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Discriminant function coefficients are useful for describing group differences and identi-
fying variables that distinguish between groups. Test procedures were compared based on 
asymptotically approximations, empirical, and exact distributions for testing hypotheses 
about discriminant function coefficients. These tests are useful for assessing variable impor-
tance in multivariate group designs.

Keywords: discriminant function coefficients, relative importance, multivariate group 
designs, statistical inference

Introduction 
Linear discriminant analysis (DA; Fisher, 1936) is a multivariate procedure for pre-
dicting group membership (predictive discriminant analysis; PDA) and describing 
group separation (descriptive discriminant analysis; DDA). PDA focuses on the 
development of efficient predictive models with minimal misclassification error 
and is used in many fields including biomedical, behavioral, and engineering sci-
ences for predicting group membership (McLachlan, 1992; Sherry, 2006; Onur, 
et al., 2007). DDA focuses on describing group differences and identifying vari-
ables that maximize group separation. In DDA, measures of discriminant function 
 coefficients are used to rank order a set of variables according to their contribution 
to group separation (Rencher, 2002). 

The concept of variable importance in multivariate group designs was studied 
using DDA and multivariate analysis of variance. (Huberty & Wisenbaker, 1992; 
Huberty & Olejnik, 2006; Sherry, 2006). Huberty and Wisenbaker (1992) identified 
three major perspectives for defining relative importance of outcome variables in mul-
tivariate group designs. These include (a) relative contribution of a variable to a latent  
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construct, (b) relative contribution of variable to linear discriminant function scores, and  
(c) relative contribution of a variable to a grouping variable. Several relative impor-
tance measures have been developed, based on these perspectives, for evaluating the 
relative importance of variables in multivariate group designs.

Huberty and Smith (1982) and Huberty (1984) suggested an index originally 
derived by Urbakh (1971) for evaluating relative importance of variables in two-
group multivariate designs. It measures the decrease in the inter-group Mahalanobis 
distance due to the removal of each of the criterion variables in turn. It was shown 
to be equivalent to the F-to-remove statistic. 

Huberty and Wisenbaker (1992) proposed the use of the magnitude of standard-
ized discriminant function coefficient associated with each variable as a measure of 
its relative contribution to the linear discriminant function score. The rationale for 
using the standardized weight as a variable-ordering index is that a large weight, in 
an absolute value sense, indicates that the associated variable contributes to the linear 
discriminant function score for each experimental unit. However, this measure was 
criticized for its instability and large standard errors especially in high correlated 
multivariate outcomes. 

The structure coefficient, which is the within-groups correlations of the outcomes 
variables with the linear discriminant function scores, was also recommended for 
assessing the relative importance of variables (Bray & Maxwell, 1985; Huberty & 
Morris, 1989). Its use has been limited by criticisms about its appropriateness for 
evaluating the relative importance of outcome variables. Bargmann (1970) showed 
that structure coefficients are equivalent to univariate F-statistic, which ignores the 
correlation with other outcome variables, and is not suitable for evaluating the rela-
tive importance of outcome variables in multivariate group designs. Thomas (1992) 
proposed discriminant ratio coefficient, which can be estimated as the product of 
the corresponding standardized discriminant function coefficients and the structure 
coefficients, for evaluating the relative importance of outcome variables. The dis-
criminant ratio coefficient is the multivariate equivalent of the Pratt index, a mea-
sure of relative importance for linear regression earlier developed by Pratt (1987). 
However, the discriminant ratio coefficient is sensitive to strong between-variable 
correlation and suppression effects.

Despite these developments, the existing measures of variable importance in 
multivariate group designs may not always result in similar conclusions about the 
relative importance of variables in discriminating between independent groups. 
These measures are based on different statistical models with different motivations 
and goals. For example, for measures of relative importance based on discrimi-
nant analysis analysis, a variable’s importance is interpreted as its contribution to 
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grouping variable effects and discriminant function scores (Huberty & Wisenbaker, 
1992; Thomas & Zumbo, 1996). However, measures based on multivariate analysis 
of variance evaluate a variable’s importance in terms of the additional information 
that it contributes to group discrimination (Thomas, 1997). 

Also, these measures are not equally sensitive to different data-analytic condi-
tions. The discriminant ratio coefficient, for example, is sensitive to strong variable 
correlations while the F-to-remove statistic is sensitive to the number of study vari-
ables (Thomas & Zumbo, 1996). As a result, they may not always result in consis-
tent rankings of variables. Hence, no single measure of relative importance has been 
recommended for use and there may be confusion amongst researchers about which 
measure to adopt in practice. 

The rank ordering of variables according to their relative importance is typically 
based on sample estimates of the relative importance measure. However, the rank 
ordering of variables according to sample estimates of relative importance indices 
might not correspond to population-level importance of these variables (Thomas, 
1992). Therefore, stating that one variable is more important than the other, based on 
sample estimates of relative importance indices, might be misleading. Nevertheless, 
there are rules of thumb and descriptive analyses of relative importance being used 
to evaluate if the magnitude of the relative importance measure for a variable is large 
enough to ascertain its importance. For example, Thomas (1992) suggested variables 
with discriminant ratio coefficient values greater than 1/2p, p being the number of 
outcome variables, can be considered important while variables with negative DRC 
values are suggested to be suppressor variables with no direct contribution to group 
separation. Dagleish (1994) suggested variables with structure coefficients above 
0.4 should be considered as important. But these guidelines ignore error variation 
in estimates of relative importance measures and are sensitive to sample size and 
the number of variables in the study

More formal parametric and non-parametric test procedures were developed to 
test the statistical significance of discriminant function coefficients. These procedures 
are based on asymptotic approximations to a distribution, empirical distributions, 
or exact distributions. Das Gupta (1968) proposed an asymptotically normal z-test. 
Rao (1970) proposed an F-test based on the Mahalanobis distance (Timms, 2002). 
Computationally-intensive resampling-based methods such as bootstrap have been 
employed to approximate the distribution of differences in discriminant function 
coefficients in small samples (Huberty & Wisenbaker,1992). Dagleish (1994) pro-
posed the bootstrap method to test the statistical significance of a structure coefficient. 
Huberty and Wisenbaker (1992) proposed the use of bootstrap for estimating the 
variability in the rank ordering of the relative importance of the F-to-remove values 
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for the outcome variables. More recently, Bodnar and Okhrin (2011) developed a 
test statistic for the discriminant function coefficient vector based on t distribution. 

Despite the availability of these tests, they have not been used for to evaluate the 
relative importance of correlated outcome variables in multivariate group designs. In 
addition, there have been no comparisons of the performance of these test procedures 
when their underlying derivational assumptions were satisfied or violated. For exam-
ple, the assumption of normality of outcome variables may not be tenable in many 
research studies such as health-related quality of life studies where patient-reported 
outcomes frequently exhibit heavy tails and/or skewed distributions (Beaumont, Lix, 
Hahn, Yost, 2006). Choosing an appropriate test procedure for evaluating statistical 
significance of the discriminant function coefficients when describing the relative 
importance of variables in multivariate group designs is not straightforward. There 
are no guidelines about the choice of a test procedure that controls the family-wise 
error rate (FWER) while affording maximum power to correctly determine the rela-
tive importance of variables when the outcome variables are non-normal and group 
covariances are heterogeneous. 

The purpose of this study is to propose these tests can be used as supplementary 
information to aid the assessment of the relative importance of variables in multi-
variate group designs. Specifically, the Type I error and statistical power of the four 
test procedures are compared to evaluate statistical significance of discriminant 
function coefficients for assessing relative importance of variables under a variety 
of data analytic conditions. 

Description of Methods
Let Yij be the p × 1 vector of random variables estimated by yij for the ith study par-
ticipant (i = 1, ..., nj) in the jth group (j = 1, 2; n = n1 + n2) and assume Yij ~ Np(μj, Σj), 
where μj and Σj are the jth group mean vector and covariance matrix, respectively. 
The focus is on the two-group case, although all of the procedures can be generalized 
to multi-group designs. For the linear DA procedure, the discriminant function coef-
ficients vector is 

 a = 1 2
1 μ μ  (1)

where µj is estimated by
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and Σ is the pooled variance-covariance matrix and is estimated by

 ˆ
ˆ ˆn n
n

1 1 2 21 1
2  (2)

Let p
kkH 10 }{ ==0H and p

kkAH 10 }{ ==AH  denote the family of null and alternative hypoth-
eses for p outcome variables, respectively, where

0aH0 =:   vs.  0aH A ≠: ,

a is vector of discriminant function coefficients defined in equation (1), and 0 is 
the null vector. Let H0k: ak = 0 (k = 1 ,…, p), and the corresponding alternative 
hypotheses HAk: ak ≠ 0, where ak is the population standardized discriminant func-
tion coefficients for the kth outcome variable. We consider a family of p hypotheses 
about these coefficients for p outcomes. The outcome specific null and alternative 
hypotheses are defined as 

T T
0H :C a=0  vs  H :C a 0k k Ak k ≠

respectively, where Ck is a p × 1 vector defining the hypothesis to be tested.
Das Gupta (1968) proposed an asymptotic test procedure for evaluating statis-

tical significance of discriminant function coefficients. The test statistic for the kth 
discriminant function coefficients is 
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Statistical significance of the kth variable’s discriminant function coefficient is eval-
uated by comparing zk

* to the 100(1- α/2) percentile of the normal distribution.
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Rao (1970) suggested the importance of a variable is directly related to its contri-
bution to the grouping effect, and proposed a test procedure based on the Mahalano-
bis distance to examine statistical significance of a variable’s discriminant function 
coefficient, 

 F
k n p
n p kk

k

k

* 3
2 2

3
21

, (7)

where 

 δ2 = (μ̂1 – μ̂2)
T Σ̂ –1(μ̂1 – μ̂2), (8)

k3 = n/n1n2, and 2
k−δ is the value of 2δ  when the kth variable is omitted. Statistical 

significance of the kth variable’s discriminant function coefficient is evaluated by 
comparing Fk

* to F(1, n, p).
Bodnar and Okhrin (2011) derived the multivariate distribution of the discriminant 

function coefficients vector for two independent groups and proposed a t statistic for 
evaluating the statistical significance of sample discriminant function coefficients. 
This statistic is
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where Rk k k k k= ∑ −∑ ∑ ∑− − − −ˆ ˆ ˆ / ˆ1 1 1 1C C C CT T . Statistical significance of the kth vari-
able’s discriminant function coefficient is evaluated by comparing *

kt to the 100(1 - α/2) 
percentile of the t distribution.

Resampling-based methods, such as the bootstrap, were employed for approx-
imating the distribution of a test statistic when the exact distribution is not readily 
available. Under this method, the original data in each group are randomly sampled 
with replacement B times. The discriminant function coefficients for the p outcomes 
are computed based on the bootstrap data. Statistical significance of each variable’s 
discriminant function coefficient is obtained by comparing the B bootstrapped coef-
ficients to the discriminant function coefficients estimated from the original data and 
estimating the proportion of discriminant function coefficients outside the 100(α/2) 
and 100(1 - α/2) percentiles of the distribution. While B = 500 bootstrap samples 
have been shown to produce acceptable results for hypothesis testing, precision will 
increase as B increases (Mackinnon, 2006).
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Simulation Study
A Monte Carlo study was used to evaluate the properties of test procedures for 
evaluating statistical significance of discriminant function coefficients, including: 
(a) Gupta’s (1968) test (GUP), (b) Rao’s (1970) F-test (RAO), (c) bootstrap test 
(BOT), and (d) Bodnar-Okhrin’s (2011) test (BOD). All the procedures were used to 
test for statistical significance of discriminant function coefficients from a p-variate 
two-group design.

The simulation conditions investigated include: (a) population distribution,  
(b) number of outcome variables, (c) total sample size and equality/inequality of 
group sizes, (d) magnitude and pattern of variable correlations, (e) mean configura-
tion, and (f) group covariance heterogeneity. Based on previous research, the number 
of outcome variables was set at p = 4 and 7, representing small to moderate sets of 
outcome variables. Previous studies have investigated numbers of outcome variables 
ranging from p = 4 to 10 (Lebreton, Polyhart, & Ladd, 2004). Total sample sizes of 
n = 60, 140, and 200 were investigated. Although previous simulation studies on 
discriminant function coefficients have primarily focused on equal group sizes (Roy 
et al., 2005a, 2005b; Finch & Laking, 2008), unequal group sizes have also been 
shown to influence their size (Baron, 1991), and may therefore influence tests of sta-
tistical significance. Both equal and unequal group size conditions were investigated. 
For n = 60, the unequal group size condition was (n1, n2) = (24, 36). For n = 140,  
(n1, n2) = (56, 84) was investigated, and for n = 200, (n1, n2) = (80, 120). These group 
size conditions were chosen based on previous research (Baron, 1991; Sajobi, Lix, 
Laverty, & Li, 2011). For the unequal group size cases, the coefficient of group size 
variation (Lix & Fouladi, 2007) was 0.2.

Discriminant function coefficients are sensitive to the magnitude of correlation 
among the outcome variables (Thomas & Zumbo, 1996). Therefore, three correla-
tion structures and three magnitudes of correlation (ρ) were invested: (a) Q1: com-
pound symmetric (CS) structure with ρ = 0.3; (b) Q2: CS structure with ρ = 0.6,  
(c) Q3: unstructured correlation matrix with average off diagonal elements of 0.3,  
(e) Q4: unstructured correlation matrix with average off-diagonal elements of 0.7, and 
(f) Q5 simplex correlation matrix with off-diagonal elements of 0.3 and 0.7. These 
structures were investigated with variable correlations ranging between 0.1 and 0.8 
(Sajobi, Lix, Laverty & Li, 2011; Tonidandel, Lebreton, & Johnson, 2009). Details 
about these types of correlation structures are provided in the Appendix. 

Conditions were investigated in which the group covariances were equal and 
unequal. In the latter case, both moderate and large degrees of covariance inequality 
were examined. In the moderate inequality case, the group covariances were in the 
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ratio of 1:3. In the large covariance inequality case, the group covariances were in 
a ratio of 1:7. Positive and negative pairings of group sizes and covariance matrices 
were investigated, in addition to cases in which equal group sizes were paired with 
equal or unequal group covariances. A positive pairing refers to the case in which 
the largest nj is associated with the covariance matrix containing the largest element 
values; a negative pairing refers to the case in which the largest nj is associated with 
the covariance matrix with the smallest element values. The pairing of group sizes 
and covariances is known to influence Type I error performance of univariate and 
multivariate procedures that assume covariance homogeneity (Harwell, Rubinstein, 
Hayes, & Olds, 1992).

Both null and non-null mean configurations were considered. These configura-
tions differed in the magnitude and pattern of the differences between the groups. 
The four non-null configurations (i.e., Configurations II through IV in Table 1) were 
chosen to represent small, moderate, and large magnitudes of group differences. 

Pseudo-random observation vectors yij from a multivariate normal distribution 
with mean vector µj and correlation matrix Qsj = Qs (s = 1, 2, …, 5) were generated 
using the RANNOR function in SAS (SAS Institute Inc., 2011). A vector of p standard 
normal deviates, Rij, was transformed to a vector of multivariate observations via

 y μ LRij j i j= + . (10)

The Cholesky decomposition was used to obtain L, an upper triangular matrix 
of dimension m satisfying the equality LTL = Qj.  Then yij was multiplied by Vj, 

Table 1. Values of μ1 Selected for the Monte Carlo Study
# Variables Configuration µ1 D2

4 I (0 0 0 0) 0.0
II (1 1 1 1) 4
III (1 0.5 1 0.5) 2.5
IV (2 2 2 2) 16.0
V (2 1 2 1) 10.0

7 I (0 0 0 0 0 0 0) 0.0
II (1 1 1 1 1 1 1) 7.0
III (1 0.5 1 0.5 1 0.5 1) 4.65
IV (2 2 2 2 2 2 2) 28
V (2 1 2 1 2 1 2) 20

Note: For all configurations, µ2 is the null vector; D2 = Euclidean distance between population mean vector
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a diagonal matrix with elements σ, to obtain multivariate observations with the 
desired variances and covariances such that Σj = Vj ρjVj

T, where ρj is the correlation 
matrix for the jth group. For both groups, σ2 = 1 for all investigated conditions. To 
assess departures from multivariate normality, the data were generated from skewed, 
heavy-tailed, and platykurtic multivariate distributions. Two skewed distributions 
were instigated: skewness (γ1) and kurtosis (γ2) values of γ1 = 1.8 and γ2 = 5.9 (SK-I) 
and γ1 = 13.2 and γ2 = 42892.9 (SK-II); for a normal distribution, γ1 = 0 and γ2 = 0. 
Two heavy-tailed distributions were investigated as well. One had skewness (γ1) and 
kurtosis (γ2) values of γ1 = 0 and γ2 = 33. The second was similar to a heavy-tailed 
Cauchy distribution, for which γ1 and γ2 are undefined. 

A platykurtic distribution (PK) with γ1 = 5.9 and γ2 = -4.0 was also investigated. 
Field and Genton (2006) described a flexible family of multivariate non-normal 
distributions obtained by modifying their quantiles. The variables g and h, which 
control the magnitude of γ1 and γ2, are used to transform a standard normal random 
variate, C, as follows:

 

( ) 2exp 1
exp

2
ijk

ijk ijk

gR hX R
g

 −    =       
 (11)

When g = 0, this equation reduces to 

 2exp
2ijk ijk ijk
hX R R

 =   
. (12)

A total of 5000 simulations were conducted for each combination of conditions; there 
were a total of 900 combination of conditions for the null means, and 3600 combi-
nation of conditions for the non-null mean configurations. For the BOT procedure, 
B = 1000 bootstrap samples were selected. 

Empirical family-wise error rates (FWER) were obtained when the mean vectors 
for both groups were null (i.e., Configuration I). The FWERs were evaluated with 
Bradley’s (1978) liberal criteria; FWERs outside the 0.05 ± 0.025 interval were 
considered as non-robust at α = .05. Procedures with FWER below the lower bound 
of the Bradley’s (1978) liberal criteria are considered as conservative in controlling 
the FWER, while those above the upper bound are considered liberal. For each 
condition, a Bonferroni correction was used to adjust for multiple correlated tests 
of significance (Dunn, 1961). For non-null mean configurations, the any-variable 
power rate, the power of a test procedure to reject at least one non-null hypothesis 
in the family of p non-null hypotheses, was used to assess the performance of the 
investigated procedures. Differences in statistical power less than 5% were con-
sidered negligible, while differences greater than 10% were considered substantial 
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(Lix, Deering, Fouladi, & Manivong, 2009). All analyses were conducted in SAS/
IML (SAS Institute Inc., 2011). 

Results
FWER

Results are presented for conditions when the data were sampled from multivariate 
normal distributions and group covariances were equal (Table 2) and also for condi-
tions where the data were sampled from multivariate non-normal distributions and 
group covariances were unequal (Table 3). Overall, both Bodnar and Rao’s F-test 

Table 2. Mean Family-Wise Error Rates (%) of Discriminant Function Coefficient Test 
Procedures by Number of Outcome Variables (p), Total Sample Size (n), and Correlation 
Structures for the Multivariate Normal Distribution and Equal Group Covariances
# Outcome Variables Total Sample Correlation (ρ) GUP RAO BOT BOD
4 60 Q1 0.98 3.90 1.80 4.52

Q2 0.94 3.88 1.60 4.36
Q3 0.88 3.78 1.74 4.44
Q4 0.90 4.10 1.72 4.38
Q5 0.94 4.12 1.82 4.58

200 Q1 3.98 5.08 4.56 5.22
Q2 3.86 5.06 4.30 5.22
Q3 3.58 4.84 4.42 5.02
Q4 3.46 4.44 4.08 4.62
Q5 3.16 4.10 3.80 4.36

7 60 Q1 0.28 4.12 0.86 4.72
Q2 0.26 3.92 0.84 4.52
Q3 0.32 4.04 0.92 4.60
Q4 0.22 3.94 0.78 4.64
Q5 0.18 3.82 0.76 4.28

200 Q1 3.00 4.54 3.72 4.68
Q2 2.90 4.65 3.58 4.79
Q3 3.02 4.60 3.82 4.72
Q4 2.97 4.58 3.60 4.74
Q5 2.68 4.42 3.24 4.58

NB: GUP = Gupta’s (1968) procedure; RAO = Rao’s (1970) procedure; BOT = Bootstrap procedure; BOD = 
Bodnar-Okhrin’s (2011) procedure. ρ = variable correlation; Q1: compound symmetric (CS) structure with ρ = 0.3;  
(b) Q2: CS structure with ρ = 0.6, (c) Q3: unstructured correlation matrix with average off diagonal elements of 0.3, 
(e) Q4: unstructured correlation matrix with average off-diagonal elements of 0.7, and (f) Q5 simplex correlation 
matrix with off-diagonal elements of 0.3 and 0.7; 
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Table 3. Mean Family-Wise Error Rates (%) of Discriminant Function Coefficient Test 
Procedures by Population Distribution and Covariance/Sample Size Pairing when p = 4
Distribution Group Size/ Covariance Pairing GUP RAO BOT BOD
Normal Equal Group Size/Equal Covariances 2.49 4.49 3.16 4.81

Equal Group Size/Unequal Covariances 2.75 4.91 2.65 5.21
Negative Pairing 6.60 10.44 0.77 10.97
Positive Pairing 0.93 1.92 0.62 2.08

HT-I Equal Group Size/Equal Covariances 2.58 4.08 1.96 4.37
Equal Group Size/Unequal Covariances 2.87 4.40 2.08 4.62
Negative Pairing 6.04 8.93 0.27 9.37
Positive Pairing 1.06 1.93 0.38 2.05

HT-II Equal Group Size/Equal Covariances 1.46 2.47 0.21 2.65
Equal Group Size/Unequal Covariances 1.63 3.15 0.19 3.40
Negative Pairing 3.82 6.46 0.02 6.96
Positive Pairing 0.66 1.35 0.00 1.49

SK-I Equal Group Size/Equal Covariances 2.21 4.04 1.98 4.34
Equal Group Size/Unequal Covariances 5.24 8.24 3.02 8.68
Negative Pairing 10.15 14.78 0.43 15.41
Positive Pairing 1.99 3.56 0.66 3.82

SK-II Equal Group Size/Equal Covariances 1.83 3.47 0.76 3.70
Equal Group Size/Unequal Covariances 3.02 5.37 0.77 5.71
Negative Pairing 6.74 10.60 0.08 11.16
Positive Pairing 1.11 2.16 0.15 2.35

PK Equal Group Size/Equal Covariances 0.17 18.00 0.48 1.67
Equal Group Size/Unequal Covariances 0.46 18.20 0.48 2.60
Negative Pairing 1.11 17.50 0.15 5.69
Positive Pairing 0.20 20.12 0.14 1.42

NB: GUP = Gupta’s (1968) procedure; RAO = Rao’s (1970) procedure; BOT = Bootstrap procedure; BOD = 
Bodnar- Okhrin’s (2011) procedure. Normal distribution has skewness (γ1) = 0 and kurtosis (γ2) = 0; HT-I has  
γ1 = 0 and γ2 = 33; HT-II has γ1 = ∞and γ2 = ∞; SK-I has γ1 = 1.8 and γ2 = 5.9; SK-II has γ1 = 13.2 and γ2 = 42 892.9; 
PK has γ1 = 5.9 and γ2 = -4.0. 

controlled the FWER to α, whereas the Gupta’s asymptotic and bootstrap procedures 
frequently resulted in conservative FWER, when the data were normally distributed. 
The average FWERs are summarized in Table 2 by number of outcome variables (p) 
and correlation structure. When n = 60, Gupta’s asymptotic and bootstrap procedures 
frequently resulted in average FWERs that were below the lower bound of Bradley’s 
liberal criterion, whereas both Rao’s F-test and Bodnar’s procedures controlled the 
FWER to α, regardless of the number of outcome variables. 
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The average FWERs for Rao’s (1970) F-test, bootstrap, and Bodnar’s procedures 
were slightly higher when the data were sampled from a moderately correlated set 
of outcomes (i.e., Q1 or Q3) than when the data were sampled from a strongly cor-
related set of outcomes (i.e., Q2 or Q4), regardless of the correlation structure and 
the number of outcome variables. For example, the average FWERs for Rao’s F-test 
and Bodnar’s procedures were 3.90% and 4.52%, respectively, when the data were 
sampled from a population with Q1 correlation structure. The average FWER for 
both the former and latter procedures were 3.78% and 4.36%, respectively, when 
the data were sampled from a population with Q2 correlation structure. 

The pairing of the group covariances and sample sizes and data distribution influ-
enced the procedures’ control of the FWER (Table 3). When the data were generated 
from a multivariate normal distribution and the group sizes were equal, both Rao 
(1970) F-test and Bodnar’s test controlled the FWER to α. Although the FWERs for 
Gupta (1986) and bootstrap procedures were lower than those for Rao (1970) F-test 
and Bodnar’s test, they were contained within the bounds of Bradley’s (1978) liberal 
criterion. When the data were sampled from a skewed or heavy-tailed distribution, 
the FWER for Rao’ (1970) F-test and Bodnar’s procedure were lower, but still 
contained within the bounds of Bradley’s liberal criterion. But when the data were 
sampled from a multivariate platykurtic distribution, the FWER for Rao (1970) test 
procedure exceeded the upper bounds of Bradley’s liberal criterion while the average 
FWER for Bodnar’s procedure was within the limits of Bradley’s liberal criterion. 
In contrast, Gupta’s (1986) and bootstrap test resulted in average FWERs that were 
below the bounds of Bradley’s criterion, regardless of the population distribution. 

When the group sizes and covariances were positively paired, the average FWERs 
for Gupta (1986) and bootstrap procedures were consistently below the lower bound 
of Bradley’s (1978) liberal criterion, regardless of the population distribution. The 
average FWERs for Bodnar and Rao (1970) F-test procedures were consistently 
below the lower bound of Bradley’s (1978) liberal criterion when the data were 
sampled from a population with multivariate heavy-tailed distribution or severely 
skewed distribution. However, for these same conditions, the FWER values for the 
latter procedure, exceeded the upper bound of Bradley’s (1978) liberal criterion, 
whereas the FWER values for the former procedure was smaller than the lower bound 
of Bradley’s (1978) liberal criterion when the data were sampled from a platykurtic 
(PK) distribution. 

However, when the group sizes and covariance were negatively paired, the average 
FWER values for Rao (1970) F-test and Bodnar’s procedures mostly exceeded the 
upper bound of Bradley’s (1978) liberal criterion for normal, skewed, heavy-tailed, 
and platykurtic distributions. The FWER values for the bootstrap procedure were 
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consistently below the lower bound of Bradley’s liberal criterion, regardless of the 
population distribution. The FWERs for Gupta (1986) procedure were slightly higher 
than α, but were within the bounds of Bradley’s liberal criterion for the normal and 
heavy-tailed distributions. 

Power Rates

The average any-variable power rates (percentages) for the procedures are reported in 
Tables 4 through 6. Table 4 and 5 describes the average any-variable power values of 
the test procedures for a variety of population distributions when group covariances 
were equal and unequal. For equal group covariance conditions (Table 4), the aver-
age any-variable power rates for all procedures were higher under the multivariate 
normal distribution and lowest under extremely skewed or heavy-tailed  distribu-
tions, regardless of the configuration of the population means. When the data were 
sampled from a multivariate normal distribution with equal group covariances, the 
bootstrap procedure resulted in higher average any-variable power rates than any 
other procedure. However, this procedure was less powerful when the data were 
sampled from a multivariate non-normal distribution than when the data were sam-
pled from a multivariate normal distribution. 

Bodnar’s procedure was most powerful among the investigated procedures, when 
the data were sampled from a heavy-tailed or extremely skewed distribution, regard-
less of the configuration of the population means. For these same conditions, there 
were negligible differences in the average any-variable power values of Bodnar 
and Rao (1970) F-test procedures. However, when the data were sampled form a 
platykurtic distribution, the latter procedure exhibited higher any-variable power than 
the former procedure, regardless of the population mean configuration. For example, 
the average any-variable power rates for Bodnar and Rao (1970) procedures were 
89.8% and 89.3%, respectively, when the data were sampled from a multivariate nor-
mal population with mean configuration IV. The average power for both procedures 
were 53.8% and 52.2%, respectively, when the data were sampled from an extremely 
heavy-tailed distribution, and 71.2% and 99.9%, when the data were sampled from 
a platykurtic distribution for the same mean configuration. 

When the data were sampled from a multivariate skewed or heavy-tailed popula-
tion distributions and heterogeneous group covariances, Bodnar’s procedure achieved 
the highest any-variable power. (Table 5). Nevertheless, there were negligible differ-
ences in the power rates for Bodnar’s and Rao (1970) procedures in almost all the 
conditions investigated. But when the data were sampled from a platykurtic distri-
bution, Rao (1970) F-test was most powerful among the investigated procedures. 
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Table 4. Mean Any-Variable Power (%) of Discriminant Function Coefficient Test 
Procedures by Population Distribution and Mean Configuration when Group Covariances 
are Equal
Distribution Mean Configuration GUP RAO BOT BOD
Normal II 62.27 70.10 73.76 74.96

III 30.75 40.56 48.99 41.46
IV 79.65 89.34 95.95 89.77
V 48.89 60.93 86.32 61.72

HT-I II 58.69 67.35 60.17 68.15
III 30.36 38.62 36.83 39.49
IV 88.66 93.69 92.88 94.03
V 60.45 70.00 78.01 70.86

HT-II II 14.69 22.20 6.42 22.98
III 5.86 12.48 2.65 13.29
IV 33.85 52.29 21.56 53.78
V 20.08 37.76 12.65 39.19

SK-I II 56.52 67.68 62.76 68.57
III 27.20 36.66 36.69 37.53
IV 78.57 88.41 91.41 88.86
V 49.50 61.09 77.24 61.86

SK-II II 38.15 48.86 32.29 49.84
III 19.16 26.88 16.78 27.75
IV 72.51 82.96 73.50 83.61
V 47.15 58.23 54.04 59.05

PK II 35.42 99.00 54.00 56.77
III 36.95 91.67 41.42 54.64
IV 69.56 99.96 87.23 81.22
V 56.44 99.89 73.79 71.23

NB: GUP = Gupta’s (1968) procedure; RAO = Rao’s (1970) procedure; BOT = Bootstrap procedure; BOD = 
 Bodnar-Okhrin’s (2011) procedure. Normal distribution has skewness (γ1) = 0 and kurtosis (γ2) = 0; HT-I has  
γ1 = 0 and γ2 = 33; HT-II has γ1 = ∞and γ2 = ∞; SK-I has γ1 = 1.8 and γ2 = 5.9; SK-II has γ1 = 13.2 and γ2 = 42 892.9; 
PK has γ1 = 5.9 and γ2 = -4.0. See Table 1 for description of the mean configurations

For example, when the data were sampled from a multivariate normal distribution 
and unequal group covariances, the average power rates for Rao (1970) F-test and 
Bodnar procedures were 75.2% and 76.1%, respectively, when the data were sampled 
from mean configuration II. However, the average power rates for the procedures 
were 99.3 and 57.3%, respectively, when the data were sampled from a platykurtic 
distribution for the same mean configuration. 
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Table 5. Mean Any-variable Power (%) of Discriminant Function Coefficient Test 
Procedures by Population Distribution and Mean Configuration when Group Covariances 
are Unequal
Distribution Mean Configuration GUP RAO BOT BOD
Normal II 63.56 75.24 61.73 76.05

III 34.07 44.47 36.53 45.37
IV 81.86 90.85 92.70 91.20
V 54.17 66.68 80.16 67.45

HT-I II 58.94 67.48 41.32 68.33
III 33.34 41.35 22.37 42.26
IV 88.55 93.56 86.02 93.96
V 63.80 72.87 67.84 73.65

HT-II II 16.83 25.25 3.13 26.17
III 7.54 14.82 1.13 26.17
IV 36.74 55.65 13.34 57.04
V 23.63 41.91 8.02 43.32

SK-I II 59.59 70.93 46.91 71.81
III 34.53 44.80 27.95 45.69
IV 79.28 89.11 85.72 89.56
V 53.31 65.31 68.85 66.05

SK-II II 43.13 54.44 17.74 55.46
III 24.74 33.78 9.50 34.65
IV 74.05 84.50 63.35 85.08
V 49.65 61.12 42.20 61.95

PK III 35.87 99.30 44.21 57.32
II 37.52 93.69 32.13 55.34
IV 69.60 100.00 82.48 81.23
V 56.10 99.98 68.92 71.35

NB: GUP = Gupta’s (1968) procedure; RAO = Rao’s (1970) procedure; BOT = Bootstrap procedure;  
BOD = Bodnar-Okhrin’s (2011) procedure; GUP = Gupta’s (1968) procedure; RAO = Rao’s (1970) procedure;  
BOT = Bootstrap procedure; BOD = Bodnar-Okhrin’s (2011) procedure. Normal distribution has skewness (γ1) = 0 
and kurtosis (γ2) = 0; HT-I has γ1 = 0 and γ2 = 33; HT-II has γ1 = ∞and γ2 = ∞; SK-I has γ1 = 1.8 and γ2 = 5.9; SK-II 
has γ1 = 13.2 and γ2 = 42 892.9; PK has γ1 = 5.9 and γ2 = -4.0. See Table 1 for a description of mean configurations.

All the test procedures were not equally sensitive to the group mean configu-
rations that were investigated. The average any-variable power for the procedures 
increased as the Euclidean distance between the two group mean vectors increased. 
The average any-variable power for each procedure was significantly higher for 
constant population means (II or IV) than for non-constant mean configurations (III 
or V), regardless of the population distribution. However, for each procedure, the 



TOLULOPE T. SAJOBI ET AL.

17

differences in any-variable power rates across the mean configurations were highest 
under the multivariate normal distribution and smallest under the extremely heavy-
tailed distribution. 

For example, the average any-variable power for Gupta (1986) and Bodnar pro-
cedures were 76.1% and 63.6%, respectively, when the data were sampled from a 
multivariate normal distribution with mean configuration II. The average power rates 
for these two procedures were 34.1% and 45.4%, respectively, when the data were 
sampled from a multivariate normal distribution with mean configuration II. On the 
other hand, when the data were sampled from an extremely heavy-tailed distribution 

Table 6. Mean Any-Variable Power (%) for Discriminant Function Coefficient Test 
Procedures by Population Distribution and Correlation Structure
Distribution Correlation Structure GUP RAO BOT BOD
Normal Q1 74.98 85.60 83.02 86.22

Q2 49.93 60.79 62.16 61.52
Q3 70.04 82.50 80.88 83.22
Q4 52.80 62.77 63.34 63.44
Q5 40.79 51.55 55.49 52.38

SK-II Q1 60.65 72.47 46.78 73.33
Q2 42.27 52.07 30.10 52.84
Q3 60.24 72.00 46.19 72.88
Q4 41.22 50.78 29.46 51.56
Q5 32.46 41.95 21.29 42.80

HT-II Q1 25.47 39.03 9.21 40.25
Q2 19.46 31.94 5.73 32.97
Q3 25.01 39.15 9.05 40.41
Q4 18.41 31.19 5.43 32.22
Q5 10.19 18.94 2.50 19.81

PK Q1 43.62 73.33 49.95 58.31
Q2 31.59 35.82 33.73 46.02
Q3 34.46 71.65 40.88 47.81
Q4 34.00 74.21 38.78 47.42
Q5 33.07 73.10 37.43 42.11

GUP = Gupta’s (1968) procedure; RAO = Rao’s (1970) procedure; BOT = Bootstrap procedure; BOD = 
 Bodnar-Okhrin’s (2011) procedure. Normal distribution has skewness (γ1) = 0 and kurtosis (γ2) = 0; HT-II has  
γ1 = ∞and γ2 = ∞; SK-II has γ1 = 13.2 and γ2 = 42 892.9; PK has γ1 = 5.9 and γ2 = -4.0. ρ = variable correlation; Q1: 
compound symmetric (CS) structure with ρ = 0.3; (b) Q2: CS structure with ρ = 0.6, (c) Q3: unstructured correlation 
matrix with average off diagonal elements of 0.3, (e) Q4: unstructured correlation matrix with average off-diagonal 
elements of 0.7, and (f) Q5 simplex correlation matrix with off-diagonal elements of 0.3 and 0.7.
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(i.e., HT-II), the average any-variable power rates for Gupta (1986) and Bodnar’s 
procedures were 16.8% and 26.2%, respectively, when the data were sampled from 
a HT-II distribution with mean configuration I. The average power rates for the 
procedures were 7.5% and 16.2%, respectively, when the data were sampled from 
a population with mean configuration II under HT-II distribution.

The any-variable power rates for all the procedures were largest when the data 
were sampled from a population with the Q1 structure (i.e., all variables are indepen-
dent), but smallest when the data were sampled from a population with the Q6 (i.e., 
simplex) correlation structure, regardless of the population distribution (Table 6). The 
any-variable power rates for Gupta and bootstrap procedures were more sensitive 
to smaller total sample size than Bodnar and Rao (1970) procedures, regardless of 
the population distribution. For example, the average any-variable power for Rao’s 
(1970) and bootstrap procedures were 24.9% and 14.6%, respectively, when n = 60. 
Whereas, the average power rates for the former and latter procedures were 59.0% 
and 56.7%, respectively, when n = 200.

Discussion
This aim of this study was to investigate four test procedures to evaluate statistical 
significance of discriminant function coefficients for multiple correlated outcomes 
in grouped data. Based on the simulation study, Gupta’s asymptotic test and boot-
strap test procedures had values that were often below the lower bound of Bradley’s 
(1978) liberal criterion, which suggests that they are conservative in controlling the 
FWER, except when sample size is very large for multivariate normal distributions. 
Rao (1970) F and Bodnar’s test procedures were effective in controlling the overall 
FWER when the data were sampled from a multivariate normal distribution or were 
slightly non-normal. 

However, all procedures were conservative in controlling the FWER when the 
data were sampled from multivariate non-normal data distributions. Furthermore, the 
pairing of group covariances and group sample sizes influenced the FWER control 
for all investigated procedures. The average FWERs for Gupta (1986) asymptotic 
test, Rao (1970) F-test, and Bodnar test exceeded the upper bound of Bradley’s 
(1978) liberal criterion when the data were sampled from a population where group 
sample and covariances are negatively paired. But these procedures resulted in con-
servative FWERs when the data were sampled from a population where group size 
and covariances were positively paired. 

The the bootstrap procedure was conservative, which is consistent with previ-
ous research. For example, simulation studies that investigated the use of bootstrap 
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methods for statistical inference about variable importance in regression literature 
revealed that the bootstrap procedure can result in overly conservative Type I error 
rates (Dagleish, 1994; Tonidandel & Lebreton, 2009). In terms of statistical power to 
detect non-zero discriminant function coefficients, our results suggest that bootstrap 
procedure can be more powerful than other procedures when the data are sampled 
from a multivariate normal distribution and when group sizes and covariances are 
equal. However, Rao (1970) F-test and Bodnar’s procedures were more powerful 
than Gupta (1986) asymptotic test and bootstrap test procedure when the data were 
characterized by unequal group sizes, heterogeneous group covariances, or multi-
variate non-normal distributions. 

Consequently, Rao (1970) F-test or Bodnar’s test procedure should be adopted for 
testing hypotheses about the discriminant function coefficients when the data were 
sampled from multivariate normal distributions because they provide good control of 
the FWER and yield maximum any-variable power, regardless of the sample size and 
number of outcome variables. When the data were sampled from multivariate skewed 
or heavy-tailed distributions, we recommend that these two procedures should be 
adopted provided that the group covariances are equal. But none of the investigated 
procedures provided a good control of FWER and maximum statistical power when 
the data were sampled from multivariate non-normal distribution with heterogeneous 
group covariances. This suggest the need for new robust test procedures that provide 
good control of FWER and high statistical power when the data are sampled from 
multivariate non-normal distributions and heterogeneous group covariances. 

The limitations of this study should be noted. Discriminant analysis procedures 
that are insensitive to departures from the assumptions of multivariate normality 
and covariance homogeneity have been developed, including robust discriminant 
analysis based on minimum covariance determinant estimators (Hubert & van Dries-
sen, 2004), and S estimators (He & Fung, 2000; Croux & Dehon, 2001). Further 
research is needed to investigate the performance of these test procedures when the 
assumptions of multivariate normality and covariance homogeneity are violated in 
the study populations. 

The Bonferroni correction was adopted, which is a commonly used method to 
adjust for multiple tests of statistical significance. However, it assumes independence 
among the variables and may result in conservative control of the FWER and low 
statistical power for correlated outcomes (Sankoh, Huque, & Dubey, 1997). Mul-
tiple testing procedures such as Hochberg’s step-up procedure (Hochberg, 1988) 
and Holm’s step down procedure (Holm, 1979) that account for correlation among 
the outcomes, are alternative procedures that can be adopted to control the FWER. 
Further research could compare these multiple testing procedures for discriminant 
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function coefficients. However, the simulation study compared the FWER and sta-
tistical power of the investigated procedures for testing if the discriminant function 
coefficient associated with each outcome variable is significantly different from 
zero. These test procedures can also be extended to test whether or not the discrim-
inant function coefficient associated with a variable is significantly larger than the 
coefficient associated with another study variable.

Repeated measures discriminant analysis procedures based on parsimonious 
means and/or covariance structures have been proposed for predicting group mem-
bership and/or describing group separation in longitudinal studies (Tomasko, Helms, 
& Snapin, 1999; Roy & Khattree, 2005a, 2005b). But there has been no research on 
statistical inference about the relative importance of variables in multivariate lon-
gitudinal studies. Future research will investigate the extension of the proposed test 
procedures for evaluating statistical inference for coefficients of repeated measures 
discriminant analysis procedures that assume parsimonious means and/or covariance 
structures in multivariate longitudinal designs.  
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Appendix: Correlation Structures
p = 4

Compound Symmetric Correlation

Qk = 

1 .
1

1
1

k k k

k k k

k k k

k k k

ρ ρ ρ
ρ ρ ρ
ρ ρ ρ
ρ ρ ρ

 
 
 
 
 
 

k = 1, 2; 1 0.3ρ = , 2 0.7ρ =

Unstructured Correlation

Q3 = 

1 0.25 0.5 0.1
0.25 1 0.1 0.4
0.5 0.1 1 0.5
0.1 0.4 0.5 1

 
 
 
 
 
 

Q4 = 

1 0.5 0.7 0.3
0.5 1 0.7 0.5
0.7 0.7 1 0.4
0.3 0.5 0.4 1

 
 
 
 
 
 

Simplex Correlation

Q5 = 

1 0.3 0.7 0.3
0.3 1 0.3 0.7
0.7 0.3 1 0.3
0.3 0.7 0.3 1

 
 
 
 
 
 

p = 7 
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Compound Symmetric Structure

1
1

1
1

1
1

1

k k k k k k

k k k k k k

k k k k k k

k k k k k k k

k k k k k k

k k k k k k

k k k k k k

Q

ρ ρ ρ ρ ρ ρ
ρ ρ ρ ρ ρ ρ
ρ ρ ρ ρ ρ ρ
ρ ρ ρ ρ ρ ρ
ρ ρ ρ ρ ρ ρ
ρ ρ ρ ρ ρ ρ
ρ ρ ρ ρ ρ ρ

 
 
 
 
 =  
 
 
 
  

k = 1, 2; 1 0.3ρ = , 2 0.7ρ =

Unstructured Correlation

3

1 0.5 0.5 0.45 0.6 0.3 0.5
0.5 1 0.3 0.55 0.1 0.4 0.25
0.5 0.3 1 0.4 0.3 0.2 0.4
0.45 0.55 0.4 1 0.15 0.3 0.45
0.6 0.1 0.3 0.15 1 0.35 0.6
0.3 0.4 0.2 0.3 0.35 1 0.25
0.5 0.25 0.4 0.45 0.6 0.25 1

Q

 
 
 
 
 =  
 
 
 
  

4

1 0.65 0.66 0.7 0.72 0.65 0.75
0.65 1 0.7 0.7 0.67 0.72 0.74
0.66 0.7 1 0.71 0.75 0.63 0.74
0.7 0.7 0.71 1 0.7 0.65 0.73
0.72 0.67 0.75 0.7 1 0.68 0.74
0.65 0.72 0.63 0.65 0.68 1 0.75
0.75 0.74 0.74 0.73 0.74 0.75 1

Q

 
 
 
 
 
 
 
 
 
  



TOLULOPE T. SAJOBI ET AL.

25

Simplex Correlation

5

1 0.3 0.7 0.3 0.7 0.3 0.7
0.3 1 0.3 0.7 0.3 0.7 0.3
0.7 0.3 1 0.3 0.7 0.3 0.7
0.3 0.7 0.3 1 0.3 0.7 0.3
0.7 0.3 0.7 0.3 1 0.3 0.7
0.3 0.7 0.3 0.7 0.3 1 0.3
0.7 0.3 0.7 0.3 0.7 0.3 1

Q

 
 
 
 
 =  
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