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Regression Modeling and Prediction by 
Individual Observations versus 
Frequency 

Stan Lipovetsky 
GfK North America 

Minneapolis, MN 

 

 
A regression model built by a dataset could sometimes demonstrate a low quality of fit and 

poor predictions of individual observations. However, using the frequencies of possible 

combinations of the predictors and the outcome, the same models with the same parameters 

may yield a high quality of fit and precise predictions for the frequencies of the outcome 

occurrence. Linear and logistical regressions are used to make an explicit exposition of the 

results of regression modeling and prediction. 

 

Keywords: Multiple regression, modeling, prediction, linear and logistic regression, 

meaning and interpretation of results, p- and D-value for significance estimation 

 

Introduction 

Regression modeling is, probably, the main tool of applied statistics used for 

various aims of estimation and prediction. Many works are devoted to numerous 

models and their specific characteristics useful in practical regression modeling 

(Kendall & Stuart, 1973; McCullagh & Nelder, 1999; Train, 2003; Izenman, 2008; 

Andersen & Skovgaard, 2010; Grafarend & Awange, 2012; Härdle & Simar, 2012; 

Hilbe & Robinson, 2013; Kuhn & Johnson, 2013; Wilson & Lorenz, 2015; 

Lipovetsky & Conklin, 2001, 2010, 2015). In spite of apparently well-studied area 

of regressions’ features and applications, researchers and practitioners can 

encounter different phenomena not noticed previously. For instance, a model built 

by a dataset could show a low quality of fit and poor predictions of individual 

observations; however, usage of the frequencies of possible combinations of the 

predictors and the outcome yields the same model with the same parameters but 

with a high quality of fit and precise predictions. 

https://dx.doi.org/10.22237/jmasm/1556669100
https://dx.doi.org/10.22237/jmasm/1556669100
mailto:stan.lipovetsky@gmail.com
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The aim of this study is to analyze reasons of such seemingly paradoxical 

results. Linear and logistical models are used for illustration of the regressions 

results (Lipovetsky, 2012, 2013, 2018). Meaningful application of regressions are 

necessary for practical needs and helps managers and decision makers to improve 

understanding and real use of statistical models. Besides this main topic, the work 

also considers tests with the p-value and D-value in relations to the predictions by 

regression models. 

Modeling and Prediction by Observations and by Their 
Frequencies 

Consider some main relations of regression modeling needed for further description 

of the problem. Consider a dependent variable y and predictors xj (j = 1, 2,…, n; 

number of variables), and there are observations by them, yi and xij (i = 1, 2,…, N; 

base size). A multiple linear regression can be presented in the model 

 

 0 1 1 n ny a a x a x e= + ++ + ,  (1) 

 

where aj are the model parameters and e denotes deviation from the model, or the 

error term. Minimizing the objective of squared errors 

 

 ( )
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0 1 1

1

N

i i n in

i

S y a a x a x
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= − − −−   (2) 

 

yields solutions for parameters of the ordinary least squares (OLS) regression. The 

minimum of the OLS criterion (2) is called residual sum of squares 
2

resS . The 

quality of the data fit is convenient to estimate via the coefficient of multiple 

determination R2 defined as 

 

 
2
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S
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= − ,  (3) 

 

where 
2

resS  and 
2

origS  are the residual and original sum of squares of the dependent 

variable relatively the regression predictions and the mean level, respectively. The 

coefficient R2 has values from zero to one, for the worst and the best quality of fit, 

respectively. 
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Sometimes there could be the same set of predictors’ values in different 

groups of observations. For instance, consider a simple case with three binary 

predictors, n = 3, so there is a maximum M = 8 of possible combinations, or cells 

of their unique combined values (cells can be numerated as m = 1, 2,…, M; total 

number of cells). For each of these cells we find the number of incidents Nm(y = 1) 

and total observations Nm, so their quotient yields the mean value of y, or frequency 

f of the event y = 1 in each mth cell: 

 

 
( )1m

m

m

N y
f

N

=
= .  (4) 

 

The frequencies f can be used as the outcome values in place of y in the linear model 

(1) by all N observations: 

 

 0 1 1 n nf b b x b x = + ++ + ,  (5) 

 

where bj denote parameters estimated by this model for frequency and δ are 

deviations. OLS minimization (2) can be used for finding the model (5), but instead 

of using the same f values within a cell, we can collapse N rows of the data matrix 

into M rows of different cells and use the weights Nm of number of observations in 

each cell in the weighted least squares (WLS): 

 

 ( )
22

0 1 1

1

M

m m m n mn

m

S N f b b x b x
=

= − − −− .  (6) 

 

The coefficient of multiple determination for this linear model can be calculated as 

in (3). 

For a binary dependent variable y with the outcome 0 and 1 the logistic 

regression is commonly applied, with the probability of the event defined by the 

logit model: 

 

 
( )( )0 1 1

1

1 exp n n

p
c c x c x

=
+ − + ++

.  (7) 

 

Parameters cj of this model are found in the maximum likelihood (ML) objective 

for the binomial distribution 
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The quality of fit in the logistic regression (7) can be evaluated by the so-

called pseudo-R2 defined via the residual and null deviances (those proportional to 

the logarithm of ML objectives for the models with and without predictors, 

respectively): 

 

 2 residual deviance
1

null deviance
R = − ,  (9) 

 

which is constructed in the analogue to the OLS coefficient of multiple 

determination (3). It is interesting to note that the quotient in (9) corresponds to the 

percentage of entropy and the maximum possible entropy that defines the measure 

of efficiency in the information theory (Lipovetsky, 2015). 

With the calculated probabilities p (7), the log-odds transformation presents 

the model (7) in the so-called linear link function 

 

 0 1 1ln
1

n n

p
c c x c x

p
= + ++

−
.  (10) 

 

The relation (10) can also be used for finding the model parameters in the approach 

proposed and applied for complicated problems of marketing research in 

Lipovetsky and Conklin (2014) and Lipovetsky (2015). Consider the simple case 

with three binary predictors when we have M = 8 possible cells of their unique 

combined values. As it is described in (5) we find the frequency f of the event y = 1 

in each cell and define with them the empirical log-odds values denoted as z 

 

 ln
1

f
z

f
=

−
.  (11) 

 

The values z used at the left-hand side in the linear link (10) for all N observations, 

so this model can be constructed as a linear regression: 

 

 0 1 1 n nz d d x d x= + ++ .  (12) 
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To distinguish parameters cj estimated by the logit model (7) and by the linear 

link with log-odds of empirical frequencies (12), the estimated parameters in (12) 

are denoted as dj. The model (12) can be constructed in OLS approach, and the 

coefficients dj define the logit model (7) so they can be used for prediction by the 

logistic regression. Instead of using the same z values within each cell we can 

collapse N rows of the data matrix into M rows of different cells and use weights 

for cells equal the number of observations in each cell, as it is done in the WLS 

objective (6). 

Numerical Examples 

For a clear exposition, consider several numerical examples using datasets taken 

from real marketing research projects: 

Example A 

In this dataset, there are three binary variables x1, x2, x3 of advertising, shown or 

not, and a binary outcome variable y of bought or not (1 or 0, respectively). In a 

sample of N = 400 respondents each one could see maximum one advertising 

before answering on the purchase interest y about a specific product. 

Presented in Table 1 are the coefficients aj of the linear regression OLS 

estimation (1)-(2), coefficients bj of the WLS linear regression (5)-(6) for the 

frequency model, the logit cj estimates (7)-(8), and the linear link WLS estimates 

dj (11)-(12). The model’s quality measures R2 are shown in the bottom row of Table 

1: for the linear estimations (1), (5), and linear link regression (12) the coefficient 

R2 (3) is used, and for the logit regression (7) the pseudo-R2 (9) is used. 
 
 
Table 1. Example A: Parameters of the linear, logit, and linear link regressions 
 

 Linear regression model  Logistic regression model 

 OLS by 
observations 

WLS by 
cells 

 ML by 
observations 

Linear link 
by cells 

 a (1) b (5)  c (7) d (12) 

Intercept 0.01923 0.01923  −3.93183 −3.93183 

x1 0.02979 0.02979  0.96655 0.96655 

x2 0.00376 0.00376  0.18232 0.18232 

x3 0.05554 0.05554  1.41615 1.41615 

R2 0.01260 1.00000  0.03600 1.00000 
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Table 2. Example A: Cross-tabulation of y by x, and empirical frequency 
 

 Cell-1 Cell-2 Cell-3 Cell-4  

 x1 = 0 x1 = 1 x1 = 0 x1 = 0  

 x2 = 0 x2 = 0 x2 = 1 x2 = 0  

 x3 = 0 x3 = 0 x3 = 0 x3 = 1 Total 

y = 0 102 97 85 99 383 

y = 1 2 5 2 8 17 

Total 104 102 87 107 400 

f (y = 1) 0.01923 0.04902 0.02299 0.07477 0.04250 

 
 

As expected, the parameter estimates of linear OLS model (1) and WLS 

model (5) are the same, but their quality of fit R2 are drastically different – the first 

model is of very poor quality while the second has the perfect fit R2 = 1. Similarly, 

with the logistic regressions: their parameters constructed by the ML (7) or by the 

linear link (12) coincide as well, but for the logit (7) the quality estimated via the 

residual and null deviances yields R2 = 1 − 135.6/140.65 = 0.036, while the linear 

link estimation yields the perfect fit with zero residuals and the coefficient R2 = 1. 

Thus, the models (1) and (7) built by all the observations are of a bad quality 

of fit. The models (5) and (12) are absolutely the same by parameters as (1) and (7), 

respectively, but being constructed for the frequency of outcome they have the best 

possible quality of fit. It could be not immediately clear how to interpret such 

bizarre results. 

If the intent is to use the linear model (1) to make predictions, it yields the 

following values for all 400 observations: 0.01923 if all xs equal zero (the intercept 

of the model (1) in Table 1), 0.04902 if only x1 = 1 and others are zero (the intercept 

plus the first coefficient of this model in Table 1), 0.02299 if only x2 = 1 and others 

are zero (the intercept plus the second coefficient of this model), and 0.07477 if 

only x3 = 1 and others are zero (the intercept plus the third coefficient). The model 

(5) and logistic models (7) and (12) yield exactly the same prediction values. 

Consider the original data in cross-tabulation presented in Table 2. This 

contingency table shows that there are only four cells of different combinations of 

the predictors’ values. In each cell we see a low incidence rate of the buying intent. 

The frequency f (y = 1) in total is just 4.25%, and advertising helps to increase it 

from the benchmark of 1.92% to the maximum of 7.48%. 

The predictions by all the models coincide with the original data frequencies 

in cells. It is so because there are only four different cells, and four parameters in 

each model, therefore the models not only approximate the data but interpolate via 
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all points of different combinations of the predictors. It explains why R2 = 1 in the 

model (5) or (12) built by the four cells data. 

The cross-tabulation of the data also explains why the linear OLS and logistic 

regressions are of such a low quality of fit: because any prediction of the individual 

value falls in the range of the same frequencies of the event y = 1 (lesser even than 

8%) shown in Table 2. It means that any model merely cannot produce a substantial 

(say, about or above 0.5) probability of occurrence of the event y = 1. Even 

summarizing the total impact of all advertising effects (taking the total of all 

parameters of the model (1) in Table 1) yields just about 12% probability of the 

event y = 1. More adequate for a binary outcome the logistic model (7) with the 

total impact of all advertising effects (total of all parameters of the model (7) in 

Table 1) yields probability p = 1 / (1 + exp(1.3308)) = 0.2090, or just about 21% 

which is also far lower than at least 50% value. 

Thus, there are no data to predict occurrence of the event y = 1, and it is the 

reason of so poor R2 values in Table 1 for the models (1) and (7) built by the 

individual observations. These models make sense, although there is insufficient 

data to predict an individual purchase intent. But, in average by all the data in each 

cell of observations the frequency of the event should be of the values shown in the 

bottom row of f (y = 1) in Table 2. 

Example B 

The second example is taken from a marketing research problem on the purchasing 

of a product in households, with the sample size N = 4,175. The variables are y, 

binary dependent variable of purchased or not; x1, binary variable of unaided brand 

awareness; and x2, numeric variable of the number of TV spots (from 1 to 4) seen 

by respondents. Table 3 is arranged similarly to Table 1 and presents results of the 

regression modeling by this data. 
 
 
Table 3. Example B: Parameters of the linear, logit, and linear link regressions 
 

 Linear regression model  Logistic regression model 

 OLS by 
observations 

WLS by 
cells 

 ML by 
observations 

Linear link 
by cells 

 a (1) b (5)  c (7) d (12) 

Intercept 0.01429 0.01429  −3.80532 −3.76986 

x1 0.07252 0.07252  1.10803 1.05973 

x2 0.01025 0.01025  0.23524 0.22358 

R2 0.01482 0.86970  0.03193 0.96930 
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Table 4. Example B: Cross-tabulation of y and x, and predictions by models 
 
 Cell-1 Cell-2 Cell-3 Cell-4 Cell-5 Cell-6 Cell-7 Cell-8 

 x1 = 0 x1 = 0 x1 = 0 x1 = 0 x1 = 1 x1 = 1 x1 = 1 x1 = 1 
 x2 = 1 x2 = 2 x2 = 3 x2 = 4 x2 = 1 x2 = 2 x2 = 3 x2 = 4 

y = 0 1085 811 830 863 95 89 94 112 

y = 1 32 29 38 47 6 8 17 19 

Total 1117 840 868 910 101 97 111 131 

f (y = 1) 0.02865 0.03452 0.04378 0.05165 0.05941 0.08247 0.15315 0.14504 

p linear 0.02453 0.03478 0.04503 0.05527 0.09706 0.10730 0.11755 0.12779 

p logit 0.02738 0.03440 0.04312 0.05394 0.07856 0.09737 0.12009 0.14725 

p lin.link 0.02802 0.03480 0.04314 0.05338 0.07681 0.09424 0.11513 0.13994 

 
 

Again, the estimates of parameters in linear OLS model (1) and WLS model 

(5) are the same, but their quality of fit differs noticeably – the first model is clearly 

bad with R2 about 1.5%, while the second is very good with R2 about 87%. Similarly, 

with logistic regression estimates: their parameters built in the ML (7) or in the 

linear link (12) are approximately similar, but the first model has R2 about 3%, and 

the second model has R2 about 97%. So, the models (1) and (7) built by all the 

observations are of a bad quality of fit. The models (5) and (12) built by the 

frequency of outcome, are close by parameters to (1) and (7), respectively, but have 

very high quality of fit. 

To explain these features, consider the data cross-tabulation presented in 

Table 4. There are eight cells of different combinations of the predictor values in 

this dataset, and each cell shows a low incidence rate of the buying intent with 

frequency f (y = 1). The last three rows in Table 4 present also predictions p made 

by the linear (1) (or (5) with the same results), logit (7), and linear link (12) models. 

Predicted values p by any model differ from the original frequencies f in cells 

because there are eight observed cells but only three parameters in the regressions 

(see Table 3), so the models approximate the data. It explains why R2 for the model 

(5) or (12) in Table 3 is already not of the perfect fit as it was in Table 1. Still, the 

linear OLS and logistic regressions are of a poor quality of fit (Table 3) because 

predictions of the individual values by them are of very low probability p of the 

event y = 1 (any of them is less than 15%, see Table 4), which is far below from the 

middle level of 50%. So, there is no sufficient variability in the data to predict 

occurrence of the event y = 1, and that is the reason of so poor R2 for the models 

(1) and (7) built by the individual observations. But, the frequency model (5) and 

the log-odds of frequency in the linear link model (12) produce probability to 

belong to each cell and those values p are very close to the empirical frequency f 

(Table 4), so R2 of these models is very high (Table 3). 
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Table 5. Example B: Correlations of observations and predictions 
 

 y f p linear p logit p linear link 

y 1.00000 0.13054 0.12173 0.12666 0.12655 

f 0.13054 1.00000 0.93255 0.97030 0.96944 

p linear 0.12173 0.93255 1.00000 0.98098 0.98261 

p logit 0.12666 0.97030 0.98098 1.00000 0.99995 

p lin. link 0.12655 0.96944 0.98261 0.99995 1.00000 

 
 

These data cannot predict individual outcomes, but the probability to belong 

to each cell is predicted pretty well by any of the considered regressions, as we can 

see by the values of prediction across the models in each cell of observations in 

Table 4. The pair correlations of the outcome y with the empirical frequency f and 

predictions p by all three models are shown in Table 5. We see that all the models 

yield very similar results, although they cannot reproduce the observed occurrence 

of the rare event y = 1. 

Example C 

Consider another example taken from marketing research on credit card activity in 

a bank. There is a dependent binary variable of the card used or not in a time period 

and sixteen binary predictors describing the card features. The total of M = 216 cells 

of all combinations of predictor values are possible but actually only M = 136 cells 

were observed for N = 170 respondents. Table 6 presents the predictors in the first 

column and several models in the next numerical columns. The first four models 

are the regressions (1), (5), (7), and (12) (the same as in Tables 1 and 3). All of 

them are of a low quality of fit: R2 in the last row of Table 6 are about 7% for linear 

(1) and logit (7) models built by all observations, although using frequency in cells 

shows a slightly better fit with R2 about 9.5% for the models (5) and (12). 

The reason of a low quality of fit even for the models built by the frequency 

in cells is as follows: in this data there are 136 cells, and 124 of them appeared only 

once, so the frequencies defined by them are too unsteady. To select more reliable 

data, take observations of only those cases which correspond to the cells appearing 

more than once, actually, from 2 to 10 times. Table 6 in the last four columns 

presents the same four models constructed by the selected data with some variables 

omitted because they coincide with other withheld predictors in the subsample. 
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Table 6. Parameters of linear, logit, and linear link regressions, for all data and for cells appeared more than once 
 

 Data by all observations  Data with cells appeared more than once 
 Linear regression  Logistic regression  Linear regression  Logistic regression 

 OLS by 
observed 

WLS by 
cells 

 ML by 
observed 

Linear link 
by cells 

 OLS by 
observed 

WLS by 
cells 

 ML by 
observed 

Linear link 
by cells 

 a (1) b (5)   c (7) d (12)   a (1) b (5)  c (7) d (12) 

Intercept 0.6779 0.6779  0.7899 0.8280  0.7153 0.7083  0.6931 0.9268 

Easy 0.1012 0.1012  0.5634 0.4611  −0.0153 −0.0083  0.1542 −0.0795 

Simple −0.0267 −0.0267  −0.1948 −0.1169  0.4389 0.3833  1.3903 2.0024 

Frictionless −0.1616 −0.1616  −0.9097 −0.7575  −0.3819 −0.3750  −1.3863 −1.6199 

Protects −0.0646 −0.0646  −0.3733 −0.3009       

Private 0.1433 0.1433  0.8264 0.6943       

Liability −0.0713 −0.0713  −0.4138 −0.3402  −0.5729 −0.4792  −19.5661 −2.7483 

Relevant 0.0024 0.0024  0.0686 −0.0052  −0.0382 −0.0208  0.4055 −0.1786 

Customize 0.1100 0.1100  0.6381 0.5325  0.2813 0.2292  18.3093 1.3466 

Personalized −0.0175 −0.0175  −0.1923 −0.0749       

Compatible 0.0774 0.0774  0.4317 0.3688       

Accepted 0.0907 0.0907  0.5955 0.4425       

Limits −0.1286 −0.1286  −0.7327 −0.6128  0.2153 0.2083  0.6931 0.9268 

Standard −0.0399 −0.0399  −0.2891 −0.1908       

Control 0.0502 0.0502  0.3326 0.2355  −0.2153 −0.2083  −0.6931 −0.9268 

Impressed 0.0432 0.0432  0.2554 0.2112  0.6701 0.5625  37.0241 3.2155 

Intrigued 0.0252 0.0252  0.2101 0.0973  −0.4306 −0.3333  −36.3310 −2.1720 

R2 0.0721 0.0953   0.0667 0.0941   0.2231 0.9298   0.2403 0.9278 
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These last models demonstrate improved quality of fit: R2 are already above 

20% for linear (1) and logit (7) models built by the observations and using 

frequency in cells for the models (5) and (12) raises R2 to a very high quality of 

about 93%. 

Example D 

In another example on customer satisfaction analysis with a credit card, the 

dependent variable is a binary indicator of problems experienced or not, and all 38 

characteristics of the card usage were measured on a 10-point Likert scale and 

elicited from N = 604 respondents. The total number of observed cells is M = 549, 

so the models by the original observations and by cells arranged from 10-point scale 

values could be of the same quality of fit. Presented in Table 7 are descriptive 

statistics on this data, with mean values and medians which show that the predictor 

values are distributed around the level from 7 to 9. Transforming the variables to 

the binary ones by the criterion of below-above the mean level and finding the cells 

defined by the binary predictors yields a smaller number of cells M = 412, but still 

it is big enough. 
 
 
Table 7. Example D: Descriptive statistics for the variables’ means and medians 
 

 Mean Median   Mean Median 

y 0.70 1  x20 7.44 8 

x1 7.91 8  x21 8.22 9 

x2 8.05 9  x22 8.26 9 

x3 7.67 8  x23 8.30 9 

x4 7.83 8  x24 8.26 9 

x5 7.26 8  x25 7.79 8 

x6 7.89 8  x26 7.61 8 

x7 7.38 8  x27 7.43 8 

x8 7.62 8  x28 7.30 8 

x9 7.68 8  x29 7.56 8 

x10 7.80 8  x30 7.52 8 

x11 7.44 8  x31 8.07 9 

x12 7.51 8  x32 8.26 9 

x13 6.67 7  x33 8.07 9 

x14 7.71 8  x34 6.49 7 

x15 7.26 8  x35 7.74 8 

x16 7.90 8  x36 7.44 8 

x17 8.13 9  x37 7.52 8 

x18 7.75 8  x38 8.31 9 

x19 7.34 8  
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Table 8. Example D: Parameters of linear, logit, and linear link regressions, for all data in 10-point scales, 2-point scales, and for 
cells appeared more than once 
 

 for 10-point scales  for 2-point scales  for 2-point scales, cells > once 
 linear  logit  linear  logit  linear  logit 
 OLS WLS  ML lin.link  OLS WLS  ML lin.link  OLS WLS  ML lin.link 

 observ cells  observ cells  observ cells  observ cells  observ cells  observ cells 

  a (1) b (5)   c (7) d (12)   a (1) b (5)   c (7) d (12)   a (1) b (5)   c (7) d (12) 

a0 0.28 0.28  −1.02 −1.14  0.56 0.56  0.26 0.44  0.52 0.52  0.09 0.14 

x1 −0.03 −0.03  −0.18 −0.16  −0.12 −0.12  −0.72 −0.82  −1.90 −1.84  −38.75 −10.18 

x2 −0.01 −0.01  −0.05 −0.08  0.02 0.02  0.18 0.16       

x3 0.01 0.01  0.03 0.04  0.07 0.07  0.34 0.44  −0.23 −0.19  −16.34 −2.12 

x4 0.01 0.01  0.04 0.06  0.07 0.07  0.40 0.49  0.48 0.44  17.47 3.22 

x5 0.01 0.01  0.04 0.04  0.06 0.06  0.37 0.37  0.17 0.17  0.82 0.84 

x6 0.02 0.02  0.15 0.10  0.06 0.06  0.33 0.36       

x7 0.00 0.00  0.01 0.00  0.03 0.03  0.21 0.17       

x8 −0.02 −0.02  −0.14 −0.11  −0.07 −0.07  −0.41 −0.49       

x9 −0.02 −0.02  −0.14 −0.13  −0.12 −0.12  −0.73 −0.81  0.48 0.44  17.47 3.22 

x10 0.01 0.01  0.07 0.07  0.12 0.12  0.70 0.85       

x11 −0.02 −0.02  −0.10 −0.10  −0.08 −0.08  −0.50 −0.59       

x12 0.01 0.01  0.02 0.04  0.03 0.03  0.19 0.20  0.48 0.44  17.47 3.22 

x13 0.00 0.00  −0.01 −0.01  0.00 0.00  −0.03 −0.12  −0.08 −0.08  −0.56 −0.55 

x14 −0.02 −0.02  −0.08 −0.09  −0.06 −0.06  −0.30 −0.36       

x15 0.01 0.01  0.07 0.06  0.00 0.00  −0.04 −0.05       

x16 −0.03 −0.03  −0.16 −0.17  −0.15 −0.15  −0.85 −0.97       

x17 0.03 0.03  0.17 0.16  0.08 0.08  0.39 0.52  0.13 0.13  0.57 0.55 

x18 0.01 0.01  0.10 0.08  0.00 0.00  0.04 0.03       

x19 0.02 0.02  0.13 0.13  0.12 0.12  0.71 0.79       

x20 −0.02 −0.02  −0.09 −0.10  −0.02 −0.02  −0.18 −0.17       

x21 0.02 0.02  0.11 0.09  0.16 0.16  0.92 1.13  0.48 0.44  17.47 3.22 

x22 −0.01 −0.01  −0.04 −0.06  −0.06 −0.06  −0.34 −0.39  0.48 0.44  17.47 3.22 

x23 0.05 0.05  0.23 0.25  0.12 0.12  0.60 0.77       
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Table 8 (continued). 
 

 for 10-point scales  for 2-point scales  for 2-point scales, cells > once 
 linear  logit  linear  logit  linear  logit 
 OLS WLS  ML lin.link  OLS WLS  ML lin.link  OLS WLS  ML lin.link 

 observ cells  observ cells  observ cells  observ cells  observ cells  observ cells 

  a (1) b (5)   c (7) d (12)   a (1) b (5)   c (7) d (12)   a (1) b (5)   c (7) d (12) 

x24 0.01 0.01  0.05 0.05  0.06 0.06  0.37 0.38  −0.52 −0.49  −17.66 −3.51 

x25 0.00 0.00  −0.02 −0.01  −0.08 −0.08  −0.53 −0.52       

x26 0.00 0.00  −0.01 0.01  0.02 0.02  0.07 0.12       

x27 0.00 0.00  −0.01 0.02  −0.05 −0.05  −0.31 −0.38       

x28 −0.02 −0.02  −0.12 −0.12  −0.10 −0.10  −0.53 −0.69  −0.23 −0.19  −16.34 −2.12 

x29 0.01 0.01  0.04 0.06  0.03 0.03  0.15 0.16  0.27 0.27  1.23 1.24 

x30 −0.01 −0.01  −0.08 −0.06  0.00 0.00  −0.04 −0.02       

x31 0.00 0.00  −0.01 0.02  −0.04 −0.04  −0.22 −0.27  0.27 0.27  1.23 1.24 

x32 0.00 0.00  0.03 0.02  0.11 0.11  0.62 0.76       

x33 0.00 0.00  −0.01 −0.01  −0.05 −0.05  −0.21 −0.33       

x34 0.00 0.00  −0.02 −0.01  −0.02 −0.02  −0.12 −0.24  −0.13 −0.13  −0.97 −0.95 

x35 0.01 0.01  0.06 0.07  0.09 0.09  0.55 0.64       

x36 −0.01 −0.01  −0.02 −0.03  −0.01 −0.01  −0.10 −0.05       

x37 0.02 0.02  0.12 0.12  0.03 0.03  0.21 0.20  0.11 0.11  0.54 0.55 

x38 0.00 0.00  0.00 0.02  −0.06 −0.06  −0.33 −0.41       

R2 0.09 0.10   0.08 0.10   0.10 0.14   0.09 0.14   0.13 0.92   0.12 0.87 
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Presented in Table 8, the first four numerical columns the models built by the 

predictors in 10-point scale are shown in the same order described for the previous 

Table 6. The coefficients of multiple determination are shown in the last row, and 

we see that the quality of all these models is poor, with R2 not higher than 10%. 

The models constructed by predictors transformed to the binary 2-point scales are 

presented in the middle four columns of Table 8. These models are only slightly 

better by quality of fit. Similarly to the previous example C, the low quality of fit 

even for the models built by the frequency in cells can be explained by the same 

reason: most of the cells appear only once, so it is hardly possible to predict the 

dependent variable values in them. To select a more reliable data subset, take 

observations corresponding to the cells which appeared more than once and there 

are 210 such cases. In the last four columns Table 8 presents the same four models 

constructed by the selected data with some variables omitted because of the low 

variability in the subsample. For the models built by the observations, the quality 

of fit is still low, about 12-13%. But the quality of fit in both linear and logit models 

built by the frequencies in cells becomes pretty high, already with the coefficient 

of multiple determination R2 about 90%. 

It is useful to note that for continuous numerical predictors we can divide their 

values into several ranges so make the ordinal categorical values and with those to 

apply approaches described above. 

p-value and D-value 

Related to regression predictions is the problem of insensitive p-values in big data. 

For a sample of several hundred and more observations, practically any test would 

have a very small p-value which indicates a significant difference in the compared 

values (Goodman, 2008; Berdie, 2012; Robertson & Kaptein, 2016; Wasserstein & 

Lazar, 2016; Johnson et al., 2017). In Demidenko (2016), a regular p-value is 

criticized and another criterion, namely D-value, is proposed as an alternative for 

meaningful hypotheses testing which can yield reasonable results for practical 

applications. For instance, checking hypotheses on the difference of the sample 

mean x̄ or an individual observation xi from the population mean μ with unknown 

variance σ2 standard deviation σ can be done by the following t-tests, respectively: 

 

 ( ) ( )
2

t , t i
i

xx x
x N x
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Checking for the mean x̄ depends on the sample size proportionally to N , 

and the value t(x̄) can grow with large N, so regardless the difference x̄ − μ the p-

value can be very small producing an impression that whatever difference is 

statistically significant. Demidenko (2016) essentially suggests instead of t(x̄) to 

use t(xi) without the term N , as checking for an outlier by an individual 

observation xi. 

The idea to use the standard deviation σ instead of the standard error 

( se N= ) can be seen in the context of confidence intervals for prediction 

versus fitting in simple linear regression. As it is well-known (for instance, 

Weisberg, 1985, p. 22, p. 281), the variances of a fitted value ˆ
iy  and of a predicted 

value y% equal, respectively 
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% ,  (14) 

 

where σ2 is residual variance, and x̄ and 
2

xS  are the predictor’s mean and centered 

sum of squares, respectively. The variances (14) differ by one σ2 added for a new 

observation at x∗ used in place of an observed xi. For the fit and prediction at the 

point of mean value x̄ the last items in each of the formulae (14) equal zero, so 

taking square root of the variances yields the standard errors for the fit and 

prediction, respectively 

 

 ( ) ( )*

1 1
ˆse.fit , se.pred 1iy y

NN
  = = + % ,  (15) 

 

where the last approximation works even for a relatively medium sample size N. 

The first formula in (15) defines the regular standard error used for hypotheses 

testing t(x̄) in (13), which is producing p-values. The second formula in (15) equals 

the standard deviation, so it corresponds to the second formula in (13) which is 

yielding the D-values suggested in Demidenko (2016) for hypotheses checking. 

Thus, D-value can be interpreted in terms of a p-value rather for a predicted than 

fitted estimation with the corresponded hypotheses testing. 
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Summary 

If a model is built by individual observations in a given dataset it could show a poor 

quality of fit and bad predictions of individual observations; but if to use 

frequencies of the outcome and possible combinations of the predictors, we build 

the same model with the same parameters, however, with a high quality of fit and 

precise predictions. The reasons for such results correspond to the definition of 

regression as the expectation of the outcome y subject to the given predictors’ 

values, E(y | x). So, for each unique combination of the independent variables x 

values the regression predicts the average of the outcome y, or its frequency in the 

range of the cells’ combinations. Adequate interpretation is important for 

understanding of the models’ behavior, especially for prediction of the rare events. 

Linear and logistical regressions models are used for illustration of the results. The 

considered problems are also completed with the explanation on the p-value and D-

value in relations to the predictions by regression models. The ideas of collapsing 

individual observations into cells could be analyzed in data mining. Meaningful 

usage of regressions is absolutely important for practical needs, and the obtained 

results help to a better understanding of properties of multiple regression, are 

valuable for theoretical consideration and practical applications of regression 

modeling, analysis, and prediction. 
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