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1

CHAPTER 1 INTRODUCTION
In order to evolve object-oriented code, developers must understand its run-time structure

in terms of objects and their relations, as well as they must understand the code structure

dealing with source files, classes and packages. For object-oriented code, it is hard to under-

stand the run-time structure from looking at the code. Moreover, snapshots of runtime heaps

do not convey design intent, since they reflect one execution, not all possible ones. Thus,

abstractions of the run-time structure such as points-to graphs or abstract object graphs can

be highly complementary to diagrams of the code structure such as class diagrams as well as

views of runtime heaps [24]. This dissertation is about statically extracted abstractions, so

we use object to mean abstract object rather than runtime object and object graph to mean

abstract object graph.

Unfortunately, tools for object graphs are still immature, compared to tools for the code

structure. One reason is that extracting these object graphs from code is difficult. Ideally,

the object graph must be sound and show all possible objects and possible communication

between objects. Achieving soundness requires static analysis which, without additional

information, extracts large, non-hierarchical object graphs that do not convey much ab-

straction.

One way to make object graphs convey abstraction is to use object hierarchy, where

important objects of the application appear near the top of the hierarchy and data structures

are further down. One way to supply information about object hierarchy is to use qualifiers

that implement several type systems with varying degrees of expressiveness, which have

been proposed by the programming languages community over the past 15 years [15, 18, 11].

However, until recent work on inference of ownership type qualifiers [21, 17, 37], developers

had to supply these qualifiers, which is a significant burden, and is one of the reasons

that ownership type systems have not been adopted widely. Moreover, it is hard for most

developers, from looking at the code, to decide what type qualifiers to add, because it is hard
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to visualize the object structure that the qualifiers describe. In fact, most research papers

that describe ownership type systems include several diagrams, typically hand-drawn, to

clarify the object structures. When using ownership type systems, developers must add

most of the qualifiers upfront, before they can visualize the object graph. Then, based on

the visualization, they refine the qualifiers. In other words, to add precise qualifiers that

express design intent, the developers rely on a depiction or a mental model of the object

graph. Even when not using object graphs, the inference must not be only batch-oriented:

developers must be able to guide it, for example, by adding some qualifiers in the code and

letting the analysis infer the remaining ones. Without any developer guidance, a batch-

oriented approach often infers abstractions that developers do not recognize. This guidance,

however, must not involve a significant manual burden.

By comparison, many tools to extract diagrams of the code structure [2] allow developers

to drag-and-drop classes and interfaces onto a canvas, choose the relationships (inheritance,

association, etc.) to include, and get a diagram. We incorporate the same insight and

make the process of extracting hierarchical object graphs more interactive without requiring

developers to switch between adding qualifiers to the code and extracting object graphs.

1.1 Applications of Object Graphs

In this section we discuss some application of object graphs.

Program comprehension. Diagrams of software structure are useful during software

evolution. Class diagrams show the static code structure. Object graphs approximate the

runtime structure in terms of objects. So giving developers these complementary diagrams

is likely to help with program comprehension. Ammar and Abi-Antoun [13] conduct a user

study with developers to evaluate the effectiveness of object graphs. In the user study, one

group of developers are given only the class diagrams, and another group are given both

class diagrams and object graphs. The results of the study show that when developers

have both types of diagrams, they perform code modification tasks more effectively, e.g.,

by browsing less irrelevant code. Object graphs also have pedagogical applications to help
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novice developers understand some structural object-oriented design patterns and explain

shallow or deep cloning [8].

Reasoning about security. Another application of object graphs is to reason about secu-

rity at a higher level of abstraction than lines of code. Vanciu and Abi-Antoun [34] propose

an approach to find architectural flaws in the code, by assigning security properties to ob-

jects then writing constraints on the object graph. For example, developers set the property

of an object that contains confidential information (like a password) to be true. They write

constraints or build queries [9] to search the object graph to ensure that confidential infor-

mation does not flow to an object that is set to be untrusted. Moreover, using the same

idea, the developers analyze the possibility of tampering, by ensuring tainted information

does not flow to trusted objects.

Conformance analysis. An object graph can be abstracted into a runtime architecture.

Using a conformance analysis, architects can compare the as-built architecture extracted from

the code, to a target, documented architecture and measure their structural conformance.

This conformance analysis can find interesting architectural differences between the as-built

system and its target architecture such as when the documented diagram is missing important

communication [5].

Impact analysis. Another application of object graphs is for impact analysis, which is

estimating the changes of the code for a change request [14]. A static analysis may mine

a hierarchical object graph and its edges to rank dependencies such as the most important

classes related to a class, or the important class behind an interface [10]. Using statically

extracted dependencies is usually more complicated for object oriented programs due to

sub-classing, interfaces, aliasing, collections among others. Using hierarchical object graphs

during impact analysis leads to exploring less irrelevant code, since it traverses more precise

dependencies compared to dependencies from the program’s abstract syntax tree.

We list just a few of the possible applications of object graphs. There are others, dealing

with distributing nodes [30]. The main reason for the lack of adoption of object graphs is the
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immaturity of the today’s tools. Prior to this work, extracting meaningful object graphs is

hard and overwhelming for developers. This dissertation addresses the problem of extracting

object graphs by proposing an approach that enables developers to automatically extract

an object graph, or to refine an initial flat object graph to further to express their design

intent.

1.2 Benefits of Ownership Qualifiers in the Code

Although adding ownership qualifiers to the code manually is overwhelming for develop-

ers, having them in the code has its own benefits. Ownership qualifiers can improve code

quality, by identifying cases of unwanted aliasing, or exposing shallow versus deep cloning [8].

Using ownership qualifiers, developers can express their design intent, by identifying strictly

encapsulated objects, or objects that are logically contained in the other objects [4]. Also

they can make objects peers or make objects access each other through ownership param-

eters. Another benefit of ownership qualifiers in the code is to make more explicit in the

implementation the design patterns in use [27]. However, not all ownership types are flexible

enough to express the common design patterns. For example, the Observer design pattern

is challenging to express [29].

1.3 Motivation: Refining Object Graphs Without

Changing Qualifiers

Today, the most significant limitation of extracting object graphs is the effort involved in

adding qualifiers, measured at around 1 hour/KLOC [6]. The effort is due to the high over-

head associated with inserting ownership qualifiers into the code, then refining the qualifiers

both to get them to type-check, and to ensure that the qualifiers capture hierarchy in a way

such that the extracted object graph reflects a global hierarchy that matches the developers’

design intent.

A related issue is bootstrapping the process of extracting an object graph. Today, de-

velopers add most of the qualifiers, type-check the qualifiers and fix all of the high-priority



5

owned

drawing:

BoardDrawing

propMap:
HashMapX

(a) Strict encapsulation (owned-by).

drawing:

BoardDrawing

figureMap:
HashMap

PD

(b) Logical containment (part-of).
Figure 1.1: Two ways to create hierarchy in an object graph. Box nesting indicates ownership or containment.
The object propMap is in the owned domain of the object drawing, and inaccessible from the outside. The
object figureMap is inside the domain PD and accessible to the outside.

warnings produced by the type-checker before they can extract an initial object graph. Only

then, based on visualizing the extracted object graph, they iterate the process of refining

the qualifiers. In other words, to add better qualifiers, the developers rely on the knowledge

provided by the object graph.

Another issue is that the process of refining the extracted object graph is currently some-

what awkward: developers must notice where the object graph does not match their design

intent and identify the cases where there are incorrect qualifiers in the code, rather than a

mismatch between the as-implemented system and the developer’s design intent. If the issue

is in the qualifiers, the developers have to change the qualifiers consistently to reflect the

correct design intent, then re-run the static analysis to extract the object graph.

Today, these issues make the process of extracting and refining object graphs tedious

and time-consuming, and make object graphs less useful to developers. This dissertation

addresses these issues by extracting an initial object graph automatically, then allowing

developers to directly and interactively refine the extracted object graph to make it convey

their design intent, while preserving the object graph soundness.
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1.4 Using Abstraction by Hierarchy in Object

Graphs

For anything but the smallest systems, flat object graphs become very large, and as

result, do not convey design intent. One way to make a large graph manageable is to

collapse some nodes under other nodes. One way to do so is to use graph manipulation or

transformation [26]. Another way to collapse one object under another is to create object

hierarchy, where one object is the child of another. Instead of letting an object have child

objects directly, we introduce an extra level of indirection, a domain, which is a named group

of objects. So one object has one or more domains and each domain has one or more objects.

Two types of domains express two forms of design intent: 1. strict encapsulation; or 2. logical

containment.

Strict encapsulation (owned-by). An object o1 dominates object o2 if all paths from

roots in the heap (typically a distinguished object and static fields) to o2 go through o1 [15].

In this scenario, o2 is strictly encapsulated in the abstraction represented by o1, and so we

show o2 as owned-by o1, i.e., o2 is in the private domain owned of o1. For example, the

object propMap of type HashMap is strictly encapsulated in the object of type BoardDrawing

(Fig. 1.1a). We depict a private domain with a thick, dashed border. Many ownership type

systems enforce this notion of ownership, also called owner-as-dominator. Moreover, such

a property can be inferred fully automatically. An object is either encapsulated or it is

not.

Strict encapsulation, however, is too inflexible to make an object graph more hierarchical,

after the fact, for code that was written without strict ownership in mind. When developers

make an object owned by another, the object becomes inaccessible to other objects that still

need to access it. As a result, if the developers do not change the code, they often have to

leave the object at the same hierarchy level as other objects, i.e., more objects will be peers

and the object graph is less hierarchical than intended. To make the graph more hierarchical,
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developers need object hierarchy with fewer restrictions.

Logical containment (part-of). Another type of object hierarchy is logical containment.

Sometimes, one object o1 is conceptually part-of another object o2, even if o1 is not owned-by

o2. For example, figureMap of type HashMap is part-of the BoardDrawing object by being in

its public domain (Fig. 1.1b). We depict a public domain with a thin, dashed border.

In general, it is hard to infer such a relationship from the code automatically, since

it is by definition conceptual and reflects design intent rather than any code relationship.

Object creation can often hint at logical containment, but not necessarily, as is the case with

factory methods. We choose an underlying ownership type system that can express logical

containment, Ownership Domains [11].

Using domain hierarchy to express design intent of object-oriented programs.

When we say that object graphs express design intent, they have some of the following

characteristics:

• They show each strictly encapsulated object inside a thick bordered domain inside its

parent; such an object is not intended to be used, directly accessed, or mutated from

outside of the object’s boundary in order to maintain some important invariants, e.g.,

clients code cannot nullify the head of a list object (Fig. 1.1a);

• They show each logically contained object as grouped together with its parent; such an

object is considered part of the object’s public interface. For example, a Node object

is part-of a Graph object, but it is intended to be accessed freely. The list of all Node

objects needs to be encapsulated, however, to ensure the Node objects are properly

disposed when the Graph object is disposed.

• They show top-level domains that express some architectural tiers such as Model and

View;

• They do not show objects that are data structures or other implementation details at

the top-level; we call these objects low-level objects;

• They show objects from the application domain at the top level; we call these objects
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architecturally relevant;

• They promote both high-level understanding (when all top-level objects are collapsed,

as in Fig. 1.4e) as well as details (when selected objects are expanded, as in Fig. 1.4d),

due to the benefit of having a hierarchical representation, which allows expanding or

collapsing object substructures

• They help show some structural design patterns compared to looking at the code. For

example, when an object has a collection of other objects and the collection object

points back to the parent object, it means there is the composite pattern, or when

an object has a collection of objects that point to other objects, this could hint at

an Observer pattern. An example of the composite design pattern can be seen in the

JDepend subject system (Section 5.3), and in Fig. 5.2, the object of type JavaPackage

points to a collection object of the same type, and the collection object points to the

object of type JavaPackage. The object graph tools do not automatically highlight

these patterns as their implementation may be subtle. The developers are also free to

annotate the object graphs to highlight additional objects or edges of interest.

Thus, object graphs hold very relevant information to developers to improve their program

comprehension, and make explicit several key facts that are implicit in the code. Therefore,

object graph can directly help developers evolve the software in a way that maintains the

invariants of the code, as confirmed by Ammar and Abi-Antoun [13]. This dissertation

advances the state of the art for extracting and refining such object graphs. Our evaluation

(Chapter 5) will show that the object graphs that our approach extracts from real code do

in fact exhibit some of the above characteristics.

1.5 Ownership Type Qualifiers

One way to extract object graphs that convey design intent by hierarchy is to use owner-

ship types. Using ownership types, developers can add additional information about object

hierarchy in the code. There are different variations of ownership types. The key factor

that differentiates various ownership type systems is the ownership context that they define,
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and the rules about accessing objects in the ownership context. We list the three major

variations of ownership types.

• Ownership Types (OT): Defines the ownership context to be an object [15]. There-

fore, objects can be encapsulated inside other objects. OT implements the owner-as-

dominator ownership model where an object is encapsulated or dominated by another

object, i.e., all accesses to the dominated object must go through its dominator.

• Universe Types (UT): The ownership context is also an object, so an object can

be in the ownership context of another object [18]. UT implements owner-as-modifier

ownership model, which means the write access to the child object is restricted to its

owner, but the other objects from outside of the context of the owner have read-only

access to the child object without having to go through its dominator.

• Ownership Domains (OD): An ownership context is called domain, which is a

named group of objects. Every object is a member of a single domain. There is a

global domain with the reserved name shared. Moreover, each object can declare one

or more domains to hold to its internal objects. A domain can be declared public or

private. The private domains implement the owner-as-dominator ownership model.

The public domains express part-of relation between objects. There is a reserved

private domain for each object that is called owned. For any domain d declared on

a class C, any two objects n and n′ of the same class C, n.d and n′.d are distinct for

distinct n and n′. There are domain links that define permissions to access between

objects of different domains as explicit policy specifications. Having permission to

access an object automatically grants access to its public domains. Objects that are

inside the owned domain of an object can be accessed only by that object or by the

objects that are in the sibling public domains. Other than the domain links, there are

some implicit policy specifications such as an object has permission to access other

objects in the same domain, or an object has permission to access to the objects in its

declared domains. To make inference tractable, we simplify Ownership Domains into a
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system we call Simple Ownership Domains (SOD) which we discuss later (Section 3.1).

1.6 Qualifiers vs. Object Graphs

To express object hierarchy, developers can add ownership type qualifiers directly to the

code. However, adding qualifiers manually imposes a significant burden since each reference

of a non-primitive type in the code needs a qualifier in order to type-check. Therefore,

semi-automated or automated approaches for inferring these qualifiers are needed.

It is also hard to expect developers to directly understand the object structures from

looking at code with qualifiers. Almost every single research paper on ownership types uses

manually drawn object graphs to explain the object structure the qualifiers describe.

To illustrate how hard it is to understand what qualifiers to add, consider code (Fig. 1.2)

with Ownership Domains qualifiers. For each object creation, different qualifiers are possible.

At line 4, the object created at the object creation expression is in the same domain as the

object of type C1 (the declaring class). At line 5, the object is in the owned domain, and

at line 6, the object is in the PD domain of the object of type C1. The object that is

created at line 7 is in the domain shared, which is the global context. Each combination of

actual domains produces a different object graph (Fig. 1.2). By showing developers object

graphs extracted from the qualifiers and allowing them to edit the object graph directly,

our WYSIWYG approach enables developers to choose qualifiers that express their design

intent.

1.7 Key Idea: Interactive Refinement

In this section, we propose an approach, OOGRE (Ownership Object Graph Refinement

Engine), for the interactive refinement of object graphs where developers do not directly

change the qualifiers in the code.

To unclutter an object graph, developers can delete objects and their edges, but this makes

the object graph unsound, since it no longer reflects all objects and their communication.

Using OOGRE, developers use abstraction by hierarchy and move an object they no longer
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1class C1<owner, p> { // domain parameters

2private domain owned; // private domain

3public domain PD; // public domain

4obj = new C<owner, p>(); // Make peer of this

5obj = new C<owned, p>(); // Make owned-by this

6obj = new C<PD, p>(); // Make part-of this

7obj = new C<shared, p>(); // Place inside shared

8}

c1:C1

owned

obj:C

c1:C1

PD

obj:C

shared

obj:C

An actual domain

obj:C

c1:C1

obj = new

C<owner, p>()

obj = new

C<owned, p>()

obj = new

C<PD, p>()

obj = new

C<shared, p>()
Figure 1.2: For the same code, different qualifiers are possible and produce different object graphs.

wish to see into a domain of another object. The object graph shows edges to the parent of

the lowered object to account for any communication with the hidden object.

Developers interactively manipulate an object graph that is a sound abstraction of the

runtime structure using a refinement, which changes the hierarchy relation between two

objects. The following refinements are possible (Fig. 1.3):

• MakeOwnedBy: make an object owned by another by moving it into a private do-

main;

• MakePartOf: make an object conceptually part of another by moving it into a public

domain;

• MakePeerWith: make an object peer with another object;

• MakeShared: make an object globally aliased by moving it into the domain shared;

• SplitUp: this composite refinement splits a merged object and moves the split object

into another domain using one of four above types of refinements.

Our approach supports the above refinements, based on our experience manually adding

qualifiers and refining object graphs on 100KLOC. These refined object graphs were used

for conformance analysis, compared to as-designed architectural diagrams [5, 33], shown to
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obj3

D2

shared

obj1

obj2

PD
obj1

shared

obj1

obj2

owned
obj1

MakeOwnedBy(obj1, obj2)

MakePartOf(obj1, obj2)

obj1

obj2

owned

obj2

MakePeerWith(obj1, obj2)

shared

obj1

obj2

PD
obj1

MakeShared(obj1)

shared

shared

obj

obj3

D1

D2

obj1

obj2

SplitUp(obj,obj1,D1)

shared

Figure 1.3: Five possible refinements, illustrated graphically.

participants in a user study [13], and used to reason about security [7, 34].

Supporting the above refinements requires supporting certain qualifiers in the type system

and defining a ranking among them. We discuss these modifiers later (Section 3.1) to place

them in in the context of closely related work.

If the code supports the requested refinement, an inference analysis infers the correspond-

ing qualifiers that type-check, and OOGRE extracts an updated object graph. We say this

refinement is done. Otherwise, the refinement is skipped, the qualifiers in the code and the

object graph are left unchanged. Based on the inferred qualifiers, an extraction analysis [5]

extracts the refined object graph that the developers manipulate further. The ownership

type system provides mathematical guarantees about the soundness of the inferred quali-

fiers and of the object graph. If the qualifiers type-check, the object graph is sound [5].

This dissertation reuses the extraction analysis by Vanciu [32] and Abi-Antoun [3], and con-

tributes the inference analysis, as well as the integrated approach that combines extraction

and inference.

1.8 Illustrative Example

We illustrate the refinement of an object graph using MicroAphyds, a tiny example taken

from a larger application, Aphyds [20]. In Fig. 1.4, the edges are points-to edges.
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(c) Step 3: Split objects to avoid excessive merging.

SHARED

owned

owned

PD

owned

owned

viewer:
Viewer

net:
Net

node:
Node

circuit:
Circuitplacer:

Placer

nodes:
Vector<Node>

nets:
Vector<Net>

Sources:
Vector<Terminal>

term:
Terminal

Inputs:
Vector<Terminal>root:

Main

(d) Step 4: Pushing objects into PD of circuit.

 SHARED

owned

viewer:
Viewer

circuit(+):
Circuit

root:
Main

placer:
Placer

(e) Step 5: Collapsing circuit.

Figure 1.4: MicroAphyds: refining a hierarchical object graph. Hierarchy enables collapsing several objects
underneath the object of type Circuit.
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Extracting a flat object graph. An initial rough object graph consists of a flat graph that

is readily extracted without any developer input, by placing all the objects in the domain

shared (Fig. 1.4a). While such a flat graph may be useful if it has a small number of

objects, flat graphs can become too cluttered for larger systems. In a flat graph, it is hard

to visually find an object or to follow the edges between different objects. In contrast, in a

hierarchical graph, developers can collapse objects, and reduce the number of visible objects,

as needed.

Another problem of placing objects in the same domain is that it leads the extraction

analysis to excessively merge objects of the same type, which makes the graph less precise.

For example, in the flat graph, one object of type Vector<Terminal> represents two object

creation expressions in the code, which express conceptually different design intent.

Expressing strict encapsulation. Code quality tools such as FindBugs warn when an

object returns an alias to a private field to other objects that may mutate it, a code quality

issue called “representation exposure”. Ownership type qualifiers can express and enforce

this design intent and soundly avoid the representation exposure, even if occurs through

intermediate assignments or method calls. In MicroAphyds, the developers note that the

Circuit class has two Vector objects, and those objects should not be directly accessible to

outside objects, which may mutate them and invalidate data structure invariants. As a result,

they move the objects nodes:Vector<Node> and nets:Vector<Net> into the private domain

owned of circuit:Circuit using two separate MakeOwnedBy refinements (Fig. 1.4b). If

the code does not suffer from representation exposure, the refinement succeeds. If not, the

refinement fails, with a message indicating the expression with the unexpected aliasing. For

the refinement to be done, developers have to fix the code (i.e., remove the representation

exposure by returning a copy) and re-attempt the refinement.

Splitting objects. The analysis that extracts the object graph merges runtime objects of

the same type in the same domain into one object. If an object represents more than one

object creation expression in the code, the developers are able to split the object by moving
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1class Circuit<owner, p> {

2private domain owned;

3public domain PD;

4Vector<Node><owned,p> nodes = new ...;

5Vector<Net><owned,p> nets = new ...;

6Node<p,p> node = new Node();

7Net<p,p> net = new Net();

8Terminal<p,p> term = new Terminal();

9

10void addNode(Node<p,p> nd) {

11this.nodes.add(nd);

12}

13void addNet(Net<p,p> net) {

14this.nets.add(net);

15}

16}

(a) Qualifiers that correspond to Step 3.

class Circuit<owner, p> {

private domain owned;

public domain PD;

Vector<Node><owned,PD> nodes = new ...;

Vector<Net><owned,PD> nets = new ...;

Node<PD,p> node = new Node();

Net<PD,p> net = new Net();

Terminal<PD,p> term = new Terminal();

void addNode(Node<PD,p> nd) {

this.nodes.add(nd);

}

void addNet(Net<PD,p> net) {

this.nets.add(net);

}

}

(b) Qualifiers that correspond to Step 4.
Figure 1.5: The qualifiers behind the object graph at each step of refinement.

one of the objects that were merged in a different domain. In MicroAphyds, the developers

split the object of type Vector<Terminal> into two objects of the same type and move one of

them into the domain owned of node:Node as one refinement. Using another MakeOwnedBy,

they move sources:Vector<Terminal> into owned of net:Net (Fig. 1.4c).

Expressing logical containment. Next, developers express that the objects of types Node,

Net and Terminal are logically part of circuit:Circuit, so they move them into the public

domain PD of circuit:Circuit (Fig. 1.4d).

The key idea is that logically contained objects are still accessible to the objects that have

access to the parent. For example, the highlighted edges (appear as thick/blue) show that

the Viewer object accesses the objects of type Node and Net that are part of Circuit, i.e.,

inside its public domain. With this hierarchy, developers can collapse the Circuit object,

as can be seen in Fig 1.4e, thus hiding the objects it contains in its domains, and reducing

the number of visible objects in the graph. The (+) on an object label indicates a collapsed

object sub-structure.
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1.9 Common Definitions

To clarify our contributions in this work, we reuse some of the terminology defined by

Huang et al. [21]:

Actual Modifier: A member of the set of actual domains or actuals that can be used in

SOD, namely unique, lent, owned, n.PD, owner, p and shared;

Qualifier: A qualifier is a pair of modifiers <p, q>;

Variable: A local variable, parameter, return, object creation, or field that requires a qual-

ifier, i.e., that is not of a primitive type;

Maximal Qualifier: The highest ranked qualifier in the set of qualifiers of a variable that

type-checks the variable’s expressions;

Typing: Given a program P and an ownership type system F with a set of possible qualifiers

QF , a typing T maps each variable in P to a qualifier in QF . A typing is valid for P

in F if it renders P well-typed in F ;

Maximal Typing: A typing that maps each variable to its maximal qualifier;

Set Mapping: In a set-based solution, a Set Mapping S maps each variable in program

P to a set of possible qualifiers in type system F . Crucially, one set mapping may

contain several valid typings and if one set becomes empty, the whole set mapping is

discarded.

Optimality Property: The optimality property holds for a type system and a program if

and only if the typing derived from the set-based solution by giving each variable the

maximal qualifier from its set is a valid typing;

Conflict: When assigning the maximal qualifier for each variable does not type-check the

program, the expression in the program that does not type-check is a conflict. Conflicts

happen when the optimality property does not hold for a program and a type system.
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1.10 Contributions

This dissertation contributes What You See Is What You Get (WYSIWYG) developer-

driven inference of ownership type qualifiers. Developers preview an object graph, then

manipulate or refine it to make it reflect their design intent. Behind the scene the inference

analysis infers qualifiers that satisfy the requested refinement. Novel features of the infer-

ence analysis compared to closely related inference work include a larger set of qualifiers to

support hierarchy with fewer restriction (logical containment) in addition to hierarchy with

domination, as well as object uniqueness and object borrowing. The contributions of this

work are as follows:

• Enabling developers to refine an object graph directly to express their de-

sign intent by imposing hierarchy on objects. We design a novel approach in

which the developers refine an object graph by manipulating the object hierarchy. One

type of refinement expresses strict encapsulation by moving an object into a private

domain of another object. A second type of refinement expresses logical containment

by moving an object into a public domain of another object. A third type of refinement

makes two objects peers. A forth type of refinement move an object into the global

domain. Finally, the last possible refinement is to split an object into two objects and

move the split object into another domain using the four other types of refinements.

Unlike the existing approach, where the developers add the qualifiers manually, extract

the object graph, then go back to the code and modify qualifiers manually to refine

the object graph, in the proposed approach, developers do not change qualifiers in the

code manually. Instead, they only do refinements to express their design intent or to

guide the analysis.

• Utilizing a set-based solution to infer feasible SOD qualifiers including pub-

lic domains. To support the above approach, a whole-program static analysis utilizes

a set-based solution to infer feasible qualifiers for a requested refinement. In the set-

based solution, each variable maps to a set of qualifiers in a set mapping. After each
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refinement, the analysis removes the infeasible qualifiers from the set of qualifiers of

each variable. A refinement indicates the owning domain of the qualifier for some

variables, and the analysis infers the ownership domain parameter, which can be any

actual modifier in SOD including n.PD, in which n is the name of an object.

• Utilizing a set-based solution to infer object borrowing and object unique-

ness. SOD supports object borrowing using the lent modifier, and object uniqueness

using the unique modifier. We utilize the set-based solution to infer qualifiers contain-

ing those modifiers, by adding new adaptation functions and rank unique and lent

as the highest ranked modifiers of SOD. Properties of unique and lent as a universal

source and sink, respectively, make the set-based solution work for SOD efficiently.

• Extract a valid typing that type-checks the program using the type rules

of the SOD type system and satisfies the requested refinement, when the

optimality property holds. After computing a set mapping that contains feasible

qualifiers, the analysis creates a typing using maximal qualifiers for each variable. If the

optimality property does not hold, the maximal typing is not valid and does not type-

check the program. The analysis handles the lack of the optimality property differently

from how Huang et al. handle it for OT. They require developers to add qualifiers

to help the analysis. Our approach provides two ways to resolve conflicts. First,

the analysis warns developers about the conflict and developers do more refinements

until the optimality property holds and the maximal typing type-checks the program.

Second, developers run a special mode of the tool, the Assisted mode, which applies

automated refinements on all the variables of the program that are have not been

pinned down by a refinement to resolve conflicts.

• Inferring qualifiers that express logical containment using public domains.

SOD express logical containment using public domains. In order to move an object

into a public domain of another object, the analysis applies transfer functions based

on the type of the expression. The transfer functions adapt the qualifiers containing
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PD from the viewpoint of the receiver to be n.PD, using the adaptation functions that

we define.

• Defining a ranking over actuals of SOD, and extending it to rank qualifiers.

We define rankings over actual modifiers of SOD and extend it to ranked qualifiers. The

criterion we use to define the rankings is to extract more hierarchical object graphs.

Therefore, the analysis ranks higher the qualifiers that create more hierarchy in the

object graph.

• Supporting the Auto mode and Assisted modes to make the set-based solu-

tion converge on a typing. To increase automation, the analysis applies automated

refinements on key variables in the code instead of objects in the object graph. To

find those variables, the analysis uses AST visitors. Using the automated refinements,

Auto finds all the strictly encapsulated objects. If an object cannot be encapsulated,

then Auto attempts to make them logically contained. If an object is neither strictly

encapsulated nor logically contained, Auto attempts to make it peers with the other

objects. The Assisted mode applied automated refinements to find a typing, when the

developers are done applying refinements. It skips the variables that are pinned down

by refinements that are done previously.

1.11 Thesis Statement and Hypotheses

Developers refine an object graph directly by making an object owned by another (strictly

encapsulated), part of another (logically contained), peer of another, or globally aliased. If

the code as-written supports the requested refinement, a static analysis infers valid qualifiers

that type-check, otherwise the refinement is skipped. Using the above refinements, developers

obtain hierarchical object graphs that apply abstraction by hierarchy and express their design

intent.

We propose several hypotheses that are subordinate to the thesis statement. We list the

success criteria of each hypothesis and support each hypothesis with evidence.
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H1: Hierarchical Object Graph:

A hierarchical object graph leads to fewer visible objects at the higher levels of the object

graph, since more objects are collapsed underneath other objects, compared to a flat object

graph, in which all the objects are at the same hierarchy level.

Success criteria. The success criteria to objectively measure or falsify this hypothesis

include:

• In a hierarchical object graph, it is possible to impose two types of hierarchy. The first

is strict encapsulation, and the second is logical containment.

• Using SOD qualifiers, it is possible in practice to express an object hierarchy that

provides architectural abstraction, where low-level objects such as data structures are

at the lower levels of the hierarchy and more architecturally relevant objects from the

application are at the higher levels;

• The static analysis to extract the object graph abstracts objects to pairs of types and

domains. Developers can place objects of the same type in different domains and they

will not get merged. Therefore, the hierarchical object graph is domain-sensitive, and

developers assign properties to objects and write constraints on the structure of the

graph [34];

Evidence. We support this hypothesis with the following evidence:

• For some subject systems, we use our approach to extract both a flat object graph and

a hierarchical object graph. The analysis extracts a flat object graph by placing all the

objects in the global domain shared. For each subject system, we use our approach

to extract the hierarchical object graph by inferring SOD qualifiers. We compare the

number of objects at the top level of a hierarchical object graph with the number of

objects in the flat object graph.

H2: Logical Containment:

Applying both strict encapsulation and logical containment that are supported by SOD,

compared to other type systems that support only strict encapsulation but no logical contain-
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ment, leads to a more hierarchical object graph. A strictly encapsulated object is dominated

by another object and all accesses to it must go through its dominator. A logically contained

object is part-of another object, but still accessible to other objects.

Success criteria. The success criteria to objectively measure or falsify this hypothesis

include:

• The developers express their design intent that is of the form of logical containment

to group conceptually related objects and create more hierarchy;

• In a hierarchical object graph, objects that are at higher levels of the hierarchy access

objects that are at the lower levels and are part of other objects;

• Without supporting logical containment in a hierarchical object graph, a lower level

object stays a peer with its intended parent in order to remain accessible to other

objects;

• In practice, real code exhibits the notion of logical containment to group related objects.

Evidence. We support this hypothesis with the following evidence:

• We use the analysis to extract hierarchical object graphs for small test cases as well

as real world code bases by applying SOD that provides both strict encapsulation

and logical containment. We also extract hierarchical object graphs using OT that

provides only strict encapsulation. Then we compare the hierarchy in SOD and OT

object graphs;

• We reuse some previously defined metrics [35], e.g., depth of hierarchy, which is the

maximum depth of objects in a hierarchical object graph to compare different object

graphs, and number of low-level objects in top-level domains;

• We compute the metrics on SOD and OT object graphs for each code base and compare

them.

H3: Object Graphs vs. Qualifiers:

Using an interactive inference tool for SOD, developers refine an object graph to express

their design intent by make owned by, make part of, make peer with and make shared re-
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finements. Behind the scene, a static analysis infers valid qualifiers that type-check and the

refinement is consider done. Otherwise the refinement is skipped and the qualifiers in the

code and the graph are unchanged.

Success criteria. The success criteria to objectively measure or falsify this hypothesis

include:

• Developers obtain a hierarchical object graph that expresses their design intent, by

doing refinements and not modifying the qualifiers in the code;

• Developers perform refinements to express their design intent or to guide the analysis;

• The analysis builds on and preserves previous refinements. As a result, a refinement

may be skipped if it contradicts a previous refinement;

• If a refinement is skipped, the analysis does not change the graph or the qualifiers

resulting from previous refinements;

Evidence. We support this hypothesis with the following evidence:

• We implement the approach and run it on small (1 KLOC) and mid-size (5KLOC)

subject systems;

• We run an independent type-checker after each refinement to validate the inferred

qualifiers;

• We compare the inferred qualifiers with qualifiers that are inferred by another closely

related work to compare the quality of the inferred qualifiers;

• We measure the cases where UT infers the qualifier any, but our analysis infers more

precise qualifiers that convey more design intent;

• We study if using our approach, we refine an object graph to make it comparable to

a diagram of the runtime structure that original developers of the system separately

drew, and if it cannot be made comparable, we analyze the underlying reasons;

• For a skipped refinement, we investigate if the code does not support it, or if it can be

done manually by adding qualifiers without using the tool, which we count as a false

positive.
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H4: Inferring SOD Qualifiers:

To express strict encapsulation and logical containment, the inference analysis constructs

a set mapping that contains feasible qualifiers and multiple valid typings. Some of the feasible

qualifiers contain n.PD, where n is the name of an object, and PD is a public domain declared

on the class of that object.

Success criteria. The success criteria to objectively measure or falsify this hypothesis

include:

• The analysis infers qualifiers with owned as the owning domain for the strictly encap-

sulated objects using MakeOwnedBy refinements;

• All the objects that are strictly encapsulated in OT are also strictly encapsulated in

SOD;

• If developers move a source object, o1, into the PD domain of a destination object o2

(using a MakePartOf refinement), and if other objects access o1 from outside of the

scope of o2, for the variables in the code that those objects trace to, the analysis infers

more precise qualifiers that contain n.PD, compared to lent. n in n.PD is the name

of a final field or variable, or a sequence of final fields or variables in the code that

traces to o2. If there is no final final n in scope, the analysis infers lent.

• For each refinement, the analysis removes from the set mapping infeasible qualifiers

that do not type-check, using its transfer functions. By infeasible qualifiers, we mean

qualifiers that transfer functions remove from the set of qualifiers of a variable, since

they do not type-check the expression;

• The analysis infers precise qualifiers, not trivial qualifiers that always type-check. For

a visual approach, each object has to be in a precise domain, which is indicated by a

precise qualifier. For qualifiers containing lent and unique, which are not precise, an

extraction analysis resolves them to precise domains.

Evidence. We support this hypothesis with the following evidence:

• In practice, on real object-oriented code, developers can move an object into the PD
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domain of another object that creates the source object;

• For each subject system, we measure the number of skipped refinements due to missing

final fields or variables;

• We note the situations where the analysis tries to infer a precise qualifier, but the code

does not support it, e.g., due to missing final modifiers.

H5: Finding a Valid Typing:

The inference analysis finds a typing from the set mapping using the maximal qualifiers

for each variable. If the typing is not a valid typing, developers keep doing refinements until

the analysis finds a maximal typing that type-checks the program. If the analysis cannot do

so, developers start over with another sequence of refinements.

Success criteria. The success criteria to objectively measure or falsify this hypothesis

include:

• In a set mapping that contains feasible qualifiers, there may be multiple valid typings

that satisfy all the done refinements;

• The analysis first finds a typing by mapping each variable to its maximal qualifier. If

the typing is a valid, i.e., type-checks the program, the analysis saves the typing as

qualifiers in the code by saving the maximal qualifiers for each variable;

• If the typing is not valid, then the developers do more refinements until the analysis

finds a valid typing using maximal qualifiers for each variable.

• In related approaches, the analysis may ask the developers to resolve cases where the

analysis cannot find qualifiers that type-check, a situation that is called a conflict. Here,

if the analysis cannot find a valid typing, developers perform additional refinements.

Evidence. We support this hypothesis with the following evidence:

• We measure after how many refinements the optimality property holds for the program

and the SOD type system;

• For each subject system, we measure the number of refinements that make the analysis

find a valid maximal typing and compare it to Huang et al. key metric that is qualifiers



25

per KLOC to find a valid maximal typing.

H6: Ranking Qualifiers:

The analysis ranks qualifiers that contain unique and lent highest, followed by local

domains (owned or PD), followed by domain parameters (owner or p). The lowest rank is

the global domain (shared).

Success criteria. The success criteria to objectively measure or falsify this hypothesis

include:

• The analysis ranks unique and lent as the highest ranked modifiers, because of their

special properties. As a universal source a unique variable can be assigned to other

variables. Other variables can be assigned to a lent variable, which is a universal sink;

• The inference analysis ranks local domains higher than domain parameters and ranks

domain parameters higher that the global domains shared. The reason is local domains

(owned or PD) create hierarchy, but domain parameters (owner or p) make objects peers.

The defined ranking can be applied on qualifiers. Therefore, the qualifiers that contain

local domains are ranked higher than qualifiers that contain domain parameters;

• The analysis ranks the actual shared as the lowest one, so it does not infer qualifiers

that contain shared for any variable, if there are higher ranked feasible qualifiers.

Therefore, the developers can move away from the trivial flat graph as much as possible.

If the developers intentionally want to clearly separate a globally aliased object from

other objects, the tool supports an explicit refinement, MakeShared for that purpose.

• A qualifier <p, q> contains an owning domain p and an actual domain q. To rank two

qualifiers, the analysis first ranks their owning domain then their domain parameter.

Evidence. We support this hypothesis with the following evidence:

• We compare the percentages of local domains in a valid typing, which is the result

of the analysis, with a valid typing that is the result of applying OT to compare the

hierarchy of the object graphs. Theses qualifiers approximate the shape or level of

hierarchy in the object graphs;
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• We compare the precision of the qualifiers of a valid typing with those of a typing that

is the result of applying UT. Also, we compare the hierarchies of the resulting object

graphs for SOD and UT.

H7: Automation:

The tool supports two additional modes for applying refinements, Auto, a fully automated

mode when the developers do not do any manual refinements; and Assisted, once the devel-

opers finish applying refinements and they just want the tool to find a typing.

Success criteria. The success criteria to objectively measure or falsify this hypothesis

include:

• In this automated mode, the analysis attempts three types of refinements: Make-

OwnedBy to suggest strict encapsulation, MakePartOf to suggest logical containment,

and MakePeerWith to suggest making objects peers;

– Finding strictly encapsulated objects automatically is possible, since an object is

either strictly encapsulated or not.

– If a variable is a candidate for being strictly encapsulated is in fact not then it

can be logically contained by the destination class;

– If a candidate variable is neither strictly encapsulated nor logically contained,

then it can be peer with the object of the destination class;

• The analysis uses AST visitors to find all the fields and local variables to apply auto-

mated refinements on them using the Auto and Assisted modes;

• The analysis does not apply automated refinements on the variables that are target

variables of the refinements using the Assisted mode, in order to respect the previous

refinements applied by the developers;

Evidence. We support this hypothesis with the following evidence:

• We measure the percentages of done auto-refinements of each type;

• We measure the portion of done auto-refinements out of the attempted ones;
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1.12 Summary

The key idea in this dissertation is to enable developers to refine object graphs directly

without having to change the qualifiers in the code. The qualifiers are hard to add to the

code manually. We will discuss them in the next chapter. The proposed approach handles

both the problem of:

• scaling the process of adding qualifiers to the code manually;

• letting the developer’s refinements drive the inference, so the inferred qualifiers lead to

an object graph that reflects the developer’s design intent.

In most papers on ownership inference, researchers draw partial object graphs by hand.

With this dissertation, the object graph is extracted using a tool and developers do not

change the qualifiers in the code.

Outline. The rest of this dissertation is structured as follows. Chapter 2 gives some back-

ground on Ownership Domains and discusses the related approaches. Chapter 3 discusses

the approach informally and positions this work in relation to related ownership type sys-

tems and inference of ownership type qualifiers. Chapter 4 formally describes the inference

analysis. Chapter 5 evaluates the approach using two styles of evaluation, one comparative

and one focusing on design intent. Finally, Chapter 6 discusses some implementation details,

limitations, future work and concludes.



28

CHAPTER 2 BACKGROUND AND RE-

LATED WORK
In this chapter, we first give some background on Ownership Domains and compare it

with two other ownership type systems. Next, we introduces challenges that each ownership

inference approach must handle. We then briefly discuss the most related approaches and

introduce other related approaches, and how each approach handles the challenges.

2.1 Ownership Domains

In Ownership Domains [11], a class can declare one or more domains using the domain

keyword (Fig. 1.2). Each instance of a class C gets a fresh instance of a domain d de-

clared on the class; for distinct objects n1 and n2 of class C, the domains n1.d and n2.d are

distinct.

In Ownership Domains, a class can take a number of formal domain parameters. Here,

for simplicity, we allow just two, owner and p, e.g., class C<owner, p> {...}. A type is

a class name and two actual domains, i.e., C<p1,q1>, where p1 and q1 are some domains

or domain parameters in scope. Given an object that has a type C<p1,q1>, the first actual

domain p1 denotes the owning domain of the corresponding object. This is why we use the

owner modifier for the name of the first domain parameter. When used as an actual owning

domain on the type of an object o, owner means that o is in the same domain as the this

object. The second actual domain q1 denotes the domain parameter of the corresponding

object. Ownership Domains can express the notion of temporary sharing of an object (object

borrowing) using the lent modifier [12]. For example, an object that is passed to a method is

used only for the duration of the call. An object can be borrowed from one domain to another

as long as the second domain does not create a persistent reference to the borrowed object

by storing it in a field. Only formal method parameters and local variables can be lent.

Also, Ownership Domains expresses the notion of an object that has only one reference using
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unique [12]. For example, an object that is created by a factory method does not belong to

a specific domain and the client code determines its domain. Adding or inferring qualifiers

involves adding a pair of actual domains <p1,q1> for a type, which we call qualifier.

2.2 Ownership Domains vs. Other Ownership Type

Systems

There are similarities across the three ownership type systems covered in the closely

related inference work [21] and this dissertation: Ownership Types (OT) [15], Universe

Types (UT) [18], and Ownership Domains (OD) that we show in Table 2.1. In the rest of

this dissertation, we refer to each system by its abbreviated name.

Similarly to OT and UT, OD can express the concept of an object that is strictly encap-

sulated by its outer context, and the concept of an object that has the same owning context.

Similarly to OT, OD has the notion of an ownership parameter, and the concept of an object

in the global context. Compared to OT and UT, OD has the notion of logical containment

that is expressed using a public domain. Moreover, OD expresses object borrowing using

lent and object uniqueness using unique.

In OT and UT, objects own other objects directly, i.e., the ownership context is an object.

In OD, objects do not own other objects directly. Instead, a domain is an explicit, named,

ownership context. Explicit contexts are important during the graphical refinement of an

object graph. In our approach, developers drag an object and drop it into a named, explicit

context. Otherwise, when developers move an object o1 inside an object o2, it would be

unclear whether they are making o1 owned-by o2 or part-of o2.

In contrast, UT can refer to an object o1 in some other context but with a reference

that cannot be used to mutate the referenced object (the modifier is any). As a result, UT

requires additional purity qualifiers, which have to be either manually added or inferred using

a separate inference analysis. Moreover, the modifier any does not provide any information

about the actual ownership context of an object.
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Table 2.1: Comparison across three ownership type systems. We show the corresponding modifier in the
type system or “n/a” if the concept is not available in the type system.

UT OT OD
global owner n/a norep/world shared

strict encapsulation rep rep owned

logical containment n/a n/a n.PD
same owner as this peer own owner

ownership parameter n/a p p

temporary access n/a n/a lent

only one reference n/a n/a unique

readonly + pure any n/a n/a
preference/ranking 1 any> rep > peer rep > own > p unique > lent > owned...

[21, p. 9] [21, p. 9] ... > n.PD > owner > p > shared

2.3 Challenges of Inferring Ownership Qualifiers

Any approach to infer ownership qualifiers must address the following challenges.

• Soundness: Sound qualifiers implement a type system. A sound approach must infer

qualifiers that type-check [12, 22, 19, 25, 31, 21, 17];

• Precision: An approach must select the most precise qualifier between valid qualifiers.

The precision can be defined based one a preferred ranking over the qualifiers [22, 21]

or the depth of the inferred ownership structure [25, 31, 37, 17].

• Trivial qualifiers: An approach must have a way of selecting a trivial qualifier that

always type-checks and does not require expensive computation. The trivial qualifiers

can be considered as a starting point for an approach, especially the ones that show

the results of inference in graphical forms [25, 31, 37].

• Interactive vs. fully-automated: An approach can work in a fully-automated mode [12,

25, 19, 37] or in an interactive mode [22, 21, 17, 31]. An interactive approach may

accept partial qualifiers and infer the remaining, or accept graphical interactions.

• No solution: An approach must handle the case when it cannot find any solution that

type-checks. An approach may not save qualifiers [21, 17], or may produce meaningful

error messages [31].

1We discuss the ranking of OD modifiers in Section 3.2
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• Multiple solutions: An approach may infer more than one valid solution for a program,

and it must be able to pick one. An approach may use metrics to pick between different

solutions [37]. Another approach may show the different solutions to the developers

and ask them to pick one [31].

• Lack of information The results of an interactive approach depend on the input quali-

fier from the developers. Sometimes, the provided qualifier from the developers is not

enough for the approach to infer all the other qualifiers. In that situation, the ranking

may not work. To resolve this, an approach may ask for information from the devel-

opers. For example, it may ask the developers to manually annotate all the object

creation sites in the code [22] or a subset thereof [21].

• Reusable code: Parameters are often introduced to make code more reusable. Al-

though it is hard to infer where the code is intended to be reusable automatically.

Some approaches do not infer parameters, but at the cost of restricting the ownership

model [19, 25]. Inferring an arbitrary number of parameters is often problematic [12].

For simplicity, an approach, including this one, may infer one parameter, which is still

suitable to express a number of programs in practice [22, 21].

2.4 Closely Related Work

Our inference analysis instantiates the framework of Huang et al. [21] by providing a set of

qualifiers, adaptation functions, and type-system-specific constraints. Our inference analysis

computes a set-based solution, by starting with sets containing all possible qualifiers and

iteratively removing ones that are inconsistent with the type system rules. We discuss in

more detail the differences after we present the details of our approach (Section 3.9).

2.5 Other Related Work

We organize related approaches based on their output and their program analysis.
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2.5.1 Static Analysis/Saves Qualifiers

Huang and Milanova [22] present an approach to infer OT qualifiers. An interactive

approach that requires developers to add qualifiers for a subset of variables. The approach

utilizes a set-based solution and uses transfer functions to analyze all the expressions and

eliminate invalid qualifiers. The approach infers one ownership parameter and terminates

with an error when there is no solution.

Vakilian et al. [31] propose a universal framework that accepts a type system and produces

an inference for it. However, it requires a checker on top of the Checker framework [16] for

the type system. The inference is interactive and inspired by speculative analysis to help

developers decide the next steps, by showing the consequences of their decisions ahead of

time. It builds a tree consisting of two kinds of node: error and change nodes.

Dietl et al. [17] build a tunable static inference for Generic UT. It works on Java programs

with full, partial, or no qualifiers. By traversing AST, the approach generates constraints

for variables and solves them by reusing a max-SAT solver, which limits the approach’s

scalability. The approach utilizes more than one strategy for multiple solutions: adjusting

heuristics by changing the weights, or requiring developers to input partial qualifiers.

Aldrich et al. [12] present a type system called AliasJava and an algorithm to infer its

qualifiers. AliasJava is similar to OD, but it does not support public domains. To infer

alias parameters for each class, the algorithm conducts a constraint system including three

sets of constraints, equality, component, and instantiation that guarantee soundness. The

algorithm solves the constraints and integrates the result with other qualifiers based on a

ranking. However, over 50% of the inferred qualifiers are shared. Moreover, the approach

infers many alias parameters up to one for each field of one class.

Dymnikov et al. [19] present an ownership inference that infers owned qualifiers for the

fields of a class. The inference implements some heuristics to infer strictly encapsulated fields

in a class, so it is not a sound approach.
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2.5.2 Static Analysis/Visualizes Ownership

Milanova and Vitek [25] present a static analysis that infers an ownership tree that follows

the owner-as-dominator ownership model. First, it creates points-to sets using a points-to

analysis. Second, an object graph is created using transfer functions that create edges to

indicate the ownership relation between objects. Next, a dominance boundary analysis

creates boundaries as subgraphs of the object graph.

Zhu and Liu [37] present a sound and fully-automated constraint-based ownership infer-

ence, Cypress that uses an application of linear programming. Cypress generates a visualized

hierarchical decomposition of the heap statically. The hierarchy is based on ownership rela-

tions between the objects. Cypress follows the ”tall and skinny” principle and favors heap

decompositions that are taller and skinnier.

2.5.3 Dynamic Analysis/Saves Qualifiers

Dietl and Müller [36] present an approach that analyzes the execution of programs and

infers ownership qualifiers from the executions. First, the approach builds the representation

of object store that is called Extended Object Graph, which contains all the objects that

ever existed in the store and their modification information. Next, it creates the dominator

tree, since in UT, all the modifications of an object should be initiated by its owner. Then it

resolves the conflicts with UT and harmonizes different instantiations of a class and outputs

the qualifiers. The approach is fully-automated, but it is unsound since it uses dynamic

analysis.

2.5.4 Dynamic Analysis/Visualizes Ownership

Rayside and Mendel [28] present an object ownership profiler to infer object ownership.

They visualize the result of ownership inference in an interactive hierarchical matrix visual-

izer. They define the notion of Ownership Claim Graph (OCG). Therefore, they define the

object x is the owner of the object y, if x is the immediate dominator of y in the program’s

OCG. They create a graph that shows which objects write on the other objects, and the
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dominating objects can the owners of the modified objects.

2.6 Summary

In this chapter, by comparing Ownership Domains and two other ownership type systems,

we notice that Ownership Domains is able to express logical containment ownership struc-

ture that is not expressible by other systems. Also, by identifying challenges of an ownership

inference approach, we claim that OOGRE is the only interactive ownership inference ap-

proach where developers refine an object graph without changing the ownership qualifiers in

the code. Moreover, OOGRE is the only approach that enables developers to express hier-

archy with fewer restrictions using public domains. In the next chapter, we explain OOGRE

informally and in the following chapter, we describe it formally.
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CHAPTER 3 SET-BASED SOLUTION
In this chapter, we explain the initial set mapping and the initial object graph. Next,

we discuss applying a refinement and running transfer functions. Then we explain how

the inference analysis finds a maximal typing. Next, we discuss how the approach resolves

conflicts. In the remainder of this chapter, when we say the analysis for brevity, we mean

the inference, rather than the extraction analysis.

3.1 Simple Ownership Domains (SOD) Qualifiers

In order to make inference tractable, we simplify OD as follows, and call it Simple Own-

ership Domains (SOD). In SOD, we support the following: 1. a single private domain per

class, hard-coded to be owned; 2. a single public domain per class, hard-coded to be PD;

3. an implicit domain parameter, owner, which is made explicit in the formalization and

in the code examples; 4. a single explicit domain parameter per class, hard-coded to be p;

and 5. implicit domain links [11] that make objects in private domains inaccessible to the

outside, objects in public domains accessible, and objects in sibling domains accessible to

each other. In the rest of this dissertation, we use SOD.

3.2 Ranking of Qualifiers

We define a ranking between the qualifiers that OOGRE may infer. The criterion for

the ranking is to make the object graph more hierarchical, as is common in ownership

inference [21]. First, we define a ranking between all the actuals of SOD (see the last row of

Table 2.1). The actual unique is the highest ranked since it is the universal source and can

be assigned any other modifier. The modifier unique may create hierarchy, if the extraction

analysis resolves it to owned or PD. The actual lent does not create hierarchy, but lent

is ranked the next highest since it allows variables with any modifiers to be assigned to it

(see Section 3.9). After unique and lent, owned is the next highest ranked actual, since

it creates hierarchy, and an owned object is strictly encapsulated. A public domain PD can
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be referred to like a field, using the n.PD modifier (we discuss the syntax in Fig. 4.1). The

next ranked actual is n.PD, which also creates hierarchy, but is less restrictive. Every object

in owned can be in PD, but the reverse does not hold. In n.PD, n can be this. The fifth

ranked is owner, which is a domain parameter and makes objects peers. The next ranked is

p, which is also a domain parameter, and it may bind to any domain. The lowest ranked is

shared, which gives no hierarchy and places objects in the global context.

We extend the ranking of modifiers to qualifiers. To determine the ranking of a qualifier,

the analysis first considers the owning domain (p), then the domain parameter (q) of a

qualifier (<p, q>). Therefore, to compare two qualifiers, the one that is higher ranked has a

higher ranked owning domain. If two qualifiers have the same owning domain, then the one

that has a higher ranked domain parameter is ranked higher.

3.3 Starting From an Initial Set Mapping

As the first step, the analysis maps each variable to an initial set of qualifiers that contains

all the possible qualifiers by considering the kind of variable and the SOD constraints. In

SOD, there are seven modifiers: unique, lent, owned, n.PD, owner, p and shared. The

modifiers unique and lent can appear only as the owning domain in a qualifier, so there are

10 possible qualifiers that contain unique or lent. The modifier owned, internally qualified

by the analysis as this.owned, can be the owning domain of 5 more possible qualifiers. For

n.PD, owner, p as the owning domain, there are 4 more possible qualifiers, since they do not

accept owned as a domain parameter. The owned domain is the private domain of an object,

and using it as the domain parameter is incorrect, since it is inaccessible to the objects that

are not in the peer PD domain. The modifier shared as the owning domain allows only the

qualifier <shared, shared>, since a qualifier with shared as the owning domain should not

have the domain parameter of a higher ranked modifier. Therefore, the full set of qualifiers

contains 28 qualifiers, but all variables do not map to the full set. Moreover, we can use the

type of the variable to dictate the initial set, following the notion of manifest ownership, and

use this feature for String’s.



37

A field cannot be lent. We also do not support unique fields which require destructive

reads. So a field variable maps to an initial set that contains 18 qualifiers. We do not support

uniquemethod parameters in order to infer more general method signatures. Method returns

cannot map to qualifiers containing lent. So the initial set of qualifiers of method parameters

and returns contain 23 members. Local variables map to the full set of qualifiers. The transfer

functions invoke an intra-procedural standard Live Variables Analysis (LVA) to determine if

unique is allowed. For simplicity, we omit the calls to the LVA.

For a variable in the Main class, the initial set of qualifiers is smaller, because Main does

not declare the domain parameter p. Moreover, the owning domain of the root object is

shared, so the domain parameter owner binds to shared, and there is no need to have

qualifiers containing owner. We treat owned in Main as a public domain, so the qualifier

<this.PD, this.owned> is possible, since we use the two top-level domains on the root

object to express a two-tiered design. The root object is in shared.

Default qualifiers. After initializing the set mapping, the analysis saves for each variable

default qualifiers that are guaranteed to type-check, as annotations in the code. A type-

checker can then type-check them, and the extraction analysis can extract object graph. For

the variables in the Main class, the analysis assigns the default qualifier <shared, shared>.

The analysis assigns <owner, owner> to the variables in other classes. Based on the default

qualifiers, the extraction analysis extracts an initial graph, which is flat, since all the objects

in the initial object graph are in shared.

3.4 Applying Refinements

A refinement changes the set of qualifiers of one or more variables in the set mapping

into a singleton set. Developers refine the object graph directly by drag-and-drop of a source

object into a domain of a destination object. Then the analysis finds the set of variables that

the source object traces to and changes their set of qualifiers in the set mapping accordingly.

Those variable are the target variables of the refinement. We generalize MakeOwnedBy,

MakePartOf, MakePeerWith and MakeShared into MakeX.
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Each refinement operates on an OGraph G, and has a source OObject Osrc and a destina-

tion OObject Odst. The detailed representation of an OObject is used only by the extraction

analysis [5] and is not needed here. The analysis translates the requested refinement in terms

of variables, changes the set of qualifiers for the target variables in S, and runs the transfer

functions to infer the qualifiers of the other variables.

MakeX. The MakeX refinement pushes a source object Osrc into X as a domain or domain

parameter of a destination object Odst (Fig. 3.1). The analysis finds the target variables

that Osrc traces to, x. Then it creates five instances of S, Sowned, SPD, Sowner, Sp and Sshared.

The set of qualifiers of each target variable is modified to be a singleton in which the owning

domain is X and the domain parameter is the same as the subscript of the corresponding

S. For example, in SPD, for a MakeOwnedBy, the set of qualifiers of a target variable is

{<this.owned,this.PD>} and for a MakePartOf, it is {<this.PD,this.PD>}. If a target

variable is in the Main class, the analysis creates only three instances of S, Sowned, SPD and

Sshared. There is no domain parameter p in Main, and owner of the root object is shared,

so no need to create Sp and Sowner. Using the auxiliary judgement mdbody(), the analysis

accesses the body of a method declaration (see Section 4.6). The analysis runs the transfer

functions (highlighted in the rule) on each created Sq and all the expressions of the program

to validate the changes and infer the other changes.

Osrc ∈ G Odst ∈ G x = getV ars(Osrc) ∀xi ∈ x Qi = S[xi]
∀q ∈ {this.owned, this.PD, owner, p} ∃ Sq s.t. Q′

i = {<X, q>} ∈ Sq

(xi → Q′

i)Sq ∀C ∈ CT,md ∈ C, e ∈ md, Γ;Sq;nthis ⊢ e, S′

q

S
MakeX(G,Osrc,Odst,X)
−−−−−−−−−−−−−−−→ S′

x

[r-mx]

Qxsrc
= S[xsrc] X = getDomain(Odst,Ddst)

∀q ∈ {this.owned, this.PD, owner, p} ∃ Sq s.t. Q′

xsrc
= {<X, q>} ∈ Sq

(xsrc → Q′

xsrc
)Sq ∀C ∈ CT,md ∈ C, e ∈ md, Γ;Sq;nthis ⊢ e, S′

q

S
SplitUp(G,xsrc,Odst,Ddst)
−−−−−−−−−−−−−−−−→ S′

x

[r-spu]

Figure 3.1: MakeX: for MakeOwnedBy, X=this.owned, for MakePartOf, X=this.PD, for MakePeerWith,
X=owner, and for MakeShared, X=shared. SplitUp splits and pushes the source variable xsrc to the X
domain of the destination object (X=this.owned, X=this.PD, X=owner or X=shared).
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SplitUp. In the extracted object graph, objects of the same type and in the same domain

get merged into one object. In a flat object graph where all the objects are in shared,

an object may merge many object creation expressions in the code. Developers may want

to split the object into distinct objects in different domains. To do so, they go to the

traceability information associated with the object, select one object creation expression

and move the corresponding variable into a domain of another object using MakeOwnedBy,

MakePartOf, MakePeerWith, or MakeShared. Since the only difference between SplitUp

and the other refinements is the number of target variables, we do not show SplitUp as an

inference rule.

Respecting the whole set mapping.The analysis applies each refinement on a set map-

ping that is the result of the previous done refinements. This way, a current refinement

cannot undo the result of a previous refinement. This leads to having smaller sets of qual-

ifiers after each refinement, so the analysis can find a valid maximal typing sooner, since

there are more sets that are singletons, so the set mapping is closer to become a typing.

The drawback of respecting the whole set mapping is a previous refinement may lead the

current refinement to get skipped by removing some qualifiers that were infeasible for that

previous refinement, but not for the current one. Therefore, the developers may not be able

to apply some refinements later. To avoid having a refinement that is skipped due to an-

other one, one could respect only the set of qualifiers of the target variables of the previous

done refinements, and after each refinement map all the other variables to their initial set of

qualifiers. Respecting only the target variables makes the set mapping as flexible as possible

for the next refinement. Although the latter seems to resolve the issue, it would discard all

the work to remove the infeasible qualifiers from the sets of qualifiers. For each refinement,

there would be a handful of target variables for which the sets of qualifiers would need to be

respected. But the analysis would have to redo all the work. As result, the analysis would

be less likely to find a typing.
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3.5 Running Transfer Functions

The analysis applies transfer functions on each set mapping S, which is created by a

refinement, and each expression in the program. Each transfer function takes S, an expression

and produces an output S ′. A transfer function removes infeasible qualifiers from the set of

qualifiers of each variable (see Section 4.5). The transfer functions run until a fixed point

when the sets of qualifiers of all variables no longer change. At the fixed point, for each

variable x, S contains a set of qualifiers S[x], which can be an empty set. If there exists a

variable x for which S[x] is empty, the entire S is discarded and not used any further. If

after running the transfer functions, all the instances of S are discarded, then the refinement

is skipped, the analysis does not save any qualifiers and the object graph is unchanged.

Multiple solutions. After running transfer functions, there may be more than one valid

solution for the refinement. Each S represents a solution, so the analysis must select one to

continue. To select S, the analysis uses a strategy that prefers Sq where q is p, PD, owner,

owned and shared in this order. The analysis prefers a more flexible solution over the others.

As a domain parameter, p can bind to any domain, so that is the most flexible solution. The

modifier PD is more flexible than owner and owned, since an object that is in the public

domain can be accessed by other objects. The modifier owned is the least flexible one, since

an object in owned can be accessed only by the object that declares the domain, or by objects

in its sibling PD domain.

Side effects of a refinement. Using the set-based solution, one refinement leads to some

other objects moving into different domains in the refined object graph. Those changes

are not due to the refinement, but they are in the inferred typing. We call those changes

auto-refinements. There are auto-refinements, because in the set-based solution a variable

maps to a set of qualifiers and using the ranking of the qualifiers, one qualifier is picked.

In our current implementation, we respect the auto-refinements, because we preserve the

set mapping after each refinement. So by doing the next refinement, developers still see the
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changes due to the previous auto-refinements. We respect auto-refinements to avoid showing

developers object graphs that differ dramatically after each refinement.

3.6 Finding a Typing that Type-checks from a Set

Mapping

At this point, each variable in the current S maps to a set of qualifiers that are from

multiple valid typings. Using the defined ranking between qualifiers, the analysis extracts a

typing T from S by applying the max function on the set of qualifiers of each variable x in

S. The max function picks the highest ranked, i.e., maximal, qualifier in the set of qualifiers

of x. The typing T is the maximal typing.

T [x] = f(S[x]) where f = max for all x

Due to the nature of the set-based solution, extracting a valid typing is not simple. If the

maximal typing T does not type-check the program, then the optimality property does not

hold for the program and SOD. A key finding in Huang et al. is that for certain ownership

type systems, one can derive a unique maximal, i.e., best, typing T from the set-based

solution S. “The optimality property holds for a type system F and a program P if and

only if the typing derived from the set-based solution S by typing each variable with the

maximally/preferred qualifier from its set, is a valid typing.”

For programs that have not been analyzed, and for the type systems such as SOD and

OT, the optimality property does not hold and the analysis struggles to find a typing. To

help the analysis to resolve conflicts, developers supply additional information as qualifiers

strategically placed on certain variables. With these qualifiers, the optimality property may

still not hold for type systems such as SOD and OT. The optimality property holds for

programs with arbitrary qualifiers (including none) for UT due to some nice properties.
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First, UT has the qualifier any, which type-checks many variables (due to subtyping of

qualifiers), including fields, and is also the highest ranked. Second, unlike OT and SOD, UT

does not have one ownership parameter per class, so a qualifier consists of a single modifier

p, which leads to finding a maximal typing efficiently, unlike SOD and OT where the analysis

must infer qualifiers that are pairs of modifiers <p, q> and rank them.

Our key insight to make the set-based solution also work efficiently for SOD is adding

lent and unique, which act as a universal source and sink, respectively (as discussed in

Section 3.9). So lent and unique variables are assigned to variables that are mapped to

more than one qualifier (see Section 4.2), which gives the transfer functions more choices of

valid qualifiers for the left-hand side or the right-hand side of an assignment.

<lent, > ∈ S[x] ∧<lent, > = max(S[x]) ∧<lent, > = T [x] =⇒

∀<p, q> = T [y] ∈ S[y], T [x], T [y] type-checks x = y

<unique, > ∈ S[y] ∧<unique, > = max(S[y]) ∧<unique, > = T [y] =⇒

∀<p, q> = T [x] ∈ S[x], T [y], T [x] type-checks x = y

Moreover, the unique and lent modifiers are highly ranked, and by having them as the

owning domain of qualifiers in the sets of the set mapping, the analysis picks those qualifiers

using the max function to find a valid maximal typing very efficiently.

To make the optimality property hold, developers provide the analysis with additional

information. In Huang et al., this information consists of partial qualifiers that developers

add manually and that the analysis uses to initialize the sets with singletons and respect the

qualifiers. In our approach, this information consists of refinements to express design intent

and those to resolve conflicts and the analysis infers the qualifiers and overwrites existing

ones in the code. By adding a qualifier manually, the developer provides both parts of the

qualifier (p and q), but a refinement sets only the owning domain (p) and lets OOGRE infer
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the actual for the domain parameter (q). We think asking developers to provide both p and

q is harder, but fully evaluating this claim requires a user study. This paper focuses on the

technical feasibility of the OOGRE.

In order to check the validity of T the analysis has to type-check it. The maximal typing

T is a valid typing if, for each variable x, T [x] type-checks the program. If T is a valid typing,

the analysis saves its qualifiers to the code. If the maximal typing T does not type-check the

program, it means the optimality property does not hold and there is at least one conflict

to resolve. “A statement s is a conflict if it does not type check with the maximal qualifier

derived from the set-based solution.”

3.7 Resolving Conflicts

To resolve conflicts, Huang et al. require that developers guide the inference analysis

by adding qualifiers to the code manually. In our approach, we propose three modes for

resolving conflicts: Manual, Assisted or automatic (Auto).

Manual mode. After doing refinements to express their design intent, the developers may

need to do more refinements to resolve conflicts until the optimality property holds. They

continue doing refinements of their choosing. Or they let OOGRE guide them. OOGRE

provides a MoreInfoNeeded window that indicates the conflict expression, its variables and

the set of qualifiers they are mapped to. OOGRE also suggests a list of refinements to resolve

the conflict. It is then the developers responsibility to propose a refinement that may resolve

the conflict, by exploring the variables of the conflict expression and the set of qualifiers they

map to. The developers resolve any remaining conflicts as they arise until the optimality

property holds and OOGRE finds a typing.

Assisted mode. Developers may keep getting conflicts and may not be able to resolve

them using more refinements. If the developers do not want to or cannot do those additional

refinements, they launch the Assisted mode to have the analysis try more refinements on the

variables (as opposed to refinements in terms of abstract objects). The Assisted mode uses
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visitors to find remaining fields and local variables, beyond the target variables of the previous

manual refinements that are done, so the previous refinements are respected. To resolve the

remaining conflicts, Assisted attempts refinements. Assisted applies MakeOwnedBy on each

field or local variable to find all the strictly encapsulated objects. Then it applies MakePartOf

on each field or local that cannot be encapsulated. After all, if an object is not owned by

some other object, it may be part of it. Finally, Assisted applies MakePeerWith on each

remaining field or local variable that can be neither in owned nor in PD.

Auto mode. Developers analyzing an unfamiliar system or who do not wish to apply

refinements use the Auto mode. In this push-button mode, OOGRE attempts the above

automated refinements. Once Auto runs, developers cannot do any manual refinements,

since Auto exhaustively considers all the variables. Unlike Assisted, Auto considers all fields

and local variables and attempts the same automated refinement as above. The Auto mode

also helps us test the tool. If all the automated refinements are skipped, it is likely that the

transfer or adaptation functions are not correctly handling some language features.

Invalid sequence of refinements. If some of the manual or automated refinements con-

tradict each other, the set mapping is discarded, i.e., one or more variables map to an empty

set. It is possible to construct, using Manual, Auto or Assisted, a sequence of refinements

that leads to a set mapping that is discarded. With no valid set mapping, OOGRE will

not find a typing. A different set of refinements, however, may lead to a valid set mapping,

and OOGRE may find a typing. If OOGRE cannot find a typing using the Assisted mode,

the developers start over and apply another set of refinements. We show an example of an

invalid sequence of refinements in Section 3.8.

Developer Interaction. The procedure to use OOGRE is as follows: 1. Developers launch

OOGRE; 2. They specify the mode: Auto or Manual; 3. Using Auto, they push a button

and wait for the results; 4. If the object graph does not express their design intent or if

OOGRE cannot find a typing, they start over using the Manual mode; 5. Using the Manual

mode, they continue performing refinements to express their design intent; 6. To resolve
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1class Main {

2Listener pieChart = new PieChart();

3Listener barChart = new BarChart();

4Listener model = new Model();

5void run() {

6model.addListener(barChart);

7model.addListener(pieChart);

8barChart.addListener(model);

9pieChart.addListener(model);

10model.notifyObservers();

11barChart.notifyObservers();

12pieChart.notifyObservers();

13}

14}

Figure 3.2: Parts of the code from Listeners example.

conflicts, they optionally inspect a MoreInfoNeeded window about the conflict and perform

a refinement; 7. They continue doing refinements until OOGRE finds a typing. 8. Or if

they do not know how to resolve a conflict, they optionally launch the Assisted mode; 9. If

OOGRE finds a typing, it saves the qualifiers of the inferred typing in the code and extracts

an updated object graph; 10. If OOGRE cannot find a typing, developers start over and

guide the analysis more carefully using different refinements.

3.8 Invalid Sequence of Refinements

We explain how an invalid sequence of refinements may prevent OOGRE from finding

a typing, using an example. We show parts of the code from a small example called Lis-

teners in Fig. 3.2. In this example, the classes Model, BarChart and PieChart are sub-

classes of an abstract class called Listener. So they override the methods addListener and

notifyObservers from Listener. Based on the SOD type system rules, the qualifiers of an

overridden method and all of its overriding methods must be the same.

Consider the following scenario that may happen using Assisted mode:

1. The developers launches OOGRE; 2. They apply a refinement to move the object of

type PieChart inside the PD domain of the root object. The refinement succeeds and changes

the set of qualifiers of the field pieChart;
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MPO(PieChart, Main) =⇒ S[pieChart] = {<PD, owned>}

3. After that refinement, the developers launch Assisted mode; 4. The analysis finds the set

of target variables that contains variables such as barChart and model, but pieChart is not

in the set, since it is the target variable of a manual refinement; 5. When the analysis starts

applying the automated refinements in the Assisted mode, let’s say it applies the following

refinement to move barChart to the owned domain of the root object. This automated

refinement succeeds and changes the set of qualifiers of the field barChart;

MOB(barChart, Main) =⇒ S[barChart] = {<owned, PD>}

6. The analysis applies an automated MakeOwnedBy on model to move it into the owned

domain of the root object, but the refinement is skipped, because at lines 6 and 7, the

method addListener is called on two actual arguments barChart and pieChart with dif-

ferent qualifiers;

MOB(model, Main) =⇒ S[model] = ∅

7. If the analysis attempts MakePartOf on model to move it to the PD domain of the root

object, the refinement is skipped for the same reason;

MPO(model, Main) =⇒ S[model] = ∅
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8. The analysis never finds a typing in this scenario, because the set-based solution is

over-constrained now with the different qualifiers for barChart and pieChart; 9. To solve

this problem, the developers have to ensure that barChart and pieChart have the same

qualifiers e.g., by applying the same manual refinements on them.

The problem can arise using either the Auto or the Manual mode. Using the Auto

mode, the same scenario prevents OOGRE from finding a typing. If, similarly to the above,

developers use the Manual mode and apply refinements on barChart and pieChart that

lead to different qualifiers for them, OOGRE cannot find a typing.

3.9 Additional Contributions over Huang et al.

We extend the Huang et al. framework in important ways:

• Our graphical refinement approach requires showing each object in a domain in the

object graph. As a result, the object graph extraction requires a typing with precise qualifiers,

rather than a typing that uses general qualifiers such as any in UT;

• To support logical containment (MakePartOf refinements) and the SOD type system, we

integrate public domains (n.PD) into the set-based solution, which requires new adaptation

cases. Also, we impose fewer restrictions on the elements of a qualifier, e.g., <p,owner> is

a valid qualifier in SOD whereas OT prohibits the parameter from being of a higher rank.

Therefore, there are many more possible typings that can be extracted from one set mapping

and we have bigger initial sets of possible qualifiers;

• In SOD, an actual domain can be n.PD where n is the name of an object. n can be this

or a final field (or a sequence of final fields). The n.PD actual is the result of adapting

this.PD, which is accessible from outside. In contrast, in OT, n is always this and there is

no PD. The actual this.owned is not accessible from the outside, so it need not be adapted.

For SOD, adaptation has to consider the different cases for n;

• To make the set-based solution work efficiently, we also include object borrowing (lent)

and uniqueness (unique) [12], which also require new adaptation cases.
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In ownership type systems, the assignment rule requires the left-hand and right-hand sides

of an assignment to have compatible qualifiers. One type system, UT, adds flexibility by al-

lowing qualifier subtyping, where any is the most general qualifier. Having a general qualifier

that is highly ranked enables extracting a valid typing from a set mapping efficiently.

To gain both expressiveness, and to make the set-based solution work for SOD, we also

allow more than strict equality at assignments using lent and unique. As a universal

sink, a lent variable allows variables with of any other modifier to be assigned to it. As a

universal source, a unique variable can be assigned to other variables of any other modifier.

So having qualifiers that contain lent and unique in the set of qualifiers of some variables

leads to keeping more qualifiers in the set of qualifiers of other variables in the set mapping.

Furthermore, since unique and lent are highly ranked, the analysis finds a valid typing

from the set mapping efficiently (as we discuss in Section 3.6). Indeed, a previous iteration

of the analysis did not support lent and unique, and more often than not, it did not find a

valid typing from a set mapping, since the sets of qualifiers for SOD are larger compared to

OT or UT. Still, lent and unique bring their own challenge: they are highly ranked, and

less precise than the other SOD modifiers. This challenge is addressed at the level of the

extraction analysis, which uses a separate value flow analysis to resolve lent and unique

into precise domains. We support the lent and unique highly ranked modifiers, which are

more restrictive than any, less precise than the core OD modifiers, but can still be resolved

to actual precise domains using a separate value flow analysis.

3.10 Implementation Considerations

In this section, we discuss the implementation considerations of our inference analysis.

We first explain the data flow analysis that our inference is based on, then we show the user

interface of OOGRE. Next, we explain some implementation details such as how we handle

generic types and library code. At the end of this section, we explain a work around for

having only one ownership parameter.
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3.10.1 Data Flow Analysis

We implemented the inference analysis on a dataflow analysis framework, Crystal [1],

which handles building the Control Flow Graph, the Three-Address Code representation,

and invoking the transfer functions we supply. The analysis saves qualifiers as annotations

in the code, using language support for annotations. We have an independent type-checker

that reads the annotations and type-checks them, and a separate extraction analysis that uses

the annotations to extract the object graph. We manually run the independent type-checker

to validate the inferred qualifiers.

3.10.2 User Interface Prototype

Below, we show a screenshot of a working prototype of the OOGRE Eclipse plugin

(Fig. 3.3), on the same MicroAphyds example. This is the prototype that we propose and

use in our evaluation. The user interface is not this thesis contribution since it has not been

evaluated with users yet.

Figure 3.3: Snapshot of the current Eclipse prototype. The outcomes of attempted and proposed refinements
(done or skipped) are shown below the ownership tree (bottom left).

The left side shows the ownership tree. Starting from the SHARED root domain, each object

contains two domains, and each domain contains zero or more objects. By default, we create

one private domain, called owned, and one public domain, called PD, per object.

Below the tree are the refinements that have been applied. The first column shows the

refinement type, the middle columns show the arguments of the refinement, such as the
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source object, the destination object, and the domain name. Finally, the last column shows

the status of applying the refinement and running the inference analysis. If a refinement is

done, it appears as Completed in the Status column. A skipped refinement has its status

set to Unsupported. Refinements can be exported and re-applied to a system.

The middle part of the screen shows in the Eclipse Java editor the code with the an-

notations that are saved by the inference analysis. The annotations use language support

for annotations available in Java 1.5 or later. The @Domains keyword lists the domains

that a class declares. The @DomainParams keyword lists the domain parameters of a class.

The @Domain("p<q>") annotation on a field, local variable, method parameter, or method

return type, saves the inferred qualifier <p,q> for that variable. A separate type-checker

can optionally check that the code and the annotations are consistent with each other and

report any warnings in the Eclipse Problems window. The right side shows the refined graph

based on running the graph extraction analysis on the code with annotations. The graph is

visualized using nested boxes, which allow expanding or collapsing objects to reveal or hide

lower-level objects.
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1class Vector<E><owner, p> {

2// E: generic type parameter

3// owner, p: ownership parameters

4E<p> obj; // the "trick" is to use one actual here

5// obj is virtual/ghost field that summarizes Vector

6

7// at usage point, p is replaced with two actuals

8void addAll(Vector<E><lent,p> v) {

9...

10}

11}

12class Circuit<owner, p> { // domain parameters

13private domain owned; // private domain

14public domain PD; // public domain

15net = new Net<PD,p>();

16nets = new Vector<Net><owned, PD<p> >();

17// 1. <PD,p> is qualifier of Net object

18// 2. owned is actual for Vector’s owner

19// 3. PD<p> is actual for Vector’s p

20...

21nets.add( net ); // Add object to collection

22net = nets.obj; // Field read

23}

Figure 3.4: A generic collection with one generic type parameter requires a qualifier with an inner/nested
modifier.

3.10.3 Generic Types

For expressiveness and to be able to run OOGRE on real code, we support generic types,

e.g., a Vector<E> (Fig. 3.4), in which the type parameter E is replaced with a type at the

declaration point. Without support for generics, OOGRE is not able to express the ownership

information of the objects in a collection, leading it to skip refinements that should be done.

Our inference analysis infers one additional “inner” parameter for a generic collection class

with one generic type parameter. This is needed to express an object of type Vector<E>

containing objects with the qualifier <q, r>. The Vector object is in some domain p and

has an actual parameter <q, r>. Effectively, the qualifier of Vector is <p, q<r>>

In Fig. 3.5, we show one parametric rule, Adapt-X-Gen. When X = o, it finds the

result qualifier based on the inner and receiver qualifiers. When X = i, it finds the inner

qualifier based on the result qualifier and the receiver qualifier. When X = r, it finds the

receiver qualifier based on the result and the inner qualifiers.



52

Adapt-X-Gen
t1 = <p> t2 = <p0, <q0, w0>>

nrcv : τrcv isGeneric(τrcv)

Γ;nthis;nrcv ⊢ t2 ⊲X t1 = <q0, w0>

Figure 3.5: Adaptation case to support generic types. X can be o for Adapt-Out, i for Adapt-In, and r
for Adapt-Rcv.

We define new adaptation cases for one generic type parameter. In the rule that is shown

in Fig. 3.5, the type variable qualifier, t1, has only the owning domain. The reason is the

receiver type is of a parameterized type, so it has to have an inner element and for the type

argument the domain parameter and inner work like the owning domain and the domain

parameter. Therefore, for the receiver qualifier, t2, there are p0 as the owning domain, q0 as

the domain parameter and w0 as inner . In order to determine if a receiver type is a generic

type, we use the auxiliary judgement isGeneric(τrcv) that accepts the type of the receiver.

3.10.4 Library Code

Compared to Huang et al., we reason more carefully about library code. The current

implementation handles library code in two ways. The first requires generating stubs for

library classes. The inference analysis analyzes the stubs and infers qualifiers for them. As a

result, we add support for generic types to analyze java.util collections (See Section 3.10.3).

By using the ownership parameter, lent, and unique, we infer generally acceptable qualifiers

for collections to enable their reuse across multiple applications [12]. The second way of

analyzing libraries assumes that each library variable receives the default set of qualifiers

{<lent, p>,<owner, p>,<p, p>}. The main advantage of stubs is being able to declare

virtual fields (see Fig. 3.4). Without these, the object graph does not soundly reflect all the

communication and is missing points-to edges between objects.

3.10.5 Working Around the Limitation of a Single Parameter

Ideally, an object of type HashMap<K,V> requires three domain parameters: one for the

container itself, one for the key and one for the value. In SOD, with only two domain
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parameters, we express a map by placing the key and value objects in the same domain and

putting the container in another domain. This is problematic if we want either the key or

the value object in shared, but not the other one, e.g., if the key is of type String and the

value is an interesting architecturally relevant object.

To solve this problem, we specialize the HashMap into StringKeyHashMap where the type

of the key is hard-coded to be a String. We then use manifest ownership (objects of a

certain type are always in a certain domain) of String for the key object and save the

domain parameter p for the value object.

We use the same idea to express a HashMap where its value object is also a container. We

add a class called MultiMap<K,V>. The class MultiMap is a map, where the value object

is of type List<V>. Ideally, the list object is not exposed to the outside, so it is owned by

map. The method get() returns a fresh copy of the list, i.e., unique. The method put()

accepts the key object and a corresponding list that is borrowed, so the qualifier for the list

parameter of the method put() is lent<p>.

3.11 Additional Contributions Over Master’s The-

sis

This dissertation extends my Master’s thesis [23] as follows:

• The system presented here is more scalable than the one in my Master’s thesis. This

system adds the option of resolving conflicts by applying refinements. Developers ap-

ply refinements to resolve conflicts, while in the previous version, the inference analysis

resolves conflicts by enumerating all the possible combinations of qualifiers in the sets

of qualifiers of variables. Enumerating all possible solutions makes the approach un-

scalable; if there are n variables in the program and each variable has m qualifiers in

its set of qualifiers, there are mn different combinations of qualifiers to consider for

resolving a conflict. In this case, the function f from Section 3.6 is the next() function,

which considers all the possible qualifiers one by one. In this version of the inference
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1class StringKeyHashMap<V><owner,p> {

2// Key will be in ’shared<shared>’. Will not use ’p’

3String<shared,shared> key;

4V<p> value;

5...

6V<p> get(String<shared,shared> key) {

7return this.value;

8}

9void put(String<shared,shared> key, V<p> val) {

10this.key = key;

11this.value = val;

12}

13}

14class MultiMap<K,V><owner,p> {

15private domain owned;

16K<p> key;

17List<V><owned,p> value;

18...

19// The method get does not return an alias to the field this.value

20List<V><unique,p> get(K<p> key) {

21List<V><unique,p> newList = new ArrayList<V>();

22newList.addAll(this.value);

23return newList;

24}

25void putAll(K<p> key, List<V><lent,p> val) {

26this.key = key;

27this.value.addAll(val);

28}

29}

Figure 3.6: Special classes for a map with String key and a map from an object to a list of objects.

analysis, when developers apply a refinement to resolve a conflict, the function f is

the max() function, which picks one qualifier. Therefore, to resolve a conflict, the

analysis picks one qualifier for each variable (for the target variables, the picked qual-

ifiers is imposed by the refinement). So, the time complexity to resolve conflicts is not

exponential anymore (see Section 4.8).

• This dissertation adds more flexibility by introducing Auto and Assisted modes. The

previous version of the analysis, OOGRE applies MakeOwnedBy and MakePartOf re-

finements on some variables in the code. However, using the Auto mode, OOGRE

applies automated refinements (including MakePeerWith) on all fields and local vari-

ables. Using the Assisted mode, OOGRE applies the same refinements on fields and

local variables beyond the target variables of the done manual refinements. In this
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version of the inference analysis, developers resolve the remaining conflicts using the

Auto and Assisted modes, and the time complexity is not exponential.

• This dissertation extends adaptation and transfer functions to infer object uniqueness

(unique) and object borrowing (lent). It also incorporates the unique and lent

modifiers into the defined ranking from Master’s thesis, by adding them as the highest

ranked modifiers, where unique is highest, followed by lent. The inference analysis

also respects the type system specific constrains of the unique and lent modifiers.

3.12 Summary

In this chapter, we describe the analysis in detail informally. We discuss different states

of the set mapping in the set-based solution such as initializing it, applying a refinements on

it, running transfer functions on it, and finding a typing from the set mapping. We describe

different modes of OOGRE and how and when to invoke them. We position our approach

by highlighting its key differences with and extensions of closely related work. Finally, we

discuss some implementation considerations and the additional contributions of this work

over the Masters’ thesis. The next chapter has a more formal description of the analysis.
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CHAPTER 4 FORMALIZATION
In this chapter we formalize the inference analysis. We first discuss the abstract syntax

that the analysis is based on. Then we show the adaptation cases for owner, p and shared

modifiers along with the adaptation cases from SOD including PD, unique and lent cases.

We formalize the set-level adaptation cases and transfer functions into inference rules, by

respecting SOD constraints. Next, we formalize the class and method level rules, auxiliary

judgements and SOD type-checking rules. Then we discuss the properties of the set-based

solution and the statements of soundness and correctness of the inference analysis. Finally,

we discuss the time complexity of different modes of the approach and compare it with the

time complexity of the closely related work.

4.1 Abstract Syntax

We formalize our analysis by adapting Featherweight Domain Java (FDJ), which models

a core of a Java-like language with Ownership Domains [11]. To enable comparisons with

Huang et al., we simplify FDJ to the A-normal form and assume that each method has a

single parameter, and each class has a single field. Of course, our implementation handles

the general case. We also simplify FDJ to reflect the SOD simplifications such as hard-coded

domain names and default domain links (See Section 3.1).

In our abstract syntax (Fig. 4.1), C ranges over class names; τ ranges over types; t ranges

over qualifiers; f ranges over field names; v ranges over values; e ranges over expressions;

x ranges over variable names; n ranges over values and variable names; the set of variables

includes the distinguished variable this of type τthis used to refer to the receiver of a method

invocation, field read or field write; m ranges over method names; q and r range over formal

domain parameters, actual domains, or the global domain shared; p ranges over unique,

lent and all the other possible values for the actuals; an overbar denotes a sequence; the

fixed class table CT maps classes to their definitions; a program is a tuple (CT , e) of a class

table and an expression; Γ is the typing context; S defines a map from each variable to a set



57

of qualifiers; T defines a map from each variable to a single qualifier. S[x] denotes reading

the set of qualifiers for x in S; and S ′ = [x 7→ Q]S denotes updating the set of qualifiers for

x in S.

CT ::= cdef
cdef ::= class C<owner, p> extends C′<owner, p> { domain owned; dom; τ f ; md }
dom ::= public domain PD;
md ::= τR m(τ xm) {τ y e; return ym; }
e ::= e; e | x = new C<p, q>() | y = x.f | y = this.f

| x.f = y | this.f = y | x = y | x = y.m(z) | x = this.m(z)
n ::= x | v

q, r ::= owner | p | n.PD | this.owned | shared
p ::= unique | lent | q
τ ::= C<p, q> Type
t ::= <p, q> Qualifier

x, y, z ∈ Variables
Γ ::= x → τ Static typing context
S ::= ∅ | S ∪ {x 7→ {<p, q>}} Set Mapping (SM)
T ::= ∅ | T ∪ {x 7→ <p, q>} Typing

Figure 4.1: Abstract syntax for SOD, adapted from Featherweight Domain Java (FDJ) [11].

Since in n.PD, n can be this, the adaptation has to distinguish between the inner this and

the outer this. To avoid capture during adaptation, we substitute that for the inner this

using [that/this]. In the transfer functions, after adaptation, that is substituted with this

([this/that]) for the inner this, and the outer this is substituted with the corresponding

object name n, using [n/this], if there is n.PD in the resulting set.

Assumptions. The inference runs, after the fact, on an existing Java-like program that

type-checks, and inserts the ownership type qualifiers. In a formalization of SOD, in con-

trast to a formalization of a Java-like language, a type τ = C<p, q> has two orthogonal

components: the class name C and the ownership type qualifier ¡p,q¿. Similarly to Huang et

al., we treat the ownership type system as orthogonal to or independent from the Java type

system. As a result, the inference rules for the transfer functions (Fig. 4.5) do not include

the Java sub-typing checks. Those are in the type-checking rules in Section4.6 (Fig. 4.6).

Running our inference analysis on a Java-like program that does not type-check may lead to

undefined inference results.
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4.2 New Adaptation Cases

Adaptation cases for owner, p and shared are similar to the cases in Huang and Mi-

lanova [22] for Ownership Types. We show them in Section 4.3. We do not have any

restriction over the values of owning domain and domain parameter of a qualifier, so we add

an extra case for adaptation where the inner qualifier is <p, owner>.

The qualifier of an expression is the result of an adaptation, when the receiver of the

expression is not this. In each adaptation case, there is an inner qualifier, a receiver qualifier

and a result or outer qualifier. More formally, we say tout is the result of adapting tin from

the viewpoint of trcv.

trcv ⊲ tin = tout

An inner qualifier can be the qualifier of a field, a method parameter, or a method return.

Other than owner, p and shared, an inner qualifier can contain this.PD, lent or unique,

so we need new adaptation cases to handle them. We show the general adaptation rule

in Fig. 4.2. As the inner qualifier, t1 may contain this.PD, lent or unique. For t1, we

substitute this with that, since t1 is the inner qualifier, and the corresponding variable is

not declared in the class of this. Later on, in the transfer functions, that is substituted

with this again. The qualifier of the receiver, t2, can be any qualifier, so we show it as

<p0, q0>. The result of adaptation, t3, is based on t1 and t2. Writing this in inference rule

format leads to nearly identical rules. Instead, we use a tabular form to show t1, t3 and the

name of the individual cases in Table 4.1.

For example, in the rule Adapt-D-D, t1 has that.PD as its owning domain and domain

parameter. Therefore, independent from t2, t3 is <n.PD, n.PD>, and n is a final field of the

same type as the receiver declared in the current class. In the rule Adapt-D-O, the domain

parameter of t1 is owner, so in the result qualifier, the owning domain of t2 is selected as the

domain parameter, and t3 is <n.PD, p0>.

For the PD cases, if there is no final field n of the receiver type, instead of n.PD, the
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Table 4.1: Adaptation cases for PD. X is lent or unique. t1 is the inner qualifier and t3 is the result
qualifier. is for don’t care, n/a is for an adaptation case that does not apply.

Rule name t1 t3
n is final n is not final

Adapt-A-O <p, owner> <q0, p0> <q0, p0>
Adapt-D-D <that.PD, that.PD> <n.PD, n.PD> n/a
Adapt-D-O <that.PD, owner> <n.PD, p0> <lent, p0>
Adapt-D-A <that.PD, p> <n.PD, qo> <lent, qo>
Adapt-D-S <that.PD, shared> <n.PD, shared> <lent, shared>
Adapt-O-D <owner, that.PD> <p0, n.PD> n/a
Adapt-A-D <p, that.PD> <q0, n.PD> n/a
Adapt-S-D <shared, that.PD> <shared, n.PD> n/a
Adapt-X-D <X, that.PD> < , n.PD> n/a
Adapt-X-O <X, owner> < , p0> < , p0>
Adapt-X-A <X, p> < , qo> < , qo>
Adapt-X-S <X, shared> < , shared> < , shared>

Adapt-Gen
Γ;nthis ⊢ nthis : Cthis<pthis, qthis> t2 = <p0, q0>

Γ;nthis;n ⊢ t2 ⊲ t1 = t3

Figure 4.2: General rule for the adaptation of n.PD, lent and unique. We show a case analysis for t1 and
t3 in Table 4.1. p0 and q0 can be any modifier.

analysis infers lent. For example, in the rule Adapt-D-O, if the analysis cannot find a

final n in scope, the result of adaptation is <lent, p0>. Since lent cannot appear as the

domain parameter of a qualifier, for the rule Adapt-D-D, the result of adaptation cannot

be <lent, lent>. In that case, the adaptation fails and the transfer functions remove the

qualifier <this.PD, this.PD> from the set of qualifiers of inner variable.

We also show the adaptation cases for lent and unique in Table 4.1, which are similar.

The modifiers lent and unique can occur only as the owning domain of a qualifier, so we

have four cases for each one. When the owning domain of the inner qualifier is lent or

unique, the owning domain of the outer qualifier can be any modifier or don’t care, which

we show by in the cases. Using don’t care, the adaptation cases for lent and unique reflect

how values can flow to lent and unique (see Section 3.9).

The judgement form for adaptation is as follows:

Γ;nthis;nrcv ⊢ <px, qx> ⊲ <py, qy> = <pz, qz>
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4.3 Other Adaptation Cases

Adapt-O-O
t1 = <owner, owner> t2 = <p0, q0>

Γ;nthis;nrcv ⊢ t2 ⊲ t1 = <p0, p0>

Adapt-O-A
t1 = <owner, p> t2 = <p0, q0>

Γ;nthis;nrcv ⊢ t2 ⊲ t1 = <p0, q0>

Adapt-A-A
t1 = <p, p> t2 = <p0, q0>

Γ;nthis;nrcv ⊢ t2 ⊲ t1 = <q0, q0>

Adapt-O-S
t1 = <owner, shared> t2 = <p0, q0>

Γ;nthis;nrcv ⊢ t2 ⊲ t1 = <p0, shared>

Adapt-A-S
t1 = <p, shared> t2 = <p0, q0>

Γ;nthis;nrcv ⊢ t2 ⊲ t1 = <q0, shared>

Adapt-S-S
t1 = <shared, shared> t2 = <p0, q0>

Γ;nthis;nrcv ⊢ t2 ⊲ t1 = <shared, shared>

Figure 4.3: Adaptation cases for owner, p and shared.

For completeness, in Fig. 4.3, we include adaptation cases for owned, owner, p and shared,

which are similar to the cases in Huang and Milanova [22] for OT, and rep, own and p and

norep, respectively.

4.4 Set-level Adaptation

In the set-based solution, in order to handle all the possible combinations of qualifiers, each

transfer function uses three types of adaptation functions that operate on sets of qualifiers.

First, Adapt-Out (⊲o) adapts qualifiers of the outer variable by accepting qualifiers of the

inner and the receiver (nrcv) variables as input. Second, Adapt-In (⊲i) adapts qualifiers

of the inner variable by accepting qualifiers of the outer variable and the receiver variable

as input. Third, Adapt-Rcv (⊲r) adapts qualifiers of the receiver variable by accepting

qualifiers of the outer variable and the inner variable as input.

The judgement form for set-level adaptation is as follows, where Qi is a set of quali-

fiers:

Γ;nthis;nrcv ⊢ Q1 ⊲X Q2 = Q where X = o or X = i or X = r
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Adapt-Out
tin ∈ Qin trcv ∈ Qrcv

∀tin ∈ Qin, ∀trcv ∈ Qrcv, Γ;nthis;nrcv ⊢ trcv ⊲ tin = tout tout ∈ Qout

Γ;nthis;nrcv ⊢ Qin ⊲o Qrcv = Qout

Adapt-In
tout ∈ Qout trcv ∈ Qrcv

∀tout ∈ Qout, ∀trcv ∈ Qrcv, Γ;nthis;nrcv ⊢ trcv ⊲ tin = tout tin ∈ Qin

Γ;nthis;nrcv ⊢ Qout ⊲i Qrcv = Qin

Adapt-Rcv
tout ∈ Qout tin ∈ Qin

∀tout ∈ Qout, ∀tin ∈ Qin, Γ;nthis;nrcv ⊢ trcv ⊲ tin = tout trcv ∈ Qrcv

Γ;nthis;nrcv ⊢ Qout ⊲r Qin = Qrcv

Figure 4.4: Set-level adaptation functions.

4.5 Transfer Functions

Our transfer functions generalize the transfer functions in Huang et al. to handle SOD

qualifiers with PD, lent and unique. A transfer function accepts an expression and S and

accesses the set of qualifiers of the variables of the expression in S. By intersecting the

sets of qualifiers of variables, a transfer function removes the infeasible qualifiers from the

set of qualifiers of the variables. Then it updates the sets of qualifiers of the corresponding

variables in S and creates S ′. Fig. 4.5 shows the inference rules for each transfer function.

For the transfer functions that require adaptation, we handle qualifiers that contain n in

n.PD. We highlight in gray our extensions to the Huang et al. rules. The judgement form

for the transfer function over an expression e is as follows:

Γ;S;nthis ⊢ e, S′

Object creation. The rule TF-New transfers over an object creation expression that

consists of a left-hand side variable x and a call to the constructor of the class C. The

qualifier <p, q> and the class C form the type of the object being created. Due to SOD
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TF-New
p ∈ {unique, owned, PD, owner, shared}

S′ = [x→ (S[x] ∩ {<p, q>})]S

Γ;S;nthis ⊢ x = new C<p, q>(), S′

TF-Assign
<lent, qx> 6∈ S[x] =⇒ <lent, qy> 6∈ S[y]
S′ = [x→ (S[x] ∩ S[y]), y → (S[x] ∩ S[y])]S

Γ;S;nthis ⊢ x = y, S′

TF-FieldRW
<lent, qf> 6∈ S[f ] <unique, qf> 6∈ S[f ]

Γ;nthis;x ⊢ S[x] ⊲o [that/this]S[f ] = Qo <lent, qf> 6∈ S[f ] =⇒ <lent, qo> 6∈ Qo

∀to ∈ Qo s.t. to = <x.PD, q> or to = <p, x.PD> or to = <x.PD, x.PD> ∃t ∈ S[y] s.t. [x/this]t = to
Qo ∩ (S[y]← to ) = Qy Γ;nthis;x ⊢ Qy ⊲i S[x] = Qi Qi ∩ S[f ] = Qf

Γ;nthis;x ⊢ Qy ⊲r Qf = Qr Qr ∩ S[x] = Qx S′ = [y → Qy, f → [this/that]Qf , x→ Qx]S

Γ;S;nthis ⊢ x.f = y or y = x.f, S′

TF-ThisFieldRW
<lent, qf> 6∈ S[f ] <unique, qf> 6∈ S[f ] S′ = [y → (S[y] ∩ S[f ]), f → (S[y] ∩ S[f ])]S

Γ;S;nthis ⊢ this.f = y or y = this.f, S′

TF-Invk
mdbody(m) = (xm, ym) <lent, qym

> 6∈ S[ym] <unique, qxm
> 6∈ S[xm]

Γ;nthis; y ⊢ S[y] ⊲o [that/this]S[xm] = Q1o <lent, qxm
> 6∈ S[xm] =⇒ <lent, q1o> 6∈ Q1o

∀t1o ∈ Q1o s.t. t1o = <y.PD, q> or t1o = <p, y.PD> or t1o = <y.PD, y.PD> ∃t1 ∈ S[z] s.t. [y/this]t1 = t1o
Q1o ∩ (S[z]← t1o ) = Qz Γ;nthis; y ⊢ Qz ⊲i S[y] = Q1i Q1i ∩ S[xm] = Qxm

Γ;nthis; y ⊢ S[y] ⊲o [that/this]S[ym] = Q2o <lent, qym
> 6∈ S[ym] =⇒ <lent, q2o> 6∈ Q2o

∀t2o ∈ Q1o s.t. t2o = <y.PD, q> or t1o = <p, y.PD> or t2o = <y.PD, y.PD> ∃t2 ∈ S[x] s.t. [y/this]t2 = t2o
Q2o ∩ (S[x]← t2o ) = Qx Γ;nthis; y ⊢ Qx ⊲i S[y] = Q2i Q2i ∩ S[ym] = Qym

Γ;nthis; y ⊢ Qz ⊲r Qxm
= Q1r Γ;nthis; y ⊢ Qx ⊲r Qym

= Q2r Q1r ∩Q2r ∩ S[y] = Qy

S′ = [z → Qz, xm → [this/that]Qxm
, x→ Qx, ym → [this/that]Qym

, y → Qy]S

Γ;S;nthis ⊢ x = y.m(z), S′

TF-ThisInvk
mdbody(m) = (xm, ym) <lent, qym

> 6∈ S[ym] <unique, qxm
> 6∈ S[xm]

S′ = [z → (S[z] ∩ S[xm]), xm → (S[z] ∩ S[xm]), x→ (S[x] ∩ S[ym]), ym → (S[x] ∩ S[ym])]S

Γ;S;nthis ⊢ x = this.m(z), S′

Figure 4.5: Transfer functions.

constraints, the object cannot be created in lent or p. The rule intersects the set of qualifiers

of x with the qualifier <p, q>, which means the qualifier of x is <p, q>.

Assignment. The rule TF-Assign extracts the set of qualifiers of the left-hand side (x)

and right-hand side (y) variables and intersects them. If there is no qualifier with lent as

the owning domain in the set of qualifiers of x, the set of qualifiers of y cannot contain lent

neither. The reason is a lent variable cannot be assigned to a variable that is not lent.

Finally, the rule updates the sets of qualifiers of both variables in S and creates S ′.

Field read and write. We show one transfer function for field read and write expressions
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(the rule TF-FieldRW). A field cannot map to qualifiers that contain lent or unique.

First, the rule substitutes this with that for the qualifiers of the field f , since f is not

declared in the class of this. To compute the updated set of qualifiers for y, Adapt-Out

computes a set of qualifiers, Qo. The set Qo cannot contain lent, since the set of qualifiers of

f does not contain lent. So the rule removes any qualifier with lent as the owning domain

from Qo. Moreover, for each qualifier to in Qo in which to contains x.PD as the owning

domain, the domain parameter, or both, if there is a qualifier t in set of qualifiers of y (S[y])

where instead of x.PD, t contains this.PD, the rule substitutes this with x for t. Then the

rule intersects Qo with S[y], and the result is the new set of qualifiers for y, Qy. To compute

the new set of qualifiers of f , Adapt-In computes a set of qualifiers, Qi using Qy. Then,

the rule intersects Qi with S[f ] The result is Qf , which is the new set of qualifiers for f .

Next, for the receiver x, Adapt-Rcv computes a set of qualifiers using Qy and Qf , which

is Qr. The rule intersects Qr with S[x] to find the new set of qualifiers for x, Qx. In Qf ,

the rule substitutes that with this and updates the set of qualifiers of the variables in S to

generate S ′.

Field read and write with this as the receiver. When the receiver of a field read or

a field write expression is this, there is no need for adaptation. Therefore, the rule TF-

ThisFieldRW intersects the sets of qualifiers of the left-hand or the right-hand sides with

the set of qualifiers of the field. The rule ensures that there is no qualifier that contains

lent or unique in the set of qualifiers of the field. The rule creates S ′ by updating the set

of qualifiers of the variables in S.

Method invocation. In the input expression of the rule TF-Invk, x is the left-hand side

variable, and y is the receiver. The ym variable represents the return of the method. The

variable z is the argument of the method invocation. By calling the mdbody() auxiliary

judgement (see Section 4.6), the rule extracts xm that is the formal method parameter. The

rule asserts that a method parameter cannot be unique as it is unsupported in this version,

and a method return cannot be lent. First, the rule substitutes this with that in the sets
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the qualifiers of xm and ym, since they are not declared in the class of this. The rule does

Adapt-Out using the sets of qualifiers of y and xm and the resulting set is Q1o. The result

of Adapt-Out may contain lent. A qualifier with lent as the owning domain in Q1o is

valid, if the set of qualifiers of xm contains lent. Otherwise, the rule removes lent from

Q1o. For each qualifier t1o in Q1o, if t1o contains y.PD as the owning domain, the domain

parameter, or both, if there is a qualifier t1 in set of qualifiers of z (S[z]) where instead of

y.PD, t1 contains this.PD, the rule substitutes this with y for t1. The set Q2o is the result of

Adapt-Out using the sets of qualifiers of y and ym. Again, the rule validates lent qualifiers

in Q2o and substitutes this with y for each qualifier t2 in S[x], if there is a corresponding

qualifier t2o in Q2o containing y.PD. By intersecting Q1o with S[z] and Q2o with S[x], the

rule computes the new sets of qualifiers for z and x, which are Qz and Qx, respectively. By

applying Adapt-In on Qz and S[y], the rule computes a set of qualifiers Q1i and the result

of intersecting it with S[xm] is the new set of qualifiers for xm, Qxm
. Again, by applying

Adapt-In on Qx and S[y], and intersecting the result with S[ym], the rule computes the new

set of qualifiers of ym, Qym . For y, the rule does Adapt-Rcv and computes the result using

Qz, Qf , Qx and Qm. Then it intersects the result of Adapt-Rcv with S[y] and computes

Qy, the new set of qualifiers for y. For xm and ym, that is substituted with this in the

computed sets of qualifiers.

Method invocation with this as the receiver. There is no need for adaptation, if

the receiver of a method invocation is this. The rule TF-ThisInvk ensures that the set

of qualifiers of the method parameter does not contain unique and the set of qualifiers of

the method return does not contain lent. The rule intersects the set of qualifiers of the

formal method parameter with the actual method argument and updates the sets of the

corresponding variables with the resulting set in S. Also, it intersects the set of qualifiers

of the left-hand side with the method return variable and updates their sets of qualifiers

in S and creates S ′. The higher-level rules and the auxiliary judgements are shown in

Section4.6.
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Γ(x) = Cx<px, qx> C <: Cx <px, qx> = <p, q> px ∈ {owned, PD, owner, shared}

Γ ⊢ x = new C<p, q>()
[T-New]

Γ(x) = Cx<px, qx> Γ(y) = Cy<py, qy> Cy <: Cx

<px, qx> = <py, qy> px 6= lent =⇒ py 6= lent

Γ ⊢ x = y
[T-Assign]

Γ(x) = Cx<px, qx> Γ(y) = Cy<py, qy>
τf f ∈ CT (Cx) τf = Cf<pf , qf> pf 6= lent pf 6= unique Cy <: Cf

<px, qx> ⊲ <pf , qf> = <py, qy> py 6= lent pubsig(f)

Γ ⊢ x.f = y
[T-Write]

Γ(y) = Cy<py, qy> τf f ∈ CT (Cthis) τf = Cf<pf , qf> pf 6= lent

pf 6= unique Cy <: Cf <pf , qf> = <py, qy> py 6= lent

Γ ⊢ this.f = y
[T-ThisWrite]

Γ(x) = Cx<px, qx> Γ(y) = Cy<py, qy>
τf f ∈ CT (Cy) τf = Cf<pf , qf> pf 6= lent pf 6= unique Cf <: Cx

<py, qy> ⊲ <pf , qf> = <px, qx> pubsig(f)

Γ ⊢ x = y.f
[T-Read]

Γ(x) = Cx<px, qx> τf f ∈ CT (Cthis) τf = Cf<pf , qf> pf 6= lent

pf 6= unique Cf <: Cx <pf , qf> = <px, qx>

Γ ⊢ x = this.f
[T-ThisRead]

mdtype(m) = τm → τr Γ(x) = Cx<px, qx> Γ(y) = Cy<py, qy> Γ(z) = Cz<pz, qz>
τm = Cm<pm, qm> τr = Cr<pr, qr> Cr <: Cx Cz <: Cm

<py, qy> ⊲ <pm, qm> = <pz, qz> pm 6= lent =⇒ pz 6= lent

<py, qy> ⊲ <pr, qr> = <px, qx> pr 6= lent pubsig(m)

Γ ⊢ x = y.m(z)
[T-Invk]

mdtype(m) = τm → τr Γ(x) = Cx<px, qx> Γ(z) = Cz<pz, qz>
τm = Cm<pm, qm> τr = Cr<pr, qr> Cr <: Cx Cz <: Cm

<pz, qz> = <pm, qm> pm 6= lent =⇒ pz 6= lent <pr, qr> = <px, qx>
pr 6= lent pubsig(m)

Γ ⊢ x = this.m(z)
[T-ThisInvk]

Figure 4.6: Typing rules for SOD, adapted from OD [11] and including lent and unique [12]

4.6 SOD Typing Rules

It is important that the transfer functions only include qualifiers in the set mapping that

type-check the corresponding expression. By applying the SOD typing rules, the transfer

functions guarantee that. After finding a maximal typing, the SOD typing rules are used in

order to reason about the correctness of the qualifiers in the typing. We adapt the typing rules
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τ f pubsig(C, f) md OK in C

class C<owner, p> extends C′<owner, p>... OK
[ClsOK]

CT (C) = class C<owner, p> extends C′<owner, p> . . .
override(m,C′<owner, p>, τ → τR)

τ = C<p1, q1> τR = Cr<p2, q2> mdtype(m) = τ ′ → τ ′R τ ′ = C′<p3, q3>
τ ′R = C′

r<p4, q4> pubsig(m) <p1, q1> = <p3, q3> <p2, q2> = <p4, q4>

τR m(τ x) { τ y e; return ym; } OK in C
[MethOK]

Figure 4.7: SOD type system constraints.

for SOD to this framework (Fig. 4.6). We expand the rules from Ownership Domains [11]

to include special cases for when the receiver is this, as for the transfer functions. Most

crucially, we adapt the rules to use viewpoint adaptation instead of substitution of formals to

actuals in FDJ [11]. In SOD, there is no subtyping between qualifiers, just qualifier equality.

Also, SOD imposes its own type system constraints, such as prohibit object creation with

an owner being p (T-New). An object can be created only in a local domain of this or its

own domain.

Two rules work on a higher level than variables or expressions (Fig. 4.7). MethOK

ensures that for an overriding method the qualifier of the method parameter is the same as

the qualifier of the method parameter of the overridden method, and similarly, for the return

type. Moreover, if method is a public method, then its parameter or its return type cannot

have owned in their qualifiers. ClsOK checks that a public field cannot be owned, and that

all the methods in a class are valid based on MethOK.

The auxiliary judgements mdType() and mdBody() return the type and the body of a

method, respectively. The auxiliary judgement pubsig() enforces the SOD constraints on the

qualifiers of public methods and fields. First, pubsig(C, f) checks if the field f in the class

C has the visibility modifier public, its qualifier cannot contain owned. Also, pubsig(m)

checks if a method is public, then the qualifier for its method parameter or its return cannot

contain owned (Fig. 4.8).



67

Aux-mdtype
(τR m(τ x) {τ y e; return ym; }) ∈ md

mdtype(m) = τ → τR

Aux-mdbody
(τR m(τ x) {τ y e; return ym; }) ∈ md

mdbody(m) = (x, ym)

Aux-mpublic
public(m) mdtype(m) = τ → τ ′

τ = C<p, q> τ ′ = C′<p′, q′>
p 6= owned q 6= owned

p′ 6= owned q′ 6= owned

pubsig(m)

Aux-fpublic
τ f ∈ CT (C) public(f)

τ = C′<p, q>
p 6= owned q 6= owned

pubsig(C, f)

Figure 4.8: Auxiliary judgements.

4.7 Properties of Set-Based Solution

Since our inference analysis instantiates the Huang et al. by providing the set of qualifiers,

adaptation functions, and SOD constraints, unsurprisingly, the soundness property of the

inferred qualifiers holds. We adapt their Proposition 1 and show it holds for our set-based

solution. Proposition 1 states if the set-based solution removes a qualifier from the set of

qualifiers of a variable, then there is no valid typing that contains the removed qualifier.

Proposition 1. Let S be the set-based solution. Let x be any variable in a program P , and

let <p, q> be any qualifier in SOD. If <p0, q0> 6∈ S[x0] for some x0, then there does not exist

a valid typing T for program P in SOD such that T [x] = <px, qx> and <px, qx> ∈ S[x] for

all x and T [x0] = <p0, q0>.

Proof. (Sketch) We say that <p, q> is a valid qualifier for x if there exists a valid typing

T , where T [x] = <p, q>. Let x0 be the first variable that has a valid qualifier <p0, q0>

removed from its set S[x0] and let fe be the transfer function that performs this removal.

Since <p0, q0> is a valid qualifier for variable x0 in expression e, for the other variables in

e, there exist other valid qualifiers <p1, q1>,...,<pn, qn> that make e type-check in SOD. If

<p1, q1> ∈ S[x1], ..., <pn, qn> ∈ S[xn], then by definition of a correct transfer function, fe

would not have removed <p0, q0> from S[x0]. So one of x1, . . . , xn must have had a valid

qualifier removed from its set before the application of fe. This contradicts the assumption

that x0 is the first variable that had a valid qualifier removed from its set of qualifiers.
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Local Soundness of the transfer functions. There is a transfer function fe for each

expression e. Each transfer function fe takes as input a set mapping S, and outputs an

updated mapping S ′. Let fe be the transfer function that removes the invalid qualifiers from

the set of qualifiers of each variable xi ∈ e. After the application of fe, for each variable

xi ∈ e, and each <pi, qi> ∈ S ′[xi], there exists <p1, q1> ∈ S ′[x1],..., <pi−1, qi−1> ∈ S ′[xi−1],

<pi+1, qi+1> ∈ S ′[xi+1], . . . , <pn, qn> ∈ S ′[xn], such that <p1, q1>,...,<pn, qn> type-check

with the rule for e in Fig. 4.6. Making e type check requires that the typing rule for e

holds.

∀xi ∈ e, S ′[xi] = {<pi, qi>|

<pi, qi> ∈ S[xi] and

∃<p1, q1> ∈ S ′[x1], . . . , <pi−1, qi−1> ∈ S ′[xi−1],

<pi+1, qi+1> ∈ S ′[xi+1], . . . , <pn, qn> ∈ S ′[xn] s.t.

<p1, q1>, . . . , <pn, qn> type-check with the rule for e}

Proposition 2. If. after n refinements, there is a valid typing T and the extracted object

graph G based on T is sound.

Proof. (Sketch) For each variable x in the program, T [x] maps to a qualifier <p, q>. For

all variables x, the qualifier <p, q> = T [x] type-checks the expression e where x ∈ e.

Therefore, the typing T type-checks every expression in a program P , and based on the

soundness of the object graph discussion in [3] the object graph is sound. Using abstract

interpretation, the extraction analysis reads the qualifier T [x] for each variable x and extracts

a sound object graph. The soundness proof is left for future work.
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4.8 Time Complexity

The state of the art of ownership inference, Huang et al. [21], claims a quadratic time

complexity on the number of variables. At each iteration of the inference analysis, the set of

qualifiers of at least of one of the variables of the program changes to a smaller set. Therefore,

the upper bound time complexity of each iteration of the inference analysis is O(|QF |
2 ∗ n),

where n is the number of variables and QF is the full set of qualifiers of the type system.

Another important point is that n counts the TAC variables, which are not actual variables

in the program, but the set-based solution treats them the same as the variables declared in

the program. Therefore, n is a multiple of the number of variables that are declared in the

program. The size of QF for OT and UT are 3 and 6, respectively, which are small constants.

The analysis may make as many iterations as there are variables (or finish sooner if it hits

an empty set). So the overall time complexity of the set-based solution is O(|QF |
2 ∗ n2) and

the upper bound time complexity is O(n2).

Huang et al. instantiate their framework for OT and UT. Since the optimality property

holds for UT, the time complexity for inferring UT qualifiers is quadratic. For OT, the time

complexity is quadratic, multiplied by a constant C, which is the number of times developers

run the analysis after adding qualifiers to resolve conflicts. Recall, in OT, developers make

the sets for selected variables to be singletons by specifying the full pair <p, q>. The number

of such annotations is around 2-10 per KLOC. If each refinement corresponds to changing

only the owning domain of one qualifier, based on Huang et al. measures, 4-20 completed

refinements may be needed per KLOC.
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Upper bound time complexity for UT : O(n2) s.t. n is number of variables

Upper bound time complexity for OT : C ×O(n2) s.t. n is number of variables and

C is the number of times that developers run the analysis before it can find a typing.

C is roughly (2-10 * LOC(P )/1000) where LOC is the lines of code in program P .

In our approach and using SOD, the time complexity of running the inference analysis

for each refinement is quadratic. The size of QF for SOD is at most 28, which is a relatively

big constant and makes the running time of the set-based solution for SOD a factor of its

running time for OT or UT. If the program contains n variables and the developers attempt

m refinements, the time complexity to find a valid typing is m × O(|QF |
2 ∗ n2). If we add

the second ownership parameter, the upper bound for the size of QF would be 73 (three

parameters including owner and two domain parameters). By adding the third ownership

parameter, the size of QF would be 74 that significantly slows down each iteration of the

analysis.

Upper bound time complexity for SOD, this work : m×O(n2) s.t. n is number of the

variables m is the number of refinements

Compared to my Masters’ thesis version of this work (Section 3.11), this is a big im-

provement. In the former system, the time complexity is exponential after each refinement,

while running the transfer functions is also quadratic, the analysis has another phase where

it tries to resolve all the remaining conflicts by enumerating all the possible combinations

of the qualifiers for all the variables. If the program has n variables and each variable has l

qualifiers in its set of qualifiers, then the time complexity for each refinement is O(ln). So
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for m attempted refinements, the overall time complexity is m×O(ln)

Upper bound time complexity for SOD, MS work : m×O(ln) s.t. n is the number of

variables and m is the number of refinements and l is the number of qualifiers

for each variable

For the Auto and Assisted modes, the overall end-to-end time complexity is higher. For

each automated refinement, the time complexity of running the adaptation and transfer

functions is still O(n2). If there are m variables as the target variables of the automated

refinements, the worst case is to apply all the three kinds of refinements (MakeOnwedBy,

MakePartOf and MakePeerWith) on all m variables. Therefore, the total time complexity is

O(mn2). The upper bound is O(n3), since the refinements can be applied on all the variables

in the program. For Assisted, the constant m would be lower, since some of the variables

would be the target variables of the manual refinements, but the upper bound is the same.

4.9 Summary

In our approach, we go to great pains to never infer qualifiers that fail to type-check.

To enforce these guarantees, we formalize the inference analysis using a core model of the

language, and respect the type system typing rules. In fact, the transfer functions enforce the

typing rules on the set mapping and for each set of qualifiers, with respect to the expression

that the variable is used in. The typing rules type-check a typing that maps each variable to

a single qualifier. Even though we model our approach for a subset of the language, we still

formalize the adaptation for additional language features such as generic types that require

the inner ownership parameter and inheritance. Supporting those features enables us to

evaluate the analysis on real world subject systems. In the following chapter, we evaluate

the approach using two subject systems.
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CHAPTER 5 EVALUATION
In this chapter, we evaluate OOGRE using two subject systems. First, we explain the

evaluation method, then we mention the pre-processing steps for each subject system. Next,

we discuss the evaluation on the first subject system, JDepend. Then we discuss the evalu-

ation on the second subject system, MiniDraw. We use “we”, this dissertation’s author, to

refer to the developer conducting the evaluation.

5.1 Evaluation Method

Using the following steps, we evaluate each subject system. The steps are:

1. We pre-process the code of a subject system in preparation to run the inference and

extraction analysis;

2. We follow the developer interaction steps explained in Section 3.7;

3. We apply refinements;

4. We measure how many refinements are attempted, done, skipped, and classify them

by refinement type;

5. We measure the time of each done or skipped refinement;

6. We compute metrics on the inferred qualifiers of a typing;

7. We extract object graphs;

8. We visually compare hierarchical object graphs of a subject system with each other

and with its flat object graph and highlight important differences;

9. We compute some predefined metrics on the object graphs and compare the results.

5.2 Code Pre-processing

We preprocess the code of a subject system as follows. Some steps are done using refac-

toring tool support in Eclipse, others are done manually.

1. Extracting local variables: the idea is to be able to add a qualifier at an object creation

expression; our current implementation does not support specifying qualifiers directly
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on object creation expressions;

2. Adding generic type arguments: the extraction analysis abstracts objects to pairs of

type and domain; so it is useful to have precise declared types, including generic types;

3. Removing unnecessary casts after adding generic type arguments;

4. Replacing use of iterators with for loops: having only one ownership domain param-

eter, SOD is not able to express the Iterator design pattern;

5. Converting anonymous classes to top-level classes: the idea is to be able to attach

declarations of owner and p domain parameters to a class declaration;

6. Adding missing default constructors: in the dataflow analysis framework, the transfer

functions need the constructors in order to analyze declarations of fields of a non-

primitive type;

7. Adding library stubs: the default qualifiers for library code lead to unsoundness

(missing edges) in the object graph; we add library stubs for some of the classes in

java.lang, java.io and java.util packages and declare virtual/ghost fields in the

java.util collection classes;

8. Adding a synthetic Main class: the extraction analysis needs a single class that serves

as the type of the root object, and declares the top-level domains;

9. The implementation produces one entry point for the application: the object graph

extraction requires a single rooted object graph. For example, JDepend has 3 entry

points: swingui, xmlui and textui; we pick swingui;

5.3 JDepend Evaluation

The first subject system we evaluate is called JDepend, and is 4766 LOC. We do not

know much about this system, so we first use the Auto mode to extract a first object graph.

By studying the object graph, we gain an understanding of the design intent of the system

and the interactions between the important objects. Since the Auto mode does not quite

express our design intent, we start over using the Manual mode to express our design intent.

In this section, we list the summary of the refinements from which Auto and Manual modes
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infer a typing. We also measure the qualifiers inferred by Auto and Manual. Separately, we

reproduce the Huang et al. experiment using OT for the same system. We compute metrics

on the object graphs of the three experiments and compare the results. Section 5.3.4 shows

the details of each manual refinement and the object graphs.

5.3.1 System Overview

JDepend traverses packages of a Java project to generate metrics, such as number of

classes and interfaces, number of packages that depend upon the classes of a package (Afferent

Coupling), and number of packages that classes of a package depend on (Efferent Coupling).

So the architecturally relevant classes are JavaClass, JavaPackage, and their dependent

classes such as PackageComparator, JavaClassBuilder and ClassFileParser. The classes

AfferentNode and EfferentNode express the coupling relationships.

5.3.2 Auto Mode

We follow the developer interaction in Section 3.7 for the Auto mode, and OOGRE finds a

typing in 55 minutes (First two rows of Table 5.1). The object graph helps us to understand

the system. One drawback of the Auto mode is some objects may not be placed in a domain

that we want. For example, the object of type Analyzer is strictly encapsulated in the

JDepend object, so it is not visible at the top level. However, the object of type Analyzer is

the key logic of the application, and we want to see that object in a top-level domain.

5.3.3 Summary of Attempted Refinements

Using the Manual mode, we attempt 28 refinements in total to express our design intent

and resolve conflicts, and out of those, 24 are done. At first, we apply 16 refinements to

express our design intent, and out of those 14 are done. However, those refinements are

not enough for OOGRE to find a typing, so we apply 14 more refinements to resolve the

remaining conflicts, out of which 12 are done. We summarize the attempted refinements in

the last two rows of Table 5.1.
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Table 5.1: Attempted and done refinements using Auto and Manual modes. A refinement can be Make-
OwnedBy (MOB), MakePartOf (MPO), MakePeerWith (MPW) or MakeShared (MSH). For the Manual
mode, a (D) indicates that the refinement expresses design intent and a (C) indicates that the refinement
resolves a conflict. #Mins is the average time in minutes for each refinement.

OOGRE mode Total #refinements #Each type of refinement #Mins
MOB MPO MPW MSH

Auto-Attempted 372 183 109 80 0 0.14
Auto-Done 169 74 29 66 0 0.32
Manual-Attempted 16 (D) + 12(C) 12 4 11 1 1.36
Manual-Done 14 (D) + 10(C) 9 3 11 1 1.57

5.3.4 Details of Manual Refinement Using the Manual Mode

We list here the 28 refinements that we do to express the design intent and to resolve

conflicts using the Manual mode. A “-TLD” suffix after a refinement means its destination

domain is a top-level domain:

1. MakePeerWith(Analyzer, JDepend): By looking at the object graph resulting from

the Auto experiment, we understand that the object analyzer of type Analyzer is

an architecturally-relevant object that has to be in a top-level domain. Therefore, we

make it peer with the object of type JDepend; as the first refinement, there are many

infeasible qualifiers that the analysis removes from the sets of qualifiers of the variables,

so this refinement takes longer than the other refinements;

2. MakePeerWith(AfferentNode, JDepend): Another important object in JDepend is

the object of type AfferentNode that we want also in a top-level domain; so we make

the object of type AfferentNode peer with the object of type JDepend;

3. MakeOwnedBy(JPanel, JDepend): Our design intent is that the objects related to

the Swing user interface should not be placed at the top level of the object graph, so

we make this UI object of type JPanel strictly encapsulated;

4. MakePeerWith(JavaPackage, JDepend): Another architecturally-relevant object of

the application is of type JavaPackage and we want to see it at the top level of the

object graph, i.e., peers with other architecturally-relevant objects; therefore, we make

the object of type JavaPackage peer with the object of type JDepend;

5. MakePeerWith(DependTree, JDepend): We apply this refinement to express the
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design intent that the object of type DependTree must go hand in hand with the other

objects, such as the objects of type JDepend, AfferentNode and JavaPackage at top

level of the object graph;

6. MakePeerWith(JavaClassBuilder, Analyzer): Another important object is the

object of type JavaClassBuilder and we want to see it at the top level of the ob-

ject graph, i.e., peers with other important objects; so, we make the object of type

JavaClassBuilder peers with the other important objects;

7. MakeOwnedBy(Constant, ClassFileParser): We do not want to see less

architecturally-relevant objects at the higher levels of the object graph, so we make

the object of type Constant strictly encapsulated in the object that creates it;

8. MakeOwnedBy(PropertyConfigurator, Analyzer): By looking at the object

graph from Auto, we see that one of the less important objects of type

PropertyConfigurator is at the same level as the important object of type Analyzer;

so to unclutter the top level of the object graph, we apply this refinement, but it

is skipped since an alias to the object of type PropertyConfigurator is passed to

another object via a public method;

9. MakePeerWith(PropertyConfigurator, Analyzer): We apply this refinement to

make the object of type PropertyConfigurator peers with the object of type

Analyzer;

10. MakeOwnedBy(ArrayList<String>, Analyzer): We express the design intent that

the data structure objects should be in lower levels of the object graph; so we make

the object of type ArrayList<String> encapsulated in the object of type Analyzer;

11. MakePartOf(ArrayList<JavaClass>, JavaClassBuilder): To move objects of a

data structure type in the lower levels of the object graph, we make the object of

type ArrayList<JavaClass> strictly encapsulated, but we know that there is a pubic

method in the code that returns an alias to that object, so it cannot be strictly en-

capsulated; therefore, we apply this refinement, but it is also skipped due to a missing
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final field;

12. MakeOwnedBy(GridLayout, JDepend): By looking at the resulting object graph of

Auto and to unclutter its top-level, we make the UI object of type GridLayout strictly

encapsulated;

13. MakePartOf(JarFile, JavaClassBuilder): The next refinement is to express the

design intent that one object is part of another one; we express that the object of type

JarFile is logically contained in the object of type JavaClassBuilder;

14. MakeOwnedBy(PackageComparator, JDepend): By looking at the resulting object

graph of Auto, we make the object of type PackageComparator, which is not architec-

turally relevant, strictly encapsulated in the object of type JDepend;

15. MakePeerWith(AfferentNode, AfferentNode): We want to see the object of type

AfferentNode at the top level of the object graph; that object creates another object

of the same type and to make them peers at the top level, we apply this refinement;

16. MakePartOf(PackageComparator, PackageComparator): To express the design in-

tent of the class PackageComparator, which implements the Composite design pattern,

we make the object of type PackageComparator part of itself by applying this refine-

ment; This is the classic example of the Composite design pattern in which an object

is part of an object of the same type;

17. MakeOwnedBy(PropertyConfigurator, PackageFilter): At this point we are

done with the refinements that express our design intent, but OOGRE still can-

not find a typing; so we open the MoreInfoNeeded window to investigate the

conflicts and do refinements to resolve them. The conflict is the expression

config.getFilteredPackages(); in the class PackageFilter. We apply this re-

finement by looking at the set of qualifiers of the variables of the conflict expression.

OOGRE is still unable to find a typing and there are more conflicts to resolve;

18. MakeOwnedBy-TLD(JDepend, Main): The next conflict is the method invocation

expression jDepend.instanceMain(args); in the Main class; this is a conflict at the
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top-level domain and we apply this refinement to resolve the conflict; we know that

the owned domain of the Main class does not have the properties of a private domain,

but we do this refinement to resolve the conflict;

19. MakeOwnedBy(DataInputStream, ClassFileParser): The next conflict is the ex-

pression new DataInputStream(is); in the class ClassFileParser; by looking at the

set of the qualifiers of the variables of the conflict, we apply this refinement to resolve

the conflict;

20. MakeShared(fileInputStream): The next conflict is parser.parse(fis); in the

class JavaClassBuilder; We know that the object of type FileInputStream is from

the library and it is intended to be shared between different objects; therefore, we

apply this refinement and it resolves the conflict;

21. MakePeerWith(FileManager, JavaClassBuilder): Another conflict to resolve is

fileManager.acceptJarFile(file12); we make the FileManager object peers with

the JavaClassBuilder object;

22. MakePartOf(FileInputStream, PropertyConfigurator): The next conflict to re-

solve is new FileInputStream(file); in the class PropertyConfigurator; the left-

hand side of the object creation expression contains qualifiers with PD as their owning

domain in its set of qualifiers, so we make the FileInputStream part of the object of

type PropertyConfigurator;

23. MakeOwnedBy(AttributeInfo, ClassFileParser): The next conflict to resolve is

the method invocation result.setValue(value); in the class ClassFileParser; the

receiver, result is of type AttributeInfo, so we apply this refinement to resolve the

conflict;

24. MakeOwnedBy(ArrayList<ParserListener>, ClassFileParser): The next con-

flict to resolve is the method invocation parseListeners.add(listener);; the re-

ceiver ,parseListeners is of type ArrayList<ParserListener>; to resolve this con-

flict we should apply a refinement with the destination object of type AbstractParser,
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but AbstractParser is an abstract class and does not have a representative node in

the object graph; so we apply this refinement, since ClassFileParser is a subclass of

AbstractParser; however, the refinement is skipped;

25. MakeOwnedBy(ArrayList<ParserListener>, Parser): To resolve the same con-

flict, we change the destination object of the previous refinement to be Parser as the

other subclass of AbstractParser, but this refinement is also skipped;

26. MakePeerWith(JDependParserListener, JDepend): The two previous refinements

to resolve the conflict are skipped, so we do a refinement on the elements of the

list of type ParserListenerto resolve the conflict; ParserListener is an Inter-

face type and we do the refinement on one of the classes that implements it,

JDependParserListener; we apply this refinement and it resolves the conflict, but

there is another conflict to resolve;

27. MakePeerWith(AfferentNode, DependTree): Another conflict to resolve is new

AfferentNode(null, javaPackage); in the class DependTree; our design intent is

that the objects of type AfferentNode and DependTree should be peers at the top

level of the object graph, so we make those objects peers, but OOGRE reports the

same conflict expression;

28. MakePeerWith(JavaPackage, DependTree): OOGRE reports the same conflict, but

now the problem is the set of qualifiers of the argument of the constructor, javaPackage

of type JavaPackage; our design intent expresses that the object of type JavaPackage

should also be peer with the object of type DependTree; so we apply this refinement

and it resolves the conflict; after this refinement, the analysis finds the typing that

expresses our the design intent and OOGRE extracts the object graph.

The summary of the refinements is shown in Table 5.2. For each of the 28 refinements,

we show the type of the refinement with a (D) if the refinement expresses design intent

or a (C) if the refinement resolves a conflict. For example, refinement 1 is a MPW(D)

i.e., we use MakePeerWith to express the object of type Analyzer be peer with the ob-
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ject of type JDepend. The remaining refinements express code idioms and design patterns

e.g., refinement 16, MPO(D) expresses the Composite design pattern for the object of type

PackageComparator by making it part of itself. Next, we apply refinements to resolve con-

flicts, for example, using the refinement 20, which is a MSH(C), we resolve a conflict by

placing the object of type FileInputStream in the domain shared.

Table 5.2: The refinements on JDepend to find a typing. The first column is the type of a refinement
(MakeOwnedBy (MOB), MakePartOf (MPO), MakePeerWith (MPW) and MakeShared (MSH), prefix “S-”
means the refinement is a SplitUp, suffix “-TLD” means the destination domain of the refinement is a top-
level domain) (D) indicates that the refinement expresses design intent, (C) indicates that the refinement
resolves a conflict. The rest of the columns are: type of the source and the destination objects of a refinement,
the analysis running time to apply each refinement in minutes and if the refinement succeeded or not.

No. Ref. (D/C) Source Type Destination Type #Mins Status
1 MPW(D) Analyzer JDepend 7.56 Done
2 S-MPW(D) AfferentNode JDepend 2.83 Done
3 MOB(D) JPanel JDepend 2.78 Done
4 S-MPW(D) JavaPackage JDepend 3.32 Done
5 MPW(D) DependTree JDepend 0.53 Done
6 S-MPW(D) JavaClassBuilder Analyzer 0.48 Done
7 MOB(D) Constant ClassFileParser 1.40 Done
8 S-MOB(D) PackageConfigurator Analyzer 0.15 Skipped
9 S-MPW(D) PackageConfigurator Analyzer 0.50 Done
10 S-MOB(D) ArrayList<String> Analyzer 1.07 Done
11 MPO(D) ArrayList<JavaClass> JavaClassBuilder 0.15 Skipped
12 MOB(D) GridLayout JDepend 0.48 Done
13 MPO(D) JarFile JavaClassBuilder 0.93 Done
14 MOB(D) PackageComparator JDepend 1.09 Done
15 S-MPW(D) AfferentNode AfferentNode 2.06 Done
16 S-MPO(D) PackageComparator PackageComparator 0.87 Done
17 S-MOB(C) PropertyConfigurator PackageFilter 1.35 Done
18 MOB-TLD(C) JDepend Main 0.70 Done
19 MOB(C) DataInputStream ClassFileParser 2.86 Done
20 S-MSH(C) FileInputStream shared 0.52 Done
21 S-MPW(C) FileManager JavaClassBuilder 1.45 Done
22 S-MPO(C) FileInputStream PropertyConfigurator 0.74 Done
23 MOB(C) AttributeInfo ClassFileParser 1.99 Done
24 MOB(C) ArrayList<ParserListener> ClassFileParser 0.10 Skipped
25 MOB(C) ArrayList<ParserListener> Parser 0.10 Skipped
26 MPW(C) JDependParserListener JDepend 0.94 Done
27 S-MPW(C) AfferentNode DependTree 0.60 Done
28 S-MPW(C) JavaPackage DependTree 0.61 Done

5.3.5 Metrics on the Inferred Qualifiers

Table 5.3 measures the qualifiers of the inferred typings by OOGRE in the Auto and

Manual modes. For the reproduced experiment, we show its numbers (OT-repro), as well
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as the original numbers (OT-orig). We reproduce the OT experiment by translating OT

qualifiers into the SOD subset (i.e., not using PD, lent or unique) to be able to extract

the object graph and compute metrics on it. In reproducing the experiment, we keep the

explicit qualifiers they provide1 and supply remaining ones that respect the OT ranking. The

OT-repro numbers are slightly different from the OT-orig ones because of the pre-processing

steps (Section 5.2, e.g., isolating and analyzing only the swingui entry point) and the library

stubs that we add. So the number of variables is the same for Auto, Manual and OT-repro

and different from Huang et al. for OT-orig and UT.

When discussing Table 5.3 below, we compare the owning domain of the inferred qualifiers.

We refer to them simply as modifiers. By comparing the modifiers of Auto and Manual,

Auto tends to respect the ranking more. So the number of the local domain modifiers

(owned or PD) is higher in the typing that Auto infers. This is unsurprising since Auto

attempts MakeOwnedBy first to find all the strictly encapsulated objects. For the objects

that are not encapsulated, Auto attempts MakePartOf on their corresponding variables.

Finally, if an object is neither strictly encapsulated nor logically contained, Auto attempts

MakePeerWith. Therefore, more objects are placed in owned, PD, or owner compared to

Manual. Using the Manual mode, we express our design intent, which can be different from

the results of Auto. If we want to see an object at top level of the object graph, then we do

not attempt MakeOwnedBy on it, instead we use a MakePeerWith. For this system, we did

not think carefully about the top-level domains and how to split objects in them. So we put

all the objects in one top-level domain (owned), which leads to no p modifiers. The analysis

infers owner and does not use p, if we place objects in the same top-level domain. If we

split objects across two top-level domains, the analysis infers p, like in the typing inferred

by Auto that contains 32 p modifiers. If we were to redo the evaluation, we would split the

objects in two top-level domains.

Comparing Auto and OT-repro, Auto infers 19 more owned modifiers, because it exhaus-

1http://www.cs.rpi.edu/ huangw5/cf-inference/
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tively attempts to make every variable owned. Also Auto infers 59 PD modifiers that OT

does not support. Those modifiers are mostly replaced with owner and p in OT-repro. As a

result, the object graph of Auto is more hierarchical than the one from OT-repro (Look at

Table 5.5 for metiers on the object graphs).

Manual infers fewer owned modifiers compared to OT-repro. Our design intent is to place

the architecturally relevant objects at the higher levels of the hierarchy, not make as many

objects as possible to be encapsulated. Also OT forces objects to be either owned or peers,

but with SOD objects can be in a public domain as shown by the 33 PD modifiers.

For Huang et al.’s UT experiment, the optimality property holds and there is no need

to resolve conflicts. However, there are only 14 owned modifiers out of 542. Instead, there

are 433 owner modifiers (really peer in UT) that make many objects peers, so the object

graph does not have much hierarchy. Moreover, there are 95 any modifiers that provide no

ownership information and 102 purity modifiers that must be separately inferred.

We compare the number of operations such as automated refinements, manual refine-

ments, or manually added qualifiers across the experiments (Table 5.4). Auto attempts

319 automated refinements. Using the Manual mode, we apply 28 manual refinements. In

OT-repro, we add 21 qualifiers manually, compared to Huang et al. who add 26 qualifiers

manually.

The qualifiers do not directly describe the structure of the object graph. For example, it

is hard to estimate the depth of architecturally-relevant objects or low-level objects in the

object graph from the qualifier of their corresponding variables. So we extract object graphs

and compute metrics on them for the Auto, Manual and OT-repro experiments.

5.3.6 Object Graphs

Fig. 5.1 shows the object graph for Auto, Fig. 5.2 illustrates the object graph for Manual

and the object graph for OT-repro is Fig. 5.4. We show only the top-level objects expanded.

We expect to see more architecturally-relevant objects from the application at the top level

of each graph rather than low-level objects that are data structures such as ArrayList and
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Table 5.3: Metrics on the qualifiers for the different experiments. vars is the number of variables. Each
column named with a modifier indicates the number of qualifiers with that modifier as the owning domain.
For example, column owned indicates the number of <owned, > qualifiers. The column <p> is the number
of qualifiers in that form, for variables that are type parameters. The columns any and pure are only
applicable to UT and indicate the number of any and the number of pure qualifiers that are added to the
code, respectively.

Experiment vars owned PD owner p shared <p> lent unique any pure

Auto 562 122 59 110 32 131 46 34 28 n/a n/a
Manual 562 73 33 110 0 165 46 61 74 n/a n/a
OT-repro 562 103 n/a 168 119 123 46 3 n/a n/a n/a
OT-orig [21, Fig. 10] 542 130 n/a 156 128 128 n/a n/a n/a n/a n/a
UT [21, Fig. 9] 542 14 n/a 433 n/a n/a n/a n/a n/a 95 102

Table 5.4: Total number of operations to find a typing for each experiment.
Experiment Operations Notes
Auto 319 automated refinements; no input from developers
Manual 28 manual refinements; developers indicate p in a qualifier
OT-repro 21 manual qualifiers; developers indicate both p and q in a qualifier
OT-orig [21, Fig. 10] 26 manual qualifiers; developers indicate both p and q in a qualifier
UT [21, Fig. 9] 0 no input from developers since the optimality property holds

Hashtable for most applications.

Thanks to different types of manual refinements, Manual enables us to express our design

intent by showing all the important objects at the top level. We see objects of type JDepend,

Analyzer, JavaPackage, EfferentNode, AfferentNode and their relations at the top level.

Also we do not see swing UI objects or data structures at the top level. Using Manual,

we manage to move most of those less important objects to the lower levels of the graph

and the remaining ones cannot be moved further down, because the code does not support

the refinements. On the other hand, owing to the ranking and the ability to express logical

containment (which is not present in OT), Auto manages to find all the strictly encapsulated

objects and all the object that can be logically contained in the object graph, so it splits

objects between the two top-level domains. Therefore, the resulting object graph is very

hierarchical and its maximum depth is 36 (Table 5.5). Even though there are objects that

we want to see at the top level such the object of type Analyzer, Auto, however, moves

them down to lower levels of the object graph.
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5.3.7 Analysis of the Object Graphs

We show the flat object graph of JDepend in Fig. 5.3. By comparing the flat object graph

with the hierarchical object graphs from each experiment, we notice that using OOGRE,

the hierarchical object graphs are more readable and useable. In addition to comparing

hierarchical object graphs with the flat one, we analyze the hierarchical object graphs to

understand what we can learn from each one.

By looking at the object graph of the Auto experiment (Fig. 5.1), we notice that this

object graph has five objects in the top-level domains. Although it is a huge improvement

over the flat object graph, this object graph does a poor job of showing important objects

of the application and their communication. To use this object graph, developers have to

drill down to find the important objects and to understand how they interact with the

other objects. Although the object graph is hierarchical, it is still big and finding a specific

object can be hard. We address this issue using the Manual experiment, by moving the

architecturally relevant objects to the top-level domains.

Using the Manual experiment, we have the flexibility to move some of the important

objects to top-level domains of the object graph to highlight their communication with other

objects. We do refinements on the objects of type Analyzer, EfferentNode, AfferentNode

and DependTree to move them to the top level (highlighted in the object graph, Fig. 5.2). By

looking at the top level of the object graph, we understand that the object of type JDepend

points-to an object of type DependTree, which has a model of type DependTreeModel. The

model object has EfferentNode and AfferentNode objects that share an object of type

JavaPackage (highlighted path/thick edges in the object graph). The object graph from the

Auto experiment looks less busy and more concise, but by showing important objects and

their relations, the object graph from the Manual experiment is more useful for understanding

the system.

Having the hierarchical object graphs from each experiment, the question is: can we make

the object graph from the Manual experiment more hierarchical? There are some objects
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in the shared domain, and there are some object without any edges, let us see if we could

move those objects from the shared domain to some other domains. For the objects of type

String, Integer, Double, Float and Long, we could use the notion of manifest ownership

and move them to the shared domain. We could hide the shared domain and all of its

objects, since there is not much reasoning about objects in shared. However, we do not

want to make the object graph unsound, so we show the shared domain. The object graphs

currently show only points-to edges. If we were to show some other kinds of edges like data

flow edges, we would likely see edges for the objects with no points-to edges. Another object

that we see in the shared domain is the object of type FileInputStream, for which we do

a MakeShared refinement (refinement number 20 in Table 5.2).

The approach may require additional kinds of refinements to make the final graphs even

more abstract. Abstraction by type is one kind of refinement that merges two or more

objects of some distinct subclasses of a super class into an object of the type of the super

class [3]. Abstraction by type can be readily added to OOGRE since it involves changing

how the graph is displayed and requires no changes to the inference analysis. However, for

JDepend, there are not many inheritance hierarchies and subclasses, so it is not likely to

help here. Another kind of refinement that could make the final object graphs more abstract

is abstraction by name [35].

In the object graph of the OT-repro experiment(Fig. 5.4), we highlight the objects that

are placed in the top-level domain owned of the object, but they are not in the top level of the

object graph of the Manual experiment. There are 4 data structure objects and one low-level

object of type File (highlighted with a solid filled arrow points to each one) that are placed

in the top-level owned, but we mange to move them in lower levels using Manual. We are

able to move those objects that are not strictly encapsulated in PD, but using OT-repro, they

have to stay peers with the objects that create them. Moreover, there are 2 swing UI objects

(highlighted with an empty-fill arrow pointing to each one), which are placed in the top-level

owned in the object graph of OT-repro, but they are not at the top level of the object graph
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of the Manual experiment. There is one data structure object of type ArrayList<Byte>

(highlighted with an empty-fill dashed border arrow pointing to it), which is in the top-

level owned for OT-repro, but for Manual, that object is in shared, which is caused by the

MakeShared refinement that we do on the object of type FileInputStream.

5.3.8 Metrics on the Object Graphs

We compute some previously defined metrics [35] on the object graphs of the three ex-

periments and the results are in Table 5.5. The metrics are as follows:

1. Number of Objects (#O): the number of all the objects in the object graph;

2. Top-Level Objects (#TLO): the number of objects at the top-level domains;

3. Number of Low-Level Objects in Top-Level Domains (#LLO): a low-level

object is an object that the developer does not want to see it at top level of the object

graph, e.g., data structure objects;

4. Objects in PD (#OPD): the number of objects in the public domain (PD);

5. Objects in PrD (#OPrD): the number of objects in the private domain (owned);

6. Object Depth (OD): the object depth, including the Average (Avg OD), Minimum

(Min OD) and Maximum (Max OD);

7. Maximum Depth of Ownership Hierarchy (MXD): the longest path length from

the root object in the object graph.

Using Auto, since the extraction analysis keeps objects that are in different domains

as distinct, #O is higher than the other experiments, due to many refinements that Auto

automatically applies. Moreover, Auto has lower #TLO because it aggressively pushes

objects down to get more hierarchy. If an object cannot be in owned, it can be in PD. OT-

repro has the highest #TLO since it does not support public domains and has to make

objects peers. In Manual, we express our design intent to see important objects at the top

level, so its #TLO is higher compared to Auto. Unlike OT which has only owned or peer,

with SOD, we can still push objects down by placing them in PD using Manual, so its #TLO

is lower than OT-repro. The #OPD is zero for OT-repro, so OT cannot group objects of
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the same hierarchy level in different domains and they have to be peers. The #OPrD is

higher for OT-repro, because private domains (owned) are the only type of hierarchy that

OT supports, but for SOD, these objects will be scattered across owned or PD. Also #OPrD

is higher for Auto compared to Manual, because of MakeOwnedBy refinements that Auto

applies exhaustively before any other type of refinement. The metrics related to depth of

hierarchy (MXD and AOD) are relatively the same, but the MAX OD for Auto is higher than

the others, since it exhaustively attempts all possible refinements and respects the ranking.

The Max OD is higher for OT-repro compared to Manual, since our goal when using Manual

is not to maximize hierarchy but to simply express our design intent.

Table 5.5: Object graph metrics extracted from the inferred typings across the three experiments.
Experiment #O #TLO #LLO #OPD #OPrD MXD AOD min OD max OD
Auto 124 5 0 41 82 5 0.54 0 36
Manual 89 18 0 40 48 4 0.52 0 18
OT-repro 107 26 0 0 106 5 0.65 0 26
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Figure 5.1: The object graph extracted from the typing for the Auto experiment.



89

SHARED

owned

file1:

File

value2:

Long

files:

ArrayList<File>

boolean1:

Boolean

NEWWWname:

BoxLayout

NEWWWname:

BorderLayout

value:

Float

parser(+):

ClassFileParser

jClass(+):

JavaClass

parserListener:

JDependParserListener

filter(+):

PackageFilter

value3:

Double

value:

ArrayList<Byte>

-:

String

in:

FileInputStream

jPackage(+):

JavaPackage

efferents:

ArrayList<JavaPackage>

pane:

JScrollPane

counter(+):

Parser

borderLayout:

BorderLayout

jDepend(+):

JDepend

efferentTree(+):

DependTree

analyzer(+):

JDepend

model(+):

DependTreeModel

efferentNode(+):

EfferentNode

afferentNode(+):

AfferentNode

fileManager(+):

FileManager

builder(+):

JavaClassBuilder

config(+):

PropertyConfigurator

main:

Main

NEWWWname:

Font

interger:

Integer

NEWWWname:

IOException
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Figure 5.3: The flat object graph extracted from the default qualifiers for JDepend.
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Figure 5.4: The object graph extracted from the typing for the reproduced OT experiment.
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5.4 MiniDraw Evaluation

For our next system, MiniDraw (MD) (1.4 KLOC), we study its documented class dia-

grams, propose some refinements that express our design intent, then attempt them using

OOGRE. We then evaluate if the extracted object graphs express our design intent.

5.4.1 System Overview

MD is an object-oriented framework for building graphical board game applications. We

analyze one board game application, BreakThrough, built using MD. MD follows good

object-oriented practice such as programming to an interface (has 17 interfaces), and poly-

morphism. MD also implements several design patterns such as Composite and Com-

mand.

MD follows the standard framework layering: core interfaces, default implementation

classes of those interfaces, and utility classes. The framework package is a framework for

graphical applications. The boardgame package is a framework to build a board game. MD

uses the minidraw framework to build the BreakThrough board game and the breakthrough

package contains the logic of the BreakThrough board game.

5.4.2 Summary of Refinements of Auto and Assisted Modes

Auto finds a typing for MD after 21 minutes. Although we set out to express the design

intent from the available documentation, we still run Auto to recognize in the abstractions ex-

tracted from the code the architecturally relevant objects highlighted in the documentation.

OOGRE finds 166 fields and local variables in the code and applies on them MakeOwnedBy,

MakePartOf and MakePeerWith automated refinements. Table 5.6 shows the number of

attempted and done refinements.

Using the Assisted mode, OOGRE finds 162 fields and local variables to attempt refine-

ments on. After 19 minutes, when Assisted attempts 331 refinements out of which 104 are

done, OOGRE finds a typing. Table 5.6 shows the done and attempted refinements using

the Assisted mode.
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Figure 5.5: The top-level domains of the object graph for MD using the Auto mode. The root object is
expanded. The (+) on an object label indicates a collapsed object sub-structure.

Table 5.6: Attempted and done automated refinements by Auto and Assisted modes on MD.
Auto Assisted

MOB MPO MPW Total MOB MPO MPW Total
Done 51 6 75 132 46 5 53 104

Attempted 115 109 34 258 162 111 58 331

5.4.3 Procedure To Identify Refinements

We study the documentation and identify refinements as follows:

1. We look for different types of relations (association and aggregation) between classes

in the class diagrams;
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Figure 5.6: The top-level domains of the object graph for MD using the Assisted mode. The root object is
expanded. The (+) on an object label indicates a collapsed object sub-structure.

2. If the association relation is one-to-one from class A to B, then the object of type A can

be part of the object of type B (MakePartOf) or they can be peers (MakePeerWith);

3. If the association is one-to-many from object of type A to the object of type B, there

is a collection of objects of type B and ideally the collection is strictly encapsulated in

the object of type A, if A does not expose an alias to the collection;

4. An aggregation relation (has-a) indicates either a MakePeerWith or a MakePartOf

refinement between the corresponding objects;

5. For an interface or abstract class in a class diagram, we find objects of the concrete

classes or subclasses as the source and destination objects of a refinement.
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5.4.4 Details of the Identified Refinements

By applying the procedure of finding refinements from the class diagrams and expressing

the Model-View design, we found the following refinements to express the design intent of

MD. The summary of the refinements in shown in Table 5.7.

• MakePartOf-TLD(MiniDrawApplication, BreakThrough): This refinement ex-

presses the two-tiered Model-View design; the object of type MiniDrawApplication is

a View object, since it is a subtype of the Drawing interface; we move this object to

the top-level PD domain;

• MakePartOf-TLD(SelectionTool, BreakThrough): This refinement moves the ob-

ject of type SelectionTool to the top-level domain PD of the root object to express

the two-tiered Model-View design;

• MakeOwnedBy-TLD(BoardDrawing, BreakThrough): This refinement expresses

that the object of type BoardDrawing that is a Model object and it is in the top-

level owned domain; the refinement is skipped because the object is created by the

factory object BreakthroughFactory; so we apply another refinement on the factory

object to move it to the top-level owned domain;

• MakeOwnedBy-TLD(BoardFigure, BreakThrough): Another refinement is for

moving a Model object into the top-level owned domain, but the BoardFigure object

is also created by a factory object (BreakthroughPieceFactory), so the refinement is

skipped;

• MakeOwnedBy-TLD(BreakthroughFactory, BreakThrough): This refinement

moves a factory object to the top-level domain owned; the factories create Model ob-

jects; in order to place the factory in the same domain as the object that it creates

(BoardDrawing), we move the factory in the top-level owned;

• MakePartOf-TLD(JPanel, BreakThrough): The object of type JPanel is also a

View object and we move it to the top-level PD;

• MakeOwnedBy-TLD(GameStub, BreakThrough): In the class diagram for the
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breakthough package, there is an association between Game and BreakThoughMain

classes; since Game is an interface type and GameStub is its subclass, we do this refine-

ment on the object of type GameStub to move this model object to the top-level owned

domain;

• MakeOwnedBy-TLD(BreakthroughPieceFactory, BreakThrough): This refine-

ment moves another factory object to the top-level domain owned to make the factory

object peer with the object that it creates (BoardFigure);

• MakeOwnedBy(ArrayList<Figure>, BoardDrawing): In the class diagram for

the boardgame package, there is a one-to-many association from BoardDrawing

to BoardFigure; since the association is one-to-many, we understand that the

BoardDrawing class have a collection of BoardFifure objects and apply MakeOwnedBy

to make the collection strictly encapsulated;

• MakePeerWith(BoardActionTool, BoardFigure): The class diagram of the

boardgame package shows an association between BoardActionTool and BoardFigure

classes; BoardActionTool is a tool class provided by the framework, which provide

some functionality to be used by the BoardFigure class;

• MakePeerWith(MoveCommand, BoardFigure): BoardFigure creates the Command ob-

ject to implement the Command design pattern e.g., to enable the undo functionality;

so there is an association between the two classes, but no object would own the Com-

mand object; we apply this refinement to make the object of type MoveCommand peers

the object of type BoardFigure;

• MakePeerWith(PositioningStrategy, BoardFigure): In the boardgame package

class diagram, PositioningStrategy implements the Strategy design pattern; some

algorithms of BoardFigure is represented in the Strategy object e.g., to enable finding

a position calculations; we make the Strategy object peer with BoardFigure by doing

a MakePeerWith refinement;

• MakePeerWith(DrawingChangeEvent, BoardDrawing): In the class diagram for
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Table 5.7: Refinements on MD to express design intent. A ”-TLD” after the type of a refinement means
that the destination domain is a domain of the root object.

No. Ref. Source Type Destination Type #Mins Status
1 MPO-TLD MiniDrawApplication BreakThrough 0.87 Done
2 MPO-TLD SelectionTool BreakThrough 0.17 Done
3 MOB-TLD BoardDrawing BreakThrough 0.04 Skipped
4 MOB-TLD BoardFigure BreakThrough 0.04 Skipped
5 MOB-TLD BreakthroughFactory BreakThrough 0.11 Done
6 MPO-TLD JPanel BreakThrough 0.14 Done
7 MOB-TLD GameStub BreakThrough Done (auto-ref)
8 MOB-TLD BreakthroughPieceFactory BreakThrough Done (auto-ref)
9 MOB ArrayList<Figure> BoardDrawing Not Attempted
10 MPW BoardActionTool BoardFigure Not Attempted
11 MPW MoveCommand BoardFigure Done (auto-ref)
12 MPW PositioningStrategy BoardFigure Done (auto-ref)
13 MPW FigureChangeEvent BoardFigure Done (auto-ref)
14 MPW DrawingChangeEvent BoardDrawing Done (auto-ref)

Table 5.8: Summary of the manual refinements on MD to express design intent.
#Refinements #Attempted #Done #Not-Attempted #Auto-Ref #Mins (Avg)

14 6 4 8 6 0.22

the framework package, there is a one-to-one association between the types

DrawingChangeEvent and Drawing; so we apply a MakePeerWith refinement between

the objects of types DrawingChangeEvent and BoardDrawing.

• MakePeerWith(FigureChangeEvent, BoardFigure): In the class diagram of

the framework package, there is a one-to-one association between the types

FigureChangeEvent and Figure; so we apply another MakePeerWith refinement be-

tween FigureChangeEvent and BoardFigure as the subclass of Figure.

Summary of the refinements. Table 5.8 shows the summary of the refinements. We

identify 14 refinements to attempt, attempt 6 refinements, and of those, 4 are done. In the

process of attempting the first 6 refinements, another 6 are done as auto-refinements, which

we explain in Section 3.5. The details of the refinements are in Section 5.4.4.

After we attempt refinements to express the design intent, OOGRE cannot find a typing,

because there are conflicts to resolve. We could attempt more manual refinements to resolve

conflicts, but for MD, it is harder since the system uses a framework to implement an

application and there can be conflicts in parts of the framework code that are not used by
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the application. In that case, we cannot do more refinements to resolve conflicts, since there

may be no object in the object graph for which the traceability information includes variables

involved in the conflict expression. So to find a typing, we launch the Assisted mode and let

OOGRE attempt more refinements on variables (as opposed to objects in the graph).

5.4.5 Metrics on the Inferred Qualifiers

The qualifiers in the typings inferred using the Auto and Assisted modes are shown in

Table 5.9. By looking at the numbers, we confirm that the Auto mode tends to respect the

ranking more by inferring more owned, PD and owner qualifiers. The Assisted mode infers

more p and shared qualifiers, because of the manual refinements that we apply to infer the

two-tiered architecture. Our design intent is to split the top-level objects across two top-level

domains, so the analysis infers 50 qualifiers with p as the owning domain. The number of

lent and unique qualifiers is almost the same for Auto and Assisted modes.

Table 5.9: Number of different qualifiers in the inferred typings using Auto and Assisted modes. The first
column indicates the number of variables. The columns with a modifier indicate the number of qualifiers
with that modifier as the owning domain in the typing. For example, the column owned indicates the number
of qualifiers in the form of <owned, q> where q can be any modifier. We have a column for the number of
qualifiers in the form of <p>.

Experiment vars owned PD owner p shared <p> lent unique

Auto 521 40 16 167 14 129 75 55 25
Assisted 521 35 11 138 50 140 75 49 23

5.4.6 Intent: Expressing Two-Tiered Design

For MD, we study the documentation and propose refinements to express our design

intent, and OOGRE finds a typing and extracts a refined object graph. We confirm that

the extracted object graph visually expresses the design intent from the class diagrams. The

main design intent in MD is the two-tiered Model-View architecture. The MiniDraw and

BoardGame frameworks follow that style and impose it on the client applications. We use the

two top-level domains owned and PD to express Model and View, respectively. Therefore,

we place DrawingView and its subclasses like MiniDrawApplication that are View objects

in the top-level PD and Model objects like Game, BoardDrawing and BoardFigure in the

top-level owned.
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Expressing Model. The Model objects like BoardDrawing and BoardFigure are created

by some factory objects, so are not able to move them to the top-level owned directly using

MakeOwnedBy. We apply the refinement on the factory object to move the objects that

the factory creates to the same domain. By studying the object graph, we confirm that the

Model objects are in the top-level owned. Some of the remaining refinements are done as

auto-refinements. For example, we want to place the object of type GameStub in Model. We

get the result as an auto-refinement (#7 in Table 5.7, Section 5.4.4). Also we want to express

that the objects of types FigureChangeEvent and DrawingChangeEvent are peers with the

objects of type BoardFigure and BoardDrawing, respectively. The auto-refinements (13 and

14 in Table 5.7) achieve this result.

Expressing View. We apply refinements to place objects such as JPanel in View. We

apply a MakePartOf on the object of type JPanel and move it to the top-level PD domain.

Some other View objects like the object of type StandardDrawingChangeListenerHandler

also move to the top-level PD due to auto-refinements. By looking at the object graph,

we confirm that View objects are in the top-level PD domain. Overall, we are able to use

refinements to make the object graph reflect our design intent.

5.4.7 Object Graphs

We show the object graph of MD that is obtained from the Assisted mode in Fig. 5.6. By

applying manual refinements, the Assisted mode enables us to express the two-tiered design,

Model-View. The View objects such as the objects of type MiniDrawApplication, JPanel

and subclasses of Tool are in the top-level PD domain. Model objects such as BoardDrawing

and BoardFigure are in the top-level owned domain. The Auto mode does not distinguish

between Model and View objects and moves all the top-level objects to the top-level domain

owned (Fig. 5.5). The reason is Auto attempts first MakeOwnedBy and the refinements on

those objects are done.
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5.4.8 Analysis of the Object Graphs

We show the flat object graph of MD in Fig. 5.7. The top-level of the object graphs from

the Auto and Assisted modes are less busy comparing the flat one. The object graph from

the Auto mode adds hierarchy to the flat object graph, but is does not express the design

intent of the application. So we use the Assisted mode to get a hierarchical object graph

that expresses our design intent.

By comparing the hierarchical object graphs from the Auto and Assisted modes, we notice

that the Assisted mode expresses the Model-View design of MD by splitting the top-level

objects between the two top-level domains. In the object graph from the Auto mode, all

the top-level objects are in the same top-level domains owned. Using Assisted, the object

graph reflects our design intent, but in the resulting object graph for Auto, all the objects

are placed in the top-level owned domain, which does not express the two-tier design.

In the object graph from the Assisted mode, the objects that contain the logic of the

application, such as GameStub, BoardDrawing and BoardFigure (highlighted in the object

graph, Fig. 5.6) are in the top-level domain owned that is mapped to Model. The user

interface objects, such as swing objects, and subtypes of Drawing interface (highlighted in

the object graph) are in the top-level domain PD, which is mapped to View. Some objects

are in the shared domain, which can be due to using manifest ownership e.g., objects of type

String. Also, as we mentioned for JDepend, if we show other kinds of edges, then we would

see less objects with no edges. We show only the points-to edges in the object graphs.

5.4.9 Metrics on the Object Graphs

We compute some metrics on the object graphs of the Auto and Assisted modes (Ta-

ble 5.10). The object graph of the Auto mode has higher #O, since it distinguished more

objects by applying the automated refinements on each field and local variable. The Assisted

mode has higher #TLO, because some of our manual refinements make some objects peers,

such as the factory objects and the objects that they create. Expressing the two-tiered de-
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Figure 5.7: The flat object graph extracted from the default qualifiers for MD.

sign using Assisted mode leads to higher number of objects in PD (#OPD). However, the

Auto mode has more objects in owned, since it applies MakeOwnedBy refinements first. The

depth of hierarchy in both object graphs is almost the same, but MAX OD for the Auto

mode is higher, due to all the automated refinements that the Auto mode applies.

Table 5.10: Object graph metrics extracted from the inferred typings across Auto and Assisted modes.
Experiment #O #TLO #LLO #OPD #OPrD MXD AOD min OD max OD

Auto 57 19 1 6 50 4 0.53 0 19
Assisted 47 21 1 9 37 4 0.53 0 12
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CHAPTER 6 DISCUSSION, LIMITA-

TIONS, FUTURE WORK AND CONCLU-

SION
In this chapter, first we revisit each hypothesis and and summarize our evidence for each

one. Then we revisit the thesis statement of this dissertation to see how the approach meets

its goals overall. Next, we mention some limitations of the approach, some future work and

conclude.

6.1 Hypotheses Revisited

We revisit the hypotheses, their success criteria and evidence, with respect to the results of

evaluating OOGRE on the subject systems JDepend and MD. We provide specific examples

on how each success criteria or evidence is supported by the result of our evaluation.

H1: Hierarchical Object Graph

A hierarchical object graph leads to fewer visible objects at the higher levels of the object

graph, since more objects are collapsed underneath other objects, compared to a flat object

graph, in which all the objects are at the same hierarchy level.

Success criteria.

• Using OOGRE, we are able to extract hierarchical object graphs for the JDepend and

MD subject systems, that contain two types of hierarchy, strict encapsulation that is

illustrated using MakeOwnedBy refinements and logical containment that is the result

of MakePartOf refinements;

• Using OOGRE, we express an object hierarchy that provides architectural abstraction.

For example, in Table 5.2, using the refinement number 10, we move an object of type

ArrayList<String>, which is a data structure to lower levels of the object graph;

• Using the SplitUp refinement, we split an object into objects of the same type in
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different domains, so the object graph is domain-sensitive, since the objects of the

same type are placed in different domains. For example, in Fig. 5.2, distinct objects

of the type ArrayList<String> are placed the owned domains of distinct objects.

Evidence.

• For JDepend and MD, we compute metrics on the hierarchical and flat object graphs.

For JDepend, the number of top-level objects for the Auto and Manual experiment are

5 and 18 respectively, while it is 26 for the OT-repro experiment. This shows that the

object graph of the SOD experiments have less busy top-level domains. As another

example, The maximum object depth (max OD) of the object graph of Auto is 36,

while it is 26 for OT-repro. The max OD metric for Manual is 18, since we express our

design intent that is not only gaining more hierarchy. For MD, the max OD numbers

of the Auto and Assisted are 19 and 12, respectively, which is higher than the max OD

of the flat object graph. So we confirm that a hierarchical object graph has a lower

number of objects at its top-level domains.

H2: Logical Containment

Applying both strict encapsulation and logical containment that are supported by SOD,

compared to other type systems that support only strict encapsulation but no logical contain-

ment, leads to a more hierarchical object graph. A strictly encapsulated object is dominated

by another object and all accesses to it must go through its dominator. A logically contained

object is part-of another object, but still accessible to other objects.

Success criteria.

• For MD, there are 6 and 5 done MakePartOf refinements for Auto and Assisted, re-

spectively. For JDepend, we attempts 4 manual MakePartOf refinements and for Auto,

there are 109 attempted MakePartOf refinements out of which 29 are done. So we con-

firm that OOGRE infers PD qualifiers. We also attempt MakePartOf refinements to

express design intent. For example, in Table 5.2, the refinement number 16 is to ex-

press the Composite design pattern by making the object of type PackageComparator
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logically contained in the object of the same type;

• Edges of the object graphs indicate that the objects that are in the public domain PD,

can be accessed by other objects. For example, in Fig. 5.1 the object of type JDepend

can access the object of type ClassFileParser that is in the PD domain;

• Without supporting logical containment in a hierarchical object graph, a lower level

object stays as peer of its intended parent object in order to remain accessible to

other objects. For example, for JDepend, the OT-repro experiment has 26 objects in

the top-level domains, while the number of objects in top-level domains for the Auto

experiment is 5;

• Object graphs of each subject system illustrate the notion of logical containment that

groups objects in public domains of the other objects. For example, for JDepend, there

are 82 objects public domains for Auto and there are 48 objects in public domains for

Manual. For MD, there are 50 objects in public domains for Auto and 37 objects for

Assisted.

Evidence.

• In Table 5.3, we show the number of inferred qualifiers for the three experiments on

JDepend. Having 59 and 33 variables with PD qualifiers for Auto and Manual confirm

the number of objects in a public domain in Table 5.5. The number of inferred qualifiers

for Auto and Assisted for MD is 16 and 11, respectively.

H3: Object Graphs vs. Qualifiers

Using an interactive inference tool for SOD, developers refine an object graph to express

their design intent by make owned by, make part of, make peer with and make shared re-

finements. Behind the scene, a static analysis infers valid qualifiers that type-check and the

refinement is consider done. Otherwise the refinement is skipped and the qualifiers in the

code and the graph are unchanged.

Success criteria.

• During the evaluation of JDepend and MD, we are able to obtain a hierarchical object
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graphs that express our design intent, only by doing refinements and not by modifying

the qualifiers. In Table 5.4, we show that for the Manual experiment of JDepend, we

do 28 refinement, and for OT-repro we add 21 qualifiers manually. However, adding a

qualifier manually involves adding both the owning domain and the domain parameter.

A refinement indicates only the owning domain.

• Some of the refinements we perform express our design intent. We identify those

refinements in the summary tables using (D). We do some additional refinements to

resolve conflicts. We identify those refinements using a (C) (Table 5.2);

• Each refinement that we apply preserves the results of all the previous done refinements,

and does not undo them. As a result, some refinements can be skipped because of some

previous done refinements. This is the case for skipped MakePeerWith refinements of

both subject systems using Auto or Assisted.

• our results show that the skipped refinements do not change the object graph and it

stays unchanged, since the analysis does not infer new qualifiers.

Evidence.

• We implement the adaptation and transfer functions for the full Java language, in-

cluding classes, interfaces, inheritance (method overriding), generics types, etc. The

main language features we do not support are static fields and methods, arrays, among

others.

• We evaluate our implementation on one small subject system (MD, 1.4 KLOC) and

one mid-size subject system (JDepend, 5KLOC); MD has design design documentation

that we mine for the design intent; JDepend has data from a previous experiment by

Huang et al. which enables comparison;

• After obtaining the results on each subject system, we run the independent type-

checker to validate the inferred qualifiers. There is no major type-checker warnings in

the inferred qualifiers of none of the subject systems.

• By comparing the inferred qualifiers by OOGRE with the qualifiers that are inferred
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by Huang el al., we confirm that by inferring qualifiers with as the owning domain PD

(Table 5.3), OOGRE creates object graphs with more hierarchy.

• We compare the qualifiers across multiple type systems, to measure the difference in

the hierarchy in the object graph, as well as the precision of the inferred qualifier. E.g.,

unlike the nearly hundred of any qualifiers inferred by UT for JDepend, we infer more

precise ones.

• We show that the resulting object graphs convey the design intent of the documented

class diagrams. For example, for MD, we are able to express Model-View design. When

we collapse all the objects in the top-level domains, we obtain a nice diagram of the

MD object structure.

H4: Inferring SOD Qualifiers

To express strict encapsulation and logical containment, the inference analysis constructs

a set mapping that contains feasible qualifiers and multiple valid typings. Some of the feasible

qualifiers contain n.PD, where n is the name of an object, and PD is a public domain declared

on the class of that object.

Success criteria.

• On JDepend, we do 12 MakeOwnedBy refinements using the Manual experiment, and

on MD we attempt 3 MakeOwnedBy refinements. The analysis infers qualifiers with

owned as the owning domain for the target variables of the MakeOwnedBy refinements.

• Our results confirm that each object that is strictly encapsulated in the OT-repro

experiment of JDepend, can also be encapsulated using SOD. If there is an object

that is not encapsulated using SOD, that is our design intent to not make it strictly

encapsulated. For example, the object of type Analyzer is strictly encapsulated in the

Auto experiment of JDepend, but in the Manual experiment, we make it peers with

the object of type JDepend.

• The inferred qualifiers in Table 5.3 and Table 5.9 confirm that OOGRE is able to infer

PD for the MakePartOf refinements (manual or automated). The reason that there is
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no n.PD in the inferred qualifiers is the missing final fields. In that case, OOGRE

infers lent and the extraction analysis resolves lent into a valid domain in the object

graph that corresponds to n.PD.

• Although the analysis infers unique and lent, but the extraction analysis resolves

them to precise domains, so all the objects in the resulting object graph of each text

case are in precise domains (owned or PD).

Evidence.

• In our implementation, and for a MakePartOf refinement, the destination object must

create the source object, otherwise the refinement is not allowed.

• Most of the skipped refinements of each subject system, are due to unwanted aliasing for

MakeOwnedBy refinement and missing final fields for the MakePartOf refinements;

• If a MakePeerWith refinement is skipped, it means a previous refinement causes it,

since a qualifier with owner as the owning domain should work as a default qualifier.

• We do not measure the situation that the analysis tries to infer a precise qualifier, but

the refinement is skipped because of some missing final fields. It would be good to

measure the number of skipped MakePartOf refinements due to missing final fields.

H5: Finding a Valid Typing

The inference analysis finds a typing from the set mapping using the maximal qualifiers

for each variable. If the typing is not a valid typing, developers keep doing refinements until

the analysis finds a maximal typing that type-checks the program. If the analysis cannot do

so, developers start over with another sequence of refinements.

Success criteria.

• After each refinement, when the analysis reaches the fixed point without any empty

sets of qualifiers in the set mapping, it means there are multiple valid typings that

satisfy all the done refinements.

• We manually check that all the target variables are in the destination domains of the

applied refinements;
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• For JDepend, we first attempt 16 refinements to express our design intent, but those are

not enough, so we attempt 14 more refinements to resolve conflicts (Table 5.2). Only

after attempting these 28 refinements, the analysis is able to find a valid maximal

typing.

• For MD, we attempt 6 manual refinements and then we use the Assisted mode. After

apply refinement on more than hundred variables, the analysis finds a valid maximal

typing (Table 5.6).

Evidence.

• For JDepend, we apply 28 refinements out of which 24 are done and the optimality

property holds after that. Table 5.1 shows that using Auto, less than half of the at-

tempted refinements are completed. This is unsurprising since Auto attempts different

refinements of the same variables.

• For MD, we use the Auto and Assisted modes. Table 5.6 confirms that also for MD, less

than half of the automated refinements are done. For assisted, due to the constraints

that the manual refinements impose, the number of done refinements is almost one

third of the attempted ones;

• On JDepend and using the Manual mode, we attempt 28 refinements, but for OT-

repro we add 21 qualifiers. Adding a qualifier manually involves adding both the

owning domain and domain parameter. By attempting a refinement, we only indicate

the owning domain.

H6: Ranking Qualifiers

The analysis ranks qualifiers that contain unique and lent highest, followed by local

domains (owned or PD), followed by domain parameters (owner or p). The lowest rank is

the global domain (shared).

Success criteria.

• Inferring qualifiers containing lent and unique, which are the highest ranked modifiers

helps the analysis to utilize set-based solution for SOD efficiently. Previous versions
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of the analysis without lent and unique do not work for a subject system as big as

JDepend;

• We rank local domains (owned and PD) higher than domain parameters (owner and

p). This leads to having higher total number of local domains compared to domain

parameters for Auto in Table 5.3. The reason is Auto attempts MakeOwnedBy and

MakePartOf refinements before MakePeerWith refinements. For Manual, the total

number of qualifiers with a local domain as the owning domain is roughly the same

as the total number of qualifiers with a domain parameter as the owning domain.

For OT experiments (OT-repro and OT-orig), total number of domain parameters are

significantly higher, due to not supporting public domains that leads to object graphs

with less hierarchy;

• Table 5.3 confirms that for SOD experiments of JDepend, less than 30% of the inferred

qualifiers are shared. Also Table 5.9 confirms that for MD, about 25% of the inferred

qualifiers are shared.

Evidence.

• The metrics on object graphs (Table 5.5 for JDepend, and Table 5.10 for MD) confirm

the approximation of their hierarchy by computing metrics on the inferred qualifiers

(Table 5.3 for JDepend, and Table 5.9 for MD). For example, for JDepend, Auto infers

more local domains compare to Manual, so the approximation is the object graph from

Auto should be more hierarchical. Table 5.5 confirms that the object graph from the

Auto experiment is more hierarchical with max OD equal to 36 compared to the object

graph from the Manual with max OD equal to 18.

H7: Automation

The tool supports two additional modes for applying refinements, Auto, a fully automated

mode when the developers do not do any manual refinements; and Assisted, once the devel-

opers finish applying refinements and they just want the tool to find a typing.

Success criteria.
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• We run the Auto mode on JDepend and MD and OOGRE is able to find a typing and

extracts a hierarchical object graph without any additional input;

– We use the Assisted mode on MD and OOGRE is able to find a typing and

extracts a hierarchical object graph by respecting some previously attempted

manual refinements;

– The Auto and Assisted modes make an object logically contained if it cannot be

strictly encapsulated and make the object peer with other objects if it cannot

be logically contained. The number of MakePeerWith (MPW) refinements in

Table 5.1 and Table 5.6 show the number of variables that are neither strictly

encapsulated nor logically contained;

• The Assisted mode that is applied on MD, respects the done manual refinements at-

tempted on the subject system.

Evidence.

• We measure the percentages of done auto-refinements of each type;

• We measure the portion of done auto-refinements out of the attempted ones;

Thesis Statement Revisited

Using our approach, developers are able to refine an object graph directly using the

supported refinements. They make an object strictly encapsulated using MakeOwnedBy,

logically contained using MakePartOf, peer with another object using MakePeerWith, or

globally aliased using MakeShared. Then the inference analysis infers qualifiers that type

check, if the code as written supports the requested refinement. The refined hierarchical

object graph that applies abstraction by hierarchy and by type expresses the design intent

of the developers. Our approach is a good step, but suffers from some limitations, which we

discuss in the next section.

Scaling the process of extracting and refining object graphs. While we agree that

1hr/5KLOC is slow (JDepend subject system), it is still much better than the manual

effort, estimated to be at 1hr/1KLOC by Abi-Antoun et al., [6], just to get an initial object
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graph and not including the time spent refining the object graph. We have not particularly

optimized the implementation for ease of debugging. We think the tool can be sped up

by reducing the amount of copying of sets of qualifiers. Our initial profiling points to the

set creation and copying as being a hotspot in the execution. Only for UT is the inference

quadratic but it infers many any qualifiers that do not convey precise information about the

ownership context. For OT and SOD, every refinement requires quadratic time, so running

the Auto mode on all the variables is cubic in terms of the number of variables in the

program.

To make the Auto mode faster, we need smarter ways of resolving conflicts. For example,

the Auto mode attempts many refinements. Some are necessary, some are not. Our current

implementation of Auto mode is brute-force. A better solution would be to have the tool

work more like the Manual Mode, i.e., analyze the remaining conflicts (just like in the

MoreInfoNeeded window) and focus only on resolving conflicts, i.e., propose refinements

that only touch the variables that are still in conflict, as opposed to all possible refinements.

Moreover, it may be helpful to apply some weighting strategy to pick a variable to apply a

refinement on. For example, it could be useful to lock down the sets of qualifiers of fields,

before those of method parameters or returns. Strategy is to use the size of the set of

qualifiers of a variable. Applying refinements on a variable with a bigger set of qualifiers

enforces more constraints on the set mapping so the set-based solution may reach a fixed

point faster.

6.2 Limitations

In this section, we organize the limitations of this work in two groups: first, approach

limitations resulting from our design decisions; and second, type system limitations that are

due to using SOD as our underlying type system.



112

6.2.1 Approach Limitations

No typing, no object graph. Ideally, and for being interactive, the approach should show

a refined object graph to developers, after each refinement. Since for a program with an

arbitrary set of qualifiers, the optimality property may not hold, our approach may not find

a typing after each refinement and developers may have to do more refinements to resolve

any conflicts. Only after developers resolve the remaining conflicts can the approach find

a valid typing and extract the refined object graph. This way, developers see the result of

their refinements all at once on the object graph, which is perhaps less usable than seeing

the effect of each refinement, one at a time. Moreover, since each refinement is applied on

the result of previous done refinements, it is more helpful to developers to see on what object

graph they are attempting the next refinement.

Respecting auto-refinements. After each done refinement, OOGRE not only respects

the changes by the requested refinement in the set mapping, but also the side effects of

the requested refinement (auto-refinements). This design decision may lead to a refinement

being skipped if it contradicts a previous, done auto-refinement. This arises when developers

attempt a refinement where the source object is used in an auto-refinement. Auto-refinements

do not make the sets of the target variables to be singletons. They pick only the highest

ranked qualifier from the set of qualifiers of the target variables. By doing that, auto-

refinement choose the best possible answer, which the developers may not have picked if

they were to do a manual refinement. If the developers do not want the inferred qualifier

(the highest ranked one), they would do a refinement that infers a lower ranked qualifier,

and that qualifier would be in the set of qualifiers of the target variables.

Hard-coded number of domains and hard-coded domain names. By hard-coding the

number of domains to two (one private and one public), developers cannot express certain

designs like Model-View-Controller that needs three top-level domains. By hard-coding the

domain names to be owned, PD, and p, we enable the analysis to enumerate and infer them,
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but the design intent of the domain is not obvious from its name. As a result, developers are

not able to define multiple domains per class, or to have the domain names express design

intent.

A refinement to move an object into the domain parameter p. We are not sure if we

need a type of a refinement that moves an object into the domain parameter p. We do not

support this refinement for two reasons. First, due to SOD constraints, an object cannot be

created inside a domain parameter. So the owning domain of the qualifier on the left hand

side of an object creation expression cannot be p. Second, the domain parameter p binds to

other domains, so the developers may not know the result of their refinement on the object

graphs. However, this kind of refinement makes sense at the level of variables during the

Auto and Assisted modes.

One ownership parameter. The approach currently supports the implicit owner and the

explicit p ownership parameter. We support a single domain parameter to keep the inference

tractable, but this reduces expressiveness. Some data structures and programming idioms,

require more than one explicit ownership parameter. For example, to express a standard

hashtable, two ownership parameters are needed: one for the key objects and one for the

value objects [12]. SOD can still express hashtable with one parameter, by making the

hashtable itself, the key object, or the value object be peers. As a workaround, we can also

specialize a hashtable to have a specific key type or value type and reserve the parameter

for the more interesting objects (See Section 3.10.5).

6.2.2 Type System Limitations

Final fields. In SOD, the code can refer to the public domain of an object through a final

field n, using the construct n.PD. If the variable n is not final, it may be re-assigned, and the

type system would lose track of the relationship between an object and the objects contained

in its public domain. In other ownership type systems, where n is always this, this is not an

issue. In SOD, it also possible to refer to a public domain through a sequence of final fields

n1.n2...PD, though that is not part of our formalization. The adaptation and the inference
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analysis also introduce these qualifiers. If n is not final, then the adaptation functions infer

lent instead of n.PD, as long as it does not flow to a qualifier that is not lent.

Using manifest ownership for String’s. In the current version of the analysis, we use

manifest ownership to infer the qualifier <shared, shared> for the variables of type String.

Although this simplifies the analysis work to find a valid typing, for reasoning about security,

we may need to reason more carefully about objects of type String. Ideally, the analysis

should treat objects of type String like other objects, i. e., by assigning them the initial set

of qualifiers.

Existential domain. The modifiers unique and lent add some amount of expressiveness

to SOD, but their usage is restricted. For example, lent is not allowed on the field variables.

What would increase the SOD type system’s expressiveness is some variant of an existential

domain that type-checks many expressions, and can be resolved to a precise domain using a

separate static analysis. UT supports its own variant of an existential qualifier, any (really,

means readonly), that does not indicate the actual ownership information of an object, so

it type-checks many expressions, but requires additional purity qualifiers on methods to

indicate that they do not mutate any objects. The UT qualifier any can be used on fields

among other variables, and enables the optimality property to hold for any program with

arbitrary qualifiers.

6.3 Future Work

In this section, we mention possible future work.

Partial qualifiers. It would be useful to allow developers to add some partial qualifiers

for some of the variables and have analysis read the qualifiers and use them. This feature is

available in many inference tools [17, 22, 21].

Conduct a user study. We will evaluate the WYSIWYG claim and the visual aspect of

our approach by conducting a user study. One study design involves having one group of

participants use the tool to express their design intent while the participants of other group
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add the qualifiers manually. We will measure if by using the tool, the participants refine

the object graph to reflect their design intent faster. An alternative design is to have the

participants use other type systems such as OT or UT. Another study design may measure

the learnability of the tool by teaching Ownership Domains to novice developers.

6.4 Conclusion

We propose, implement and evaluate an approach where developers express their design

intent by refining an object graph directly, while an analysis infers valid ownership type

qualifiers in the code. These qualifiers are used by a separate extraction analysis to extract

an updated graph. Automating the process of extracting and refining object graphs makes

their applications more practical and more readily adoptable by developers.
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Object graphs help explain the runtime structure of a system. To make object graphs

convey design intent, one insight is to use abstraction by hierarchy, i.e., to show objects that

are implementation details as children of architecturally-relevant objects from the applica-

tion domain. But additional information is needed to express this object hierarchy, using

ownership type qualifiers in the code. Adding qualifiers after the fact involves manual over-

head, and requires developers to switch between adding qualifiers in the code and looking at

abstract object graphs to understand the object structures that the qualifiers describe.

We propose an approach where developers express their design intent by refining an object

graph directly, while an inference analysis infers valid qualifiers in the code. We present,

formalize and implement the inference analysis. Novel features of the inference analysis

compared to closely related work include a larger set of qualifiers to support less restrictive

object hierarchy (logical containment) in addition to strict hierarchy (strict encapsulation),

as well as object uniqueness and object borrowing. A separate extraction analysis then uses

these qualifiers and extracts an updated object graph.

We evaluate the approach on two subject systems. One of the subject systems is re-

produced from an experiment using related techniques and another ownership type system,

which enables a meaningful comparison. For the other subject system, we use its documenta-
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tion to pick refinements that express design intent. We compute metrics on the refinements

(how many attempts on each subject system) and classify them by their type. We also

compute metrics on the inferred qualifiers and metrics on the object graphs to enable quan-

titative comparison. Moreover, we qualitatively compare the hierarchical object graphs with

the flat object graphs and with each other, by highlighting how they express design intent.

Finally, we confirm that the approach can infer from refinements valid qualifiers such that

the extracted object graphs reflect the design intent of the refinements.
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