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The generalized Pareto distribution (GPD) is a flexible parametric model commonly used 

in financial modeling. Maximum likelihood estimation (MLE) of the GPD was proposed 

by Grimshaw (1993). Maximum likelihood estimation of the GPD for censored data is 

developed, and a goodness-of-fit test is constructed to verify an MLE algorithm in R and 

to support the model-validation step. The algorithms were composed in R. Grimshaw’s 

algorithm outperforms functions available in the R package ‘gPdtest’. A simulation study 

showed the MLE method for censored data and the goodness-of-fit test are both reliable. 

 

Keywords: Computational statistics, survival analysis, generalized Pareto distribution, 

maximum likelihood estimation, censored data, goodness-of-fit test 

 

Introduction 

The generalized extreme value distribution (GEVD) is a family of distributions that 

are usually used to model the maxima of long sequences of random variables. The 

GEVD is useful when the data contain a finite set of maxima (Embrechts, 

Klüppelberg, & Mikosch, 2012). One particularly useful GEVD distribution is the 

generalized Pareto distribution (GPD), which was introduced by Pickands (1975) 

to model excess over thresholds instead of maxima. GPD was then broadly applied 

to many topics such as environmental (Hosking & Wallis, 1987), engineering 

(Castillo, 2012; Holmes & Moriarty, 1999), and health data (Cebrián, Denuit, & 

Lambert, 2003). 

The GPD is a two-parameter probability distribution. The cumulative 

probability distribution function is given by 

https://dx.doi.org/10.22237/jmasm/1553261471
https://dx.doi.org/10.22237/jmasm/1553261471
mailto:minhpham@mail.usf.edu
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where k is the shape parameter and α is the scale parameter. Uniform, Pareto, and 

exponential distributions are special cases of the GPD; the GPD becomes the 

exponential distribution if k = 0, the uniform distribution if k = 1, and the Pareto 

distribution if k < 0. 

Hosking and Wallis (1987) discussed the estimation by the method of 

moments (ME). Their estimations were 

 

 

2
2

2
2

ME ME
ˆ

2

1 1
ˆand

2

X XX
s sk

 
+  −

 = = ,  (2) 

 

where X̄ and s2 are the sample mean and variance, respectively. In the same study, 

they also considered the probability-weighted moment (PWM) estimation method, 

and their results are given by 
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Grimshaw (1993) published an algorithm for computing the maximum 

likelihood estimation (MLE) of the parameters of the GPD. Juárez and Schucany 

(2004) proposed the minimum probability density power divergence method, which 

allows control over efficiency and robustness. When efficiency is maximized, this 

method is equivalent to the MLE method. Zhang (2010) proposed an improved 

maximum likelihood estimation using the empirical Bayesian method (Zhang, 

2007). Zhang’s estimation was found to be better than other procedures in terms of 

efficiency and bias. 
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According to Zhang (2007), there were problems associated with all of these 

methods. The PWM estimators do not exist asymptotically if k ≤ −1. The ME 

estimators are not asymptotically consistent if the simulated data has k ≤ −1/2. 

Both the ME and PWM estimators have low asymptotic efficiencies. MLE 

estimators are asymptotically efficient, but it is difficult to compute them and MLEs 

do not exist for k ≥ 1. 

The aim of the present study is to develop an estimation algorithm for right-

censored survival data using the MLE method. The package gPdtest, by Gonzalez 

Estrada and Villasenor Alva (2012), includes the function gpd.fit() that 

calculates the estimation of the parameters. This program uses the MLE method 

and the combined method proposed by the authors. The MLE method of this 

function did not perform well in the simulation of this study. 

Mathematical Approach 

Likelihood Function 

Let δ be the right-censoring indicator, with value 1 being an observation and value 

0 being a censored point. Klein and Moeschberger (2003) described the likelihood 

function 
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The likelihood function and log-likelihood function for the generalized Pareto 

distribution can be written as 
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To estimate the local maximum of lnL, we have to solve the following system of 

equations: 
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Order the data so all of the observations are placed before the censored values. 

Let r be the number of observations in the data. From this arrangement, we have 

 

 1 2 11 and 0r r n    += = = = = = =L K .  

 

The percentage of censorship in the data is r / n. 

Let θ = k / α. The simultaneous equations (7) can be rewritten as the following 

equations (8) and (9): 
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This format is similar to Grimshaw’s (1993) pair of equations. If r = n, which means 

there is no censorship in the data, this pair of equations become the equations that 

were presented by Grimshaw. Thus, similar to Grimshaw’s work, the left-hand side 

of equation (8) is the univariate function given by 
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Finding solutions for this function will easily lead to the solutions for system (7). 

A closed-form solution for this function is not known. Using some mathematical 

characteristics of the function h(θ) presented in Appendix A, the following 

algorithm can be used to estimate the solutions: 



MLE OF GPD WITH CENSORED DATA 

6 

The Structure of the Algorithm 

1. Let ϵ = 10−4 / X̄. For numerical purposes, θ1 = θ2 if |θ1 − θ2| < ϵ. 

2. The lower and upper bounds for solution of h(θ) are calculated to be 
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 = −   (proof in Appendix A). If 

( )0lim h 0 →
   then there exists at least one solution of h(θ) on (θL, 0) 

and at least one zero of h(θ) on (0, θU). 

a. Use the Newton-Raphson algorithm with initial θL to determine the 

solution θ1 on (θL, 0). 

b. Use the Newton-Raphson algorithm with initial θU to determine the 

solution θ2 on (θU, 0). 

4. If ( )0lim h 0 →
   then there exists no solution or an even number of 

solutions on each of the intervals (θL, 0) and (0, θU). 

a. To determine the first solution θ1 of h(θ) on (θL, 0), use the Newton-

Raphson algorithm with initial value θL. If the Newton-Raphson 

algorithm does not converge, there is no solution on (θL, 0). If θ1 exists, 

calculate hʹ(θ) using equation (A3) in Appendix A. If hʹ(θ1) > 0, the 

second solution is on (θ1, 0); otherwise, the second solution is on 

(θL, θ1). We can use the bisection algorithm on the appropriate interval 

to determine the second solution and denote it θ2. 

b. To determine the solution θ3 of h(θ) on (0, θU), use the Newton-

Raphson algorithm with initial value θU. If the Newton-Raphson 

algorithm does not converge, there is no solution on (θL, 0). If θ3 exists, 

calculate hʹ(θ) using equation (A3) in Appendix A. If hʹ(θ3) > 0, the 

second solution is on (0, θ3); otherwise, the second solution is on 

(θ3, θU). We can use the bisection algorithm on the appropriate interval 

to determine the second solution and denote it θ4. 

5. For each θi available, calculate ki and αi using equation (9) and the log-

likelihood lnLi using equation (6). The pair (ki, αi) that generates the local 

maximum of lnLi is the final estimate of our algorithm, as presented in 

Figure 1. 
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Figure 1. Solution process 
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With the existence of the censoring weight r, the program is generalized. In 

the case of no censorship, r = 0 and all the likelihood functions, h(θ), hʹ(θ), and 

( )0lim h →
 , reduce to the ones proposed by Grimshaw (1993). The algorithm 

was written in R. Maximum likelihood estimation for right-censored data is created 

using the function mle.gpd(time, censor), where time indicates the survival 

time vector and censor indicates the censoring vector (1 = observation, 

0 = censored). 

Program Validation by Simulations for Non-Censored Data 

The performance of the algorithm is now tested when there is no censor (r = n). In 

this case, the algorithm is identical to the classical MLE proposed by Grimshaw 

(1993), which has been tested by others. The focus of this simulation is to compare 

the quality of MLE with the gpd.fit function in the R package gPdtest. This 

function has two separate methods that were proposed by Villaseñor-Alva and 

González-Estrada (2009), namely asymptotic maximum likelihood (AMLE) and 

combined. 

When k ≤ −0.5, the GPD has infinite variance; when k > 1, maximum 

likelihood estimation has been proven to not exist (Castillo & Hadi, 1997). This 

simulation considers −0.5 ≤ k ≤ 1. More specifically, k will assume the values −0.4, 

−0.2,… 1. The results do not vary with respect to α (Hosking & Wallis, 1987). Thus, 

we set α = 1. For each combination of k and α, we generate 10,000 random samples 

and calculate the average root mean square error (RMSE) for each method. The 

results are given in Table 1 (for k) and Table 2 (for α) below. 
 
 
Table 1. Root mean square error of k for each estimator 
 

 Method 

k MLE AMLE Combined 

−0.4 8.600E-04 4.644E-03 6.975E-03 

−0.2 1.523E-03 5.373E-03 5.049E-03 

0.0 1.280E-04 6.550E-03 1.830E-03 

0.2 6.190E-04 7.253E-03 1.059E-03 

0.4 3.280E-05 7.930E-03 2.750E-04 

0.6 2.410E-04 8.528E-03 1.810E-04 

0.8 1.760E-05 8.890E-03 3.680E-04 

1.0 6.570E-04 9.230E-03 5.030E-04 

Average 5.100E-04 7.300E-03 2.030E-03 
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Table 2. Root mean square error of α for each estimator 
 

 Method 

k MLE AMLE Combined 

−0.4 6.2600E-04 1.9630E-03 4.2650E-03 

−0.2 7.5000E-04 3.0100E-03 3.4470E-03 

0.0 3.6100E-05 4.2210E-03 1.6390E-03 

0.2 3.3500E-04 5.2180E-03 8.6100E-04 

0.4 6.1700E-05 6.6740E-03 2.6900E-04 

0.6 1.5100E-04 7.8880E-03 1.5800E-04 

0.8 2.7100E-05 9.5720E-03 2.7100E-04 

1.0 6.4200E-04 1.1188E-02 4.8700E-04 

Average 3.2900E-04 6.2170E-03 1.4250E-03 

 
 

The MLE performs better than the AMLE and combined methods in the 

gPdtest package. On average, the RMSE of k is 0.0005, 0.0073, and 0.002 for MLE, 

AMLE, and combined, respectively. The RMSE of α is 0.0003, 0.006, and 0.0014 

for MLE, AMLE, and combined, respectively. MLE’s RMSE is 93% lower than 

that of AMLE and 75% lower than that of combined for k, and 95% lower than that 

of AMLE and 79% lower than that of combined for α. This proves that Grimshaw’s 

(1993) MLE algorithm has higher accuracy than the current methods existing in R. 

Goodness-of-Fit Test for Censored Data 

Testing the algorithm on censored data is challenging. Let Ti denote the time to 

failure and Ci denote the time to termination of the subject of study. The observed 

time will be Xi =min(Ti, Ci). Right censoring happens when termination time comes 

before failure time, i.e. Ci < Ti. In reality, a goodness-of-fit test for censored data is 

challenging because little is known about termination times. Apply the goodness-

of-fit testing method proposed by Bagdonavičius and Nikulin (2011b), then test the 

null hypothesis that the simulated censored data follows the GPD with the set of 

parameters fitted by the MLE algorithm described earlier. 

The chi-squared goodness-of-fit test for the hypothesis H0 that the data Xi with 

status δi comes from the GPD with the estimated parameters ˆ ˆ,k   is performed as 

follows: 

Divide the interval [0, X(n)] into k > 2 subintervals Ij = (aj−1, aj]. The aj are 

determined to be 
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For each interval Ij, calculate Uj and ej by 
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In order to calculate the test statistic Y2, calculate the matrices Z, C, A, I: 

 

(1) Z = [Zj]k×1, where ( )1
j j jn

Z U e= − . 

(2) C = [Clj]2×k, where 
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(3) A = [Aij]k×k, where Ajj = Uj / n and Ajj = 0 for i ≠ j. 

(4) I = [Alh]2×2, where 
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The test statistic given by 
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where W = CA−1Z, G = I − CA−1CT. Y2 follows the chi-square distribution with 

degrees of freedom given by r = rank((A − CTI−1C)−). The p-value is given by 

( )2 2Pr r Y  . We reject the null hypothesis if the p-value is larger than a 

significance level. 

Simulation Study to Validate the Goodness-of-Fit Test 

In order to check the sensitivity and specificity of the proposed test, a simulation 

study was carried out to investigate the frequency of type I and type II errors at a 

5% level of significance. 

Sensitivity Test 

For the sensitivity test, the data sets were simulated as follows: For each k in the set 

{−0.4, −0.2,…, 1} and for α = 1, we generate 10,000 random samples to generate 

failure times Ti that follow the GPD with parameters k and α. Termination times Ci 

were generated by Ci = Q3(Ti) + sU where Q3(Ti) and s are the third quartile and 

standard deviation of Ti, respectively, and U is the standard uniform distribution. 

This was done to target a censoring rate of about 15% of the data. The observed 

time is Xi = min(Ti, Ci) and status is 
 

1
i i

i T C



= . 

The parameters ̂  and k̂  were estimated using the proposed MLE algorithm 

discussed above. The goodness-of-fit test was used to test the hypothesis that failure 

times Ti follow the GPD with parameters ̂  and k̂ . There were 1000 samples for 

each k, and the number of false rejections were recorded and presented in Table 3. 

The results show that, at a 5% level of significance, the probability of a type I error 

is about 2% and, therefore, sensitivity is 98%. 
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Specificity Test 

For the specificity test, the data sets were simulated as follows: simulate event time 

Ti from a gamma distribution with shape parameter k and scale parameter α. k was 

set to be 1.1, 1.2, 1.3, 1.4, or 1.5, and α was set at 2. Termination times Ci were 

generated by Ci = Q3(Ti) + sU, where Q3(Ti) and s are the third quartile and standard 

deviation of Ti, respectively, and U in the standard uniform distribution. The 

observed time is Xi = min(Ti, Ci) and status is 
 

1
i i

i T C



= . With this design, the test 

is expected to fail to reject more frequently when k gets closer to 1 because the 

gamma distribution approaches the exponential distribution, which is also a special 

case of the GPD. 

There were 1000 samples for each k and the number of correct rejections were 

recorded and presented in Table 4. This is similar to the expected outcome. 

Specificity is 98.7% when k = 1.5 and 7.2% when k = 1.1, which makes the GPD 

almost an exponential distribution. 
 
 
Table 3. Count of rejections for each value of k (α = 1) 
 

k −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0 

Count of rejections 15 20 25 19 25 29 18 19 

 
 
Table 4. Count of rejections (α = 2) 
 

k 1.1 1.2 1.3 1.4 1.5 

Count of rejections 72 291 654 925 987 

 
 

 
 
Figure 2. Contingency table on simulation study (significance level 0.05) 
 

   Data simulated  

    From GPD Not from GPD   

Hypothesis test 

that simulated data 

is from a GPD 

population 

Not reject 7830 2071 
Positive predicted 

value = 79.1% 

Reject 170 2929 
Negative predicted 

value = 94.5% 

   97.9% 58.6%  
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The results of the simulation test can be summarized in the contingency table 

in Figure 2. This shows that for right-censored data, the overall sensitivity and 

specificity of our algorithm is 58.6% and 97.9%, respectively. 

Discussion 

The methods to fit censored data into the generalized Pareto distribution (GPD) 

were examined. The result was satisfying, with sensitivity when the probability of 

not rejecting the correct null hypothesis is 97% and higher. Specificity is 98.7% 

when the gamma distribution is used with shape parameter k = 1.5. As k approaches 

1, specificity reduces significantly, being 7.2% when k = 1.1. This is acceptable 

because the gamma distribution becomes the exponential distribution when k = 1, 

which is also a special case of the GPD. These results indicate that our proposed 

methods are reliable. 
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Appendix A: Mathematical Proof for the Algorithm 1 

Grimshaw (1993) presented five properties of the function h(θ) that were used to 2 
structure the algorithm for equation (6). In this study, the function h(θ) contains the 3 
censoring information r. Therefore, those five properties need to be revised in 4 
accordance with the new function. 5 

Following Grishaw’s (1993) approach, the following properties (A1) to (A5) 6 
of h(θ) are important to structure the algorithm. 7 

 8 
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According to Jensen’s inequality, we can write the following: 11 
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Also, 23 
 24 



MLE OF GPD WITH CENSORED DATA 

16 

 

( ) ( )

( ) ( ) ( )

1

1 1

2 2

1 1 1

1 1
h 1

1

1 1 1
ln 1 1 1

n r
i

i

i ii

n r n

i i i i i

i i i

X
X

n X r

X X X X X
n r n

 


  

−

= =

− −

= = =


−

=  −
−

   + −  − + −
   

 

  

 1 

 (A13) 2 
 3 

 ( )
0

limh 0



→

=   (A14) 4 

 5 

 

( )
( )

( ) ( )

( ) ( ) ( )

( )

2 2
1 2

2
1 1 1 1

2 32

1 1 1 1

32

1

1 1 1 1
h 1 1

11

1 1 1 1
1 ln 1 2 1

1

1
2 1

n r n r
i i

i i i

i i i iii

n r n r
i

i i i i i

i i i ii

n

i i

i

X X
X X X

n r n X rX

X
X X X X X

n X r n r

X X
n

  


  




− −

= = = =

− −

= = = =

−

=

− −
 =  − +  −

−−

−
+  − + −  −

−

+ −

   

   



  6 

 7 
Finally, 8 
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where 12 
 13 
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 15 
The algorithm structure proposed by Grimshaw (1993) is maintained and modified 16 
according to the change of the 5 properties presented above. 17 
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