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CHAPTER 1 .   INTRODUCTION 

1.1 SIGNIFICANCE OF THE PROBLEM 

In the last twenty years, blast-induced traumatic brain injury (bTBI) has gained increasing 

attention in the military for lack of effective treatment and prevention. From 2000-2014, over 

310,000 US soldiers suffered from traumatic brain injury (TBI). Since 2007, the Department of 

Defense and the National Institutes of Health have spent more than $1 billion on TBI treatment, 

prevention, and research(Rosenfeld et al., 2013). Among which, bTBI caused by Improvised 

Explosive Devices (IED) is one of the leading reasons of TBI. Wojcik et al. compared data from 

several databases and found blasts accounted for 64% of all TBI in Iraq and 47% of those in 

Afghanistan.(Wojcik et al., 2010) In fact, bTBI has been called the "signature wound" of military 

service in numerous press reports.(Hoge et al., 2008) Not only in the war zone, but civilian 

neurosurgeons around the world also have encountered increasingly CNS blast injuries due to the 

terrorist bombing in urban environments (Rosenfeld et al., 2015; Rosenfeld et al., 2013). It is 

reported that between 2000 and 2003, more than 50% of terror-related injuries in Israel were the 

results of blast, mainly in the form of suicide bombers(Singer et al., 2005).  

In the 1960's, investigations focused on injury from the blast were mainly on pulmonary, 

and gastrointestinal systems. The major reason was that blast fatality rate caused by hollow organs 

is higher than solid organs, like the brain (Clemedson, 1956). Much of the knowledge related to 

this area comes from extensive work of Richmond and Bowen (Bowen IG, 1968; Richmond et al., 

1968; Richmond et al., 1962; White et al., 1965). They did a series of studies to predict the 50% 
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fatality rate of humans, and at the level of 70% pulmonary failure level the brain was not at risk of 

fatality or behavior changes(Bass et al., 2008). With the continuous improvement in personal 

protective equipment (PPE), the injury risk of pulmonary and gastrointestinal systems have been 

greatly decreased(Okie, 2005). However, with current equipment such as Kevlar helmets, the face 

and forehead are still not protected from penetrating wounds (Ling et al., 2009; Okie, 2005). 

Moreover, in the recent conflicts closed brain injuries from blast have outnumbered penetrating 

ones. (Wojcik et al., 2010) Among the 310,000 American soldiers, who were diagnosed with TBI 

between 2000 and 2016, more than 80% of them were classified as mild TBI (Figure 1-1). 

 

Figure 1-1: Total numbers of TBI diagnosed by Department of Defense (DoD)(2017; Ramasamy 

et al., 2014)  
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Research and statistics showed the sudden increased cases of mTBI began in 2006, which 

was consistent with the field data of an increased number of brain injuries due to blast exposures 

(Courtney and Courtney, 2015; Galarneau et al., 2008; Murray et al., 2005). Animal research has 

suggested that the blast level needed to cause fatality from an overpressure wave exposure to the 

head is greater than the peak overpressure needed to cause fatality from pulmonary injury. 

However, the blast level required to cause a mild/moderate brain injury may be similar to or less 

than that needed for pulmonary injury.(Rafaels et al., 2011; Rafaels et al., 2012) Therefore, there 

is a need to find out the mild/moderate injury tolerance curves in the human being.  

Animal models are one of the crucial pathways to establish primary bTBI injury threshold. 

However, if traditional blast scaling is appropriate between species, many rodent models on blast 

TBI experiments using shock tubes provide blast overpressure conditions that are more similar to 

human long-duration nuclear blasts, not high explosive blasts. (Bass et al., 2012) Therefore, it is 

important to create clinical meaningful blasts that can represent in the real-world scenario. 

Computational modeling can help elucidate the comprehensive responses of the head and brain to 

blast.(Chafi et al., 2010; Lockhart et al., 2011; Moss et al., 2009; Nyein et al., 2010) One of the 

hypotheses is that the scalp may exacerbate the pressure effects in the brain.(Nyein et al., 2010) 

Others have shown that the skull flexure due to blast is a potential mechanism.(Moss et al., 2009) 

The distribution of ICP and the kinetics of the head have been simulated in several models.(Chafi 

et al., 2010; Lockhart et al., 2011; Wang et al., 2014)However, experimental data are still needed 

to validate these models. 
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Given the limitations in bTBI research, there is a need to develop reliable and more 

operationally relevant animal models. To characterize the effects of free-field blast on the head, 

this study exposed swine to free-field blasts generated by explosives at different incident 

overpressure (IOP) levels. Thus, the aim of this study was to provide data on the mechanical 

responses and injury outcomes of the swine in primary bTBI. To our knowledge, this would be the 

first set of published experimental biomechanical and pathology data from swine subjected to free-

field blast overpressure. 

1.2 OBJECTIVES AND STRUCTURE OF THESIS 

This thesis focuses on understanding the mechanics of primary bTBI in a meaningful clinic 

scenario, and test if shock wave in this range can cause brain injury. The current blast research 

focuses either on the mechanics of brain responses to the shockwaves or the neurotrauma generated 

by the shockwaves. In terms of prevention, an improved understanding of the mechanics associated 

with pathological response of bTBI is needed. Figure 1-2 shows the framework of this study.  
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Figure 1-2: Flow chart of this study shows the layout of experiments. 

The following chapter gives an overview of the current state of bTBI research. A general 

background of the current finding on primary bTBI is presented. This is followed by an overview 

of the central nervous system where details are presented from the system level down to the 

subcellular level. A definition for primary bTBI is presented, and a discussion is provided of the 

experimental models covering both the biomechanics and pathophysiology of primary bTBI. An 

experimental model for inducing primary bTBI is developed in Chapter 3. This model utilizes 

explosives-induced blasts in the open air to induce bTBI. The biomechanical responses of the brain 

and head are presented, including intracranial pressure (ICP) and kinematics of the head during 

blast. Chapter 4 presents changes in fluorescently labeled brain cells captured in vivo and under 

the same blast model. The acute changes of neural cells and apoptosis at different blast levels are 

discussed, qualitatively and quantitatively details the injury distributions for both those swine 
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undergoing bTBI and control group. Correlations between apoptotic cells and injured cells in the 

swine brain are presented. Finally, the implication and connection of this work to improving 

therapeutic interventions of bTBI are discussed (Chapter 5). 

1.3 CONTRIBUTIONS TO RESEARCH FIELD 

The research effort presented provides a basis for improving the fidelity of analytical 

approaches concerned with the evolution of bTBI. Insights into the blast induced traumatic brain 

injury require a firm comprehension of mechanics as well as an understanding of the process is 

required from clinical, pathological perspectives. Damage to brain propagates from a mechanical 

assault, but the injury development is influenced by structural changes that are observed at the 

cellular and subcellular level. It is understood that the loads applied at the macroscopic level of 

the individual are translated across length scales to the level of the cell in combinations of simple 

mechanical loads (tension, shear, and compression). It is important to understand how much of 

incident pressure can directly lead to degeneration of neuron cells and cell death in the CNS. 

To approach this problem, an open field blast model is developed to replicate the real-world 

blasts. Two groups of swine were used to measure the mechanical responses and pathology, 

separately. We evaluated biomechanical responses of the brain in different regions and compared 

correlated it with IOP variable, including peak IOP, impulse, linear and angular head motions. We 

found the ICP had a good correlation with peak incident pressure (IOP). And there was little head 

motion induced by primary blast. In addition, we utilized Fluoro jade C (FJ-C) and Casepase-3 to 

evaluate the level of degenerating neurons and cellular death within the brain. It was confirmed 
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that at medium blast group (260 kPa) there was only increased amount of degenerating neurons 

but no sign of apoptosis compared with sham animals. At high blast level (370 kPa), we found 

both elevated FJ-C and Caspase-3 levels compared with sham group. These finding will help in 

developing the injury threshold of primary bTBI.  
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CHAPTER 2 .   BACKGROUND  

2.1 BLAST PHYSICS 

A blast is characterized by a sharp, instantaneous, rise in ambient pressure and temperature 

that resulting from explosive detonation, then followed by exponential decay to a partial vacuum 

phase before gradually returning to the ambient pressure. Ideally, the open field blast wave, which 

is described as the Friedlander waveform, equation listed below, is composed of two phases: 

positive phase and negative phase. (Figure 1) 

𝐼𝑚𝑎𝑥 = 𝑃𝑠𝑜𝑡𝑠 [
1

𝑏
 −  

1

𝑏2
(1 − 𝑒−𝑏)] 

Where: 

           P = Static pressure at any time t 

          Pso = Maximum static overpressure 

           b = Experimentally determined waveform parameter 

           ts = Total time of the positive phase 
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The time at which the pressure remains above normal ambient pressure is termed the 

duration of the blast wave. The blast impulse is the integral of the pressure in the positive phase 

and the duration of the blast wave. The peak pressure, the positive duration, and the impulse are 

believed to be the most important characteristics of the blast.  

As the wave propagates away from the denotation, it decreases in magnitude and grows in 

duration (Figure 2-2). 

Figure 2-1: Ideal blast waveform (Friedlander Curve). It shows the steep pressure rise of the 

shock wave followed by a positive pressure phase and a negative pressure phase. 
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Figure 2-2: Blast wave attenuates with increasing distance (1 m, 2.7 m, 11 m) from the epicenter 

of an explosion. (Gubkin, K. E,1970). 

Associated with the sudden rise in pressure there is also a blast wind due to the kinetic 

energy transmitted to the air particles(Wood, 1966). The blast wind is also called dynamic pressure. 

When the blast overpressure strikes the ground or other objects, it is reflected. The exact value of 

the reflected pressure depends on the incident wave and the angle at which it strikes the surface. 

 

Figure 2-3: Left shows the timeline of reflected wave of a blast; right graph shows the formation 

of the “mach” stem.  
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At anywhere above the ground, there would be two separate waveforms. First, is the 

incident pressure, and then is the pressure from the reflected wave. Due to the compressed air and 

the heat, reflected wave travels faster than the incident wave, and eventually takes over the incident 

pressure and two front shocks merge into one. The merged overpressure called the “Mach stem” 

will have a horizontal angle. The point where the incident wave, reflected wave and the “Mach 

stem” meet is called the “triple points.” As the reflected wave continues to overtake the incident 

pressure, the range of the “Mach stem” also increases (Figure 2-3). Any object below the triple 

point would only have one peak overpressure the whole time. Moreover, this merged overpressure 

shares the same behavior as the typical blast shock wave, which has a sudden rise, then a positive 

phase following a negative phase.  

The force the overpressure delivers upon a subject depends on the strength of the charge, 

distance from the blast, and the physical environment. In an enclosed space, the blast overpressure 

is complicated by multiple reflections of surface. The reflections are believed to complicate the 

deformation of the brain(Ling et al., 2009; Mayorga, 1997; Wang and Huang, 2013). 

2.2 DEFINITION AND CLASSIFICATION OF TBI 

The American Congress of Rehabilitation Medicine (ACRM) published the definition of 

TBI in 1993. For traditional close-head or penetrating type of brain injury (cTBI and pTBI), TBI 

was defined as an occurrence of head injury that is associated with any decreased level of 

conscience, amnesia, other neurological or neuropsychological abnormalities, skull fracture, 

diagnosed intracranial lesions, or death(1993). For mild TBI, the severity of the injury cannot 
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exceed in the following aspects: 1) loss of conscientiousness for approximately thirty minutes or 

less; 2) after 30 minutes an initial Glasgow Coma Scale (GCS) of 13-15; 3) post traumatic amnesia 

not greater than 24 hours. The 15-point GCS defines the severity of injury as mild (13-15), 

moderate (9-12), severe (3-8), and vegetative state (<3)(Teasdale and Jennett, 1974). Even though 

bTBI shares a lot of common symptoms with cTBI and pTBI, but the duration of the symptom 

varies a lot. Recognizing the specialty of bTBI, Okie et al. and Warden et al. proposed a new 

classification for bTBI: Mild bTBI is defined as loss of consciousness <1 h and post-traumatic 

amnesia <24 h after exposure to an explosive blast. Moderate bTBI is loss of consciousness for >1 

but less than 24 h and amnesia lasting >1 but <7 days. Severe bTBI is loss of consciousness >24 h 

and amnesia >7 days(Okie, 2005; Warden and French, 2005). Typical mild bTBI does not involve 

skull fracture or other neurophysiological abnormalities that can be detected with current imaging 

technique. 

Blunt TBI typically result in either diffuse or focal injuries or a combination of both. Focal 

injuries, readily observed using standard imaging techniques, include cortical contusions and 

subdural, epidural and intracerebral hematomas. The causes of blast-induced injury are usually 

complicated and can be due to one or more of the following mechanisms: 1) primary injury that 

directly results from the transmission of shock waves to the body, 2) secondary injury from 

fragments (shrapnel) that can cause penetrating wounds, 3) tertiary injury from blunt trauma 

caused by the blast wind which can throw the body against the ground or other obstructions, and 

4) quaternary injury related to heat, smoke, chemicals and emission of electromagnetic pulses 
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(EMP)(Risling and Davidsson, 2012). This study focuses on the mild to moderate level of primary 

injury caused by pure shockwave loading. 

The causes of blast-induced injury are usually complicated and composed of one or more 

of the following mechanisms: 1) primary injury that directly results from the transmission of shock 

waves to the body, 2) secondary injury from  penetrating wounds related shrapnel fragments, 3) 

tertiary injury from blunt trauma resulting from blast wind caused by impact of the body against 

obstructions, and 4) quaternary injury related to heat, smoke, poisoned chemical and emission of 

electromagnetic pulses (EMP)(Risling and Davidsson, 2012). 

2.3 EXPERIMENTAL MODELS OF PRIMARY BTBI 

The mechanism of primary bTBI is still unclear. Researchers have noted the differences of 

primary bTBI compared with other blunt induced TBI. No visible bleeding, no effective 

histological staining, nevertheless it can result in the way of chronic behavior changes, etc. In mild 

bTBI, standard anatomical imaging techniques (MRI and computed tomography) generally fail to 

show focal lesions and most of the symptoms present as subjective clinical functional 

deficits.(Graner et al., 2013) Furthermore, clinical findings of long-term effects of mild, repeated 

bTBI varies widely. The effects include progressive affective liability, distractibility, executive 

dysfunction, memory disturbance, suicidal ideation, cognitive deficits and dementia (Goldstein et 

al., 2012; Rosenfeld et al., 2013). The neuropathology includes large-scale cortical perivascular 

tau pathology, disseminated microgliosis, astrocytosis, myelinated axonopathy, and progressive 

neurodegeneration (McKee et al., 2013). A similar description was first discovered in athletes with 
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repeated concussions (Omalu et al., 2005). bTBI is also often associated with the post-traumatic 

stress disorder (PTSD). The risk of PTSD might be increased by cognitive dysfunction (Stein and 

McAllister, 2009). However, the chronology of PTSD development remains uncertain. 

All these findings indicate that the mechanism of primary bTBI could be different with 

other forms of TBI. Many experimental models and computer models have been developed since 

then (Table1-1).  The proposed mechanisms need not to be mutually exclusive; however, the 

mechanical response of the brain under blast is crucial to understand the underlying injury 

mechanism. Considering the complex nature of this type of injury, computer modeling provides 

helpful insights on the mechanical responses following a primary blast injury.(Panzer et al., 2012; 

Zhang et al., 2013; Zhu et al., 2010; Zhu et al., 2012) However, with limited experimental data in 

this area, it is difficult to draw conclusions on injury mechanisms and threshold, and validate the 

computer models. Therefore, in this study, we developed an animal model under open-field blast 

conditions to evaluate the mechanical responses and its acute neuropathology consequences from 

primary bTBI.
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Table 2-1: Primary bTBI mechanism studies.
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2.4 GENERATION OF BLAST IN EXPERIMENTAL MODELS 

Most studies have utilized shock tubes to produce overpressure.(Rafaels et al., 2012) The 

distinct advantages of shock tube are its economical function for tests in laboratories and high 

reproducability of the desired overpressure by applying membranes of the same thickness. Its ease 

of scheduling compared with field tests including severe restrictions of weather, explosives 

handling, and availability of personnel make the shock tube tests a prevalent choice. However, one 

should note that the parameters of the overpressure generated in conventional shock tubes can be 

different from a free-field blast wave. Some shock tubes generate shockwaves with prolonged 

positive duration outside the realm of real world situations.(Reneer et al., 2011; Sundaramurthy 

and Chandra, 2014) The test animal size is limited by the shock tube test section and there could 

be non-negligible complex reflections within the shock tube. These characteristics would make the 

corresponding mechanical responses different from those bTBI injuries in free-field blasts, in 

which test subjects can be exposed to a simple Friedlander wave without interference from 

reflections. Additionally, blast testing in the open field with proper settings can provide relevant 

physical parameters of blast conditions similar to those in the battlefield. In the real world, 

reflections of the shock wave from the ground are inevitable. Due to the complexities of gas-

dynamic shock reflection phenomena, the reflected and incident waves merge into a new wave 

front called the "Mach stem". (Ben-Dor, 2007) To minimize the effect of reflected waves, it is 

necessary to locate the “triple point” within the “Mach stem” region utilizing appropriate standoff 

distances and the heights of burst. 
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The measurement of shock wave propagation patterns in an in vivo brain remains a 

significant challenge. Much research has been conducted with rats and swine to measure the ICP 

responses in the brain using shock tubes.(Bauman et al., 2009; Chavko et al., 2007; Leonardi et al., 

2011; Long et al., 2009; Shridharani et al., 2012) However, in most of the studies only a few 

sensors were installed and, in some cases, there was no detailed description of sensor 

locations.(Bauman et al., 2009; Chavko et al., 2007; Leonardi et al., 2011) This lack of accurate 

information constitutes an impediment to a full understanding of how a pressure wave interacts 

with various parts of the brain. In addition, the brain structures and skull thickness vary widely 

between different animals. Yucatan swine, six to eight months in age, have a similar body mass 

(50-60) and skull thickness (6-17 mm) as human. Biomechanical responses of swine to blast 

overpressure are expected to be closer to those of the human and thus it would be more appropriate 

to study them instead of the small animals like rodents. 

There are several ways to produce blast overpressure in blast researches. Open-field blasts, 

shock tube, and blast tube blasts are the three common types of sources used to produce shock waves 

A shock tube consists of two separate chambers: the driver section, where compressing the gas; and 

the driven section, where the shock wave propagates, creates the pressure. The two sections are 

separated by a frangible membrane, which ruptures at a pressure that is directly proportional to its 

thickness. Many blast studies have been conducted on shock tubes(Rafaels et al., 2012) (Table 2-1).
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Table 2-2: Animal models on the investigation of mechanical responses of bTBI.
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The principles behind blast tubes are the same as with shock tube, where the former uses a 

small explosive charge to generate high pressures to mimic high-pressure level blasts. The major 

advantages of shock tube compared to the open-field blast are: 1. the desired pressure level is highly 

repeatable since the pressure purely depends on the thickness of the membrane and the length of the 

driven chamber. 2. It is easier to get a long blast impulse in the shock tube by modifying the 

configuration of the shock tube. However, open-field blasts are still very crucial and irreplaceable to 

study the biological effect when studying bTBI. Firstly, unlike in the real blast event, where the 

waveform goes to all the directions and with a single peak pressure, shock tube can only produce 

waveforms in one direction and the peak pressure is more prolonged over particular time. Secondly, 

any zone within the shock tube will be affected by the arrival of disturbances and gas dynamic features. 

Therefore, to understand the biomechanical responses to the blast wave, this study was carried out in 

the free field, and the blast was produced by explosives. The disadvantages of free-field blasts also 

need to be considered. Firstly, the explosives can create considerable variance in IOP under similar 

experimental conditions. Secondly, reflections from the ground and other obstacles can complicate the 

blast overpressure. Lastly, this type of experiment requires specific open field space and all the 

equipment needs proper placement and protection from the blast.  

2.5 INJURY TOLERANCE STUDIES ON OTHER SOFT ORGANS 

Pulmonary and the gastrointestinal system were found to be the most fragile parts under blast. 

In the past 70 years, much effort was made to find the relationship between blasts and thoracic injury. 
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Figure 2-4: Incident overpressure/ duration of blast developed by Bowen, Bass, etc. 

The biological tolerance level was defined and using the improved personal protective 

equipment (PPE), the mortality rate and injuries on the body has significantly dropped. However, there 

still is no effective ways to protect the brain from bTBI due to lack of knowledge on the mechanism of 

bTBI. Such lack of understanding has recently been highlighted as a problem by Bass as well as by 

Elder (Bass et al., 2012; Elder et al., 2014). Each of these groups underscored that progress in the field 

is highly unlikely until the mechanisms become known. To resolve this widely recognized problem, 

we presented here to identify the relevant interactions between blast pressure and injury level of the 

brain.  
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2.6 ANATOMICAL AND STRUCTURAL SIMILARITIES OF BRAIN BETWEEN 

HUMAN AND SWINE 

Yucatan minipigs, which have an adult body weight of 70-90 kg, 6-month weight of 46 kg, 

are one of the commonly used purpose-bred laboratory minipigs. The pig brain weighs in the range 

of 80-180 g, depending on its body size and breed. Its brain volume is about 160 mm3 ，the 

thickness of the cerebral cortex is around 0.22 cm(Hofman, 1985). This number is higher than 

human skull with average of 7 mm. Its cortical gyrification is more comparable to primates than 

that of rat using the dimensionless isomorphy factor. The pig brain has a value of 50, the human 

brain is around 65, whereas the lissencephalic rat brain has less than 10 (Mayhew, 1992; Mayhew 

et al., 1996). Anatomy studies of the porcine brain showed pigs share a lot of same structures with 

that of human. The basic structure of the porcine brain includes, telencephalon (Cerebral cortex), 

diencephalon, mesencephalon, brain stem, and cerebellum. A semi-diagrammatic representation 

of a sagittal section through the head is given in figure2-5.  In addition, the total number of 

neocortical neurons in pig brain is around 400 million. In comparison, rat brain has a total number 

of 21 million. In the human cerebral cortex, there is around 20 billion neurons. Currently, major 

brain structures are identified and labelled in pig atlas (Roura et al., 2016).  

There are also differences in the pig brain compared with that of human. The brain occupies 

a small region of the skull, especially in the adult swine. The organization of the main cortical 

lobes in the pig is different from that of primate, lacking the pronounced caudal expansion and 

curvature of the progressive telencephalon. There is a large, pneumatized frontal sinus in the pig 
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brain. In the 3-month old pig, the sinuses are confined to the anterior region. However, in older 

animals the frontal bone is traversed by the sinus virtually in two layers.    

The gyrencephalic pig brain resembles the human brain more in anatomy and physiology 

than do the brains of commonly used small laboratory animals. The size of the pig brain permits 

the identification of cortical and subcortical structures by imaging techniques. Additionally, pigs 

have advantages over primates for economic and ethical reasons. In spite of its large body size, 

pigs have substantial advantages of being an experimental animal for modeling human brains. 

In this study, Yucatan was chosen as the test animal mainly because of its similar body 

weight to humans and its inbred nature, which diminishes variability in the experimental data. 

 

 

Figure 2-5: A semi-diagrammatic representation of a sagittal section through the head. 1 frontal 

sinuses, 2 skull, 3 hemisphere, 4 interhemispheric commissura, 5 chiasm, 6 pituitary, 7 

cerebellum, 8 brainstem, 9 medulla, 10 atlas, 11 axis, 12 vertebral column, 13 anterior spinal 

processes, 14 spinal cord(Swindle, 1984) 
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2.7 QUANTIFICATION OF CELLULAR INJURY AND APOPTOSIS 

TBI has been categorized as primary injury and secondary injury(Li et al., 2015). The 

primary injury results from damage from an external force or decrease in cerebral blood flow 

during ischemia.  The second injury, characterized by neuronal loss, happens within minutes or 

from hours to days after the injury. Several pathological process, including disruption of the blood-

brain barrier, necrosis, apoptosis, inflammation and oxidative stress, have been reported to 

contribute to the neuronal loss in the second injury phase(Cornelius et al., 2013; Hu et al., 2009; 

Shetty et al., 2014; Xu et al., 2013; Yatsiv et al., 2005). Among these process, apoptosis is a major 

cause of post-traumatic neuronal loss (Springer, 2002). About two third of TBI-induced cell death 

was caused by apoptosis (Zhang et al., 2005). Apoptosis can be initiated through intrinsic or 

extrinsic cell-signaling pathways (Ghavami et al., 2009; Salvesen, 2002). Both pathways converge 

on caspase-3, a protein that acts as the cell’s executioner. Upon activation of apoptosis signaling, 

procaspase-3 is cleaved to yield active caspase-3, which in turn initiates organized degradation of 

cellular organelles (Walters et al., 2009). Therefore, the active form of caspase-3 is a widely used 

marker of apoptosis(Bardet et al., 2008; Bressenot et al., 2009).  

TBI leads to a series of cellular events that contribute to the initiation of apoptosis in 

neuronal cells. TBI caused tissue damage and subsequent inflammation leads to excessive release 

of excitatory neurotransmitters, and thereby results in increase of intracellular and mitochondrial 

Ca2+ levels (Cheng et al., 2012), which triggers apoptosis (Mattson and Chan, 2003; Uguz et al., 

2009). The Ca2+ overload also contributes to ROS production (Cheng et al., 2012), which promote 
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apoptosis (Abdul-Muneer et al., 2015). Furthermore, TBI damages blood-brain barrier, whose 

disruption is closely associated with neuronal apoptosis (Shetty et al., 2014). Taken together, 

neuron apoptosis in second injury is induced by a variety of cellular events and stimuli. The exact 

post-TBI signal that triggers neuronal apoptosis is not clear. 

FJ-C staining is a technique widely used for the labeling of degenerating neurons. 

Compared with traditional methods such as hematoxylin and eosin (H & E) and Nissl stains, FJ-C 

staining exhibited better specificity and simplicity (Bian et al., 2007; Schmued et al., 1997; 

Schmued et al., 2005).  Numerous TBI studies have applied FJ-C staining in the detection of 

neuron desecration (Hua et al., 2012; Kuehn et al., 2011; Li et al., 2016; Shellington et al., 2011; 

Wang et al., 2012). However, it is worth noting that the mechanism whereby FJ-C specifically 

labels degenerating neurons is not clear. Neither the molecules that bind to FJ-C in degenerating 

neurons have been well characterized.  
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Figure 2-5: Caspase-3 activation. Apoptosis begins with the activation of the intrinsic pathway or 

the extrinsic pathway, which in turn activate downstream enzyme caspase-9 and caspase-8 

respectively. Active caspase-9 and caspase-8 facilitate the cleavage of pro-capsase-3 to generate 

active caspase-3, which results in the irreversible apoptosis.  
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CHAPTER 3 .  BIOMECHANICAL RESPONSES OF SWINE SUBJECT TO 

FREE-FIELD BLASTSANATOMICAL DIFFERENCES 

3.1 MATERIALS AND METHODS 

3.1.1  Animal preparation  

This research protocol was reviewed and approved by the Institutional Animal Care and 

Use Committee and the USAMRMC ACURO. Five instrumented Yucatan swine (age 6-8 months, 

weight 50-60 kg) were exposed to repeated frontal free-field blasts to collect biomechanical data. 

Before instrumentation, all swine were acclimated for 6-8 days before tests to their new housing 

conditions. On the test date, the animal was transported in an ambulance to the blast site (ARES, 

Port Clinton, Ohio) under anesthesia (ketamine 20mg/kg intra muscular and xylazine 2mg/kg intra 

muscular). The ambulance was equipped with an examination table and equipment for 

physiological monitoring to ensure maintenance of the proper anesthetic level. Once at the test site, 

a surgical procedure to install ICP sensors was performed. Blood pressure, oxygen saturation, heart 

rate and respiratory rate were monitored before and in between blast exposures. During the tests 

the animal was maintained under anesthesia (propofol 12-20 mg/kg/hr Constant-Rate Infusion). 

To expose the swine to open field blast, the animal was placed prone in a specially designed canvas 

sling with holes for the extremities. The sling was supported by a steel body frame which was 

suspended from a metal I-beam that was 3.7 m off the ground. The I-beam was supported by two, 

steel A-frames, as shown in Figure 1. The body frame was tied down to the A-frames with straps 

to prevent excessive motion due to the blast wind. To prevent thoracic injuries from primary blast, 
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the torso was wrapped in a lead sheet that had a density of 39 kg/m2. A piece of 1.6 cm thick foam 

padding was placed between of the lead sheet and the animal. The snout of the animals was secured 

by webbing material to support the head during blast tests. 

3.1.2  Free-field blast procedure 

3.6 kg of C-4 was packed into a spherical shape to generate blast waves. The height of burst 

(HOB) was controlled by suspending the C4 from a metal chain and a 2-inch thick metal plate 

placed under the charge to eliminate debris and assure consistence of the reflected wave. To 

generate different levels of IOP, the explosive was placed at varying distances from the pig’s head. 

Three levels of IOP were used in this study. Since the goal was to evaluate mechanical responses 

in non-fatal primary bTBI, the pressure levels were selected based on previous swine studies that 

were tested using shock tubes.(Bauman et al., 2009; Shridharani et al., 2012) These three pre-

determined peak IOP levels were nominally designated as low (150 kPa), medium (300 kPa), and 

high (400 kPa). To attain a pure Friedlander waveform, the height of the triple point as a function 

of the horizontal distance from a given charge weight was calculated for a range of HOB.(De Rosa 

et al., 1992; Ivanov et al., 2001) The HOB of the charge was computed to be 0.8 - 0.91 m with the 

height of the head of the test subject at or less than 0.91 m. The estimated horizontal distances 

from the charge and the HOB to produce the three different blast pressure levels were further 

verified by a finite element simulation (ConWep card in LS-Dyna, LSTC, Livermore, CA). 

To record the IOP profile during each test, a pencil pressure sensor (137B24B, PCB 

Piezotronics, Depew, NY,) was placed near the animal at the level of its eyes while two backup 
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pencil sensors were placed at the same height along a circular arc with a radius equal to the desired 

standoff distance. The sensors were mounted on a metal frame that was bolted to the concrete 

ground. A total of nine blast tests run at three standoff distances were conducted first to validate 

and finalize the calculated standoff distances based on the IOP measured from pencil probes. The 

current communication reports the results from frontal blast tests. Side and rear blasts were also 

performed but the results were not discussed due to inconsistent ICP sensor locations, scatter plots 

can be reviewed in appendix B.  

3.1.3  Directional sensitivity test on ICP sensors 

In this study, Kullite sensors (Kulite Semiconductor Products, Inc., XCL-072-100A) were 

used for capturing ICP. All the Kullite sensors were calibrated with PCB in the shock tube before 

field tests.  (Figure 7) Peak values of each sensor were used to determine if it is functional. All 

the sensors which percentage error is bigger than 10% were excluded.   
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Figure 3-1: An example of calibration on kullite sensors. The newly calibrated pencil sensor was 

used as a reference.  

 

Figure 3-2: Left shows the sensors alignment in the first set-up. The frontal sensor, Occipital 

sensor in face-on and side-on direction; Right shows the sensor alignment in the second set-up: 

the Frontal sensor in faced-on and side-on direction and occipital sensor. 

 

Then the pig’ head was sealed and stabilized on a platform within the shock tube and performed 

blast tests. It was found that there was not much difference between ICPs facing different directions. 

(Figure 3-1). 
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Figure 3-3: The top figure shows a representative figure of sensor readings at frontal and 

occipital face-on/side-on location. The bottom figure shows a representative figure of sensor 

readings at frontal face-on/side-on and occipital location.  

3.1.4  Sensor instrumentation and data acquisition 

Before installing the sensors, the scalp was opened from just in front of the nuchal crest to 

a point in front of the level of the eyes. The periosteum is scraped from the bone and any bleeding 
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is stopped with diathermy. ICP transducers (XCL-072-100A, Kulite, CA) were installed in the in 

the frontal, occipital, left and right temporal and parietal lobe and at the center of the brain.  

ICP transducers (XCL-072-100A, Kulite, CA) were installed in the in the frontal, occipital, 

left and right temporal and parietal lobe and at the center of the brain. The vertical distance between 

the brain surface and the tip of frontal, parietal, temporal, and occipital ICP transducers was 5-

7 mm. The depth of the center ICP transducer was 10-12 mm. The diameter of the pressure 

transducers was 1.9 mm. The three linear accelerometers (7264D-2KTZ-2-360, Meggitt’s Endevco, 

CA) and the three angular rate sensors (ARS-50K-HG, DTS, CA) were fastened to a single 

aluminum block (ARS HG Triax block, DTS, CA) and installed on top of the skull to monitor the 

motion of the head. To ensure rigid attachment of the accelerometer block, a 4 × 4-cm of scalp was 

removed from the posterior of the head to the lambda. Its location is shown in Figure 2 which also 

shows the approximate locations of the six ICP transducers.  
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Figure 3-4: Top view of the location of ICP sensors relative to the skull of the swine. 

The X-axis was defined as the axial direction of the blast, the Y-axis was defined as being 

perpendicular to the sagittal plane of swine’s head, and the Z-axis was normal to the transverse 

surface of the swine’s head at the location of the sensor block. The detailed sensor locations are 

presented in Table 3-1. After all the tests were done, the instrumented animal was euthanized at 

the blast site with an overdose of sodium pentobarbital (120 mg/kg, intraperitoneally). A parallel 

group of non-instrumented animals also underwent similar blast tests for histological and 

biomarker studies. Results of these studies are reported separately.  
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Table 3-1: Summary of the location of all sensors. 

Sensor Location 

Frontal ICP  2.5 cm anterior to Bregma, 0.5 cm left of midline. 

Parietal ICP  At the level of Bregma, 0.5 cm left of midline. 

Center ICP At the level of Bregma, 0.5 cm right of midline.  

Left temporal ICP 0.5 cm anterior to Bregma, 1.0 cm left of midline. 

Right temporal ICP  0.5 cm anterior to Bregma, 1.0 cm right of midline. 

Occipital ICP  1.5 cm posterior to Bregma, 0.5 cm left of midline.  

Accelerometer block 2.5 cm posterior to Bregma, on the midline. 

The IOP and the biomechanical responses of the head, including the ICP, head linear 

acceleration, and head angular velocity were acquired at a sampling rate of 1,000,000 Hz using the 

DeweSoft (SIRUS, Dewe Soft LLC.,OH) and  DEWETRON data acquisition system (Dewe-

3020, DEWETRON Inc. RI). Two high-speed digital camera systems (GX-8, HX-1, NAC Image, 

MN,) were set up to record high-resolution videos of the blast event. One of the cameras was 

focused on the head of the instrumented swine and ran at 20,000 frames/second (fps). The other 

camera provided an overall view of the blast wave propagation from the charge to the swine test 

subject and ran at 10,000 fps. Data acquisition of all the sensors and both cameras were 

synchronized for each test.  
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Figure 3-5: Experimental setup. Above is the photo of the blast site. Below is the Schematic 

diagram of the experimental set-up. 

3.1.5  Data processing and analysis 

IOP and ICP data were filtered with a 100 kHz and 10 kHz Butterworth low pass filter, 

respectively. Linear acceleration and angular velocity data were filtered with a 2 kHz Butterworth 

low pass filter. All post data processing and statistical analysis were performed using DIAdem 

2012 software (National Instruments Corporation, Austin, TX) and IBM SPSS Statistics (Version 
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22.0. Armonk, NY). All data were grouped into three IOP levels according to the recorded IOP by 

the pencil probe located next to the head of the swine. The duration of the blast wave was defined 

as the time the IOP stayed above ambient pressure and, was determined using Diadem. IOP 

impulse was defined as the area of the positive phase of the IOP wave and was obtained through 

integration. Peak ICP values were determined for each blast for statistical analysis. Linear 

regression models were constructed to predict the relative relationship between ICP readings 

within groups. ICP Box plots were drawn to show the distribution of pressure within each group. 

Paired t-tests were performed between IOP and ICP at each location in the same blast level. One-

way analysis of variance (ANOVA) tests were performed to compare the mean peak ICP readings 

between various locations at the same blast level and the peak ICP readings at the same location 

in different blast levels. Average Peak ICP readings for each test were correlated with their peak 

IOP values.  

The peak resultant acceleration was calculated based on the data measured by the three 

accelerometers. Similarly, the resultant angular velocity was calculated from results acquired by 

the three angular rate sensors. Linear regression models were used to describe the relationship 

between the peak resultant acceleration, peak resultant angular velocity and the peak IOP. One-

way ANOVA test of peak resultant acceleration was performed between low, medium, and high 

blast levels. No data at high blast level was collected due to sensor cable failure and signal 

anomalies. Independent t-tests were performed to compare the resultant angular velocities between 

the low and medium pressure levels.  
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3.2 RESULTS 

3.2.1 Intracranial pressure response 

The results of 19 frontal blasts were reported in this study, using five swine. Plots of a 

typical set of IOP and ICP curves are shown in Figure 3.  

 
Figure 3-6: Pencil reading from a medium level blast (left) and the ICP results in the swine brain 

from the same blast. The positive phase duration of the IOP was 2.30 ms, and the impulse of the 

IOP was 207.7 Pa-s. 

The peak IOP, duration, and IOP impulse of each test are summarized in Table 2. In our 

study, peak IOPs ranged from 143 to 461 kPa. The impulses ranged from 156 to 239 Pa-s. The test 

results were then divided into three pressure level groups based on the IOP results (Table 3-2). The 

average peak IOP values were 149, 279, and 409 kPa respectively, for the low, medium, and high 

blast levels tested. The average peak ICP at various locations of the brain were in the range of 79-

144 kPa at the low blast level, 209-282 kPa at the medium blast level, and 312-415 kPa at the high 

blast level. 
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Table 3-2: Summary of IOPs in this study: peak values, duration of the first positive wave and 

the impulse of the first positive waveform.  * indicates test in which swine had already expired 

during testing. 

Test ID Peak IOP(kPa) Duration (ms) Impulse (Pa-s) 
*1 150.3 2.8 170.3 
*2 142.7 2.9 155.7 

3 150.3 2.9 158.3 
4 148.2 2.9 160.3 
5 152.4 3.1 161 
6 218 2.1 193.9 
7 253.4 2.2 195.7 
8 255.2 2 194.9 
9 324.2 2.3 194.1 

*10 285.5 2.3 207.7 
*11 284.1 2.1 198.1 
12 285.4 2 196.4 
13 325.4 2 204 
14 366 1.6 205.4 

*15 441.3 1.7 225.2 
*16 413.7 1.6 229.6 
*17 460.6 1.7 239.2 
*18 341.3 2.4 228.8 
19 432.3 2.4 222.9 
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Table 3-3: IOP peak values vs ICP peak values at low, medium, and high IOP levels 

Test   ICP peak values, mean±SE       

 

IOP Frontal Parietal  Left Temp 
Right 

Temp 
 Occipital Center 

Low 148.8±1.7 97.6±19.7 144.2±18.0 142.8±0.0 147.9±0.0 78.9±13.4 93.7±17.0 

Medium 278.9±13.9 236.5±30.7 276.0±62.4 281.6±35.0 253.1±46.8 209.1±34.5 228.1±29.5 

High 409.2±18.9 311.7±29.1 414.6±0.0 386.4±7.1 325.5±8.6 328.2±26.7 327.2±17.0 

 

Scatter plots show that peak ICPs increased with peak IOP at every instrumented location 

(Figure 3-7).  

 

Figure 3-7: Scatter plots of ICP vs IOP at different locations of the brain. The x axis is the IOP 

and the y axis is the ICP, both in units of kPa. A linear regression model and R2 values are shown 

in each plot. 
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More specifically, ICP peak values correlated well with peak IOP in all the three blast 

pressure levels using linear regression models. The overall ICP responses were close or lower than 

its IOP at each blast level. At the low blast level, peak ICP responses of occipital and center regions 

were significantly lower than the peak IOPs (paired t-test, p < 0.05), with no significant differences 

in other regions of the brain (paired t-test, p > 0.05). At the medium blast level, no significant 

difference was found between peak ICP responses and peak IOP (paired t-test, p > 0.05). At the 

high blast level, peak ICPs were not significantly different from the peak IOPs (paired t-test, 

p > 0.05), except that in the center regions where the peak ICPs were significantly lower compared 

with the peak IOPs (paired t-test, p < 0.05) (Figure 5).  

 

Figure 3-8: Peak ICP readings for different levels of blast. Peak ICPs in different regions of the 

brain within each blast level group were not statistically different from each other.  

There was no statistically significance difference in peak ICPs between various locations 

at the low, medium and high levels (ANOVA, p > 0.05). The frontal ICP at the low blast level was 

significantly lower than that at the medium and the high blast level (ANOVA, PostHoc LSD, 
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p < 0.05). However, there was no significant difference of the peak frontal ICPs between the 

medium and the high blast level (ANOVA, PostHoc LSD, p > 0.05). Similarly, the occipital ICP 

at low blast level was lower than that at the medium and the high blast level (ANOVA, PostHoc 

LSD, p < 0.05). No significant difference was found with the occipital ICPs between the medium 

and high blast level (ANOVA, PostHoc LSD, p > 0.05). The peak center ICP values at the medium 

and the high blast level were both significantly higher than that at the low blast level (ANOVA, 

PostHoc LSD, p < 0.05). Statistical analysis also showed significant differences of the peak ICP 

between the medium and the high blast levels (ANOVA, PostHoc LSD, p < 0.05) (Figure 6).  

 

Figure 3-9: ICP peak values in the frontal, central and occipital regions of the brain showed a 

significant increase with increasing blast levels. Student’s t-tests indicated a significant 

difference between blast levels. (* p<0.05)  

Average peak ICP peak values in each test correlated well with peak IOPs (Figure 3-11). 



41 

 

 

 

Figure 3-10: Maximum pressure rise rate values show significant increase with IOP levels at 

frontal and average reading of ICPs and different locations. 

 

Figure 3-11: Sample time-history plots of the acceleration and angular rate measured on the 

swine head with instrumentation mounted to the skull. The left plot shows linear acceleration (g) 

in the x, y and z directions. The right plot shows angular velocity (rad/s) 

3.2.2 Head kinematics 

In this study, we characterized the head motion with its linear acceleration and angular 

velocity. Typical time histories of the three linear accelerometers and the three angular rate sensors 

are shown in Figure 3-12A and 3-12B respectively.  
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Figure 3-12: Sample time-history plots of the acceleration and angular rate measured on the 

swine head with instrumentation mounted to the skull. The left plot shows linear acceleration (g) 

in the x, y and z directions. The right plot shows angular velocity (rad/s) in the x, y and z 

directions.   

The resultant linear accelerations and the resultant angular velocities increased linearly 

with IOP (Figure 3-13A and B). Additionally, correlations between ICP peak values and head 

motions were depicted in Figure 3-14 A and B. 

 

Figure 3-13: Scatter plots of the motion of the head, showing the relationship between the peak 

IOP (abscissa) and the resultant linear acceleration (ordinate, left graph), or the resultant angular 

velocity (ordinate, right graph). These variables correlated well with the peak IOP in linear 

regression models. 
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Figure 3-14: Linear relationship were shown between peak ICP and resultant linear acceleration 

(A), and with resultant angular velocity (B). 

The resultant accelerations at high blast levels were significantly higher than that at low and 

medium blast levels (ANOVA, PostHoc LSD, p < 0.05), but there was no statistical significance 

between the low and the medium blast levels (ANOVA, PostHoc LSD, p > 0.05). The resultant 

angular velocity at the medium blast level was significantly higher than that at the low blast level 

(independent t-test, p < 0.05). The durations of the linear acceleration were typically less than 3 ms, 

indicating that there was little translational movement of the head during primary blast. 

3.2.3 Change in sensor array to streamline instrumented swine testing procedure 

The original test plan was to instrument the brain of each swine with six miniature ICP 

sensors (Figure 3-16). Then we would expose the swine to 9 blasts (three forward, three lateral 

and three backward) on a single test date. Due to the extensive surgery and repeated blasts on the 

swine head, the survival rate of the anesthetized instrumented animals was very low. Among the 

first ten tests performed on instrumented pigs, only the first two tests were performed on live pigs; 

the remaining tests were performed after the pigs had expired. Also, time was very limited to 

prepare and perform nine tests in one day. Thus, a revised sensor array for the remainder of the 
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instrumented swine testing was used. In this new instrumentation plan, we used four ICP sensors 

in each swine (Figure 3-5, 3-16). Instead of exposing each pig to blasts in all three directions, we 

only tested in the front/rear or side direction. This method resulted in less brain damage to the 

swine’s brain from pressure transducer placement, increased survival rate and allow for the higher 

probability of completion of the proposed set of blasts in one day. The detailed plan was approved 

by the COR. 

 

Figure 3-15: Revised locations of ICP sensors in 2014. Total numbers of ICP sensors were 

reduced from 6 to 4. Two types of set-up were utilized in front-back and side blasts.  
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Figure 3-17: Demonstration of ICP sensors in 3D model. 

 

Figure 3-16: Standard ICP locations on the brain and skull in a 3D view. 

3.2.4 Location of ICP sensors 

The locations of the ICP sensors were set based on pre-designed relative distances to the 

landmarks on the skull: bregma and lambda (Figure 3-5). The standard locations of these sensors 

are shown below (Figure 3-17). The locations of ICP sensors were verified with 3D model.  

 

3.3 DISCUSSION 

Animals are commonly used to study traumatic brain injury (TBI).(Cernak, 2014; Risling 

and Davidsson, 2012) In this study, we chose Yucatan pigs as the body mass and skull thickness 
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are closer to those of the human. Also, with a larger body size, biological tolerance level of air-

filled organs to blast is believed to be higher. 

This study exposed live swine subjects to free-field blast loading at various pressures and 

durations by changing the standoff distance between the charge and the swine. Of the five swine 

tested, two expired just before the blast testing, and one died during the tests. This resulted in 8 of 

the 19 blasts being performed on expired animals. However, the ICP responses showed little 

difference between expired animals and live animals. The potential causes of death could be related 

to complications from anesthesia and surgical procedure to insert ICP sensors. 

Based on our knowledge of blast physics, the blast wave produces highly variable pressures 

both spatially and temporally (Ngo et al., 2007) To fulfill this goal of defining mechanical response 

of the brain to blast, we analyzed the ICP in different regions of the brain at various blast IOP 

levels. All previous studies have addressed the mechanical responses of the brain to blast with 

post-mortem human subjects (PMHS),(Bir, 2011) rats,(Chavko et al., 2007; Goldstein et al., 2012; 

Gullotti et al., 2014; Huber et al., 2013; Leonardi et al., 2011) and swine (Bauman et al., 2009; 

Saljo et al., 2008; Shridharani et al., 2012; Zhu et al., 2013) models using compressed-gas shock 

tubes in a laboratory environment or enclosed space. Although some of these models provided 

crucial information on the correlation between IOP levels and injury responses, challenges with 

shock tube tests still exist, including animal positioning, orientation, and interpretation of the effect 

of the relatively longer duration of the blast.(Needham et al., 2015) One previous animal model 

placed the animal head right outside of shock tube.(Shridharani et al., 2012)It brought dramatic 
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changes to the IOP characteristics including the formation of a strong vortex flow and elevated 

dynamic blast pressure and impulse, which deviated significantly from the free-field blast scenario. 

Data from rat blast models tested in shock tubes recorded positive phase durations in the range of 

4-18 ms,(Chavko et al., 2007; Goldstein et al., 2012; Huber et al., 2013; Leonardi et al., 2011) 

which would render the equivalent human duration much longer than that of a free field blast. 

Hence, shock tube test results need to be carefully investigated and compared with free-field 

explosive detonations. In this study, all experiments were performed in an open field blast 

environment. To minimize multiple waveforms from ground reflections, we placed the animal 

below the triple point and exposed it to the Mach stem.(Bass et al., 2012) The IOPs were typical 

free-field Friedlander blast waves in the Mach stem region based on our analysis of the IOP data.  

This study provided detailed ICP response in the swine brain subjected to free-field blasts. 

Historically, some animal tests have been designed and carried out in an attempt to investigate the 

mechanism of shock interaction with the brain, but only a few animal studies recorded direct 

pressure within the brain tissue during exposure to blast.(Chavko et al., 2007; Leonardi et al., 2011; 

Shridharani et al., 2012; Zhu et al., 2013) In our study, the results have demonstrated that ICP 

followed a trend of increasing magnitude with increased blast severity. However, the shape of ICP 

curves were different than IOP, this could be explained by the combined results of shock waves 

and reflection waves from the complex structures of the swine brain and the different materials 

within the skull.  
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The relationship between peak ICP and IOP has been determined in several animal blast 

studies. We showed that, at different locations in the brain, peak ICP values were close to or lower 

than the IOP. One similar observation was made by another group investigating the mechanical 

response of the swine brain subjected to left-sided blasts in a shock tube.(Shridharani et al., 

2012)The peak IOPs ranged from 110 to 740 kPa with scaled durations from 1.3 to 6.9 ms. ICPs 

ranged from 80 to 390 kPa and were lower than the IOPs and notably lower than the reflected 

pressures of 300-2830 kPa. Another swine study by Bauman (Bauman et al., 2009) was performed 

in both a shock tube and in a simulated building with frontal blasts.(Bauman et al., 2009) The 

recorded IOP data showed that the test animal was exposed to multiple shock waveforms. Fiber-

optic pressure transducers were used to record pressure from within the forebrain, thalamus, and 

hindbrain of the swine without specifying details related to the locations of transducers. The ICP 

results showed that for IOP levels of 100-250 kPa, the peak ICP values at the three locations were 

lower than the IOPs.(Zhu et al., 2013) 

In addition to the use of swine, smaller animals like rats have also been used. In a rat study, 

an optic fiber pressure sensor was used to record shock tube generated ICPs. The animals were 

exposed to a low level blasts of about 40 kPa and the recorded peak ICPs were close to but lower 

than the IOP in both the frontal and lateral regions of the brain.(Chavko et al., 2007) However, this 

study only used one ICP sensor in each test, and the results of the study were not statistically 

analyzed. There were also some discrepancies between findings in the peak ICP values compared 

to the peak IOP values in rat models. Leonardi et al. reported that peak ICPs in rats were larger 
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than the peak IOPs and suggested that skull flexure due to an immature skull suture could be the 

source of the pressure increase.(Leonardi et al., 2011)One recent study with cadaver rats also 

showed a higher peak ICP compared to the peak IOP values at different IOP levels.(Skotak et al., 

2013)However, the location of the ICP sensor in the brain was not described, and the torso was not 

properly shielded from the shockwave. Also, the impulse produced in this study was in the range 

of 165- 497 Pa-s, larger than what we used in this study (160-240 Pa-s).  

Blast studies have also been performed on PMHS. In one PMHS study, using a shock tube, 

four fiber optic sensors were implanted in the right frontal cortex, right lateral ventricle, right 

parietal lobe and right occipital lobe with the respective depths of the tip of the sensors from the 

outer surface of the skull being 30, 30, 65, and 30 mm.(Bir, 2011) At each IOP level, the peak ICP 

values in the frontal lobe were higher than its peak IOP value. This observation was not seen at 

other locations of the brain. Also, most of the computer models indicated higher peak ICP 

compared with IOP readings.(Chafi et al., 2010; Zhang et al., 2013), (Moore et al., 2009; Taylor 

and Ford, 2009; Zhu et al., 2010; Zhu et al., 2013) 

The discrepancy between measured and model predicted ICP and IOP readings could be 

due to several causes. One would be the highly nonlinear relationship between ICP at various 

locations and the IOP wave.(Zhu et al., 2013) Due to the impedance mismatch between the skull 

and the brain, ICP peak values tend to be higher at the boundaries and lower in the central 

region.(Meyers, 1994) With respect to the location of transducers, computer models can precisely 

pinpoint the coup and countercoup regions of the brain. The location of the ICP sensors in animal 
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experiments was limited by surgical techniques. The depths of sensors below the skull in all 

experimental tests were different or not described in detail. Therefore, the ICP readings vary in the 

published literature as described above. Another reason for ICP differences seen in rats and pig is 

possibly due to the morphological differences between species. Compared to rats, pigs have a much 

thicker skull with a complex diploe layer that is full of voids (Figure 3-17). Computer models, on 

the other hand, may have oversimplified the skull and yielded predictions that did not match 

experimental data. 

 

Figure 3-18: (A) A snapshot showing the locations of installed mounts for pressure transducer 

installation and (B) A sectional view of a skull which shows the frontal sinus cavity along with 

corresponding frontal sensor location. 

Both linear and angular motions of the head were acquired in our tests. The arrival of the 

ICP wave is almost simultaneous with head motion. Thus the motion is due to the primary blast 

wave (Figure 3-18). 
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Figure 3-19: The relationship between ICP and head motion (resultant linear head acceleration 

and angular velocity) demonstrated that primary blast imparted a severe acceleration to the head, 

albeit the duration was very short. 

However, the duration of the motion is relatively short (1-2 ms), which resulted in the 

maximum head displacement around 2 ms by double integrating linear acceleration over time. 

Similar observations were made by Shridharani et al. also using swine subjects.(Shridharani et al., 

2012) They found strong correlations (R2 = 0.9) between peak resultant acceleration and peak IOP 

in the range of 110 to 740 kPa in a linear model. Their positive phase duration was around 3 ms, 

and the maximum head displacement was 7.5 mm. Thus, the observed acceleration in these two 

studies was likely due to the primary shock wave. Well after the passage of the shock wave, we 

observed inertial global head movement but the head acceleration due to the blast wind or tertiary 

blast was not significant compared to the initial acceleration due to the primary shock wave. 



52 

 

 

We also collected ICP and accelerometer data from side and rear blasts. Due to sample size 

and the modifications of the sensor locations, we don’t have a conclusive statement here. The 

results of ICP distribution in different oriental blasts are shown in Appendix C. 

3.4 CONCLUSIONS 

The data reported here were acquired from live, anesthetized swine exposed to primary 

blast waves. This is the first large animal model exposed to free-field blasts in which detailed 

internal pressure measurements were made at various locations. Head motion due to primary blast 

waves was also measured. The mechanical responses of swine need to be scaled to the human head 

to determine human response. However, due to the morphological differences between the two 

species, scaling laws can be difficult to develop. Also, the limited sample size should also be taken 

into consideration. Due to time limitations to complete nine blast tests on a single animal in 8 hours 

and failure of the data acquisition system on one occasion, data were available from 19 tests on 5 

animals. Additional testing of more animals should improve the statistical significance of the 

results.  

In summary, the results of this study provided a set of detailed biomechanical response data 

of swine skull and brain during exposure to primary blast waves, with the peak IOPs ranging from 

143 to 461 kPa, and the impulses ranging from 156 to 239 Pa-s. The overall ICP responses were 

close or lower than its IOP at each blast level. More specifically, peak ICP values at the frontal, 

parietal, and temporal were statistically the same as its IOP values. Peak ICP values at the frontal, 

central, and occipital regions were significantly elevated at the medium and high blast levels 
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compared with the low blast levels. Furthermore, only at central location, was the ICP significantly 

different between the medium and high pressures tests. Both the linear acceleration and the angular 

velocity increased with blast levels. Although the head acceleration was high, its duration was less 

than 2 ms. It is unlikely that the brain would be able to respond to this type of acceleration input. 

The experimental data can be used to validate computer models.  
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CHAPTER 4 .  NEUROPATHOLOGICAL FINDINGS ON SWINE BRAIN 

SUBJECTS TO PRIMARY OPEN-FIELD BLASTS  

4.1 INTRODUCTION 

The neuropathology pathways of TBI results from the explosive blast is not as yet fully 

understood. During the global war of terror, bTBI resulting from exposure to an explosive blast is 

associated with significant neurobehavioral outcomes. The consequences range from subtle mild 

cognitive impairment, affecting the ability of a person to perform under demanding conditions, to 

severe disruption of brain function as serious as coma. These effects can be temporary or 

chronic(Ling and Ecklund, 2011). Diffusion tensor imaging (DTI) reveals that dose-dependent 

diffuse axonal injury (DAI) that is different from concussive impact DAI. Opposed to blunt impact 

TBI, which cerebral edema develops several hours or even days after the trauma event, the brain 

of bTBI grows much faster, on the order of an hour or so (Armonda et al., 2006).   

Currently, due to the complexity nature of bTBI, little is known about the real 

neuropathological consequences of primary blast wave to the human brain. Edema, intracranial 

hemorrhage, and vasospasm are the most prominent pathophysiologic characteristics of 

bTBI(Bauman et al., 2009). In clinical study, Gill J et al recently published data of acute peripheral 

cytokine levels collected from soldiers who went through singular blast wave in the range of 41-

83 kPa. Significant elevated IL6 and TNFα levels were observed after the blast, levels were then 

rebounded back to baseline level(Gill et al., 2017).  
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The best pathway to characterize the pathological events and identify blast-specific 

biomarkers is through animal models in vivo and in vitro. Even though the biology of animals is 

different than human in many aspects, there are tremendous advantages of animal models on 

studying the development of pathology of bTBI. Some researchers have used in vitro models 

looked directly into cellular and molecular cascade of events in primary bTBI without confounding 

in vivo factors. The goal is to differentiate the primary and secondary injury events that both 

possibly play role in the neuronal degeneration and death. Miller et al. utilized organotypic 

hippocampal slice cultures exposed to low and high blast overpressures. Their histological 

evaluation shows neuronal death and activation of astrocytes in both blast levels. (Miller et al., 

2015)  A similar study was carried out by Effgen et al. In this study they found that the 

hippocampal slice culture exhibits cell death when exposed to a 530 ± 17.7-kPa peak overpressure 

with a 1.026 ± 0.017-ms duration and 190 ± 10.7 kPa-ms impulse in-air.(Effgen et al., 2012) The 

research conducted by Ravin et al. put their focus on the impact of shear stresses on brain cells 

during blast. (Ravin et al., 2012) The increased Calcium activity suggested that shear forces are 

likely involved in the primary bTBI.  

There were some studies utilizing animals to evaluate the functional deficits of CNS from 

blast exposure. Connell et al. made direct observation of the blast wave impact and the deformation 

of nervous tissue in response to blast nozzle produced overpressure loading in an ex-vivo model. 

Quantification results at tissue level were correlated with blast conditions to illuminate the 

mechanism of injury. It was found that direct exposure to the blast wave compressed the nervous 
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tissue at high strain rate and led to significant functional deficits(Connell et al., 2011). De Lanerolle 

et al. used a Yorkshire swine subjected to blast shock tube and evaluated the histological changes 

afterward. They observed increased astrocyte activation and axonal injury detected with β-amyloid 

precursor (βAPP) protein immunohistochemistry [14]. Similarly, a study used primate animal 

model also reported Increased apoptosis appeared to involve astrocytes and oligodendrocytes in 

the animals following blast exposure (Lu et al., 2012). In another example, hemorrhage and 

contusional brain injury was observed at high but not low blast over- pressures in a rat model, 

pointing toward a pressure dependency of blast-induced brain injury (Kato et al., 2007). The lysis 

of erythrocytes will lead to the generation of oxidative stress via the release of redox-active iron, 

which participates in reactions that generate ROS. This consequently triggers events like apoptosis 

and inflammation, further aggravating the injury (Elsayed et al., 1997). A recent study compared 

postmortem brains from veterans with blast exposure and athletes with histories of concussive 

injuries and normal control brain (Goldstein et al., 2012). It was found CTE-like tau 

neuropathology was shown in both the blast exposed the brain and the repetitive concussion brain 

of athletes. The researchers also performed single controlled blast exposure on mice and revealed 

similar histological results. However, the researchers did not present additional evidence that 

would show whether this neuropathology was principally caused by blast exposure alone or by 

blunt brain trauma caused by blunt trauma to the head. 

Another similar study with mice also reported elevation of multiple phosphor- and cleaved-

tau species in neurons, as well as elevating manganese superoxide dismutase (MnSOD or SOD2) 
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levels, a cellular response to oxidative stress, after single mild level of blast overpressure 

(108.9 kPa peak pressure and 5.87 ms positive phase duration) produced by shock tube (Huber et 

al., 2013).  

A mouse model subjected to low-level free-field blast was developed to identify 

pathophysiological processes. Besides functional deficits, immunohistochemistry revealed up-

regulation of mitochondrial superoxide dismutase two expressions at 72 h post-exposure in the 

group exposed to a 5.5 psi wave (Rubovitch et al., 2011).   

To sum up, neuronal injury studies have shown varies consequences related to primary 

bTBI. Although these effects on neurons and glial cells were observed following the blast exposure, 

it is still unclear whether they are formed directly by the blast overpressure or through indirect 

mechanisms(Miller et al., 2015). Similarly, due to the complex nature of bTBI, no single bTBI-

specific biomarker has yet been identified. A combination of immunohistological data with 

different markers provided in the acute phase will help elucidate the potential mechanism. To 

clarify the acute impact of primary bTBI on neuronal loss, we did a detailed histological 

examination with 11 types of immunohistological stains and biomarkers. Here, we reported results 

on neuronal degeneration and apoptosis of brain cells with cleaved Casepase-3 and Fluoro-jade C 

stain at 72 hours post blasts.
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Table 4-1: Immunohistological evaluations on bTBI animal models. 
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In this study, two types of fluorescent staining were utilized to evaluate neuronal cellular 

injury and apoptosis: Fluorojade C (FJ-C) and Caspase 3. FJ-C is a cationic fluorescent dye 

empirically demonstrated to bind to degenerating neurons after tissue fixation. FJ-C stains 

degenerating neuron cell bodies, dendrites, and axons. It provides a quantifiable index for 

assessing neuronal damage within interior regions of the brain slices. Caspase 3 has been identified 

as a key mediator of apoptosis in neuronal cells(D'Amelio et al., 2010). Reed et al used a rat model 

of direct cranial blast injury (DcBI) to evaluate severe brain injury with Fluor jade C and Caspase 

3, the results showed high-level DcBI (~515 KPa) can cause significant neurological dysfunction 

(Kuehn et al., 2011). An ex vivo study also evaluated the situation of neuron degeneration via FJ-

C staining. The results of this study showed that the neuronal injuries were much greater than 

injury associated with the tissue slice paradigm alone (Sarntinoranont et al., 2012). However, 

neither of these studies showed the correlations between injuries and pressure loading in the brain. 

Such information is needed for developing the injury tolerance curve for bTBI on animals and 

humans.  

In general, the animal models used for mechanical recording of bTBI in the past varies in 

shape and physical testing conditions, these studies provided useful information on evaluating the 

mechanical responses subjects to blast overpressure. We believe more detailed results on large 

animals in the real-world blast scenario will add crucial information to the process of illustrating 

the mechanism of bTBI. More importantly, we propose to correlate the mechanical responses of 

the brain to immunohistological results of acute bTBI at different blast levels. The purpose of this 
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study is to provide data to ultimately find the injury tolerance curve of the brain by giving a 

quantitative evaluation on the pathological course of neuronal cells in the brain.  

4.2 METHODS  

4.2.1 Experimental set-up 

The proper blast level to produce injury is the key factor in this study. One approach is 

exposed animals to sequentially higher blast levels and to determine whether a threshold could be 

identified through pathology results(Ahlers et al., 2012). A series of tests on rat showed that blast 

exposure up to 74.5 KPa lead to no persistent neurological impairments (Elder et al., 2012; Gama 

Sosa et al., 2014; Sosa et al., 2013). Similar experimental set-ups of mechanical test group were 

used in the non-instrumented animal group except there were no intrusive sensor placement in the 

animal’s brain. Non-instrumented swine only received one front blast at an open field. The non-

instrumented group underwent blasts at medium and high levels. This design ensured the integrity 

of the brain and will link any histological findings to the mechanical blast findings. The similar 

experimental set-up will also be performed on six sham animals. The sham animals were exposed 

to the same location as the tested animals under identical procedures except exposure to the real 

blast event. The histological comparison between sham animals and non-instrumented animals 

revealed the consequences of blasts. The incident pressure was recorded with Dewesoft 

(DEWETRON Inc. Dewe-3020).  
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4.2.2 Termination and fixation 

Swine in non-instrumented group were shipped back to WSU under anesthesia. Then the 

swine was allowed to recover and was monitored for at least 8 hours. Blood samples was collected 

pre-blast, and at 6, 24, 48 and 72 hours post-blast for assessment of serum biomarker levels that 

might be indicative of brain injury.  At 72 hours after experiments, swine were re-anesthetized 

with ketamine and euthanized by sodium pentobarbital (fatal plus) followed by rapid opening of 

the chest by a midline sternotomy exposing the heart and major vessels. The sternotomy was 

extended to the neck, in order to visualize the trachea and bilateral carotid arteries. Then, a cannula 

was inserted into each of the carotid arteries, and the pig was flushed with 2 liters of 0.9% sodium 

chloride solution. The descending aorta, bilateral subclavian and brachial arteries were clamped (a 

similar approach was used by Fritz et al., 2005). The right atrium was opened and the returning 

blood and solution was collected directly by suction into a container for later disposal. Once the 

returned solution is clear, the brain is fixed by 6 liters of 4% paraformaldehyde solution, as 

described by Browne et al. (2011). Then, the skull is opened, and brain is removed and post-fixed 

in 4% paraformaldehyde (500 ml) at two weeks. 

4.2.3 Slides preparations 

The perfused brain was frozen before sectioning. The whole brain is cut into blocks at 5mm 

thickness with a brain matrix mold (Figure 4-1). Then the brain tissue is then further processed 

into 40µm sections with automatic microtome. 
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Figure 4-1: Graphs above show the custom-made brain matrix mold. Left graph is the top view 

of the mold (Zivic Instruments); Right graph shows the grooves of exact 5-mm thickness. 

FJ-C fluorescent staining: 4 coronal sections were selected according to the ICP sensor 

locations in the front blast, and are washed thoroughly in distilled water and mounted onto gelled slides. 

The sections were 20um in thickness encompassing the anterior-posterior aspects of the brain. The 

gelled slides were prepared by an immersion in a 60 degree C solution of 1% gelatin (Sigma; type 

A, 300 Bloom) and then oven dried overnight at the same temperature. Then the slides were air 

dried for 30 minutes on a slide warmer at 50 degree C. The dried slides were then immersed in a 

basic alcohol solution consisting of 1% sodium hydroxide in 80% ethanol for 5 minutes. Then the 

slides were rinsed with 70% ethanol for 2 minutes and followed by another 2 minutes in distilled 

water. Sections are subsequently incubated in 0.06% potassium permanganate solution for 10 

minutes. Following a 2-minute water rinse, the slides then were transferred to a 0.0002% solution 

of FJ-C. In order to quantify the total number of cells within each field of view, the nuclear DNA 

label 4’,6-diamidino-2-phenylindole (DAPI, 0.0001%; Sigma-Aldrich, St. Louis MO) were 

included in the FJ-C solution in 0.1% acetic acid vehicle. The slides then were washed with three 
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changes of distilled water for 1 minute per change. After air-drying of the slides, they were cleared 

in xylene for 2 minutes and then cover slipped with DPX.  

Caspase-3 staining: another set of brain sections adjacent to those selected for FJ-C 

staining were chosen for Caspase-3 staining. The staining protocol was developed as follows: All 

sections are washed three times in PBS, for 5 min at room temperature. Then drain the slide and 

add 200 μl of blocking buffer (PBS/0.1% Tween 20 + 5% donkey serum). Use of serum from the 

host species of the conjugate antibody (or closely related species) is suggested. Lay the slides flat 

in a humidified chamber and incubate for 1-2 hr at room temperature. Rinse once in PBS. Add 100 

μl of the active Caspase 3 antibody diluted 1/200 in blocking buffer. Incubate slides in a humidified 

chamber overnight at 4°C.The following day, wash the slides three times, 10 min each in PBS/0.1% 

Tween 20 at room temperature. Drain slides and add 100 μl of goat anti-rabbit Cy5® conjugate 

diluted 1:500 in PBS. Lay the slides flat in a humidified chamber, protected from light, and 

incubate for 1-2 hr at room temperature. Wash three times in PBS/0.1% Tween 20 for 5 min, 

protected from light. Drain the liquid, mount the slides in a permanent or aqueous mounting 

medium and observe with a fluorescence microscope. 

4.2.4 Analysis of Fluorescent signal 

For each histological stain, 2 sections from each frontal, temporal, parietal, center, and 

occipital were obtained from previously acquired 5 mm blocks (Figure 4-2). Note that these 

locations of these five regions were chosen based on the locations of ICP sensors. The range of the 

slides analyzed here were relatively narrower than the whole brain in the longitudinal direction. 
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The FJ-C and DAPI stained sections were examined with an epifluorescence microscope (Q-

Color3 TM, Olympus, Japan) using proper emission filters. For DAPI signals, the excitation time 

was set at 100 ms. Exposure time was set at 1 second to capture FJ-C and Caspase-3. In general, 

6 randomly-selected images were captured from each section at the similar locations of sensors 

installed in the instrumented group (Figure 4-3).A total number of 12 images were taken for each 

region in every animal. 

 

Figure 4-2:Lateral view of the pig brain indicating the sections used to evaluate cellular injury 

and neuronal degeneration. Four white lines at the left figure show the position of the four 

coronal sections listed at the right side. They are representative 5 mm blocks from an non-

instrumented animal subjected to blast. A) frontal, B) temporal, C) Parietal and Center, D) 

Occipital.  
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Figure 4-3:Graph shows the imaging methodology on choosing representative pictures at cortical 

region to quantify FJ-C and Caspase-3 signals. 

Image J (Image J, NIH, USA) was used to perform quantitative analysis on Caspase-3 

images. The cells (DAPI stains) and the apoptotic cells (Cleaved Caspase-3) were counted 

following a custom Standard Operating Procedure (SOP) using Image J. DAPI-positive areas were 

segmented using a pixel intensity threshold. An imaging threshold value of 30% of the background 

value was determined to identify FJ-C-positive neurons reliably. Background values were 

calculated from images of the molecular layer of the cortex. The fraction of apoptotic cells labeled 

by Caspase-3 was determined by dividing the total number of overlapping Caspase-3 and DAPI-

positive objects by the total number of DAPI-positive objects in the field. Degenerating neurons 

(overlapping DAPI and FJ-C stains) were manually quantified in each high-power field (HPF) due 

to positive signals can come from both the cells and blood vessels. Double-blinded quantification 

was performed for all the FJ-C slides. Distribution patterns of ICP as mean peak values were used 

to estimate the likelihood and severity level of injury in different brain regions. Statistical analyses 

were performed using SPSS software. One-way ANOVA and student t-tests were used to 
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calculated the p values. Results were expressed as mean ± standard error of the mean. A p-

value<0.05 was considered as significant. 

4.3 RESULTS 

We have a total number of 11 blasted animals in histological group. We divided them into 

two blast groups based on their peak pressure levels, the medium blast group (272.7±7.35 kPa) 

and high blast group (375.3±1.78 kPa). Detailed peak pressure for each blast was listed in table 4-

2. 

Table 4-2: List of peak IOP in histological blast group. 

Blast No. Peak IOP (kPa) 

B1 223.5 

B2 332.3 

B3 305.4 

B4 222 

B5 262.7 

B7 290.3 

B8 359.9 

B9 359.9 

B10 403.3 

B11 403.3 

B12 350.3 

There was no lethality associated with these blast pressure levels. Our results showed more 

prominent FJ-C positive-stained zones in the blast groups compared with sham (n=3). (Figure 4-

4). A further analysis showed that the number of FJ-C-positive neurons in the high blast group 

(n=6) were higher than that in the medium blast group (n=5). (student t-test, p<0.05) (Figure 4-5). 

Furthermore, positive stained FJ-C neurons were observed in the cortical regions from frontal to 
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occipital regions in the blast groups (Figure 4-6). Further analysis showed no difference between 

different regions of the brain in the same blast level groups. 

 

Figure 4-4: Representative images of FJ-C staining in sham (A1,A2) and blast groups (B1, B2). 

A1 and B1 are FJ-C images, A2 and B2 are counterstained DAPI images in the same region. 
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Figure 4-5: FJ-C level in different blast level groups. The medium and high groups are 

significantly higher than sham group. Additionally, the positive counts of FJ-C in high blast 

group are significantly higher than medium group. (P<0.05) 

 

 

Figure 4-6: FJ-C distributions of the quantified slides from each animal. 
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Figure 4-7: One-Way ANOVA showed there was no difference between groups in the same blast 

level. (p>0.05) 

We chose Caspase-3 to identify the level of apoptosis in the brain (Figure 4-7). In brain 

sections from swine subjected to high blast group (n=3), the apoptosis level was significantly 

elevated compared with sham group (n=3) and medium blast group (n=6) (p>0.05). There was no 

statistical difference between sham and medium group (Figure 4-8). Apoptotic cells were observed 

in both white and gray matter in the brain in the blast groups. Caspase-3 stained signals were 

covered from frontal to occipital regions of the brain (Figure 4-9). One-way ANOVA tests showed 

there was no difference between various regions of the brain in the same blast level groups (Figure 

4-10). In this study, we did not perform the blast to non-instrumented animal paired with 

instrumented animals due animal availability. Therefore, it would be not accurate to make the 

statement on the correlation between ICP response with different characteristics and injury 

outcomes. However, we utilized the relatively high linear correlation equation between IOP and 
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ICP peak values in the mechanical group to make predictions of the relationship between 

mechanical responses and the injury outcome (Figure 4-12, Figure 4-13).   

 

Figure 4-8: Caspase-3 expression. A1and A2 shows positive staining of Caspase-3 with DAPI 

counterstain. B and C are images at 100x. B shows negative caspase-3 stain, C shows positive 

Casepase-3 with DAPI. 
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Figure 4-9: The number of Apoptotic cells were significantly higher in the high blast group than 

sham and medium group. p<0.05 

 

Figure 4-10: Casepase-3 distribution at different locations of the brain in every blast. 
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Figure 4-11: Caspase distribution at different regions in each blast level group. Statistics did not 

show any difference between the different regions. (p>0.05) 

 

Figure 4-12: Scatter plots shows the correlation between IOP and Apoptotic cells. 
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Figure 4-13: Distribution of average FJ-C counts in each test. The data was correlated with linear 

trend line.  

4.4 DISCUSSION 

4.4.1 Neuronal degeneration and apoptosis in the brain  

To our knowledge, this study is the first of its kind to attempt to address the fundamental 

question whether an open field blast exposure causes injurious changes in the gyrencephalic brain. 

Although there were other studies that attempted to address the same question in a gyrencephalic 

model using explosives, animals in those studies were exposed to a simulated open field blast by 

positioning the animal either in a shock tube, high mobility multipurpose wheeled vehicle 

surrogate or in a four-sided building with no roof using a moderate charge (Bauman et al., 2009; 

de Lanerolle et al., 2011; Gyorgy et al., 2011). Another previous open field blast study (2.1 kg 

explosive) positioned the animal on a steel shelf mounted to the concrete wall of the bunker and 

studied only physiological parameters such as respiration, circulation and cortical activity but no 

histological analyses of brain for injury changes as in the current study(Axelsson et al., 2000). 
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Sa¨ljo¨ et al on the other hand, offers some details on the effects of repetitive blast pressure (3 

times during a 10–15 minute period) in swine exposed to low level noise produced by various 

weapons (a howitzer, a bazooka, an automatic rifle) or underwater explosives(Saljo et al., 2008; 

Saljo et al., 2011). They reported that animals exposed to bazooka (Pmax 42 kPa) and automatic 

rifle (Pmax 23 kPa) showed significant increase in subarachnoidal and small parenchymal 

bleedings in cortical regions with occipital lobe and cerebellum being the most predominantly 

affected structures. Animals exposed to howitzer blasts at 30 kPa although displayed parenchymal 

and subarachnoid hemorrhages, they were not significantly different from that of controls due to 

the limitations in the number of animals. Sa¨ljo¨ et al concluded that low levels of blast causes 

brain edema as indicated by increased bioelectric impedance, an increase in intracranial pressure, 

small brain hemorrhages and impaired cognitive function(Saljo et al., 2011). In our study the 

animals were exposed to higher open field blast pressure than these animals and the likelihood of 

such hemorrhages although possible was not investigated as the focus was to study neuronal injury 

and glial reactivity changes. 

We studied injury changes in the brain following an free-field blast in Yucatan swine 

suspended in a sling and positioned below the triple point and exposed to a single Friedlander 

wave form either at medium (range 222 kPa—305 kPa; average 272±5 kPa) or high blast 

overpressure (range 335–403 kPa; average 380±3 kPa). Our lowest medium blast overpressure of 

222 kPa was similar to the mean shock tube blast pressure (241±8 kPa) reported by de Lanerolle 

et al (2011) in Yorkshire swine. Besides, the shock tube pressures reported by de Lanerolle et al 
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ranged from 131–365 kPa(de Lanerolle et al., 2011) with their lowest pressure range far lower than 

in our study. In our experience there were no mortalities in both the medium and high blast 

overpressure groups. These pressures were very close to those utilized by de Lanerolle et al (2011) 

who reported shock tube and vehicular blast pressures in the range of 255–365 kPa with potentially 

long durations that may be a contributing factor for the observed mortality. Furthermore, the 

medium and high blast overpressures used in our study are higher than those used by Gyorgy et al 

(2011) who used three different blast overpressures of <152 kPa, 138–276 kPa and >276 kPa 

respectively on Yorkshire swine and reported time dependent changes in serum biomarkers 

(Gyorgy et al., 2011). 

Animal models suggest that primary blast injury can be associated with neural injury, 

although the underlying mechanism is not yet clear (Cernak et al., 2001a, b). In this paper, we 

made efforts on evaluation of the degenerating neurons and apoptotic cells in the frontal, temporal, 

parietal, center and occipital of the brain 72-hours post the blast test with immune-fluorescent 

histology. We found that, the degenerating neurons were significantly more in blast groups than 

that in sham animals. The level of degeneration also increased with the incident blast levels. These 

findings were consistent with our recent immunohistological data, acquired from frontal lobe of 

the brain from the same study(Kallakuri et al., 2017). The level of βAPP, NF-L, and NF-M all 

showed significant increase compared with that in the sham animals. On the other hand, the 

apoptosis level in the high blast group was significantly higher compared with that in the medium 
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group and the sham animals, indicating that the high blast level (380 kPa) induced apoptosis within 

the brain at the acute stage of the swine brain.  

The evaluation of brain pathology of TBI are time sensitive(Masel and DeWitt, 2010). The 

evaluation on TBI also should cover the whole chronic time periods of secondary injury. Smith M 

et al utilized rat hippocampal slice cultures to study the neuronal degeneration of primary 

bTBI.(Smith et al., 2016) Fluoro-Jade B staining found no indication of degenerating neurons in 

the pyramidal fields of hippocampal slices in either single of repeated blast tests. Abdul-Muneer 

PM et al found that a single incident pressure with a peak value of 123 kPa caused brain injury on 

rats. Caspase-3 expression at 24-hour post-test was much higher than control group. Repeated blast 

resulted in higher caspase -3 level than single blast.(Abdul-Muneer et al., 2013) However, the 

characteristics of its incident pressure was not described in this study. Additionally, Wang et al. 

developed a mice model of single and repeated blast exposure. Fluoro-Jade B positive staining was 

observed in the group with 3 repeated blasts at 142 kPa 24-hour posttest.(Wang et al., 

2011).Several studies have evaluated Caspase-3 levels at various time point post blast. A 

underwater blast study showed subtle pathological changes of the brain 1-28 days after blast. No 

elevation of apoptotic cells were observed in 300, 2700,140000 kPa blast groups.(Sawyer et al., 

2017). Miller AP et al. utilized rat organotypic hippocampal slice cultures (OHCs) as an in vitro 

system to model bTBI(Miller et al., 2017) They characterized the astrocytic response to a blast 

overpressure at 2 hours following injury. Quantification of the number of dead astrocytes per 

counting area in the hippocampal cornu Ammonis 1 region (CA1), demonstrated a significant 
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increase in dead astrocytes in the low- and high-blast, compared to sham control OHCs, but 

majorly from necrosis. A recent research studied the apoptosis-related protein expression in rabbits 

exposed to blasts. Immunohistochemistry was performed 1, 6, 12, 24 hours, and 3, 7, and 14 days 

post blasts. Caspse-3 expression was elevated 1 hour after the blast. The level was peaked at 24 

hours, then gradually decreased and restored to normal by day 14(Xu et al., 2012). If Caspase -3 

expression follows the same expression trend in our study, it could mean the apoptosis level at the 

medium blast group were the same as sham group or it was decreased and restored back to normal 

by day 3.  

We also noticed that there was no statistical difference between various regions of the brain 

at the same blast level. This finding is consistent with our observations on peak ICPs at different 

regions of the brain. The slides represented the regions of the brain were selected based on the 

locations of ICP sensors. Even we name them frontal and occipital slides, they were not located in 

the most anterior or posterior part of the brain. It could be the reasons why we were not observing 

differences of injury level at the coup and counter coup region at the same blast level. 

4.4.2 Correlation between mechanical responses and histological findings on bTBI 

Appropriate animal models of blast-induced TBI will not only assist the understanding of 

physical characteristics of the blast, but also help to address the potential mechanisms. Information 

on the relationship between measured mechanical responses on swine head and the quantified 

axonal changes and other neuronal changes subjected to a free-field blast has not been published. 

The long-term goal of this study is to establish accurate injury tolerance curves for bTBI that can 
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be used to guide assessment and targeted treatment. In the current study, quantitative and 

qualitative neuron cell injury findings in specific locations in the brain was correlated with the 

mechanical responses using an open-field blast swine head injury model. Since the peak IOP were 

different between instrumented and non-instrumented group, we utilized the linear correlation 

equation developed by IOP and its corresponded ICP to replace the IOP in the non-instrumented 

group. Scatter plots of FJ-C and Casepase-3 level with predicted ICP were developed (Figure 4-

10, 4-11). They indicated that the expression level of FJ-C and Casepase-3 are pressure level 

dependent. The relationship was not linear. In addition, we hypothesize that the swine brain injury 

threshold of mTBI from open-field blast could lie in the range of 275-380 kPa. 

  
Figure 4-14: FJ-C level and its predicted ICP readings in the swine brain. 



79 

 

 

 

Figure 4-15: Caspase-3 level and its predicted ICP in the swine brain. 
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CHAPTER 5 .  FUTURE WORK 

5.1 LIMITATION OF THIS STUDY  

Potential limitations including areas of biology, sample size, fixation technique and image 

processing exist for the study. As mentioned in Chapter 2 and 4, we have biological limitation by 

using the swine instead of humans. This is standard limitation of animal models and is well 

acknowledged by the research community. 

Biomechanical responses were recorded during the open-field blast event. While we 

selected sturdy sensors with strengthened coating, there were some sensor failures in the tests due 

to the strong blast wind, limiting the sample size of ICP and acceleration data of the swine brain.  

For the immunohistological quantification of the swine brain, we harvested the brain 72 

hours post experiment. As we discussed earlier, some of the neuropathological changes occur 

within 72 hours. Therefore it is possible that some of the metabolic changes were back to baseline 

and was not captured by the analysis.  

5.2 SUMMARY AND FUTURE DIRECTIONS 

This project has developed an experimental model to investigate the mechanisms of 

primary bTBI. There are a variety of ways in which this work can be extended and improved upon 

to expand our understanding the mechanisms of bTBI. Some of the possible extensions of this 

work are listed here: 
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Extending the time frame post experiment. Instead of singular time point after blasts, 

setting a series of investigate time points to evaluate brain injury at the cellular level would help 

us to identify the timelines for each specific physiological disruption.  

Labeling multiple forms of neuronal injuries within the same brain sections. With various 

aspects of quantification, it would improve the ability to assess how the trauma cascades at cellular 

level. 

The underlying neuropathology of primary bTBI remains incomplete. More studies at the 

cellular, subcellular and physiologic levels will help elucidate generation of primary bTBI. With 

comprehensive characterization of the pathology, the degenerating neurons and axons as well as 

cell death can be used as markers for measuring the severity of brain damage and target for the 

repair strategies. In future, coordinated experiments and mathematical modeling research can shed 

light into the mechanisms of mild bTBI. Validating computer models based on the experimental 

data acquired in this study. In this experiment, we physically acquired and analyzed mechanical 

responses of the brain at several brain locations. However, computer models are the only way to 

fully understand the complex loading conditions with validation. In the future, validated computer 

models will not only provide detailed distribution of ICP, but also other physical premasters that 

can demonstrate the propagation of primary blast wave in the brain. The long-term goal of this 

research is ultimately finding the best protective device for blast-induced brain injuries. Besides 

what is presented here, behavior study and clinical research should be combined to elucidate the 

mechanism of bTBI better in the future. 
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5.3 CONCLUSIONS 

In conclusion, we developed a swine model in open field blast to study primary bTBI. We 

evaluated the mechanical responses of the swine brain and its injury level three days after blast 

exposure. 1) Mechanically, we found ICP had linear relationship with IOP. 2) No difference was 

found in different regions of the brain in the same blast level. 3) Little head movement was 

observed during the primary blast. 4) Our non-instrumented group showed results supported the 

presence of a robust neuronal injury in the brain. The severity of the observed neuronal 

degeneration appeared to be proportional to the level of blast exposure. 5) Significant apoptosis 

level was observed in the high blast group. 6) The injury levels were not different between different 

regions of the brain in the same blast level. These finding indicate that mild to moderate primary 

blast exposures result in changes, the functional implication of these observed acute changes may 

be related to neuronal, axonal and dendritic degeneration.
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Appendix A: ICP CURVES VALIDATION OF ICP DATA IN FRONTAL BLASTS 

(LEVEL ORIENTED) 

 
All data looks normal, Peak values are validated. 

 

 
All data looks normal, peak values are validated.  
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071514 metal bolts used for sealing were fastened by hand, a question of tightness  on the sensor 

wire needs to consider.  P readings got questionable after a few milliseconds. 

071514 metal bolts used for sealing were fastened by hand, a question of tightness  on the sensor 

wire needs to consider.  P readings got questionable after a few milliseconds. 
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Data looks normal and peak values are validated. 

 
P rise time is delayed but still fell in the same timeline as other sensors. Peak value kept but 

questionable. 
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O rise time is significantly delayed and be discarded in this test. P is questionable.

 
O rise time is significantly delayed and be discarded in this test. P is questionable. 
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Data looks normal and peak values are validated. 

 
Data looks normal and peak values are validated. 
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 071514 metal bolts used for sealing were fastened by hand, a question of tightness on the sensor 

wire needs to consider.  Data looks normal.

 
P looks questionable. 
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P peak value is discarded.

  
O is discarded. P looks questionable. 
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O

  
F and O are discarded. P looks questionable. 

 
O is discarded due to late rise time. P is questionable. 
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Data looks normal and peak values are validated. 

  
F and P are discarded due to abnormal readings. 
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F and P are discarded due to abnormal readings. 
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APPENDIX B: ACCELERATION CURVE
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APPENDIX C: SIDE AND REAR BLAST DATA  

1: REAR AND SIDE BLAST ICP DISTRIBUTION OVERVIEW
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2. SIDE BLAST MOTION CURVES 
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3: REAR BLAST ICP CURVES 
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4.REAR BLAST MOTION OVERVIEW 
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ABSTRACT 

AN INVESTIGATION OF THE MECHANISM OF 

TRAUMATIC BRAIN INJURY FROM BLAST IN THE OPEN 

FIELD 

by 

KE FENG 

May 2017 

Advisor: Dr. John Cavanaugh 
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Degree: Doctor of Philosophy 

Blast-induced traumatic brain injury (bTBI) is a signature wound of modern warfare. The 

current incomplete understanding of its injury mechanism impedes the development of strategies 

for effective protection of bTBI. Despite a considerable amount of experimental animal studies 

focused on the evaluation of brain neurotrauma caused by blast exposure, there is very limited 

knowledge on the biomechanical responses of the gyrenecephalic brain subjected to primary free-

field blast waves imposed in vivo, and the correlation analysis between the biomechanical 

responses and its injury outcomes. Such information is crucial to the development of injury criteria 

of bTBI. 

This study aims to evaluate the external and internal mechanical responses of the brain 

against different levels of blast loading with Yucatan swine in free field, and to conduct 

correlational studies with brain tissue damage. To better understand primary bTBI, we have 

implemented an open field experimental model to apply controlled shock waves on swine head. 

The applied pressure levels of shock waves were predicted by finite element modeling and verified 
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with calibrated testing. Biomechanical responses of primary blasts such as intracranial pressure 

(ICP), head kinetics, strain rate of skull, were measured in vivo during the blasts. A positive 

correlation between incident overpressure (IOP) and its corresponding biomechanical responses 

of the brain was observed. A parallel group of non-instrumented animals were used to collect injury 

data 72 hours post experiment. Cellular responses governed by primary blasts, such as neuronal 

degeneration and apoptosis were studied via immunohistochemistry. Representative fluorescent-

stained images were examined under microscope. A positive correlation was found between the 

amount of degenerative neurons and the blast level. Significant elevation of apoptosis was found 

in the high-level blast. Comparisons between brains with varies ICP readings demonstrate 

differences of the numbers of neuronal degeneration and apoptosis within the imaged volume. 

Additionally, comparisons between sections at different locations of the head did not show spatial 

changes for cellular responses. These metrics provide a pathway for direct connection between the 

cellular damage and the measured biomechanical responses of the brain within the same 

experimental model, and could be critical in understanding the mechanisms of bTBI. This 

experimental data can be used to validate computer models of bTBI. 
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