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Reduce Estimation Bias 
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The purpose of this study was to show how and why the Rasch model can be fitted under 

the logistic regression framework. Then a penalized maximum likelihood (Firth, 1993) for 

logistic regression models can be used to reduce ML biases when fitting the Rasch model. 

These conclusions are supported by a simulation study. 

 

Keywords: The Rasch model, logistic regression, maximum likelihood, penalized 

maximum likelihood 

 

Introduction 

The Rasch model (Rasch, 1960) has been widely used in psychological and 

educational assessments. Those who know the binary logistic regression and the 

Rasch models might notice the similarity between them, i.e. both have the 

mathematical expression of the logit or logistic function. Accordingly, Wright 

(1993) used a Rasch model to do logistic regression for discrete-time survival 

analysis. Uekawa (2005) further used an example to show that the parameters of a 

binary logistic regression and the Rasch models are one-to-one correspondent. 

However, those studies identified only the similarity of model expressions between 

the logistic regression and the Rasch models, and did not show whether they are 

equivalent or how to make them equivalent. 

Kamata (1998, 2001) first connected the standard Rasch model with a special 

multilevel logistic regression model, and found that they also have similar 

mathematical expressions. However, person ability is fixed in the Rasch model but 
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is random in the multilevel model (Kamata, 1998, 2001; De Boeck & Wilson, 2004). 

Thus the multilevel logistic regression and the Rasch models are not equivalent. 

Skrondal and Rabe-Hesketh (2004) argued that the Rasch model is a special 

case of the fixed-effect logistic regression under the conditional maximum 

likelihood. However, the logistic regression models are usually fitted using the 

maximum likelihood (ML). 

This article will discuss the relationship between the logistic regression and 

the Rasch model under ML. In the following sections, the article will first illustrate 

how and why the standard Rasch model is equivalent to a special logistic regression 

model under ML. Then, because the penalized maximum likelihood (PML) can 

reduce the ML bias of fitting logistic regression models (Firth, 1993), it may be 

applied directly to reduce the ML bias of fitting the Rasch model. Lastly, a 

simulation study is used to show that the logistic regression and the Rasch model 

software gives comparable parameter estimates using ML, and Firth’s PML can 

reduce ML bias in the estimation of the Rasch model. 

Equivalence between the Rasch Model and Logistic 
Regression 

Suppose I persons take J dichotomous-scored items in a test, and a standard Rasch 

model is used to estimate item and person parameters; the model will then be 

specified as follows: 
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where yij is the score of person i on item j, person parameter θi is the ability of 

person i, item parameter bj is the difficulty of item j, i = 1,…, I, and j = 1,…, J. The 

equation can be rearranged as 
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If I + J dummy variables are used to indicate the scores of different persons 

on different items, the following logistic regression model can fit the scores of all 

persons on all items: 
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where x1n = 1 if n = i,, x2m = 1 if m = j, and are otherwise 0, and β1n and β2m are, 

respectively, the coefficients of person and item variables. So for any given i and j, 

Σnβ1nx1n + Σmβ2mx2m = β1i + β2j. Then 
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By comparing equation (1) with (3), coefficients β1i and β2j in the logistic regression 

model are found to be respectively correspondent to parameters θi and –bj in the 

Rasch model. 

Therefore a one-to-one correspondence holds between the parameters of the 

two models. How about their parameter estimates? Usually ML is used to estimate 

logistic regression models. Wright and collaborators (e.g., Wright & Douglas, 

1977; Wright & Panchapakesan, 1969; Wright & Stone, 1979) described how to 

use ML to fit the Rasch model, which is implemented in WINSTEPS (Linacre, 

2008). Because they have one-to-one correspondent parameters, ML should not 

give meaningfully different estimates for them. 

To estimate the logistic regression model shown by equation (2) using ML, a 

likelihood or score equation is given as follows (Agresti, 2002): 

 

 ( ) ( ) ,

,

g 0k ij ij k ij

i j

y x = − =   (4) 

 

where πij = Pr(yij = 1) and k = 11, 12,…, 1I, 21, 22,…, 2J. The first digits 1 and 2 

are used to differentiate the person and item parameters, respectively. Then for the 

person coefficients, 
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because all independent variables are dummy variables. By the same way, for the 

item coefficients, 
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Namely, parameter estimates are the solutions of the following equations: 
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The first terms of the equations are actually the total of observed scores of a 

person and an item, respectively, and the second ones are the expected person or 

item scores under the Rasch framework. 

According to Wright and collaborators (Wright & Douglas, 1977; Wright & 

Stone, 1979), parameter estimates of the Rasch model are solutions of the following 

equations: 
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where rn is the total of scores person n obtains on all items and tm is the total of 

scores all persons obtain on item m. Using the notations of equation (7), rn = Σjynj 

and tm = Σiyim. Therefore the logistic regression model specified above and the 

Rasch model have the same ML score equations. 

However, the model specified in equation (2) can be fitted only with some 

constraint. In the Rasch model or WINSTEPS, a sum-to-zero constraint is imposed 

on item parameters, i.e., Σjβj = 0 (Wright & Douglas, 1977; Wright & Stone, 1979). 

If the same constraint is imposed on equation (2), then 
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Substituting the above equation into equation (2), and the following equation is 

obtained: 
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So 
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Let zm,ij = x2m,ij – x2J,ij. As x2m,ij = 1 if m = j as noted before, x2J,ij = 1 only if j = J. 

Thus zm,ij = 1 if m = j; zm,ij = −1 if j = J. The above equation can then be 

reformulated as follows: 

 

 
( )
( )

1

1 1 , 2 ,

1 1

Pr 1
log

1 Pr 1

I J
ij

n n ij m m ij

n mij

y
x z

y
 

−

= =

=
= +

− =
    (12) 

 

where x1n,ij = 1 if n = i, zm,ij = 1 if m = j, and zm,ij = −1 if j = J; otherwise they are 0. 

These coded z variables for items have values 1, 0, and −1. This is called effect 

coding and imposes a sum-to-zero constraint on the model coefficients (Rutherford, 

2001). Equation (12) has I dummy variables for persons but J − 1 effect-coded 

variables for items. The coefficient or parameter of the last item can be obtained 

through the sum-to-zero constraint, i.e., equation (9). 

First, after the last item parameter is obtained, the logistic regression model, 

shown by equation (12), has parameters for all persons and items which are in one-

to-one correspondence with the parameters in a standard Rasch model. Second, the 

two models have the same ML score equations as discussed before. Third, by the 

effect-coded item variables, a sum-to-zero constraint is imposed on item parameters 

of equation (12). Therefore the Rasch model is equivalent to this special logistic 

regression model shown by equation (12) under ML. Their parameter estimates 

should be very similar except for the signs of item parameter estimates because β2j 

corresponds to –bj as previously noted. If equation (12) is then specified in the 

logistic regression computer programs, e.g., SAS LOGISTIC procedure (SAS 

Institute, 2011a, 2011b) and SPSS LOGISTIC REGRESSION command (SPSS 

Inc., 2005), the results should be comparable with WINSTEPS’s except for the 

signs of item parameters. 
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Reducing ML Bias 

When ML is applied in item response theory (IRT) (Lord, 1980), it is also called 

the joint maximum likelihood (JML). “Joint” means the method estimates person 

and item parameters simultaneously (Drasgow, 1989). The method for the Rasch 

model proposed by Wright and collaborators (Wright & Douglas, 1977; Wright & 

Stone, 1979) can also be called JML. But JML is specially used for IRT models. It 

has some slight differences from the regular ML. For example, the computation 

algorithm in JML proposed by Wright and collaborators is slightly different from 

what is used in the regular ML fitting the logistic regression models. They used 

different initial values and approaches to satisfy the sum-to-zero constraint. 

However, related research has shown that JML or ML estimates are 

inconsistent (Ghosh, 1995; Wright & Douglas, 1977), i.e., they are biased, and the 

biases cannot be eliminated when the sample size increases. Wright and Douglas 

(1977) provided a corrective approach, i.e., JML estimates are multiplied by 

(L – 1) / L, where L is the smaller of the average person or item response count. 

However, the correction appears to contain puzzling assumptions and to rest on 

inadequate logic (Jansen, van den Wollenberg, & Wierda, 1988). Corrective 

approaches also generally require the existence of a finite estimate or they may 

reduce bias only in an asymptotic sense (Firth, 1993). Firth then suggested using 

PML to reduce ML bias preventively when fitting the logistic regression models. If 

the Rasch model can be estimated under the logistic regression framework, it can 

also reduce the ML bias of fitting the Rasch model. 

PML has been earlier applied in IRT. Wang and Wang (2001) showed that a 

weighted likelihood estimation of person parameters proposed by Warm (1989) is 

a special case of Firth’s PML. Kosmidis (2007) suggested that Firth’s PML can be 

applied to the Rasch model and to the two-parameter logistic (2PL) IRT Model. 

But he did not provide the detailed derivation or proof, and a special computer 

program may also be required to implement this method. However, as mentioned, 

if the Rasch model is able to be fitted under the logistic regression framework, all 

existing applications of Firth’s PML for the logistic regression can directly be used 

to the Rasch model with no extra derivation or proof. 

ML bias can be reduced by introducing a small bias into the score function 

(Firth, 1993). Regularly, the ML estimate is derived as a solution to the score 

equation 

 

 ( ) ( )U 0l = =   (13) 
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where l(θ) is the log-likelihood function. A modified score function is then 

 

 ( ) ( ) ( ) ( )U U i b    = −   (14) 

 

where –i(θ) = U′(θ) is the local gradient and b(θ) is the bias. If θ is the canonical 

parameter of an exponential family model, a modified log-likelihood function is 
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1 2
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where |i(θ)|1/2 is the penalty function. Suppose there are s observations and t 

variables, y is the dependent variable, x the independent variable, and β the 

parameters in the logistic regression model. The usual score (gradient) equation 
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is modified as 
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where hs is the ith diagonal element of the hat matrix W1/2X(X′WX)-1X′W1/2 and 

W = diag[πs(1 – πs)] (Heinze & Schemper, 2002). The Hessian matrix is not 

modified by this penalty. The method is implemented in the SAS LOGISTIC 

procedure (SAS Institute, 2011b). In the logistic regression, estimated standard 

errors of PML estimators could still be obtained as the square roots of diagonal 

elements of the inverse of information matrix as regular ML does (Firth, 1993). 

Kosmidis (2007) suggested using the square roots of the inverse of diagonal 

elements of the information matrix for the Rasch or 2PL models. Furthermore, 

Kosmidis (2007) pointed out that estimated standard errors can be obtained directly 

by the value of the information matrix at the last iteration in ML, but it would yield 

an underestimation of the standard errors in PML; they should be obtained from a 

separate evaluation. 
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Simulation Study and Results 

A simulation study was implemented as suggested by Harwell, Stone, Hsu, and 

Kirisci (1996). Simulated data were generated based on the standard Rasch model, 

shown in equation (1). Both difficulty parameter and person ability were generated 

from the standard normal distribution. Wright and Stone (1979) implied that 20 

items and 200 examinees were enough to obtain adequate parameter estimates using 

the Rasch model. So the data were simulated to have item responses of 200, 500, 

and 1,000 simulees to 20-, 40-, and 60-item-long tests. These different sample sizes 

and test lengths were completely crossed and formed nine test conditions. Each 

condition had 1,000 replications. The simulated data were generated using SAS 

(SAS Institute, 2011a), and analyzed by WINSTEPS, the SAS LOGISTIC 

procedure using ML and PML (SAS-ML; SAS-PML), respectively. For the purpose 

of comparison, the Newton-Raphson method and the convergence criterion, 0.0001, 

were used in both the SAS LOGISTIC procedure and WINSTEPS. 

When using the SAS LOGISTIC procedure to fit the Rasch model, the model 

shown by equation (12) needs to be specified in the procedure. It should be noted 

that the model has no intercept, and the event category ‘1’ is fitted. The dependent 

variable is the scores of persons on test items, and its independent variables are the 

I dummy variables for persons and the J − 1 effect-coded variables for items. If a 

simulated data set has 1,000 simulees, then 1,000 dummy variables are needed to 

be specified. It takes a long time to estimate so many parameters. Fortunately, it is 

unnecessary to create so many dummy variables because the same parameter 

estimates are given to persons who take the same item set and receive the same total 

of scores in the Rasch model. Practically, the dummy variables for persons can be 

created for all observed total scores and item sets instead of all persons. Namely, 

dummy variables are created to differentiate persons by their total scores and 

assigned item sets together. 

In this study, the accuracy of the three methods was evaluated using the root 

mean square error (RMSE) between item difficulty parameter estimates and their 

true values. The following comparisons were made. 

 

• Item and person parameter estimates obtained from WINSTEPS, SAS-ML, 

and SAS-PML, respectively, compared with true values of item parameters 

simulated. 

• Comparisons of parameter estimates between the three methods. 
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Table 1. Root mean square errors of item parameter estimates 
 

Test 
Length 

Sample 
Size 

True value vs.  WINSTEPS vs.  SAS-ML 
vs. -PML WINSTEPS SAS-ML SAS-PML  SAS-ML SAS-PML  

20 200 0.3191 0.3191 0.3145  0.0001 0.0141  0.0141 

20 500 0.2964 0.2964 0.2949  0.0001 0.0055  0.0055 

20 1000 0.2797 0.2797 0.2789  0.0001 0.0027  0.0028 

40 200 0.2579 0.2579 0.2544  0.0001 0.0132  0.0133 

40 500 0.2185 0.2185 0.2174  0.0001 0.0052  0.0053 

40 1000 0.1983 0.1983 0.1978  0.0001 0.0026  0.0026 

60 200 0.2305 0.2306 0.2275  0.0001 0.0128  0.0129 

60 500 0.1879 0.1879 0.1869  0.0001 0.0052  0.0052 

60 1000 0.1723 0.1723 0.1719  0.0001 0.0026  0.0026 
 

Note: SAS-ML = SAS LOGISTIC procedure using maximum likelihood; SAS-PML = SAS LOGISTIC procedure 
using penalized maximum likelihood 

 
 
Table 2. Root mean square errors of person parameter estimates 
 

Test 
Length 

Sample 
Size 

 True value vs.  WINSTEPS vs.  SAS-ML 
vs. -PML N WINSTEPS SAS-ML SAS-PML  SAS-ML SAS-PML  

20 200 199037 0.3191 0.3191 0.3145  0.0001 0.0141  0.0141 

20 500 497532 0.2964 0.2964 0.2949  0.0001 0.0055  0.0055 

20 1000 995265 0.2797 0.2797 0.2789  0.0001 0.0027  0.0028 

40 200 199886 0.2579 0.2579 0.2544  0.0001 0.0132  0.0133 

40 500 499732 0.2185 0.2185 0.2174  0.0001 0.0052  0.0053 

40 1000 999534 0.1983 0.1983 0.1978  0.0001 0.0026  0.0026 

60 200 199971 0.2305 0.2306 0.2275  0.0001 0.0128  0.0129 

60 500 499953 0.1879 0.1879 0.1869  0.0001 0.0052  0.0052 

60 1000 999886 0.1723 0.1723 0.1719  0.0001 0.0026  0.0026 
 

Note: SAS-ML = SAS LOGISTIC procedure using maximum likelihood; SAS-PML = SAS LOGISTIC procedure 
using penalized maximum likelihood 

 
 

Table 1 shows the RMSEs of item parameter estimates of the three methods. 

By this table, Firth’s PML reduced ML bias because SAS-PML had the smallest 

RMSE under each condition. Among the three methods, estimates from 

WINSTEPS and SAS-ML were almost identical. RMSE between them was smaller 

than 0.0001. 

Table 2 shows the RMSEs of person parameter estimates of the three methods 

after excluding simulees obtaining extreme (zero or perfect) scores because JML 

or ML cannot provide finite estimates to parameters of those persons. The results 

are similar to the ones in Table 1. SAS-PML still had the smallest RMSE; RMSEs 

between WINSTEPS and SAS-ML were still smaller than 0.0001. 
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Therefore this simulation study provides further evidence that the Rasch 

model can be fitted under the logistic regression framework using ML and the 

logistic regression software similar to the SAS LOGISTIC procedure, and Firth’s 

PML reduced ML or JML biases of fitting the Rasch model. But the study found 

that some tiny differences existed between the estimates of WINSTEPS and SAS-

ML, i.e., JML and ML. It may be a result of slight differences between JML in 

WINSTEPS and the regular ML in the SAS LOGISTIC procedure as mentioned 

earlier. 

Discussion 

The paper further showed that the standard Rasch model is equivalent to a logistic 

regression model specially specified under ML. At least their parameter estimates 

are equivalent under ML. The Rasch model can be fitted under the logistic 

regression framework using ML, and the ML estimates are comparable with what 

the Rasch software WINSTEPS gives using JML. But it is inappropriate to say that 

the Rasch model is a special case of logistic regression. It is because of the 

following: 

 

• This study showed only that the Rasch model is equivalent to a special logistic 

regression model under ML or PML. The Rasch model can be fitted using 

other methods, e.g., the marginal maximum likelihood (Bock & Aitkin, 1981). 

• They have different standard errors for both item and person parameter 

estimates. In the logistic regression, standard errors are calculated from the 

square root of diagonal elements of the inverse of an information matrix, but 

in the Rasch model, they are actually obtained from the square root of the 

inverse of diagonal elements of the information matrix. The algorithm of the 

Rasch model actually simplifies the logistic regression’s. 

• In the Rasch framework, every item parameter has its own standard error 

although one has none in the logistic regression model because it is calculated 

through the sum-to-zero constraint. 

• The Rasch model provides the infit and outfit statistics for each item or person, 

but the logistic regression has no such fit statistics. 

 

In contrast with ML, not only can PML reduce ML bias, but it can also 

generate a finite parameter estimate to an item or a person obtaining an extreme 

score. Heinze and Schemper (2002) have shown that Firth’s method always yields 

finite estimates of parameters under complete or quasi-complete separation. Then 
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Firth’s PML can directly estimate parameters of all items or persons together 

simultaneously and have no convergent problem whether they have extreme scores 

or not. Table 3 shows the RMSEs of WINSTEPS and SAS-PML estimating 

parameters of the simulees who received extreme scores. 

WINSTEPS adjusts an extreme score and makes it a little less than perfect or 

a little more than zero because the parameter of a person with an extreme score is 

inestimable using ML. By default, the adjustment is 0.3 (Linacre, 2008). By Table 

3, using the adjustment, WINSTEPS estimates for extreme scores had smaller 

RMSEs than SAS-PML when the test had 20 items; SAS-PML performed better 

when the test became longer. But it seems that the number of extreme scores 

influences the accuracy of SAS-PML when estimating parameters of persons with 

extreme scores. Table 3 shows that the more extreme scores appeared, the greater 

RMSE of SAS-PML became. But more evidence is needed to draw a final 

conclusion because the number of simulees with extreme scores was relatively 

small in the simulation. In other IRT software, e.g., SAS PROC IRT (SAS Institute, 

2011a, 2011b) and IRTPRO (Cai, Thissen, & du Toit, 2011), expected a posteriori 

(EAP), and maximum a posteriori (MAP) can be used to estimate person parameters. 

PML may also be compared with EAP and MAP in future studies. 
 
 
Table 3. Root mean square errors of parameter estimates for persons obtaining extreme 
scores 
 

Test 
Length 

Sample 
Size 

 True value vs. WINSTEPS 
vs. SAS-PML N WINSTEPS SAS-PML 

20 200 963 2.5153 2.5492 0.4857 

20 500 2468 2.5090 2.9582 0.6938 

20 1000 4735 2.4865 3.3935 1.0764 

40 200 114 2.5772 2.1255 0.4868 

40 500 268 2.5731 2.1985 0.4562 

40 1000 466 2.5305 2.2964 0.4406 

60 200 29 2.5139 2.0188 0.5092 

60 500 47 2.4846 2.0037 0.4935 

60 1000 114 2.5407 2.1254 0.4697 
 

Note: SAS-PML = SAS LOGISTIC procedure using penalized maximum likelihood 
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