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Estimation of Mean with Two-Parameter
Ratio-Product-Ratio Estimator in Double
Sampling using Ancillary Information
under Non-Response

Surya K. Pal Housila P. Singh
Vikram University Vikram University
Ujjain, India Ujjain, India

Ratio-product-ratio estimators with two parameters in double sampling under non-response
are considered along with their properties. Practical conditions are obtained in which the
suggested estimators are more proficient than other existing estimators. An example is
given.
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Introduction

Non-response (NR) is an important issue that remains under constant debate
amongst statistician for a variety of reasons. Some of which may be (i) refuel to
answer the questionnaire, (ii) not available at home, (iii) lack of information, (iv)
failure to contact, (v) unable to answer, and (vi) inaccessible. In the case of NR in
double sampling, the sampling procedure due to Hansen and Hurwitz (1946) is
employed for estimating the universe mean. Cochran (1977), Rao (1986), Khare
and Srivastava (1993, 1995), Tabasum and Khan (2004), Singh and Kumar (2008,
2009a, 2009b, 2010a, 2010b), Singh, Kumar, and Kozak (2010), and Pal and Singh
(2016, 2017) made their contribution towards the mean estimation of the principal
variable y while considering the NR at the next phase. If information (data) on the
subsidiary variable x is not readily available, the double sampling method is used,
where a large, first-phase sample is drawn from the universe and information is
collected over the variable x to achieve a superior estimate of the universe mean X.
A second-phase sample can then be taken, and the main variable y is observed. Wu
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and Luan (2003) discussed that the major benefit of using double sampling is the
gain in high precision without significant increase in price.

Methodology

Suppose a finite universe U = (U1, Uo,..., un) of N units. A simple random sample
of size n is drawn without replacement from U. Let y; be the value of the main
variable y on the unit ui (i=1, 2,..., N). In surveys on human populations,
frequently n: units ‘respond’ at first attempt while the remaining n. units do not
respond. The survey may be conducted through the mail or telephone calls, perhaps
computer aided.

If NR occurs at the first attempt, Hansen and Hurwitz (1946) introduced a
procedure for estimating the universe mean Y containing the subsequent steps: (i) a
simple random sample of size n is drawn and the questionnaire is mailed to the
sampled units; (ii) a subsample of size r = nok (k > 1) from the n2 non-responding
units in the initial attempt is conducted through personal interviews.

In the Hansen and Hurwitz (1946) procedure, the universe of size N can be
assumed to divide into two strata of size N1 and N2 = (N — N1) of “respondents” and
“non-respondents”.

Let Y and Sy2 be the mean and mean square of the principal character for the

finite universe of N units. Let Y3 and Sjl indicate the mean and mean square of the
response group of N1 units. Similarly, let Y> and S‘y"2 indicate the mean and mean

square/variance of the NR group No.
The universe mean Y of the principal variable y is given as

Y = DlY_l + DzY_z , 1)
with D1 = (N1/N) and D2 = (N2 / N). For Y, the unbiased estimator is
y = dlyl + dzyzr ) 2)

with d1 = (n1/n), d2 = (n2/n), and y1 and y» are the sample means depend upon nz
and r units. The variance of j" is

V(y)=Y? [zcj + z*cj(z)] (3)
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(Cochran, 1977, p. 371), where A=(1—-fHnt=("1—-N7), f is the sampling
fraction, and 1" = n"1D,(k — 1). We also define Cx = Sx/ X and Cx) = Sxq) / X as the
coefficients of variation of the whole universe and NR group, respectively.

The Double Sampling Method and Estimators

If the list of units is available but X is not known, insert X’ based on a large sample
of size n’ in place of X. The sampling design will be as follows: (1) choose a large
sample of size n’' in the first-phase via a simple random sampling without
replacement (SRSWOR) method and observed x variable. (2) From the selected n’
first-phase units, we select a second-phase sample of n via SRSWOR and observe
that n1 and nz observations are responding and not-responding, respectively. Collect
information on y for ny responding units. (3) From the n2 NR observations, select a
sub-sample of size r = nk™* (k > 1) using SRSWOR by making an extra effort and
observe the character y for these r chosen units. There are n’ observations on the x
variable. Of the n second-phase units there are ni observations on the y variable
from units who respond, and also r observations on the sub-sample selected from
the n2 NR units of the second-phase sample. Let &' be the sample mean of x based
on a preliminary large sample n’. Using the information on x when X is not known,
consider two classes of estimators for ¥ in two unusual situations, which are as
follows:

Situation I:  The case when X is unknown and incomplete information is
available on the main variable y and the supplementary variable x. In this situation,
we use (ny + r) responding units for y and x from the sample of size n and X’ to
estimate X. Khare and Srivastava (1993, 1995) and Tabasum and Khan (2004)
suggested the following two-phase sampling ratio and product type estimators for
Y

TRld = 2—17*’ (4)
TPld = ZV* ) (5)
where z = (" / ¥').

Up to order n?, the expression for bias and mean squared error (MSE) of Trud
and of Tpuq are as follows:
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B(Tews ) =Y {6C7 +2°C2,) }(1-R;), (6)

MSE (T, ) = V> [(zcj +AC2, )+{oc +AC2, J(1-2R; )} , (7)
B(T) =Y | 0C7 +2°C2, |R; ®)

MSE (T, ) =V [(105 +ACE, )+{oC +2C2, | (14 2R; )} , 9)

where

R = [eccf +A°C,CE, } / [ecf + z*cj(z)]

and 0= (n"t—n"1) for

C C S S
C= y , C. = ¥(2) , — yX ’ — y(2) ,
Pyx [Cx J 2) = Pyx(2) {Cx(z) Pyx Sysx Pyx(2) Sy(Z)Sx(Z)

where Syx and Syx) are the covariance of the entire group and NR group,
respectively.
From (3) and (7),

V(Y")~MSE(Tayy ) =V2{0C7 + 2°C2, }(2R; -1). (10)
It follows from (10) that the estimator Triq is more accurate than y if
R: >(1/2). (12)

In a similar fashion it can be shown that the estimator Tp14 is more accurate than j*
if

R; <—(¥/2). (12)
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Observing conditions (11) and (12), the conventional unbiased estimator 7" is to be
preferred over the ratio estimator Trig and product estimator Tpyq if

—(1/2)<R; <(12). (13)

Situation Il1: The case when X is unknown and incomplete information on y and
complete information on X is available. In this situation, using information on the
responding units (n1 + r) on y and complete information on x from n, the two-phase
sampling estimators for Y are

TRZd = Vily*’ (14)
TP2d = VV* ) (15)

where v = (x / x').
Up to order n"%, the bias and MSE of Trzd and Tpzq are as follows:

B(Tqpq ) =Y 6C? (1-C), (16)

MSE Tz ) = V72| (AC] + 2°CF, )+ 6C2 (1-2C) | (17)
B(T,, ) =Y 6OCC?, (18)

MSE (Te,y ) = V2| (2C2 +2°C}, ) +6C2 (1+2C) |. (19)

The estimators Trzg and Tezq are respectively better than i~ if
C>(Y 2) (20)
and

C<—(Y2) (21)

However, 7" is to be preferred over Trig and Tpaq if
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—(1/2)<C<(1/2) (22)

Taking motivation from Chami, Singh, and Thomas (2012), consider a two-
parameter ratio-product-ratio (RPR) estimator and its properties in double sampling
with non-respondents in two different situations.

The Suggested Two-Parameter RPR Estimator

Consider a two-parameter RPR estimator in two-phase sampling in two situations
(i.e. Case I and Case II).

Case I: There Is Non-Response on y as Well as on x

In this situation, for estimating the ¥ of y, we propose the following two-parameter
RPR estimator:

LS ST 1|

where a, f are real constants (see Chami et al., 2012). The goal is to derive values
for these constants a, # such that the bias and/or the MSE of Tq. ) are minimal. The
two parameters a and S may be used to obtain an asymptotically optimum estimator
(AOE) Td(((’;ﬁ) that is (up to order n™t) both unbiased and has minimal MSE. The

estimator T,)  corrects the limitations of the commonly used estimators y", Tru,

and Te1q, Which are to be used for a specific range of the parameters (C, C(z), or Ry)

and, in addition, out-performs the traditional estimators by having the minimum
MSE.

Td@p = Td(-«,1-p, Meaning the estimator Tqep IS invariant under a point
reflection through the point (a, ) =(1/2,1/2). In the point of symmetry
(o, ) = (1/2, 1/2), the estimator reduces to 7 due to Hansen and Hurwitz (1946).
In fact, on the entire line p=1/2, the suggested estimator reduces to j". For
(o, /) =(1,0) or (a, p)=(0,1), the recommended estimator Tqwp reduces to
Taao) = T = (¥ 7))/ X' = Te1a, While for (a, f)=(0,0) or (a, p)=(1,1), it
reduces to the ratio estimator Taw,0) = Tawy = (F'%) / £ = Trua.

All the three estimators j*, Trid, and Te1q can be obtained from the proposed
estimate Tq(.p by using suitable values of the parameters («, ). Consider estimator
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(23) and compare it to the three estimators j*, Trig, and Tpag as follows: In order to
derive the bias of T up to O(n1), write

such that E(ei) =0 for i =0, 1 and E(e/)=0, with relative variances
E(ef)=[ AC;+4°C), |, E(ef)=[ 4CI+2°CL, |, E(ef)=ACl,

where A’ = (n"1—N™).
Also,

E(es8) =] 20,.C,C,+ 2P0 CyaCuy |- E(6:81) = 20, C,C, . E e€]) = AC.

Express (23) as

e (1+(1—ﬂ)e1+,8e1) (1+:Bel+(1_ﬂ)el)
Taepy =Y (1+6) ‘W pe+(1-p)e) (1_a)(1+(1—ﬁ)el+ﬂe{) A
From (24),

Towp =V [ 146 —(1-2a)(1-28) (e, — €]+, —&,8; )+ (1—r — B)(1-2 )€
+(a-p)(1-28)e? —(1—4/3+4ﬁ2)e1e1']

or

(Td(aﬁ) —\7) =V e, ~(1-20)(1-2) (e, — & +&,8, —&.€])

(25)
+(1-a-B)(1-2p)¢ +(a—B)(1-28)e ~(1-4B+45" g |

Taking expectations together with (25), the expected bias of Tq(p) is obtained as
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B(Ty) = E(To =V

_ (26)
=Y (1-28){6C} + 2°Cl, [ (1-a - )~ (1-22)R;]]
Equating (26) to zero,
B=Y2 or p=[l-a-(1-2a)R;]. (27)

The proposed RPR estimator Tq.p), Substituted with the value of g from (27),
becomes an approximately unbiased estimator for Y. Furthermore, as the sample
size n is very large, the bias of Tqps Will be negligible. If there is response not
present on x the result in (27) reduces to

=12 or p=[l-a-(1-2a)C]. (28)

Squaring (25) obtains the approximate expression

(T —¥) =2 (& +(1-2a) (1-2p)’ (& -& ~eg))
—2(1-2a)(1-2) (e, -8} |

(29)

The approximate MSE of Tq(p is obtained as

MSE(T,, ) =Y" [(zcj +A'CE, )+ (1-2a) (1-2p) foC? + 2°C2, |
~2(1-2a)(1-28){00,C,C, + 2" P2 CaCoe }}
_y? [(zcj +2°CE, )

+(1-2a)(1-2p){oC; +A*cj(2)}{(1—2a)(1—2ﬂ)—2R;}}

(30)

Taking the gradient V = (9/0a, d/dp) of (30),

VMSE(T,, , ) =472{0C] + 2°C, | (1-2a)(1-28)-R; |;
(1-2a,1-28)

(31)
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Equating (31) to zero to obtain the critical points, we obtain the following solutions:
a=1/2,5=12 (32)
or

(1-2a)(1-25) =R.. (33)

The critical point in (32) is a saddle point unless R} =0, in which case a local

minimum is obtained. However, the critical points obtained in (33) give the
equation of the hyperbola symmetric through («, ) = (1/2, 1/2). The minimum
mean squared error (MMSE) of Tq(p) is obtained as

MMSE (T, ) =Y [(;Lcj +AC, )-foct+acl, | R;‘Z} . (3)

which is independent of « and .

Theorem 1. UptoO(n™),
MSE(T,, )2 V? [(/ch +ac,)-{octeact, | Rﬂ

if (1—2a)(1—2,8) =R].
This is the minimal possible MSE up to order n't for a wide family of
estimators to which the estimator (23) belongs, for instance, for estimators

L, ZV*h(Z), (35)

h(.) being a function of z such that h(1) =1 and also satisfies certain regularity
conditions similar to those given in Srivastava (1971). Whatever value of R; in

(30) has, we are always able to select an AOE Td((o; » from the two-parameter

family in (23).
Further, putting (32) into T, 5 Vields y* of Y. Thus, the MSE of 7" is

10
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MSE(T

d(1/2,1/2)) = MSE(V*) =Y? DCE + )“*Cj(z)] (36)

Remark 1. When NR occurs on both y and x with unknown X, an alternative to
a two-parameter RPR estimator for Y is defined by

T8, =[ a2 +(1-a) 2>V ]y,
The estimator T has the same bias and MSE up to order n as T in (23).

ﬂ

The class of estimators T is further generalized along the Imes of Singh,

d(a.B)
Solanki, and Singh (2016) as
T2, =[az® +(1-a) 2 ]y,

where z° = (ax” + b) / (ax’ + b), (a, p) are the same defined in Chami et al. (2012, p.
2), and a (# 0) and b are either real or the functions of the known parameters
associated with x and y or both (x, y).

Efficiency Comparison and Choice of Parameters

Comparing the MSE of " to Ty, observe the following from (3) or (36) and from
(30):

V(7' )-MSE(T,, ) =Y [(1—20{)(1—2ﬂ)(9CX2 +A°CL,)

+{(1-22)(1-28)} - 2R; |

(37)

which is positive if
(1-2a)(1-2B)[ 2R; - (1-2a)(1-28) | > 0. (38)
Therefore

. 1 1 .1
(l) a>5,ﬁ>z and Rd >E(l—2a)(l—2ﬂ),

11
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.. 1 1 . 1

(”) a<5,ﬁ>§ and Rd <E(1—20{)(1—2ﬂ),

1 1 . 1

(iii) « >§’ﬂ<§ and R; <§(1—2a)(1—2ﬁ), or

(iv) a<%ﬂ<%mmm>%a_ag@_au

The conventional unbiased estimator y* is to be preferred if —~1/2<R; <1/2.
Combining (i) to (iv) with —1/2 <R} <1/2, obtain the following explicit range:

25 +2R; -1
V) |f0<Rgs%andﬁ>%,then1<a<(ﬁ ‘ )from(i).

2 2(26-1)
(28+2R; -1)
2(2/-1)
1 1 1 (2p+2R;-1)
(V”) If —ES Rd <0 and ﬂ<§,then E<G<W

28 +2R; -1
(viii) If 0< R <X and B <, then (26+2R; -1)
2 2 2(25-1)

(i) If —%s R? <0 and ﬂ>%,then <a<% from (i)
from (iii).

<a< % from (iv).

Comparing the MSE of Trid and Ta(,, from (7) and (36),

MSE (Tayq ) — MSE(Td<a,ﬂ>)

_4y? {.9(:3 +z*cj(2)}[(2aﬁ—a— B){R; -1-(2aB-a-p)}] )
which is positive if
(20 -a - p){R; -1-(2aB-a - B)} > 0. (40)
Therefore,
R; -1>(20f—-a-f)>0 (41)

12
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or
R} —1<(2a,6’—a—,8) <0.
Hence, from (42), when R; >1,

+R; -1
If,B<%, then (ﬁ—d)<a< B

(28-1) (28-1)

1 B (B+R;-1)
If,B>§, then m<a<w.

Further, from (42), when 1/2 < R} <1 we have

1 B (B+R;-1)
If,B<§, then m<a<w.

(ﬂ+R;;—1) B

a<——.

1
If'B>§’ then W< (2,8—1)

Comparing the MSE of Tp1d to Ta,p), from (9) and (36),

MSE (T ) — MSE (Taw))

= aY2{0C? + A'C, } (1+ 20~ - B){R; — (208 -a - )} ]

The expression (47) is positive if
(1+2aB-a-B)[R; —(2ap-a-p)]>0.

Obtain the following two cases:

R > (20 —a—B)>-1 if both factors in (47) are positive or

13
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—1 R} < (2o —a— ) if both factors in (47) are negative. (50)

Unbiased Asymptotically Optimum Estimators

Solving the two equations (27) and (33), calculate the parameters « and j, where
the proposed class of estimators T4, turns out to be, at least up to first degree of
approximation, an unbiased AOE. Obtain a line

ﬂ:%, (€.C))=(0.,0) orR; =0 (51)

(recall that on this line the recommended family Tq. 5 always reduces to ) and a
curve (a* (R:j),,b’* (R;‘), Ry ) € R?® in the parameter space with

o 1 R; N A e
a(Rd)=§(1i 2R;‘—1]’ ﬂ(Rd):E(li Rd(ZRd—l)). (52)

Inserting the values of «’(R;) and °(R;) given by (52) in (23), obtain the
estimator of Y as

To(eo) :Td(a*(R;)ﬁ*(R;))

2(R; +1)x2—2(R; —1)x“ +(2R;* R -1) (¥ -x') | (53)
T e T,

*

=y

The denominator vanishes if

R§=O.25{1i g4 32X } u=(x"-%).
u

Thus,

and

14
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{69(:(:2 i ){*(: (:2 }2
_ . X (2)~x(2)
MSE (T, ) ) =V°| (AC7 +2°C2,)) - ecfm*(; 2 (54)

x(2)
=V(y){2-+")

where p" is the correlation coefficient between 7~ and u.
The estimator Td(R*) in (53) is an unbiased AOE. One might be interested to

know whether inside 0 < R} <1/2 there is a choice of real parameters (o, 5) € R?

such that an AOE with small bias is obtained. Putting (33) in (27) yields the first-
degree approximation of the bias of an AOE:

B(Ty ) = V7 [ 6C7 +2°C,, || Ri (1-2R0)+(1-28) | (55)

It follows from (33) and (55) the bias can only be made zero if Ry <0 or
R; >1/2. Otherwise, there is always a positive contribution coming from the term
R; (1— ZRJ) that does not vanish regardless of what is chosen for (see Chami et al.,
2012, p. 10).

Case II: There is Non-Response on y Only, Complete Information is
Available for a Sample of Size n on the Subsidiary Variable x

If NR occurs only on y and information lacks about X, a two-parameter RPR
estimator suggested for Y is

Pans) = {n{%} +(1—n){%ﬂ y (56)

where (7, 0) are real constants.

The objective is to obtain values for these scalars (5, J) such that bias or the
MSE of Pyq(,,s) are minimal. Note that Pd;.0) = Pd(1-,1-9); that is, the estimator Pq(;,5)
is invariant under a point reflection through the point (7, ) = (1/2, 1/2). In the point
of symmetry (», 0) = (1/2, 1/2), the proposed class estimators reduces to the

—*

conventional unbiased estimator 7°; that is, we have Py =y -

15
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The recommended family Pq(,.s) reduces to Troa = (% / X') for (3, ) = (0, 0)
or (1, 1), and to Troa = 7" (x / &) for (5, 0) = (1, 0) or (0, 1). Write 2= (x — X) / X
such that E(ez) =0, E(e})=AC} , E(eoe2) =/pCyCx, and E(eg)=AC] .

X k)

Expressing (56),

- 1+(1-5)e, + ¢ 1+6e,+(1-6)e
P, .=Y(1 - . 57
d(n.9) ( +e°){nl+6e2+(l—5)el' +( 77)1+(1—5)e2+§e’ 7)
The expression (57) can be approximated as
Pyt =Y [1+e,—(1-27)(1-25)(e, — & +e8, — &) 59

+(1--8)(1-25)€} - (1-25)' e,€{+ (- 6) ¢’
or

(Pdw) —\7) = Y[eo —(1-2n7)(1-265)(e, — €, +e,8, — €48 )

: (59)
+(1-n-0)(1-26)e ~(1-26) e,€]+(n-6)e’ |
The approximate bias of Pq(,s) IS
B(Pd('lﬁ)) - E(Pd(ﬂﬁ) _Y_) (60)
=YC}(1-25)0[ (1-n-5)-(1-2)C]
The suggested class of estimators Pq(,,s) would be almost unbiased if
B(Py,s)=0 =(1-26)[(1-n-08)-(1-27)C]=0 (61

=6=12o0r5=1-n-C+25C

If 6=1/2 in (56), Payu2 =7 (the conventional unbiased estimator), and for
6=1-5n-C+25Cin (56), Pqg.s yields an almost unbiased estimator for Y as
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5 o (7+C-27C)X +(1-n-C+2nC) X
an) =Y ’7(1—;7—C+2nc)x+(77+c-2nc)>?

(1 )(1—77—C+2nc)x+(n+(:—2nc)>?
T (+C—2yC)x +(1-n-C+27C) X

(62)

The estimator (62) depends on the parameter C, which can be determined
through a pilot sample survey. The bias of P4, is ignorable if the sample sizes
(n, n") approach the universe size N because the factors A and A’ tend to zero.
Squaring both sides of (57), the approximated expressions is

(Pupy V) =V2[&~(1-27)(1-25) (&, —¢{) |
=V?[ e} (1-2n) (1-26)" (e} - 26,6 +¢]") (63)

—2(1-2n)(1-25)(ese, — ) |
The approximate MSE of Pq(,,s) IS

MSE(PdW)) —Y? [zcj +2°C2,,

+0(1-27)(1-25)C? {(1-27)(1-25)-2C} | 4
which is minimum when
(1-27)(1-25)=C (65)
The MMSE of Py, is given by
MMSE (B, | =| 287 (1~ P, )+ A3 S; + 'S}, | (66)

Theorem 2.  Upto O(n™Y),
MSE (P, )= 487 (1-p2 )+ A pLS: +A°SL, |
if (1—2)(1—26) = C.
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ESTIMATION OF MEAN WITH TWO-PARAMETER...

Singh and Kumar (2009Db) showed the quantity
A8} (1= pl )+ A'p5SE + A4Sk, is the minimal possible MSE, up to order n™*, for a

wide family of estimators to Whlch the estimator (56) also belongs. For instance,
for estimators of the form Pgn = " h(v) where h(.) is a function of v such that h(.) = 1.
Singh and Kumar (2009a) showed incorporating the sample and universe variances
of x might vyield an estimator that has a lower MSE than

ASE(1-pL )+ A'pLS;+A'SE,,, especially when relationship between y and x is

markedly nonlinear. For every value of C, it is possible to select an AOE Pd((‘),jﬁ)

from the two-parameter family in (56) (Chami et al., 2012, p. 6).

Remark 2.  An alternative to the two-parameter RPR estimator defined in (56)
is given by

pd((li)]ﬁ) - [nv(l’z‘s) +(1- n)v(zﬁfl)] v

Up to order n?, the bias and MSE of P | are same as defined for the family of

Pa.0)- The class of estimators P( is further generalized as

7.8)

Pd((%;),s) :[UV (1~ 25) (l 77) 1(25-1) ]y ’

where v' = (ax + b) / (ax’ + b) and #, J, a, and b are the same as defined earlier.

Efficiency Comparison and Choice of Parameter
From (3) and (64),

V(y* ) N MSE(Pd(Wﬁ)) (67)
=(A-A")Y*CZ(1-2n)(1-25){2C - (1-2a)(1-2p3)}

which is positive if
(1-27)(1-26){2C - (1-2a)(1-2p)} >0. (68)

Therefore, either
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(i) n>%,5>% and C>%(1—277)(1—25),

i) 7 <%,5<% and C>%(1—277)(1—25),

(i) 7 <%,5>% and C<%(1—277)(1—25), or

(iv) n >%,5>% and C<%(1—277)(1—25).

The family Pq,) is better than 7~ as long as the above conditions hold true. It can
be easily shown that Pq(,,s) IS more precise than

(i)  Tred (in the presence of non-response) if
either C-1>(2n5-n—-5)>0
or C-1<(2n6-n-56)<0

(if)  Tp2d (in the presence of non-response) if
either C>(2n6-n-06)>-1
or C<(2775—77—5)<—1

Remark 3.  For a more explicit range of #, J, and C, the reader is referred to
Chami et al. (2012).

Unbiased Asymptotically Optimum Estimator
Combining (61) and (64), calculate the parameters # and o, where the suggested
estimator becomes, at least up least up to O(n™?), an unbiased AOE. Obtain a line
with

6=12,C=0 (69)

(recall that on this line our estimator always reduces to j’) or a curve
(7°(C), 8" (C),C) eR? in the parameter space with

n'(C)=5(1£C/(2C-1)).6°(C) - %(u c(2c-1)). (70)
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The parametric curve in (69) is only defined for C<0 or C>1/2. It is three
hyperbolas. In the region 0 < C <1/2 of the parameter space, minimizing MSE
comes with a tradeoff in bias. Putting (70) in (56), the unbiased estimator for Y is

—x

P = y .

d(n*(c),a‘*(c))

2(C+1)x'-2(C-1)%*+(2C* ~C-1)(X - X)
4xx —(2C* -C-1)(X'-X)’

The denominator vanishes if

C= 0.25(1i\/9+(327Y)/(7—Y)2) (71)

It can be shown up to order n™! that the bias and MSE of the suggested estimators
is

_ _ 2 _ 2 a2
B( P (C))) =0, MSE(F’d(U‘ (C)ﬁ*(c))j =[ 287 (1-pL)+ 282, |-

Thus, the estimator Pd is a biased AOE.

(v(©)s'(c))

Price Aspects on Both Cases

Derivation of Optimum Values of n', n, and k for Fixed Price C' < Co

Denote the total (fixed) price of the surveys, apart from overhead, by Co. The
expected total price of the survey apart from overhead is given by

C'=c/n'+n (cl +C W, + Cg\lin j : (72)

where ¢, is the price per unit of identifying and observing the supplementary

character, ¢y is the price per unit of mailing a questionnaire/visiting the unit in the
second-phase, ¢ is the price per unit of collecting or processing data obtained from
the ny responding units, and cs is the price per unit of obtaining data for the sub-
sampled units. For the sake of convenience of determination of n’, n, and k for (i)
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fixed price and (ii) specified MSE, retaining the terms of order n!, we write the
approximate MSEs of the estimators Q1 = Ta., and Q2 = Py, as

MSE(Q) = F7 N + SV, + 573, —¥7CE, =12, (73)

where Y?Voi, Y?V1i, and Y2V are coefficients of the terms 1/n, 1/n’, and k/n in
MSE(Q),i=1, 2.
Consider a function ¢:

¢=MSE(Q)+4, {cl’n' +n (cl +CW, + Civz j} : (74)

Using the calculus of obtaining the optimality,

T A L (75)
Ao A\
n=Y I Vo +KVy v :i* Vo kY ’ (76)
\li.(cl+c2W1+ : 2) AW+
Doy Yo 1 Vo (77)
k 2’1C3W2 ﬂ";l< C3W2

where

= T e 2
0

opt

The optimum value of k is

KO = | Vol (78)
- (Cl + C2W1 )V2i
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With the help of (72), (75), (76), and (78),

Y =J4 (79)
The resulting minimum MSE(Qi), 1 =1, 2, are
MMSE(Q,)
| 1 , i cW. 1 (80)
=Y? o licl+\/(V0i+k§p{V2i)[cl+c2W1+ﬁ} —ch
0 opt

Derivation of n', n, and k for Specified MSE, V <V,

Observing (78), the optimum value of k is independent of the total price or specified
precision. Let V" be the fixed MSE of Qj, i = 1, 2:

A :Vszoﬁl,v“Evﬁ—%cz} i=12, (81)
n n n

y

1 (82)

—| 1 - i cW. . Y*C?
=Y? o Vac (V0i+k§p)tV2i) c1+czwl+ﬁ V, + N !
0

opt

Using the optimum value of the expected price, obtain the MSE

D(Q)

— -1
1 : i CW . Y| (83)
=Y? R (V0i+k§p)tV2i) C, +CW, + E(i)z V, + Ny
0

opt
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Numerical Example

Population source: Khare and Sinha (2007). The values of required parameters are

N =95,n=35n"=70,D, =0.75,D, =0.25,C, =0.15613,C
C, =0.03006,C, ,, =0.02478, p,, =0.328,C  , =0.477

) =0.12075,

(2) (2)

Case I: There Is Non-Response on y as Well as on x

Compute the optimum values of a for given k and £ by using the formula
o =1/2[1-{R} /(1-2p)} ] (84)

fork=5(-1)2and g (> 1/2) = 0.51, 0.75, 1.00 (0.25) 2.50, B (< 1/2) = 0.49, 0.25,
0.00 (0.25) —1.50. Findings are shown in Table 1. However, the optimum values of
p for given k and o may also be computed by using the formula

B =Y2[1-{R; [(1-2)} ]. (85)

Table 1. Optimum values of a for selected values of 8 and for k =5 (-1) 2

B
k 0.51 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
5 52.0309 2.5612 1.5306 1.1871 1.0153 0.9122 0.8435 0.7945 0.7577
4  50.9240 2.5170 1.5085 1.1723 1.0042 0.9034 0.8362 0.7881 0.7521
3  49.3693  2.4548 1.4774 1.1516 0.9887 0.8910 0.8258 0.7793 0.7443
2 47.0260  2.3610 1.4305 1.1203 0.9653 0.8722 0.8102 0.7659 0.7326
k 0.49 0.25 0.00 -0.25 -050 -0.75 -1.00 -1.25 -1.50
5 -51.0309 -1.5612 -0.5306 -0.1871 -0.0153 0.0878 0.1565 0.2055 0.2423
4 -49.9240 -1.5170 -0.5085 -0.1723 -0.0042 0.0966 0.1638 0.2119 0.2479
3 -48.3693 -1.4548 -0.4774 -0.1516 0.0113 0.1090 0.1742  0.2207 0.2557
2 -46.0260 -1.3610 -0.4305 -0.1203 0.0347 0.1278 0.1898 0.2341 0.2674
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Table 2. The PRE of Ty, p with respect to y*

a

k B 0510r0.49 0.750r0.25 1.000r0.00 1.250r-0.25 1.50 0r-0.50 1.750r-0.75 2.00 0or-1.00 2.250r-1.25 2.50 or -1.50
5 0.510r0.49 100.0059 100.1464 100.2926 100.4385 100.5840 100.7293 100.8743 101.0189 101.1633
0.75 or 0.25 100.1464 103.5650 106.8834 109.8822 112.4890 114.6353 116.2613 117.3191 117.7766
1.00 or 0.00 100.2926 106.8834 112.4890 116.2613 117.7766 116.8529 113.6019 108.3970 101.7727
1.250r -0.25 100.4385 109.8822 116.2613 117.6196 113.6019 105.2259 * * *
1.50 or —-0.50 100.5840 112.4890 117.7766 113.6019 101.7727 * * * *
1.75 or -0.75 100.7293 114.6353 116.8529 105.2259 * * * * *
2.00 or -1.00 100.8743 116.2613 113.6019 * * * * * *
2.250r-1.25 101.0189 117.3191 108.3970 * * * * * *
2.50 or -1.50 101.1633 117.7766 101.7727 * * * * * *

4 0.51o0r0.49 100.0056 100.1396 100.2789 100.4179 100.5566 100.6950 100.8330 100.9707 101.1081
0.750r 0.25 100.1396 103.3888 106.5215 109.3299 111.7470 113.7105 115.1669 116.0747 116.4070
1.00 or 0.00 100.2789 106.5215 111.7470 115.1669 116.4070 115.3230 112.0413 106.9231 100.4724
1.25 0r -0.25 100.4179 109.3299 115.1669 116.1539 112.0413 103.8304 * * *
1.50 or -0.50 100.5566 111.7470 116.4070 112.0413 100.4724 * * * *
1.750r -0.75 100.6950 113.7105 115.3230 103.8304 * * * * *
2.00 or -1.00 100.8330 115.1669 112.0413 * * * * * *
2.250r-1.25 100.9707 116.0747 106.9231 * * * * * *
2.50 or -1.50 101.1081 116.4070 100.4724 * * * * * *

Note: * indicates the PRE was less than 100
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a

k B 0510r0.49 0.750r0.25 1.000r0.00 1.250r-0.25 1.500r-0.50 1.750r-0.75 2.00 0or-1.00 2.250r-1.25 2.50 or -1.50
3 0.510r0.49 100.0056 100.1396 100.2789 100.4179 100.5566 100.6950 100.8330 100.9707 101.1081
0.75 or 0.25 100.1396 103.3888 106.5215 109.3299 111.7470 113.7105 115.1669 116.0747 116.4070
1.00 or 0.00 100.2789 106.5215 111.7470 115.1669 116.4070 115.3230 112.0413 106.9231 100.4724
1.25 or —0.25 100.4179 109.3299 115.1669 116.1539 112.0413 103.8304 * * *
1.50 or —-0.50 100.5566 111.7470 116.4070 112.0413 100.4724 * * * *
1.75 or -0.75 100.6950 113.7105 115.3230 103.8304 * * * * *
2.00 or -1.00 100.8330 115.1669 112.0413 * * * * * *
2.250r-1.25 100.9707 116.0747 106.9231 * * * * * *
2.50 or -1.50 101.1081 116.4070 100.4724 * * * * * *

2 0.510r0.49 100.0047 100.1181 100.2359 100.3534 100.4704 100.5871 100.7034 100.8194 100.9349
0.750r 0.25 100.1181 102.8378 105.3980 107.6267 109.4733 110.8936 111.8519 112.3233 112.2953
1.00 or 0.00 100.2359 105.3980 109.4733 111.8519 112.2953 110.7574 107.3959 102.5336 *
1.25 0r -0.25 100.3534 107.6267 111.8519 111.7687 107.3959 * * * *
1.50 or -0.50 100.4704 109.4733 112.2953 107.3959 * * * * *
1.750r -0.75 100.5871 110.8936 110.7574 * * * * * *
2.00 or -1.00 100.7034 111.8519 107.3959 * * * * * *
2.250r-1.25 100.8194 112.3233 102.5336 * * * * * *
2.50 or -1.50 100.9349 112.2953 * * * * * * *

Note: * indicates the PRE was less than 100
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Table 3. PREs of AOE T”

d(a.6) and of Trig With respect to y*

k
d(w),y') 117.7951 116.4084 114.6544 112.3728
PRE(Trig, y) 112.4890 111.7470 110.7814 109.4733

5 4 3 2
PRE (T(‘”

The percent relative efficiency (PRE) of Ta(,p With respect to 7~ is obtained using
the formula, the results of which are given in Table 2.

PRE(Td(a' " y*)

_ 2 *~2 2 aYA
=(ac;+a°Cy, )(ACt+27CY, (86)

+(1-2a)(1-2B)(6C7 + 2°C}, ) (1-2a) (1~ 23) - 2R;])1 x100

The PREs of the AOE T

d(ep) AN OF Tria With respect to ¥ are obtained using

the formulae

ACZ+ A'C?
PRE(T\(), V)= y — Q) x100 (87
| (aci+a7Cy, )-(6C7 +27C2, )R

AC2+A'C?
Y 1) x100  (88)

(zcj +A°C, ) - (ecf +A°C, )(1— 2R}?)

PRE (Try V') =

Findings are given Table 3.

Observe from Table 1 that (i) when k is fixed, aopt decreases when g (> 1/2)
increases up to 2.50; (ii) for fixed values of k, the magnitude of aopt (i.€., absolute
optimum value of &) decreases when f (< 1/2) decreases to —1.50. Table 2 shows
that the PRE of Ty With respect to " is larger than 100 for («, 8) € (0.51, 2.50),
(o, p) € (—1.50, 0.49), and all values of k=5 (—1) 2. Thus it follows that, in said
range of (a, ) and all the values of k =5 (—1) 2, the suggested estimator Tq(.p) IS
more accurate than j*. A large number of flexible values of («, ) exist for which

the suggested estimator is superior to . From Table 3, observe the AOE Td((‘);ﬁ) is
more accurate than 7~ and Trag With a substantial gain in efficiency.
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Table 4. Optimum values of n for given &

[ 0.51 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
Nopt  43.09040 2.20360 1.35180 1.06790 0.92591 0.84070 0.78390 0.74340 0.71300

[ 0.49 0.25 0.00 -0.25 -0.50 -0.75 -1.00 -1.25 -1.50
Nopt  —42.09040 -1.20360 -0.35180 -0.06790 0.07410 0.15930 0.21610 0.25660 0.28700

Case Il: When NR Occurs Only on y and Information on x is Available

Compute the optimum values of # for a given ¢ using the following formula:
T =1/2[1-{C/(1-25)} | (89)

The results are given in Table 4.
The optimum values of ¢ for a given # may also be computed by using the
following formula:

S =1/2[1-{C/(1-27)} ] (90)
The PRE of Py(,,s) With respect to j7° is obtained using the formula

PRE(PdW), y*)

2 #2 2 *~2
=(ac;+a°cy, )(ACt+27CY, (92)

+(1-2n)(1-25)(6C7 + A°CL,) ) (1-27) (2~ 25)—2C])1x100

The results are given in Table 5. The PREs of the AOE Py} | and of Treg with

respect to y~ are obtained using the formulae below, the results are given Table 6.

ACZ+1'C?
PRE(P;(‘Q o y*) = ’ 2 %100 (92)
| (acs+2°C}, )-0C7C]

ACE+A°CY,
(2c;+aCl,))-0Ck (1-2C?)

PRE (Payy. V') = x100 (93)
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Table 5. The PRE of Pg(,5 with respect to y*

n

k 6 0510r049 0.750r025 1.000r0.00 1.250r-0.25 1.500r-0.50 1.750r-0.75 2.000r-1.00 2.250r-1.25 2.50 or -1.50
5 0.510r0.49 100.0021 100.0512 100.1022 100.1529 100.2034 100.2536 100.3036 100.3533 100.4028
0.750r 0.25 100.0512 101.2040 102.2400 103.0967 103.7648 104.2364 104.5062 104.5709 104.4299
1.00 or 0.00 100.1022 102.2400 103.7648 104.5062 104.4299 103.5394 101.8759 * *
1.250r-0.25 100.1529 103.0967 104.5062 104.0847 101.8759 * * * *
1.50 or -0.50 100.2034 103.7648 104.4299 101.8759 * * * * *
1.750r -0.75 100.2536 104.2364 103.5394 * * * * * *
2.00 or -1.00 100.3036 104.5062 101.8759 * * * * * *
2.250r-1.25 100.3533 104.5709 * * * * * * *
2.50 or -1.50 100.4028 104.4299 * * * * * * *

4 0.510r0.49 100.0023 100.0583 100.1164 100.1741 100.2316 100.2889 100.3458 100.4024 100.4588
0.750r 0.25 100.0583 101.3729 102.5580 103.5406 104.3084 104.8513 105.1622 105.2368 105.0742
1.00 or 0.00 100.1164 102.5580 104.3084 105.1622 105.0742 104.0492 102.1411 * *
1.250r-0.25 100.1741 103.5406 105.1622 104.6766 102.1411 * * * *
1.50 or -0.50 100.2316 104.3084 105.0742 102.1411 * * * * *
1.750r-0.75 100.2889 104.8513 104.0492 * * * * * *
2.00 or -1.00 100.3458 105.1622 102.1411 * * * * * *
2250r-1.25 100.4024 105.2368 * * * * * * *
2.50 or -1.50 100.4588 105.0742 * * * * * * *

Note: * indicates the PRE was less than 100
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n

k 6 0510r049 0.750r025 1.000r0.00 1.250r-0.25 1.500r-0.50 1.750r-0.75 2.000r-1.00 2.250r-1.25 2.50 or -1.50
3 0.51o0r0.49 100.0027 100.0677 100.1351 100.2022 100.2690 100.3354 100.4016 100.4674 100.5329
0.750r 0.25 100.0677 101.5970 102.9812 104.1330 105.0355 105.6750 106.0417 106.1298 105.9379
1.00 or 0.00 100.1351 102.9812 105.0355 106.0417 105.9379 104.7306 102.4937 * *
1.250r-0.25 100.2022 104.1330 106.0417 105.4691 102.4937 * * * *
1.50 or -0.50 100.2690 105.0355 105.9379 102.4937 * * * * *
1.750r -0.75 100.3354 105.6750 104.7306 * * * * * *
2.00 or -1.00 100.4016 106.0417 102.4937 * * * * * *
2.250r-1.25 100.4674 106.1298 * * * * * * *
2.50 or -1.50 100.5329 105.9379 * * * * * * *

2 0.51o0r0.49 100.0032 100.0807 100.1610 100.2410 100.3206 100.3999 100.4788 100.5574 100.6356
0.750r 0.25 100.0807 101.9086 103.5724 104.9635 106.0579 106.8357 107.2826 107.3900 107.1560
1.00 or 0.00 100.1610 103.5724 106.0579 107.2826 107.1560 105.6878 102.9854 * *
1.250r-0.25 100.2410 104.9635 107.2826 106.5850 102.9854 * * * *
1.50 or -0.50 100.3206 106.0579 107.1560 102.9854 * * * * *
1.750r-0.75 100.3999 106.8357 105.6878 * * * * * *
2.00 or -1.00 100.4788 107.2826 102.9854 * * * * * *
2.250r-1.25 100.5574 107.3900 * * * * * * *
2.50 or -1.50 100.6356 107.1560 * * * * * * *

Note: * indicates the PRE was less than 100

29



ESTIMATION OF MEAN WITH TWO-PARAMETER...

Table 6. PREs of AOE Pd(o)a) and of Trzg With respect to y*

(.

K 5 4 3 2
PRE(P(,.y") 1045744 1052409 106.1346 107.3959

d(n,

PRE(Trad, 7') 103.7648 104.3084 105.0355 106.0529

Table 4 exhibits that (i) the optimum value of # decreases as o (> 1/2)
increases up to 2.50; (ii) the absolute of optimum value of # also decreases when
0 (< 1/2) decreases to —1.50. Observe from Table 5 that (i) for —1.50 < 5 < 2.50,
0.51 <6 <1.00,andk =5 (—1) 2, the proposed class of estimators Pq(,,s) are always
better than j7"; (ii) for —0.50 < 5, 6 < 1.50 and k = 5 (1) 2, the envisaged estimator
Pa(.0) is more efficient than j7* with a considerable gain in efficiency. Table 6 shows
that the envisaged AOE P,¢) . is more efficient than 7" and Treq fork =5 (~1) 2.

From Table 2, note there is enough flexibility in choosing the values of the
scalars #, ¢ in order to get estimators #, & for Pq(,s) and better than 7, Troq. It is also
observed from Table 5 that, for fixed values of #, ¢, the values of PRE(Pd(;.0), )
increase as the values of k decrease. Comparing the results shown in Tables 2 and
3 to Tables 5 and 6, the proposed family of estimators Tq(.s (Where NR occurs on
both the variables y, x) performs better than the corresponding estimator Pq,.s)
(where NR occurs only on the main variable y). The recommendation favors that
the suggested estimators Tq,5 and Pa,,s) be used in practice.
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