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Reliability data are generated in the form of success/failure. An attempt was made to model 

such type of data using binomial distribution in the Bayesian paradigm. For fitting the 

Bayesian model both analytic and simulation techniques are used. Laplace approximation 

was implemented for approximating posterior densities of the model parameters. Parallel 

simulation tools were implemented with an extensive use of R and JAGS. R and JAGS 

code are developed and provided. Real data sets are used for the purpose of illustration. 

 

Keywords: Bayesian Analysis, binomial model, Laplace approximation, simulation, 

posterior, R 

 

Introduction 

Reliability data are generated in the form of success/failure. For example, in a 

missile system, it is recorded whether a launched missile executes the mission 

successfully. For modeling such type of data, the binomial distribution is used. It is 

appropriate for a fixed number of tested components, n, where the tests are assumed 

to be conditionally independent given the success probability θ (Hamada, Wilson, 

Reese, & Martz, 2008). 

The non-Bayesian analysis of success/failure data is not an easy task, whereas 

it can be implemented in principle when dealing in a Bayesian paradigm, provided 

simulation tools are used. For the purpose of Bayesian modeling of success/failure 

reliability data, two important techniques, the asymptotic approximation and 

simulation methods, are implemented using the LaplacesDemon (Statisticat, LLC, 

2018) and JAGS (Plummer, 2003) packages in R (R Core Team, 2018). 

LaplacesDemon facilitates high-dimensional Bayesian inference, posing as its own 

https://dx.doi.org/10.22237/jmasm/1553803862
https://dx.doi.org/10.22237/jmasm/1553803862
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intellect that is capable of impressive analysis, which is written in the R 

environment and has a provision for user defined probability model.  

The function LaplaceApproximation in the LaplacesDemon package 

approximates the results asymptotically while the function LaplacesDemon 

simulates the results from the posterior by using one of the several Metropolis 

algorithms of Markov chain Monte Carlo (MCMC). JAGS approximates the 

posterior parameter using a Metropolis-within-Gibbs (MWG) simulation method. 

These techniques are used both for intercept as well as regression models. Real data 

sets are used in subsequent analysis for the purpose of illustrations. Thus, the 

Bayesian reliability analysis of binomial models has been made with the objectives: 

(a) define a Bayesian model, the specification of likelihood and prior distribution; 

(b) write R and JAGS code for approximating the posterior densities using analytic 

and simulation tools; and (c) finally, illustrate numeric as well as graphic 

summaries of the posterior densities. 

The Binomial Distribution 

The binomial distribution is a single-parameter distribution which provides a 

natural model that arises from a sequence of n exchangeable (or independent and 

identically distributed Bernoulli) trials or draws from a large population where each 

trial gives rise to one of two possible outcomes, conveniently labelled success and 

failure. For the success outcome the value of the random variable is assigned 1, 

otherwise the variable is assigned 0. Because of the exchangeability, the data can 

be summarized by the total number of success in n trials, which is denoted here by 

y. Converting from a formulation in terms of the exchangeable trials to one using 

independent and identically distributed (iid) random variables is achieved quite 

naturally by letting the parameter θ represent the proportion of success in the 

population or, equivalently, the probability of success in each trial. The binomial 

probability distribution states that 

 

 ( ) ( ) ( ) 1p 0| Binomi ,al , 1
n yy

n
y n

y
   

− 
= = −


 


,  (1) 

 

where on the left side we suppress the dependence on n because it is regarded as a 

part of the experimental design that is considered fixed; all the probabilities 

discussed for this problem are assumed to be conditional on n (Gelman, Carlin, 

Stern, & Rubin, 2004). The binomial distribution is not an appropriate model if the 
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tests are dependent, and it only applies if all the items have the same success 

probability. For n = 1, the binomial is called the Bernoulli distribution. 

The Prior Distributions 

In the Bayesian paradigm, it is needed to specify prior information regarding the 

value of the parameter of interest or information that is available before analyzing 

the experimental data by using a probability distribution function. This probability 

distribution function is called the prior probability distribution, or simply the prior, 

because it reflects information about parameter prior to observing experimental 

data. Two prior distributions are discussed according to their uses in subsequent 

Bayesian reliability analysis. 

Weakly Informative Priors 

The Weakly Informative Prior (WIP) distribution uses prior information for 

regularization and stabilization, providing enough prior information to prevent 

results that contradict knowledge or problems such as an algorithmic failure to 

explore the state-space. Another goal is for WIPs to use less prior information than 

is actually available. A WIP should provide some of the benefit of prior information 

while avoiding some of the risk from using information that doesn't exist (Statisticat, 

LLC, 2018). A popular WIP for a centered and scaled predictor (Gelman, 2008) 

may be 

 

 ( )~ N 0,10000   

 

where θ is normally-distributed with a mean of 0 and a large variance of 10000, 

which is equivalent to a standard deviation of 100, or precision of 1.0 × 10−4. In 

this case, the density for θ is nearly flat. Prior distributions that are not completely 

flat provide enough information for the numerical approximation algorithm to 

continue to explore the target density, the posterior distribution. 

The Half-Cauchy Weakly Informative Prior Distribution 

The probability density function of the half-Cauchy distribution with scale 

parameter α is given by 

 



AKHTAR & KHAN 

5 

 ( )
( )2 2
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x


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=  

+
.  

 

The mean and variance of the half-Cauchy distribution do not exist, but its mode is 

equal to 0. The half-Cauchy distribution with scale α = 25 is a recommended, 

default, weakly informative prior distribution for a scale parameter (Gelman, 2006). 

At this scale α = 25, the density of half-Cauchy is nearly flat but not completely 

(see Figure 1); prior distributions that are not completely flat provide enough 

information for the numerical approximation algorithm to continue to explore the 

target density, the posterior distribution. The inverse-gamma is often used as a prior 

distribution for the scale parameter; however, this model creates problem for scale 

parameters near zero. Gelman and Hill (2007) recommend that the uniform or, if 

more information is necessary, the half-Cauchy is a better choice (Akhtar & Khan, 

2014a, b; N. Khan, Akhtar, & Khan, 2016; N. Khan, Akhtar, & Khan, 2017). Thus, 

the half-Cauchy distribution with scale parameter α = 25 is used as a weakly 

informative prior distribution. 
 
 

 
 
Figure 1. It is evident from the above plot that for scale = 25 the half-Cauchy distribution 
becomes almost uniform 
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Tools and Techniques 

The technical problem of evaluating quantities required for Bayesian inference 

typically reduces to the calculation of a ratio of two integrals (Bernado & Smith, 

2000). In all cases, the technical key to the implementation of the formal solution 

given by Bayes’ theorem is the ability to perform a number of integrations (Bernado 

& Smith, 2000). Except in certain rather stylized problems, the required 

integrations will not be feasible analytically and thus, efficient approximation 

strategies are required (Statisticat, LLC, 2018). There are many types of numerical 

approximation algorithms in Bayesian theory. An incomplete list of broad 

categories of Bayesian numerical approximation may include asymptotic 

approximation methods like Laplace approximations and Markov chain Monte 

Carlo simulation methods. The Laplace approximation is implemented using the 

LaplaceApproximation function of LaplaceDemon and Markov chain Monte 

Carlo algorithms are implemented using the LaplacesDemon and jags functions 

of LaplacesDemon and R2jags (Su & Yajima, 2014), respectively. 

The Laplace Approximation 

The integrals involved in Bayesian analysis are often quite complex. Often an 

analytic approximation such as Laplace's method, based on the normal distribution, 

can be used to provide an adequate approximation to such integrals. To evaluate 

the integral 

 

 ( )( ) ( ) ( )E h | h p |y y d   =    

 

using Laplace's method, express the integrand in the form exp[log(h(θ)p(θ | y))] and 

then expand log(h(θ)p(θ | y)) as a function of θ in a quadratic Taylor series 

approximation around its mode. The resulting approximation for h(θ)p(θ | y) is 

proportional to a (multivariate) normal density in θ, and its integral (Gelman et al., 

2004) gives an approximation of E(h(θ) | y): 

 

 ( ) ( )( ) ( )
1 22

0 0 0h p | 2π
d

y u  −    

 

where d is the dimension of θ, u(θ) = log(h(θ)p(θ | y)), and θ0 is the point at which 

u(θ) is maximized. If h(θ) is fairly smooth function, this approximation is often 

reasonable in practice, due to the approximate normality of the posterior 

distribution, p(θ | y), for large sample size. Because Laplace's method is based on 
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normality, it is most effective for unimodal posterior densities or when applied 

separately to each mode of a multimodal density (Gelman et al., 2004). More details 

about Laplace approximation can be found in Tierney and Kadane (1986), Tierney, 

Kass, and Kadane (1989), Mosteller and Wallace (1964), and Tanner (1996). The 

same Laplace's approximation is implemented in the LaplacesDemon package as 

the LaplaceApproximation function, and this function is used to approximate the 

posterior densities analytically. 

Markov Chain Monte Carlo 

Markov chain Monte Carlo (MCMC) methods were initially introduced into 

physics in 1953 in a simplified version by Metropolis, Rosenbluth, Rosenbluth, and 

Teller (1953), with intermediate generalization by Hastings (1970) and the 

development of the Gibbs sampler by Geman and Geman (1984). Nevertheless, it 

took about 35 years until MCMC methods were rediscovered (Gelfand, Hills, 

Racine-Poon, & Smith, 1990; Gelfand & Smith, 1990; Tanner & Wong, 1987) and 

became one of the main computational tools in modern statistical inference. 

MCMC methods permits use of highly complicated models and estimate the 

corresponding posterior distributions with accuracy. MCMC methods have 

contributed to the development and propagation of Bayesian theory. MCMC 

methods are based on the construction of a Markov chain that eventually converges 

to the target distribution (called stationary or equilibrium), which in the current 

case is the posterior distribution, p(θ | y). This is the main way to distinguish 

MCMC algorithms from direct simulation methods, which provide samples directly 

from the target – posterior distribution. Moreover, the MCMC produces a 

dependent sample since it is generated from a Markov chain in contrast to the output 

of direct methods, which is an independent sample. These MCMC methods 

incorporate the notion of an iterative procedure; for this reason, they are frequently 

called iterative methods since in every step they produce values depending on the 

previous one. These techniques are implemented using the function 

LaplacesDemon of the LaplacesDemon package. 

Analysis of Intercept Model 

Binomial data are frequently encountered in modern science, especially in the field 

of reliability application, where the observed response is usually binary indicating 

whether a component fails or not during an experiment or binomial such as the 

number of failures over a specified time. For modeling of such type of binary data 
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binomial distribution is used and its Bayesian analysis can easily be performed 

using tools like R and JAGS. Thus, the Bayesian analysis of binomial model for 

binary reliability data is discussed here. 

The Model 

Consider a set of binomial data yi that expresses the number of successes over ni 

trials (for i = 1, 2,…, J), 

 

 ( )~ Binomial ,i iy n  ,  

 

resulting to the likelihood given by 

 

 ( ) ( ) ( )
1 1

p | 1 1
i i ii i

J J
n y n yi iy y

i ii i

n n
y

y y
    

− −

= =

    
= − =  −    

    
    (2) 

 

where 
1

J

ii
n n

=
=  is the total number of Bernoulli trials in the sample. In order to 

perform Bayesian inference in the binomial model, specify the prior distribution for 

θ. A convenient choice of the prior distribution for θ is the beta conjugate prior 

distribution with parameters α and β, denoted by 

 

 ( )~ Beta ,     

 

and probability density function 

 

 ( )
( )

( )
11p 1

  
 

  −−
=


−

 +
,  (3) 

 

where α is interpreted as the prior number of successful component tests and β as 

the prior number of failed component tests, that is, α + β is like a prior sample size. 

Then, the resulting posterior distribution for success probability θ is given by 
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p
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n yi y
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n yy

y y

n

y





 

 
   





 



− −

−

−

=

− −++

 
 −   − 



+  

 −

   (4) 

 

which is the beta distribution 

 

 ( )| Beta ,i iy y n y   + + −  ,  (5) 

 

with shape parameters (α + Σyi) and (n + β − Σyi). The posterior mean and variance 

are, respectively, 

 

 ( )E |
iy

y
n




 

+
=

+ +


,  (6) 

 

 ( )
( )( )
( ) ( )

2
V |

1

i iy n y
y

n n

 


   

+ + −
=

+ + + + +

 
.  (7) 

 

The posterior mean can also be expressed as a weighted average of the prior 

and sample proportion 

 

 

( )

( )

E |

1

i

i

yn
y

n n n

y

n

  


     


 

 

     +
= +      + + + + +     

   
= + −     +  




  (8) 

 

where ω = n / (n + α + β), Σy / n is the sample proportion, and α / (α + β) is the 

mean of a beta prior with parameters α and β. A beta distribution with equal and 

low parameter values can be considered as a weakly informative prior (e.g., 

α = β = 10−3). Other choices usually adopted are Beta(1/2, 1/2) or Beta(1, 1), which 

are equivalent to the uniform distribution U(0, 1). The latter can be considered as a 

weakly informative prior distribution since this prior gives the same probability to 

any interval of the same range. Nevertheless, this prior will be influential when the 

sample size is small (Ntzoufras, 2009). This might not necessarily be a 



A BAYESIAN ANALYSIS 

10 

disadvantage since, for small sample sizes, the posterior will also reflect the low 

available information concerning the parameter of interest θ. 

Implementation 

To implement the Bayesian analysis of the binomial model, a binary data set is 

taken from Johnson, Moosman, and Cotter (2005). The data are reported below. 

Using these data different aspects of Bayesian modeling are discussed. Two 

different functions, bayesglm and jags of R and JAGS, respectively, are used to 

fit the model and to estimate the parameter of interest, the success probability. 

Numerical as well as graphical summaries of the corresponding results are also 

reported. 

Launch Vehicle Data Set 

Represented in Table 1 are the responses of a set of success/failure data. These are 

the launch outcomes of new aerospace vehicles conducted by new companies 

during the period 1980-2002. A total of 11 launches occurred in which 3 were 

successes and 8 were failures. Reliability is the probability of successful launch 

(Hamada et al., 2008). 
 
 
Table 1. Outcomes for 11 launches of new vehicles performed by new companies with 
limited launch-vehicle design experience, 1980-2002 
 

Vehicle Outcome 

Pegasus Success 

Percheron Failure 

AMROC Failure 

Conestoga Failure 

Ariane 1 Success 

India SLV-3 Failure 

India ASLV Failure 

India PSLV Failure 

Shavit Success 

Taepodong Failure 

Brazil VLS Failure 

 
 
 



AKHTAR & KHAN 

11 

Fitting with JAGS 

Consider the Bayesian analysis of the launch vehicle data with JAGS using its 

interface of R, that is, the R2jags package of R, which includes the posterior 

simulation and convergence diagnostic of the model. For modeling of these data in 

JAGS, one must specify a model to run, load data which is created in a separate file, 

and specify the initial values of the model parameters for a specified number of 

Markov chains. The R2jags package makes use of this feature and provides 

convenient functions to call JAGS directly from within R. Furthermore, it is 

possible to work with the results after importing them into R again, for example to 

create a posterior predictive simulation or, more generally, graphical displays of 

data and posterior simulation. 

 

Data Creation  The first thing to provide to R2jags is the data. Create the 

data inputs which R2jags needs. This can be a list containing the name of each 

vector. The data set given in Table 1 can be created in R format. In the case of the 

vehicle launch data, the outcome is the binary response variable; for each success 

outcome, the value of the response variable is assigned the value 1, whereas for 

each failure outcome, the value of the variable is assigned 0. Thus, for the vehicle 

launch outcomes, the data are created as follows: 

 

n <- 11 

y <- c(1,0,0,0,1,0,0,0,1,0,0) 

jags.data <- list("n","y") 

 

where n is the total number of binary outcomes, y is the response for each trial, 1 

for success and 0 for failure, and all these are combined in a list with object 

jags.data. 

 

Model Specification For modeling the launch vehicle data, the response is binary 

outcomes and hence assumed to follow a binomial distribution, that is, 

 

 ( )~ Binomial ,1 , 1,2, ,iy i n = K ,  

 

where θ is the success probability, the parameter of interest. Alternatively, the 

Bernoulli distribution (with command dbern(θ)) can also be used instead of the 

binomial with n = 1 without any problem. In order to perform Bayesian analysis, 

the parameter θ is assumed to follow a beta distribution 
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 ( )~ Beta 1,1   

 

Thus, the specification of the above defined model in JAGS language must 

be put in a separate file which is then read by JAGS. When working in R, this is 

most conveniently done using the cat function of R, which behaves pretty much 

like paste with the exception that the result is not a character object but directly 

written to a specified file. The JAGS code specifying the model, using the cat 

function to put it in the file model1.jags, is 

 

cat("model{ 

 for(i in 1:n){ 

  y[i]~dbin(theta, 1) 

  } 

 theta~dbeta(1,1) 

 }", file="model1.jags.txt") 

 

Here, y denotes the observed response variable which is n long and follows a 

binomial distribution with parameter theta drawn from Beta (1, 1). The Beta(1, 1) 

distribution is a commonly-used conjugate prior distribution for binomial 

likelihood with low information. 

 

Initial Values  The starting values used to initialize the chain are simply 

called the initial values. To start the MCMC simulation, usually it is necessary to 

specify a starting value for the chains. In most cases, however, JAGS will be able 

to generate the initial values itself. In order to be able to monitor convergence, run 

several chains for each parameter. The starting value for the chains is a named list; 

names are the parameters used in the model. Each element of the list is itself a list 

of starting values for the JAGS model or a function creating (possible random) 

initial values. In this case, there is only one parameter, called theta, in the model: 

 

inits <- function(){list(theta=runif(1))} 

 

Model Fitting  Once these structures have been set up, JAGS is called to 

compile the model and run MCMC simulations to get the posterior inference for 

theta. Before running, it must be decided how many chains are to be run 

(n.chain=3) and for how many iterations (n.iter=1000). If the length of burn-in 

is not specified, n.bern=floor(n.iter/2) is used; that is, 500 in this case. 

Additionally, it is necessary to specify which parameters we are interested in and 
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set a monitor on each of them. In this case, theta is the only parameter which 

should be monitored. Thus, to start the simulation, the function jags of R2jags is 

used, and its results are assigned to object Fit. The results in object Fit can 

conveniently be printed by print(Fit), which prints a detailed summary of the 

results which are summarized below. 

 

Fit <- jags(jags.data,inits,parameter=c("theta"), n.iter=1000, 

n.chain=3, model.file="model1.jags.txt",) 

print(Fit) 

 

Summarizing Output  The output of the R function jags is a list which 

includes several components; most notable are the summary of the inference and 

convergence and a list containing the simulation draws of all the saved parameters. 

In this case, the jags call is assigned to the R object Fit, and so typing print(Fit) 

from the R console will display the summary of the fitted model shown below. The 

print method displays information on the mean, standard deviation, 95% credible 

interval (CI) estimates, the effective sample size, and potential scale reduction 

factor R̂ of the Brook-Gelman-Rubin (BGR) statistics (Brooks & Gelman, 1998; 

Gelman & Rubin, 1992). The BGR statistic is an analysis of variance (ANOVA)-

type diagnostic that compares within- and among-chain variance (Kéry, 2010). 

Values around 1 indicate convergence, with 1.1 considered to be an acceptable limit 

(Gelman & Hill, 2007). 

Represented in Table 2 is the numerical summary output from the jags 

function after being fitted to the binomial model for the success probability of the 

launch vehicle data. The first five columns of numbers give inferences for the 

model parameters. In this case, the model parameter theta has a mean estimate 

0.311 and a standard error of 0.124. The median estimate of theta is 0.300 with a 

50% uncertainty interval of [0.219, 0.391] and a 95% interval of [0.100, 0.584]. At 

the bottom, pD shows the estimated effective number of parameters in the model, 

and DIC, the deviance information criterion, an estimate of predictive error. 

Consider the right-most columns of the output, where Rhat gives information about 

convergence of the algorithm. At convergence, the number at this column should 

be equal to 1. If Rhat is less than 1.1 for all parameters, then we judge the algorithm 

to have approximately converged (Gelman & Hill, 2007) in the sense that the 

parallel chains have mixed well. The final column n.eff is the effective sample size 

of the simulations. 
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Table 2. Summary of JAGS simulations after being fitted to the logistic model for the 
launch vehicle data 
 

Parameter Mean SD 2.50% Median 97.50% Rhat n.eff 

theta 0.311 0.124 0.100 0.300 0.584 1.002 1300 

deviance 13.792 1.279 12.892 13.303 17.432 1.007 1100 

pD 0.8   DIC 14.6   

 
 

 
 
Figure 2. Graphical summary plot of JAGS for the binomial model, fit to the launch 
vehicle data; R-hat is near to one for parameter theta, indicating good convergence 
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Figure 3. Posterior density plot of the model parameter theta; results from different 
methods have different styles; the closeness of the two approaches look evident in the 
graphics 
 

 
 

To see the complete picture of the results, a plot can be generated by typing 

plot(Fit) and the resulting plot is given in Figure 2. In this plot the left column 

shows a quick summary of inference and convergence; that is, R̂ is close to 1.0 for 

parameter theta, indicating well mixing of the three chains and thus good 

convergence. The right column shows inference for the parameter theta. Figure 3 

shows the density plot of the model parameter theta fitted with bayesglm and jags, 

respectively. 
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Analysis of Regression Model 

The most popular model for success/failure or binary data is the logistic regression 

model, in which a logit-link function is usually adopted. In this section, Bayesian 

analysis of the logistic regression model for reliability data is discussed. 

The Model 

Consider the response variable yi for i = 1, 2,…, ni to be binomially distributed 

(ni = 1 for binary data and yi = 1 or 0) with success probability θi, which is denoted 

by 

 

 ( )~ Binomial ,i i iy n  .  

 

The logistic regression model relates θ to the covariates through the link function 

as 

 

 ( ) ( )logit log
1

Ti
i i i

i

x


  


 
= = = 

− 
.  (9) 

 

A desirable feature of the logit transformation of distribution parameter θ is 

that it is defined on (−∞, ∞), so that there are no restrictions on β and, hence, 

provides flexibility in specifying prior distributions for β. The inverse 

transformation of equation (9) gives an expression 

 

 
( )
( )

exp

11 exp

i

i

T

i

i T

i

x e

ex









= =

++
,  (10) 

 

called the inverse logit function, having the form of logistic cumulative distribution 

function which means that there is symmetry about zero. The likelihood 

contribution for binomial response yi of the logistic regression model is given by 

 



AKHTAR & KHAN 

17 

 

( ) ( )

( )
( ) ( )

1

0 1

1
0 01 1

0 0

1 1 1 1

p | 1

exp 1
 

1 exp 1 exp

exp log 1 exp

i ii

i i i

n
n yyT

i i i

i

y n y
k

n j ijj

k k
i

j ij j ijj j

n k n k

j ij i i j ij

i j i j

y x

x

x x

ny x y n x

  

 

   

   

−

=

−

=

=
= =

= = = =

= −

   +
   
   
+ + + +   

   

     
= + − + +      

     

=








 

   

  

 

For j = 0, 1 (i.e., β0, β1) and ni = 1 (for binary data) the likelihood will be 

 

 ( ) ( )( )0 1 0 1 0 1

1 1

p | , exp log 1 exp
n n

i i i

i i

y ny x y x     
= =

 
= + − + + 

 
  ,  (11) 

 

where xi is the vector of covariate values associated with (yi, ni). 

Regarding the choice of prior distribution for the regression coefficients β, if 

low information is available about each of the coefficients, one better choice of 

prior is 

 

 ( )~ N 0,10k

j ;  (12) 

 

that is a suitably weak prior for sufficiently large values of k, commonly 4 to 6. If 

more information is available, then the normal distribution with mean possibly 

different from zero and small variance is a better choice. 

When applying Bayes’ theorem, the prior is multiplied by the likelihood 

function and thus the posterior density is 

 

 ( ) ( ) ( ) ( )0 1 0 1 0 1p , | , p | , , p py y     X X ,  

 

where X is a model matrix containing a column of 1s and a column of covariates x. 

Consequently, marginal posterior densities for β0 and β1 can be expressed as 

 

 ( ) ( )0 0 1 1p | , p , | ,y y d   = X X   

 

and 
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 ( ) ( )1 0 1 0p | , p , | ,y y d   = X X ,  

 

which are not in closed form. So, it is very difficult to compute or plot these 

marginal densities. At this stage one is forced to use analytical or/and simulation 

tools to implement Bayesian analysis. 

Implementation 

To implement the above logistic regression model by choosing a normal 

distribution with large variance as a weakly informative prior for regression 

coefficients, let us consider a data set taken from Grant et al. (1999); the same data 

is also discussed in Hamada et al. (2008). All the concepts and computations will 

be discussed around that data. These data were modeled using a logistic regression 

model. For the computation of marginal posterior densities of each β, which is in a 

complex integral form, the Laplace approximation technique is used via the 

LaplaceApproximation function to approximate the integral. Parallel simulation 

tools are also implemented to draw the samples from marginal posterior densities 

to approximate the results with the sampling importance resampling (SIR) method 

(Gordan, Salmond, & Smith, 1993) and one of the MCMC algorithms. 

These techniques are implemented using LaplacesDemon and JAGS. The 

MCMC algorithms used to approximate the integrals via the IM algorithm and 

MWG algorithm use the LaplacesDemon function of LaplacesDemon and jags 

function of R2jags, respectively. An important thing about the IM algorithm is that 

it updates the model with Laplace approximation, and then supplies the posterior 

mode and covariance matrix to the IM algorithm. The Laplace approximation is 

already a well-known approximation technique (Tierney & Kadane, 1986) which 

accurately approximates the integrals. To use these functions, one must specify a 

model, a prior for the parameter, and a data object which is required for fitting (Y. 

Khan, Akhtar, Shehla, & Khan, 2015). 

High-Pressure Coolant Injection System Demand Data 

The reliability of U.S. commercial nuclear power plants is an extremely important 

consideration in managing public health risk. The high-pressure coolant injection 

(HPCI) system is a frontline safety system in a boiling water reactor (BWR) that 

injects water into a pressurized reactor core when a small break loss-of-coolant 

accident occurs. Grant et al. (1999) listed 63 unplanned demands to start for HPCI 

systems at 23 U.S. commercial BWRs during 1987-1993. Table 3 presents these 

demands in which all failures are counted together, including failure to start, failure 
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to run, failure of the injection valve to reopen after operating successfully earlier in 

the mission, and unavailability because of maintenance (Hamada et al., 2008). In 

data table, asterisks (*) identify the 12 demands for which HPCI system failed. 

Fitting with LaplaceApproximation 

Laplace approximation is a family of asymptotic techniques used to approximate 

integrals. It seems to accurately approximate unimodal posterior moments and 

marginal posterior densities in many cases. Use the function 

LaplaceApproximation for fitting of a logistic regression model, which is an 

implementation of Laplace's approximations of the integrals involved in the 

Bayesian analysis of the parameters in the modeling process. This function 

deterministically maximizes the logarithm of the un-normalized joint posterior 

density using one of the several optimization techniques. The aim of Laplace 

approximation is to estimate posterior mode and variance of each parameter. For 

getting posterior modes of the log-posteriors, a number of optimization algorithms 

are implemented. This includes the Levenberg-Marquardt (LM) algorithm, which 

is the default. However, it was found the Limited-Memory Broyden-Fletcher-

Goldfarb-Shanno (L-BFGS) is a better alternative in Bayesian scenario. The 

L-BFGS algorithm is a quasi-Newton optimization algorithm that compactly 

approximates the Hessian matrix. Rather than storing the dense Hessian matrix, 

L-BFGS stores only a few vectors that represent the approximation. It may be noted 

that Newton-Raphson is the last choice as it is very sensitive to the starting values; 

it creates problems when starting values are far from the targets and calculating and 

inverting the Hessian matrix can be computationally expensive, although it is also 

implemented in LaplaceApproximation. The main arguments of 

LaplaceApproximation can be seen by using the function args as 
 
 
Table 3. Dates of unplanned HPCI system demands and failures during 1987-1993 
 

01/05/87* 08/03/87* 03/05/89 08/16/90* 08/25/91 
01/07/87 08/16/87 03/25/89 08/19/90 09/11/91 
01/26/87 08/29/87 08/26/89 09/02/90 12/17/91 
02/18/87 01/10/88 09/03/89 09/27/90 02/02/92 
02/24/87 04/30/88 11/05/89* 10/12/90 06/25/92 
03/11/87* 05/27/88 11/25/89 10/17/90 08/27/92 
04/03/87 08/05/88 12/20/89 11/26/90 09/30/92 
04/16/87 08/25/88 01/12/90* 01/18/91* 10/15/92 
04/22/87 08/26/88 01/28/90 01/25/91 11/18/92 
07/23/87 09/04/88* 03/19/90* 02/27/91 04/20/93 
07/26/87 11/01/88 03/19/90 04/23/91 07/30/93 
07/30/87 11/16/88* 06/20/90 07/18/91* 
08/03/87* 12/17/88 07/27/90 07/31/91 
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function(Model, parm, Data, Interval=1e-06, Iterations=100, 

Method="LM", Samples=1000, sir=TRUE, Stop.Tolerance=1e-

05) 

NULL 

 

The first argument Model defines the model to be implemented, which 

contains specification of likelihood and prior. LaplaceApproximation passes two 

argument to the model function, parm and Data, and receives five arguments from 

the model function: LP (the logarithm of the unnormalized joined posterior density), 

Dev (the deviance), Monitor (the monitored variables), yhat (the variables for the 

posterior predictive checks), and parm, the vector of parameters, which may be 

constrained in the model function. The argument parm requires a vector of initial 

values equal in length to the number of parameters, and LaplaceApproximation 

will attempt to optimize these initial values for the parameters, where the optimized 

values are the posterior modes. The Data argument requires a list of data which 

must be include variable names and parameter names. The argument sir=TRUE 

stands for implementation of the sampling importance resampling algorithm, which 

is a bootstrap procedure to draw independent samples with replacement from the 

posterior sample with unequal sampling probabilities. Contrary to sir in the 

LearnBayes package, here proposal density is multivariate normal and not t 

(Akhtar & Khan, 2014a, b). 

The first thing is to provide data as LaplacesDemon needs. For this, the data 

set given in Table 3 can be created in R format as follows: 

 

Data Creation  In an HPCI system demand data set, the binary response 

variable is failure denoted by y = 1 (0), where 1 stands for failure and 0 for success, 

and an explanatory variable or covariate is time, which denotes the number of 

elapsed days from a chosen reference data 01/01/87, for 63 demands. To calculate 

the number of elapsed days for each demand from the reference date, the function 

difftime of R is used. This function takes two date-time objects as its arguments 

to calculate the time difference between two dates and returns an object of class 

difftime with an attribute indicating the units. Then the function as.numeric is 

used to convert the obtained time difference (that is, the number of elapsed days) 

into numeric form as only the number of days is needed to use in analysis. Since an 

intercept term will be included, a vector of 1s is inserted into the model matrix X. 

Thus, J = 2 indicates that, there are two columns in model matrix; the first column 

for the intercept term and the second column for the regressor in the design matrix. 
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N <- 63; J <- 2 

y <- c(1,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0, 

0,1,0,0,1,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0, 

0,0,0,0,0) 

time <- difftime(c("1987-01-05","1987-01-07","1987-01-26", 

"1987-02-18","1987-02-24","1987-03-11", 

"1987-04-03","1987-04-16","1987-04-22", 

"1987-07-23","1987-07-26","1987-07-30", 

"1987-08-03","1987-08-03","1987-08-16", 

"1987-08-29","1988-01-10","1988-04-30", 

"1988-05-27","1988-08-05","1988-08-25", 

"1988-08-26","1988-09-04","1988-11-01", 

"1988-11-16","1988-12-17","1989-03-05", 

"1989-03-25","1989-08-26","1989-09-03", 

"1989-11-05","1989-11-25","1989-12-20", 

"1990-01-12","1990-01-28","1990-03-19", 

"1990-03-19","1990-06-20","1990-07-27", 

"1990-08-16","1990-08-19","1990-09-02", 

"1990-09-27","1990-10-12","1990-10-17", 

"1990-11-26","1991-01-18","1991-01-25", 

"1991-02-27","1991-04-23","1991-07-18", 

"1991-07-31","1991-08-25","1991-09-11", 

"1991-12-17","1992-02-02","1992-06-25", 

"1992-08-27","1992-09-30","1992-10-15", 

"1992-11-18","1993-04-20","1993-07-30"),  

"1987-01-01") 

time <- as.numeric(time)  

time <- time-mean(time) 

X <- cbind(1,as.matrix(time))  

mon.names <- "LP" 

parm.names <-as.parm.names(list(beta=rep(0,J)))  

PGF <- function(Data) return(rnormv(Data$J,0,1000)) 

MyData <- list(N=N, J=J, PGF=PGF, X=X, mon.names=mon.names, 

parm.names=parm.names, y=y) 

 

In this case, there are two parameters, beta[1] and beta[2], which are specified 

in a vector parm.names. The logposterior LP is included as a monitored variable in 

vector mon.names. The total number of observations is specified by N, i.e., 63. 
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Finally, all these things are combined with object name MyData that returns data in 

a list. 

 

Initial Values  Initial values are a starting point for the iteration of the 

optimization of a parameter. LaplacesApproximation requires a vector of initial 

values for each parameter to start the iterations. Both the β parameters have been 

set equal to zero with object name Initial.Values as 

 

Initial.Values <- rep(0,J) 

 

For initial values, the function GIV (which stands for “Generate Initial Values”) 

may also be used to randomly generate initial values. 

 

Model Specifications  For modeling these HPCI data where the response 

variable is binary (since each demand results in either an HPCI failure or success), 

use the binomial distribution with n = 1. An explanatory variable or regressor is the 

number of elapsed days denoted by time. Thus, the model specified is a logistic 

regression and can be described as 

 

 ( )~ Binomial ,1 , 1,2, ,63i iy i = K ,  

 

where yi = 1 (0) denotes an HPCI failure (success). The logit link function (other 

link functions like probit or complementary log-log are also possible) is used to 

relate the model parameter and regressor time, that is, 

 

 ( ) 0 1logit log time
1

i
i i

i


  



 
= = + 

− 
,  

 

where time is centered, that is, time=time−mean(time). The linear predictor is 

made up of an intercept β0 and a regressor time with regression coefficient β1. 

The independent and weakly informative normal prior with mean 0 and 

standard deviation 1000 is assumed for each β parameter: 

 

 ( )N 0,1000 , 1,2, ,j j J = = K .  

 

The large variance and small precision indicates a lot of uncertainty for each β, and 

is hence a weakly informative prior. Finally, the specification of the above defined 
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logistic regression model for fitting with LaplaceApproximation is defined as 

follows: 

 

Model <- function(parm, Data){ 

### Parameters 

beta <- parm[1:Data$J] 

### Log(Prior Densities) 

beta.prior <- sum(dnorm(beta, 0, 1000, log=TRUE)) 

### Log-Likelihood 

mu <- tcrossprod(Data$X, t(beta))  

theta <- invlogit(mu) 

LL <- sum(dbinom(Data$y, 1, theta, log=TRUE)) 

### Log-Posterior 

LP <- LL + beta.prior 

Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP, 

yhat=rbinom(length(theta), 1, theta), parm=parm) 

return(Modelout)} 

 

The function Model contains two arguments, parm and Data, where parm is the set 

of parameters and Data is the list of data. The regression parameters have priors 

beta.prior. The object LL stands for loglikelihood and LP stands for logposterior. 

The function Model returns the object Modelout, which contains five objects in 

listed form that includes logposterior LP, deviance Dev, monitoring parameters 

Monitor, predicted values yhat, and estimates of parameters parm. 

 

Model Fitting  For fitting of the logistic regression model with weakly 

informative priors for the regression parameters, the function 

LaplaceApproximation of LaplacesDemon is called, and its results are assigned 

to the object Fit. Summaries of results are printed using the function print, and 

its relevant parts are summarized in the next section. 

 

Fit <- LaplaceApproximation(Model=Model, parm=Initial.Values, 

Data=MyData, Method="NM", Iterations=10000, sir=TRUE) 

print(Fit) 
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Table 4. Summary of the analytic approximation using the function 
LaplaceApproximation; it may be noted that these summaries are based on asymptotic 
approximation, and hence Mode stands for posterior mode, SD for posterior standard 
deviation, and LB, UB are 2.5% and 97.5% quantiles, respectively 
 

Parameters Mode SD LB UB 

beta [1] −1.4902 0.3332 −2.1565 −0.8238 

beta [2] −0.0006 0.0005 −0.0015 0.0004 

 
 
Table 5. Summary of the simulated results due to sampling importance resampling 
method using the same function, where Mean stands for posterior mean, SD for posterior 
standard deviation, MCSE for Monte Carlo standard error, ESS for effective sample size, 
and LB, Median, UB are 2.5%, 50%, 97.5% quantiles, respectively 
 

Parameters Mean SD MCSE ESS LB Median UB 

beta [1] −1.5404 0.3397 0.0107 1000 −2.1981 −1.5248 −0.8238 

beta [2] −0.0006 0.0005 0.0000 1000 −0.0016 −0.0006 0.0004 

Deviance 62.1583 2.2389 0.0708 1000 60.0814 61.4733 69.2003 

LP −46.7325 1.1195 0.0354 1000 −50.2535 −46.3900 −45.6941 

 
 

Summarizing Output  The summary information provided by 

LaplaceApproximation, which approximates posterior density of the fitted model, 

is summarized in the two tables which follow. Table 4 represents the summary 

matrix of the analytic results using Laplace’s approximation method. Rows are 

parameters and columns include Mode, SD (Standard Deviation), LB (Lower 

Bound), and UB (Upper Bound). The bound constitutes a 95% credible interval. 

Table 5 represents the simulated results due to the sampling importance resampling 

algorithm conducted via the SIR function to draw independent posterior samples, 

which is possible only when LaplaceApproximation has converged. 

From the summary output of Laplace’s approximation method reported in 

Table 4, it may be noted that the posterior mode of parameter β0 is 

−1.4902 ± 0.3332 with 95% credible interval (−2.1565, −0.8238), which is 

statistically significant, whereas the posterior mode of β1 is 0.0006 ± 0.0005 with 

95% credible interval (−0.0015, 0.0004), which is statistically not significant. The 

simulated results due to sampling importance resampling algorithm using the same 

function reported in Table 5 indicates the posterior mean of β0 is −1.5404 ± 0.3397 

with 95% credible interval (−2.1981, −0.9335), whereas the posterior mean of β1 is 

−0.0006 ± 0.0005 with 95% credible interval (−0.0016, 0.0004). The deviance 

62.16 is a measure of goodness-of-fit. 
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Fitting with LaplacesDemon 

The simulation method is applied to analyze the same data with the function 

LaplacesDemon, which is the main function of Laplace's Demon. Given data, a 

model specification, and initial values, LaplacesDemon maximizes the logarithm 

of the unnormalized joint posterior density with MCMC algorithms, also called 

samplers, and provides samples of the marginal posterior distributions, deviance, 

and other monitored variables. Laplace's Demon offers a large number of MCMC 

algorithms for numerical approximation. Popular families include: Gibbs sampling, 

Metropolis-Hasting (MH), Random-Walk-Metropolis (RWM), slice sampling, 

Metropolis-within Gibbs (MWG), Adaptive-Metropolis-within-Gibbs (AMWG), 

and many others. However, details of the MCMC algorithms are best explored 

online at https://web.archive.org/web/20150227012508/http:/www.bayesian-

inference.com/mcmc, as well as in the “LaplacesDemon Tutorial” vignette 

(Statisticat, LLC, 2018). The main arguments of the LaplacesDemon function can 

be seen by using the function args as 

 

function(Model, Data, Initial.Values, Covar= NULL, Iterations= 

1e+05, Status= 1000, Thinning= 100, Algorithm= "RWM", 

Specs= NULL,...) 

NULL 

 

The arguments Model and Data specify the model to be implemented and list 

of data, respectively, which are specified in the previous section. Initial.Values 

requires a vector of initial values equal in length to the number of parameters. The 

argument Covar=NULL indicates that a variance vector or covariance matrix has not 

been specified, so the algorithm will begin with its own estimates. Next two 

arguments Iterations=100000 and Status=1000 indicate that the 

LaplacesDemon function will update 10000 times before completion and status is 

reported after every 1000 iterations. The thinning argument accepts integers 

between 1 and the number of iterations, and indicates that every 100th iteration will 

be retained, while the others are discarded. Thinning is performed to reduce 

autocorrelation and the number of marginal posterior samples. Further, Algorithm 

requires the abbreviated name of the MCMC algorithm in quotes. In this case RWM 

is short for the Random-Walk-Metropolis. Finally, Specs= Null is a default 

argument, and accepts a list of specifications for the MCMC algorithm declared in 

the Algorithm argument (Akhtar & Khan, 2014a, b). 

 

https://web.archive.org/web/20150227012508/http:/www.bayesian-inference.com/mcmc
https://web.archive.org/web/20150227012508/http:/www.bayesian-inference.com/mcmc
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Initial Values  Before fitting the model with LaplacesDemon it is necessary 

to specify initial values for each parameter as a starting point for an adaptive chain 

or a non-adaptive Markov chain. If initial values for all parameters are set to zero, 

then LaplacesDemon will attempt to optimize the initial values with 

LaplacesApproximation using a resilient backpropagation algorithm. Hence, it is 

better to use the last fitted object Fit with the function as.initial.values to get 

a vector of initial values from LaplacesApproximation for fitting with 

LaplacesDemon. Thus, to get a vector of initial values the R command is 

 

Initial.Values <- as.initial.values(Fit) 

 

Model Fitting  LaplacesDemon is an implementation of stochastic 

approximation methods; therefore, it is better to set a seed with the set.seed 

function for pseudo-random number generation before fitting the model, so results 

can be reproduced. Call the LaplacesDemon function to maximize the first 

component in the list output from the pre-specified Model function, given a data set 

called Data with the following setting. The fitted model specifies the IM 

(Independent Metropolis) algorithm for updating. Simulation results are assigned 

to the object FitDemon, and its relevant parts are summarized in the next section. 

 

set.seed(666) 

FitDemon <- LaplacesDemon(Model=Model, Data=MyData, Initial.Values, 

Covar=Fit$Covar, Iterations=50000, Status=1000, Algorithm="IM", 

Specs=list(mu=Fit$Summary1[1:length(Initial.Values),1])) 

print(FitDemon) 

 

Summarizing Output  The simulated results are shown in Table 6 in a 

matrix form that summarizes the marginal posterior densities of parameters due to 

stationary samples which includes Mean, SD (Standard Deviation), MCSE (Monte 

Carlo Standard Error), ESS (Effective Sample Size), and 2.5%, 50%, and 97.5% 

quantiles. 

Laplace's Demon is appeased, because all five criteria LaplacesDemon needs 

are satisfactory. The final algorithm must be non-adaptive, so that the Markov 

property holds. The acceptance rate of most algorithms is considered satisfactory if 

it is within the interval [15%, 50%]. MCSE is considered satisfactory for each target 

distribution if it is less than 6.27% of the standard deviation of the target distribution. 

This allows the true mean to be within 5% of the area under a Gaussian distribution 

around the estimated mean. ESS is considered satisfactory for each target 
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distribution if it is at least 100, which is usually enough to describe 95% probability 

intervals. Each variable must be estimated as stationary. 

From Table 6, it is noticed all criteria were met: MCSEs are sufficiently small, 

ESSs are sufficiently large, all parameters were estimated to be stationary, the 

algorithm is non-adaptive independent Metropolis and the Markov property holds, 

and acceptance rate 0.49 (i.e., 49%) of the algorithm lies within the interval 

[15%, 50%]. 

Fitting with JAGS 

In this section, JAGS is called from within R via R2jags to conduct the same 

Bayesian analysis of a logistic regression model for the HPCI data. After fitting the 

model with jags, a comparison will be made with the results obtained from 

LaplaceApproximation and LaplacesDemon, illustrated in previous sections. 

 

Data Creation  The first step is to provide data to JAGS in a list statement. 

Provide the vector of HPCI response on demands over time. The specification of 

these data containing the name of each vector, as jags needs, is as follows: 

 

n <- 63 

y <- y 

time <- as.vector(time) 

time <- time-mean(time) 

data.jags <- list(n=n, y=y, time=time) 

 

Here, n is the total number of observations, y is the observed response for each 

demand, and time is the number of elapsed days for 63 demands, which is centered 

for improving convergence. 
 
 
Table 6. Summary of the MCMC results due to Independent Metropolis algorithm using 
the LaplacesDemon function 
 

Parameters Mean SD MCSE ESS LB Median UB 

beta [1] −1.4956 0.1979 0.0028 4666 −1.8852 −1.4932 −1.1164 

beta [2] −0.0006 0.0003 0.0000 5000 −0.0011 −0.0006 0.0000 

Deviance 60.7504 0.6960 0.0103 4361 60.0622 60.5393 62.6243 

LP −46.0286 0.3480 0.0052 4361 −46.9605 −45.9230 −45.6845 
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Initial Values  Initial values are used to start the MCMC sampler and may 

be provided for all stochastic nodes except for the response data variable. The initial 

values for parameters to start the chains are specified by writing a function as 

follows: 

 

inits <- function(){list(beta.1=0, beta.2=0)} 

 

Model Specification  For modeling the HPCI data, the binomial 

distribution is adopted to model the binary response variable. The model is defined 

as 

 

 ( )~ Binomial ,1 , 1,2, ,63i iy i = K   

 

with logit-link function 

 

 ( ) 0 1logit log time
1

i
i i

i


  



 
= = + 

− 
  

 

where θi is the success probability. The weakly informative normal priors with 

mean 0 and precision 0.001 are defined for each β parameter as 

 

 ( )~ N 0,0.001 , 1,2j j =   

 

The JAGS code specifying the above logistic regression model using cat function 

to put in a file with name modelHPCI.txt is 

 

Cat(“model{ 

 for(i in 1:n){ 

  y[i]~dbin(theta[i], 1) 

  logit(theta[i])<-beta.1+beta.2*time[i] 

  } 

 # Priors 

 beta.1~dnorm(0, 0.001) 

 beta.2~dnorm(0, 0.001) 

 }”, file=”modelHPCI.txt”) 
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Figure 4. Plot of posterior densities of the parameters β1 and β2 for the Bayesian analysis 
of logistic regression model using the functions LaplaceApproximation, LaplacesDemon, 
and jags, respectively; it is evident from these plots that the posterior densities obtained 
from three different methods are very close to each other 
 

 
 
Table 7. Posterior summary of the JAGS simulations after being fitted to the logistic 
regression model for HPCI data 
 

Parameters Mean SD 2.50% 50% 97.50% Rhat n.eff 

beta.1 −1.5470 0.3490 −2.2894 −1.5330 −0.9223 1.00 3000 

beta.2 −0.0006 0.0005 −0.0016 −0.0006 0.0004 1.00 3000 

deviance 62.0873 2.0489 60.095 61.4526 67.6542 1.00 2700 

 
 

Model Fitting  A Bayesian model with weakly informative priors is fitted 

using the jags function and its results are assigned to object Fit.Jags. A summary 

of results is reported in next section. 

set.seed(123) 

Fit.jags <- jags(data.jags, inits, parameters=c(“beta.1”, 

“beta.2”), n.iter=20000, model.file=”modelHPCI.txt”) 

print(Fit.Jags) 
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Summarizing Output  Shown in Table 7 is the summary output of the 

posterior densities after being fitted to the logistic regression model for HPCI data. 

From the JAGS output, it is noticed that the value of the posterior mean of both 

beta parameters are very close to the values obtained from the SIR and IM 

algorithms, although β0 is statistically significant whereas β1 is not significant. Its 

deviance of 62.09 is almost equal to the deviance 62.16 via SIR, and slightly differs 

from the deviance 60.75 of IM. The values of Rhat are less than 1.1 for each 

parameter, which indicates that chains are mixed well, implying good convergence. 

The values of n.eff are also satisfactory. 

Conclusion 

Component reliability is the foundation of reliability assessment and refers to the 

reliability of a single component. The Bayesian approach is used to model 

success/failure component reliability data for both intercept and regression models. 

The logit-link function is used to relate the model parameter and covariates for a 

linear regression model, which is known as a logistic regression model. Two 

important techniques, that is, Laplace approximation and simulation methods are 

implemented using the R, LaplacesDemon, and JAGS software packages. For 

modeling success/failure data, the complete R and JAGS code are written and 

provided with detailed descriptions. It is observed that the results obtained from 

Laplace approximation and simulation methods using different software packages 

are very close to each other. The benefits of Laplace approximation and simulation 

methods seem clear in the plot of posterior densities. Moreover, it is evident from 

the summaries of results that the Bayesian approach based on weakly informative 

priors is simpler to implement than the frequentist approach. Finally, the wealth of 

information provided in these numeric as well as graphic summaries is not possible 

in classical framework. 
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