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EMERGING SCHOLARS 

Bayesian Analysis of Extended Cox 
Model with Time-Varying Covariates 
Using Bootstrap Prior 

Oyebayo Ridwan Olaniran 
University of Ilorin 

Ilorin, Nigeria 

Mohd Asrul Affendi Abdullah 
Universiti Tun Hussein Onn Malaysia 

Batu Pahat, Malaysia 

 

 
A new Bayesian estimation procedure for extended cox model with time varying covariate 

was presented. The prior was determined using bootstrapping technique within the 

framework of parametric empirical Bayes. The efficiency of the proposed method was 

observed using Monte Carlo simulation of extended Cox model with time varying 

covariates under varying scenarios. Validity of the proposed method was also ascertained 

using real life data set of Stanford heart transplant. Comparison of the proposed method 

with its competitor established appreciable supremacy of the method. 

 

Keywords: Bayesian, extended Cox model, time varying covariate, bootstrap, prior 

 

Introduction 

The Cox model is a successful method for handling time to event data. Its 

robustness has been extended to the case of time varying covariate (Therneau & 

Grambsch, 2000). Time varying covariate also referred to as extended hazard model 

or extended Cox model allows one or more of the explanatory variables to change 

over time. The standard Cox proportional hazard model is given in (1): 

 

 ( ) ( )  0h | , h expt t = x x ,  (1) 

 

where h(t | x, β) is the hazard at time t given covariate x and parameter β and h0(t) 

is the baseline hazard. The important feature of (1) is that the hazard ratio 
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is independent of time. This stringent assumption is often violated in most real-life 

scenarios as in the case of heart transplant data. A patient decision towards heart 

transplant strongly relies on duration of follow up. The changes in decision over 

time can be recorded as a covariate and model simultaneously with other fixed 

covariate. This type of model is broadly referred to as extended hazard model 

(Tseng et al., 2014). Formally, the extended hazard model is defined as 

 

 ( )( ) ( ) ( )0h | , , expt z t h t z t   = + x x ,  (3) 

 

where z(t) is the time varying covariate and γ is its parameter. The default Cox 

model assumes hazards are proportional over time and uses partial likelihood 

instead of maximum likelihood to estimate (1) (Hosmer & Lemeshow, 1999). 

Estimating (3) using partial likelihood without any data adjustment often results to 

misspecification error. Misspecification error in estimation give rise to several 

problems one of which is loss of efficiency (Therneau et al., 2017). 

Tseng et al. (2014) develop a semiparametric approach for analyzing (3) using 

counting process and martingale. They identified the hazard of model 

misspecification by using (1) instead (3). The result from their Monte Carlo 

simulation and real-life data analysis showed better performance compared with 

fixed covariate Cox model (1) and Accelerated Failure Time model (AFT). Apart 

from Tseng et al., Therneau and Lumley (2016) and Therneau et al. (2017) also 

used counting techniques a data adjustment procedure to estimate (3). Tseng & Shu 

(2011) proposed an estimator for (3) using applied kernel smoothing technique. 

Suissa (2007), Beyersmann et al. (2008), Austin et al. (2006) and Austin (2012) 

claimed that accounting for time-varying covariates effect is important because it 

allows one to avoid immortal-time bias. 

As a further measure for estimating (1), Bayesian based methods have also 

been developed. Ibrahim et al. (2001) proposed one of the foremost Bayesian 

analysis of Cox proportional hazard model using Gamma prior on baseline hazard 

h0(t) and Gaussian prior on β. Their approach can also be extended for estimating 

(3) but it strongly relies on the piecewise constant hazard assumption. Although, it 

provides simple framework procedure for solving (1) or (3) but its sensitive to pre-

specification of the number and location of hazard function discontinuities along 

the time axis (Lesaffre & Lawson, 2003; Murray et al., 2016). Other Bayesian 
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method for analyzing (1) or (3) includes Fahrmeir and Lang (2001), Fahrmeir and 

Hennerfeind (2003), and Dunson (2005). 

Bayesian approaches provide solutions to some classical methods priors if 

genuine priors are used (Yahya et al., 2014). Bayesian analysis with survival data 

are somewhat difficult to perform because of prior specification. Tractable 

Bayesian analysis requires prior that relies so much on unrealistic assumption such 

as the piece-wise exponential hazard assumption. This drawback calls for flexible 

prior determination technique. The bootstrap prior technique (Olaniran et al., 2016) 

and (Olaniran & Yahya, 2017) enjoys this important feature. Olaniran and Yahya 

(2017) demonstrated the flexibility of bootstrap prior for estimation and hypothesis 

testing with Gaussian model. The results from Monte Carlo simulation conducted 

revealed that bootstrap priors guarantee unbiased and efficient estimates. Therefore, 

this paper focuses on estimating (3) with right censoring assumption using 

bootstrap prior technique. 

Likelihood of Extended Cox Model 

Suppose there are i individual in a study and we have their time to event, event 

indicator and associated event covariate: (Xi, si, {Zi(t), t ∈ [0, Xi]}). The hazard 

function is already given in (3) but the associated survival function is 

 

 ( )( ) ( ) ( )0

0

S | , , exp h exp z

t

t z t t t  
 

 = − +  
 

x x .  (4) 

 

Now assuming z(t) to be a piece-wise function, thus z(t) can be defined as 

 

 ( )
0,

z
1,

c

c

t t
t

t t


= 


  

 

where tc is the time at which the covariate z(t) changes. This implies that 

S(t | x, z(t), β) is 
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Following Collett (2015), the likelihood of a survival model with right 

censored times can be defined as 

 

 ( ) ( ) ( )1 0

1 0

L f | S |t t  =  ,  (6) 

 

where 1 denotes uncensored and 0 denotes right censored. The likelihood in (6) can 

be simplified if a censoring indicator si that takes 0 for censored and 1 for 

uncensored is assumed. Thus, 

 

 ( ) ( ) ( )
1

L h | S |
i

n
s

i i

i

t t  
=

= .  (7) 

 

Substituting (3) and (5) in (7), 
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The corresponding log-likelihood is 
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Bayesian Analysis of Extended Cox Model 

After specifying the likelihood of the model, the next step in Bayesian analysis is 

to specify the prior distribution and its hyperparameters. The prior determination 

stage involves bootstrapping the original data a number of times, say B, then 

estimate the prior parameters using the counting techniques procedure described in 

Therneau et al. (2017) in R package “survival”. Formally, the prior hyperparameter 

 ˆ ˆ ˆ,pr pr pr    is based on partial likelihood: 
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Efron and Tibshirani (1993) proved the limiting form of bootstrap estimates is 

Normal with location and scale parameters as described above. Therefore, the 

bootstrap prior distribution for Bayesian extended cox model is 

 

 ( )
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where  ˆ ˆ ˆ,pr pr pr  =μ  and  ˆVar ,ˆ ˆ
pr pr pr   =

 
Σ  are prior hyperparameters 

and ix  and iz  are bootstrapped covariates. 

Once the prior hyperparameters and likelihood are determined, the posterior 

distribution can be sample via MCMC (Gelman, 2006). Metropolis Hasting (MH) 

algorithm (Gelman et al., 2014) was used to sample from the posterior distribution 

in this paper. 

Simulation Studies 

The simulation strategy used in Austin (2012) was adapted with the following 

parameters: λ0(t) = 0.02, β = 2 and γ = 1. The covariate x1 ~ Normal(0, 1), 

tci ~ Exponential(λ(t) = 0.01). The baseline hazard assumed is exponential. Also, 

sample sizes n = 50, 100, 200 were used to study the effect of sample size on 

parameter estimates. Performance metrics used to assess the estimating methods 

are standard error (SE), bias, and Mean square error (MSE). The formulas based on 

1000 repetition of the study are 

 

 

( )

( )

( )

2
1000

1

1000

1

21000

1

SE
999

bias
1000

MSE
1000

ˆ ˆ
ˆ

ˆ
ˆ

ˆ
ˆ

jj

jj

jj

 


 


 


=

=

=

 −
  =

 −
 =

 −
 =







  

 

The estimates of the proposed method obtained were compared with estimates 

using Cox proportional hazard implemented in R via “coxph.” The results based on 

performance metrics are presented in the Tables 1 through 3. 

Compiled in Table 1 are the results for small sample size 50. For all the 

performance metrics used, the results of the proposed method are better than the 

competing. Specifically, the proposed method is more stable in terms of low 

average standard error, consistent in terms of low average bias as well as efficient 

in terms of low mean square error. The performance of time dependent Cox model 

also enjoys stable estimate but not as Bayesian extended Cox model. It was also 
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observed that using fixed covariate Cox model largely resulted in unstable and 

inconsistent estimates. Sample size consistency was observed using size 100 and 

200 with results shown in Tables 2 and 3. 

Increasing the sample size in Tables 2 and 3 to 100 and 200, improves the 

performance of all the entire methods. The Bayesian extended Cox model is 

relatively closer to the true parameter at any reasonable sample size. 
 
 

Table 1. Simulation results for average estimate θ̂ , average bias ( ( )θ̂bias ), average 

standard error ( ( )θ̂SE ) and average mean square error ( ( )θ̂MSE ) based on 1000 

replications for sample size n = 50; the true parameter is θ = {β = 2, γ = –1} 
 

Metrics Parameter 
Fixed covariate 

coxph 
Time dependent 
covariate coxph 

Bayes 
extended Cox 

θ̂  β 1.7962 2.0935 2.0626 
 γ -4.1858 -2.0613 -1.4403      

( )θ̂SE  β 0.4297 0.3967 0.3734 

 γ 5.7721 4.3269 3.4515 
 β, γ 3.1009 2.3618 1.9125 
     

( )θ̂bias  β -0.2038 0.0935 0.0626 

 γ -3.1858 -1.0613 -0.4403 
 β, γ -0.7843 -0.4839 -0.1889      

( )θ̂MSE  β 0.2262 0.1660 0.1433 

 γ 43.4663 19.8486 12.1069 
 β, γ 21.8463 10.0073 6.1251 

 
 

Table 2. Simulation results for average estimate θ̂ , average bias ( ( )θ̂bias ), average 

standard error ( ( )θ̂SE ) and average mean square error ( ( )θ̂MSE ) based on 1000 

replications for sample size n = 100; the true parameter is θ = {β = 2, γ = –1} 
 

Metrics Parameter 
Fixed covariate 

coxph 
Time dependent 
covariate coxph 

Bayes 
extended Cox 

θ̂  β 1.7633 2.0536 2.0417 
 γ -2.3318 -1.1067 -0.8575 
     

( )θ̂SE  β 0.0822 0.0689 0.0686 

 γ 2.3986 1.5671 0.7976 
 β, γ 1.2404 0.8180 0.4331 

 
Table 2 (continued). 
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Metrics Parameter 
Fixed covariate 

coxph 
Time dependent 
covariate coxph 

Bayes 
extended Cox 

( )θ̂bias  β -0.2367 0.0536 0.0417 

 γ -1.3318 -0.1067 0.1425 
 β, γ -0.7843 -0.0802 0.0921 
     

( )θ̂MSE  β 0.1382 0.0718 0.0703 

 γ 4.1723 1.5785 0.8179 
 β, γ 2.1553 0.8252 0.4441 

 
 

Table 3. Simulation results for average estimate θ̂ , average bias ( ( )θ̂bias ), average 

standard error ( ( )θ̂SE ) and average mean square error ( ( )θ̂MSE ) based on 1000 

replications for sample size n = 200; the true parameter is θ = {β = 2, γ = –1} 
 

Metrics Parameter 
Fixed covariate 

coxph 
Time dependent 
covariate coxph 

Bayes 
extended Cox 

θ̂  β 1.7333 2.0173 2.0060 
 γ -2.1450 -1.0261 -0.8305 
     

( )θ̂SE  β 0.1827 0.1686 0.1780 

 γ 0.3635 0.3810 0.2452 
 β, γ 0.2731 0.2748 0.2116 
     

( )θ̂bias  β -0.2667 0.0173 0.0060 

 γ -1.1450 -0.0261 0.1695 
 β, γ -0.7059 -0.0044 0.0878 
     

( )θ̂MSE  β 0.1045 0.0287 0.0317 

 γ 1.4432 0.1459 0.0888 
 β, γ 0.7739 0.0873 0.0603 

Application to Stanford Heart Transplant Data 

The Stanford heart transplant data were used to explain the time-varying covariate 

effect of patient decision towards heart transplant (Tseng et al., 2014). The dataset 

contains survival times of 103 patients accepted into the heart transplant program 

along with ages at the time of the first transplant and T5 mismatch scores. Tseng et 

al. (2014) analyzed the dataset using Accelerated Failure Time (AFT), Extended 

hazard (EH) and time dependent Cox for 99 patients. They excluded 4 patients’ 
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outcomes because of incomplete observations. However, direct estimation of the 

proposed method could not be achieved in the presence of missing observation. 

First, impute the missing observations using multiple imputation techniques 

via the Expectation Maximization (EM) algorithm. The three-time dependent 

covariate z1(t), z2(t), and z3(t) used by Tseng et al. (2014), Lin and Ying (1995) 

among others are defined as 
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t t

t t
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t t

t t
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t t
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
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− 

  

 

where z1(t) is the transplant status, z2(t) is the patient’s age at the transplant, z3(t) is 

the mismatch score, and tc is the waiting time for accepting a heart transplant. 

The result in Table 4 reiterate efficiency property of the proposed Bayesian 

method. In all the three covariates, the standard error of Bayesian extended Cox 

model are clearly lower than time dependent Cox model. In addition, the 95% 

credible region for the parameter estimates are reasonably narrower than the Cox 

model. 
 
 
Table 4. Parameter estimation of the Stanford heart transplant data for time dependent 
Cox model and Bayesian extended Cox model 
 

Model Covariate Coef. se(Coef.) 95% lower 95% upper 

Time dependent Cox z1(t) -4.1089 0.5520 -5.1908 -3.0270 

 z2(t) 0.0244 0.0168 -0.0085 0.0572 
 z3(t) 0.5296 0.2525 0.0347 1.0246 

 
    

 
Bayesian extended Cox z1(t) -1.8103 0.2043 -2.2107 -1.4098 

 z2(t) 0.0392 0.0135 0.0128 0.0656 
 z3(t) 0.7333 0.1621 0.4157 1.0510 
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Conclusion 

An alternative modelling strategy was presented for extended Cox model with time-

varying covariate within the Bayesian framework. The analysis is simple in terms 

of prior specification that is based on basic bootstrapping principle. Furthermore, 

the method stands as a hidden extension of Cox model as the upper bound of it 

standard error is that of standard Cox model. This is because the standard error of 

Bayesian extended Cox is the average of data variance and bootstrap variance. In 

general, the proposed method is clearly more efficient than the traditional Cox 

model at any reasonable sample size which is an important issue in medicine. 
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