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Preliminary tests for homoscedasticity may be unnecessary in general linear models. Based 

on Monte Carlo simulations, results suggest that when testing for differences between 

independent slopes, the unconditional use of weighted least squares regression and HC4 

regression performed the best across a wide range of conditions. 
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In the behavioral and social sciences, researchers and practitioners employ 

statistical analyses to test theories, accumulate knowledge, and improve practice. 

In education, psychology, sociology, and related fields, some of the most frequently 

used statistical procedures involve linear models (e.g., analysis of variance, linear 

regression; Stone-Romero, Weaver, & Glenar, 1995) and the F and t statistics. 

These statistical tests typically require that various assumptions must be satisfied, 

including homoscedasticity (Box, 1954; Fox, 2008; Glass, Peckham, & Sanders, 

1972). In other words, in linear models, the error term is assumed to be 

homoscedastic (Rencher, 2000). Some research, however, suggests that the practice 

of checking the homoscedasticity assumption may be outdated and, in the case of 

the two independent sample t test, unnecessary (Sawilowsky, 2002; Zimmerman, 
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2004), particularly with the availability of general solutions (Long & Ervin, 2000). 

The present study expands on existing research by examining tests for slope 

differences and evaluating not only the resulting Type I error rates, but also 

statistical power of tests on slope differences. 

Introduction 

Below, we discuss testing for the equality of independent slopes and the 

homoscedasticity assumption. Unique aspects of the present study are also noted, 

including our examination of unconditional and conditional Type I error and power. 

Testing for the Equality of Independent Slopes 

Testing for slope differences between k independent samples is quite common in 

the behavioral and social sciences. In the present study, the slope for a continuous 

predictor (x) when predicting a continuous response (y) may differ across a 

categorical predictor (z) where z is sometimes labeled a moderator (Saunders, 1956; 

Shieh, 2009). For example, the association between job involvement (x) and 

organizational citizenship behaviors (y) has been found to differ across sexes (z), 

such that higher job involvement is associated with higher levels of organizational 

citizenship behaviors for females, but lower levels of organizational citizenship 

behaviors for males (Diefendorff, Brown, Kamin, & Lord, 2002). In a 30-year 

review of three premier applied psychology and management journals, there were 

636 tests for the equality of independent slopes, demonstrating the “pervasive 

interest in moderators” (Aguinis, Beaty, Boik, & Pierce, 2005, p. 94) in these fields. 

Note that testing the equality of k independent slopes is also referred to as 

moderated multiple regression with a categorical moderator (Aguinis, 2004) or a 

test of interaction (Fox, 2008). 

For two independent groups (i.e., k = 2) and treating z as a dummy variable 

(e.g., 1 = group 1; 0 = group 2), the model for the ith observation can be expressed 

as 

 

 ( )0 1 2 3 ·i i i i i iy x z x z    = + + + +   (1) 

 

where i = 1, 2,…, N, N = total number of observations, and εi is a population error. 

Further, the model in equation (1) assumes that εi has an expected value of 0 and a 

constant variance of σ2. Note that population parameters are denoted by Greek 
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symbols (e.g., β3) and estimates of these parameters that appear with a diacritic are 

typically obtained using ordinary least squares (OLS) estimation. 

It deserves noting that the model in equation (1) does not require that the 

population errors follow a normal distribution (Rencher, 2000). However, for 

statistical inferences – such as hypothesis tests on the equality of independent 

slopes – the normality assumption is required. To test for the equality of two 

independent slopes, the test statistic, under the null hypothesis (i.e., H0: β3 = 0), is 

distributed as a t random variable with degrees of freedom (df) = N – 4 or, 

equivalently, as an F random variable with df1 = 1 and df2 = N – 4. 

Between-Groups Heteroscedasticity 

When conducting hypothesis tests on the equality of independent slopes, 

researchers and practitioners typically first conduct diagnostic tests to assess 

whether the homoscedasticity assumption is satisfied (Aguinis, 2004). In the 

present study, we focus on the scenario where the population error variance may 

differ systematically across two independent groups. That is, instead of the 

population errors (i.e., εi) having a constant variance of σ2 (i.e., homoscedasticity), 

the error variance differs between groups (hereinafter, referred to as between-

groups heteroscedasticity). In the jth group, where j = 1 or 2, the population error 

variance ( )2

j  can be expressed as 

 

 ( ) ( )( )2 2 21–j y j yx j
  =   (2) 

 

where 
( )

2

y j
 = population variance of y in the jth group and ρyx(j) = population 

correlation coefficient between y and x in the jth group. 

To diagnose whether between-groups heteroscedasticity exists, traditionally, 

diagnostic procedures such as Levene’s (1960) or Bartlett’s test (Bartlett & Fowler, 

1937) would precede Student’s t test for two independent slopes. If the diagnostic 

test is not statistically significant (suggesting homoscedasticity), then a researcher 

would proceed with the interpretation of the conventional Student’s t (or F statistic) 

to test the equality of independent slopes. However, if the diagnostic test is 

statistically significant, then this would signal that the homoscedasticity assumption 

was violated (i.e., heteroscedasticity exists) and that some ameliorative procedure 

should be applied (e.g., transformation of the dependent variable, weighted least 

squares regression; Fox, 2008). 
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Two diagnostic tests for homoscedasticity are examined in the present study. 

The first is Levene’s test for equality of variances (Levene, 1960), which is simply 

a one-way analysis of variance (ANOVA) on the absolute value of the residuals. 

Not only is Levene’s test generally well-known and computationally simple, it is 

available in all major statistical software packages (Rosopa, Schaffer, & Schroeder, 

2013). The second diagnostic test examined in the present study is the score test 

(Breusch & Pagan, 1979; Cook & Weisberg, 1982), which is calculated using a 

two-step process that can be conducted using a number of major statistical software 

packages (Rosopa et al., 2013). In the first step, the model of interest is fitted using 

OLS regression. Then, the squared residuals from the first model are regressed on 

variables believed to be causing the heteroscedasticity (e.g., predictors or fitted 

values) to test whether the residuals are related to the focal variables. Under the null 

hypothesis, the test statistic is asymptotically distributed as χ2 with df equal to the 

number of predictor variables used in the second step. The score test provides a 

flexible alternative to Levene’s test because it can be used in more complex 

analyses, including testing interactions and polynomial regression (Rosopa et al., 

2013). It is important to note, however, that like many tests for homoscedasticity, 

both the score test and Levene’s test are sensitive to nonnormality (Rosopa et al., 

2013). 

We end this introduction with two important notes about our study design. 

First, some previous studies (e.g., Markowski & Markowski, 1990; Moser, Stevens, 

& Watts, 1989) have used Hartley’s (1950) F as the preliminary test for equality of 

variances before testing for differences between independent means. However, 

research by Box (1953) indicates that Hartley’s F should not be used as a 

preliminary test for the equality of variances; thus, we did not examine it in the 

present study. For a discussion and evaluation of other available diagnostic tests for 

homoscedasticity, we refer the reader to Ng and Wilcox (2011), Rosopa et al. 

(2013), and Sharma and Kibria (2013). 

Second, it deserves noting that, with between-groups heteroscedasticity [see 

equation (2)], the test for the equality of two independent slopes can also be 

conducted using another approach that independently estimates two models. 

Namely, for each group, an OLS regression is conducted, regressing y on x. By 

allowing for heterogeneous variances across groups, a t test can be calculated using 

the two estimated slopes and their respective estimated standard errors. However, 

Satterthwaite’s (1946) approximation for the df would be needed when using this 

approach. We thank an anonymous reviewer for bringing this to our attention. 

Because this analytic method requires conducting k separate regression analyses 

(i.e., one for each group), and the Satterthwaite approximation can be 
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computationally intensive, we chose to focus on the model depicted in equation (1), 

particularly, because of its frequent use by researchers and practitioners. 

Research on Preliminary Tests for Heteroscedasticity 

Although preliminary tests for heteroscedasticity are consistent with 

recommendations typically described in statistical textbooks, Zimmerman (2004) 

argued that “[n]othing is gained by the preliminary Levene test… The same line of 

reasoning applies to any preliminary test for the equality of variances that might be 

advised” (p. 179). Based on simulation results for tests of mean differences, 

Zimmerman concluded that the process of selecting test statistics based on 

preliminary tests for heteroscedasticity could not improve on the Type I error rate 

of unconditionally used (i.e., without a preliminary test for homoscedasticity) 

general procedures such as Welch’s (1938) t test. That is, Zimmerman concluded 

that there is no need to conduct a preliminary test to assess whether the 

homoscedasticity assumption is violated when testing for independent mean 

differences, and Welch’s t test should supplant Student’s t test as a general 

procedure. 

As demonstrated by Zimmerman (2004), the unconditional use of Welch’s t 

– that is, using the test without conducting preliminary tests of equality of variances 

– maintains accurate Type I error rates when testing mean differences even when 

population variances and sample sizes are unequal across groups. Additional 

research further supports this conclusion with data generated from both normal and 

skewed distributions (Hayes & Cai, 2007) and when examining estimates of 

statistical power (Rasch, Kubinger, & Moder, 2011). 

Some research involving independent means appears to generalize to 

instances involving slopes. For example, using preliminary tests of 

homoscedasticity in testing for differences between non-independent OLS 

regression estimates results in poorly controlled Type I error rates (Ng & Wilcox, 

2011). However, it remains unclear whether this conclusion generalizes to tests on 

the equality of independent slopes, which as noted above is frequently conducted 

in the behavioral and social sciences (Aguinis et al., 2005). 

Alternatives to OLS Regression when Homoscedasticity Assumption 

is Violated 

As noted above, OLS regression is typically used for the estimation of parameters 

in equation (1). Although OLS regression-based parameter estimates remain 

unbiased in the presence of heteroscedasticity, standard errors will be incorrect 
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(Long & Ervin, 2000). Because standard errors are used in statistical inference, 

including hypothesis testing and interval estimation, such inferences will also be 

incorrect. Two alternatives to OLS regression are described below. 

Weighted least squares (WLS) regression can be used instead of OLS 

regression to mitigate the effects of heteroscedasticity (Fox, 2008; Rosopa et al., 

2013). With WLS regression, each estimated weight is equal to the reciprocal of a 

variance estimate (typically, using the OLS-based residuals). Note that OLS 

regression is a special case of WLS regression where the weights in OLS regression 

can be viewed as being equal to unity (Neter, Kutner, Nachtsheim, & Wasserman, 

1996; Rosopa et al., 2013). However, in practice, the form of heteroscedasticity 

may be unknown, making the assignment of weights used in WLS regression an 

impractical procedure (Long & Ervin, 2000; Rosopa et al., 2013). That is, if the 

form of heteroscedasticity is not accurately identified, the WLS approach may not 

perform well relative to other alternative procedures. Note that nonparametric 

approaches for estimating the WLS weights are also available, such as 

nonparametric smoothing (Hart, 1997) and tree-based approaches (Su, Tsai, & Yan, 

2006). 

One general remedy for accurate statistical inference, even when the form of 

heteroscedasticity is unknown, is the use of heteroscedasticity consistent 

covariance matrices (HCCM). The first variation of HCCM, HC0 (White, 1980), is 

the most commonly used form, but it has been found to perform poorly with sample 

sizes less than 250 (Long & Ervin, 2000). Later variations of HCCMs – HC1, HC2, 

and HC3 – were developed to address issues encountered with small sample sizes 

(MacKinnon & White, 1985). In particular, HC3 has been shown to perform well 

when testing for differences between independent slopes under violations of 

homoscedasticity (Hayes & Agler, 2014). 

A more recent variation of HCCM, HC4 (Cribari-Neto, 2004), is especially 

effective in the presence of outliers, and is calculated as follows: 

 

 ( )
( )

( )

− −
 

  =
 − 

2
1 1

HC4 diag
1 i

i

ii

e

h
X X X X X   (3) 

 

where X is an N × (p + 1) model matrix of N observations with p predictors that 

also includes a leading column vector of 1s, ei is the ith residual (an estimate of the 

ith population error, εi), hii is the ith leverage, and δi = min{4, Nhii / (p + 1)}. HC4 

and other HCCMs are used for calculating standard errors. Thus, for the test statistic, 

the estimated slopes remain the same (i.e., OLS-based estimates). However, the 
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standard errors [i.e., square root of the diag(HC4)] will differ from those found 

using OLS estimation. Based on simulation research, HC4 performs the best 

compared to existing HCCMs in terms of control over Type I error rates and 

statistical power (Ng & Wilcox, 2009, 2011). Thus, HCCMs like HC4 might be 

expected to perform well across a broad range of heteroscedastic models relative to 

other alternative procedures because the form of heteroscedasticity need not be 

known when using HC4. Hereinafter, HC4 regression refers to an OLS regression 

where the covariance matrix among the estimated regression coefficients is based 

on equation (3). 

The Present Study 

To build on extant research, the present study evaluated both Type I error (i.e., size) 

and power of three tests on the difference between two independent slopes – OLS 

regression, WLS regression, and HC4 regression – using two preliminary tests for 

homoscedasticity – Levene’s test and the score test. Previous research has thus far 

established that preliminary tests for homoscedasticity fail to improve Type I error 

rates for tests of mean differences (Hayes & Cai, 2007; Rasch et al., 2011; 

Zimmerman, 2004) and non-independent slope differences (Ng & Wilcox, 2011). 

This study uniquely examined whether commonly used tests for the equality of 

independent slopes (cf. Aguinis et al., 2005) are affected by the conditional use of 

statistical tests, and further examined the conditional statistical power of tests for 

slope differences. 

Additionally, in the present study, the two general procedures (WLS 

regression and HC4 regression) were conducted both conditionally – i.e., the choice 

to use a general procedure instead of conventional OLS regression was based on 

the results of each of the diagnostic tests for homoscedasticity – and 

unconditionally – i.e., the general procedure was used in all cases, without any 

diagnostic test for homoscedasticity. Conducting particular statistical tests 

conditional on the results of a preliminary test of homoscedasticity is consistent 

with data analysis recommendations typically found in statistics textbooks (Fox, 

2008; King, Rosopa, & Minium, 2010), and likely mirrors the data-analytic 

decision-making process in practice. Furthermore, while previous studies focused 

on conditional and unconditional Type I error rates (Hayes & Cai, 2007; Ng & 

Wilcox, 2011; Rasch et al., 2011; Zimmerman, 2004), given the importance of 

statistical power in designing research studies (Cohen, 1988; Liu, 2014; Shadish, 

Cook, & Campbell, 2002), the present study also examined the empirical power of 

these tests (for an exception, see Rasch et al.’s (2011) study of tests on mean 
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differences). Thus, our simulation estimated conditional and unconditional Type I 

error rates as well as conditional and unconditional power for tests of independent 

slope differences. 

Methodology 

A Monte Carlo simulation was conducted in R (R Core Team, 2012) involving two 

independent groups to evaluate the performance of several inferential tests of slope 

differences under various conditions including heteroscedasticity. A 

6 (N) × 5 (n1:n2) × 8 (heteroscedasticity) × 2 (pairing type) × 7 (effect size) 

research design was used, resulting in 3,360 conditions. The nominal Type I error 

rate for all tests (including the tests for homoscedasticity) was .05. 

Below, the manipulated variables in our simulation are described. To 

maximize the utility of our simulation, we selected levels of the manipulated 

variables that we felt mimicked prototypical conditions that might be encountered 

in the behavioral and social sciences. 

Manipulated Variables 

Total Sample Size 

Six levels of N (i.e., total sample size) were used in the present study: 30, 60, 120, 

180, 240, and 300. These values have been used in previous research (DeShon & 

Alexander, 1996) and bracket typical Ns encountered in the behavioral (Aguinis et 

al., 2005; Butler, Chapman, Forman, & Beck, 2006; Shen et al., 2011) and social 

sciences (Wallander, 2009). 

Subgroup Sample Size 

Unequal subgroup sample sizes are not uncommon. For example, attrition can result 

in unbalanced groups (Shadish et al., 2002). In test validation, there may exist 

unequal subgroups across a focal characteristic of interest (e.g., gender or race; see 

Hattrup & Schmitt, 1990; Hunter, Schmidt, & Hunter, 1979). Thus, the size of 

groups within samples was manipulated to include five ratios of n1:n2: (a) 1:1, 

(b) 1:2, (c) 1:3, (d) 1:4, and (e) 1:5. For example, when N = 120, the two 

independent subgroup sample sizes (based on the five ratios) were (a) n1 = n2 = 60, 

(b) n1 = 40 and n2 = 80, (c) n1 = 30 and n2 = 90, (d) n1 = 24 and n2 = 96, and 

(e) n1 = 20 and n2 = 100. 
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Between-Groups Heteroscedasticity 

Between-groups heteroscedasticity assumed eight levels, which was defined as the 

ratio of the population error variance in group 2 to group 1. The ratios of population 

error variances were (a) 1:1, (b) 1.25:1, (c) 1.5:1, (d) 1.75:1, (e) 2:1, (f) 2.5:1, (g) 3:1, 

and (h) 4:1. The 1:1 ratio represents homoscedasticity, as the error variance 

between the two independent groups was equal. 

Type of Pairing 

When error variance and subgroup sample sizes are indirectly paired (i.e., largest 
2

j  paired with the smallest nj), tests for slope differences can show erroneous 

Type I error rates or reduced statistical power (DeShon & Alexander, 1996; Ng & 

Wilcox, 2010; Overton, 2001; Shieh, 2009). As such, we manipulated indirect and 

direct pairing to thoroughly assess the Type I error and power of these tests. We 

manipulated the combinations of subgroup sample sizes and error variances to 

include both indirect pairing and direct pairing (i.e., largest 
2

j  paired with the 

largest nj; see DeShon & Alexander, 1996; Overton, 2001; Zimmerman, 2004). 

Effect Size 

Effect size was also manipulated in this study. We used the modified effect size f 2 

by Aguinis et al. (2005). Based on the effect size formulae, the Solver function in 

Microsoft Excel was used to solve for the slope of the second independent group 

that corresponded to a given effect size (i.e., f 2). The slope of one group (viz., group 

1) remained fixed (see also Data Generation below). Although Cohen (1977) 

established f 2 = .02 as a small effect, Aguinis et al.’s (2005) 30-year review of 

research involving slope differences with a categorical moderator in applied 

psychology identified a median effect size of .002. Therefore, in addition to 

bracketing Cohen’s guideline for a small effect, effect size was manipulated to 

bracket this median value and included seven levels, with 

f 2 = 0, .001, .002, .005, .01, .02, and .03. 

Data Generation 

For x and y, n1 pairs of random numbers were generated from a bivariate normal 

distribution where (a) the population means were equal to 0, (b) the population 

variance of x was equal to 1.5, (c) the population slope for group 1 (β1) was equal 

to 0.5, and (d) the population error variance for group 1 was equal to 1. With these 

values fixed, the population correlation between x and y in group 1, and the 



ROSOPA ET AL 

11 

population variance of y in group 1 were determined. Similarly, for group 2, n2 pairs 

of random numbers were generated from a bivariate normal distribution where (a) 

the population means were equal to 0, (b) the population variance of x was equal to 

1.5, and (c) the population error variance equaled one of the eight values ranging 

from 1 (i.e., homoscedastic) to 4. Using the Solver function in Microsoft Excel, we 

calculated the population slope for group 2 that corresponded to one of the 

manipulated effect sizes. With these values fixed, the population correlation 

between x and y in group 2, and the population variance of y in group 2 were 

determined. 

After the data were generated for each condition, seven procedures for testing 

for differences between independent slopes were conducted. All tests – OLS, WLS, 

and HC4 regression – were first conducted unconditionally; that is, these three 

procedures were each conducted without considering preliminary tests for 

homoscedasticity. Four additional procedures were conducted conditionally; that is, 

the use of the two general solutions – WLS regression and HC4 regression – was 

decided based on results of each of the two preliminary tests for homoscedasticity. 

For example, if Levene’s test was nonsignificant – suggesting homoscedasticity – 

then the conventional procedure, OLS regression, was used. If Levene’s test was 

statistically significant – suggesting heteroscedasticity – then a general procedure 

was used. All possible combinations of preliminary tests (i.e., Levene’s and the 

score test) and the general tests (i.e., WLS regression and HC4 regression) were 

conducted in this manner, resulting in four additional procedures: (a) WLS 

regression conditional on Levene’s test, (b) WLS regression conditional on the 

score test, (c) HC4 regression conditional on Levene’s test, and (d) HC4 regression 

conditional on the score test. 

Number of Replications 

For each condition, 5,000 replications were conducted, and the number of rejections 

of the null hypothesis out of the 5,000 replications was recorded. For conditions 

where the true effect size (f 2) was zero, the proportion of times out of the 5,000 

replications that the null hypothesis was rejected provided an estimate of Type I 

error; for conditions where f 2 was not zero, this proportion provided an estimate of 

statistical power. Note that in addition to multiple checks of the accuracy of our 

data generation method, our results for unconditional tests involving OLS 

regression were found to be comparable to similar conditions examined in DeShon 

and Alexander’s (1996) study. 
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Results 

The number of times out of the 5,000 replications that each test rejected the null 

hypothesis was recorded for all 3,360 conditions, resulting in estimates of Type I 

error and statistical power. Due to space limitations, a representative subset of the 

results is presented here. The complete set of results and R code can be obtained 

from the first and second authors. 

Type I Error Rate 

Empirical Type I error rates for tests of slope differences are reported in Tables 1 

and 2. As shown in Table 1, when N = 60, 120, and 240 and when subgroup sample 

sizes were equal, all seven procedures resulted in empirical rejection rates within 

Serlin’s (2000) criterion for robustness. 

As shown in Table 2 (N = 120), when subgroup sample sizes were unequal, 

the Type I error rate for all tests except for unconditional OLS regression fell within 

the acceptable range of Type I error rates. For example, in Table 2, when 

heteroscedasticity was directly paired, the empirical Type I error rates for 

unconditional OLS regression ranged between .0032 and .0224, much less than the 

nominal Type I error rate. Moreover, in the same table, when heteroscedasticity 

was indirectly paired, the empirical Type I error rates for unconditional OLS 

regression ranged between .0766 and .1944, much greater than the nominal Type I 

error rate. Thus, when heteroscedasticity was directly paired or indirectly paired, 

unconditional OLS regression showed conservative or inflated Type I error rates, 

respectively, which became increasingly conservative or inflated as the n1:n2 ratio 

became more disproportionate. Compared to the unconditional use of WLS 

regression and HC4 regression, the conditional use of these procedures (i.e., when 

choice of a test was contingent on the satisfaction of the homoscedasticity 

assumption) did not show improved control over Type I error rates in any condition. 

That is, both unconditional WLS regression and unconditional HC4 regression 

were generally very stable in controlling Type I error rates. 

Statistical Power 

Empirical statistical power estimates for tests of slope differences are reported in 

Tables 3 and 4. As shown in Table 3, when N = 60, 120, and 240 and when 

subgroup sample sizes were equal, all tests showed comparable statistical power 

within conditions and as N increased, the power of all tests increased. 
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Table 1. Type I error when testing for slope differences with equal subgroup sample sizes (i.e., n1 = n2) 
 

Heteroscedasticity N 
Unconditional 

OLS 
Unconditional 

WLS 
Unconditional 

HC4 

WLS 
conditional 

on score test 

WLS 
conditional on 
Levene's test 

HC4 
conditional 

on score test 

HC4 
conditional on 
Levene's test 

Small (2:1) 60 0.0508 0.0498 0.0478 0.0502 0.0502 0.0518 0.0502 

 120 0.0512 0.0510 0.0514 0.0514 0.0510 0.0528 0.0522 

 240 0.0550 0.0550 0.0508 0.0550 0.0552 0.0512 0.0518 

 
        

Large (4:1) 60 0.0500 0.0512 0.0494 0.0516 0.0514 0.0504 0.0494 

 120 0.0534 0.0524 0.0478 0.0524 0.0524 0.0478 0.0478 

 240 0.0476 0.0492 0.0488 0.0492 0.0492 0.0488 0.0488 
 

Note: N = total sample size 

 
 
Table 2. Type I error when testing for slope differences with unequal subgroup sample sizes (i.e., n1 ≠ n2) 
 

Heteroscedasticity Pairing 
n1:n2 
ratio 

Unconditional 
OLS 

Unconditional 
WLS 

Unconditional 
HC4 

WLS cond. 
on score 

WLS cond. 
on Levene 

HC4 cond. 
on score 

HC4 cond. 
on Levene 

Small (2:1) Direct 1:2 0.0224 0.0482 0.0448 0.0430 0.0402 0.0408 0.0386 
  1:3 0.0222 0.0546 0.0488 0.0470 0.0452 0.0430 0.0420 
  1:4 0.0192 0.0562 0.0516 0.0440 0.0452 0.0416 0.0422 

  1:5 0.0146 0.0614 0.0564 0.0440 0.0478 0.0396 0.0436 

          
 Indirect 1:2 0.0766 0.0510 0.0510 0.0538 0.0574 0.0550 0.0592 
  1:3 0.1002 0.0538 0.0538 0.0654 0.0702 0.0660 0.0704 
  1:4 0.1166 0.0606 0.0546 0.0750 0.0830 0.0736 0.0812 

  1:5 0.1210 0.0604 0.0590 0.0808 0.0894 0.0804 0.0876 

          

Large (4:1) Direct 1:2 0.0160 0.0490 0.0472 0.0490 0.0490 0.0472 0.0472 
  1:3 0.0072 0.0484 0.0464 0.0484 0.0484 0.0464 0.0464 
  1:4 0.0048 0.0522 0.0440 0.0520 0.0514 0.0438 0.0434 

  1:5 0.0032 0.0578 0.0500 0.0562 0.0562 0.0486 0.0484 
 

Note: N = 120; n1 = sample size in group 1, n2 = sample size in group 2 
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Table 2 (continued). 
 

Heteroscedasticity Pairing 
n1:n2 
ratio 

Unconditional 
OLS 

Unconditional 
WLS 

Unconditional 
HC4 

WLS cond. 
on score 

WLS cond. 
on Levene 

HC4 cond. 
on score 

HC4 cond. 
on Levene 

Large (4:1) Indirect 1:2 0.1094 0.0544 0.0518 0.0544 0.0544 0.0518 0.0518 
  1:3 0.1536 0.0546 0.0586 0.0550 0.0564 0.0590 0.0598 
  1:4 0.1800 0.0568 0.0536 0.0580 0.0604 0.0546 0.0576 

  1:5 0.1944 0.0656 0.0586 0.0684 0.0712 0.0622 0.0660 
 

Note: N = 120; n1 = sample size in group 1, n2 = sample size in group 2 

 
 
Table 3. Power when testing for slope differences with equal subgroup sample sizes (i.e., n1 = n2) 
 

N Heteroscedasticity f 2 
Unconditional 

OLS 
Unconditional 

WLS 
Unconditional 

HC4 
WLS cond. 

on score 
WLS cond. 
on Levene 

HC4 cond. 
on score 

HC4 cond. 
on Levene 

60 Small (2:1) 0.001 0.0682 0.0672 0.0616 0.0674 0.0676 0.0680 0.0682 
  0.002 0.0742 0.0748 0.0640 0.0750 0.0746 0.0710 0.0716 
  0.005 0.1170 0.1168 0.1058 0.1158 0.1158 0.1102 0.1110 
  0.010 0.1952 0.1966 0.1734 0.1970 0.1966 0.1856 0.1876 
  0.020 0.3328 0.3356 0.2952 0.3340 0.3342 0.3180 0.3212 

  0.030 0.4582 0.4570 0.4128 0.4576 0.4570 0.4370 0.4408 

          
 Large (4:1) 0.001 0.0672 0.0688 0.0648 0.0688 0.0690 0.0652 0.0656 
  0.002 0.0740 0.0756 0.0712 0.0758 0.0752 0.0708 0.0702 
  0.005 0.1274 0.1248 0.1176 0.1252 0.1250 0.1184 0.1176 
  0.010 0.1944 0.1974 0.1790 0.1976 0.1978 0.1808 0.1826 
  0.020 0.3350 0.3398 0.3074 0.3404 0.3406 0.3092 0.3096 

  0.030 0.4668 0.4676 0.4288 0.4678 0.4670 0.4318 0.4344 
 

Note: N = total sample size; f 2 = effect size 
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Table 3 (continued). 
 

N Heteroscedasticity f 2 
Unconditional 

OLS 
Unconditional 

WLS 
Unconditional 

HC4 
WLS cond. 

on score 
WLS cond. 
on Levene 

HC4 cond. 
on score 

HC4 cond. 
on Levene 

120 Small (2:1) 0.001 0.0858 0.0856 0.0808 0.0856 0.0852 0.0812 0.0822 
  0.002 0.1050 0.1046 0.0970 0.1048 0.1042 0.1002 0.0994 
  0.005 0.2010 0.2008 0.1916 0.2008 0.2010 0.1922 0.1948 
  0.010 0.3524 0.3516 0.3350 0.3524 0.3526 0.3386 0.3386 
  0.020 0.6170 0.6194 0.5928 0.6186 0.6186 0.5984 0.5998 

  0.030 0.7798 0.7812 0.7580 0.7814 0.7816 0.7614 0.7624 

          
 Large (4:1) 0.001 0.0776 0.0804 0.0774 0.0804 0.0804 0.0774 0.0774 
  0.002 0.1110 0.1096 0.1024 0.1096 0.1096 0.1024 0.1024 
  0.005 0.2066 0.2102 0.1982 0.2102 0.2102 0.1982 0.1982 
  0.010 0.3478 0.3504 0.3332 0.3504 0.3504 0.3332 0.3332 
  0.020 0.6110 0.6116 0.5940 0.6116 0.6116 0.5940 0.5940 

  0.030 0.7812 0.7830 0.7628 0.7830 0.7832 0.7628 0.7628 

          

240 Small (2:1) 0.001 0.0858 0.0856 0.0808 0.0856 0.0852 0.0812 0.0822 
  0.002 0.1050 0.1046 0.0970 0.1048 0.1042 0.1002 0.0994 
  0.005 0.2010 0.2008 0.1916 0.2008 0.2010 0.1922 0.1948 
  0.010 0.3524 0.3516 0.3350 0.3524 0.3526 0.3386 0.3386 
  0.020 0.6170 0.6194 0.5928 0.6186 0.6186 0.5984 0.5998 

  0.030 0.7798 0.7812 0.7580 0.7814 0.7816 0.7614 0.7624 

          
 Large (4:1) 0.001 0.0776 0.0804 0.0774 0.0804 0.0804 0.0774 0.0774 
  0.002 0.1110 0.1096 0.1024 0.1096 0.1096 0.1024 0.1024 
  0.005 0.2066 0.2102 0.1982 0.2102 0.2102 0.1982 0.1982 
  0.010 0.3478 0.3504 0.3332 0.3504 0.3504 0.3332 0.3332 
  0.020 0.6110 0.6116 0.5940 0.6116 0.6116 0.5940 0.5940 

  0.030 0.7812 0.7830 0.7628 0.7830 0.7832 0.7628 0.7628 
 

Note: N = total sample size; f 2 = effect size 
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Table 4. Power when testing for slope differences with unequal subgroup sample sizes (i.e., n1 ≠ n2) 
 

Heteroscedasticity Pairing 
n1:n2 
ratio f 2 

Uncond. 
OLS 

Uncond. 
WLS 

Uncond. 
HC4 

WLS cond. 
on score 

WLS cond. 
on Levene 

HC4 cond. 
on score 

HC4 cond. 
on Levene 

Small (2:1) Direct 1:2 0.001 0.0508 0.0870 0.0848 0.0794 0.0788 0.0784 0.0770 
  1:2 0.002 0.0848 0.1308 0.1182 0.1206 0.1186 0.1126 0.1126 
  1:2 0.005 0.1772 0.2476 0.2246 0.2346 0.2294 0.2210 0.2188 
  1:2 0.010 0.3378 0.4272 0.4040 0.4106 0.4054 0.3960 0.3922 
  1:2 0.020 0.6170 0.7054 0.6790 0.6888 0.6840 0.6706 0.6672 

  1:2 0.030 0.7986 0.8614 0.8396 0.8486 0.8456 0.8356 0.8340 

           
 Indirect 1:2 0.001 0.1074 0.0742 0.0714 0.0800 0.0824 0.0784 0.0794 
  1:2 0.002 0.1344 0.0908 0.0832 0.0984 0.1030 0.0932 0.0992 
  1:2 0.005 0.2358 0.1802 0.1670 0.1884 0.1948 0.1806 0.1858 
  1:2 0.010 0.3794 0.2972 0.2842 0.3086 0.3200 0.3014 0.3108 
  1:2 0.020 0.5994 0.5180 0.4942 0.5308 0.5370 0.5126 0.5218 

  1:2 0.030 0.7544 0.6844 0.6476 0.6954 0.7014 0.6684 0.6794 

           
 Direct 1:3 0.001 0.0394 0.0856 0.0798 0.0730 0.0738 0.0704 0.0702 
  1:3 0.002 0.0598 0.1274 0.1166 0.1092 0.1084 0.1022 0.1016 
  1:3 0.005 0.1700 0.2678 0.2488 0.2426 0.2386 0.2308 0.2282 
  1:3 0.010 0.3220 0.4664 0.4308 0.4228 0.4214 0.4050 0.4054 
  1:3 0.020 0.6200 0.7454 0.7106 0.7110 0.7088 0.6908 0.6892 

  1:3 0.030 0.8006 0.8884 0.8646 0.8612 0.8620 0.8500 0.8510 

           
 Indirect 1:3 0.001 0.1224 0.0744 0.0680 0.0854 0.0922 0.0810 0.0882 
  1:3 0.002 0.1632 0.0986 0.0936 0.1110 0.1188 0.1098 0.1176 
  1:3 0.005 0.2442 0.1612 0.1508 0.1768 0.1902 0.1738 0.1874 
  1:3 0.010 0.3824 0.2848 0.2574 0.3000 0.3106 0.2848 0.2992 
  1:3 0.020 0.5876 0.4750 0.4406 0.4966 0.5088 0.4744 0.4902 

  1:3 0.030 0.7266 0.6316 0.5842 0.6500 0.6624 0.6190 0.6344 
 

Note: N = 120; n1 = sample size in group 1, n2 = sample size in group 2, f 2 = effect size 
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Table 4 (continued). 
 

Heteroscedasticity Pairing 
n1:n2 
ratio f 2 

Uncond. 
OLS 

Uncond. 
WLS 

Uncond. 
HC4 

WLS cond. 
on score 

WLS cond. 
on Levene 

HC4 cond. 
on score 

HC4 cond. 
on Levene 

Small (2:1) Direct 1:4 0.001 0.0342 0.0960 0.0864 0.0738 0.0740 0.0690 0.0696 
  1:4 0.002 0.0646 0.1558 0.1384 0.1208 0.1212 0.1102 0.1108 
  1:4 0.005 0.1502 0.2864 0.2564 0.2296 0.2348 0.2166 0.2216 
  1:4 0.010 0.3216 0.4920 0.4438 0.4210 0.4196 0.3996 0.4036 
  1:4 0.020 0.6190 0.7760 0.7274 0.7104 0.7162 0.6912 0.6976 

  1:4 0.030 0.8112 0.9074 0.8720 0.8690 0.8722 0.8560 0.8570 

           
 Indirect 1:4 0.001 0.1390 0.0792 0.0738 0.0922 0.1014 0.0908 0.0998 
  1:4 0.002 0.1754 0.1074 0.1004 0.1238 0.1330 0.1222 0.1302 
  1:4 0.005 0.2590 0.1670 0.1484 0.1880 0.2010 0.1790 0.1932 
  1:4 0.010 0.3830 0.2692 0.2416 0.2944 0.3122 0.2818 0.2986 
  1:4 0.020 0.5932 0.4714 0.4230 0.4928 0.5078 0.4674 0.4868 

  1:4 0.030 0.7270 0.5990 0.5406 0.6220 0.6414 0.5892 0.6106 

           
 Direct 1:5 0.001 0.0386 0.1112 0.0992 0.0800 0.0844 0.0740 0.0796 
  1:5 0.002 0.0558 0.1512 0.1324 0.1096 0.1148 0.1008 0.1062 
  1:5 0.005 0.1408 0.2996 0.2654 0.2246 0.2350 0.2080 0.2170 
  1:5 0.010 0.3152 0.5176 0.4612 0.4184 0.4314 0.4032 0.4116 
  1:5 0.020 0.6126 0.7938 0.7300 0.7074 0.7194 0.6902 0.6960 
  1:5 0.030 0.7988 0.9092 0.8678 0.8558 0.8626 0.8460 0.8528 

           
 Indirect 1:5 0.001 0.1510 0.0848 0.0764 0.1048 0.1160 0.1026 0.1136 
  1:5 0.002 0.1808 0.1058 0.1010 0.1300 0.1418 0.1310 0.1404 
  1:5 0.005 0.2594 0.1640 0.1412 0.1898 0.2060 0.1834 0.2010 
  1:5 0.010 0.3854 0.2644 0.2302 0.2966 0.3152 0.2824 0.3030 
  1:5 0.020 0.5794 0.4440 0.3888 0.4780 0.4996 0.4474 0.4724 

  1:5 0.030 0.7328 0.6086 0.5428 0.6336 0.6538 0.5986 0.6244 
 

Note: N = 120; n1 = sample size in group 1, n2 = sample size in group 2, f 2 = effect size 
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Table 4 (continued). 
 

Heteroscedasticity Pairing 
n1:n2 
ratio f 2 

Uncond. 
OLS 

Uncond. 
WLS 

Uncond. 
HC4 

WLS cond. 
on score 

WLS cond. 
on Levene 

HC4 cond. 
on score 

HC4 cond. 
on Levene 

Large (4:1) Direct 1:2 0.001 0.0358 0.0888 0.0812 0.0888 0.0888 0.0812 0.0814 
  1:2 0.002 0.0650 0.1404 0.1300 0.1404 0.1402 0.1298 0.1296 
  1:2 0.005 0.1664 0.2796 0.2620 0.2796 0.2796 0.2620 0.2620 
  1:2 0.010 0.3228 0.4980 0.4732 0.4976 0.4974 0.4728 0.4726 
  1:2 0.020 0.6334 0.7894 0.7680 0.7894 0.7890 0.7680 0.7680 

  1:2 0.030 0.8244 0.9226 0.9090 0.9224 0.9224 0.9088 0.9088 

           
 Indirect 1:2 0.001 0.1428 0.0792 0.0724 0.0792 0.0794 0.0726 0.0728 
  1:2 0.002 0.1664 0.0950 0.0904 0.0952 0.0954 0.0906 0.0908 
  1:2 0.005 0.2522 0.1614 0.1506 0.1614 0.1616 0.1508 0.1510 
  1:2 0.010 0.3932 0.2622 0.2430 0.2624 0.2622 0.2430 0.2436 
  1:2 0.020 0.5850 0.4482 0.4164 0.4482 0.4482 0.4164 0.4166 

  1:2 0.030 0.7422 0.6166 0.5834 0.6166 0.6172 0.5836 0.5838 

           
 Direct 1:3 0.001 0.0218 0.1078 0.0994 0.1074 0.1068 0.0990 0.0986 
  1:3 0.002 0.0436 0.1562 0.1430 0.1554 0.1552 0.1424 0.1426 
  1:3 0.005 0.1216 0.3326 0.3062 0.3318 0.3304 0.3062 0.3046 
  1:3 0.010 0.3022 0.5906 0.5556 0.5898 0.5888 0.5550 0.5544 
  1:3 0.020 0.6376 0.8588 0.8320 0.8582 0.8576 0.8316 0.8312 

  1:3 0.030 0.8344 0.9592 0.9464 0.9592 0.9588 0.9464 0.9466 

           
 Indirect 1:3 0.001 0.1796 0.0766 0.0702 0.0770 0.0784 0.0708 0.0718 
  1:3 0.002 0.1984 0.0856 0.0784 0.0862 0.0876 0.0792 0.0810 
  1:3 0.005 0.2834 0.1302 0.1180 0.1304 0.1322 0.1188 0.1200 
  1:3 0.010 0.3988 0.2266 0.2130 0.2274 0.2282 0.2140 0.2154 
  1:3 0.020 0.5780 0.3660 0.3360 0.3664 0.3676 0.3358 0.3368 

  1:3 0.030 0.7162 0.5314 0.4860 0.5320 0.5342 0.4864 0.4884 
 

Note: N = 120; n1 = sample size in group 1, n2 = sample size in group 2, f 2 = effect size 
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Table 4 (continued). 
 

Heteroscedasticity Pairing 
n1:n2 
ratio f 2 

Uncond. 
OLS 

Uncond. 
WLS 

Uncond. 
HC4 

WLS cond. 
on score 

WLS cond. 
on Levene 

HC4 cond. 
on score 

HC4 cond. 
on Levene 

Large (4:1) Direct 1:4 0.001 0.0174 0.1200 0.1056 0.1186 0.1184 0.1050 0.1050 
  1:4 0.002 0.0340 0.1762 0.1588 0.1744 0.1726 0.1570 0.1560 
  1:4 0.005 0.1196 0.3830 0.3474 0.3806 0.3770 0.3456 0.3430 
  1:4 0.010 0.2938 0.6322 0.5858 0.6286 0.6270 0.5828 0.5830 
  1:4 0.020 0.6318 0.8940 0.8628 0.8916 0.8900 0.8612 0.8600 

  1:4 0.030 0.8442 0.9734 0.9588 0.9716 0.9712 0.9582 0.9580 

           
 Indirect 1:4 0.001 0.2104 0.0764 0.0790 0.0774 0.0798 0.0808 0.0820 
  1:4 0.002 0.2316 0.0896 0.0786 0.0912 0.0934 0.0800 0.0828 
  1:4 0.005 0.2988 0.1320 0.1208 0.1330 0.1366 0.1220 0.1256 
  1:4 0.010 0.4180 0.2176 0.2012 0.2198 0.2232 0.2050 0.2086 
  1:4 0.020 0.5804 0.3506 0.3122 0.3516 0.3548 0.3136 0.3170 

  1:4 0.030 0.6948 0.4640 0.4098 0.4652 0.4676 0.4122 0.4152 

           
 Direct 1:5 0.001 0.0142 0.1264 0.1136 0.1238 0.1236 0.1114 0.1120 
  1:5 0.002 0.0276 0.1984 0.1698 0.1940 0.1934 0.1664 0.1666 
  1:5 0.005 0.1024 0.4000 0.3590 0.3902 0.3886 0.3522 0.3514 
  1:5 0.010 0.2836 0.6820 0.6246 0.6690 0.6698 0.6156 0.6152 
  1:5 0.020 0.6346 0.9144 0.8796 0.9060 0.9056 0.8736 0.8732 
  1:5 0.030 0.8368 0.9784 0.9650 0.9722 0.9726 0.9612 0.9616 

           
 Indirect 1:5 0.001 0.2244 0.0754 0.0754 0.0784 0.0838 0.0788 0.0830 
  1:5 0.002 0.2518 0.0906 0.0790 0.0934 0.0966 0.0828 0.0872 
  1:5 0.005 0.3174 0.1368 0.1200 0.1394 0.1456 0.1232 0.1292 
  1:5 0.010 0.4128 0.1962 0.1794 0.1982 0.2018 0.1816 0.1864 
  1:5 0.020 0.5766 0.3330 0.2914 0.3368 0.3440 0.2966 0.3046 

  1:5 0.030 0.6840 0.4506 0.3876 0.4534 0.4578 0.3926 0.3986 
 

Note: N = 120; n1 = sample size in group 1, n2 = sample size in group 2, f 2 = effect size 
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Table 4 (N = 120) presents empirical power estimates when subgroup sample 

sizes were unequal. When heteroscedasticity was directly paired, WLS regression 

had the greatest statistical power. Although conditional WLS regression and 

conditional HC4 regression had greater statistical power than OLS regression, 

unconditional WLS regression provided the greatest statistical power. 

When heteroscedasticity was indirectly paired, OLS regression showed the 

greatest statistical power. However, it is important to note that for these similar 

conditions the Type I error rate of OLS regression was very inflated (see Table 2). 

Thus, the increased power of OLS regression comes at the expense of very inflated 

Type I error rates in these conditions. Notably, the power of OLS regression in 

these conditions was only slightly higher than that of WLS regression and HC4 

regression. However, recall that WLS regression and HC4 regression were better 

able to control Type I error rates at the nominal level (see comparable conditions 

in Table 2). In addition, conditional WLS regression and conditional HC4 

regression did not improve statistical power in any condition when compared to 

unconditional WLS regression and unconditional HC4 regression. 

Conclusion 

Researchers have recommended that the procedure of preliminary tests for 

homoscedasticity be abandoned when testing mean differences and non-

independent slope differences, in favor of more general solutions that are robust in 

the presence of heteroscedasticity (Sawilowsky, 2002; Zimmerman, 2004). We 

expanded and further supported this recommendation by investigating the impact 

of abandoning this assumption when testing for independent slope differences, and 

by examining effects of this recommendation on statistical power. By evaluating 

the conditional and unconditional Type I error rates and statistical power of 

particular tests of slope differences under various conditions, our results may 

provide guidance for researchers and practitioners. 

Although power does increase with effect size and N, when subgroup sample 

sizes were equal, all tests performed equally well when testing for independent 

slope differences. When subgroup sample sizes were unequal, all tests except for 

the conventional procedure (i.e., OLS regression) performed equally well. 

Regardless of whether subgroup sample sizes are equal or not, with the conditional 

use of statistics based on results of tests for homoscedasticity, there were no 

incremental improvements in controlling Type I error and there were no 

incremental increases in power. However, regarding the two diagnostic tests for 

detecting heteroscedasticity (i.e., score test and Levene’s test), although WLS 
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regression and HC4 regression did not necessarily perform better when using the 

score test vs. Levene’s test, it deserves noting that the conditional WLS regression 

tended to have greater power when compared to the conditional HC4 regression. 

Overall, the results of our statistical simulation suggest that when testing the 

equality of independent slopes, researchers and practitioners should 

(unconditionally) use general statistical procedures such as WLS regression and 

HC4 regression. 

The present study may support the use of conventional OLS regression under 

some exploratory conditions: our results indicate that conventional tests may result 

in increased statistical power when effect sizes are small and heteroscedasticity is 

indirectly paired. However, this increased power is available at the cost of inflated 

Type I error rates. On the other hand, researchers and practitioners may opt for the 

use of general procedures (e.g., HC4 regression) that – despite slightly lower 

statistical power (typically, in the hundredth or thousandth decimal place when 

sample sizes are relatively large) in the presence of indirectly paired 

heteroscedasticity – result in more accurate Type I error rates. 

It is important to note that we do not argue that our simulation study has 

examined all conceivable conditions that might be encountered in practice. For 

example, our simulation study did not include manipulated effect sizes that would 

be considered large (Cohen, 1988). Because power curves asymptote as effect size 

increases, especially as N increases, power curves can overlap considerably and 

examining relative power at such large effect sizes may not provide much practical 

value. For example, when f 2 = .03, N = 180, n1 = n2, and the ratio of population 

error variances was 4:1, the power of the various procedures we examined ranged 

between .915 and .924. For this condition, had we included a manipulated f 2 = .25 

(medium effect size according to Cohen, 1988), power would have equaled 1.0 for 

all procedures. Because our conditions were designed to represent and bracket 

circumstances typical in behavioral and social science research, we feel that our 

findings provide a framework relevant to a variety of conditions likely to mirror 

those encountered in practice (e.g., comparing two independent groups, small effect 

sizes and effects sizes near the median). 

To facilitate the use of statistical procedures by researchers and practitioners, 

it can be useful if such procedures are readily accessible and are user friendly. Both 

WLS regression and HC4 regression procedures can be easily implemented in a 

number of statistical analysis programs that are commonly used in the behavioral 

and social sciences (Rosopa et al., 2013). More specifically, WLS regression can 

be implemented in SPSS, SAS, R, STATA, and SYSTAT. At the time of this 

writing, HC4 regression can be implemented in all of the same programs except for 
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SYSTAT and STATA. Additionally, in SPSS and SAS, the PROCESS macro 

(Hayes, 2013) can conduct tests for slope differences in moderated multiple 

regression using the HC4 estimator, and the RLM macro (Darlington & Hayes, 

2017) can implement the HC4 for several types of regression analyses. Therefore, 

both WLS regression and HC4 regression are accessible to researchers using a 

variety of common statistical programs and packages. 

In conclusion, the present study extends support for abandoning the process 

of conducting preliminary tests of homoscedasticity. Our results provide support 

for this paradigm shift when testing for independent slope differences, and with 

regard to not only Type I error rates but also statistical power. Consistent with 

recommendations for tests on mean differences by Sawilowsky (2002) and 

Zimmerman (2004), our results suggest that preliminary tests for homoscedasticity 

when testing for slope differences may not be necessary when using a general 

procedure (e.g., HC4 regression). Therefore, under most research and practice 

applications, we recommend the unconditional use of a general procedure (e.g., 

WLS regression or HC4 regression for slope differences) examined here. Results 

of this study highlight the importance of adequate research design execution and 

analysis, such as maintaining equal subgroup sample sizes when possible and 

understanding the type of heteroscedasticity pairing when selecting a statistic to test 

for slope differences. 
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