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Analytical Closed-Form Solution for 
General Factor with Many Variables 

Stan Lipovetsky 
GfK North America 

Minneapolis, MN 

Vladimir Manewitsch 
NIM e.V. 

Nuremberg, Germany 

 

 
The factor analytic triad method of one-factor solution gives the explicit analytical form 

for a common latent factor built by three variables. The current work considers analytical 

presentation of a general latent factor constructed in a closed-form solution for multivariate 

case. The results can be supportive to theoretical description and practical application of 

latent variable modeling, especially for big data because the analytical closed-form solution 

is not prone to data dimensionality. 

 

Keywords: Factor loadings, latent variable, Spearman method of triads, multivariate 

closed-form solution 

 

Introduction 

The statistical method of Factor Analysis (FA) is widely and heavily used in many 

disciplines. Main capability of this method is about dimensionality reduction of 

multivariate problems which allows for focusing on essential features of the 

underlying research problem, interpretation and visualization of high dimensional 

data, and discovering latent constructs or dimensions behind multiple variables. 

Particularly in marketing research, FA has been extensively applied for describing 

consumer attitudes and their personal characteristics, identifying service 

dimensions, product positioning and modelling of microeconomic hypotheses.  

Spearman (1904, 1927) originated FA principles for a common latent factor 

based on the triad relation r12 = r13r23 between pair correlations of three variables 

and derived from it the tetrads relations r12r34 = r13r24= r14r23 for four variables 

correlations. From statistical point of view, Factor Analysis, and related to it the 

principal component analysis (PCA), and singular value decomposition (SVD) are 

well known tools of multivariate statistics (Harman, 1976; Dillon and Goldstein, 

https://doi.org/10.22237/jmasm/1556668980
https://doi.org/10.22237/jmasm/1556668980
mailto:stan.lipovetsky@gmail.com
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1984; Elden, 2007; Izenman, 2008). Modern FA, PCA and SVD working with 

many variables and factors have been developed in numerous works (Bartholomew 

and Knott, 1999; Skrondal and Rabe-Hesketh, 2004; Drton et al., 2007; Härdle and 

Hlavka, 2007; Härdle and Simar, 2012; Gorsuch, 2014; Brown, 2015) and 

implemented in software packages.  

Although FA can be performed in maximum likelihood and eigenproblem 

approaches (Lawley and Maxwell, 1971; Lipovetsky and Conklin 2005; 

Lipovetsky, 2009, 2015, 2017) the analytical formulae show explicitly how a 

general factor solution is defined by data incorporated into it. For instance, the so-

called triads method is applied in various practical research, particularly, for 

measurement of validity using biomarkers (Ocké and Kaaks, 1997; Kabagambe et 

al., 2001; McNaughton et al., 2005; de Carvalho Yokota et al., 2010, Djekic-

Ivankovic et al., 2016), where the validity coefficient for a questionnaire can be 

defined via pair correlations among three characteristics as 

 

 1 2 12/q qq r r r=   (1) 

 

which corresponds to a general FA solution with three variables, as is shown below. 

Consider analytical derivation of a general latent factor and its presentation 

in a closed-form solution for multivariate case of any number of variables. It 

demonstrates how the general FA loadings can be constructed in algebraic formulae 

directly from the correlation matrix. Having such closed-form solution facilitates 

building a general latent variable especially for big data because the analytical 

solution does not require the iterative calculations and so does not depend on a data 

dimensionality. In contrast to numerical methods, the presented solution enables 

direct and interpretable linking of factor solution to the underlying correlations 

making apparent the structure and the formation of the latent construct. This 

property of the closed-form solution offers new prospects for FA focusing on 

interpretation of factors that is mostly the case in applications for marketing. In the 

following sections, the paper presents solutions for the general factor constructed 

by several variables, considers the least squares solution for the general factor by 

multiple variables, describes additional specific features of the obtained solutions, 

and demonstrates numerical examples. 
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General Factor Solution for Several Variables 

Factor analysis aims to present all the measured variables via a smaller number of 

some latent unobserved variables called factors. Suppose the variables are 

standardized so that their means equal zero and variances equal one (FA is scale-

invariant so this transformation only simplifies the derivation). For an a-priori fixed 

set of variables xj (where j = 1, 2, …, n – number of variables) the model presenting 

the variables via a common, or general, factor f and the specific factors uj in each 

point of observations is: 

 

 j j jx q f u= +   (2) 

 

where the unknown parameters qj are the so-called loadings of the variables on the 

factor. Simplifying normalizing conditions (expectations equal zero, variance of the 

factor f equals one) and assumptions of independence of general and specific factors 

(covariance equals zero) are usually imposed: 

 

 
( ) ( ) ( ) ( )

( ) ( )

0,  var 1,  var ,

cov , cov , 0,  

j j j

j j k

E f E u f u c

f u u u j k

= = = =

= = 
  (3) 

 

with cj denoting variances of specific factors. Covariance matrix of the standardized 

variables coincides with the correlation matrix R = X’X, where X is the data matrix 

of N by n order (of N observations by n variables), and prime denotes transposition. 

Then correlation matrix for the model (2)-(3) can be presented as follows: 

 

 ( )R qq diag c= +   (4) 

 

where q is the vector of unknown loadings qj, the outer product of this vector is qq', 

and diag(c) is the diagonal matrix of the specific factors’ variances.  

All the parameters of loadings qj and specific variances cj are unknown and 

have to be estimated by the known symmetric matrix of correlation (4) built from 

the data. The system (4) can be represented in explicit form: 
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2
12 13 1 1 1 1 2 1 3 1

2
21 23 2 2 1 2 2 2 3 2

2
31 32 3 3 1 3 2 3 3 3

2
1 2 3 1 2 3

1

1

1

1

n n

n n

n n

n n n n n n n n

r r r q c q q q q q q

r r r q q q c q q q q

r r r q q q q q c q q

r r r q q q q q q q c

 + 
  

+  
   = +
  
  

   +   

  (5) 

 

Consider the general FA for several examples of number of variables. For 

n = 3, the off-diagonal relations (5) yield the following system of equations: 

 

 1 2 12 1 3 13 2 3 23,  ,  q q r q q r q q r= = =   (6) 

 

Multiplying the first two equations (6) containing q1 gives q
1
2q2q3 = r12r13 and 

substituting into it the third equation (6) yields solution q
1
2 = r12r13/r23. Taking 

square root of it, and repeating similar derivation for other parameters q we obtain 

the closed-form solution for all loadings: 

 

 12 13 12 23 13 23
1 2 3

23 13 12

,  ,  
r r r r r r

q q q
r r r

= = =   (7) 

 

The triads model (1) coincides with one of the loadings (7). With the solutions (7), 

taking equalities for the diagonal elements in (5) produces estimates for the specific 

variances: 

 

 21j jc q= −   (8) 

 

where the squared parameters q
j
2 are called communalities. The results (7)-(8) are 

known (for instance, see Härdle and Hlavka, 2007, pp. 187-188; Härdle and Simar, 

2012, pp. 315-316), let us extend them to higher dimensions. 

For number of variables n = 4, similarly to (6) we take the off-diagonal 

relations (5) and get the system of six equations: 

 

 1 2 12 1 3 13 1 4 14 2 3 23 2 4 24 3 4 34,  ,  ,  ,  ,  q q r q q r q q r q q r q q r q q r= = = = = =   (9) 

 

Product of the first three relations (9) containing q1 yields the equation 

q
1
3q2q3q4 = r12r13r14 and the product of the rest three relations (9) without q1 yields 
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another equation (q2q3q4)
2 = r23r24r34. Substituting the latter one into the former one 

produces the result q
1
6r23r24r34 = (r12r13r14)

2. Then the solution for q1 and similarly 

derived other loadings are: 

 

 
( ) ( ) ( ) ( )

2 2 2 2

12 13 14 12 23 24 13 23 34 14 24 34
66 6 6

1 2 3 4

23 24 34 13 14 34 12 14 24 12 13 23

,  ,  ,   
r r r r r r r r r r r r

q q q q
r r r r r r r r r r r r

= = = =  

 (10) 

 

By analogue with (7) we can call (10) the closed-form solution for the tetrads 

model of general factor by four variables. The corresponding estimates for the 

specific variances are given by the same relation (8). By comparison of (7) with 

(10) it is not yet clear how to compose loadings for any number of variables. 

Consider the case of n = 5, where we take the off-diagonal relations (5) and 

get the system of ten equations: 

 

 
1 2 12 1 3 13 1 4 14 1 5 15

2 3 23 2 4 24 2 5 25 3 4 34 3 5 35 4 5 45

,  ,  ,  ,  

,  ,  ,  ,  ,   

q q r q q r q q r q q r

q q r q q r q q r q q r q q r q q r

= = = =

= = = = = =
  (11) 

 

The product of the first four relations (11) containing q1 yields the equation 

q
1
4q2q3q4q5 = r12r13r14r15 and the product of the rest six relations (9) without q1 yields 

another equation (q2q3q4q5)
3 = r23r24r25r34r35r45. Substituting the latter one into the 

former produces q
1
12r23r24r25r34r35r45 = (r12r13r14r15)

3. Solving with respect to q1 and 

similar derivations for other loadings yields: 

 

 
( ) ( ) ( )

3 3 3

12 13 14 15 12 23 24 25 15 25 35 45
12 12 12

1 2 5

23 24 25 34 35 45 13 14 15 34 35 45 12 13 14 23 24 34

,  ,  ,   
r r r r r r r r r r r r

q q q
r r r r r r r r r r r r r r r r r r

= = =   (12) 

 

By analogue with (7) and (10) we can call the closed-form solution (12) the pentads 

model of general factor by five variables. The estimates for the specific variances 

are given by the relation (8) as well. Comparing (7), (10), and (12) it is possible to 

estimate how the loadings incorporate the pair correlations in these closed-form 

solutions for more variables. 
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General Factor Solution for Multiple Variables 

Consider how to extend the obtained results to deriving the closed-form solution 

for common factor by any number of variables. Suppose all correlations positive, 

otherwise we flip scales of variables which can make the correlation matrix to be 

compatible with the factor model (2), so to have positive elements only.  

For n = 3, the system of three equations (6) with three unknown variables qj 

yields the unique solution (7). But for n = 4, the system of n(n – 1)/2 = 6 equations 

(9) with four unknown variables qj is over-identified, so it needs some optimizing 

criterion for incorporating all the relations into a solution (10). Similarly with n = 5, 

the system of n(n – 1)/2 = 10 equations (11) with five unknown variables qj needs 

a criterion for collapsing all the relations into a solution (12). 

Such a needed criterion for solving over-identified systems with number of 

equations more than number of variables can be found in the Least Squares (LS) 

objective well-known in the regression modeling. For a positive matrix of 

correlations, consider a model with multiplicative error term in approximation off-

diagonal elements of correlation matrix (4): 

 

 jk j k jkr q q =   (13) 

 

where δjk is a relative error in the jk-th correlation presented via the product of the 

loadings qj and qk. Taking logarithm of the relations (13) yields a linearized model: 

 

 ln ln ln lnjk j k jkr q q = + +   (14) 

 

Denoting logarithm of correlations as yjk = lnrjk, absolute errors εjk = ln δjk, and the 

unknown coefficients 

 

 lnj jb q=   (15) 

 

rewrite (14) as a linear regression:  

 

 jk j k jky b b = + +   (16) 

 

The LS objective for the model (16) is: 
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 ( ) ( )
2 2

min
n n

jk jk j k

j k j k

LS y b b
 

= = − − →    (17) 

 

For more explicit presentation, a design matrix of the predictors for the regression 

model (16)-(17) can be seen in the following example of n = 5 variables when (14) 

in a plain form is:  

 

 

12

13

14

1

15

2

23

3

24

4

25

5

34

35

45

ln 1 1 0 0 0

ln 1 0 1 0 0

ln 1 0 0 1 0
ln

ln 1 0 0 0 1
ln

ln 0 1 1 0 0
ln

ln 0 1 0 1 0
ln

ln 0 1 0 0 1
ln

ln 0 0 1 1 0

ln 0 0 1 0 1

ln 0 0 0 1 1

r

r

r
q

r
q

r
q

r
q

r
q

r

r

r

   
   
   
   

    
    
    
   =  
    
   
     

   
   
   

  
  

12

13

14

15

23

24

25

34

35

45

ln

ln

ln

ln

ln

ln

ln

ln

ln

ln





















 
 
 
 
 
 
 
 +
 

  
  

 
 
 
 
 

  (18) 

 

Denoting the design matrix at the right-hand side (18) as Z, the system (18) can be 

presented in the matrix form as 

 

 y Zb = +   (19) 

 

where the vectors y, b, and epsilon correspond to the notations used in description 

(14)-(17). The system (19) can be solved in the LS approach (17) as a regression 

model of y by z variables given by columns in the matrix Z. Minimization by 

unknown parameters in (17) yields the so-called normal equations  

 

 Z Zb Z y =   (20) 

 

where prime denotes the transposed matrix Z'. The solution of (20) is given via the 

matrix inversion as follows: 
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 ( )
1

b Z Z Z y
−

 =   (21) 

 

For an explicit example, consider this solution for the case n = 5 with the 

equations (18), when the system (20) can be presented as: 

 

 

11

1

22
2

3 33

4
44

5

55

ln

4 1 1 1 1
ln

1 4 1 1 1

1 1 4 1 1 ln

1 1 1 4 1
ln

1 1 1 1 4

ln

n

jj

n

jj

n

jj

n

jj

n

jj

r

b
r

b

b r

b
r

b

r











 
 

    
    
    
    =  
    
       

    
 
 











  (22) 

 

Diagonal elements in the matrix Z'Z (22) are the sums of squares in each column of 

the design matrix in (18), so for n variables they equal n – 1 (as number of pairs of 

each one variable with n – 1 others), and the off-diagonal elements in (22) equal 

one as the scalar products of columns in (18). The sums of logarithms in the vector 

Z'y (22) can be presented as logarithms of products of all the elements in each row 

of the correlation matrix at the left-hand side (5) (for simplicity we can incorporate 

the diagonal elements rjj = 1). So the general expression for the normal system (20) 

with arbitrary n is: 

 

 

( )

( )

( )

( )

1 11

2

21
3

5 1

1 1 1 1 ln

1 1 1 1
ln

1 1 1 1

ln1 1 1 1

n

jj

n

jj

n

njj

n b r

n b
r

n b

rn b

=

=

=

 −   
    

−     
    −  =
    
    
   −     







  (23) 

 

To obtain solution b (21) from this system, we need to invert the n-th order matrix 

at the left-hand side (23). This matrix can be represented as 
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( )

( )

( )

( )

( )

1 1 1 1

1 1 1 1

1 1 1 1 2

1 1 1 1

n

n

n n I ee

n

− 
 

− 
  − = − +
 
 
 − 

  (24) 

 

where I and e are the identity matrix and vector of the n-th order, respectively, so 

(n – 2)I = A is the scalar matrix (denoted A), and ee' is the vectors outer product 

which defines the matrix of n-th order with each element equals one. 

Applying the Sherman-Morrison formula for matrix inversion yields: 

 

 ( )
( )( )

1 1
1 1

1

1

1 2 2 1 2

A ee A ee
A ee A I

e A e n n n

− −
− −

−

 
+ = − = −

+ − − −
  (25) 

 

Using (25), the solution of (23) can be presented as follows: 

 

 

( )( )

( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( )

1 1
2 2 1 2

1 1
2 2 1 2

1 1
2 2

11
1

2 21

1

11 , 1

21 , 1

1 , 1

ln

ln1

2 2 1 2

ln

ln ln

ln ln

ln ln

n n n

n n n

n n

n

jj

n

jj

nn
njj

n n

j ijj i j

n n

j ijj i j

n n

nj ijj i j

r
b

b ree
I

n n n

b
r

r r

r r

r r

− − −

− − −

− −

=

=

=

= =

= =

= =

 
  

       = −      − − − 
   
   

 

=

−

−

−







 

 

 
( )( )1 2n−

 
 
 
 
 
 
 
 
  
 

  (26) 

 

 

Exponent of (26) due to the relation (15) yields the loadings of the general factor 

for any number n of variables. Each j-th loading value is proportional to the root of 

power n – 2 from the product of all elements in the j-th row of correlation matrix, 
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and reciprocally proportional to the root of power 2(n – 1)( n – 2) from the product 

of all elements of the correlation matrix: 

 

 

( ) ( )( )
1

2 1 2

11
1

2 21

, 1

1

ln

ln 1

ln

n n

n

jj

n

jj

n

iji j
nn

njj

r
q

q r

r
q

r

− −

=

=

=

=

 
  

   
   =
   
   
   

 








  (27) 

 

If the intent is to use only the elements in a half of symmetrical correlation matrix 

then it is possible to skip the term 2 and represent (27) within the same power of 

the root as follows: 

 

 

( )( )
1

1 2

11
1

2 21

1

ln

ln 1

ln

n n n

jj

n

jj
n

iji j

nn
njj

r
q

q r

r

q
r

− −

=

=



=

  
   
    
    =
    
    

    
   








  (28) 

 

This general expression reduces to those used in the examples with n = 3, 4, and 5 

above. Indeed, for n = 3, the formula (28) becomes 

 

 

( )

( )

( )
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( )

( )

1
12 2
2

12 13 12 13 231

2

2 12 23 12 23 13

12 13 232
3 13 23 1213 23

/
1

/

/

r r r r rq

q r r r r r
r r r

q r r rr r

              = =         
       

  (29) 

 

which coincides with the results in (7). For n = 4, the formula (28) reduces to 
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    
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1
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 
 
 
 
 
 
 
 

  (30) 

 

it is the same result as (10). And for n = 5, the formula (28) is 
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r r

  
    
    
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=
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1

12
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 
 
 
 
 
  
 

  (31) 

 

which reproduces the result (12). 

Thus, the formula (28) presents the closed-form solution for the general factor 

by any number of variables. Together with the partial cases (29)-(31), it shows that 

each j-th loading depends directly on the correlations of xj with the other variables, 

and depends reciprocally on the correlations among all other variables without xj. 

In the regression modeling approach (13)-(21), besides estimation of the loadings 

as regression coefficients, it is possible to obtain evaluation of their errors, t-

statistics, and overall quality of the fit given in the residual variance and coefficient 

of multiple determination. The regression modeling should be used if the interest is 

in estimation of the quality of the factor loadings, otherwise the same results on the 

loadings themselves can be obtained by the analytical formulae (7)-(12) or (27)-

(31). 
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Specific Features of the Obtained Solutions for a General 
Factor 

Consider some additional specifics of the general factor solutions. From relations 

(27)-(28) it is easy to find that the product of loadings q1q2…qn equals the product 

of all different rij (in the upper correlation matrix triangle, j > i) in power 1/(n = 1), 

or in other words, the geometric mean of loadings equals square root of the 

geometric means of rij where j > i. It means that any one loading can always be 

obtained from the others. The structure of loadings is defined by the proportions of 

the numerators in (28) (the product in denominator (28) is common for all loadings) 

which can be written as follows: 

 

 
2 2 2

1 2 1 2

1 1 1

/( 2) /( 2) /( 2)

1 2

: : .... : : : .... :

: : .... :

n n n

n n n
n j j nj

j j j

n n n n n n

n

q q q r r r

G G G

− − −

= = =

− − −

=

=

  
  (32) 

 

where Gj denote geometric means of the elements in each j-th row of correlation 

matrix. So for n variables the loadings in the general factor are proportional to these 

geometric means powered to n/(n = 2). Similar relations can be obtained with 

covariance matrix as well.  

Another property of the general solution in (28) is that the j-th loading can be 

obtained as the geometric mean of all possible triad solutions (29) involving xj, e.g. 

for j = 1 and n = 4: 

 

 ( ) ( ) ( ) ( )

1
1

1 1 1 32 6
2 2 2

1 12 13 14 23 24 34 12 13 23 12 14 24 13 14 34/ ( ) / / /q r r r r r r r r r r r r r r r
  = =     

  (33) 

 

Similarly, for n = 5 

 

 
( ) ( ) ( )

( ) ( ) ( )
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1
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  / / /

q r r r r r r r r r r

r r r r r r r r r

r r r r r r r r r

 =  

 
 =
 
  

  (34) 
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This result can be extended for the case of general n > 5 by simple algebra. 

Furthermore, this result can be generalized in the sense, that the solution for j-th 

loading from the space of n variables can be represented as geometric mean of all 

possible solutions involving j-th variable in a lower dimensional space m < n. For 

example, for n = 5 and m = 4: 

 

 ( ) ( )

( ) ( )

1
3 12

1 12 13 14 15 23 24 25 34 35 45

1
1 1 4

2 26 6

12 13 14 23 24 34 12 13 15 23 25 35

1 1
2 26 6

12 15 14 25 24 45 15 13 14 35 45 34

( ) / ( )

/ ( ) / ( )

   / ( ) / ( )

q r r r r r r r r r r

r r r r r r r r r r r r

r r r r r r r r r r r r

 =  

 
       
 =
 

        

  (35) 

 

Concerning the assumption of positive correlations, consider several 

violations of it. The case when some correlations equal zero is unlikely in practical 

applications, and close to zero correlations are not important and can be taken by 

absolute value. Even if a correlation equals exactly zero, rij = 0, exclusion of one of 

the involved variables from the analysis can be considered, because the FA model 

(3)-(6) with rij = qiqj, implies that one of the loadings is zero. Thus, at least one of 

the variables xi or xj is not driven by the common factor f, but by the corresponding 

specific factor u only.  

For the case of (significant) negative correlations, we can consider flipping of 

the scale of a corresponding variable by multiplying it by –1. Because flipping a 

variable changes the sign of all correlations involving that variable, the question is 

if the correlation matrix be turned to be positive by flipping a subset of variables, 

which can be answered by considering all possible triads of correlations given in 

the matrix. Let us call “triad” a set of three correlations (rij, rjk, rki) for three 

variables xi, xj, and xk in the correlation matrix R. Call R admissible if it can be 

turned into a positive matrix, with only positive entries, by flipping some x-

variables. Any triad describes a 3×3 matrix which is admissible if its triad has one 

of two patterns: (+, +, +) or (+, –, –), which we can call admissible triads. The other 

triads such as (+, +, –) and (–, –, –) are called inadmissible and can exist because 

correlations in a triad do not have to be transitive (Langford et al., 2001; 

Lipovetsky, 2002; Lipovetsky and Conklin, 2004). Then it can be shown by 

induction that a correlation matrix R of an order n > 3 is admissible if and only if it 

contains only admissible triads. 
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Hence, checking that all triads are admissible ensures that the whole 

correlation matrix is suitable for closed-form solution in (28), and if yes, which 

variables have to be flipped. However, the reverse argument is not true for the 

proposed solution in form of eq. (28), i.e., the correlation matrix does not have to 

be admissible but the solution (28) could be applied to it anyway. For instance, look 

at a 5×5 correlation matrix having the following pattern of signs of its elements: 

 

 

1

... 1

... ... 1

... ... ... 1

... ... ... ... 1

R

− + + + 
 

+ − + 
 = + +
 

+ 
 
 

  (36) 

 

There are several inadmissible triads, e.g. (r12, r13, r23), but the solution (28) 

still can be calculated. Thus, on one hand, the admissibility of a correlation matrix 

is sufficient, but not necessary for applicability of the closed-form solution in eq. 

(28). However, inadmissibility of a correlation matrix may prevent using of (28), 

whereas other FA techniques (e.g., PC, PA, etc.) can be applied anyway. 

Nevertheless, it is not a shortcoming of the proposed solution but it is rather 

indication that an inadmissible correlation matrix is not compatible with the factor 

model (2) or assumptions in (3). Indeed, suppose there is an inadmissible triad 

(r12, r13, r23) = (+, +, –) within a correlation matrix. By Eq. (4) which follows from 

(2) and (3) we get the triad representation via the loadings: 

 

 ( ) ( )1 2 1 3 2 3,  ,  , ,q q q q q q = + + −   (37) 

 

Thus, it can be assumed without loss of generality q1 > 0, then it can be 

concluded from the first two elements in the triad that q2 > 0 and q3 > 0, which leads 

to the inequality r23 = q2q3 > 0, but that contradicts to the condition (37). An 

inadmissible triad (+, +, –) violates the relations (2) or (3). If some solution can be 

calculated for an inadmissible correlation matrix, this solution is not compatible 

with the standard factor model.  

It could be argued such solutions are not meaningful in most applications. 

This can be illustrated by an attempt of geometrical interpretation of the situation 

in (37). The correlation between two variables corresponds to the cosine of the 

angle between corresponding vectors. An inadmissible triad like in (37) implies that 
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there is always an obtuse angle (i.e., negative cosine) between some pair of vectors 

in the triad, regardless which direction we choose for them. In most applications, 

an obtuse angle between the vectors contradicts intuition behind the factor solution, 

especially its interpretation as common latent construct underlying the manifest 

variables. 

Furthermore, if the closed-form solution is represented as a geometric mean 

of triad solutions (as in (33) and (34)), it becomes applicable if and only if the 

correlation matrix is admissible. In this form, the analytical solution is calculable if 

and only if the correlation matrix is compatible with factor model (2) and (3), 

whereas numerical factor analysis methods would produce some, likely senseless, 

results for correlation matrices not compatible with the underlying factor model. 

Numerical examples 

Consider a classical example given in Harman (1967, p. 244) on nine cognitive 

variables by 696 respondents from a work by Holzinger, and available in psych 

package of R software procedures for psychological, psychometric, and personality 

research (Revelle, 2017). Table 1 shows the matrix of pair correlations for this 

Harman data. 
 
 
Table 1. Correlation matrix by Harman data. 
 
 x1 x2 x3 x4 x5 x6 x7 x8 x9 

x1 1.00 0.75 0.78 0.44 0.45 0.51 0.21 0.30 0.31 

x2 0.75 1.00 0.72 0.52 0.53 0.58 0.23 0.32 0.30 

x3 0.78 0.72 1.00 0.47 0.48 0.54 0.28 0.37 0.37 

x4 0.44 0.52 0.47 1.00 0.82 0.82 0.33 0.33 0.31 

x5 0.45 0.53 0.48 0.82 1.00 0.74 0.37 0.36 0.36 

x6 0.51 0.58 0.54 0.82 0.74 1.00 0.35 0.38 0.38 

x7 0.21 0.23 0.28 0.33 0.37 0.35 1.00 0.45 0.52 

x8 0.30 0.32 0.37 0.33 0.36 0.38 0.45 1.00 0.67 

x9 0.31 0.30 0.37 0.31 0.36 0.38 0.52 0.67 1.00 

 
 

Presented in Table 2 is the regression solution b (21) with t-statistics for 

parameters of the model and its characteristic of quality of fit: the coefficient of 

multiple determination R2. The last two columns show the FA-1 loadings q = exp(b) 

and their errors which can be calculated as s(q) = qb/t. We see that the t-statistics is 

very good, mostly above 2, so the parameters are significantly different from zero, 

and the quality of total fit is high, R2 = 0.898. 
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Table 2. Regression model and loadings, by Harman data. 
  

b t-statistics loadings q s(q) 

x1 -0.429 3.501 0.651 -0.080 

x2 -0.358 2.917 0.699 -0.086 

x3 -0.312 2.545 0.732 -0.090 

x4 -0.322 2.628 0.724 -0.089 

x5 -0.278 2.266 0.757 -0.093 

x6 -0.223 1.817 0.800 -0.098 

x7 -0.736 5.998 0.479 -0.059 

x8 -0.554 4.514 0.575 -0.071 

x9 -0.547 4.456 0.579 -0.071 

R2 0.898       

 
 

In Table 3, FA-1 solutions obtained by several methods are compared, based 

on principal components (PC, the main component), maximum likelihood (ML), 

principal axes (PA), minimum residuals (MR), and closed-form (CF) analytic 

solution. Squared norm of each of these vectors define the loadings’ variance 

(eigenvalue) presented in the bottom row. By these variances we see that the CF is 

close to the ML solution. 
 
 
Table 3. FA-1 solutions obtained by several methods, by Harman data. 
  

PC ML PA MR CF 

x1 0.746 0.634 0.706 0.683 0.651 

x2 0.781 0.696 0.750 0.734 0.699 

x3 0.783 0.666 0.750 0.713 0.732 

x4 0.798 0.868 0.774 0.832 0.724 

x5 0.803 0.844 0.780 0.818 0.757 

x6 0.835 0.879 0.824 0.856 0.800 

x7 0.529 0.424 0.461 0.435 0.479 

x8 0.604 0.465 0.535 0.491 0.575 

x9 0.607 0.461 0.537 0.488 0.579 

Variance 4.771 4.178 4.297 4.276 4.082 

 
 

Shown in Table 4 are the pair correlations between these solutions, and the 

mean value in each column. By correlations, CF is similar to PC and PA, and close 

to other methods as well. By the mean values, CF yields an intermediate solution 

between ML and other methods. 
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Table 4. Correlation matrix of FA-1 solutions, by Harman data. 
 
 PC ML PA MR CF 

PC 1.000 0.934 0.999 0.978 0.977 

ML 0.934 1.000 0.945 0.987 0.931 

PA 0.999 0.945 1.000 0.984 0.976 

MR 0.978 0.987 0.984 1.000 0.959 

CF 0.977 0.931 0.976 0.959 1.000 

mean 0.972 0.949 0.976 0.977 0.961 

 
 

In accordance with the model (2)-(3), for a given number of variables n the 

values for loadings qj were generated by the uniform distribution on the 0-1 interval, 

and for a given number of observations N a vector of factor scores f was generated 

by the normal distribution with zero mean value and standard deviation equals one. 

Using qj values, the estimates for the specific factor variances cj were obtained by 

the relation (8), and then the specific factors uj (2) were generated by the normal 

distributions for the sample size N, zero means, and the variances cj. With all these 

constructs, the vectors of variables xj were built by the formula (2), and these 

variables xj were used for making their correlation matrix R as at the left-hand side 

in (4)-(5). By this correlation matrix, the loadings were estimated in several 

classical approaches and the analytical solution. For a numerical illustration with 

n = 5 variables and N = 100 observations, the correlation matrix is shown in Table 

5. 
 
 
Table 5. Correlation matrix, by simulated data. 
 
 x1 x2 x3 x4 x5 

x1 1.000 0.434 0.567 0.563 0.477 

x2 0.434 1.000 0.636 0.722 0.658 

x3 0.567 0.636 1.000 0.739 0.513 

x4 0.563 0.722 0.739 1.000 0.615 

x5 0.477 0.658 0.513 0.615 1.000 

 
 

For the matrix in Table 5, the simulated loadings q and its estimations by the 

same methods described for Table 3 are presented in Table 6. The loadings’ 

variance is shown in the bottom row, and we can see that all solutions are very close 

to the original loadings. Particularly, it is so for the closed-form analytical solution 

CF, which in regression estimation yields the coefficient of multiple determination 

R2 = 0.977, and the adjusted to degrees of freedom R2 = 0.954, with the 
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corresponding F-statistic equal 42.21 and its p-value 0.0004, so the quality of fit is 

very high. 
 
 
Table 6. Original loadings and FA-1 solutions in several methods, by simulated data. 
 
 q PC ML PA MR CF 

x1 0.659 0.725 0.630 0.633 0.630 0.632 

x2 0.784 0.847 0.807 0.807 0.807 0.794 

x3 0.823 0.846 0.809 0.804 0.809 0.806 

x4 0.870 0.894 0.896 0.891 0.894 0.891 

x5 0.745 0.792 0.709 0.720 0.710 0.724 

Variance 3.039 3.384 3.008 3.010 3.005 2.999 

 
 

Presented in Table 7 is the matrix of correlations between original q and all 

solutions from Table 6, so we see that CF is the closest solution to the original 

simulated loadings. In the last two rows Table 7 shows also the mean absolute error 

(MAE) and relative the mean absolute error (RMAE, in %) of each solution 

compared with the original simulated loadings q, by which we can see that the 

analytic solution yields very good results. 
 
 
Table 7. Correlation matrix of original loadings and FA-1 solutions, by simulated data. 
 
 q PC ML PA MR CF 

q 1.000 0.983 0.980 0.981 0.980 0.990 

PC 0.983 1.000 0.994 0.997 0.995 0.995 

ML 0.980 0.994 1.000 0.999 1.000 0.996 

PA 0.981 0.997 0.999 1.000 0.999 0.998 

MR 0.980 0.995 1.000 0.999 1.000 0.996 

CF 0.990 0.995 0.996 0.998 0.996 1.000 

MAE  4.440 2.558 2.253 2.487 1.905 

RMAE, %   5.954 3.371 2.960 3.284 2.515 

 
 

Other factor solutions can be a bit closer to the original loadings than the 

closed-form solution. For instance, presenting in Table 8 are descriptive statistics 

for MAE, relative RMAE, and correlations of several solutions with the original 

loadings for n = 10 and N = 1000, run in 1000 samples.  

The results for minimum, mean, and maximum values are very close among 

all the solutions, and in general the difference is very small and negligible for any 

reasonable precision with which the loading values are used in all practical needs. 
Table 8. Descriptive statistics for MAE, RMAE, and correlations, by 1000 samples. 
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PC MLE PA MR CF 

MAE min 0.106 0.040 0.042 0.041 0.043 

mean 0.284 0.116 0.117 0.116 0.120 

max 0.536 0.303 0.305 0.303 0.305 
       

RMAE, % min 1.898 2.129 2.131 2.129 2.131 

mean 3.122 3.523 3.523 3.523 3.525 

max 4.407 5.010 5.011 5.010 5.016 
       

Correlations min 0.921 0.926 0.928 0.926 0.925 

mean 0.987 0.988 0.988 0.988 0.987 

max 0.999 0.999 0.999 0.999 0.999 

 
 

For comparison of runtime of the solutions, take correlation matrix as a 

starting point, so the results do not depend on a number of observations but only on 

a varying number of variables in the simulated data. Figure 1 shows increasing 

saving in runtime for CF over ML and MR methods when the number of variables 

increases. The results underlie advantages of the proposed solution for big data 

having wide format, i.e., many variables, while for a moderate number of variables 

the methods exhibit comparable running time.  
 

 
 

Figure 1. Runtime of calculation with n=4, 8, 16, 32 and 64 by 100 samples. 
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Summary 

An analytical derivation of the loadings for a general latent factor is presented. The 

results are expressed in a closed-form solution for multivariate case and can be seen 

as extension of Spearman triads to any number of variables. The obtained algebraic 

formulae show explicitly how the general factor loadings are constructed from the 

correlation matrix, so they are useful for analysis and for practical applications.  

This approach can be useful for confirmatory factor analysis, especially 

because in its regression solution various characteristics of the model quality and 

fit are produced, for instance such a convenient measure as coefficient of multiple 

determination. When the factors structure rather corresponds to several factors, the 

closed-form solution can be applied to each group of variables separately to check 

their quality of fit in the confirmatory factor analysis. Extension of the analytical 

approach to constructing several factors in the exploratory factor analysis by the 

subsequently reduced matrix could be tried in future research. 

The closed-form solution facilitates building a general latent variable, does 

not require any specialized software, and is very convenient for working with big 

data because analytical formulae do not depend on the dimensionality in the loading 

calculations. Furthermore, it facilitates the interpretation of latent factors and 

enables deeper insights into a studied problem, which is crucial for many FA 

applications in social, psychologic, economics, marketing research, and other areas 

of human interests and activity. 
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