grown in six-well plates in 

F12K medium supplemented with 15% heat-inactivated horse serum, 2.5% fetal bovine 

serum and 1% penicillin/streptomycin/glutamine at 37°C and 5% CO2. Cysteinyl-

dopamine (cysDA) and HOCD were prepared in F12K medium without serum, filter-

sterilized and then diluted to the desired concentration with complete medium. Cells at a 

density of 105/ml were treated with cysDA and HOCD. After the desired treatment time, 

cells were detached using 0.1% trypsin, centrifuged, and resuspended in 0.2% trypan 

blue in Hanks Buffered Salt Solution (HBSS). After 10 min, cells were placed in a 

hemocytometer and live and dead cells were counted.  

Western blotting 

Cells were lysed using triple detergent lysis buffer with protease inhibitor (S8820, 

Sigma). The lysis buffer included 50 mM Tris, 150 mM NaCl, 0.1% SDS, 1% IGEPAL and 

0.05% deoxycholate. Protein concentrations of whole cell lysates were determined using 

the Bio-Rad DC protein assay reagent in accordance with the manufacturer’s protocol. 

For each cell lysate, 20 µg of protein was mixed in an equal ratio (1:1) with 1X SDS 

sample buffer and denatured at 95°C for 10 minutes. Denatured samples were then 

resolved by standard SDS PAGE using 8% polyacrylamide gel. Proteins were transferred 

(semi-dry) on to PVDF membranes (88518, Thermo Scientific) as described by Canelle 

et al. (65). Primary antibodies used to probe the blots were: MPO (1:250, ab65871, 

Abcam), p53 (1:500, ab131442, Abcam), caspase-9 (1:400, ab2325, Abcam), PARP 

(1:4000, #9542, Cell Signaling) and GAPDH (1:8000, MAB374, Millipore). Corresponding 

HRP-conjugated secondary antibodies used were as follows: goat anti-rabbit IgG 
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(ab6721, Abcam) and sheep anti-mouse IgG (NA931, GE Healthcare). The antibody 

signals were detected using the ECL Prime Western Blotting detection agent (Amersham, 

GE Healthcare). Blots were photographed using the FOTO/Analyst Investigator 

(FOTODYNE) and quantified using the TotalLab TL 100 software (Nonlinear Dynamics). 

Quantified values of the test protein were normalized to the loading control, GAPDH.  

Myeloperoxidase chlorination activity assay 

Chlorination activity of myeloperoxidase in whole cell lysates was determined 

using the EnzChek Myeloperoxidase (MPO) Activity Assay Kit (E33856, ThermoFisher 

Scientific). The assay was performed as per the manufacturer’s protocol. Chlorination 

activity was measured as fluorescein yielded by the selective cleavage of non-fluorescent 

3’-(p-aminophenyl) fluorescein (APF) by hypochlorite. The fluorescence intensity was 

measured with excitation at 485 nm and emission at 530 nm, using a SpectraMax Gemini 

XPS plate reader (Molecular Devices).  

Observation of superoxide production using MitoSOX 

PC12 cells were incubated in Hanks Buffered Salt Solution (HBSS) containing 

MitoSOX RedTM (2.5 µM final concentration) for 10 min at 37ºC. The buffer with MitoSOX 

dye was aspirated, cells were washed twice with fresh HBSS and placed in an Olympus 

IX81 ZDC inverted microscope equipped with a custom-built incubator for live-cell 

imaging. Bright-field and fluorescence images (rhodamine filter set) were acquired at 

37°C. Redox cycler in 1 ml of HBSS prewarmed to 37ºC was added to initiate superoxide 

generation. After 5-10 minutes, another fluorescence image was obtained. A 10×/0.25 

NA CP-Achromat lens and a 40×/0.75 NA Plan-Neofluar lens were used for phase 

contrast images and fluorescence images respectively. All images were acquired with a 
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Diagnostic Instruments (MI, USA) Boost EM-CCD-BT2000 camera driven by IPLab 

software (BD Biosciences, MD, USA). Images were optimized using ImageJ software.  

Statistical analysis 

An unpaired t-test was used to calculate p values. For toxicity, 9 samples in each 

group were compared (16 degrees of freedom). Myeloperoxidase activities were 

compared with 4 samples in each group (6 degrees of freedom) and myeloperoxidase 

expression with 3 (4 degrees of freedom). Significance is indicated as ns (p ≥ 0.05), *(p 

< 0.05), **(p < 0.01), ***(p < 0.001), ****(p < 0.0001). 

Materials   

Myeloperoxidase (EMD Millipore) was dissolved in pH 6 phosphate buffer at a 

concentration of 0.33 mg/ml. Sodium hypochlorite (140 mM) was prepared by mixing 

0.375 g of calcium hypochlorite with 1.0 g of sodium carbonate in 25 ml of H2O and 

removing the precipitate by filtration. Hypochlorite was assayed by the method of Han et 

al. (66). 3-Methyl-5-anilino-o-quinone (3MAQ) was synthesized by oxidizing 3-

methylcatechol in the presence of aniline (67). Mushroom tyrosinase, bovine liver 

catalase, superoxide dismutase, menadione, 6-hydroxydopamine and 9,10-

phenanthrenequinone were purchased from Sigma/Aldrich and MitoSOX Red from Life 

Technologies. 
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CHAPTER 3 – REDOX CYCLING 

INTRODUCTION 

Oxidation/reduction (redox) reactions, as the name suggests, involve both 

reduction and oxidation. They are chemical reactions in which one or more electrons are 

transferred between two compounds. This electron transfers either results in an increased 

oxidation state (oxidation) of a molecule due to the loss of electrons or a decreased 

oxidation state (reduction) of a molecule due to the gain of electrons. The oxidized and 

reduced forms of the same molecule are together called a redox couple. Redox reactions 

typically occur in pairs, one redox couple being reduced and the other being oxidized. 

The tendency of a molecule to either donate or accept electrons reflects its 

reduction potential. The standard reduction potential (E0) of a molecule is determined by 

comparing its value to that of hydrogen, which is arbitrarily set at zero. Thus, strong 

oxidizing agents have positive redox potentials whereas reducing agents have negative 

redox potentials. The difference in reduction potential between two molecules will 

determine the equilibrium between their oxidized and reduced states. Redox couples with 

lower reduction potentials will donate electrons to reduce redox couples with higher 

potentials. When many different redox active intermediates are present, redox reactions 

often occur as a chain of successive redox reactions.  

Regulating redox activities is imperative for the control of several cellular signaling 

pathways. Thus, in order to define different processes in redox biology, it is not only 

necessary to understand the chemistry underlying the redox reactions but also appreciate 

the biological context that supports these reactions. Factors such as concentration, 

pressure, pH and temperature affect the redox potential of a molecule.  
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There are many redox couples that contribute towards maintaining the redox 

environment, a prominent one being the abundantly found GSSG/2GSH couple 

(glutathione). The half-cell reduction potential (Ehc) of the GSSG/2GSH couple varies 

according to the biological status of the cell; during proliferation Ehc ~ -240 mV; during 

differentiation Ehc ~ -200 mV; or during apoptosis Ehc ~ - 170 mV (68). These potentials 

are useful in deducing the redox status and associated oxidative stress in a cell. Using 

this approach of quantitative biology thereby offers a rationale to explore the cellular 

mechanisms involved with cell growth and development, signaling, oxidative stress and/or 

apoptosis.  

Reduction potential is an important parameter for reactions involving redox active 

metabolites. However, under physiological conditions, redox couples are rarely in 

equilibrium. The concentrations of reduced and oxidized forms are subject to constant 

variation due to fluctuating enzyme concentrations and activities, as the result of 

metabolism. The degree of redox activity in a cellular environment, at any point of time, 

depends on the physiological condition in conjunction with the number and state of the 

redox active moieties involved.  

Redox cycling involves continuously coupled reduction and oxidation reactions, 

often involving oxygen and reactive oxygen species. In theory, any compound with the 

tendency to accept or donate electrons can participate in redox cycling. Redox reactions 

are reversible and most redox active compounds can be either oxidants or reductants 

depending on the biological conditions. Redox-cycling occurs when a compound 

undergoes alternating reduction and oxidation reactions.   
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In the first step of redox cycling, the redox cycler undergoes reduction in the 

presence of a reducing agent. Re-oxidation of the reduced form takes place most 

significantly in the presence of molecular oxygen. The intermediate donates a single 

electron to oxygen thereby reducing it to the superoxide radical anion. This will result in 

the regeneration of the original parent compound in addition to the superoxide anion. The 

reduction of O2 to superoxide is especially significant because it occurs spontaneously 

(non-enzymatically) by outer-sphere electron transfer and it yields the highly reactive 

superoxide. Superoxide generation further leads to the formation of hydrogen peroxide 

either spontaneously or by the catalytic action of superoxide dismutase. If hydrogen 

peroxide encounters transition metals under physiological milieu, it can be converted to 

highly toxic and potentially damaging hydroxyl radical and singlet oxygen (69,70). Thus, 

redox cycling leads to the proliferation of a variety of reactive oxygen species. 

Redox cycling compounds, based on their redox potential, can accept electrons 

from biologically available reducing agents such as reduced flavoproteins, NADPH, 

NADH, reduced ferredoxin, reduced glutathione (GSH) and other thiol containing 

compounds and ascorbic acid. Under physiological conditions, some enzymes are also 

known to catalyze such reactions. These include NADPH-cytochrome P-450 reductase, 

xanthine oxidase, mitochondrial flavoproteins of the electron transport chain and many 

other dehydrogenases (69,70). 

The process of redox cycling involving these alternating reduction and oxidation 

reactions continues until the molecular oxygen and/or reducing equivalents are 

exhausted. This process is sometimes also referred to as “futile cycling.” This process of 

redox cycling could eventually lead to cytotoxicity via depletion of essential reducing 
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equivalents, depletion of oxygen or via potential interaction between free radicals and 

critical biological macromolecules (69,70). Radicals released during redox cycling can by 

themselves engage in free radical-mediated toxic reactions. They have the tendency to 

bind covalently to macromolecules and cause lipid peroxidation, DNA damage or protein 

inactivation. Moreover, interaction of free radicals with smaller biomolecules such as 

glutathione could be equally damaging. Glutathione is not only an integral cellular defense 

against cytotoxic agents but also plays a major role in other biological functions such as 

deoxyribonucleotide synthesis. During redox cycling, glutathione tends to compete with 

molecular oxygen for anion radicals, which leads to depletion of the reduced form of 

glutathione. Based on the degree of release of free radicals, it could also lead to 

disorganization of membrane structure and ultimately disruption of cytoskeleton and cell 

death.  

Under conditions of relatively high molecular oxygen, toxicity could result due to 

the generation of hydroxyl radicals or from the depletion of important reducing agents. On 

the contrary, under low oxygen levels, induction of a hypoxic state and/or an increase in 

the organic radical levels are the predominant causes of toxicity (69). From an 

experimental perspective, redox cycling and its subsequent ROS generation tend to 

interfere with enzymes or reagents in biochemical assays and high throughput screens 

giving false positive results (71-73). 

Redox cycling of quinones has been a well-studied phenomenon and its 

connection to toxicity has been firmly established (74). Quinones have a tendency to 

undergo one- or two-electron reduction reactions. In the case of the former, radical 

semiquinones are formed and due to their highly unstable nature, one-electron reduction 
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generates reactive species (69,70). Two-electron reduction on the other hand, mostly 

catalyzed by diaphorases, results in the formation of completely reduced and biologically 

inactive hydroquinones. This is usually considered as a detoxification process (75,76). 

Supporting this theory, Thor et al. have shown that inhibiting DT diaphorases enhances 

the toxicity of quinones by leaving them free to undergo one-electron reduction to 

semiquinones (76). Numerous redox cycling compounds have been reported to have 

deleterious biological effects due to their conversion to quinones and semiquinones. Apart 

from the quinones, there are a number of naturally occurring benzophenanthridine 

compounds such as sanguinarine and chelerythrine, that also redox cycle generating free 

radicals and leading eventually to apoptosis (77). Though a number of studies have 

focused on the link between redox cycling and toxicity, very few studies have considered 

the relation between the mode of redox cycling and toxicity. 

In the case of Parkinson’s disease, one plausible mechanism that links dopamine 

oxidation to oxidative stress, and which possibly accounts for selective loss of 

dopaminergic neurons, is the redox biochemistry specific to dopamine. Multiple pathways 

of dopamine oxidation have been identified. At physiological pH, dopamine can auto-

oxidize forming reactive oxygen species which can damage cellular constituents such as 

lipids, proteins and DNA. Auto-oxidation of dopamine can lead to the formation of 

dopamine-quinones that can easily react with cellular nucleophiles. Both in vitro and in 

vivo studies have shown dopamine-derived quinones to react with thiols of proteins. 

Within striatal nerve terminals, the concentration of dopamine has been estimated to be 

around 50 mM (78). Reports have demonstrated that increased dopamine oxidation in 

the presynaptic cleft leads to an alteration in the redox status of dopamine terminals (79). 
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With specific reference to DA being considered as an endogenous neurotoxin, two 

independent studies have established that DA quinones inactivate tyrosine hydroxylase 

by covalently modifying its sulfhydryl groups. This converts the enzyme to a redox-cycling 

quino-protein which can react with transition metals via Fenton chemistry and thereby 

cause oxidative stress and consequent dopamine synthesis failure. Compounds with low 

potentials are known to undergo redox cycling, e.g., quinones such as menadione and 

catecholamine derivatives such as 6-hydroxydopamine, adrenochrome and 

aminochrome. Redox cycling of compounds like aminochrome and adrenochrome have 

been suggested to cause the death of dopaminergic cells in Parkinson’s disease. 

However, these catecholamine derivatives have a tendency to oxidize to higher potential 

dihydroxyindoles, making them highly unstable and difficult to study their biological effects 

and redox cycling mechanism.  

Nonetheless, in regards to Parkinson’s disease it is important to consider that mild 

oxidative stress persists for years in nigrostriatal neurons, which could ultimately evoke a 

biological condition leading to untimely death of the dopamine neurons. Evidence in 

support of this has also shown traces, at autopsy, of oxidized dopamine metabolites in 

nigral neurons (63,80-82). 

Studies with biological systems have shown increased generation of hydrogen 

peroxide with cell-specific redox cycling of toxic products such as paraquat, doxorubicin 

and alloxan (83). This has led to cellular destruction and subsequent phagocytosis. 

Similarly, in brain, redox cyclers like, 6-hydroxydopamine and 6-aminodopamine have 

been shown to specifically damage catecholamine neurons (84). Also, in addition to 

hydrogen peroxide, other species including hypochlorous acid, reactive quinones, 
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hydroxyl radicals and superoxides have also been shown to contribute to the stress in 

dopamine nerve terminals. 

Redox cycling compounds are prooxidant catalysts that transfer electrons to 

oxygen to generate reactive oxygen species (75,76). Commercially, such compounds are 

used as substituents in xenobiotic compounds (e.g. redox active pesticides) (85-89), 

redox active pharmacophores (e.g. anesthetics) (90) and in pharmaco chemotherapeutic 

drugs (e.g. menadione, doxorubicin/adriamycin) (91-94). Studies have shown that an 

inability to detoxify the redox cycling agents has led to increased vulnerability to 

environmental hazards. From a pharmaceutical perspective, this has also introduced 

some limitations in anticancer chemotherapeutics and antibiotics. Since there may be an 

age-related decline in the capacity to detoxify redox cycling compounds, it is extremely 

important to have detailed toxicity profiles of such redox cyclers from a therapeutic point 

of view.   

Therefore, the aim of this study is to understand the different modes of redox 

cycling by comparing chemically synthesized redox cyclers. 

RESULTS 

Over the years, consumption of oxygen and production of superoxide anions have 

been used for measuring redox cycling activities. For our experimental purposes, we 

employed a convenient assay to study redox cycling, where we measure oxygen 

consumption using a Clark-type oxygen electrode. The rate of oxygen consumption is 

directly proportional to the redox cycling activity of the compound studied. The 

compounds used in our work were 9,10-phenanthrenequinone, menadione, 6-hydroxy 

dopamine and 3-methyl-5-anilino-1,2-benzoquinone. Among these, 3-MAQ is a 
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chemically synthesized, laboratory developed redox cycler that structurally mimics and 

shares some electrochemical properties with the oxidized dopamine metabolite 

aminochrome. The others are commercially available chemically synthesized 

compounds.   

To study the redox cycling process, ascorbic acid and dithiothreitol (DTT) were 

used as reducing agents. Both ascorbate and DTT were used to catalyze non-enzymatic 

reduction of the redox cyclers. As observed in fig. 2, all four compounds did undergo 

ascorbate- as well as DTT-dependent redox cycling.  

When ascorbic acid is used as an electron donor, one-electron reduction of the 

redox cycler takes place (Fig. 1). As a result, the quinone is reduced to a semiquinone 

radical and ascorbate is oxidized to semidehydroascorbate. The semiquinone reacts with 

O2 yielding superoxide and the oxidized quinone. The superoxide produced in this 

scenario reacts with ascorbate as well as semidehydroascorbate. Thus, when superoxide 

dismutase is added alongside ascorbic acid, there is no effect on the redox cycling 

activity. 

DTT is a strong reducing agent that usually catalyzes two-electron reduction 

reactions. It tends to reduce the quinone redox cycler by donating two electrons to form 

a hydroquinone (Fig. 1). The relatively stable hydroquinone does not react readily with 

O2, so it must be oxidized by superoxide. The semiquinone formed in this first step is then 

oxidized back to its parent quinone by molecular oxygen. This second step generates the 
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Figure 1. One-electron vs. two-electron mediated redox cycling – Ascorbic acid 
mediates one-electron reduction forming the semi-quinone (Q-); dithiothreitol mediates 
two-electron reduction forming the fully reduced hydroquinone (QH2). Whereas O2 
oxidizes the reactive semiquinone, superoxide is required to oxidize the hydroquinone. 
 

superoxide anions needed for the first step. Thus, when superoxide dismutase is added 

to the solution along with DTT, redox cycling is inhibited. This is because superoxide 

dismutase eliminates superoxide anions from the solution, inhibiting the conversion of 

hydroquinone to the semiquinone anion. Because some superoxide is undoubtedly lost 

by disproportionation and reaction with DTT, there must be other mechanisms for 

converting the corresponding fraction of hydroquinone to the semiquinone. Otherwise, 

the hydroquinone would accumulate and redox cycling would stop. There could be a 

comproportionation reaction in which the hydroquinone and quinone forms of the redox 

cycler react to form the semiquinone radical anion. The hydroquinone might also react 

slowly with O2, especially in the case of low-potential redox cyclers. 
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Figure 2. Inhibition of ascorbate and dithiothreitol-driven redox cycling by 
superoxide dismutase – Redox cycling was monitored as O2 consumption at 37 °C and 
pH 7.4, in a Clark-type oxygen electrode. The redox cycling activity of varying 
concentrations of (A) 3-MAQ; (B) 9,10-Phenanthrenequinone; (C) Menadione; and (D) 6-
hydroxydopamine, was initiated by adding 2.5 mM ascorbic acid (green) or 250 µM 
dithiothreitol (blue). Superoxide dismutase when added; inhibited the redox cycling 
activity with dithiothreitol (red) as the electron donor but had no effect with ascorbate 
(purple) as the electron donor. 
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Of the four redox cyclers tested, it is apparent that DTT-driven redox cycling of 

menadione is less sensitive to superoxide dismutase. This may be because menadione 

comproportionates faster than the other compounds or that its hydroquinone reacts more 

readily with O2. Menadione does have the lowest reduction potential of the redox cyclers 

tested (-5 mV compared to +10 mV to +90 mV for the others). 

6-Hydroxydopamine (6-OHDA) is an endogenous neurotoxin formed by dopamine 

oxidation, and it is commonly used as a dopaminergic neurotoxin to mimic the effects of 

Parkinson’s disease. It was tested here to characterize the redox cycling mechanism of 

this oxidized dopamine metabolite. 6-Hydroxydopamine is highly unstable in aqueous 

solution, and it spontaneously reacts with molecular oxygen changing a colorless solution 

to bright red, with a maximum absorbance at 490 nm. This is due to the formation of the 

quinone form of 6-OHDA. Interestingly, addition of DTT immediately changes the solution 

to colorless, suggesting rapid reduction of the quinone back to the fully reduced 6-OHDA 

in a two-electron reduction. In the case of ascorbate, this change is gradual. This suggests 

that ascorbate reduces the 6-OHDA quinone to the semiquinone in a one-electron 

reduction. The semiquinone then rapidly reoxidizes by reacting with O2.  

While ascorbic acid is a good reducing agent for redox cycling in vitro, it is also a 

good antioxidant so oxidative stress will be minimal in its presence. Therefore, it is 

imperative to find another natural cellular reducing mechanism that will permit oxidative 

damage. Enzymatic reduction is likely, and the mitochondria are of particular interest 

because of their high and continuous production of reduced electron carriers (i.e. NADH 

and FADH2).  
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Mitochondria-driven redox cycling of 3-MAQ was checked using a Clark-type 

oxygen electrode (Fig. 3). Potassium cyanide was added to eliminate any interfering O2 

consumption catalyzed by the respiratory chain in the mitochondria. Typically, this 

interference was small, however, as eliminating KCN from the reaction sample yielded 

similar results. After 5 minutes, either 40 μl of 10 mM 3-MAQ or 40 μl of 50 mM reduced 

nicotinamide adenine dinucleotide (NADH) was added, followed 5 minutes later by the 

addition of the other. The redox cycling activity of 3-MAQ was measured as the rate of 

oxygen consumption. Addition of only 3-MAQ did not show any redox cycling activity 

indicating the absence of any endogenous NADH. Also, eliminating mitochondria 

diminished the redox activity. This confirmed the need for both mitochondria and NADH 

in the redox cycling of 3-MAQ 

 

Figure 3. NADH-dependent redox cycling in veal mitochondria – The reaction mixture 
containing 4 ml of phosphate buffer (pH 7.0), 100 µl of veal brain mitochondria and 50 µl 
of 100 mM potassium cyanide (KCN) was placed in the oxygen electrode chamber at 
37°C. 3-MAQ (100 µM final concentration) was added at time = -5 min and 50 mM NADH 
(500 µM final concentration) was added at time = 0. The redox cycling activity of 3-MAQ 
was observed as the consumption of oxygen. It was not observed in the presence of 50 
µl of 50 mM NAD+ or 40 µl of 250 mM mersalyl acid, or in the absence of mitochondria. 
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Once the redox cycling of 3-MAQ was found to be NADH-dependent, we confirmed 

the oxidation of NADH by looking at the NADH fluorescence during redox cycling (Fig. 4). 

Fluorescence of NADH was recorded using a Perkin Elmer spectrofluorometer set at an 

emission wavelength of 460 nm and an excitation wavelength of 350 nm. Addition of 10 

μl of 10 mM 3-MAQ, oxidized the NADH, as seen by the linear decrease in fluorescence. 

The immediate drop in fluorescence following 3-MAQ addition is an artifact caused by the 

absorbance of 3-MAQ. 

 

 

Figure 4. Oxidation of NADH during redox cycling of 3-MAQ – NADH was measured 
by fluorescence. The reaction sample included 2 ml of phosphate buffer (pH 7.0), 20 µl 
heart mitochondria and 25 µl of 100 mM KCN. 40 µl of 5 mM NADH was added at -6 min. 
Addition of 10 µl of 10 mM 3-MAQ at time = 0 initiated oxidation of NADH confirmed by 
the drop in the fluorescence readings. NADH oxidation was inhibited in the presence of 
20 µl of 250 mM mersalyl acid and when mitochondria were omitted. 
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Inhibitors of various mitochondrial functions including the respiratory chain 

(rotenone, cyanide, quercetin, antimycin), xanthine oxidase (allopurinol) and 

NADH:quinone oxidoreductase (dicumarol) were tested for inhibition of the redox cycling 

activity of 3-MAQ (data not shown). None, except mersalyl acid, inhibited NADH-

dependent redox cycling (Fig. 3). Mersalyl acid seemed to inhibit the redox cycling activity 

of 3-MAQ almost completely. Mersalyl acid is known to inhibit cytochrome b5 reductase. 

This hints at the possibility that cytochrome b5 reductase could be the primary 

mitochondrial enzyme that catalyzes the redox cycling of oxidized dopamine products (3-

MAQ in this case). To test this possibility, we examined the effect of cytochrome b5 on 3-

MAQ redox cycling in the oxygen electrode. Human recombinant cytochrome b5 (20 

µg/ml final concentration) was added to the oxygen electrode in 4 ml of 0.2 M phosphate 

buffer (pH 7.0) containing heart mitochondria, cyanide and 3-MAQ (100 µM final 

concentration). Redox cycling was initiated by adding NADH (0.5 mM final concentration).  

Presence of cytochrome b5 increased the redox cycling activity of 3-MAQ, as 

indicated by a noteworthy increase in the rate of oxygen consumption (Fig. 5). Although 

there is an apparent increase in 3-MAQ redox cycling due to cytochrome b5, what role it 

plays in this mechanism and how it interacts with cytochrome b5 reductase in this 

experiment is still not clear.  

Of special interest is whether NADH-driven redox cycling of 3-MAQ produces 

superoxide in the presence of mitochondria. This was checked by assaying superoxide 

using acetylated cytochrome c (95). Acetylated cytochrome c is readily reduced by 

superoxide but is relatively less susceptible to direct reduction by mitochondrial enzymes 

than the native protein, thereby providing less interference from competing reactions.  
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Figure 5. Effect of cytochrome b5 on NADH-dependent redox cycling – Redox 
cycling of 3-MAQ (100 µM final concentration) was tested in the oxygen electrode in the 
presence and absence of 40 μl of human recombinant cytochrome b5 (1mg/ml); NADH 
(500 µM final concentration) was also added at time=0. The presence of cytochrome b5 
caused a noteworthy increase in the rate of oxygen consumption. 
 

 

Figure 6. Superoxide production observed by cytochrome c reduction – Cytochrome 
c reduction was recorded at 550 nm. The reaction mixture including 2 ml of mitochondrial 
assay buffer (pH 7.2), 10 µl of veal heart mitochondria, 25 µl of 100 mM KCN and 20 µl 
of acetylated cytochrome c was placed in a cuvette and absorbance was recorded for 2 
minutes. 20 µl of 50 mM NADH was added at time = 25 sec. 10 µl of 2.5 mM 3-MAQ when 
added, caused the production of superoxide anions, whereas presence of 20 µl of 3000 
U/ml of superoxide dismutase decreased the production of superoxide anions. 
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The assay was performed by recording the cytochrome c reduction as the increase in 

absorbance at 550 nm. As predicted, superoxide production was observed with 

acetylated cytochrome c, as detected by the decrease in absorbance (less cytochrome c 

reduction) when superoxide dismutase was present (Fig. 6). 

DISCUSSION 

 It is generally believed that one-electron reduction generates reactive oxygen 

species whereas two-electron reduction leads to detoxification (69,70). One-electron 

reduction reactions are mediated by a number of reductive enzymes, namely, microsomal 

NADPH-cytochrome P450 reductase and mitochondrial NADH-ubiquinone 

oxidoreductase (complex I) (96). The unstable semi-quinone formed in the process can 

readily be oxidized by molecular oxygen, resulting in reformation of quinone and 

generation of reactive oxygen species. In contrast, two-electron reduction of quinones is 

catalyzed by reductive enzymes, such as NAD(P)H:quinone oxidoreductase 1 (EC 

1.6.99.2, NQO1; DT-diaphorase), where the resulting hydroquinone is comparatively 

more stable than the semi-quinone (97). Thus generation of ROS is greatly diminished. 

These two cases are analogous to the two-electron dithiothreitol- and one-electron 

ascorbic acid-dependent redox cycling mechanisms respectively. Can general principles 

derived from in vitro studies of redox cycling be applied to understand observations in 

vivo? The inhibition of dithiothreitol-dependent redox cycling by superoxide dismutase 

implies that two-electron reduction of quinones is protective only as long as superoxide 

concentrations are kept low. If superoxide increases, it will oxidize the reduced quinones 

to their more reactive semiquinones. 
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Among the redox cyclers that we studied, menadione is an interesting special 

case. It has been previously shown to induce lipid peroxidation and membrane damage 

and to decrease reduced glutathione levels due to its redox cycling capability (76,98-101). 

Criddle et al. (2006) have shown that redox cycling of menadione generates reactive 

oxygen species and leads to apoptotic cell death of pancreatic acinar cells (97). They 

also showed that redox cycling of menadione led to a concomitant decrease of NAD(P)H, 

thereby hindering the activity of two-electron detoxifying enzymes such as 

NAD(P)H:quinone oxidoreductase. In my in vitro studies, menadione is actually a 

relatively slow redox cycler compared to the other compounds. However, its DTT-

dependent redox cycling is also relatively insensitive to superoxide dismutase. Thus, 

menadione may be unexpectedly effective in vivo because it can redox cycle in the 

presence of two-electron quinone reduction and low superoxide levels.    

Redox cycling quinones have been implicated in many forms of neurotoxicity 

(102,103). When a quinone undergoes one-electron reduction, a semiquinone is 

generated. This semiquinone gets converted back to its parent quinone form by donating 

one electron to dioxygen (104). Redox cycling of quinones is tightly restricted. If a quinone 

is a strong oxidant then semiquinone formation is favored, but not the regeneration of the 

parent compound. If a quinone is a strong reductant, then reaction of the semiquinone 

with oxygen is favored, but not the formation of the semiquinone. A good redox cycler, 

therefore, is ideally a compound that can be easily oxidized and can then be reduced 

back to its original form. They typically have reduction potentials in the range of -100 mV 

to +100 mV. Some of the organic chemical compounds capable of undergoing one-

electron reduction and redox cycling are azo derivatives, nitroso compounds, N-oxides, 
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S-oxides and polyhalogenated aliphatic hydrocarbons. Contrarily, carbonyl compounds 

do not favor generation of radical intermediates, because they undergo dehydrogenase-

catalyzed two-electron mediated reduction reactions. Physiological conditions are ideal 

for the reduction and redox cycling of these compounds, since live cells have strongly 

negative reduction potentials (69,70).  

Quinones are electron-deficient compounds which are highly reactive with 

nucleophilic groups such as thiols and protein sulfhydryls (105). In vivo, therefore, 

quinones can react with and covalently link to proteins. Antioxidants and reductants can 

protect against quinone-induced damage by competing with protein sulfhydryls for the 

quinones (61,106-108). Interestingly, the rate of redox cycling can be more pronounced 

when the quinone is bound to a protein rather than in its free form in solution. In support 

of this conclusion, the effects of quinoproteins have been found to last longer than those 

of reactive oxygen species or quinone by itself, in solution (61,106,109). Also, 

antioxidants, that usually serve as cellular defense mechanisms protecting against 

oxidative stress, have been reported to contribute to redox cycling of a protein bound 

quinone, which also depletes cellular energy and endogenous reducing equivalents 

(103,110,111).  

Some compounds have been proposed to redox cycle in vivo although they do not 

redox cycle in vitro. In the MPTP model for Parkinson’s disease, MPTP is converted to its 

more toxic compound MPP+. Neither MPTP nor its oxidized counterpart can redox cycle. 

MPTP itself is highly stable under normal conditions and does not autoxidize. When 

MPTP undergoes two-electron as well as four-electron oxidation, neither of the oxidation 

products of MPTP can be reduced easily (112). Chacon et al. (1987) showed that the 
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reduction potential of MPP+ (-1V) at physiological pH makes it a poor redox cycling agent 

(113).  Nevertheless, it has still been suggested that MPP+ gets reduced to the MPP 

radical, which undergoes redox cycling (114). Whether MPP+ leads to oxidative stress 

via redox cycling is still an unanswered question.  

Paraquat, a well-known herbicide, is structurally similar to MPP+ and has been 

widely used to study Parkinson’s disease. Animal models chronically treated with 

paraquat have demonstrated loss of dopaminergic neurons in the substantia nigra. The 

toxicity of paraquat has been attributed to its ability to redox cycle (115). It has a reduction 

potential of -0.450 V, which is significantly higher than that of MPP+ but still very low for 

a redox cycler. Some studies have questioned the redox cycling capability of paraquat. 

In an assay for redox cycling, paraquat did not produce hydrogen peroxide and therefore, 

levels of reactive oxygen species were low (116). 

How compounds that fail to redox cycle in vitro can appear to do so in vivo is 

therefore a mystery. Whether they metabolize to other redox cycling compounds, couple 

to proteins to form redox cycling adducts, or inhibit activities that allow the redox cycling 

of endogenous compounds are all possibilities. There are numerable factors that 

determine the amount of biologically active, reactive intermediates formed by redox 

cycling. Among the two major factors involved, one is the redox potential of the compound 

to be reduced and another is the availability and activity of the enzymes catalyzing the 

reduction reactions. The energy status as well as the oxygen tension of the affected cell 

population also impact the redox cycling process (69,70). Another factor that influences 

the equilibrium reaction of a redox cycler with oxygen is superoxide dismutase. 

Superoxide dismutase catalyzes dismutation of superoxide to hydrogen peroxide and 
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water further driving the reaction towards radical formation. Other variables that may 

affect the redox cycling mechanism under certain conditions are the availability of 

reducing equivalents and cellular concentrations of antioxidants (69,70). 

Although redox cycling has been a well-studied phenomenon in vitro, inconsistent 

observations in vivo have remained a persistent challenge for the research community. It 

is important to consider the translational gap that exists between in vitro and in vivo 

studies. A compound capable of redox cycling and producing free radicals in vitro, may 

not follow suit in vivo (117). As a first step towards narrowing this gap, it is necessary to 

demonstrate the generation of free radicals in vivo (117). A thorough understanding of 

the structural and physicochemical aspects of redox cycling is required. This would further 

help in generating compounds, capable of influencing cellular redox status, with 

therapeutic applications. 
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CHAPTER  4 – DOPAMINE, HYPOCHLORITE AND PARKINSON’S DISEASE 

INTRODUCTION 

The dopamine oxidation pathway has been studied extensively.  Dopamine is 

usually sequestered in to intracellular vesicles that prevent it from oxidizing under the 

physiological conditions of the cytosol. In PD patients, it has been reported that the 

activities of vesicular monoamine transporter 2 (VMAT2) (118) and the cell membrane 

dopamine transporter (DAT) (119) are diminished, so the possibility of free dopamine in 

cytosol/synapses increases considerably. Free dopamine that has escaped or been 

released from this vesicular storage, whether in the cytoplasm of the cell or in the 

synapse, is more likely to undergo either enzymatic or non-enzymatic oxidative 

metabolism to deleterious species that exert cytotoxicity through a variety of established 

mechanisms (53,57). Among dopamine metabolites, 3,4-dihydroxyphenylacetaldehyde 

(DOPAL), aminochrome, 5-S-cysteinyl dopamine and its metabolite DHBT-1 have all 

received considerable attention.  

Enzymatically, dopamine is metabolized oxidatively by monoamine oxidase (MAO) 

and catechol-o-methyltransferase. MAO-B, an outer mitochondrial membrane enzyme, 

catalyzes oxidative deamination of dopamine to 3,4-dihydroxyphenylacetaldehyde 

(DOPAL) which is more toxic than the parent dopamine (120). DOPAL itself can be 

converted to a comparatively non-toxic compound DOPAC by aldehyde dehydrogenase 

(ALDH). In Parkinson’s patients, DOPAL is found to be selectively toxic to dopaminergic 

neurons while ALDH activity is reduced (120). Interestingly monoamine oxidase inhibitors, 

which would be expected to block the formation of DOPAL, do not appear to slow the 

progression of Parkinson’s disease. Also, within astrocytes, dopamine can be 



36 
 

metabolized into homovanillic acid (HVA) through the synergistic action of catechol-o-

methyltransferase (COMT), monoamine oxidase (MAO) and aldehyde dehydrogenase 

(ALDH) (121,122). Dopamine may also undergo oxidation via minor enzymatic pathways, 

involving the enzymes prostaglandin H synthase, lipoxygenase, and tyrosinase (123).  

Our study, however, focuses on the non-enzymatic oxidation of dopamine and its 

auto-oxidation metabolites. Dopamine can undergo non-enzymatic spontaneous auto-

oxidation to radicals and quinones, with concomitant release of reactive oxygen species 

(53-56). To begin the non-enzymatic oxidation, dopamine auto-oxidizes slowly in the 

presence of O2 to form the o-quinone. The o-quinone is susceptible to nucleophilic attack, 

and reacts rapidly with thiols such as cysteine, to form adducts such as 5-S-cysteinyl-

dopamine (55,61).  

Since cysteine residues play an important role in protein function, their modification 

via the irreversible covalent reaction between dopamine quinone and cysteine can have 

adverse effects on cellular health (60). Moreover, the basal level of oxidative stress rises 

in the neurons, due to the formation of the conjugate quinone species, especially as 5-S-

cysteinyl species are more easily oxidized than the parent catecholamine. Notably, traces 

of 5-S-cysteinyl-dopamine have been detected in the cerebrospinal fluid of PD patients, 

dopamine-rich regions of the brain such as the caudate nucleus, putamen, globus pallidus 

and substantia nigra, and in neuromelanin (81,124).  

Cysteinyl-dopamine has been reported to kill neuronal cells (82), but it is uncertain 

whether it is cytotoxic itself or metabolizes to toxic products. Cysteinyl-dopamine oxidizes 

relatively slowly like dopamine itself.  In an effort to identify products that react more 

quickly with O2 and therefore would generate reactive oxygen species (ROS), we have 
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sought dopamine metabolites capable of  rapid redox cycling. We report here that 

hypochlorite converts cysteinyl-dopamine into a cytotoxic redox cycling product capable 

of generating free radicals and thereby creating oxidative stress.  

RESULTS 

 Over the years, a number of studies have shown that cysteinyl-dopamine (cysDA) 

is toxic to a variety of neuronal cells and cell lines in culture (82,125-127). Here, we found 

that cysteinyl-dopamine at concentrations of 100 μM or greater is toxic to 

catecholaminergic PC12 cells (Fig. 8). When cysDA is oxidized with hypochlorite, PC12 

cells are more susceptible to the resulting product at lower concentration; the same 

concentration of hypochlorite by itself is not toxic. Interestingly, addition of taurine to the 

cells nearly abolishes the toxicity of cysDA for up to 48 hours but has no effect on the 

toxicity of the hypochlorite-treated product. Taurine is known to be a hypochlorite 

scavenger (128), suggesting that the toxicity of cysteinyl-dopamine may depend upon its 

conversion to the hypochlorite product. This product is suspected to be a benzothiazine 

derivative (see discussion), but as the structure is not yet established, we will refer to it 

as HOCD (hypochlorite-oxidized cysteinyl-dopamine). 

Hypochlorite Converts Cysteinyl-dopamine into a Redox Cycling Product 

There have been reports suggesting that cysteinyl-dopamine causes oxidative 

stress (82,125). To investigate this, we tested cysteinyl-dopamine and HOCD for redox 

cycling activity.  A  convenient  assay  for  determining  the  redox  cycling  activity  is   to  
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Figure 7. Non-enzymatic dopamine oxidation reactions – HOCD and HOCDSQ are 
the oxidized and semi-quinone forms of the redox cycling compound formed by reaction 
of cysteinyl-dopamine with hypochlorite. 
 

measure the rate of ascorbate-dependent oxygen consumption using a Clark-type oxygen 

electrode. The compound is reduced by ascorbic acid and re-oxidized by molecular 

oxygen. To recapitulate the dopamine oxidation process, dopamine oxidation was 

accelerated using tyrosinase to form the o-quinone. This produces cysteinyl-dopamine in 

the presence of cysteine and aminochrome in its absence. Using the ascorbic acid-

dependent oxygen consumption assay, redox cycling is not observed when 25 μM 

dopamine is oxidized by tyrosinase in the presence of cysteine unless hypochlorite is 

present (Fig. 9A). Cysteinyl-dopamine itself therefore is not effective at redox cycling, but 

is efficiently converted into a redox cycling product when oxidized by hypochlorite. In the 

presence of hypochlorite, all of the O2 in the solution is consumed within minutes after 

adding an excess of ascorbic acid. Since the oxygen concentration exceeds that of  
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Figure 8. Taurine reduces toxicity of cysteinyl-dopamine but not of HOCD in PC12 
cells – PC12 cells were treated with cysteinyl-dopamine or HOCD at the indicated 
concentrations and both live and dead cells were counted after 24, 48 or 72 h. Dashed 
lines show the effect of 25 mM taurine added to the medium. Each point is the average 
(± standard deviation) of nine replicate samples. For cysteinyl-dopamine (A, B and C), 
survival with taurine was significantly greater than survival without taurine with p < 0.0001 
in all cases except 50 μM cysDA at 24 h (p=0.054) and 48 h (p=0.023) as indicated. For 
HOCD (D, E and F), survival with taurine was not significantly different from without 
taurine (p > 0.05) except for 200 μM HOCD at 72 h (p=0.018). 
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Figure 9. Conversion of dopamine into redox cycling products by hypochlorite – 
(A) Redox cycling was monitored as O2 consumption at 37 °C and pH 7.4. Redox cycling 
products were formed by adding dopamine (25 μM), cysteine (37.5 μM) and tyrosinase 
(100 units) followed by the indicated concentration of sodium hypochlorite. Redox cycling 
was initiated by adding 2.5 mM ascorbic acid. (B) Rate of redox cycling by dopamine 
oxidation products. Rates were determined from the initial slope following ascorbic acid 
addition from recordings obtained as in A using 100 μM sodium hypochlorite. Catalase 
(100 μg) was added to the indicated sample at the same time as ascorbic acid. For each 
of the other conditions, indicated components were omitted (cysteine and sodium 
hypochlorite were both omitted from DA+Tyrosinase). Bars show the average ± standard 
deviation of three replicate samples. 
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dopamine by a factor of ten, the dopamine product must be cycling, alternately reduced 

by ascorbic acid and oxidized by O2. Detectable redox cycling may be observed with 

hypochlorite concentrations as low as a few micromolar. Dopamine treated with 

tyrosinase in the absence of cysteine produces aminochrome which has weak redox 

cycling activity (Fig. 9B). This is observed both in samples with no cysteine and in those 

with just dopamine and tyrosinase. Dopamine like cysteinyl-dopamine has no redox 

cycling activity itself. Catalase, which converts H2O2 to ½ O2 + H2O, reduces the rate of 

O2 consumption by approximately 50% confirming that H2O2 is the ultimate product of 

redox cycling. 

Superoxide is Produced by Cells Treated with Redox Cyclers 

Apart from the ability to redox cycle, we have shown that HOCD is toxic to PC12 

cells at micromolar concentrations. If these two attributes are related to each other, then 

we would expect to see generation of reactive oxygen species in cells following HOCD 

treatment. Although hydrogen peroxide is the final product of redox cycling, O2 is typically 

reduced first to superoxide before disproportionating to H2O2. We used MitoSOX Red 

fluorescence assay to monitor superoxide production in PC12 cells. A visible increase in 

fluorescence was seen within ten minutes of adding HOCD to the cells (Fig. 10). This 

effect was mimicked by other known redox cyclers, 3-methyl-5-anilino-o-quinone (3MAQ) 

and 9,10-phenanthrenequinone. Cysteinyl-dopamine also causes this fluorescence 

increase but only after about 30 minutes of exposure consistent with its time-dependent 

conversion to HOCD. Neither dopamine nor NaOCl when added separately caused this 

effect, nor did it occur if the dopamine product was made without either dopamine or 

hypochlorite. 
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Figure 10. Superoxide generation by redox cyclers in PC12 cells – PC12 cells were 
grown in a 35-mm diameter imaging chamber and treated with MitoSOX Red. A bright-
field image (A) was obtained followed by fluorescence images (B) before (inset) and after 
addition of the indicated redox cycler (125 μM HOCD, 10 μM 3MAQ, or 10 μM 9,10-
phenanthrenequinone). Magnification bars = 40 μm. 
 

Hypochlorite is Unique in its Ability to Convert Cysteinyl-dopamine into a Redox 

Cycler 

Hypochlorite is a strong oxidizing agent, and it is possible that its effect on 

cysteinyl-dopamine is a consequence of simple oxidation. However, we can discard that 

possibility based on the failure of other common oxidants to mimic its effect, thus making 

hypochlorite unique in this respect (Fig. 11A). Hypochlorite at a concentration of 100 μM 

initiates a very rapid rate of redox cycling. Comparatively, ferricyanide produces a small 

amount of redox cycling activity, whereas ferric ion, perchlorate and methyl viologen 

(paraquat) are all ineffective. Hydrogen peroxide by itself has a negligible effect, even at  
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Figure 11. Sodium hypochlorite is uniquely effective at converting cysteinyl-
dopamine into redox cycling products and is blocked by taurine – (A) Initial rates of 
O2 consumption, recorded as in Fig. 9, were measured in the presence (green) or 
absence (red) of 25 μM dopamine along with cysteine and tyrosinase. Oxidants tested 
were sodium hypochlorite (100 μM), ferric chloride (200 μM), hydrogen peroxide (1.25 
mM), potassium ferricyanide (200 μM), paraquat (200 μM) and potassium perchlorate 
(200 μM). Bars show the average ± standard deviation of three replicate samples. (B) 
Redox cycling was monitored as in Fig. 9A, but the indicated concentration of taurine was 
added before adding NaOCl. The dashed line shows a sample in which 25 mM taurine 
was added after NaOCl and just prior to ascorbic acid. 
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a very high concentration (>1 mM). Since taurine protects against the conversion of 

cysteinyl-dopamine to the toxic product HOCD in PC12 cells, we expected its effect on 

redox cycling to follow suit in the oxygen consumption assay. Indeed, the redox cycling 

activity was inhibited when taurine preceded hypochlorite addition (Fig. 11B). Addition of 

taurine after hypochlorite showed very little change in the redox cycling activity which not 

only indicates that it does not interfere with the redox cycling assay but also reaffirms that 

taurine has no effect on HOCD.  

Myeloperoxidase Can Produce the Hypochlorite Required to Convert Dopamine 

into a Redox Cycler 

Myeloperoxidase catalyzes the reaction of Cl- and H2O2 to produce hypochlorite 

and water. Therefore, substituting hypochlorite with myeloperoxidase and its substrate 

hydrogen peroxide should replicate its effect of converting cysteinyl-dopamine into a 

redox cycler. Indeed, when hydrogen peroxide was provided as substrate for 

myeloperoxidase, ascorbate-dependent redox cycling occurred with a rate proportional 

to H2O2 concentration (Fig. 12). Furthermore, dopamine, hydrogen peroxide, 

myeloperoxidase and Cl- are indispensable for producing the redox cycling product (Fig. 

12B). Myeloperoxidase has both peroxidase and chlorination activities, but hypochlorite 

is produced by the chlorination reaction. Therefore, to check if myeloperoxidase is present 

in PC12 cells to convert cysteinyl-dopamine into HOCD, we tested myeloperoxidase both 

by Western blotting and by chlorination activity. Using both measures, a low basal level 

of myeloperoxidase is found in PC12 cells, and this increases proportionately when cells 

are exposed to varying concentrations of cysteinyl-dopamine or HOCD (Fig. 13). 
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Figure 12. Conversion of dopamine into redox cycling products by 
myeloperoxidase and H2O2 – (A) Samples received dopamine (25 μM), cysteine (37.5 
μM) and tyrosinase (100 units) followed by the indicated concentration of hydrogen 
peroxide and 6.7 μg of myeloperoxidase in 0.1 M KCl. Redox cycling was initiated by 
adding 2.5 mM ascorbic acid. (B) Rate of redox cycling by products of 
myeloperoxidase/H2O2 treatment. Rates were determined as the initial slope following 
ascorbic acid addition from recordings obtained as in (A). Samples lacking 
myeloperoxidase (MPO), dopamine and KCl were obtained with 120 μM H2O2. Bars show 
the average ± standard deviation of three replicate samples. 
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Figure 13. Cysteinyl-dopamine and HOCD increase myeloperoxidase expression 
and activity – PC12 cells were treated with cysteinyl-dopamine or HOCD at the indicated 
concentrations for 24 h. Extracts were tested for myeloperoxidase expression by Western 
blotting (A and D) and assayed for chlorination activity (C and F). Quantification of 
Western blots are shown in B and E. Bars show the average ( ± standard deviation) of 
three replicate samples. 
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It has also been reported that rotenone leads to increased expression of 

myeloperoxidase in neurons and glial cells (129-131). With low concentrations of 

cysteinyl-dopamine or HOCD, 10 nM rotenone causes a marked increase in the level of 

myeloperoxidase (Fig. 14). Concomitantly, rotenone significantly reduces survival of 

PC12 cells treated with cysteinyl-dopamine. On the other hand, addition of rotenone has 

no effect on the greater initial toxicity of HOCD. This differential effect of rotenone 

suggests that it is enhancing the conversion of cysteinyl-dopamine to HOCD. Therefore, 

the dopaminergic toxicity of rotenone is likely due, at least in part, to its effect on 

myeloperoxidase expression. 
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Figure 14. Rotenone increases myeloperoxidase and enhances toxicity of 
cysteinyl-dopamine but not of HOCD – Myeloperoxidase was assayed both by Western 
blotting (A and D) and by chlorination activity (C and F) after 24 h of treatment with 50 μM 
cysDA or 50 μM HOCD in the presence or absence of 10 nM rotenone. Quantification of 
Western blots are shown in B and E. Toxicity was also measured after 24 h of these 
treatments (G and H). Bars show the average (± standard deviation) of 3 
(myeloperoxidase expression), 4 (myeloperoxidase activity), or 9 (toxicity) replicate 
samples. 
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DISCUSSION 

Although the role of dopamine in Parkinson’s disease has been questioned (132), 

there is good evidence that dopamine oxidation contributes to neurotoxicity (15,133-136). 

Studies have suggested that dopamine oxidation metabolites damage mitochondria and 

contribute in a major way to the death of dopamine neurons. For example, dopamine 

oxidation by tyrosinase enhances the toxicity of α-synuclein, particularly the mutant form 

associated with Parkinson’s disease (15,135), and tyrosinase-treated dopamine also 

triggers the mitochondrial permeability transition in isolated brain mitochondria (14). On 

the contrary, increased dopamine and increased L-DOPA, instead of promoting oxidation 

of dopamine, do not seem to accelerate the progression of Parkinson’s disease (132). 

Some of this uncertainty may arise because dopamine oxidation yields different products, 

so it is important to understand which are destructive and the physiological conditions 

under which their formation is favored.  

Considering non-enzymatic oxidation, in the absence of thiol groups, the oxidation 

of dopamine to dopamine-o-quinone may be followed by the insertion of the side chain 

amine in to the o-quinone to form the bicyclic product aminochrome and its metabolite 

5,6-dihydroxyindole (54,137,138). These dopamine oxidation products are also major 

components of neuromelanin, the pigment giving the substantia nigra its dark color. Some 

attention has been focused on the toxicity of these products (139-141), but they are highly 

unstable under physiological conditions. The cyclization of the dopamine quinone is not 

likely to compete with cysteine because it is a slow process (137). Thus dopamine 

oxidation is likely to form a thiol adduct, either with cysteine or glutathione.  Competition 

between glutathione and cysteine for reaction with the dopamine quinone is likely to be 
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more significant, and it is noteworthy in this connection that Parkinson’s patients typically 

have a low concentration of glutathione in the substantia nigra. Also the 

dopamine/glutathione adduct may also be metabolized to cysteinyl-dopamine, making it 

the predominant product.  

Treatment of cells with cysteinyl-dopamine can result in oxidative damage, a rise 

in intracellular calcium, and ultimately apoptosis (82,125,126). Recently, Vauzour et al. 

(127) attributed its toxicity to combined effects of cysteinyl-dopamine itself and DHBT-1 

(7-(2-aminoethyl)-3,4-dihydro-5-hydroxy-2H-1,4-benzothiazine-3-carboxylic acid). 

Dryhurst and colleagues (80,142,143) have shown that DHBT-1 is the principal product 

formed by the air oxidation of cysteinyl-dopamine. It inhibits mitochondrial Complex I, but 

it is a weak cytotoxic agent requiring millimolar concentrations to be effective. A major 

source of ambiguity here is that a specific mode of action has not been determined for 

any of these compounds. 

Our results show that cysteinyl-dopamine is toxic to PC12 cells only once it is 

oxidized by hypochlorite; cysteinyl-dopamine by itself may not cause much damage (Fig. 

8). The product formed by hypochlorite treatment has strong redox cycling activity and 

ability to thereby generate reactive oxygen species. A potent redox cycler may also be 

obtained by treating the 4-methylcatechol/cysteamine product, which lacks the amine of 

dopamine and the carboxyl of cysteine, with hypochlorite. This suggests that the catechol 

ring of dopamine and the amine and thiol of cysteine are required to form the redox cycling 

product. We have also found that 5-amino-o-quinones, like 3-methyl-5-anilino-o-quinone 

and aminochrome, are active redox cycling compounds. We suggest, therefore, that 

hypochlorite converts cysteinyl-dopamine into a compound incorporating this structure by 
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facilitating attack of the cysteinyl amine on C6 of dopamine. This internal rearrangement 

of cysteinyl-dopamine would make HOCD a 7,8-dihydroxy-1,4-benzothiazine. Indeed, 

NMR and mass spectra of the 4-methylcatechol/cysteamine product support this 

structure. 

The concentrations of dopamine, cysteine and hypochlorite needed to generate an 

active redox cycler are physiologically reasonable (Fig. 9). Although concentrations used 

in our toxicity studies have been relatively on the higher side (Fig. 8), there are a number 

of reasons that need to be considered in this regard. First, formation and toxicity of HOCD 

may be reduced in the presence of protective compounds such as glutathione and 

taurine, both of which have been reported to be low in Parkinson’s patients (144,145). 

Second, the permeability of cysteinyl-dopamine and HOCD may limit their toxicities. It is 

possible that intracellular generation of these compounds may increase effective toxicity 

compared to exogenous addition. Third, HOCD concentrations specified in this work 

assume a 100% yield. Since the yield is undoubtedly less than this, toxicity may occur at 

correspondingly lower concentrations. Finally, Parkinson’s disease is a progressive 

movement disorder which develops over decades, so slow accumulation of damage 

caused by low concentrations of these compounds may be sufficient. 

Like other neurodegenerative disorders, Parkinson’s disease progresses slowly 

and symptoms are usually prominent only at later stages of life. Therefore, it is very 

difficult to analyze the subtle physiological changes occurring at molecular and cellular 

levels over the course of disease progression. To understand the etiology of Parkinson’s 

disease several models depicting the cellular changes underlying the disease have been 

developed, but how well the model mimics the pathophysiology of PD has been the 
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persisting question. Amongst the different models for Parkinson’s disease, the rotenone 

model is very intriguing (45). Rotenone is a non-selective inhibitor of Complex I of the 

mitochondrial electron transport chain and has been found to mimic mitochondrial 

dysfunction in PD. Mitochondrial dysfunction is known to play a role in many 

neurodegenerative diseases, yet remarkably rotenone only models Parkinson’s disease. 

However, the question how rotenone specifically leads to the death of dopamine neurons, 

still remains to be answered.  

Interestingly, recent studies have shown that very low concentrations of rotenone 

lead to increased myeloperoxidase expression. These reports hint that rotenone 

upregulates myeloperoxidase in microglia, and this contributes to the vulnerability of 

dopamine neurons (129,130). Also, myeloperoxidase is significantly higher in postmortem 

tissue from the ventral midbrain of PD patients (131). These observations suggest a 

possible role for myeloperoxidase (MPO) and its product hypochlorite in the rotenone 

model as well as in Parkinson’s disease. Our results with PC12 cells indicate that 

neuronal myeloperoxidase may produce enough hypochlorite to convert cysteinyl-

dopamine to HOCD, but it is also possible that microglial MPO plays a significant or even 

dominant role in vivo. How rotenone increases myeloperoxidase expression is still not 

clear. It is possible that this effect on myeloperoxidase is a downstream effect of the 

inhibition of complex I. Or rotenone could have an unrecognized second mode of action 

independent of mitochondrial complex I inhibition. 

The effects of hypochlorite presented here integrate many observations and 

provide a new perspective for Parkinson’s disease (Fig. 7). Myeloperoxidase produces 

hypochlorite which oxidizes the dopamine oxidation product cysteinyl-dopamine to yield 
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HOCD. Redox cycling of HOCD produces superoxide and hydrogen peroxide creating 

oxidative stress. Cysteinyl-dopamine and HOCD also increase expression of 

myeloperoxidase, which (together with hydrogen peroxide generated by redox cycling) 

promotes continuous conversion of cysteinyl-dopamine to HOCD. The expected 

consequence would result in increased oxidative stress eventually leading to death of 

dopamine neurons.  

Parkinson’s disease affects only a small part of the population, so it is safe to 

assume that there are certain inherent mechanisms that protect against or repair the 

damage caused by oxidative stress in dopaminergic neurons. Therefore, for Parkinson’s 

disease to develop, it is imperative to figure out which destructive events occur and which 

protective mechanisms fail. Another long standing issue to be probed is how dopamine 

oxidized compounds interact with genetic and environmental factors to contribute to the 

progression of the disease. The observation that hypochlorite converts cysteinyl-

dopamine into a toxic redox-cycling product is not only an unappreciated link connecting 

dopamine oxidation, oxidative stress and the rotenone model of Parkinson’s disease but 

may also offer a promising new approach from a therapeutic standpoint.  
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CHAPTER 5 – HOCD ACTIVATES THE INTRINSIC APOPTOSIS PATHWAY 

INTRODUCTION 

In the year 1972, the term apoptosis was described in a classic paper by Kerr, 

Wyllie and Currie (146). Apoptosis then was recognized as a morphologically distinct form 

of cell death; however, conceptual evidence of the phenomenon had been previously 

known (146-148). Our understanding of the detailed mechanisms involved in apoptosis 

stem from an elaborate study of 'programmed cell death' during the development of the 

nematode Caenorhabditis elegans (149). In this investigation, it was shown that an adult 

worm comes in to being from the generation of 1090 somatic cells, of which 131 cells 

invariably undergo 'apoptosis.' These 131 cells, irrespective of the physiological 

conditions, are programmed to die during the developmental process. This is consistent 

between worms thereby indicating remarkable control in this system. Since then, 

apoptosis has been widely recognized as a characteristic mode of "programmed cell 

death," which involves genetically controlled depletion of cells. Apart from its mechanistic 

approach of maintaining homeostasis, it is also involved during immune reactions or cell 

damage (150). 

There are certain biochemical and/or morphological features that not only 

characterize apoptotic events but also help distinguish them from other modes of cell 

death. Major histological features that define apoptosis are cell shrinkage and chromatin 

condensation (146). Chromatin condensation is a typical feature of apoptosis during 

which the electron dense nuclear material aggregates around the nuclear membrane and 

may further result in pyknosis. DNA fragmentation is also well-known, where DNA is 

cleaved into small fragments. This typical feature is often referred to as “DNA laddering.” 
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(151). Another morphological marker that usually occurs is membrane blebbing. It 

involves formation of apoptotic cells due to pinching off of the cell membrane. Although 

the cytoplasmic contents are dense, interestingly, the integrity of organelles and 

membrane is intact.  

Unlike apoptosis, necrosis is an energy-independent degradative process where 

cells undergo passive death. Necrosis affects larger populations of cells unlike apoptosis 

wherein usually individual or clusters of cells are affected in a controlled manner. 

Alternative terms such as "oncotic cell death" and "oncotic necrosis" have been proposed 

to describe cell death by necrosis (152,153).  

Necrosis requires ATP and involves direct damage to the cell membranes. Some 

of the major features that typically characterize necrosis are cell swelling; formation of 

vacuoles and loss of plasma membrane (146,153,154). Since there is complete loss of 

cell membrane in necrosis, an inflammatory reaction is usually elicited due to the release 

of cytosolic components into the surrounding tissue. Unlike necrosis, inflammatory 

reactions are neither associated with the apoptotic process nor with the removal 

mechanism. This is primarily due to the fact that the plasma membrane of apoptotic cell 

bodies remains intact thereby preventing any release of the cellular constituents into the 

surrounding tissues (155,156). 

Apoptosis is primarily divided into two main pathways – the extrinsic or death 

receptor pathway and the intrinsic or mitochondrial pathway.  

The death receptor pathway involves transmembrane receptor-mediated 

signaling. It involves activation of death receptors belonging to the tumor necrosis factor 

receptor gene superfamily such as Fas, TNFαR, DR3, DR4 and DR5 (157-162). These 
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receptors have a similar cytoplasmic “death domain.” Some of these death domains are 

named after their corresponding receptor, namely, Fas-associated death domain (FADD) 

or TNF-α receptor associated death domain (TRADD) (157). The death signal is 

characteristically initiated when homologous trimeric death receptor ligands bind to their 

corresponding death receptors leading to their oligomerization. Among the most well 

studied ligand-receptor complexes are FasL/FasR and TNF-α/TNFR1 (157-162). 

The intrinsic apoptotic pathways, on the contrary, are non-receptor mediated 

signaling pathways that produce intracellular signal targeting molecules within the cell. 

They are mitochondrially initiated events (163). The trigger could initiate a signal that may 

regulate the pathway negatively or positively. Irrespective of the type of stimulus, 

mitochondrial membrane changes accompany the intrinsic pathway of apoptosis. 

Perturbations in the mitochondrial inner membrane not only result in an opening of the 

mitochondrial permeability transition (MPT) pore but also loss of membrane potential 

eventually releasing the mitochondrial content into the cytosol (163).  

In the intrinsic pathway, the mitochondrial events are regulated by the Bcl-2 family 

of proteins (164). Moreover, p53, the tumor suppressor protein, also has an integral part 

to play as it regulates multiple proteins of the Bcl-2 family (165). However, the mechanistic 

details of this controlled regulation are not well elucidated. The Bcl-2 family involves both 

pro-apoptotic as well as anti-apoptotic proteins. Both are involved with mitochondrial 

membrane integrity and control the release of cytochrome c from the mitochondria by 

regulating the outer mitochondrial membrane permeability. Among these, anti-apoptotic 

proteins include Bcl-2, Bcl-x, Bcl-XL, Bcl-XS, Bcl-w and BAG, whereas pro-apoptotic 

proteins include Bcl-10, Bax, Bak, Bid, Bad, Bim, Bik, and Blk. Pro-apoptotic proteins are 
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mostly BH123 proteins, having three Bcl-2 homology domains. However, some pro-

apoptotic proteins such as PUMA, NOXA, etc., are BH3 proteins only. And anti-apoptotic 

proteins mostly have all four Bcl-2 homology domains. Under normal conditions, pro-

apoptotic proteins are in an inactive state where they are either sequestered in the cytosol 

with an anti-apoptotic protein or conjugated to some other proteins inhibiting their effect. 

Usually reciprocal regulation exists between these two classes of the Bcl-2 family of 

proteins (164). 

During apoptosis, the external stimulus such as any radiation or toxin, may cause 

either a double-stranded or single-stranded break in DNA. For example, in the case of a 

double-stranded break, the damage is sensed by two classes of proteins such as ATM 

(Ataxia Telangiectasia Mutated) and ATR (Ataxia Telangiectasia and Rad3 related 

protein) (166,167). Both proteins are serine/threonine kinases. These proteins could 

further phosphorylate other serine/threonine kinases, checkpoint kinase 1 (Chk1) and 

checkpoint kinase 2 (Chk2), eventually activating them (166,167). Once activated, these 

kinases tend to activate tumor suppressor protein p53. p53 protein under normal 

conditions is in an inactive state. Mdm2 is usually conjugated to p53 and marks p53 for 

ubiquitination. In apoptosis, once Chk1 and/or Chk2 are activated, phosphorylation of p53 

prevents its conjugation to Mdm2 and therefore, p53 survives subsequent ubiquitination 

and proteasome degradation, and instead phosphorylated p53 forms a tetramer and 

initiates transcription. p53 leads to expression of many proteins such as proteins involved 

in DNA repair, another tumor suppressor protein p21 that arrests the cell cycle 

progression, and also some pro-apoptotic proteins such as Puma and Noxa (168,169).  
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The pro-apoptotic proteins such as Puma and Noxa, belonging to the Bcl-2 family, 

are found to play an important role in p53-mediated apoptosis (168). Once expressed, 

they tend to sequester the anti-apoptotic proteins in the cytoplasm, thereby increasing the 

expression of other pro-apoptotic proteins. Studies have reported an increase in the levels 

of BAX due to overexpression of Puma (168). This resulted in a conformational change 

in BAX and its translocation to outer mitochondrial membrane. Another study has shown 

that expression of Noxa leads to its localization to the mitochondrial membrane, resulting 

in inactivation of anti-apoptotic proteins (169). This will lead to the formation of the 

apoptosis-induced channel in the outer mitochondrial membrane and release of 

cytochrome c in to the cytoplasm. Once in the cytoplasm, cytochrome c encounters 

cytoplasmic protein Apaf-1 (Apoptotic Protease Activation factor-1) (170,171). Apaf-1 has 

a CARD domain (caspase recruitment domain). When cytochrome c binds to this Apaf-1 

protein, it aggregates to form an apoptosome (170,171). Formation of the apoptosome 

recruits pro-caspases having a similar CARD domain, for example, pro-caspase-9, and 

auto-activates them. Once activated, these caspases further activate other executioner 

caspases such as caspases 3, 6 or 7. Proteins such as Smac/DIABLO and HtrA2/Omi 

also participate by inhibiting IAP (inhibitors of apoptosis proteins) activity (172-175). 

The execution phase is the last step in the apoptosis process. Activation of 

caspases mark the beginning of this phase. Caspases are a group of cysteine-dependent 

aspartate-directed proteases. As the name suggests, caspases are proteolytic enzymes 

that cleave proteins at aspartic acid residues. The substrate specificities of caspases may 

differ among the group of caspases. Caspases usually exist in inactive forms called 

procaspases. All procaspases have a pro-domain, a large subunit and a small subunit. 
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Once activated by a signaling cascade, they are cleaved to their active intermediate form. 

Apart from their ability to activate other procaspases they can also aggregate and 

autoactivate themselves. This activation of caspases creates a protease cascade thereby 

amplifying the apoptotic signal, and eventually leading to cell death. Among the ones that 

are identified, caspases are broadly classified into two categories, initiator caspases 

(caspases 2, 8, 9, 10) and effector or executioner caspases (caspases 3, 6, 7). 

Additionally, a class of inflammatory caspases (caspase – 1, 4, 5) (176,177) and several 

other caspases (11, 12, 13, 14) (178-181) are also known. Of all the caspases, caspase-

3 is especially significant. It can be activated by three important initiator caspases: 8, 9 

and 10. Caspases-3, 6 and 7 are the effector caspases that cause the morphological and 

biochemical changes in the cell such as activation of cytoplasmic endonucleases that 

degrade nuclear material, activation of proteases that degrade nuclear as well as 

cytoskeletal proteins and cleavage of substrates like poly-ADP ribose polymerase 

(PARP), cytokeratins, the plasma membrane cytoskeletal protein alpha fodrin, etc. (182). 

Our study has already shown that HOCD is toxic to PC12 cells at micromolar 

concentrations. However, the mechanism of cell death is not known. Therefore, the focus 

of this investigation was to elucidate the underlying mechanism of cell death when PC12 

cells are treated with HOCD. This is important both to determine the mechanism of HOCD 

toxicity and to see how this correlates with the mechanism of dopaminergic neuron death 

in Parkinson’s disease and its various chemically-induced models. 
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RESULTS 

We have shown that HOCD and other redox cyclers lead to superoxide generation 

and death of PC12 cells. To elucidate the mechanism of cell death, it is important to 

investigate certain morphological and biochemical markers that would help differentiate 

between different modes of cell death. Among the morphological markers, membrane 

blebbing was an early candidate. During microscopic examination of PC12 cells after 

HOCD treatment, a remarkable change in the morphology of the cells was observed. 

Membrane blebs were found on the surface of a few of the cells in addition to small 

individual apoptotic bodies in the medium (Fig. 15). This phenomenon of membrane 

blebbing is a characteristic feature of apoptotic cell death.  

 

Figure 15. Formation of membrane and apoptotic blebs – Bright field microscopic 
images of PC12 cells taken after 24 h of treatment with 200 µM HOCD, shows the 
formation of membrane and/or apoptotic blebs (indicated by arrows). 
 

To confirm that cells are undergoing death via apoptosis, we checked for the 

presence of cleaved poly-ADP ribose polymerase, an apoptotic marker that usually 

appears late in the pathway when executioner caspases are activated. By western 

blotting, we found increased levels of cleaved-PARP protein when PC12 cells were 
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treated with HOCD thereby confirming apoptosis as the selected mode of cell death (Fig. 

16).  

Following the observation of cleaved PARP protein, we wanted to investigate the 

possible involvement of mitochondria in this apoptotic process. Caspase-9 is an initiator 

caspase that is activated primarily after cytochrome c is released from the mitochondria. 

Therefore, we checked for the level of active caspase-9. We observed an increase in the 

amount of active caspase-9 (Fig. 17), confirming our hypothesis that the mode of cell 

death in PC12 cells treated with HOCD was mitochondrially driven. 

Since p53 has been reported to play an important role in the mitochondrially 

mediated apoptotic pathway, we checked for the level of p53 in whole cell lysates of PC12 

cells treated with HOCD by western blotting. Indeed, we found increased p53, further 

indicating involvement of mitochondria in this apoptotic process (Fig.18).  
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Figure 16. Increased level of cleaved poly-ADP ribose polymerase – Western blot 
analysis of HOCD-treated PC12 cell lysates was performed. HOCD concentration was 
200 µM, and cell lysates were prepared after 72 h of HOCD treatment. Whole cell lysates 
were resolved using SDS PAGE and probed with anti-PARP antibody. (A) Protein levels 
obtained by blot analysis (A) were also quantified (B) and normalized to the loading 
control, GAPDH. 
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Figure 17. Increased level of active caspase-9 – Western blot analysis of HOCD-
treated PC12 cell lysates was performed. HOCD concentration was 200 µM, and cell 
lysates were prepared after 72 h of HOCD treatment. Whole cell lysates were resolved 
using SDS PAGE and probed with anti-active caspase-9 antibody. (A) Protein levels 
obtained by blot analysis (A) were also quantified (B) and normalized to the loading 
control, GAPDH. 
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Figure 18. Level of p53, a regulator of mitochondrially-mediated apoptosis –  
Western blot analysis of HOCD-treated PC12 cell lysates was performed. HOCD 
concentration was 200 µM, and cell lysates were prepared after 72 h of HOCD treatment. 
Whole cell lysates were resolved using SDS PAGE and probed with anti-p53 antibody. 
(A) Protein levels obtained by blot analysis (A) were also quantified (B) and normalized 
to the loading control, GAPDH. 
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DISCUSSION 

In Parkinson’s disease models, activation of the mitochondria-dependent apoptotic 

pathway has been found to be prevalent in the death of dopaminergic neurons (183,184). 

For instance, mitochondrial release of cytochrome c, followed by caspase-9 activation 

and eventual apoptotic nigral cell death was observed for the MPTP model in mice (185). 

These events were found to be regulated by the pro-apoptotic protein Bax (185-187). 

Supporting this finding, another study showed that dopamine neurodegeneration was 

attenuated by overexpressing the anti-apoptotic protein Bcl-2 (188,189) or by targeting 

caspase-9 or Apaf-1 (190,191).   

Furthermore, many familial forms of Parkinson’s disease have shown either direct 

or indirect correlation between gene mutations and the mitochondrial apoptotic pathway 

(192). Overexpression or aggregation of α-synuclein have been shown to induce 

caspase-9 and caspase-3 activation damaging dopaminergic neurons (193). Similarly, 

mutation in LRRK2 (194), PINK1 (195,196) and PARKIN (197) all lead to cytochrome c 

release.  

Apoptosis has also been widely studied in mammalian cell lines and primary 

neuronal cultures, in regards to dopaminergic neurons and Parkinson’s disease. 

Tabakman et al. showed increased activities of JNK and p38 in PC12 cells due to 

neurotrophic factor deprivation (198). Mitochondrial cytochrome c release and increased 

levels of activated caspase-9 were observed in PC12 cells (199). Also, in mesencephalic 

and MN9D primary dopaminergic neurons, cytochrome c release from mitochondria and 

activation of caspases were observed after 6-OHDA and MPP+ treatment (200). Similar 

events were recorded in MPP+ treated (201) and 6-OHDA treated SH-SY5Y cells (202). 
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Even in the rotenone model for PD, caspase activation was observed in human 

neuroblastoma cells (203), in addition to cleavage of PARP, DNA fragmentation and cell 

death (204). 

Dopamine quinone can lead to opening of the mitochondrial transition pore due to 

the impairment of oxidative phosphorylation and mitochondrial swelling. This may further 

lead to the release of both pro-apoptotic and anti-apoptotic factors (14) as well as non-

specific release of cytochrome c initiating apoptotic events (205). Due to the slow rate of 

neuronal death in PD, detection and assessment of mode of cell death is very difficult. 

Using various mechanisms, apoptotic dopaminergic neurons have been reported in 

substantia nigra of PD patients (206-210), where increased expression of CD95/Fas and 

p53 have also been detected (211). 

Involvement of the extrinsic pathway in the death of dopaminergic neurons, though 

not predominant, has been well investigated. Expression of FasL and Fas receptor is 

found in neurons, astrocytes and glial cells, however, astrocytes have interestingly shown 

resistance to Fas-mediated apoptosis (212). Significantly higher levels of soluble Fas 

were first reported by Mogi et al. in nigrostriatal dopaminergic regions of PD patients 

(213). Hayley et al. also reported the possible connection of c-Jun-Fas signaling to the 

loss of dopaminergic function in the MPTP-induced PD model (214). Apart from Fas 

signaling, altered levels of TNF-α were detected in glial cells in substantia nigra, in 

cerebrospinal fluid (CSF) and brain of PD patients and also in lymphocytes in PD patients. 

Compared to the death receptor pathway, involvement of the mitochondrial mediated 

apoptotic pathway in death of dopaminergic neurons has been well documented. 

Although both extrinsic and intrinsic pathways of apoptosis seem to be involved in 
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Parkinson’s disease, the intrinsic pathway is more prevalent, probably due to the energy 

deprivation. 

Neurons undergo apoptosis because of the informative signal received from either 

external stimuli or internal stimuli. Intracellular signaling depends on cell type, state of 

differentiation and maturity as well as developmental history, whereas extracellular 

factors that affect cell fate are appearance and disappearance of hormones, growth 

factors, cytokines and cell matrix interactions. Multiple factors are involved in the 

execution of apoptotic cell death in PD and once these factors are activated, they all lead 

to ATP depletion. 

However, recent studies have shown evidence of possible interplay between the 

two pathways, where the components involved in one pathway could influence the other. 

One of the examples of such cross-talk is a study showing that initiation of the apoptotic 

pathway via Fas receptor activation has led to mitochondrial damage via interaction 

between caspase-8 and the pro-apoptotic protein Bid. Also, since recent findings have 

shown that apoptosis is a reversible process, inhibition of caspase activity could be an 

important strategy from a cell survival point of view. In fact studies have shown that 6-

OHDA-induced death of dopaminergic neurons was prevented in the presence of 

caspase inhibitor (215,216). 

Our results however, do not disregard the possibility of an interplay between the 

extrinsic and intrinsic pathways. It is possible that caspase-8 activation could trigger 

mitochondrial membrane change and subsequent caspase-9 activation. However, use of 

mammalian cell lines does introduce some limitations. Mammalian cell lines may not offer 
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the physiological conditions to study the extrinsic pathway and therefore further restrict 

observation of its influence on or reaction to activation of the intrinsic pathway. 

 Another question is how the genetic factors linked to Parkinson’s disease are 

connected to the induction of apoptosis. For some, a direct relationship is plausible. 

Parkin and PINK1 are involved in mitophagy, the process by which defective mitochondria 

are removed from the cells. Mitochondria that fail to maintain a membrane potential 

across the inner membrane are culled by mitophagy in a process mediated by Parkin and 

PINK1 (217). Therefore, it seems reasonable that a mutation in either protein would 

interfere with the removal of dysfunctional mitochondria and would contribute to the 

release of cytochrome c in to the cytoplasm and triggering of the intrinsic pathway of 

apoptosis. 

 The involvement of α-synuclein in apoptosis is more elusive. DiMaio et al. have 

reported that α-synuclein binds to TOM20, a mitochondrial import protein and inhibits 

protein import into mitochondria (218). Impairment of this system would likely lead to 

mitochondrial degradation and could contribute to initiation of the intrinsic pathway of 

apoptosis. At the same time, Parkinson’s disease is characterized by α-synuclein 

aggregates found in Lewy bodies. How oxidative stress and mitochondrial dusfunction 

contribute to α-synuclein proteinopathy is not clear. It has been suggested that clearance 

of protein aggregates occur by autophagy or proteasomal action and that these processes 

compete with mitophagy for cellular components such as Bcl-2 or ubiquitin. Thus, the 

occurrence of α-synuclein aggregates could interfere with the clearance of defective 

mitochondria and predispose the cell to death by the mitochondrial pathway of apoptosis.  
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 The picture emerging, therefore, is that HOCD causes oxidative stress which leads 

to mitochondrial damage and activation of the intrinsic pathway of apoptosis. Clearly, 

however, we are just beginning to connect the dots and understand the roles and 

relationship of all of the factors contributing to the death of dopamine neurons in 

Parkinson’s disease. 
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CHAPTER 6 – FUTURE DIRECTIONS 

Our study has shown that cysteinyl-dopamine by itself is not toxic. Rather it is the 

oxidized product of cysteinyl-dopamine that is toxic. We showed that hypochlorite 

produced by myeloperoxidase oxidizes cysteinyl-dopamine into a cytotoxic redox cycling 

compound, called hypochlorite-oxidized cysteinyl-dopamine (HOCD), capable of 

generating free radicals and thereby creating oxidative stress.  Also, HOCD was found to 

be toxic to catecholaminergic PC12 cells at micromolar concentrations. However, since 

the cytotoxic effect of HOCD was tested in mammalian cell lines, it will be interesting to 

check its effect in primary cultured neurons and animal models.  

If HOCD is found to be toxic to primary cultured neurons and/or in animal models, 

it will be interesting to see if HOCD treatment leads to the aggregation and accumulation 

of α-synuclein and ultimately formation of Lewy bodies. Similarly, following the 

observation of Lewy body formation, it will be important to see the effect of HOCD 

treatment on dopaminergic neurons. There have been several animal models developed 

over the years to study the etiology of Parkinson’s disease, including pathologies caused 

by rotenone, 6-OHDA, MPTP and LPS. In addition to the α-synuclein pathology and death 

of dopaminergic neurons, if HOCD recapitulates the delayed, progressive symptoms of 

Parkinson’s disease then it could be an alternative PD model. Moreover, if HOCD is the 

natural trigger for PD, then it will be an important tool for elucidating the events involved 

in the onset and progression of the disease.   

Since microglial inflammation is known to play a significant role in the pathogenesis 

of Parkinson’s disease, it is important to see what effect HOCD would have on the 

activation of microglia. Microglial activation is usually measured by an increase in NADPH 
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oxidase (NOX-2) activity. If HOCD leads to overexpression of NOX-2, in addition to the 

α-synuclein pathology and death of dopamine neurons, then it would be imperative to 

sketch out the symptomatic events in a chronological order to elucidate the underlying 

molecular mechanism and its timing. Furthermore, our study showed that hypochlorite, 

responsible for converting cysteinyl-dopamine in to a toxic redox cycler, was 

predominantly produced by myeloperoxidase. However, the effect of cysteinyl-dopamine 

in the absence of myeloperoxidase remains to be seen. Therefore, it will be important to 

check the effect of cysteinyl-dopamine and HOCD in primary neurons and/or animal 

models with inhibited myeloperoxidase activity.  

The toxicity of HOCD was attributed to its ability to redox cycle and thereby 

generate free radicals causing oxidative stress. However, as mentioned earlier 

compounds capable of redox cycling in vitro may not necessarily redox cycle in vivo. 

Therefore, a next step would be to observe and measure the redox cycling activity of 

HOCD in vivo. Likewise, we also do not disregard the possibility that HOCD may have an 

additional mode of action besides redox cycling. Thus, it will be necessary to determine 

the protein interactions of HOCD in vivo. However, this may be feasible experimentally 

only once we deduce the structure of HOCD. 

Additionally, our study has shown that taurine was able to protect PC12 cells 

against cysteinyl-dopamine but not HOCD. Taurine is a sulfur-containing amino acid. 

Since it contains a sulfonic acid group instead of a carboxyl group, it is not a typical amino 

acid. Although taurine was considered as a non-essential amino acid, recent studies have 

indicated that taurine is essential for humans. However, humans have limited capacity to 

synthesize taurine themselves, compared to other mammals, due to relatively low activity 
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of the enzyme required for a crucial transformation step in the synthesis of taurine. 

Taurine does have the ability to cross the blood brain barrier. Moreover, taurine is a 

hypochlorite scavenger which enables it to protect cysteinyl-dopamine. Since PD patients 

have low levels of taurine, we suspect taurine to be an important factor in the therapeutic 

field for Parkinson’s disease. It will be interesting to see if supplementing taurine rescues 

the PD symptoms in animal models. 

 It will be important to determine the chemical structure of HOCD and to develop 

methods for detecting it in trace amounts. This will be necessary to confirm that HOCD is 

present in the midbrain of patients with PD. Furthermore, if HOCD or its metabolites can 

be detected in cerebrospinal fluid or blood, it might provide an opportunity for the early 

diagnosis of Parkinson’s disease before motor symptoms appear.  

 The discovery of HOCD, nonetheless, opens multiple new approaches to study the 

etiology of Parkinson’s disease at molecular as well as cellular levels. Hopefully, future 

research exploring these avenues will direct us to advanced therapies for curing 

Parkinson’s disease. 
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Oxidation of dopamine to toxic metabolites is considered to be one of the prime 

factors involved in the death of dopaminergic neurons in Parkinson’s disease. Some 

dopamine oxidation products have the capability to redox cycle in the presence of 

molecular oxygen, further contributing to oxidative stress. Therefore, our aim here was to 

study the redox cycling of dopamine oxidized metabolites and elucidate the underlying 

mechanism by which they cause oxidative stress.   

Redox reactions involve transfer of one or more electrons between two compounds 

resulting in either oxidation or reduction. In redox cycling, a compound undergoes 

alternate oxidation and reduction, transferring electrons from a reductant to molecular 

oxygen. Therefore, we began by investigating different modes of redox cycling by 

measuring the rate of oxygen consumption using a Clark-type oxygen electrode in the 

presence of different reductants. We compared chemically synthesized redox cyclers 

such as menadione, 6-hydroxydopamine (6-OHDA), 3-methyl-5-anilino-1,2-

benzoquinone (3-MAQ) and 9,10-phenanthrenequinone, using ascorbic acid and 

dithiothreitol (DTT) as reductants. Addition of superoxide dismutase diminished DTT-
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dependent redox cycling activity (except in the case of menadione) but had no effect on 

the ascorbate-dependent redox cycling activity. This suggests that DTT drives a two-

electron reduction whereas ascorbate causes a one-electron reduction. NADH-

dependent redox cycling mediated by mitochondria was also studied using 3-MAQ. This 

mitochondrially mediated redox cycling activity was inhibited by mersalyl acid, thereby 

suggesting the involvement of the outer-mitochondrial membrane protein, NADH-

dependent cytochrome b5 reductase, in the redox cycling mechanism. 

We identified hypochlorite-oxidized cysteinyl-dopamine (HOCD) as a redox cycling 

product and a potential candidate for dopaminergic neuron toxicity in the progression of 

Parkinson’s disease. The dopamine oxidation product cysteinyl-dopamine has attracted 

attention as a contributor to the death of dopaminergic neurons in Parkinson’s disease.  

Treatment of cysteinyl-dopamine with hypochlorite yields an even more cytotoxic product.  

This product, HOCD, has potent redox-cycling activity and initiates production of 

superoxide in PC12 cells. Taurine, which scavenges hypochlorite, protects PC12 cells 

from cysteinyl-dopamine but not from HOCD, suggesting that HOCD, not cysteinyl-

dopamine itself, is toxic.  Furthermore, rotenone, which enhances expression of the 

hypochlorite-producing enzyme myeloperoxidase, increases the cytotoxicity of cysteinyl-

dopamine but not of HOCD. This suggests that dopamine oxidation to cysteinyl-dopamine 

followed by hypochlorite-dependent conversion to a cytotoxic redox-cycling product 

HOCD, leads to the generation of reactive oxygen species and oxidative stress and may 

contribute to the death of dopaminergic neurons.  

Our findings of HOCD toxicity in PC12 cells was followed by our study to determine 

the mode of cell death. The morphological changes in the cell such as membrane 
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blebbing and appearance of biochemical markers such as cleaved poly-ADP ribose 

polymerase and active caspase-9 suggested cell death by apoptosis. Moreover, 

increased expression of tumor suppressor protein p53, indicated mitochondrial mediated 

apoptotic cell death. Our observations have raised an unappreciated possibility that may 

link dopamine oxidation, microglial inflammation, oxidative stress and the rotenone model 

of Parkinson’s disease. Furthermore, it offers a promising new approach in the search for 

a therapeutic cure for Parkinson’s disease. 
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