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CHAPTER – 1: INTRODUCTION AND MOTIVATION 

Fetal development is one of the most complicated and intriguing physiological process, which 

involves not only structural change but is also accompanied by increasing functional complexity of the 

systems. Ultrasound (US) imaging is the most common technique to probe the fetus and track the 

development in-utero. Fetal magnetic resonance imaging (MRI) in recent times has become a well-

established adjunct to US in routine clinical prenatal care and diagnostics.  Owing to ongoing research 

and development of advanced MRI routines, today we can visualize and image fine details of the growing 

fetus. A major thrust has been to understand structural changes in the brain (e.g. brain volumes, sulcation, 

gyration, and myelination patterns etc.) and other organs (e.g. volumes) [1, 2]. However, a similar 

understanding of the vascular system such as blood flow, blood oxygenation, vascular visualization …etc. 

in-utero has been limited. The primary focus of this thesis is to address this by optimizing and developing 

novel MR imaging sequences for vascular imaging in the human fetus.    

 1.1 MOTIVATION: Recent advances in MRI/US have made detection of many conditions 

possible in-utero. However clinical diagnosis/interpretation of fetal MRI is subjective and predominantly 

depends on tissue signal differences between normal and abnormal tissue. In majority of the fetal 

conditions, the tissue differentiation becomes appreciable only after the damage is irreversible. Under 

such conditions, it would be impossible to design clinical interventions to prevent/mitigate damage. 

Quantitative imaging, on the other hand, can help by providing objective measures which are indicative of 

the underlying biomolecular, microstructural and functional tissue characteristics that would precede any 

structural manifestation. Often these are the earliest measurable biomarkers of tissue injury, changes in 

metabolite concentration measured using magnetic resonance spectroscopy (MRS), blood flow visualized 

and quantified using magnetic resonance angiography (MRA) and phase contrast MRI (PCMRI), blood 

oxygenation quantified using susceptibility weighted imaging (SWI) are some of the quantitative 

measures that have already proven to be of use in early identification of injury in adult and pediatric 

populations [3, 4]. Even from a basic research standpoint, these techniques have enhanced our 

understanding of the normal physiology and to evaluate the dynamics of these processes in vivo [5, 6]. 
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The following paragraph underscores the importance of quantitative fetal MRI in diagnosis and early 

detection of intrauterine growth restriction (IUGR), which is a serious condition that affects about 8-10% 

of babies in the USA and about 16% worldwide [7, 8]. IUGR is just highlighted here as a case in point to 

emphasize the importance of quantitative imaging.       

 IUGR is a serious perinatal condition that is associated with increased risk of neonatal mortality 

and serious short and long-term health problems and cognitive deficits [9, 10]. While the causal factors 

for IUGR are not clearly known, lack of sufficient supply of oxygen and nutrients to the developing fetus 

is considered to be the primary factor. Even with the use of advanced Doppler US (flow, biometric 

indices) assessments, only 15-25% of IUGR cases are detected prenatally in-utero [11, 12]. While our 

knowledge on the etiology is still evolving, based on studies performed in animal models (or ex-utero 

studies), reduction in oxygen and nutrient supply to the fetus results in adaptation of the placental 

vasculature  [13, 14]. Following this there is a cascade of events, where this vascular remodeling leads to 

increased vascular resistance, which when crosses a threshold, manifests as flow abnormalities [15]. 

These changes reflect in an appreciable change in the pulsatility index (PI) and the flow indices can then 

be measured using Doppler US [16]. It would be ideal to diagnose this condition before vascular 

remodeling and hemodynamic fetal adaptation, following which there is little scope for clinical 

intervention and prevention. Under these conditions, oxygenation in the vessels supplying the fetus, and 

the blood flow may serve as a sensitive and potentially early marker for diagnosis of IUGR. Furthermore, 

these measures would also provide an objective way of clinical assessment. Hence vascular imaging is 

critical for early identification that could lead to better management of the pregnancy and individualized 

postnatal intervention which can help prevent neurodevelopmental deficits [17]. The key challenges in 

fetal MRI are the limited baseline signal, artifacts due to fetal motion and lack of standards regarding 

parameters and scanning protocols [18].   

While the previous paragraph has focused exclusively on IUGR, the detection rate of some of the 

other prenatal conditions is also woefully low. For example, in-utero diagnosis of perinatal stroke is 

missed in most cases. 40% of these cases are diagnosed only outside the neonatal period or go undetected 
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until the babies present with neurological deficits or other symptoms [19, 20]. In fact, the needs and 

current limitations for early diagnosis across many other fetal anomalies and prenatal conditions are 

similar. While the need for quantitative MRI is evident, the practical implementation of this is limited due 

to multiple factors, the major ones being (a) requirement for sufficient signal to noise ratio (SNR) while 

concurrently having the need for high resolution imaging (b) requirement of fast approaches to avoid 

motion (maternal breathing, peristaltic motion in the maternal abdomen, pulsatility of the aorta/other 

major vessels and the unpredictable fetal motion) related artifacts (c) lack of standardization owing to 

rapidly changing local milieu (with changing gestation) and (d) the need to maintain low energy 

deposition (for safety concerns). As part of this thesis, we address some of these challenges by moving to 

higher fields, accelerating the scan time and optimizing the sequence parameters for fetal imaging. 

1.2 SPECIFIC AIMS AND HYPOTHESIS:       

 In this proposal, MRI based vascular imaging techniques will be developed that can be applied in 

the human fetus for obtaining high quality in-utero data consistently. Accordingly, the specific aims and 

hypotheses are listed below:  

Specific Aim 1: To improve the signal to noise ratio (SNR) in fetal imaging by migrating to higher field 

strength MRI, while lowering the energy deposition.  

Hypothesis: Fetal MRI at 3.0 Tesla (T) can provide high resolution and high quality images compared to 

the standard clinical 1.5T MRI. This can be achieved by optimizing the sequence to minimize the specific 

absorption rate (SAR) while maintaining the SNR. 

Specific Aim 2: To perform quantitative fetal flow imaging which is fast, accurate and does not need a 

cardiac/external trigger.  

Hypothesis: It is possible to use non-gated phase contrast (ng-PCMRI) sequence to acquire flow data in a 

shorter time without the need for any trigger signal or need for complex post-processing algorithms. 

Specific Aim 3: To develop a non-contrast enhanced MR angiography technique to image the vascular 

system of the fetus and the placenta. 
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Hypothesis: Time-of-flight (TOF) based non-contrast angiography can be optimized and applied on the 

fetus to visualize feto-placental vasculature  

1.3 THESIS OUTLINE: 

Although ultrasound (US) has been the primary modality used in prenatal diagnosis, the role of 

magnetic resonance imaging (MRI) in fetal diagnostic evaluation is increasing. Fetal MRI has multiple 

advantages over US in this field including improved soft tissue contrast and characterization and access to 

functional/quantitative data. The functional/quantitative data can almost exclusively be acquired only 

using MRI. It would be ideal to scan with high signal quality at higher image resolutions. However, 

imaging with high signal to noise (SNR) and imaging at a higher resolution are factors having conflicting 

demands. Currently, 1.5 T is the field strength of choice for MRI in pregnancy, although fetal MR 

imaging at 3.0T has been reported in several studies [21, 22]. The major advantage of 3.0T MRI (vs. 

1.5T) is the increased SNR, which is linearly proportional to the imaging field strength. The 3.0T MRI 

has an operating frequency of 128 MHz (vs. 64 MHz of 1.5T), leading to higher radio frequency (RF) 

energy deposition. This increased SAR in pregnancy has limited the use of 3.0T MRI in fetal imaging. 

After a brief introduction to MRI and highlighting some of the sequences used in this thesis in chapter 

two, the techniques developed for fetal imaging will be discussed. The chapter three of this thesis tries to 

address the concerns of higher energy deposition by demonstrating the feasibility of fetal brain MRI using 

a fast spin echo imaging (FSE) sequence at 3.0T field strength with the simultaneous reduction in RF 

energy deposition while maintaining superior image quality compared to conventional 1.5T MRI. An 

appendix section of this thesis is also dedicated to discussing the local SAR and the temperature increase 

studied using simulations and the new advancements for patient specific SAR estimation. 

Growth and development of the fetus are dependent on the functional maternofetal circulation. 

The human fetus receives nourishment, oxygen, metabolic wastes, and hormones through the umbilical 

vessels. The umbilical flow and flow dynamics are critically important for the normal growth of the 

developing fetus. Hence, evaluating the blood flow dynamics within the umbilical cord can provide 

valuable insights into the health of the fetus. Over the years Doppler US has been the workhorse tool for 
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studying the hemodynamics in the human fetus. But flow measurement, using this technique is 

challenging due to the irregular caliber/diameter and frequent twirl of the individual vessels owing to the 

braided structure of the umbilical cord, and the plug flow assumption. In recent years, PCMRI has been 

widely accepted as a clinical tool for assessment of flow dynamics and extensively used in adult 

diagnosis. But, this has not translated into applications in fetal imaging. In addition to issues of SAR and 

fetal motion, the application of PCMRI in the fetus is further hampered by the difficulty in measuring the 

fetal ECG or any other fetal physiological signal within the MRI scanner. In the fourth chapter, we 

demonstrate the feasibility of performing non-gated (ng- PCMRI) scans to measure the average flow in 

the umbilical vessels which eliminates the needs for a trigger and is comparatively fast.    

  Consistent application of the PCMRI methods and other quantitative methods like SWI 

for fetal blood oxygenation require a good technique to localize the vessels of interest. Even in vascular 

anomalies like congenital heart diseases (CHD), transposition of the great arteries …etc., it is vital to 

image the vascular system. Since the use of any exogenous contrast agent is a counter indication during 

pregnancy, we have to rely on other endogenous contrast mechanisms to image the vessels. TOF imaging 

which works on the intrinsic (T1) signal enhancement due to inflow effects would be a good fit given that 

the fetal blood flow is high. We optimized a non-contrast 2D TOF based sequence for fetal angiographic 

applications. In the fifth chapter, we demonstrate the feasibility of TOF imaging of the fetus and also 

briefly discuss the utility of non-Cartesian sampling in avoiding the artifacts caused due to motion.  

 Each of these chapters is presented independently wherein the research problem is introduced and 

our approach to address this is described. These chapters are followed by some concluding remarks and 

possible future directions of this work all bundled into the sixth chapter. 
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CHAPTER 2: INTRODUCTION TO MRI  

This chapter gives a brief introduction to magnetic resonance imaging and also provides an 

overview of the different sequences discussed in the following chapters. The introduction and discussions 

are restricted to the key aspects relevant to the rest of the chapters in this thesis.   

2.1 INTRODUCTION          

 MRI as a diagnostic tool was first introduced in the 1970s [23]. With rapid and continued 

technological and research advancements, it has since become an indispensable modality in clinical 

practice. Today, reports suggest there are about 10,000 MRI scanners installed across the USA, 

performing about 118 scans per 1000 people each year [24].  The MRI signal is generally obtained from 

hydrogen protons which are intrinsic and abundant in biological systems. MRI has many advantages, such 

as the ability to do 3D volume imaging, high-resolution scans, and the flexibility to obtain images of any 

cross-section as desired. However, the most important advantage of MRI compared to other imaging 

modalities such as positron emission tomography (PET), single photon emission computer tomography 

(SPECT), computerized tomography (CT) is the absence of ionizing radiation. Excellent soft tissue 

contrast and the ability to obtain different quantitative and/or functional parameters like relaxation times, 

diffusion, tissue perfusion, blood oxygenation and flow…etc which act as biomarkers for clinical 

manifestations, distinguish MRI from most other diagnostic modalities.  

2.2 SIGNAL FORMATION         

 The following sections succinctly describe the basic signal formation and the concept of k-space 

that would be needed to comprehend the rest of the thesis. However, it is recommended to refer to more 

standard textbooks for a detailed description and understanding [25].  As mentioned earlier, the MRI 

signal is usually obtained from hydrogen protons. When the protons/hydrogen atoms are placed in an 

external magnetic field, in this case, the main magnetic field of an MRI scanner (B0), they tend to 

preferentially align in the direction of the field due to their intrinsic magnetic moment (𝝁𝝁). However, due 
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to the intrinsic spin/angular moment (𝑱) of the proton, these protons precess around the main field 

direction at a rate referred to as Larmor frequency (𝜔𝜔0). This is given by: 

ω0�����⃗  = γB0����⃗         (2.1) 

And intrinsic magnetic moment is given by 𝝁𝝁 = γJ or in a form more relevant to MRI as  

d𝑀��⃗

dt
= 𝛾𝑀��⃗  ×  𝐵0����⃗                 (2.2) 

Because the net magnetization (M) is defined as the sum of all microscopic magnetic moments over a 

volume (M = 𝚺𝚺 𝝁𝝁). Where γ – gyromagnetic ratio (an intrinsic property of the nucleus in discussion, 

42.58 MHz/T for a proton spin), and B0 is the external magnetic field, M – net magnetization.   

 Consider a proton in a 3.0T MRI scanner (which is the setting used throughout this thesis), the 

Larmor frequency is 127.73 MHz. To interact with the protons precessing at this frequency, a small burst 

of a secondary electromagnetic field (B1) is transmitted at this frequency and is called as the radio 

frequency (RF) pulse. This causes the net magnetization (M), of the spins to experience an angular 

deviation from the main field (B0) by an angle referred to as flip angle and is given by 𝜽𝜽 = γB1𝜏𝜏rf, Where 

𝜽𝜽 – flip angle (or) simply the angular deviation made by the net magnetic magnetization due to the RF 

pulse with respect to the main field (B0), and 𝜏𝜏rf – duration of the RF pulse. Once this transient field is 

switched off, the magnetization returns to the equilibrium position along the main magnetic field (B0). 

The relaxation rates or time constants of the relaxation in transverse and longitudinal directions are called 

as T2 (spin-spin relaxation) and T1 (spin-lattice relaxation) respectively. The recovery of the signal back 

to the main magnetic field with respect to time can be explained by the following mathematical equations.  

 𝑑𝑀������⃗

dt
=  γM���⃗  . 𝐵𝑒𝑥𝑡��������⃗ + 1

T1
(M0 − Mz)𝑧�⃗ −  1

T2
𝑀⊥������⃗                       (2.3) 

Where M0 is the equilibrium magnetization, 𝑀⊥is the transverse component of the magnetization. This 

changing magnetization along the transverse plane induces a small electromotive force (emf) in a coil 

which can be expressed as  

EMF = - 𝑑
𝑑𝑡 ∫ 𝑑3𝑟𝑀��⃗ (𝑟, 𝑡). 𝐵𝑟𝑒𝑐𝑆𝑆𝑒𝑣𝑒(𝑟)                      (2.4) 
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This simple bulk signal from the sample, which is placed in a static magnetic field and excited by another 

RF pulse (short  EM pulse), is referred to as FID signal or free induction decay. This FID is the basis for 

signal in MRI. The following sections describe the means to localize/obtain the spatial information from 

this bulk FID signal. 

2.3 SPATIAL ENCODING/SIGNAL LOCALIZATION:     

 The bulk signal from the entire body must be isolated in three dimensions, to obtain any spatially 

localized information. This is achieved by manipulating the effective magnetic field seen by protons in 

different spatial locations. By application of magnetic field gradients, at specific times and in different 

directions spatial localization can be achieved. 

2.3.1 Slice Select Encoding: To excite a slice (2D section) within the body, the magnetic field along the 

z-direction is made to linearly vary with respect to the distance from iso-center. Therefore, the frequency 

𝜔𝜔0, which is required to excite the spins, can be tuned to match the spatial location of the spins. Consider, 

for example a linear gradient Gz applied along the z-direction of the magnet during excitation, a single 

slice can be excited by using the resonance frequency condition given by 

𝜔𝜔 = (Gz Z +B0)                                       (2.5) 

In practice, this approach can be used to excite a single slice for 2D imaging applications or a 

volume for 3D volume imaging. However, exciting very thin slices require RF pulses (usually sinc) of 

broad width (based on the Fourier relation). Since this (temporally long RF pulses) is not practical, the 

Sinc pulses are truncated. Consequently, there is some leakage in excitation of the slice leading to non-

rectangular slice profiles. This leads to crosstalk between successive slices and signal degradation in 

imaging. This challenge is easily overcome by using interleaved slice excitation’s i.e. data from alternate 

slices are acquired in succession, while the previously excited slice has time to recover, leading to a 

homogeneous signal and no crosstalk. It is to be noted here that all 2D excitations described in this thesis 

are interleaved unless mentioned. 

2.3.2 In-plane Encoding and k-space: Simply put, the use of gradients to modulate the precessional 

rates (𝜔𝜔) of spins along the same direction is referred to as frequency encoding. Often this is done along 
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the read direction and is interchangeably used with read-encoding. In the standard case of no additional 

gradients, the magnetization can be  

                                M = M0 ei𝜔𝜔t                      (2.6) 

Please note that the relaxation terms (T1 and T2) have been ignored for this discussion. Any additional 

linear gradient (with slope G) after the RF pulse starting at t = 0 would modify the angular frequency of 

the spins and can be written as:  

                𝜔𝜔(x, t) = 𝜔𝜔0 + 𝜔𝜔G(x, t)             (2.7) 

Where 𝜔𝜔 is the effective angular frequency and 𝜔𝜔G is the additional frequency term due to the presence of 

an external gradient. And, correspondingly the magnetization can be written as  

M(x,t) = M0(x) 𝑒(𝑆𝑆𝜔𝜔0𝑡+ 𝜔𝜔𝐺(𝑥𝑥,𝑡))                  (2.8) 

The phase or angular displacement (𝞅𝞅 = 𝜔𝜔t) that is accumulated from the additional linear gradients, 

would be a time-varying spatially dependent value 

𝞅𝞅 = ∫ 𝜔𝜔𝐺(𝑥, 𝑡)𝑑𝜏𝜏𝑡
0  = ∫ 𝛾𝐺(𝜏𝜏). 𝑥 𝑑𝜏𝜏𝑡

0  

= 𝜸𝜸∫ 𝐺(𝜏𝜏)𝑑𝜏𝜏 . 𝑥𝑡
0   = 2π .K (t) . x         (2.9) 

Where K corresponds to the k-space and is given by  

K = 𝛾
2𝜋

 ∫ 𝐺(𝜏𝜏) 𝑑𝜏𝜏𝑡
0              (2.10) 

This precessing magnetization induces a voltage in the receive coils and is given by  

V(t) = Ç  ∫ 𝑀0(𝑥)𝑒𝑆𝑆(𝜔𝜔0𝑡+ 𝜔𝜔𝐺𝑡)𝑑𝜏𝜏𝑡
0  

                                           = Ç ∫ 𝑀0(𝑥)𝑒𝑆𝑆(𝜔𝜔0𝑡+ 2𝜋Kx(𝑡))𝑑𝑥𝑡
0 )                                (2.11) 

Where the spatially invariant components and any other hardware coefficients (electronic gain terms) are 

included in the constant Ç. Since the Larmor frequency (𝜔𝜔0) is known, the acquired voltage can be 

demodulated and the signal represented by 

S(t ) = Ç ∫ 𝜌(𝑥)𝑒𝑆𝑆𝜔𝜔𝐺 𝜏𝜏 𝑑𝜏𝜏 𝑡
0  

= Ç ∫ 𝜌(𝑥)𝑒−𝑆𝑆2𝜋𝐾(𝑡)𝑥𝑥  𝑡
0 𝑑𝑥                  (2.12) 



10 
 

If the above equation is carefully observed, it can be deduced that it is nothing but the Fourier transform 

of the proton density (𝝆𝝆(x)). While the above equation represents the signal behavior along one axis, in 

practice the signal and the k-space is a three-dimensional entity and the signal can be represented as  

S(kx,ky,kz) = ∫ 𝜌(𝑥, 𝑦, 𝑧)𝑒−𝑆𝑆2𝜋�𝐾𝑥𝑥𝑥𝑥+𝐾𝑦𝑦𝑦𝑦+𝐾𝑧𝑧𝑧𝑧�𝑑𝑥𝑑𝑦𝑑𝑧    (2.13) 

 Where Kx = 𝛾
2𝜋

Gxt ; Kx = 𝛾
2𝜋

Gxt; Kx = 𝛾
2𝜋

Gxt And from this the image can be reconstructed as  

𝝆𝝆(x,y,z) = ∫ S�kx, ky, kz�𝑒𝑆𝑆2𝜋�𝐾𝑥𝑥𝑥𝑥+𝐾𝑦𝑦𝑦𝑦+𝐾𝑧𝑧𝑧𝑧� 𝑑𝑘𝑥𝑥𝑑𝑘𝑦𝑦𝑑𝑘𝑧𝑧      (2.14) 

This is nothing but the inverse Fourier transform of the obtained voltage signal (S). 

From the definition of K (Kx, Ky, Kz) it is evident that the position on the k-space is dependent 

on the slope of the linear gradient the spatial location and the time. By varying these independently or 

collectively along all the three axes we can move along the k-space to different points. The movement 

along the k-space is called as k-space trajectory. And this would determine the reconstruction method 

needed. Random, non-linear trajectories do not ensure that the data collected can be reconstructed by 

simple 2-dimensional or 3-dimensional Fourier transforms, e.g. as is the case of radial trajectory.   

2.3.3 Sampling: In the conventional and widely used Cartesian k-space trajectory, the k-space is 

traversed in a raster format line-by-line. Here the data is sampled uniformly and can be easily 

reconstructed by inverse Fourier transformation along each direction sequentially. This results in a 

complex image which can be represented as a magnitude image and the phase image. Commonly the 

phase image is discarded, however depending on the application it might hold valuable information. As 

the data is encoded in Fourier space and is reconstructed using Fourier transformation, the reconstruction 

quality and artifacts thereupon are also dependent on the properties of the Fourier transforms. The original 

Fourier transform is defined over continuous space/analog space. However, our data in k-space is sampled 

discretely. This can be mathematically written as the analog signal convolved with a comb function 

(infinite series impulse function) in the Fourier space. This convolution produces a function which is a 

self-replicating signal each separated by the reciprocal of the spacing of the comb function. 

1
𝛥𝛥𝐾

 = L = FOV                  (2.15) 
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This is referred to as the Nyquist sampling rate along read direction in MRI. This relationship 

applies along all three orthogonal directions.  

2.4 BASIC MRI SEQUENCES:        

 For the most part, in the above introduction to MRI, the magnetic relaxation times have been 

ignored. The emf that is detected in the coil is in fact modulated by the relaxation properties of the tissues 

being imaged. While the signal decay over time is generally attributed to the T2 – decay, the dephasing of 

the magnetization caused by field inhomogeneities leads to an additional damping of the signal and the 

net decay can be modeled using T2*. In many practical cases, the T2’ (additional damping due to non-

uniform fields) are very small and dominate the T2 decay causing high signal loss. Fortunately, these 

additional T2’ signal loss can be reversed using an additional π-pulse, this approach is referred to as spin 

echo (SE). The following section discusses the basics of spin echo (SE) and gradient echo (GE) sequences 

followed by a fast version of the SE referred to as HASTE (Half Fourier acquired single shot spin echo).  

2.4.1 Spin Echo (SE) Sequence: Following the initial excitation, the longitudinal magnetization signal 

drops exponentially at the rate of T2*, which is a combination of the irreversible spin relaxation (T2) and 

a reversible component due to field inhomogeneity (T2’). Using a combination of an excitation pulse (π/2 

- pulse) and a refocusing pulse (π - pulse) the T2’ signal loss can be recovered. Due to magnetic field 

inhomogeneity following the 900 pulse, there is a loss of phase among the spin isochromats. An 1800 

pulse applied after a time 𝜏𝜏, reverses the phase loss and progressively the isochromats come in-phase to 

form an echo at 2𝜏𝜏 (fig 2.1). The main advantage of SEs is the greater immunity to artifacts from off-

resonance affects e.g. B0- field disturbances or susceptibility related fields. Specifically for heavy T2-

weighting a long echo time (TE) and long repeat time (TR) are used, the acquisition time for a 2D slice is 

given by  

Tacq = TR x NPE      (2.16) 
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Figure 2.1: Simple schematic sequence diagram of a spin echo sequence 

For an image of 256 phase encode (PE) lines and a TR of about 2000ms, the time required to 

collect a single slice is about 8.5 min. This long scan times with huge dead times between the echo and 

the next RF pulse has led to the development of multi-echo spin echo. In this dead time the experiment is 

repeated and data of the same slice at a different echo is collected. Hence within a TR images 

corresponding to multiple different echos are reconstructed. It was hence possible to have multiple echos 

of the data within the same scan time.  

2.4.2 Gradient Echo (GE) Sequence: Gradient echoes do not use additional RF pulses for refocusing 

and creating the echo. Instead, the FID signal is manipulated by first forcing a faster decay using an 

external dephasing gradient. The dephasing gradient is usually applied along the frequency encoding axis 

and this creates slightly different local fields across the spatial field-of-view (FOV) causing an accelerated 

dephasing. Then they are rephased with a similar gradient (rephasing gradient) but with opposite polarity 

(fig 2.2).  An echo occurs when the areas of the two gradients (dephasing and rephasing) areas are equal. 

Hence this is often also referred to as gradient recalled echo (GRE). It is important to note that the 

rephasing gradient only refocuses the spin isochromats that were initially dephased by the external 

gradient, the intrinsic T2, and T2* signal decay are not affected and cannot be recovered. A smaller area 

of the dephasing gradient can be used to create a partial echo.  

GE’s are faster than SE because only one RF pulse is applied per TR and the TE can be short. 

Practically, they are further accelerated by the fact that the excitation flip angle is less than 900, whereby 



13 
 

the magnetization is not fully inverted to the transverse plane and the time for T1 recovery is very quick 

(leading to shorter TR). This short TE and short TR create a unique hyperintense blood signal. Combining 

this with the time-of-flight (TOF) effect forms the basis of many angiography techniques.  

 

Figure 2.2: Simple schematic sequence diagram of a simple gradient echo sequence. Note the changes in 

the intensity of the signal due to the dephasing gradient and the echo formation when the areas of the 

dephasing and rephasing gradient are equal. 

2.5 HASTE Sequence (Half Fourier Acquired Single Shot Spin Echo):    

 As described earlier, the use of long TRs for a SE echo sequence can be used to our advantage 

and collect multiple echoes. Henning in 1986 [26] described an approach (fig 2.3), wherein unlike a 

multi-echo spin echo sequence, each of the echoes is independently phase encoded so that multiple k-

space lines can be acquired within a TR. The 1800 pulses are repeatedly used to refocus the spins to create 

series of echoes. This process is called as echo train imaging, and the number of echoes obtained within a 

TR is called as echo train length (ETL). The spin echoes are refocused at echo times represented by TE1, 

TE2, TE3, … etc. Each echo fills out its own independent k-space of the same slice. Because of the 1800 

pulse, the images from the even and odd numbered echoes are flipped in the PE direction. This approach 

is widely accepted as RARE (Rapid acquisition with relaxation enhancement) or Turbo spin echo (TSE) 
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or Fast spin echo (FSE) [27]. Compared to the spin echo the acquisition time of a 2D slice is lower by a 

factor of the ETL. One of the main difficulties of long ETL (enough to do single shot imaging) is the 

signal decay due to T2 during the echo train, i.e. after a few echoes there is no magnetization left in the 

transverse plane; this limits the practical ETLs possible. Another concern of the decay is that successive 

echoes are acquired with different signal intensities depending on the transverse relaxation and the echo 

spacing (ΔTE). This causes a blurring in the PE direction.   

 

Figure 2.3: Simple schematic sequence diagram of a multi-echo spin echo sequence. Only three echoes 

are shown here but the actual number is only limited by the T2 of the sample. 

To overcome these issues, TSE/RARE is often combined with half-Fourier techniques which 

reduce the number of PE required to reconstruct the image by half, hence the name HASTE [28]. In 

addition, the acquisition is combined with parallel imaging to further reduce the PE lines required. For 

example, consider an image to be reconstructed with 256 PE lines. With the use of half-Fourier 

approaches, the image can be reconstructed with 128 PE lines. Further using parallel imaging factor 2 the 

PE lines can be reduced to 64 and considering the auto calibration lines (~32) we would need 88 lines. 

Under practical brain imaging conditions the T2 of the tissue range from 40ms to 150ms, which limits the 

maximum possible longest echo to about 400ms (~ 5T2). Given the use of partial Fourier to enable 

shorter TE, about 96 echoes can be incorporated within 400ms. Hence the 2D image can be acquired in a 

single shot. The use of shorter echoes is also advantageous as there is a smaller difference of the signal 

intensities between the successive PE lines. Using all these approaches, a 2D slice using HASTE can be 
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acquired in a matter of 3-4 sec at 3.0T and hence is the most commonly used sequence in fetal imaging. 

However, the series of refocusing pulses carries considerable RF energy and might be a concern at higher 

fields. 

2.6 PHASE CONTRAST MRI:        

 Gradient-echo (GE) MRI is sensitive to any sort of field perturbations, including motion. For 

most standard imaging sequences, the flow/velocity induced phase loss is eliminated by nulling the first 

moment of the gradients i.e. the integral of the product of time and gradient amplitude is made zero at the 

echo. However, instead of completely nulling this moment, we can modulate the gradient structure such 

that the constantly moving spins accumulate a known phase at the echo. Phase contrast (PC) is this 

approach of imaging the moving spins by applying specific flow-encoding gradients. The flow encoding 

gradient structure is usually a bipolar structure inserted after the slice select (for flow encoding in the slice 

direction). However it can be applied on any of the axes. Hence the spins moving with a constant velocity 

v along the direction of the encoding-gradient will develop a phase  

𝜙𝑣± =  ±𝜸𝜸𝑮𝒗𝝉𝟐       (2.17) 

Where G is the amplitude of the gradient and 𝜏𝜏 is the duration of constant gradient. It is important to note 

that in the above relation the phase is directional dependent and is based on both the order of the bipolar 

and the direction of the motion of the spins. Given that there are other sources that induce a phase in the 

images, the PC sequence is used to acquire two set of images with the same imaging parameters except 

for the opposite bipolar gradients. These two set of complex images are then subtracted. This subtraction 

serves the dual role of accentuating the flow signal while suppressing all other sources of phase 

contributions.   

2.7 TIME-OF-FLIGHT MRI:  

Under standard imaging, the spins approach steady state equilibrium signal intensity when they 

are exposed to multiple RF pulses. However, when a moving spins like the ones in moving blood do not 

see the same number of RF pulses they do not approach steady state, a phenomenon called as inflow 

effects. This difference in the saturation of the background static signal and the moving blood signal 
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causes a contrast between them and enables us to perform magnetic resonance angiographic (MRA) 

imaging. For optimal inflow affects, the slice thickness must be so chosen that all the pool of the blood in 

that slice is completely refreshed before the next RF excitation i.e. v*TR > TH. (v – velocity of blood, TR 

– relaxation time; TH – slice thickness) Since the approach to equilibrium is governed by the T1 of the 

sample, optimal signal differences can be observed when a flip angle closer to the Ernst angle (𝜽𝜽 ~ �2𝑇𝑅
𝑇1

) 

is used. The enhanced signal from moving spins can be understood as a tissue with a shorter T1.This 

pseudo T1 can be represented as T1flow = 𝑇𝐻
𝑣

  and the effective T1 is given by  

𝟏
𝑻𝟏𝒆𝒇𝒇 

=   𝟏
𝑻𝟏

+  𝟏
𝑻𝟏𝒇𝒍𝒐𝒘

      (2.18) 

Most TOF MRA based sequences uses short TE, short TR flow compensated spoiled gradient 

echo sequences. Other approaches of performing MRA include the use of contrast agents (works by 

decreasing the effective T1 of the blood pool) or using selective tagging pulses. For optimal contrast the 

choice of MRI sequence parameters depends on the velocity of the blood flow. 
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CHAPTER – 3: FETAL BRAIN IMAGING AT 3.0T:  A COMPARISON OF IMAGE QUALITY 
AND SPECIFIC ABSORPTION RATE 1 

This chapter discusses a work where the HASTE MRI sequence was modified to lower the 

energy deposited during the scan at 3.0T. Quality (quantitative and diagnostic) assessments were also 

performed to understand the implications of these sequence adaptations and all results were compared 

with standard scans at 1.5T field strength.  

3.1 INTRODUCTION          

 While ultrasound has been the primary modality used in prenatal diagnosis the role of magnetic 

resonance imaging (MRI) in fetal diagnostic evaluation is increasing [29]. Fetal MRI has multiple 

advantages over ultrasound in this field.[30-63] Such advantages include: 1) improved soft tissue contrast 

and characterization [32, 48, 64-66]; 2) access to functional data [e.g. diffusion weighted imaging (DWI), 

[67-75] perfusion weighted imaging (PWI) [39, 59, 76, 77], blood oxygenation dependent (BOLD), [78-

82] MR spectroscopy (MRS) [37, 83-92]]; and 3) larger field of view (FOV). Fetal MRI has been shown 

to be useful in the diagnosis of fetal pathologies [93-95]. In particular, fetal MRI has been shown to be 

superior to ultrasound in evaluating the fetal central nervous system. [32-34, 43, 44, 96-104]  

Three decades have passed since the first application of MRI in the human pregnancy. [105] 

Currently, 1.5 Tesla (T) is the field strength of choice for MRI in pregnancy, although fetal MR imaging 

at 3.0T has also been reported in several studies. [82, 100, 106-109] Adult, pediatric, and neonatal 

populations routinely undergo clinical MR examinations at 3.0T. [110-113] The major advantage of 3.0T 

MRI (vs. 1.5T) is the increased signal to noise ratio (SNR), which is linearly proportional to the imaging 

field strength. Demonstrated benefits of such increased signal include 1) higher imaging resolution; 2) 

shorter imaging time; 3) improved tissue biochemical profiling through MRS, and 4) improved functional 

data.[114-117] However, susceptibility related artifacts are more pronounced at 3.0T MRI than 1.5T. 

[115-117] More importantly, 3.0T MRI has an operating frequency of 128 MHz (vs. 64 MHz of 1.5T), 

                                                           
1 This work has been published:  “Krishnamurthy, Uday, et al. "MR imaging of the fetal brain at 1.5 T and 3.0 T field 
strengths: comparing specific absorption rate (SAR) and image quality." Journal of perinatal medicine 43.2 (2015): 
209-220”. All contents and results are thereupon reproduced from this manuscript. 
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leading to higher radiofrequency (rf) energy deposition. [118-120] Specific absorption rate (SAR) 

measures energy deposition and is defined as rf power absorbed per unit mass of the tissue (Watts/Kg). 

[121-123] This issue of increased SAR in pregnancy has limited the use of 3.0T MRI in fetal imaging. 

[100, 109] Yet, radiofrequency energy deposition (SAR) can be reduced through pulse sequence 

modifications. [124-127] Therefore, we hypothesized that by using modified pulse sequences, imaging 

the fetal brain at 3.0T (vs. 1.5T) could be performed at a higher resolution with improved image quality, 

while simultaneously reducing the SAR.  

The objectives of this study were to: 1) evaluate the feasibility of fetal brain MRI using a fast spin 

echo imaging sequence at 3.0T field strength with simultaneous reduction in radio frequency (rf) energy 

deposition; 2) quantitatively compare the image quality with conventional 1.5T MRI, and 3) compare 

tissue contrast and conspicuity for specific anatomical structures in the brain between 1.5T and 3.0T MRI.  

3.2 MATERIALS AND METHODS 

Pregnant women (19-40 weeks of gestation) scheduled to undergo a 1.5T MR exam for clinical 

indications were approached to also undergo a 3.0T exam afterwards. All women recruited as part of this 

study were referred for a clinical MRI through Hutzel Women’s Hospital in Detroit, MI. The 1.5T MRI 

scans were performed at Children’s Hospital of Michigan, Detroit, MI, while 3.0T MRI scans were 

performed at Wayne State University’s Magnetic Resonance Research Facility at Detroit Medical Center, 

Detroit, MI. All women were enrolled in a research protocol approved by the Human Investigation 

Committee of Wayne State University, and all participants provided written informed consent for the use 

of MR images for research purposes. 

3.2.1 MRI Examination: To compare the image quality and SAR between 1.5T and 3.0T MR, the T2 

weighted single shot fast spin echo sequence (SSFSE) was chosen, since it is the most frequently acquired 

sequence for evaluating fetal anatomy, and has the highest SAR values in typical fetal MRI protocols. 

[128]. 

Clinical MRI scans were performed on a 1.5T General Electric Signa system (Milwaukee, WI) 

with an 8 channel cardiac array and spine receive coils. Following the scout/localizer scans, anatomical 
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data of the fetal brain were acquired using a T2 weighted SSFSE technique with the following imaging 

parameters (Table 3.1): repeat time (TR) 1192-1240 milliseconds (msec), echo time (TE) 90 - 240 msec, 

slice thickness of 4 mm, voxel size 0.93 x 0.93 mm2 - 1.3 x 1.3 mm2, and flip angle 90o. Images were 

obtained sequentially in three planes (axial, coronal, and sagittal) relative to the fetal brain. Acquisitions 

were repeated when fetal motion was encountered. 

Field 

Strength 

TE 

(msec) 

TR 

(msec) 
Resolution (mm3) 

Flip 

Angle 

(degree) 

Band 

width 

(Hz/pixel) 

1.5 T 90 - 240 1192-1240 (0.93 to 1.3) x (0.93 to 1.3) x 4 90 
244 

 

3.0 T 139-140 2600-5000 (0.87 to 1.1) x (0.87 to 1.1) x (3 to 4) 75 369 or 372 

Table 3.1: MR imaging parameters for the single shot fast spin echo (SSFSE) sequence at 1.5T and 3.0T. 

All 3.0T MRI scans were performed on a 3.0T Siemens Verio system (Erlangen, Germany) with a 

6 channel body flex array and spine receive coils. An additional 2 channel flex extremity receive coil was 

used in some patients having a larger abdominal girth. Following scout/localizer scans, a T2 weighted 

single-shot turbo spin echo sequence with half-Fourier reconstruction (HASTE) was acquired for 

anatomical purposes. This sequence implementation is essentially the same as SSFSE on the GE system. 

[129] The following imaging parameters were used for the HASTE sequence: repeat time (TR) 2600-

5000 milliseconds (msec), echo time (TE) 139-140 msec, slice thickness of 3 or 4 mm, voxel size 0.87 x 

0.87 mm2 - 1.1 x 1.1 mm2, and flip angle 75o with hyper-echo acquisition. Images were obtained 

sequentially in three planes (axial, coronal, sagittal) relative to the fetal brain. Acquisitions were repeated 

when fetal motion was encountered. 

3.2.2 Data Analysis: T2 data was first reviewed for general image quality, including image or motion 

artifacts. From data collected at a given field strength, the best dataset (defined as a volume without 

motion or image artifacts) for each anatomical plane relative to the fetal brain was chosen for further 
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analysis. Each fetus had 3 datasets collected at 1.5T that were compared with the corresponding datasets 

acquired at 3.0T. 

 3.2.2a Signal to noise ratio (SNR): Quantitative comparison of image quality was performed by 

computing the SNR of the fetal brain. For a given fetus, SNR measurements were computed for each T2 

dataset. For all cases, SNR was measured by defining a region of interest (ROI) within the white matter, 

and the mean signal was measured from this ROI. The noise was estimated by measuring the signal 

standard deviation (SD) from a homogenous white matter region within the ROI. SNR was then defined 

as a ratio of the mean value of the signal from the ROI and SD measured from the homogeneous signal 

region. For a given dataset, a central slice within the multislice data was first chosen, such that both 

cerebral hemispheres were clearly visualized. Next, the mean and SD values from two ROIs (one from 

each cerebral hemisphere) were obtained and then averaged to minimize the bias due to coil drop-off or 

non-uniform excitation.[115, 117, 130, 131] Compared to the 1.5T scan, higher resolution data were 

acquired at 3.0T with a corresponding higher pixel bandwidth. Therefore, the SNR measures were 

normalized to a fixed voxel volume of 1 mm3 and a fixed pixel bandwidth of 244 Hz/pixel, so that a direct 

comparison could be made between SNR measures of the 1.5T and 3.0T data. Finally, SNR measures 

from the three T2 data acquisitions were averaged to obtain a single SNR measure for each fetus at a 

given field strength.  

3.2.2b Specific absorption rate (SAR): Whole body SAR values, as estimated by the MR system 

console, were noted from the DICOM [132] (Digital Imaging and Communications in Medicine) image 

header. For a given patient, SAR values from the three separate views were noted and averaged to obtain 

a single SAR measure for each patient at a given field strength. It is noteworthy that whole body SAR 

values are calculated based on maternal physical parameters, which are also the criteria used to assess 

safety in rf dosimetry studies for fetal imaging. [133-135]  

3.2.2c Diagnostic image quality and scoring system: Diagnostic image quality was assessed in a 

blinded fashion for all 1.5T and 3.0T MR images by a senior pediatric neuroradiologist (SM) with more 

than 10 years of experience with fetal MRI. The following nominal scoring scheme was used: 1) Score 1: 
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images of diagnostic quality without any artifacts; 2) Score 2: images of diagnostic quality, but with 

minor artifacts or low SNR; and 3) Score 3: images of non-diagnostic quality. Three datasets were 

evaluated for each fetus, and the best score was used to represent the overall data quality for that fetus 

respective to the field strength of the image.  

3.2.2d Comparison of tissue contrast and conspicuity between 1.5T and 3.0T MRI: High soft tissue 

contrast occurs when different tissues are reflected by different intensity levels in the images. [64] 

Conspicuity is the property of being clearly discernible. [136, 137] Both tissue contrast and conspicuity of 

anatomical structures in the fetal brain were compared in a blinded fashion between 1.5T and 3.0T MRI 

by a senior pediatric neuroradiologist (SM) with more than 10 years of experience with fetal MRI. 

Specifically, tissue contrast for the fetal cortex, basal ganglia, dentate nucleus, and germinal matrix were 

evaluated due to their inherent discernibility. Conspicuity was evaluated for the fetal optic chiasm, basilar 

artery and vein of Galen due to their small size. Assessment was performed using the following nominal 

scoring scheme (performance of 3.0T relative to 1.5T): 1) Score 0: inferior; 2) Score 1: same as 1.5T data; 

3) Score 2: superior; and 4) NA: not applicable (some structures cannot be visualized due to either early 

gestational age or pathology). After reviewing all T2 data acquired in different orientations at a given 

field strength, a single score was assigned (one for tissue contrast and one for conspicuity) for a given 

fetus.  

3.2.2e. Statistical Analysis: Normality was assessed using the Kolmogorov-Smirnov test and visual plot 

inspection. Differences in distributions of normalized SNR and SAR were tested using either the paired t-

test or its non-parametric equivalent, the Wilcoxon signed rank test, as appropriate. A 5% threshold was 

used in determining statistical significance. All analyses were performed using SAS version 9.3 (Cary, 

N.C.).  

3.3 RESULTS 

Twelve pregnant women prospectively underwent both a 1.5T and 3.0T fetal MR examination. 

Patients were referred for MRI examination due to the presence of fetal congenital anomalies, which 

included: Dandy-Walker malformation (n = 2), mild cerebral ventriculomegaly, hydrocephalus, mega 
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cisterna magna, myelomeningocele, hypoplastic left heart syndrome, distended small bowel loops, 

congenital heart disease including left heart syndrome, diaphragmatic hernia, cytomegalovirus infection, 

and monochorionic/diamniotic twins (with one viable fetus). The median (range) age of mothers was 24 

(19-34) years. The median (IQR) gestational age at the time of 3.0T scan was 31.4 (27-34.2) weeks, and 

the median (IQR) time interval between the 1.5T and 3.0T scans was 2.5 (0.75 -5.25) days. All but three 

women were imaged within 3 days of the 1.5T scan; these women underwent a 3.0T MRI at 12, 19, and 

20 days after the first scan.  

3.3a SNR and SAR: Placement of the ROI on the T2 datasets for SNR measurements are shown in 

Figure 1. For all cases, normalized SNR and SAR measurements for fetal images obtained at 1.5T and 

3.0T are depicted in Table 3.2. The SNR per unit voxel volume of 1 mm3 (arbitrary units, a.u.) was 

significantly higher for images obtained using 3.0T than those obtained at 1.5T [median (IQR):4 (3.1-5.6) 

vs. 3.35 (2.5-3.65), respectively; p = 0.03]. Conversely, the whole body SAR value was significantly 

lower for images obtained at 3.0T than those obtained at 1.5T (mean ± SD: 0.6 ± 0.12 vs. 1.6 ± 0.2 

Watt/kg, respectively; p < 0.0001) (Figure 3.2). Even when excluding the three subjects with more than 3 

days between the 1.5T and 3.0T scans, such differences remained significant (SNR; p = 0.03 and SAR; p 

< 0.0001). 

 

Figure 3.1: Placement of the ROI on T2 MRI datasets. ROIs were drawn on data acquired in three 

orientations for SNR measurements. Gestational age (weeks) A: 34 1/7; B: 34 4/7; C: 22 3/7. Images 

shown were acquired at 3.0T field strength 
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Figure 3.2: Comparison of normalized SAR and SNR values between T2 weighted single shot fast spin 

echo (SSFSE) sequence data obtained at 1.5T and 3.0T fetal MRI field strengths. (a.u., arbitrary units) 

 

 1.5T 

 

3.0T 

 

 
Subject # SNR  (a.u.) SAR (Watt/kg) SNR (a.u.) SAR (Watt/kg) 

1 3.2 1.1 5.5 0.6 
2 3.4 1.8 2.1 0.3 
3 2.0 1.8 3.1 0.7 
4 1.5 1.8 3.7 0.5 
5 3.4 1.5 5.3 0.7 
6 3.4 1.7 5.8 0.5 
7 5.3 1.7 5.7 0.6 
8 2.3 1.7 4.3 0.7 
9 2.7 1.5 3.6 0.6 
10 3.9 1.5 2.9 0.7 
11 3.3 1.5 3.1 0.8 
12 3.9 1.5 6.0 0.6 

Mean (SD)  1.6* (0.2) 

 

 0.6* (0.1) 

 Median (IQR) 3.35† (0.9) 

 

 4† (2.4)  

*P-value < 0.0001;  †P-value = 0.03 

Table 3.2: Comparison of normalized signal to noise ratio (SNR, arbitrary units) per unit voxel volume of 

1 mm3 and specific absorption rate (SAR, Watt/Kg) between T2 weighted single shot fast spin echo 

sequence data (n=12 subjects) obtained at 1.5T and 3.0T fetal MRI field strengths. 
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3.3b Diagnostic Image Quality: Anatomical data sets in different orientations were acquired from all 

fetuses at both field strengths. The best score was used to represent the overall data quality for a specific 

fetus. Scores assigned for diagnostic image quality are shown in Table 3.3. All cases at both field 

strengths were scored as having diagnostic quality present (Score of 1 or 2). Thus, there was no case 

which received a Score of 3 (non-diagnostic quality). Of all the cases, 83.3% (10/12) demonstrated equal 

diagnostic quality between both field strengths: 1) 75% (9/12) received a Score of 1 at both 1.5T and 3.0T 

(indicating diagnostic image quality without any artifacts), and 2) 8.3% (1/12) received a Score of 2 at 

both 1.5T and 3.0T (indicating diagnostic image quality, but with minor artifacts or low SNR).  In 16.7% 

(2/12) cases, images from 3.0T received a Score of 2, while the corresponding images from 1.5T received 

a Score of 1. Nevertheless, for a given fetus, data from at least one anatomical orientation had diagnostic 

quality present at both imaging field strengths.  

3.3c Tissue Contrast: Tissue contrast was evaluated and compared between field strengths for four 

anatomical structures in the fetal brain: cortex, basal ganglia, dentate nucleus and germinal matrix (Table 

3.4). While the cortex could be visualized and evaluated in all 12 fetuses, the basal ganglia, and dentate 

nucleus were each visualized and evaluated in 11 fetuses, and the germinal matrix in 3 fetuses. Some 

anatomical structures were not visualized due to either early gestational age or the pathologic abnormality 

and were scored as NA (not applicable). Thus, a total of 37 scores were assigned. Images of the cortex, 

basal ganglia, dentate nucleus, and germinal matrix obtained from 3.0T were equal (57%; 21/37), or 

superior (35%; 13/37) to that of 1.5T for tissue contrast. In 8% (3/37), tissue contrast of the dentate 

nucleus was inferior on 3.0T (vs. 1.5T) MRI.   
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Diagnostic Image Quality Score 

Subject # 3.0T 1.5T 

1 2 1 

2 2 1 

3 1 1 

4 1 1 

5 1 1 

6 1 1 

7 1 1 

8 1 1 

9 1 1 

10 2 2 

11 1 1 

12 1 1 

Score 1: images of diagnostic quality without any artifacts 
Score 2: images of diagnostic quality, but with minor artifacts or low SNR 
Score 3: images of non-diagnostic quality 

Table 3.3: Scores assigned for diagnostic image quality for fetal images obtained at 1.5T and 3.0T MRI. 

The best score was used to represent the overall data quality for a specific fetus. 

3.3d Conspicuity: Conspicuity was evaluated and compared between field strengths for three fetal 

anatomical brain structures: optic chiasm, basilar artery, and vein of Galen (Table 4.4). In one fetus, these 

structures could not be visualized due to early gestational age. Thus a total of 33 scores were assigned. 

Images of the optic chiasm, basilar artery, and vein of Galen obtained from 3.0T were equal (61%; 20/33) 

or superior (33%; 11/33) to that of 1.5T for conspicuity. In 6% (2/33), conspicuity of the optic chiasm and 

basilar artery was inferior on 3.0T (vs. 1.5T) MRI. Comparisons between MR images of the fetal brain 

obtained at 1.5T and 3.0T field strengths are shown in Figures 3.3 through 3.5. Figure 3.3 compares 

images from a 26-week fetus that was scanned on the same day at both field strengths. Figure 3.4 depicts 

1.5T  
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Figure 3.3: Comparing images of the fetal brain at 26 weeks of gestation obtained at 1.5T and 3.0T MRI 

(same fetus): 1.5T (top row, A-C) and 3.0T (bottom row, D-F) in all three orientations: Axial (A,D); 

Sagittal (B,E); and Coronal (C,F). Both 1.5T and 3.0T scans were performed on the same day. The 

images from 3.0T show superior tissue contrast and conspicuity to that of 1.5T. 

images of the fetal brain and the corresponding 3.0T images of three different fetuses at varying 

gestational ages. Figure 3.5 compares the conspicuity and contrast of the germinal matrix, optic nerve, 

and basilar artery, as well as the migrational pattern seen between 1.5T vs. 3.0T MRI. Superior tissue 

contrast and conspicuity were observed in the 3.0T images.  

3.4 DISCUSSION: 

The principal findings of this study are: 1) SNR was significantly higher for images obtained 

using 3.0T than those obtained at 1.5T; 2) the average whole body SAR value was significantly lower for 

images obtained at 3.0T than those obtained at 1.5T; 3) all cases at both field strengths were scored as 

having diagnostic quality present, and 83.3% of cases demonstrated equal diagnostic quality between both 
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Figure 3.4: 1.5T MR images of the fetal brain (top row) and the corresponding 3.0T images (bottom row) 

across different gestational ages. Data were obtained from 3 different fetuses. Images in the top row and 

the corresponding images in the bottom row are from the same fetus. Gestational age (weeks) at the time 

of scan were: (A: 22, D: 22 3/7); (B: 27, E: 27 2/7); and (C and F: 35 1/7). Superior tissue contrast and 

conspicuity are demonstrated in the 3.0T images. 

field strengths; 4) images from 3.0T MRI (compared to 1.5T) were equal (57%) or superior (35%) for 

tissue contrast; and 5) images from 3.0T MRI (compared to 1.5T) were equal (61%) or superior (33%) for 

conspicuity of anatomical structures. Such superior conspicuity could be attributed, in part, to higher 

resolution imaging with 3.0T MRI, and changes in the tissue relaxation times between 1.5 and 3.0T. The 

smaller voxel size allowed for clearer visualization of certain anatomical structures (e.g. optic nerve) 

(Figure 3.5) and thus, improved conspicuity. Tissue T2 relaxation values are known to decrease with 

increasing field strength. [138-140] Due to the use of almost equivalent echo times between both field 

strengths, this effectively led to an increased T2 weighting at 3.0T compared to 1.5T, which may have 

contributed to the improved tissue contrast and conspicuity. 
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 Tissue contrast  Conspicuity 

 Cortex Basal 
Ganglia 

Dentate 
Nucleus 

Germinal 
Matrix  Optic 

Chiasm 
Basilar 
Artery 

Vein of 
Galen 

Inferior 
(Score 0) 0 0 3 0  1 1 0 

Equal  
(Score 1) 6 7 5 3  6 7 7 

Superior  
(Score 2) 6 4 3 0  4 3 4 

NA 0 1 1 9  1 1 1 

Table 3.4: Comparison of tissue contrast and conspicuity for anatomical structures in the fetal brain 

between 1.5T and 3.0T MRI data. Images are scored with regards to how 3.0T compares to 1.5T MRI 

(reference). 

Signal to noise ratio (SNR) in MR imaging is roughly linearly proportional to the imaging field 

strength and is one of the main incentives for moving to fetal imaging at 3.0T. Practically, the factor 2 

gain in SNR is not always seen at 3.0T due to various factors, such as rf inhomogeneity (excitation and 

reception) and field appropriate sequence modifications performed for optimizing image quality. In the 

study herein, additional sequence modifications were employed for SAR reduction. Yet, despite this, we 

observed a significantly higher SNR at 3.0T than at 1.5T. The higher SNR allowed for higher resolution 

acquisition at 3.0T (compared to 1.5T), which improved the definition of smaller anatomical structures, 

such as the optic chiasm.  

SAR is a crucial factor to consider when imaging the fetus at 3.0T. Importantly, when imaging 

the fetal brain at 3.0T, there were lower SAR values (despite better SNR) compared to that of 1.5T (by 

almost a factor of 2). The SAR values compared in the current study are average whole body SAR values 

as calculated by the MRI scanner, which assumes certain standard adult imaging conditions. [141] SAR is 

also dependent on multiple factors, such as body shape, surface area, composition, and spatial location 

within the scanner. Recent rf dosimetry studies of pregnant human models report that, provided the 
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Figure 3.5: Comparison of 1.5T (top row) vs. corresponding 3.0T (bottom row) MR images of the fetal 

brain, showing the advantages of increased resolution at 3.0T. 1) Blue arrows (A, D) show the pattern of 

migration more clearly at 3.0T; 2) green arrows (B, E) show increased contrast in the germinal matrix; 

and 3) yellow and red arrows (C, F) show clear delineation of the optic nerve and basilar artery, 

respectively, at 3.0T. Images in the top row and the corresponding images in the bottom row are from the 

same fetus. Gestational age (weeks) at the time of scan were: (A: 22 , D: 22 3/7); (B and E: 26 1/7) ; (C: 

35 1/7, F: 35 4/7). 

scanner calculated maternal whole body SAR is < 2W/kg, the local fetal SAR values and tissue 

temperature increase at 3.0T field strength are well within the safety limits.[133-135] Moreover, the lower 

the maternal whole body average SAR, the lower is the rf energy deposition in the fetus. [133-135] The 

SAR parameter also has the following dependency on MR imaging parameters and patient weight: [119, 

120, 141, 142]  

SAR α (𝛳𝛳)2 (B0)2* (1/ TR) * (1/ τrf)*(1/W)      (3.1) 
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where 𝛳𝛳 is the rf pulse flip angle of the imaging sequence, τrf is the rf pulse duration, TR is the repetition 

time of the MR imaging sequence, and W is the weight of the patient. Therefore, SAR is directly 

proportional to the imaging flip angle, and inversely proportional to the rf pulse duration and the TR of 

the sequence. In this study, a HASTE sequence with hyperecho option was used for imaging at 3.0T. 

[127, 143-145] Along with the use of lower flip angle pulses of 75o, this hyperecho option helped to 

reduce rf energy deposition. [127, 143-145]  In addition, rf pulses with a longer pulse duration (using the 

‘low SAR’ option on the scanner) and a longer TR were used for the HASTE sequence at 3.0T. All of 

these factors contributed towards significantly lowering SAR values at 3.0T compared to 1.5T. The SAR 

values at 3.0T reported herein are also lower than those reported by Victoria et al in a recent review 

paper. [109] Indeed, in the study herein, the maximum SAR for the HASTE sequence at 3.0T field 

strength was 25% less than the 2 W/Kg limit corresponding to the ‘normal’ operating mode of clinical 

MRI scanners. [146, 147] While the lower nominal excitation flip angle does affect the SNR to some 

extent, this did not significantly reduce the quality of the images at 3.0T, which is evident from the 

diagnostic image quality scores.  

 The image quality is also dependent on the sequence parameters in addition to the field strength, 

the SNR relationship can be given by the following equation: 

 

Where ω0 has the field strength dependence, Δx, Δy, Δz are the image resolution, BW – bandwidth, TR, 

T1 and θ are as described earlier. The proportionality relation with flip angle and TR/T1 is assuming that 

the sequence is a simple spin echo sequence, however practically the relationship would be different as 

the sequence used here was a HASTE with hyper echo and a single-shot FSE. For the sequence 

parameters used in our scans and assuming that the T1 at 3.0T is about 40% greater than the T1 of fetal 

brain at 1.5T (based on adult abdominal tissue). The SNR at 3.0T should be approximately about 0.9 

times the SNR at 1.5T. (SNR3.0T = 0.92*SNR1.5T). As expected the images of 3.0T scans in figure 3.5 is 

SNR  ∝  
𝜔𝜔0 ∗ 𝛥𝛥𝑥𝑥 ∗𝛥𝛥𝑦𝑦 ∗𝛥𝛥𝑧𝑧 ∗�𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎 ∗ 𝑆𝑆𝑆𝑆𝑛𝑛3 𝜃𝜃 ∗ 𝑇𝑇𝑇𝑇 

𝑇𝑇1

 �
𝐵𝐵𝐵𝐵

𝑁𝑁𝑥𝑥∗𝑁𝑁𝑦𝑦∗𝑁𝑁𝑧𝑧
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nosier compared to the 1.5T scans. The plot in figure 3.2 shows the normalized SNR per unit volume as a 

given BW. However the true image SNR was measured was SNR3.0T = 0.78*SNR1.5T. The aim of the 

study was to compare the image quality. This was done qualitatively based on the scoring by a 

radiologist. We also wanted to quantitatively measure an image metric that is representative of the image 

quality. Hence we measured the SNR from both hemispheres and in 2D slices that was acquired in all 

three orientations relative to the fetal brain. While the average of all these local SNRs does not represent 

the true SNR, we believe that it would be an equivalent representation demonstrating the image quality. A 

true quantitative comparison between the two field strengths is very challenging due to: (1) the use of 

different coils, a phased array 6-channel cardiac coil at 1.5T versus a 4-channel body flex coil at 3.0T; (2) 

differences in the position of the mother with respect to the coil; (3) differences in the position of the fetus 

within the mother and also with respect to the coil; (4) the position of the coil within the axis of the 

magnet; and (5) the use of hyper-echo and half Fourier acquisition at 3.0T. 

Some limitations of this work include the small sample size and variation in the time duration 

between 1.5T and 3.0T studies. However, even when excluding the three subjects with more than 3 days 

between the 1.5T and 3.0T scans, the differences in SNR and SAR between field strengths remained 

significant and did not alter our findings.  

MR imaging at 3.0T offers tremendous advantages in terms of SNR and improved spectral 

separation in MRS. This could allow the use of faster and more sensitive advanced sequences to image 

the human fetus (e.g. brain) at 3.0T, such as susceptibility weighted imaging, diffusion-weighted imaging, 

and magnetic resonance spectroscopy, all of which are typically low in SAR. [148]   

3.5 CONCLUSION: 

This is the first study in the human fetus to systematically compare SNR, SAR and image quality 

between 1.5T and 3.0T MRI. With appropriate sequence adaptations, examining the fetal brain using 3.0T 

MRI results in higher image resolution and SNR, with simultaneously lower radio frequency energy 

deposition than that of 1.5T. Moreover, 3.0T images demonstrate superior tissue contrast and conspicuity 

than images obtained using 1.5T MRI in approximately one-thirds of cases.  
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CHAPTER 4: QUANTITATIVE FLOW IMAGING IN THE HUMAN UMBILICAL 
VESSELS 

This chapter shows the feasibility of performing quantitative average blood flow measurements in 

the fetal vessels using phase contrast MR imaging without the necessity of a triggering signal. Numerical 

simulations suggest that the error is within permissible limits. We show one of the first applications of 

simple non-triggered quantitative phase contrast imaging in human fetal imaging for measuring flow in 

the umbilical vessels that does not require any major sequence modification and/or complex post-

processing methods.   

4.1 INTRODUCTION:         

 The growth and development of the human fetus are supported through an effective maternofetal 

circulation. Assessment of fetoplacental hemodynamics using measures like pulsatility index (PI), 

resistance index (RI), peak velocities during diastole or systole (S/D ratio), presence or absence of the 

notch in the flow waveforms, etc., is performed routinely during clinical assessment of pregnancy [149, 

150]. Indeed, in cases of severe intra-uterine growth restriction (IUGR) and moderate fetal growth 

restriction (FGR) conditions, umbilical artery PI/waveform is found to be a useful indicator of fetal 

distress and predictor of postnatal outcome [151, 152]. While these indices characterize important 

hemodynamics, additional volumetric blood flow rate measurements could help in estimating important 

physiologic parameters like bulk organ perfusion. Doppler ultrasound (US) may be used for such 

measurements. However, the accuracy and repeatability of Doppler based volumetric flow measurements 

in fetal vessels are affected by factors like insonation angle and the absence of accounting for the spatial 

velocity profile [153]. Furthermore, in situations, where the vessels are located in close proximity to 

echogenic tissue like bone, or cases of oligohydramnios, could preclude flow measurement entirely. 

Magnetic resonance imaging (MRI), on the other hand, is a great adjunct to US in fetal diagnostic 

imaging [154, 155] and offers quantitative imaging capability with large fields-of-view at high resolutions 

that is relatively operator independent. Furthermore, phase contrast magnetic resonance imaging 

(PCMRI), is one of the most accurate methods for measuring in-vivo blood flow rates and is routinely 
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used clinically in neonates, in pediatric and adult subjects for blood or cerebrospinal fluid flow 

quantification. Measuring blood flow rates in fetoplacental vessels using MRI makes quantitative 

hemodynamic studies like evaluating bulk organ perfusion or evaluation of oxygen delivery and/or 

consumption rates possible in-utero. Such approaches are increasingly becoming important in the study of 

the great obstetric syndromes.          

 Studies applying PCMRI for evaluating fetal and/or placental blood flow, however, are scant 

[156-158], primarily due to a) the lack of physiologic gating signal (fetal echocardiography or fetal pulse 

monitor) within the MRI system that facilitates synchronization of data acquisition for time-resolved flow 

quantification; and b) fetal motion. Specifically, the latter aspect necessitates fast imaging methods that 

minimize chances of data corruption from fetal motion. Today both data-driven self-gating [157], and use 

of MR safe fetal cardiotocography equipment are active areas of research [159, 160]. However, 

application of these methods requires either complex reconstruction algorithms or custom hardware. 

Furthermore, due to their long acquisition times, these techniques are prone to bulk fetal motion which 

precludes any useful measurement. Alternatively, non-gated phase contrast MRI (ng-PCMRI) is a fast 

method that can map time-averaged velocity in a spatially resolved manner, without the necessity of any 

gating signal [161]. In this work, we study the applicability of 2D ng-PCMRI technique for blood flow 

measurements in umbilical blood vessels in human fetuses. We first validated the flow measurements in 

the major arteries in the adult neck. And, after studying the expected errors in flow assessment for typical 

umbilical arterial flow conditions through simulations, ng-PCMRI was applied to measure blood flow 

rates in human umbilical vessels in normal pregnant subjects in second and third trimesters.   

4.2 MATERIALS AND METHODS: 

4.2.1 Non-gated phase contrast MRI (ng-PCMRI): The conventional 2D time-resolved PC imaging 

sequence with Cartesian data sampling was modified to phase encode without any gating and with the 

bipolar velocity encoding with positive and negative polarity occurring in consecutive repeat-times (TRi 

and TRi+1), as shown in Figure 4.1. Flow encoding is applied along the slice direction and two images are 

obtained as the output of the sequence - one with positive and the other with negative bipolar velocity 
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encoding. The final PCMRI image is obtained by complex dividing the positive and negative velocity 

encoding data and taking the resultant phase image. 

 

 

 

 

 

 

 

 

Figure 4.1: Sequence diagram of the non-gated phase contrast MRI (ng-PCMRI) showing the continuous 

acquisition without the need for any physiological trigger. RF – radio frequency excitation pulse; ADC – 

analog to digital converter;  Venc –velocity encoding gradients; Gss- slice select gradient; GPE- phase 

encoding gradient; GRO- readout gradient. 

4.2.2 Validation in normal adult volunteers: Flow measurements from ng-PCMRI were compared with 

that obtained from the conventional pulse gated PCMRI (pg-PCMRI) technique. Six healthy adult 

subjects (5 male, 1 female, median age: 27.5 years, IQR 7.5 years) were imaged after obtaining an 

informed consent, in accordance with the local institutional review board (IRB) guidelines. The 

conventional pg-PCMRI sequence and the ng-PCMRI sequences were applied in an interleaved manner 

for measuring flow in the common carotid arteries at the C6/C7 level of the cervical spine. Imaging was 

performed on a 3.0T Siemens Verio system (Erlangen, Germany). Measurements were carried out under 

free-breathing conditions and repeated 5 times in each subject. The imaging protocol consisted of the 

anatomical localizer followed by an MRA sequence for localization of the carotid vessels to guide 

placement of the PCMRI acquisitions. This was followed by the conventional pg-PCMRI and the ng-

PCMRI acquisitions, applied at the same anatomical location, perpendicular to the common carotid 
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arteries. Imaging parameters for the conventional pg-PCMRI were: repeat time (TR) = 54ms, echo time 

(TE) = 3.98, Venc = 50cm/s, bandwidth = 243Hz/pixel, field-of-view (FOV) = 295mm, resolution = 

0.67x0.67x4mm3, flip angle = 150,and a total acquisition time of 58sec with 30 cardiac time-points. The 

ng-PCMRI sequence was acquired with the same voxel size and venc as that of the conventional PCMRI 

with the following imaging parameters: TR = 14ms, TE = 6.9ms, flip angle =150, bandwidth = 

248Hz/pixel, number of averages = 6, total acquisition time = 75 sec. Blood flow rates in the left and right 

common carotid and vertebral arteries were assessed by two independent observers by drawing a manual 

freehand region of interest (ROI). The resolution ensured that the vessel lumen (area) occupied at least 30 

voxels. Agreement between the conventional gated (pg-PCMRI) and non-gated (ng-PCMRI) 

measurement methods was statistically evaluated using the Pearson’s correlation (r). Inter-observer 

agreement between the two independent observers was assessed using intraclass correlation (ICC). A p 

value less than 0.05 was considered statistically significant.  

4.2.3 Numerical simulations for umbilical flow measurement: In ng-PCMRI, phase-encoding occurs 

over different cardiac phases, providing an average velocity measure in the final image. In the case of 

pulsatile flow, vessel phase varies from view-to-view (i.e., phase encode to phase encode). This could 

introduce a bias in the average velocity measured, depending on the relative position of the phase-encode 

order and the pulsatile velocity-time curve. Averaging over multiple measurements can reduce such 

variability [162].  

To understand the nature and extent of such errors for a typical velocity-time profile of blood 

flow observed in the umbilical vessels, we performed numerical simulations using a 2D digital flow 

phantom. For steady flow conditions without any pulsatility, as in the umbilical vein, ng-PCMRI does not 

lead to any systematic quantification error [162]. Hence, velocity-time profile of umbilical arteries, which 

have pulsatile flow, was considered in these simulations. Two sets of simulations were carried out to 

assess the degree of error in flow due to 1) the typical variability in fetal heart rate and the pulsatility in 

the flow during data acquisition [163]; and 2) due to partial voluming. A laminar spatial flow profile was 

considered [164] (Eq.  4.1). Anonymized umbilical artery blood flow velocity waveform from a normal 
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fetus in the third trimester was obtained from the local obstetrical care as measured using Doppler US. 

Using this waveform, a fetal blood flow velocity curve was generated for the entire duration of a 

simulated ng-PCMRI acquisition (Figure 4.2), with a velocity value available for each TR of the 

acquisition. In generating this waveform, for multiple repeated simulations (see Nsim parameter below) 

typical fetal heart rate variability and amplitude variation in the flow were considered. Gaussian 

variability in the fetal cardiac period was introduced with a mean value 445msec and a standard deviation 

50msec. Similarly, the peak amplitude of the velocity-time curve was also varied – mean peak value of 

~45 cm/sec and a standard deviation of 4.5 cm/sec (10%). Figure 2 illustrates one instance of the velocity-

time curve generated for digital simulation of ng-PCMRI.  

 

Figure 4.2: Instantaneous velocity-time curve created for one time instance from the nominal velocity 

and using a random 10% variation in amplitude and a random 50ms variation in the cardiac cycle. 

The digital flow phantom consisted of two concentric cylinders, set up within a 256x256 matrix. 

The inner cylinder, which represented the vessel (radius 16 pixels), was embedded in a larger outer 

cylinder (radius 103 pixels) simulating the background tissue. An arbitrary amplitude of 100 and 25 units 

was assigned to the vessel and background respectively which defined the magnitude M(x,y). A laminar 

flow profile within the vessel lumen was simulated using the equation: 

𝑣(𝑥) = 𝑉𝑚𝑎𝑥𝑥 �1 − 𝑟
𝑅

�
2
         (4.1) 
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where, r is the radial distance of a point in the vessel from its center and R is the radius of the vessel.  

Similar to the actual data acquisition procedure in MR, velocities corresponding to each pair of 

consecutive TRs, were taken and assigned to the vessel to generate the positive and negative bipolar 

phase-encode lines. The following equations summarise this process.  

𝑝�𝑘𝑝𝑒,𝑗� = 𝐹𝑇�𝑀(𝑥, 𝑦) ⋅ 𝑒𝑆𝑆𝜑𝑝,𝑎𝑎𝑒𝑠𝑠𝑒𝑙(𝑟,𝑡)�𝑗      (4.2) 

𝑛�𝑘𝑝𝑒,𝑗� = 𝐹𝑇�𝑀(𝑥, 𝑦) ⋅ 𝑒𝑆𝑆𝜑𝑛,𝑎𝑎𝑒𝑠𝑠𝑒𝑙(𝑟,𝑡)�𝑗     (4.3) 

𝜑𝑝,𝑣𝑒𝑠𝑠𝑒𝑙(𝑟, 𝑡) = �
�𝜋 ⋅ 𝑣(𝑟,𝑡)

𝑉𝑒𝑛𝑐
�    − 𝐼𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑣𝑒𝑠𝑠𝑒𝑙

0 – 𝐼𝑛 𝑡ℎ𝑒 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑖𝑠𝑠𝑢𝑒
    (4.4) 

𝜑𝑛𝑛,𝑣𝑒𝑠𝑠𝑒𝑙(𝑟, 𝑡) = �
− �𝜋 ⋅ 𝑣(𝑟,𝑡)

𝑉𝑒𝑛𝑐
�    − 𝐼𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑣𝑒𝑠𝑠𝑒𝑙

0 – 𝐼𝑛 𝑡ℎ𝑒 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑖𝑠𝑠𝑢𝑒
    (4.5) 

Here, 𝑝(𝑘𝑝𝑒,𝑗) and 𝑛(𝑘𝑝𝑒,𝑗) are the k-space corresponding to the positive and negative bipolar velocity 

encoding; j indicates the jth phase encode line; 𝜑𝑝,𝑣𝑒𝑠𝑠𝑒𝑙(𝑟, 𝑡) and 𝜑𝑛𝑛,𝑣𝑒𝑠𝑠𝑒𝑙(𝑟, 𝑡) are the vessel phase 

corresponding to the positive and negative bipolar lobe encoding. 𝑉𝑒𝑛𝑛𝑐 is the velocity that corresponds to a 

phase of 𝜋 in the vessel. Gaussian noise was added during the k-space generation such that the signal to 

noise ratio in the background tissue was 5:1. A venc value of 50cm/sec was used. The final positive and 

negative bipolar encoded images were then complex divided to obtain the velocity encoded ng-PCMRI 

image. Short term averaging (Navg - number of averages) was simulated similarly, but with consecutive 

pairs of TRs now corresponding to the same phase encode step, for a duration = 2xTRxNavg. The 

generated Navg phase-encode lines for a given phase encode step were averaged (positive and negative 

encoding lines separately). The final ng-PCMRI image was generated by complex dividing the images 

corresponding to the positive and negative bipolar encodings according to equation.  

𝐼(𝑥, 𝑦) =  𝐹𝑇−1[𝑝(𝑘)]
𝐹𝑇−1[𝑛𝑛(𝑘)]

        (4.6) 

The simulations were carried out for averages, Navg, ranging from 1 to 10 (step size = 1). The 

percent error in the velocity (or flow) measured from the vessel cross-section in ng-PCMRI with respect 
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to the corresponding theoretical average velocity, obtained from the input velocity-time curve was then 

evaluated. The simulation was repeated, Nsim = 300 times, wherein each instance a different (random) 

heart rate variability and amplitude variation were introduced in the umbilical velocity-time curve. For a 

given Navg, the standard deviation of the percent error, over the Nsim values, represented the systematic 

error expected from ng-PCMRI in the umbilical artery flow.       

 Large voxel sizes relative to the vessel size leads to partial voluming and consequent errors in the 

measurement of velocity as well as vessel cross-sectional area. For assessing the influence of these factors 

in ng-PCMRI for pulsatile flow, a procedure similar to the one used by Jing et al. [164], was employed. 

Briefly, instead of starting with matrix size was 256x256, a larger matrix size was taken and condensed to 

the final matrix size of interest, by taking the central k-space region, to simulate partial voluming. Vessels 

of radii 2, 3, 4, 6 and 8 voxels in the final matrix size were simulated by starting with a vessel of size 32, 

48, 64, 96 and 128 respectively in a matrix size of 4096x4096. Laminar flow profile as described earlier 

(equ. 1) was used and velocity and flow error in the final partial-volumed vessel were evaluated as a 

function of vessel diameter. Simulations were carried out for Navg = 6 and Nsim = 20. In this assessment, 

the vessel cross-sectional area was measured from the outer rim of the vessel, as advised in Jing et al 

[164]. 

4.2.4 Fetal Imaging: Pregnant women who were receiving care at Hutzel Women’s Hospital in Detroit, 

MI, USA, were non-consecutively recruited in this study. Pregnant women, with singleton pregnancies, 

between the age of 18 to 38 years and who were between 19 and 40 weeks gestation were approached for 

recruitment. The imaging study was approved by the local IRB and was compliant with HIPAA 

regulations. All subjects imaged in this study were recruited in accordance with local IRB guidelines and 

written informed consent was obtained from them prior to the MRI scan. All the subjects were considered 

normal pregnancies based on their routine US examinations.     

 Fetal MRI scans were performed using a 3.0T Siemens Verio system (Erlangen, Germany) with a 

4 channel body flex array coil along with the spine coil. As part of a larger study, ng-PCMRI data was 

acquired whenever possible. The umbilical vessels were first localized using a non-contrast, non-breath 
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hold time-of-flight angiography sequence [165]. Once the umbilical cord was localized, non-gated phase 

contrast images using the modified sequence were acquired using the following parameters: TR = 14/30 

msec, TE = 7-9 msec, slice thickness = 3/4 mm, voxel size between (0.5 – 0.8) x (0.5 – 0.8) mm2 and flip 

angle = 15o. The energy deposited, measured as the average whole body SAR, was consistently 

maintained below 0.5 W/kg. Within the limitations of time, acquisitions were repeated when fetal motion 

was encountered. The flow was quantified using an in-house software ‘FlowQ’ developed in Matlab 

[166], that allowed for drawing of a manual ROI. For inter-rater reliability the intraclass correlation (ICC) 

was used.  

4.3 RESULTS:  

4.3.1 Adult Human Volunteers: There was excellent agreement between the measurements made from 

the two methods (Figure 4.3). The Pearson’s correlation coefficient (r) between the two methods was 0.96 

with a p < 10-5.The results remain unchanged even when independently analyzed by a different observer. 

The intraclass correlation coefficients were 0.91 (p < 10-5) for conventional gated flow (pg-PCMRI) and 

0.99 (p <10-5) for the ng-PCMRI. There is clearly a trend to underestimate the total flow when using the 

ng-PCMRI. 

4.3.2 Numerical Simulations: Figure 4.4 shows the mean percent error in the measured velocity and the 

corresponding standard deviation over Nsim=300, as a function of Navg. While the error itself is small, the 

variance in this error also decreases with increasing Navg. Even averaging over two acquisitions brings 

down the variance from 10% to 3%, which is a 30% increase in the confidence of our measurement. From 

these results, Navg = 6, which corresponded to a mean error of 0.22% ± 1.5% was chosen as the 

reasonable trade-off point between total imaging time and variance in the measurement.  

 

 



40 
 

 

Figure 4.3: Plot of the average flow in the major arterial vessels of the adult neck measured using 

conventional gated PCMRI and ng-PCMRI.  

 

 

Figure 4.4: Plot of the errors in the measured velocity as a function of averages. Data was simulated 

using a nominal umbilical artery waveform incorporating beat-to-beat variations in amplitude and 

duration of the cardiac cycle 
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Figure 4.5 plots the percent error in the measured velocity and flow for vessels ranging from 

radius 2 to radius 8 voxels for Navg = 6 and Nsim = 20. As expected the measurement error in both velocity 

and flow reduces as the vessel size (in voxels) increases. The velocity and flow were measured using an 

automatic intensity based threshold, which caused an underestimation of the lumen area and an over-

estimation of the velocity (as it measured on the upper segments of the parabolic laminar profile), hence 

the negative error in the velocity. However, the flow error is significantly lower than the error in velocity. 

 

Figure 4.5: Plot of the errors in the measured velocity and flow as a function of vessel diameter in voxels. 

While velocity error is larger than flow error, both errors decrease as vessel size increases. Data was 

simulated using a nominal umbilical artery waveform incorporating beat to beat variations in amplitude 

and duration of the cardiac cycle. Nsim = 20, Navg = 6. 

These observations are in good agreement with previous findings done for pg-PCMRI[164]. For a vessel 

radius of 2 voxels, the error in flow was measured to be 10% ± 0.4% and at radius 3 voxels, 7.2% ± 0.5%. 

These results provided an estimate of the error to be expected in flow measurements from small vessels 

like umbilical arteries.  
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4.3.3 Fetal umbilical imaging: Fetal ng-PCMRI was acquired under the aegis of a larger study. Of these, 

24 cases were included in this study. The median gestational age of the fetuses included in this study was 

30 4/7 weeks and had an interquartile range of 8 1/7 weeks. The magnitude and phase images clearly 

show the umbilical vessels, the opposite flow in the arteries and veins is indicated by the opposite phase 

signature in the phase images (Figure 4.6). The combined average flow in the umbilical arteries was 203 

± 80 ml/min and in the corresponding flow in the umbilical vein was 232 ± 92 ml/min. Excellent inter-

observer correlation coefficient (ICC) was found in non-gated umbilicus flow and velocity measurements: 

ICC-flow: (a) umbilical arteries r: 0.86 (p < 10-6) and (b) umbilical vein r: 0.96 (p < 10-10); ICC-velocity: 

(c) umbilical artery 1 r: 0.93 (p < 10-10); umbilical artery 2 r: 0.79 (p < 10-06); and (d) umbilical vein r: 

0.97 (p < 10-10). The flow in both the artery and the vein increased with increasing gestational age (Figure 

7). When the arterial and venous flow measurements were plotted against each other, there was good 

correlation with a slope of 0.64. In all but one fetus (n=23), the estimated fetal weight was measured as 

part of their routine US scan that was done within a week prior to the MRI scan. The average flow 

normalized to the fetal weight was 140 ± 60 ml/kg per min and 158 ± 57 ml/kg per min in the umbilical 

artery and vein respectively.   

4.4 DISCUSSION AND CONCLUSIONS: 

We have presented preliminary results on the feasibility of measuring the umbilical blood flow using non-

gated PCMRI. Using Monte-Carlo simulations, we assessed the systematic error for velocity and blood 

flow for representative data in umbilical vessels. While the basic idea of ng-PCMRI imaging for fast 

acquisition has been around for over two decades, its use has been confined to a few applications due to 

limited precision in high pulsatility flow conditions [161, 167]. While these previous works focused on 

the application of ng-PCMRI in major arteries in adults, this is the first study assessing its applicability in 

fetal vessels in-utero due to limited precision in high pulsatility flow conditions [161, 167]. While these 

previous works focused on the application of ng-PCMRI in major arteries in adults, this is the first study 

assessing its applicability in fetal vessels in-utero. 
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Figure 4.6: Magnitude (A) and the phase image (B) obtained from the PC-MRI. Representative images 

are shown from a second trimester fetus (left pair; GA – 25 4/7 weeks) and a third trimester (right pair; 

GA – 35 1/7 weeks) Note the different phase polarity in the artery and the vein. 

 

Figure 4.7: Plot of the arterial vs. venous flow in the umbilical cord. Note that the slope of the plot is 

close to 1, indicating equal arterial and venous flow. The plot on the right shows the arterial and venous 

flow plotted across gestational age.   

 

As in previous studies, when applied in adult neck vessels, we found an excellent correlation 

(Pearson’s r = 0.99) between ng-PCMRI measurements and measurements from conventional gated 
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methods. Furthermore, flow measures from umbilical vessels are in good agreement with flow measures 

reported in the literature, measured using ultrasound. The range of our flow varied from 68.4 – 378 

ml/min and 61.8 – 420 ml/min (GA range: 24 – 39 5/7 weeks) in the umbilical artery and vein 

respectively. When extrapolated from the study of Lees et.al,[168] the average umbilical flow measure for 

the gestational ages used in our study was 261 ± 98 ml/min in the vein and 226 ± 67 ml/min in the artery, 

and those measured from our study was 232 ± 92ml/min and 203± 80 ml/min correspondingly. The 

average normalized flow in the umbilical vein in our cohort of subjects was 158 ml/min/kg, a similar 

measurement using retrospective gating has also been reported as 160 ml/min/kg [157]. And the average 

flow in the umbilical artery was 140 ml/min/kg, which is also in good agreement with previous 

studies[168, 169].  While the flow through the umbilical artery correlated well with what was measured in 

the umbilical vein (slope = 0.64), the flow in the vein was greater than that in both the arteries put 

together. This mismatch of ~12% is comparable to that seen in previous studies [168], pointing to a 

possible underestimate of flow in the umbilical arteries. This underestimation is in part explained by their 

small size and the subsequent partial voluming. At 33 weeks of gestation, the average area of the 

umbilical artery is 0.1 ± 0.01cm2 (radius~2 voxels) and that of the vein is 0.46 ± 0.7 cm2 (radius ~5 

voxels) [168]. Simulation results showed that for vessels of radius 2 to 3 pixels, the error in flow 

estimation could be as large as 10% for a given vessel. The corresponding error in a vessel of radius ~ 5 

voxels (umbilical vein) is less than 2%. Thus, the total flow in the two umbilical arteries could be 

underestimated by a factor greater than 10% which is what we see in our data.  These systematic errors 

due to the partial voluming are similar to what has been reported even in conventional gated and could be 

responsible for the underestimation of the flow in the arteries[164]. Partial voluming leads to an error in 

both the quantified velocity as well as the area of the vessel, consequently leading to an error in the flow 

measure. One of the ways to minimize error in the final flow is by measuring the area of the vessel by 

considering the outer radius of the vessel [164]. Following this guideline, we also used the outer radius of 

the vessel while evaluating the vessel cross-sectional area. The flow encoding in this study was only in 

the through plane (slice direction), however, the umbilical artery has a helical coil geometry leading to 
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averaging over the slice thickness or only measuring the component of flow perpendicular to the slice. 

While the same was not a concern for the vein as they are homogeneous and the slice was positioned 

perpendicular to the umbilical cord. 

  The simulations included in this study only looked at the phase effects of the time 

varying velocity pattern. But, in fact, changes in velocity would also imply different reductions in the 

effective T1 of the blood within a cardiac cycle. Previous studies, however, have reported that the 

magnitude induced variations in the flow is low and can be reduced further using short TE and low flip 

angle, both of which were incorporated in our sequences [167]. In addition, the T1 relaxation of the fetal 

blood is comparable to the adult blood [170] and hence results from earlier studies can be readily 

extrapolated to fetal imaging. Signal-to-noise ratio (SNR) in fetal imaging is critical and can often be the 

limiting factor. In our simulation study, the starting SNR in the background tissue was 5:1, but the SNR in 

the final image is improved due to the averaging (Navg). The precision of ng-PCMRI was not evaluated 

and the ability to detect differences could not be estimated practically. But, both these factors are heavily 

dependent on the experimental conditions of the vessel lumen (area and tortuosity), flow (pulsatality and 

acceleration factors), and physiology (heart-rate relative to TR). Further the changes in the lumen 

dimension within a heart rate was not simulated, fortunately this effect is not huge in the fetus as the 

maximal change in the diameter of the aorta in the third trimester is only about 6%. 

Few previous studies have reported the use of MRI based methods to quantify umbilical flow 

[156, 158]. They are based on synthetic trigger approaches, where the data is oversampled and 

retrospectively sorted to reconstruct the images at different cardiac phases. However, this approach 

involves complex post processing and limitations in the techniques preclude it from being used in 

younger gestations [156]. The use of image based metric and periodicity constraints (modeled heart-rates) 

further possess challenges in the reconstruction and quantification. We have shown that this ng-PCMRI 

approach can even be used in the second trimester. In ng-PCMRI you can sensitize the measurements to 

the average velocity by reducing the venc, while in pg-PCMRI the Venc must be maintained high to 

correspond to the systolic velocity rates. This reduces the sensitivity for diastolic velocity, on the other 
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hand in ng-PCMRI there would be no aliasing (phase-wraps) in the final phase images even if the 

instantaneous velocity during a few phase encode lines is greater than the venc as it encodes the average 

velocity [171].            

 The data presented here could not be systematically compared with the triggered/standard 

measurements and the measure of accuracy is based on simulation, internal validation (artery vs.vein) or 

comparison with literature values. Comparative analyses across all gestational ages were not performed as 

this was a feasibility study. Fetal motion and poor SNR continue to be a challenge for the robust 

application of this in fetal imaging. This approach is readily transferable to clinical diagnostic studies due 

to the ease of imaging and reconstruction. Ng-PCMRI offers excellent potential to extend this approach 

beyond the umbilical cord and to all fetal vessels when care is taken to avoid partial voluming and 

positioning the imaging slice perpendicular to the vessel. This approach in combination with other 

quantitative MRI imaging tools can provide a more holistic understanding of the developmental 

physiology and provide a sensitive biomarker for diagnosis of fetal distress. 
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CHAPTER – 5: FEASIBILITY OF NON-CONTRAST FETAL MRA2  

This chapter discusses a work where we optimized a conventional time-of-flight (2D TOF MRI) 

sequence for imaging the placental and fetal vessels without the need for any maternal breathold. This 

chapter also includes brief mention and preliminary results of the same sequence applied using a radial 

readout trajectory. 

5. 1 INTRODUCTION:        

 Imaging the placental and fetal vasculature is clinically important for early identification of 

vascular malformations and anomalous vascular development especially in congenital heart disease [172-

174]. Doppler imaging has been the mainstay for evaluating fetal vasculature by using 3D/4D ultrasound 

(US) and Spatiotemporal Image Correlation (STIC) [175-177]. However, issues related to limited US 

wave penetration in situations like maternal obesity, the presence of bony structures, abnormal fetal 

position, and oligohydramnios/anhydramnios could preclude proper US examination [178, 179]. In such 

situations, fetal magnetic resonance imaging has served as a valuable adjunct to ultrasound imaging (US) 

in obstetrics, especially for assessing the fetal central nervous system [180, 181]. However, the use of MR 

for assessing fetal vasculature has been extremely limited, due to fetal motion, contraindication for use of 

exogenous contrast agents during pregnancy, maternal respiratory motion, requirement of high resolution 

and the lack of fetal heart-rate based physiologic trigger signal which is required for some of the more 

advanced MR angiographic techniques [182, 183]. Countering fetal motion requires fast data acquisition 

schemes and high resolution for visualizing the small caliber vessels in the fetus. These are however, 

competing goals in MRI due to limited available signal to noise ratio (SNR). Imaging at higher field 

strengths offers high signal to noise ratio which could be leveraged for high resolution/fast imaging [184]. 

Imaging at the higher field of 3.0 Tesla (T), as opposed to conventional 1.5T, could provide this higher 

SNR. Fetal imaging at 3.0T field strength has been reported previously and recent studies have shown that 

it could be done safely with very low specific absorption rate (i.e., low rf energy deposition) [184, 185]. 
                                                           
2 This work has been published:  “Neelavalli, J., Krishnamurthy, U., Jella, P. K., Mody, S. S., Yadav, B. K., 
Hendershot, K., ... & Hassan, S. S. (2016). Magnetic resonance angiography of fetal vasculature at 3.0 T. European 
radiology, 1-7.”. All contents and results are thereupon reproduced from this manuscript. 
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Quantitative MR imaging techniques like arterial spin labeling [186] phase contrast MRI [187] and 

susceptibility weighted imaging based blood oximetry [188], that are increasingly being applied to the 

study of fetal physiology, often rely on the localization of afferent and efferent vasculature of the organ. 

Thus fetoplacental MRA also has an important role to play in the proper application of quantitative MR 

imaging methods in the fetus. In this work, we report the feasibility of obtaining non-contrast MRA in 

third-trimester fetuses at 3.0T that allows for 3D visualization of the fetal vasculature. 

5.2 METHODS:  

5.2.1 Sequence Optimization: Imaging parameters for the conventional 2D time of flight angiography 

sequences were modified keeping in mind the: a) expected range of physiologic blood flow velocities, b) 

size of the vascular structures, c) speed of acquisition and d) specific absorption rate of the sequence. The 

mean blood flow velocities in the umbilical vessels, the ductus venosus, aorta, inferior venacava and the 

fetal carotids are greater than 3cm/sec [189] from gestation 27 weeks and above (third trimester). 

Considering these speeds, the theoretical vessel contrast as a function of flip angle was plotted for blood 

flow velocities ranging from 3 to 30 cm/sec [189, 190], for 3.0T and 1.5T for a 2mm thick slice and a TR 

of 22ms (Fig. 5.1). A flip angle of 50o was chosen to ensure enhancement of low velocities and for 

keeping the SAR low. The diameter of the umbilical vessels, the major vessels of the heart and its 

branches including the carotids is typically greater than 3mm in the third trimester [191, 192]. Therefore, 

a voxel size of 0.4 - 0.7 mm isotropic (in-plane) was used so that vessels occupy 3 to 4 voxels or above. 

The final sequence parameters of the 2D TOF for fetal MRA are provided in table 5.1. Parameters of the 

conventional TOF are included for comparison. A saturation band was not used in order to keep the SAR 

low. The resultant fetal MRA sequence acquired one image slice every 3 to 4 seconds (depending on the 

resolution used).  
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Mo
de 

TE (ms) TR 
(m
s) 

Reconstructed Resolution 
(mm3) 

FA 
(deg
ree) 

BW 
(Hz/
pixel) 

# 
Slices 

Acq. 
Time 
(min) 

Parallel 
Imaging 

Conventional  3D 3.4-
11.3 

25 (0.75-1) x (0.75-1) x (1.5-2) 20 42 50-70 5-7 2 

Fetal MRA 2D 4.92 22 (0.4-0.7) x (0.4-0.7) x (1.5-
2) 

50 241 26-64 2-5 2 

Table 5.1: Sequence parameters for 2D fetal MRA contrasted against the conventionally used 3D TOF 

MRA of adult imaging. 

 

 

Figure 5.1: Theoretical contrast between the blood and background tissue vs. flip angle for blood 

velocities of 3 and 30 cm/sec. Experimental conditions; TR = 22 ms; TE = 5msec; T1 of blood [193, 194] 

= 1890ms (3.0T), 1400 (1.5T); T1 of background tissue [195, 196] = 2500ms (3.0T), 1700 (1.5T), spin 

density of blood and background [197] 0.82 and 0.83 (arbitrary units), T2 of blood and background tissue 

[196, 198]= 200ms. A flip angle of 50o was used to ensure enhancement at low velocities while 

maintaining low SAR. Almost identical curves for 3.T and 1.5T indicate that similar data may be acquired 

at 1.5T as well, using these parameters. 
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5.2.2 MRI Data Acquisition: The study was approved by the local institutional review board and 

informed consent was obtained from all subjects before the MRI scan. As part of a larger ongoing study, 

the fetal/placental MRA data was acquired whenever the scan time permitted in a non-sequential manner 

in third trimester subjects and results from 5 subjects are presented here. The median and interquartile 

values for the subjects were 36 weeks 4 days and 1 day, respectively. All subjects had normal US 

examination within one week prior to the MRI scan.  

Fetal MRI was performed on a 3.0T Siemens Verio system (Erlangen, Germany) using a four-

channel body flex array and the spine coil. Routine anatomical scans using a 2D T2 weighted (HASTE) 

sequence were followed by the acquisition of the 2D fetal MRA sequence for imaging the fetal vessels. 

Placental and umbilical vessels were visualized when they were present in the imaging field of view. 

Whenever possible, the MRA was repeated to achieve appropriate coverage or when fetal motion was 

encountered. Images containing significant motion were excluded and image volumes were processed for 

vascular network visualization in 3D in VolView [199] (www.kitware.com). 2D maximum intensity 

projections (MIPs) where then created at the appropriate orientation from these 3D volumes. Videos of 

3D reconstructions and the original DICOM data are provided in the supplementary material. 

5.3 RESULTS 

The great vessels of the fetal heart were clearly visualized (Fig 5.2). Umbilical circulation with 

the UAs joining the aorta and the umbilical vein joining the inferior vena cava was observed (Fig 5.3). 

Fetal neck vessels, the common carotids arising from the subclavian branches of the aorta, the internal 

carotids joining to form the circle of Willis, the transverse sinus, jugular veins, the vertebral arteries 

joining to form the basilar artery were clearly visualized in a 36 week and 4 day fetus (Fig 5.4). 

Intracranial vessels like superior sagittal sinus, transverse sinus and the middle cerebral artery, that were 

on the order of 1.5mm to 2mm in diameter, were visualized and reconstructed in the 3D view. Chorionic 

vessels of the placenta as well as the vessels on the maternal side were also visualized (Fig 5.5).  The 

SAR of the MRA as well as that of the HASTE sequence were < 0.25 W/Kg and 0.9 W/Kg, respectively.  

http://www.kitware.com/
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Figure 5.2: A) 2D TOF MRA image showing the fetus in the head down position with the fetal heart 

clearly visible. B) Maximum intensity projection obtained from the 3D vascular volume reconstructed 

from the 2D TOF data (shown in A). Fetal heart and its major vessels are visualized (Gestational Age – 

37 weeks). IVC – Inferior Venacava; PV – Portal Vein, CCA – common carotid artery. 

 

Figure 5.3: Visualization of the umbilical-fetal circulation. A,B – Orthogonal views of the umbilical-fetal 

vasculature MIPs (Gestational age – 36 weeks 4 days) showing the umbilical arteries joining branches of 

the descending Aorta and the umbilical vein joining the Ductus venousus. C – Anatomical image showing 
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the orientation of the fetal position; IVC – Inferior Venacava; UV – Umbilical vein; UA – Umbilical 

Artery; IA – Iliac Artery; DV – Ductus Venosus. 

 

Figure 5.4: Coronal (A) and Sagittal (B) MIP views, relative to the fetus, of the fetal head and neck 

vessels. C) A single 2D slice from the TOF MRA volume from which the 3D MIPs were generated. 

(Gestational Age – 36 weeks 4 days). SSS – Superior Saggital Sinus; ICV – Internal Cerebral Vein; VoG 

– Vein of Galen; SS – Straight Sinus; MCA – Middle Cerebral Artery; TS – Transverse Sinus; ICA – 

Internal Carotid Artery; BA – Basillar Artery; VA – Vertebral Artery; CCA – Common Carotid Artery; 

IJV – Internal Jugular Vein; SCV – Sub Clavian Vein. 

5.4 DISCUSSION:          

 These results show that 2D TOF MRA can indeed provide excellent depiction of fetal and 

placental vasculature as well at 3.0T. In many cases, minimal fetal motion allowed for the successful 

production of high quality 3D reconstructions despite the lack of maternal breath-hold. This may be 

largely due to the rough synchronization of the per-slice imaging time of 3 to 4 seconds with the typical 

maternal respiration rate, effectively leading to  pseudo respiratory gating [200]. The relatively long TR 

helped in reducing the SAR while increasing the blood signal due to higher inflow effect of blood. 

Because of the high flow velocities in the fetus and placenta, using a similarly long TR and thin slice it 
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may be possible to obtain such MRA of the fetus in the third trimester at 1.5T as well as suggested by Fig 

5.1. 

 

Figure 5.5.: (A) and (B) - Basal plate vasculature on the maternal side of the placenta. C) and D) T2 

HASTE images showing the volume covered for the MRA scan for (A) and (B) respectively. The 

arrowhead indicates basal plate vessels on the Uterine Side of the placenta (A,C : Gestational Age – 36 

weeks 4 days; B,D: Gestational Age – 36 weeks 5 days ). 

A major advantage of MRA is its larger field of view that provides a global perspective of the 

vascular network of mother and fetus in relation to the other anatomical structures which is helpful for 

identification of syndromic vascular malformations such as Klippel-Trenauny, Hereditary Hemorrhagic 

Telangiectasia (AKA Osler-Weber-Rendu), etc. In these cases, vascular malformations may be located 
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anywhere in the fetus, so a larger viewing window is advantageous for improved sensitivity over US as a 

screening modality. High resolution in MR helps in the visualization of small fetal vessels, particularly in  

 

Figure 5.6: A,B,C – MRA of the placental chorionic plate vessels. Primary and secondary branches of the 

chorionic plate vessels (arrow heads) are visualized. D,E - Corresponding anatomical images showing the 

volume covered in the MRA acquisition. (A,D: Gestational Age- 36 weeks 4 days; B,C,E : Gestational 

Age – 37 weeks). 

the head and neck, which are difficult to visualize with U/S due to the presence of the skull. Larger field 

of view also helps in global evaluation of the placental vasculature and higher resolution allows for 

evaluation of the chorionic surface vessels. Recent works have indicated that chorionic vessel 

density/distribution may be an important indicator of placental health [201, 202]. Placental MRA may 

have an important role to play in this assessment, especially in second and third trimesters. 



55 
 

There are a few limitations in this work. The technique was not applied in the same fetal 

anatomical location consistently. Furthermore, the technique was applied non-sequentially with variable 

volume coverage due to scan-time restrictions which precluded systematic analysis of the success rate of 

the technique. Systematic assessment of the diagnostic utility will be the focus of our future work. 

Nevertheless, the current report is the first step in showing the potential of the TOF MRA  technique in 

visualizing fetal vasculature in-utero using MRI. Faster scanning speeds may be achieved using non-

Cartesian sampling methods like radial/spiral combined with compressed sensing (CS) [203-205]. These 

trajectories are naturally insensitive to motion and/or amenable to motion correction [206] and thus may 

further improve the robustness of the technique for application in the second trimester as well. Combined 

with parallel imaging, these methods may further help speed up data acquisition and/or improve SNR. 

This feasibility study helps us validate the clinical viability of 2D TOF MR Angiography data for imaging 

the fetal vasculature at 3.0T. We report that 3D reconstruction and visualization of the fetal vasculature is 

possible on a conventional clinical MRI without the need for any new hardware or sequences. 

5.5 ROLE OF NON-CARTESIAN SAMPLING IN FETAL TOF-MRA 

In the above study, it was observed that the MRA technique was not robust in cases of younger 

gestation fetuses (second-trimester) or in cases where there was extreme fetal motion. Considering the 

small lumen dimensions, large field of view and the presence of fetal/maternal-respiratory motion, a high-

resolution sequence with relative insensitivity to fetal motion is warranted to improve the success rate of 

the fetal MRAs. Non-Cartesian sampling, notably radial k-space sampling which oversamples the central 

k-space can provide immunity to motion related artifacts. It also has the ability to image at higher 

resolutions due to the absence of a phase encoding step. This also provides the added advantage of large 

FOV imaging as it is only dependent on the read/frequency encoding. One drawback of the radial k-space 

sampling method is the susceptibility to gradient delays causing relative shifts between the sampling 

window and the read-out gradient. Manufactures, address this delay by modifying the moment of the 

dephasing lobe which ensures that the echo center happens at the center of the sampling window. This 

approach is very robust for a non-flow compensated gradient structure; addition of a bipolar gradient as 
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required for MRA (or) SWI makes it extremely hard to shift the echo center by changing the moment of 

one gradient while satisfying the conditions that both the zeroth and first moment of the readout to be zero 

at the echo. We hypothesized that radial sampling MRA would be beneficial on two counts over 

conventional Cartesian MRA for fetal applications; (a) Improved image quality i.e. decreased sensitivity 

to fetal motion and (b) Ability to perform high-resolution imaging. 

 Mode 

Number 
of 
spokes 
(over 
3600) 

Partial 
Fourier 

TE 
(ms) 

TR 
(ms) 

Reconstructed 
Resolution (mm3) 

FA 
(degree) 

BW 
(Hz/pixel) 

# 
Slices 

Radial 
MRA 2D 361 33% 5.3 22 (0.4-0.6) x (0.4-

0.6) x 2 50 240-300 26-
64 

Table 5.2: Sequence parameters for 2D fetal radial MRA. 

.  

Figure 5.7: Comparison of radial (B) vs. Cartesian (A) sampling for fetal angiography. The data 

corruption from motion, which appears as streaks (green arrows) and broken vessels in the left image 

(Cartesian) are absent in the image on the right (Radial) taken from a fetus in third trimester. Fetal 

internal carotids (red arrowhead), jugular (yellow arrowhead) and the basilar artery (small white arrow) 

are clearly seen in the radial MRA image.  
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The previously described Cartesian TOF – MRA sequence was modified to readout data radially. 

The duration of each slice was 4.5- 5.5 sec depending on the resolution and FOV used. The sequence 

parameters are summarized in the table 5.2. The images were reconstructed by performing gridding 

(http://mrsrl.stanford.edu/~brian/gridding/) and inverse Fourier transform. The added advantage of using 

radial sampling is the ability to do flow-compensation in all dimensions without additional time. With 

long TRs used in fetal angiography for reduced SAR, multi-echo readouts were also possible, allowing 

for T2* quantification of fetal blood at the same time. Fetal MRI was performed on a subset of the cases 

where there was moderate to no motion artifacts seen on the Cartesian MRA datasets.  

 

 

Figure 5.8: MIPS of two fetuses; conventional Cartesian MRA with TE = 4.92ms (A,C) alongside their 

corresponding radial MRA (B,D) with TE = 5.33ms, Note the edges of the vessel lumen (yellow 

arrowhead), the continuity of the umbilical vein (green arrowhead) and the inferior Venacava (red 

arrowhead), however the Cartesian data showed the neck vessel more distinctly. Please note the fetus 

could have changed position between the two successive scans. Gestational Age of A,B: 27 weeks and 6 

days; Of C,D 26 weeks 6 days 
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5.5.1 Preliminary results: In cases of no fetal motion, particularly in the third trimester, the radial-MRAs 

were as good as those obtained from regular Cartesian MRA (Figure 5.7 & 5.9), however, in cases of 

moderate fetal motion, the rMRAs performed much better (Figure 5.8). The advantages of radial were 

more evident when maximum intensity projections were made to visualize the whole volume. The 

following images highlight the potential for radial sampling in fetal angiographic applications 

5.5.2 Discussion: As demonstrated in the above images, radially sampled data provided the touted 

advantage of motion-insensitivity in fetal angiography. The long TR allowed (for SAR considerations) 

fully FC multi-echo readouts that offers: (a) T2* mapping of the fetal vasculature (fig 5.9 a,b); b) 

enhancement of the  SNR of the first echo through data averaging (figure 5.9.c); and (c) using the phase 

from the second echo for MR susceptometry However, the challenges with trajectory corrections and 

reconstructions impede the rapid acceptance of such non-conventional approaches for applications in 

clinic. Due to the nature of the coverage of the k-space, any small deviations in the gradient timings or 

amplitudes results in the spoke not passing thorough the center of k-space. This can result in signal voids 

or mis-registration artifacts while reconstructing the image. These effects can often be detrimental to the 

quality of the final images making it non-diagnostic. This effect is further enhanced at higher echo times 

due to influences of local ΔB.  Another potential concern is the relative lower SNR and higher time for 

polar sampling when compared to corresponding to Cartesian imaging. This can be easily offset by use of 

appropriate filtering, accelerating techniques like parallel imaging (radial-GRAPPA, Espirit)[207], partial 

Fourier[208] and compressed sensing[209]. This feasibility study concludes that, the radial sampling 

scheme holds great promise for fetal angiography applications. Future works that can incorporate flow 

compensated multi-spoke readout within the same TR could further accelerate such acquisitions, bringing 

the acquisition time under 2 or 3 seconds per slice, with the ability for simultaneous T2* quantification. 
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Figure 5.9: MIPS (10 mm) of the dual echo radial MRA with TE = 5.33ms (A) and TE = 10.33ms (B), 

alongside the averaged image of the two echos (C) and conventional Cartesian MRA (TE = 4.92ms) (D). 

Fetal heart (orange arrowhead), fetal aorta (blue arrowhead) and umbilical vein (green arrowhead), are 

clearly seen. The dual echo data (A,B) can be used to estimate the T2* map. Gestational Age: 27 weeks 

and 5 days 
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CHAPTER 6: SUMMARY AND FUTURE DIRECTIONS 

The development of MRI methods for imaging the feto-placental vasculature and blood flow was 

the major focus of this thesis. To address this, Cartesian 2D TOF imaging sequence was optimized and a 

new 2D TOF sequence with polar sampling was developed and applied successfully on the fetus. A 

simple non-gated Phase-Contrast (ng-PC) was also optimized and applied. The simulations indicated that 

the quantified flow measurements have an error of the order of ~10%. All this was done on a 3.0T 

research MRI setting. This has more relevance than ever before as more and more research sites and 

hospitals are migrating to 3.0T MRI for all their fetal MR scans.      

 While, all the methods and sequences discussed herein have been validated using simulations and 

in normal pregnant volunteers, the current studies have not been extended to clinical subjects. This might 

need further investigation and simplification as it needs to be used by clinicians or MR technologists 

without specialization in fetal imaging. The applications of these approaches go beyond fetal imaging and 

have great potential in general abdominal imaging, where patient conditions preclude breath-holds or use 

of any exogenous contrast agents and in pediatric and patients having motion artifacts. The current work 

in most cases should be seen as first step towards establishment of standardized protocols in clinical 

settings. Techniques for acceleration like compressed sensing [209, 210] and constrained reconstruction 

have been well studied and can be easily incorporated into the sequences discussed above for fetal 

applications.           

 Moreover, the future works should also focus on identifying subject specific localized SAR or 

temperature maps in real time for negating any concerns of safety. Such an approach is also necessary for 

optimizing sequences by having a better estimate of boundary conditions for RF based temperature 

increase. While many recent publications have highlighted the feasibility of such approaches, they should 

further be explored. Further the biological effects of exposure of fetus to different EM waves at different 

gestational ages must be understood. But the advantage of moving to higher fields opens up the ability to 

perform functional imaging and use other advanced sequences which are require high baseline SNR. The 

parameters used in our studies can be used by other groups when they migrate to 3.0T for their fetal 
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imaging workflow.          

 Here we have developed a non-contrast PC MRI sequence to measure the average blood flow. 

But this can be readily extended to perform time resolved imaging using techniques like pseudo or 

retrospective gating. However, even in its current form it has many application in diagnosis and for 

measuring the average flow [211]. Particularly combining this approach and a radial/Spiral sampling 

scheme, the amplitude/phase of the central point can be used to bin the data according to the different 

cardiac phases [212-214]. A case of immediate applications could be to combine the PCMRI 

measurements with other MRI based oxygenation/perfusion measurements to study the metabolic oxygen 

requirements of the fetus or more specifically within a fetal organ (e.g. Brain [215]). The availability of 

tools to perform such measurements enables us to diagnosis incidents of hypo-oxygenation/ischemic 

insults and the ability to test novel interventional approaches.      

 To the best of our knowledge, this is the first study demonstrating the abilty to perform non-

contrast MRA in fetus in-utero. Not just in the fetus this method has also been shown to be useful in 

imaging the placental vasculature. This enables us to study the vasculature in the whole fetus, which 

otherwise is not possible with US. This now enables us to improve our other MRI sequences which 

require the knowledge of the spatial orientation of the vessels. The sequence has also been extended to 

projection reconstruction, the benefits of which have been briefly demonstrated. There is greater potential 

for such approaches given the ease with which they can be combined with CS based approaches.  

Specifically for fetal imaging the requirement for a longer TR to reduce SAR might be beneficial for the 

development of RARE like approaches for acquiring multiple lines within a TR even with polar sampling. 

 In conclusion, the field of inutero fetal imaging is still developing and there is a greater role for 

quantitative imaging in the diagnosis and management of perinatal conditions. The studies and results 

presented here provide excellent tools to develop other MRI sequences or to apply it for diagnostic 

applications. 
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APPENDIX: LOCAL SAR ESTIMATION AND TEMPERATURE INCREASE 

Chapter two of this report described the possibility of performing diagnostic quality, high 

resolution MRI of the fetus at 3.0T all the while maintaining a specific absorption rate (SAR) levels lower 

than those prescribed in the regulations and lower than the levels currently being used at 1.5T. It is to be 

noted and acknowledged that the SAR values reported by the manufacturers are not the true SAR but only 

an estimation, which is usually a conservative one (i.e., overestimated) [216]. The regulatory limits for RF 

exposure are described only in terms of whole body SAR and are summarized in table A.1 [217]. These 

numbers are specified for adults; however for fetal imaging no such limits are prescribed; only 

recommendations are made. The ICNIRP (International commission on non-ionizing radiation protection) 

alone recommends a specific limit on rise of temperature to less than 0.50C and the temperature of any 

fetal organ/tissue to be below 380C [218, 219]. Given the new improvements in RF excitation methods 

such as parallel transmission and simultaneous multislice excitation (SMS) pulses, sequences with 

preparatory RF pulses and the migration to higher field strengths (3.0T for fetal and 7.0T for adult), SAR 

needs to be looked at carefully. A conservative single valued global average would not be an accurate 

representation of the energy deposition. And the need for an individualized local SAR measurement 

attains greater importance from a safety perspective and in the context of maximizing advantages of the 

high fields.  

Regulatory 
Authority 

Limit Whole Body 
Average 

Heat Average Head, Trunk 
Local SAR 

Extremities 
Local 

IEC               
(6 Min Avg) 

Normal                               
(All patients) 

2 W/Kg 3.2 W/Kg 10 W/Kg 20 W/Kg 

First level             
(Supervised) 

4 W/Kg 3.2 W/Kg 10 W/Kg 20 W/Kg 

Second Level             
(Research; IRB approval) 

4 W/kg > 3.2 W/Kg > 10 W/Kg > 20 W/Kg 

Localized Heating limit 390 C in 10g 
tissue 

380 C in 10g 
tissue 

 400 C in 10g 

FDA 4 W/Kg           
(15 min) 

3 W/Kg          
(10 min) 

8 W/Kg in 1g 
(10 min) 

12 W/Kg in 1g 
(5 min) 

Table A.1: IEC (International electrotechnical commission; Europe) and   FDA (Food and drug 

administration; USA) guidelines on SAR and heating in human studies.[217] IRB – Institutional review 

board 
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The true region by region energy deposition and the heating of the tissue depends on multiple 

aspects including the power deposited, frequency, orientation of the 𝐸�⃗  and 𝐵�⃗  fields, dimensions and 

orientation of the object being imaged relative to the RF transmit configuration [220]. Many research 

groups have looked at the local SAR and heating in pregnant women model incorporating the properties 

of 35 or more tissues. The true estimation of SAR for individual subjects being scanned is highly 

impractical as it depends on many parameters including the location of the placenta and fetus within the 

abdominal region [221]. However it is important to note that in general the SAR is higher in amniotic 

fluid and muscle tissue due to higher electrical conductivity [222]. While there are no hard restrictions on 

the heating due to MR RF exposure, ICNIRP suggests that there would be no fetal damage if the 

temperature of the fetus is always below 380 and the rise in maternal body temperature is below 0.50 C 

during the entire scan and recommends extreme caution when imaging fetus in 4T and greater [218]. 

 Numerical simulations have been performed by various groups to see the compliance of the above 

two conditions for normal operating mode of the magnets at a SAR (Whole body average) <2 W/kg. 

While JW hand et al [133] report that the maximum local fetal temperature of 380, could be possible 

within 7.5 minutes of scan, Kikuchi et al [222] report that a 0.5C rise in fetal temperature would require 

about 47 min of scanning at 2 W/Kg (fig. A.1). The difference in these results and some of the other 

simulation studies is because they use different pregnant women models, different set of coil 

configurations, and patient locations within the bore, inclusion or the exclusion of sweating/ bioheat 

transfer models etc. Animal studies (pregnant pig) using fiber optic temperature sensors inserted in the 

uterus and within different sections of the fetus [223, 224]. The study by Cannie et. al. reported that there 

was less than 10 C rise in temperature when imaging for 30 min even using high SAR protocols [223] but 

a temperature increase of 2.50 C was possible on scans lasting greater than an hour and using high SAR 

sequences. On the other hand, an older study found no heating while using standard HASTE 

sequence[224]. These experimental and simulation studies suggest that with maternal whole body SAR < 

2 W/kg, there is no major complications to the fetus if the scan time is limited to 30 min. As 
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recommended by Gowland et al, [225], following these minor points could further reduce any heating due 

to RF exposure.   

A. Fetal MRI scans should only be carried under the normal operation mode SAR (Whole body) < 

2W/Kg 

B. High SAR a low SAR sequences must be interspersed.  

C. Ambient scanner environment  

(1) bore temperature around 240C  

(2) Good air flow/ventilation  

(3) humidity ~ 60%  

(4) No blankets on the patient  

                            

Figure A.1: human tissue model used in pregnancy to study the SAR and temperature distribution. 

Adopted from [222]. 

More recent studies have tried to develop quick methods for generation of individualized regional 

SAR measurements [226, 227]. These approaches are based on rapid tissue segmentation/registration. The 

conductivity of the target tissues are adopted from a look up table and a modified Maxwell’s equation is 

used to solve for the voxel–by-voxel energy distribution maps. Once a nominal map is generated it can be 

scaled to calculate local SAR for different sequence parameters, RF pulse shapes and times. While there 
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have been demonstrations of the approach in abdominal imaging (for cervical imaging) no clinical 

implementations of the same have been reported. Another promising method to identify hot-spots and 

regional temperature increases using principles of frequency shifts, thermo acoustic imaging often 

collectively classified as MR thermometry have also been proposed [228-230].  These approaches might 

in future be able to predict patient specific local SAR and allow us to exploit the MRI sequences, within 

safety limits for better image quality. 
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Fetal magnetic resonance imaging  (MRI) in recent times has become a well-established adjunct 

to ultrasound (US) in routine clinical prenatal care and diagnostics. The majority of fetal MRI is restricted 

to T2-weighted scans, where the diagnosis is based on the appearance of normal and abnormal tissue. 

Although there have been many advancements in MRI and a plethora of sequences, that probe different 

anatomical and different physiological process, the adaptation of these in fetal imaging has been rather 

slow. Many of these can extract quantitative parameters that can throw light on the underlying tissue’s 

normal/patho-physiology. But the use of such quantitative MRI methods has been extremely limited in 

fetal imaging due to its unique and dynamic physiological milieu that pose several technical challenges 

including low signal to noise and/or resolution, artifacts associated with abdominal imaging and most 

importantly fetal motion. These limitations are expected to be overcome by (a) optimizing and (b) 

developing novel MR imaging sequences, both of which constitute the primary aim of my work.  

 This work develops a framework that allows for vascular imaging in the fetus and placenta. This 

includes both qualitative vascular imaging and blood flow quantification. Towards this, three broad 

directions were explored (a) Moving to higher field imaging, while optimizing parameters for low energy 

deposition and (b) application of non-gated phase contrast MRI and (c) optimization of conventional 

time-of-flight angiography for fetal applications.  
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