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The most commonly used method of small area estimation (SAE) is the empirical best 

linear unbiased prediction method based on a linear mixed model. However, it is not 

appropriate in the case of the zero-inflated target variable with a mixture of zeros and 

continuously distributed positive values. Therefore, various model-based SAE methods for 

zero-inflated data are developed, such as the Frequentist approach and the Bayesian 

approach. Both approaches are compared with the survey regression (SR) method which 

ignores the presence of zero-inflation in the data. The results show that the two SAE 

approaches for zero-inflated data are capable to yield more accurate area mean estimates 

than the SR method. 

 

Keywords: Bayesian, frequentist, Markov chain Monte Carlo, small area estimation, 

zero-inflated data 

 

Introduction 

A small area is a subset of a population which has a small sample size with a 

variable of concern (Rao & Molina, 2015). That small area may be a geographic 

area or socio-demographic group. Nowadays, the demand for small areas statistic 

is increasing because that statistic is needed as regional planning material in the 

small area. However, very few data are available in a small area because these data 

are collected from a national survey. Moreover, there is a possibility that the data 

in a small area are not available if that small area is not represented in the national 

survey. 

With small sample sizes, a direct estimation of small area estimation (SAE), 

which based on the sampling design (design-based), will yield a low precision 

https://dx.doi.org/10.22237/jmasm/1582727606
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estimator (Hanike et al., 2016). Meanwhile, increasing of the sample size can 

increase the cost, time, and labor of the national survey. SAE with an indirect 

estimation which is based on a model (model-based), by utilizing data from the 

national survey and the addition of auxiliary variables, is an alternative to that 

problem. Those auxiliary variables may be other variables that are related to the 

variable of concern (Suhartini et al., 2016; Asfar & Sadik, 2016). The variable of 

concern can be called the target variable. 

The most commonly used indirect method of small area estimation is the 

empirical best linear unbiased prediction method (EBLUP), which is based on a 

linear mixed model (LMM) with normality assumption on the target variable (Rao 

& Molina, 2015). However, this model will be not appropriate if the target variable 

is a zero-inflated variable. The zero-inflated variable is a variable that follows the 

semi-continuous distribution with a mixture of zeros and continuously distributed 

positive values (Krieg et al., 2016). In many surveys, such as business, income, 

expenditure, agriculture, and ecology surveys, the observed target variables are 

often zero-inflated variables. For example, the expenditure of households to buy 

furniture in the past month, literacy proficiency of the community in an interior, 

and the level of consumption of illicit drugs are variables where observed values 

are zeros or positives. 

Zero-inflation in the data can make this data tend to be skewed so that 

normality assumption cannot be fulfilled. Chandra and Chambers (2011b) and 

Karlberg (2014) explained SAE for skewed data because the existence of zero- 

inflation can use a mixture model, that is a mixture of log-log normal model and 

logistic model. Meanwhile, Chandra and Chambers (2011a) proposed three mixture 

model methods and compared them with the EBLUP method. However, Chandra 

and Sud (2012) and Pfeffermann et al. (2008) developed estimators for zero-

inflated data using the frequentist approach and the Bayesian approach, 

respectively. Both approaches are based on two models, they are a linear mixed 

model (LMM) for the nonzero values of target variable and a generalized linear 

mixed model (GLMM) for the probability of nonzero values of target variable. 

Krieg et al. (2016) used both approaches and compared them with the survey 

regression (SR) method and the EBLUP method. The SR and the EBLUP methods 

ignore zero-inflation in the data. The SR method adopts design-based estimation. 

The aim of this study is to review the use of the SR method and the two SAE 

approaches for zero-inflated data with a simulation. Four data sets were created 

with different proportions of zero values of each area. Then, samples were taken 

from each data set with various sample sizes. That sampling was repeated with 

various sample sizes. The objectives were to compare the frequentist with the 
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Bayesian approach in estimation of a small area mean with a zero-inflated target 

variable and to compare both approaches with the SR method, and to determine the 

method that yields estimator with high accuracy based on the relative root mean 

squared error (RRMSE). 

Methodology 

Generally, a population mean for area j is 

 

 
1

1 jN

j ij

i

y
N


=
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where yij is the target variable for unit i in area j and Nj is the population size in area 

j. For all areas, i = 1, 2,…, Nj and j = 1, 2,…, m. Area means using direct estimation 

can be calculated based on information from the sample and depend on design 

sampling. If the samples are drawn using simple random sampling without 

replacement, the area mean can be estimated by 
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where nj is the sample size in area j (Scheaffer et al., 2006). 

Survey Regression 

Survey Regression (SR) is a design-based model-assisted estimator because this 

method adopts design-based estimation but using the auxiliary variables. Suppose 

for unit i in area j, p auxiliary variables xij = [1 x1ij … xpij]t for i = 1, 2,…, Nj and 

j = 1, 2,…, m. According to Park (2002), the area mean estimate for area j can be 

calculated by 

 

 ( )
t

SR, ,
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with ȳj defined as above and 
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is a population mean vector of the auxiliary variables in area j and β̂  can be 

calculated by ( )
1

t tˆ −

=β X X X y  based on the sample information. 

Frequentist Approach 

Estimation with the frequentist approach is based on the sample information and 

assumes the parameter as a fixed component. The first model, that is LMM, 

describes the distribution of nonzero values target variable. 

 

 
t

, ,ij nz ij nz nz j ijy e = + +x β   (2) 

 

for i = 1, 2,…, Nj and j = 1, 2,…, m, where ϑnz,j is a random effect in area j that 

follows the normal distribution ( )2

,N 0, r nz  and eij is a unit-level error that follows 

the normal distribution ( )2

,N 0, e nz . Meanwhile, the second model describes the 

probability pij = P(yij ≠ 0), 
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for i = 1, 2,…, Nj and j = 1, 2,…, m, where ϑz,j is a random effect in area j that 

follows the normal distribution ( )2

,N 0, r z . 

Model (2) is estimated by the nonzero part of the sample using restricted 

maximum likelihood (REML), whereas model (3) is estimated by the complete 

sample using maximum likelihood estimation (MLE; Bates, 2010). Therefore, yij 

and pij are estimated by 

 

 t
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ˆ ˆˆ
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In this approach, the estimate for yij is ˆ ˆ ˆ
ij ij ijy y p=  so that the estimate for area 

mean is 

 

 F,
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for j = 1, 2,…, m. 

Bayesian Approach 

In parameter estimation, the Bayesian approach assumes a parameter is a random 

variable (Rao & D'Cunha, 2016). This approach using prior information regarding 

the parameter will be estimated. This prior information is called the prior 

distribution. Then, the sample is drawn from the population and the prior 

distribution is updated with the sample information so that it will be a distribution 

that is called posterior distribution (Casella & Berger, 2002). Some types of well- 

known prior distributions are, according to Gelman et al. (2014), informative prior 

that consisting of conjugate and nonconjugate prior, noninformative prior that 

consisting of proper and improper prior, and weakly informative prior. 

With the Bayesian technique, models (2) and (3) can be estimated using 

Markov chain Monte Carlo (MCMC) simulation with a Gibbs sampling algorithm 
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(Jacyna & Rosen, 2016). As in the frequentist approach, model (2) is estimated by 

the nonzero part of the sample whereas model (3) is estimated by the complete 

sample. The parameter estimates obtained with REML and MLE methods in the 

frequentist approach can be used as the starting value of the parameter in both 

models. In this simulation, the length of the chains that will be built are R = 100000, 

but the first part b = 10000 of the chains as burn-in aren’t used because they are 

biased. Then, those chains can be made thinner by only retaining the generated 

values every 90th chain. This number is called a thinning interval. Therefore, 

r = 1000 iterations will be used for further analysis. 

R has to be chosen sufficiently large so that the chain can converge. One of 

the methods that can be used for convergence inspection is a trace plot. However, 

this method is a graphic or explorative method that tends to be subjective. Therefore, 

the convergence inspection can be performed formally by hypothesis testing that is 

called the Geweke test (Sahlin, 2011). 

Determine the prior distribution for all parameters that will be estimated. The 

prior distribution is according to Krieg et al. (2016) and Gelman et al. (2014), which 

is a weakly informative prior for regression parameters and random effect variance 

parameters in both models. Normal prior distribution with zero mean and variance 

equal to 1 × 108 for regression parameters and parameter expansion inverse chi- 

square prior distribution for random effect variance parameters that are implied to 

be a half-Cauchy prior distribution for random effect standard deviation parameters. 

Meanwhile, the prior distribution used for the residual variance parameter in the 

first model is noninformative prior, that is ( )2 2

, ,p 1e ns e nz  . This prior can be 

obtained with Jeffrey method from the normal distribution. 

Based on MCMC simulation, the estimates for both models for unit i in area 

j and iteration ρ with ρ = 1, 2,…, r are 
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Based on both model estimates, the estimate for area mean is 
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where ( ), ,
ˆ~ Beij ijp    for j = 1, 2,…, m. 

Evaluation Measures of the Estimators 

To evaluate the performance of the estimators consider the accuracy of how close 

the estimator is to the true value (Walther & Moore, 2005). One of the measures 

that can be used to measure the estimator accuracy is the relative root mean squared 

error (RRMSE) calculated by 
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for j = 1, 2,…, m, where ȳj,k = area mean estimate that is yielded by the used method 

in repetition k and K is the number of repetition or number of sampling. The method 

that yields the area mean estimator with the highest accuracy is the method that is 

capable of yielding the lowest RRMSE. 

The relative bias can also be used to evaluate the performance of estimators, 

calculated by 
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for j = 1, 2,…, m. 
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Simulation Study 

The finite population data is generated under the model, via R software. The data 

consists of two variables: the zero-inflated target variable and an auxiliary variable. 

The population size is N = 1000 units with the total of m = 20 areas. The area 

population sizes are in the range 43 to 59. Simulation scenarios were used with 

different proportion of zero values of each area, that is 0.35, 0.50, 0.75, and 0.90. 

The steps of the model-based simulation are as follows: 

 

1) The auxiliary variables x1ij for i = 1, 2,…, Nj and j = 1, 2,…, m were 

generated from the uniform distribution U(1, 7) for each area. 

2) The population values yij for i = 1, 2,…, Nj and j = 1, 2,…, m were generated 

via model (2) with regression parameters βnz = [10 1]t, area random effects 

ϑnz,j were independently generated from the normal distribution N(0, 22), 

and unit level errors eij were independently generated from the normal 

distribution N(0, 1). 

3) The probability of nonzero values pij for i = 1, 2,…, Nj and j = 1, 2,…, m 

were generated via model (4) with the same regression parameters, and area 

random effects ϑz,j were independently generated from the normal 

distribution N(0, 1). 

4) Define a new variable uij for i = 1, 2,…, Nj and j = 1, 2,…, m generated from 

the uniform distribution U(0, 1/P) for each area, where P is the proportion 

of nonzero values of each area so that P = 0.65, 0.50, 0.25, and 0.10. 

5) Set δij = 1 if uij ≤ pij and δij = 0 if uij > pij so that δij ~ Be(pij). 

6) The zero-inflated target variable can be obtained from ij ij ijy y = . 

 

A random sample of size n = 300 was drawn repeatedly with K = 200 

repetitions from every finite population using simple random sampling without 

replacement. Then, these samplings were repeated with a smaller sample size 

n = 200. All those samplings with various sample sizes were also repeated with 

higher repetitions, K = 500 and K = 1000. 

Results 

Simulation Data 

The existence of zero-inflation in the target variable data can affect the shape of the 

data distribution. Show in Figure 1 are the histograms from all populations to show 
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the shape of the data distributions. Zero values in the target variable data make the 

shape of the data distributions not symmetric so that normality assumption in the 

data cannot be fulfilled. If zero is not in the data, the shape of the data distributions 

tends to be symmetric. The histograms indicate if the nonzero values are in the 

range 5 to 20. 

Estimation Parameters on LMM and GLMM 

The estimated parameters on LMM are intercept (β0,nz), regression coefficient (β1,nz), 

random effect variance ( )2

,r nz , and residual variance ( )2

,e nz , whereas the 

estimated parameters on GLMM are intercept (β0,z), regression coefficient (β1,z), 

and random effect variance ( )2

,r z  . In the frequentist and Bayesian approaches, the 

average of every parameter estimate on LMM from all numbers of samplings have 

values close to the simulated values. However, this result did not happen for the 

average of every parameter estimate on GLMM. 
 
 

 
 
Figure 1. Histogram of the target variable 
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Figure 2. The variability of inter-area response on LMM (left) and GLMM (right) 
 

 

The estimation of the model parameters using the frequentist approach often 

yields the estimate that the random effect variance parameters on GLMM are equal 

to zero. Although the estimate of the random effect variance parameter is equal to 

zero, it does not mean that there is no inter-area variability; rather this variability is 

relatively small compared with the inter-unit variability. As in the illustration, in 

the first repetition from 200 repetitions, the estimation of both models based on the 

drawn sample of size 200 from the population with a proportion of zero values 

equal to 0.50 for each area yields the estimate of random effect variance parameter 

on GLMM is equal to zero but the estimate of random effect variance parameter on 

LMM is not zero. This result is caused by the difference in the variability of inter- 

area response in both models, as can be seen in Figure 2. 

The response on LMM is the nonzero values of the target variable whereas 

the response on GLMM is the probability of nonzero values of the target variable. 

The line in the graphic connects the averages of the response from one area to 

another area. The variability of inter-area response is described by the movement 

of the averages of the response from one area to another area. Based on Figure 2, 

the averages of response from one area to another area on LMM are more 

fluctuating than the averages of the response from one area to another area on 

GLMM. Therefore, the variability of inter-area response on LMM is higher than 

the variability of inter-area response on GLMM. Besides that, on GLMM, the 

averages of the response from one area to another area tend to be constant so that 

there is a possibility the estimation yields the estimate of random effect variance 

parameter is equal to zero. 

In the Bayesian approach, that case can be handled by using parameter 

expansion inverse chi-square prior distribution for random effect variance 
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parameters in both models that implied be a half-Cauchy prior distribution for 

random effect standard deviation parameters. Therefore, the average of the 

estimates of the random effect variance parameter on GLMM by the Bayesian 

approach is higher than the average of the estimates of the random effect variance 

parameter on GLMM by the frequentist approach. This parameter expansion is also 

useful for speeding up the Markov chain convergence on the Gibbs sampling 

algorithm. 

The Inspection of Markov Chain Convergence 

In the Bayesian approach, LMM and GLMM are estimated using Markov chain 

Monte Carlo (MCMC) simulation with a Gibbs sampling algorithm. In this section, 

the inspection of Markov chain convergence that will be discussed is just from one 

repetition. This inspection can be performed using the exploration method by 

seeing the trace plot. Figure 3 shows the trace plot for all parameter estimates on 

LMM. 

“x1” is the estimate of the regression coefficient parameter, “area” is the 

estimate of the random effect variance parameter, and “units” is the estimate of the 

residual variance parameter. The trace plot for all the estimates of parameters on 

LMM tend to be constant or stationary. These situations show that the burn-in 

process has been completed. Therefore, the Markov chain estimate for all 

parameters on LMM have converged. 
 
 

 
 
Figure 3. Trace plot for all parameter estimates on LMM 
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Figure 4. Trace plot for all parameters on GLMM 
 

 
 
Table 1. Convergence inspection with the Geweke test 
 

 Parameter Z p-value 

LMM 
0,
β

nz
 −0.8602 0.3897 

 β
1,nz

 1.8892 0.0589 

 
r nz

σ
2

,
 0.8452 0.3980 

 
e nz

σ
2

,
 1.1996 0.2303 

    

GLMM β
0,z

 −0.1479 0.8825 

 β
1,z

 −0.1538 0.8778 

 
r z

σ
2

,
 0.2900 0.7718 

 
 

The trace plot for all parameter estimates on GLMM can be seen in Figure 4. 

From these trace plot, the Markov chain estimate for all parameters on GLMM have 

converged, shown by the trace plot from the three parameters on GLMM that tend 

to be constant or stationary. 

The inspection of Markov chain convergence also can be performed using the 

Geweke test. The results from this test are presented in Table 1. With α = 5%, the 
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absolute value of the Z statistic for all parameters in both models is not greater than 

Zα⁄2 = Z0.025 = 1.96. This means p-values that are yielded for all parameters in both 

models are not smaller than α so that the decision of hypothesis testing is to not 

reject H0, with H0 stating that the Markov chain has converged. It can be concluded 

that the Markov chains in the MCMC simulations to estimate parameters on LMM 

and GLMM have converged with α = 5%. 

Area Mean Estimation 

Direct estimation which applies design-based estimation cannot estimate the area 

mean if there are no samples in that area. In the case of the zero-inflated target 

variable, the area mean estimate with direct estimation can be equal to zero if all 

drawn samples are zeroes. They are caused by the direct estimation, which only use 

sample information to estimate the area mean. The SR method applies design-based 

estimation but is model-assisted because it uses the auxiliary variable. Therefore, 

the SR method cannot be applied if there are no samples in that area. 

With 200 repetitions, there is no area that has zero sample size so that area 

means can be estimated using the SR method and are compared with the two SAE 

approaches which take zero-inflation in the data. However, with 500 repetitions 

area 11 has zero sample size. This happened to the population with the proportion 

of zero values of each area equal to 0.75 based on the sample of size 200. The same 

thing happened with 1000 repetitions. There is one area that has zero sample size. 

That area is area 15 on the population with the proportion of zero values of each 

area equal to 0.90 based on the sample of size 200. 

Consider next the averages of the mean estimates of each area over 200 

repetitions based on samples of size 300 and 200. These averages are shown in 

Figures 5 and 6. Based on these figures, the averages of the area mean estimates 

decrease as the proportion of zero values of each area increases. The inter-area 

variability of the average of the mean estimate decreases as the proportion of zero 

values of each area increases. This can be shown by the movement of the averages 

of the mean estimate from one area to another area. On the population with the 

proportion of zero values of each area equal to 0.35, the averages of the mean 

estimate from one area to another area tend to be fluctuating. The averages of the 

mean estimate from one area to another area are more constant as the proportion of 

zero values of each area increases. 

The averages of the mean estimate of each area that are yielded by the 

frequentist and the Bayesian approach have the same pattern with little differences 

between the two averages. However, the averages of the mean estimates of each 
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area that are yielded by the SR method are different from the averages of the mean 

estimates of each area that are yielded by the two SAE approaches. For the 

population with the proportion of zero values of each area equal to 0.50, the 

averages of the mean estimates of each area that are yielded by the three methods 

are almost similar. 
 
 

 
 
Figure 5. The average of the mean estimate of each area over 200 repetitions based on 
the sample of size 300; (+) SR, (∆) frequentist, and (o) Bayesian 
 

 
 

 
 
Figure 6. The average of the mean estimate of each area over 200 repetitions based on 
the sample of size 200; (+) SR, (∆) Frequentist, and (o) Bayesian 
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The averages of the mean estimates of each area over 500 and 1000 repetitions 

have the same results as with the averages of the mean estimates of each area over 

200 repetitions and are not shown. However, in the SR method, the average of the 

mean estimate of area 11 over 500 repetitions on the population with the proportion 

of zero values of each area equal to 0.75 based on the sample of size 200 cannot be 

calculated. The same is true of the average of the mean estimate of area 15 over 

1000 repetitions on the population with the proportion of zero values of each area 

equal to 0.90 based on the sample of size 200. 

Comparison of Accuracy Measure of Area Mean Estimator 

The accuracy of the estimators that are yielded by the SR method, the frequentist 

approach, and the Bayesian approach can be measured using RRMSE. Shown in 

Table 2 are the averages of RRMSE over 20 areas for all methods in all cases. From 

500 repetitions on the population with the proportion of zero values of each area 

equal to 0.75 based on the sample of size 200 and from 1000 repetitions on the 

population with the proportion of zero values of each area equal to 0.90 based on 

the sample of size 200, the average of RRMSE that is yielded by the SR method 

over 20 areas are not available. This is caused by the existence one area that has 

zero sample size in every case so that area means cannot be estimated. Therefore, 

RRMSE of the areas and the averages of RRMSE over 20 areas cannot be 

calculated. 

Based on Table 2, using all methods for all numbers of sampling, the averages 

of RRMSE increased as the proportion of zero values of each area increased. The 

averages of RRMSE increased as sample size decreased. In many cases, the average 

of RRMSE that is yielded by the SR method decreases as the number of sampling 

increases whereas the averages of RRMSE that yielded by both approaches increase 

as the number of sampling increases. 

In all cases, the average of RRMSE that is yielded by the SR method is higher 

than the averages of RRMSE that are yielded by both approaches for zero-inflated 

data. The differences of the average of RRMSE that is yielded by the SR method 

with the averages of RRMSE that are yielded by the frequentist and the Bayesian 

approach are very large; the average of RRMSE that is yielded by the SR method 

is around two times higher than the averages of RRMSE that are yielded by the 

frequentist and the Bayesian approach. 

Because the SR method applies design-based estimation, like in direct 

estimation, the high average of RRMSE is an indirect effect from the small sample 

size. The small sample size affects the variance of the area mean estimator directly. 
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That variance will be high. This means the area mean estimator that is yielded by 

the SR method has low precision. According to Walther and Moore (2005), 

precision is a variability measure of the estimator that measures how close an 

estimator is to the average of the estimator from repeated estimation. 

If the frequentist approach and the Bayesian approach are compared, the 

average of RRMSE that is yielded by the frequentist approach is lower than the 

average of RRMSE that is yielded by the Bayesian approach on the populations 

with the proportion of zero values of each area not greater than 0.50. However, 

when the populations with the proportion of zero values of each area is greater than 

0.50, the average of RRMSE yielded by the Bayesian approach tends to be lower 

than the average of RRMSE yielded by the frequentist approach. 
 
 
Table 2. The average of RRMSE (%) of area mean estimates 
 

  Proportion of 
Zero Values 

Method 

Repetitions Sample Size SR Frequentist Bayesian 

200 300 0.35 17.24433 8.29568 9.79165 
  0.50 23.52507 11.06313 11.57329 
  0.75 41.87518 22.68900 22.40839 
  0.90 73.00216 48.92691 38.40262 
 200 0.35 23.06639 9.64062 11.37498 
  0.50 30.92323 12.45302 13.54023 
  0.75 56.01238 25.62869 26.24839 
  0.90 95.09355 54.04865 43.73995 
      

500 300 0.35 17.14662 8.46099 10.02558 
  0.50 22.85136 11.14344 11.60534 
  0.75 42.01697 22.81530 22.71915 
  0.90 71.69520 49.81725 39.35387 
 200 0.35 23.02844 9.62962 11.33199 
  0.50 31.08346 12.67838 13.88093 
  0.75 - 25.49146 25.82837 
  0.90 97.98052 54.51073 44.85474 
      

1000 300 0.35 17.10552 8.58378 10.15960 
  0.50 23.24979 11.03258 11.50636 
  0.75 41.84773 22.88786 22.67891 
  0.90 72.72560 49.24736 39.31888 
 200 0.35 23.00702 9.66277 11.38763 
  0.50 30.84812 12.53227 13.67035 
  0.75 55.64881 25.45492 25.13955 
  0.90 - 53.90447 44.43489 
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Another evaluation measure of area mean estimators is relative bias. 

According to Walther and Moore (2005), a good estimator is unbiased or has a low 

bias. The averages of relative bias over 20 areas that are yielded by the SR method 

and the two SAE approaches in all cases can be seen in Table 3. Like in the averages 

of RRMSE, the averages of relative bias also are not available for the population 

with the proportion of zero values of each area equal to 0.75 based on the sample 

of size 200 in 500 repetitions and for the population with the proportion of zero 

values of each area equal to 0.90 based on the sample of size 200 in 1000 repetitions. 

This situation is caused by the existence of areas that have zero sample size in each 

case so that area means cannot be estimated. Therefore, relative bias for these areas 

cannot be calculated and the averages of relative bias over 20 areas also cannot be 

calculated. 
 
 
Table 3. The average of relative bias (%) of area mean estimates 
 

  Proportion of 
Zero Values 

Method 

Repetitions Sample Size SR Frequentist Bayesian 

200 300 0.35 1.22435 6.29250 7.35980 
  0.50 0.89763 7.83122 6.50540 
  0.75 2.35963 18.36507 16.33679 
  0.90 4.58776 39.32193 28.97403 
 200 0.35 1.40807 6.45899 7.29269 
  0.50 1.58011 8.03656 6.93242 
  0.75 2.85852 18.60992 16.48173 
  0.90 4.23996 40.57726 30.13948 
      

500 300 0.35 0.54063 6.35326 7.50995 
  0.50 0.62065 7.94392 6.65642 
  0.75 1.73407 18.37823 16.35457 
  0.90 1.59978 40.08095 29.99637 
 200 0.35 0.80230 6.22522 7.04667 
  0.50 1.01084 7.78694 6.50939 
  0.75 - 18.60782 15.86594 
  0.90 1.91971 40.06565 29.40904 
      

1000 300 0.35 0.44347 6.42496 7.60598 
  0.50 0.58945 7.99401 6.75530 
  0.75 1.14593 18.38040 16.31381 
  0.90 1.46579 39.28203 29.74171 
 200 0.35 0.53514 6.33230 7.19938 
  0.50 0.85549 7.78478 6.44458 
  0.75 1.46986 19.18528 15.94550 
  0.90 - 39.72740 29.33292 
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By using the SR method, in almost all cases, the averages of relative bias 

increase as sample size decreases. As in Ramachandran and Tsokos (2009), the bias 

will be near zero as the sample size increases. For all methods, the averages of 

relative bias have a trend to increase as the proportion of zero values of each area 

increases. 

In almost all cases, the average of relative bias yielded by the SR method is 

lower than the averages of relative bias yielded by the frequentist and the Bayesian 

approaches. This is caused by the SR method that applies design-based estimation 

but is model-assisted. The SR method is generally approximately direct estimation 

that yields an unbiased estimator. In direct estimation, the sample mean from a 

sample drawn using simple random sampling is a sum of all samples divided by the 

sample size. Based on Ramachandran and Tsokos (2009), the sample mean is 

always an unbiased estimator for the population mean. In Krieg et al. (2016), the 

SR method yields an unbiased area mean estimator whereas the EBLUP method 

and both SAE approaches for zero-inflated data yield biased area mean estimators. 

In this research, area mean estimators that are yielded by the frequentist and the 

Bayesian approaches are biased estimators. This is shown by the average of their 

relative biases are large enough; they even reach about 40% for populations with 

the proportion of zero values of each area equal to 0.90. This issue can be caused 

by few possibilities, such as simulation procedure, the equation used to calculate 

area mean estimates in both approaches, or the prior distributions used in the 

Bayesian approach. 

Although the two SAE approaches for zero-inflated data yield higher 

averages of relative bias than the SR method, both approaches are capable of 

yielding lower averages of RRMSE than the SR method. This is caused by the 

variance of the area mean estimators from the frequentist and the Bayesian 

approaches being lower than the variance of the area mean estimator from the SR 

method. Therefore, the area mean estimators yielded by both approaches have a 

high precision. Bias and variance of the area mean estimator are RMSE components. 

In the frequentist and the Bayesian approaches, the low variances are capable of 

defeating the high relative biases so that the RRMSE from those approaches are 

lower than the RRMSE from the SR method. 

From the two SAE approaches, the Bayesian approach is capable of yielding 

a lower average of relative bias than the frequentist approach. However, for the 

population with the proportion of zero values of each area equal to 0.35, the average 

of relative bias yielded by the frequentist approach is lower than the average of 

relative bias yielded by the Bayesian approach. 
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Conclusion 

In the zero-inflated case, the target variable is a mixture of zero values and positive 

values. Area means estimation using the frequentist and the Bayesian approach 

figure out the existence of zero-inflation in the data whereas the SR method ignores 

it. Besides that, the SR method is based on design-based estimation. Through 

simulation, with various proportions of zero values of each area and various sample 

sizes including various numbers of sampling, the results obtained are that the 

accuracy of the area mean estimators yielded by the three methods decrease as the 

proportion of zero values of each area increases and as sample size decreases. For 

a substantial case, the accuracy of the area mean estimator yielded by the SR 

method increases as number of sampling increases. However, the accuracy of the 

area mean estimators yielded by the two SAE approaches for zero-inflated data 

decrease as number of sampling increases. 

The SR method yielded the lowest bias of area mean estimator whereas the 

two SAE approaches for zero-inflated data yield high bias of area mean estimators. 

Generally, the average of relative bias yielded by the Bayesian approach is lower 

than the average of relative bias yielded by the frequentist approach. However, the 

two SAE approaches are capable of yielding higher accuracy of the area mean 

estimates than the SR method. On the populations with the proportion of zero 

values less than 0.50, the frequentist approach is more accurate than the Bayesian 

approach. However, the Bayesian approach tends to be more accurate than the 

frequentist approach in the populations with the proportion of zero values of each 

area greater than 0.50. 
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