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Item response models typically assume that the item characteristic (step) curves follow a 

logistic or normal cumulative distribution function, which are strictly monotone functions 

of person test ability. Such assumptions can be overly-restrictive for real item response 

data. A simple and more flexible Bayesian nonparametric IRT model for dichotomous 

items is introduced, which constructs monotone item characteristic (step) curves by a finite 

mixture of beta distributions, which can support the entire space of monotone curves to any 

desired degree of accuracy. An adaptive random-walk Metropolis-Hastings algorithm is 

proposed to estimate the posterior distribution of the model parameters. The Bayesian IRT 

model is illustrated through the analysis of item response data from a 2015 TIMSS test of 

math performance. 

 

Keywords: Bayesian modeling, item response theory, MCMC, adaptive Metropolis, 

TIMSS data 

 

Introduction 

Item Response Theory (IRT) is a successful enterprise that provides a class of 

useful statistical models for the analysis of item response data (Hambleton & 

Swaminathan, 1985; van der Linden, 2016). 

Any IRT model posits a probabilistic relationship between each person's 

response to each test item based on person ability and item parameters. To explain, 

let Yni be the item response random variable for person n and test item i with persons 

and items indexed by n = 1,…, N and by i = 1,…, I (respectively). Nearly all IRT 

models make at least the following three assumptions (Junker & Sijtsma, 2001): 

 

1) Unidimensionality: Person ability, θ, is real-valued (possibly 

multidimensional); 
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2) Local Independence: The conditional distribution of the responses to the 

test items satisfies: 

 

 ( ) ( )1 1

1

Pr , , | Pr |
I

I I i i

i

Y y Y y Y y 
=

= = = =   (1) 

 

3) Monotonicity: The Item Step Response Function (ISRF), 

 

 ( )Pr |  monotone non-decreasing in  for 1, , ,  0,1, ,i iY k i I k K  = =    (2) 

 

with Pr(Yi = 1 | θ) = Pr(Yi > k | θ) the Item Characteristic Curve (ICC) for a 

dichotomous (Ki = 1) items. 

 

Then, θ has positive correlation with the total test score 
1

I

ii
Y

=  (van der Ark & 

Bergsma, 2010). 

These three assumptions exactly describe the nonparametric, monotone 

homogeneity (MH) IRT model (Mokken, 1971). It is the most general monotone 

IRT model which nests the 4-parameter logistic model (Hambleton & Swaminathan, 

1985); the graded response logistic model (Samejima, 1969) and all other monotone 

IRT models (Van der Ark, 2001) are special cases. 

The focus of the current study is on unidimensional IRT for dichotomous 

items. Although parametric IRT models provide a certain elegance and 

computational simplicity, nonparametric IRT models are more informative and 

more closely describe the true item response functions that underlie real data. This 

contrasts with parametric IRT models which assume that ICCs follow a parametric 

distribution function, such as the logistic function (e.g., van der Linden, 2016). Also, 

a nonparametric IRT model can provide better fit to data compared to parametric 

IRT models, be used to evaluate the fit of the latter, and promote coherent statistical 

inference from a Bayesian perspective (Karabatsos & Walker, 2009a). 

Various MH models were proposed, defined by generalized linear models that 

specify the ICC as an inverse-link function parameter that is monotone in θ, and 

give support to the entire space of monotone cumulative distribution functions 

(c.d.f.s). Qin (1998) and Duncan and MacEachern (2008) proposed a Bayesian 

nonparametric (BNP) model that constructed monotone ICCs by a Dirichlet process 

centered on a 2-parameter logistic IRT model. Karabatsos (2016) modeled ICCs by 

a BNP infinite-mixture of normal c.d.f.s for the latent item response variables, with 

person- and item-dependent mixture weights. Karabatsos and Sheu (2004) and 
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Tijmstra, Hessen, van der Heijden, and Sijtsma (2013) proposed isotonic regression, 

using a Bayesian and frequentist approach (respectively), assuming discrete-valued 

θ. Luzardo and Rodriguez (2015) used classic nonparametric kernel regression 

methods to estimate monotone ICCs. Finally, Karabatsos and Walker (2009b, 

2010) presented a BNP beta-mixture model for test score equating. 

In this study, a simple and flexible BNP IRT model is proposed for 

dichotomous items and continuous-valued ability (θ), extending a generalized 

linear model with unknown link function parameter (Mallick & Gelfand, 1994). 

Our BNP IRT model maps the unidimensional ability parameter θ from the real-

line onto (0, 1), and constructs a (random) monotone ICC (inverse-link) by a 

flexible finite-mixture of beta c.d.f.s. In fact, any smooth c.d.f. on (0, 1) can be 

approximated arbitrarily-well by a suitable finite mixture of beta c.d.f.s (Diaconis 

& Ylvasiker, 1985). 

The Bayesian beta-mixture IRT model (BBM-IRT) is more flexible than 

traditional parametric IRT models, which make logistic or normal distributional 

assumptions about the ICCs. The BBM-IRT model allows one to estimate more 

accurately estimate ICCs which may have shapes that would be considered 

misfitting under the traditional models. Also, the BBM-IRT model is more 

parsimonious and computationally feasible than previous BNP IRT models which 

can employ thousands of parameters. 

The BBM-IRT model is completed by the specification of a joint prior 

distribution for the person ability parameters and the item-level mixture weight 

parameters, and the number of mixture components. Our IRT model is a flexible, 

approximate BNP model, because it makes use of finite instead of infinite mixtures 

to attain more computational tractability. A mixture of 3 to 4 beta distributions was 

believed to provide adequate modeling flexibility (Mallick & Gelfand, 1994). This 

article shows that a mixture of 10 beta distributions, per test item, can provide gains 

in data fit for IRT modeling. 

The next section presents our BBM-IRT model, and statistics for assessing 

the model’s goodness-of-predictive fit. A simple iterative Markov chain Monte 

Carlo (MCMC) algorithm (Appendix) can be used for estimating the posterior 

distribution of the model parameters and their functionals of interest. The following 

section illustrates our IRT model through the analysis of a 20-item math exam data 

set, from a 2015 Trends in International Mathematics and Science Study (TIMSS) 

assessment of 8th grade students. The final section discusses conclusions and 

possible directions for future research. 
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Methodology: BBM-IRT Model 

Let Yni ∈ {0, 1} be a dichotomous item-response variable for person n and test item 

i. For a matrix of realized item response data, Y = (yni)N×I, our BBM-IRT model is 

defined by 

 

 

( )
( )

( )
( )

( ) ( )
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
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

   

 



=

 
= = − +  + 

=

=

ω ξ

  (3) 

 

Each monotone ICC Pr(Yi = 1 | θ) is modeled by the incomplete beta function 

(Binc) with beta mixture weights (ωij), assigned a Dirichlet (Di) prior distribution 

(with a non-informative, uniform prior defined by αij ≡ 1, for j = 1,…, J), scaling 

beta-shape parameters (ξ1, ξ2), and a uniform U(0.01, J) prior distribution. Each test 

item i has J – 1 free mixture-weight parameters ω1, ω2,… ωJ–1, with 
1

1
1

J

iJ ijj
 

−

=
= − . The N person ability parameters θn are assigned a standard 

normal N(0, 1) prior distribution. The probability density functions (p.d.f.s) of these 

distributions (denoted n(∙ | 0, 1), di(∙ | α1,…, αJ), and u(∙ | 0, J)) are defined in 

standard texts (Kotz, Balakrishnan, & Johnson, 2004; Johnson, Kotz, & 

Balakrishnan, 1994, 1995). 

The specification of the BBM-IRT model (3) mainly requires the choice of 

the number of beta mixture components (J), which can be sufficiently large so that 

the beta mixture well-approximates the entire space of monotone ICCs. The term 
( )

( )

exp 2

1 exp 2

•

+ •
  in (3) maps from the real line (the space of θ) onto (0, 1), using a constant 

(e.g., 2) to bound the Binc function within (0, 1) (Mallick & Gelfand, 1994). 

Figure 1 displays three groups of samples of monotone ICCs. Each group was 

generated from 25 samples of the mixture weights ( )
1

J

i ij j


=
=ω  from the uniform 

Dirichlet prior, and samples of ξ1 and ξ2 from the uniform U(0.01, J) distribution 

(respectively) for J =  3 (left panel), J = 5 (middle), and J = 10 (right). 
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Figure 1. Random samples of 25 ICCs from the BBM-IRT model, where J = 3 (left panel), 
J = 5 (middle), and J = 10 (right) 
 

 

The ICCs in the left panel (J = 3) resemble the ICCs of a 2-parameter logistic 

(2PL) IRT model. If J = 1 and ξ = ξ1 = ξ2, then the BBM-IRT model reduces to a 

Rasch-type IRT model with common item discrimination parameter, ξ. The middle 

and right panels show that, as J is increased, the ICCs become wigglier and more 

flexible. The right panel shows that J = 10 mixture components defines a BBM-

IRT model that broadly and flexibly supports the entire space of monotone ICCs. 

The BBM-IRT model is thus a monotone IRT model, and a highly-parametric BNP 

model (Müller & Quintana, 2004). 

For the BBM-IRT model (3), the joint posterior p.d.f. (distribution) of the 

model parameters, ( ) ( )( )1 21 1
, , ,

N I

n in i
  

= =
=ζ ω , is given by (up to a normalizing 

constant) 

 

 

( ) ( )  ( ) 

( ) ( ) ( ) ( )

1

1 1

1 1 2

1 1

π | Pr 1| ; , 1 Pr 1| ; ,
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N I
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N I

n i i iJ

n i

Y Y

J J

 

    

−

= =

= =

 = − =
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  (4) 
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with ICCs Pr(Yni = 1 | θn; ωi, ξ) defined by (3) and corresponding posterior c.d.f.  

Π(ζ | Y). The model’s posterior predictive expectation (E) and variance (V) of the 

item response variable Yni is given by (for all persons n = 1,…, N and all items 

i = 1,…, I) 

 

 
( ) ( ) ( )

( ) ( ) ( )  ( )

E Pr 1| ; , Π | ,

V Pr 1| ; , 1 Pr 1| ; , Π |

NI ni ni n i

NI ni ni n i ni n i

Y Y d

Y Y Y d



 

= =

= = − =





ω ξ ζ Y

ω ξ ω ξ ζ Y
  (5) 

 

Using the D(m) criterion, it is possible to compare the predictive fit between 

BBM-IRT models to the data, which may differ by choice of J or prior distribution. 

Specifically, for each model indexed by m = 1,…, M, the D(m) criterion measures 

posterior predictive model fitness to the data Y (Laud & Ibrahim, 1995), and is 

defined by 

 

 ( ) ( )  ( )
2

1 1

D E | V |
N I

ni NI ni NI ni

n i

m y Y m Y m
= =

= − +   (6) 

 

The first term in (6) measures goodness-of-fit to the sample data (Y). The second 

term is a model complexity penalty. Among the M Bayesian models compared, the 

model with the best predictive utility for the given data set (Y) is identified as the 

model with the smallest value of D(m). The D(m) criterion is often used in Bayesian 

data analysis practice, and is easier to compute compared to other criteria. 

The fit of a single BBM-IRT model (m) can be assessed by standardized item-

response residuals: 

 

 
( )

( ) 
1 2

E |
,  for 1, , , 1, ,

|

ni NI ni

ni

NI ni

y Y m
z n N i I

V Y m

−
= = =   (7) 

 

An absolute residual |zni| exceeding 2 or 3 suggests that the response is an outlier 

under the model. 

The BBM-IRT model’s posterior distribution (4) and the posterior predictive 

quantities (5)-(7) can be estimated by using an adaptive random-walk Metropolis-

Hastings MCMC algorithm. See the Appendix for details. 
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Results: TIMSS Data Analysis 

The BBM-IRT model is illustrated through the analysis of 2015 TIMSS data on a 

basic math and algebra assessment of 716 American 8th grade students. The data 

set contains the students' individual responses to 20 math items, each response 

scored as correct (Yni = 1) or incorrect (Yni = 0). The data contains 639 unique item 

response patterns on the 20-item test. The Supplementary material of this article 

provides the TIMSS data set and the descriptions of the 20 items. It also provides 

the MATLAB code files that were used to run the MCMC sampling algorithm to 

analyze the TIMSS data using BBM-IRT and the 2PL IRT models, and to produce 

the results reported here. 

The BBM-IRT model was fit to the TIMSS data using J = 10 components, a 

uniform Dirichlet prior for the mixture weights of the test items, and a standard 

normal N(0, 1) prior for the 716 student math ability parameters (respectively). The 

posterior distribution of the model was estimated by a 100K iteration run of the 

MCMC sampling algorithm (Appendix). 
 
 

 
 
Figure 2. Marginal posterior mean and ±2 standard deviation for of the 639 unique item 
response patterns of the TIMSS exam (left); marginal posterior mean of the 20 TIMSS 
ICCs (right) 
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Figure 3. Trace and density plot of the math ability (θ) of 500th unique examinee item-
response pattern 
 

 

The left panel of Figure 2 presents the marginal posterior means and ±2 

standard deviations of the person ability parameter for each of the 639 unique item 

response patterns. The right panel presents the marginal posterior mean estimates 

for the 20 ICCs of the test items. It shows multiple crossings among the 20 ICCs, 

with some ICCs fluctuating more than others. These ICC results exhibit the 

flexibility and monotonicity of the BBM-IRT model, which may be misdiagnosed 

as outlying according to traditional IRT models that assume more restrictive logistic 

or normal ICCs. 

Some of the estimated ICCs in Figure 2 have non-zero lower asymptotes, 

indicating the presence of guessing among low-ability examinees for these items. 

Thus, the BBM-IRT model (and its MCMC algorithm) can account for lucky-

correct item responses among low-ability examinees. It does so while avoiding the 

issues of estimating the chance parameter in the three-parameter logistic IRT model, 

using either marginal maximum likelihood or Bayesian methods. 

The following two diagnostic methods (Flegal & Jones, 2011) can be used to 

assess the convergence of the 100K MCMC parameter samples to the IRT model's 

exact posterior distribution. First, trace plots were used to evaluate the mixing 

(sampling independence) of the MCMC chain of each model parameter, over the 

100K iterations. Second, a non-overlapping batch means analysis of the chain was 

performed to calculate the Monte Carlo 95% confidence interval half-width 
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(95%MCCIhw) for each marginal posterior mean and posterior variance estimate. 

MCMC convergence can always be improved by running the MCMC chain beyond 

100K sampling iterations. 

Figure 3 illustrates these two MCMC convergence diagnostic methods for 

θ(500), the ability parameter corresponding to the 500th unique item response pattern 

in the TIMSS data. The left panel of Figure 3 presents the trace plot of θ(500) over 

the 100K MCMC sampling iterations. This plot supports good mixing and (near) 

sampling independence of the chain. The right panel presents a kernel density 

estimate of the marginal posterior distribution of θ(500). The marginal posterior 

mean and variance of θ(500) is –0.3 and 0.1, with corresponding 95%MCCIhw 

values of 0.00 and 0.00. It can be concluded that the MCMC samples of the 

parameter θ(500) have adequately converged to its marginal posterior distribution. 

Similar conclusions about MCMC convergence can be reached about the ability 

parameter for each of the 639 unique item response patterns, and about points on 

the ICC curve, for each individual test item. 

For comparison, several different versions of the BNP-IRT model were fit to 

the TIMSS data. They employed either J = 3, 5, and 10 mixture components; either 

a standard normal N(0, 1) prior distribution, a left-skewed normal mixture prior 

0.25 × N(–1, 1) + 0.75 × N(1, 1), or a right-skewed normal mixture prior 

0.75 × N(–1, 1) + 0.25 × N(1, 1) on the ability parameters; and a uniform Dirichlet 

prior. The Bayesian 2PL model was also fit to the data, defined by 

 

 ( )
( )

1
Pr 1| , , for 1, ,  and 1, ,

1 exp
ni n i i

i n i

Y n N i I  
  

= = = =
+ − +  

  (8) 

 

with an N(0, 1) prior for the person ability parameters (θn), an N(0, 4) prior for the 

item difficulty parameters (βi), and an N(0, 1/4) prior for the log slope log(αi) 

parameters (respectively) suggested for analyzing data from large scale testing 

(Patz & Junker, 1999). The 2PL model was fit using an adaptive version of a 

published random-walk Metropolis MCMC algorithm (Patz & Junker, 1999). To 

estimate the posterior distribution of each of these compared IRT models, the 

MCMC algorithm was run for 100K iterations. In each case, MCMC convergence 

analyses can be shown to yield similar results as before. 

For each IRT model, Table 1 summarizes the posterior predictive model fit 

statistic, D(m), and the proportion of posterior predictive standardized residuals (zni) 

greater than 2 (and 3) in absolute magnitude. By considering both criteria, we find 

that the BBM-IRT model with J = 10 mixture components obtained the best 

predictive fit among all the IRT models compared, including the 2PL model which 
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had about twice the number of outliers with residuals |zni| > 3. In terms of D(m), the 

BBM-IRT model fit best under symmetric priors for the ability parameters. 
 
 
Table 1. A comparison of the predictive fit between different IRT models 
 

  Proportion residuals 

Bayesian IRT Model D(m) |zni| ≥ 2 |zni| ≥ 3 

BBM-IRT, J = 3 4752 0.03 0.005 

BBM-IRT, J = 5 4643 0.03 0.006 

BBM-IRT, J = 10 4625 0.03 0.004 

BBM-IRT, J = 3, left-skewed θ prior 4729 0.03 0.004 

BBM-IRT, J = 5, left-skewed θ prior 4666 0.03 0.005 

BBM-IRT, J = 10, left-skewed θ prior 4637 0.02 0.004 

BBM-IRT, J = 3, right-skewed θ prior 4702 0.03 0.004 

BBM-IRT, J = 5, right-skewed θ prior 4653 0.03 0.005 

BBM-IRT, J = 10, right-skewed θ prior 4640 0.02 0.004 

2PL Model 4717 0.03 0.010 

 
 
Figure 4. Estimated TIMSS ICCs for different IRT models 
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Figure 4 compares the marginal posterior mean estimates for the 20 ICCs 

between the BBM-IRT models with J = 3, 5, and 10 components and the Bayesian 

2PL model (respectively), and an N(0, 1) prior for the ability parameters. Compared 

to the ICCs of the 2PL model, the ICCs of the 3-component BBM-IRT model were 

most similar, and the ICCs of the 10-component BBM-IRT model were most 

dissimilar. 

Conclusions 

A novel monotone BBM-IRT model was introduced for dichotomous item 

responses and unidimensional ability. It provides a useful compromise between 

more restrictive parametric IRT models and more flexible and computationally 

intensive BNP models. The BBM-IRT flexibly models each ICC by a finite mixture 

of beta c.d.f.s, which approximately support the entire space of monotone ICCs. 

Posterior inference of this model is possible through the application of a simple 

adaptive Metropolis MCMC algorithm. The usefulness of the BBM-IRT model was 

illustrated through the analysis of item response data from a TIMSS math 

assessment. 

The BBM-IRT model shows promise for future research opportunities. For 

instance, one can extend this model to handle the analysis of polytomous item 

response data, by coding each observed polytomous response to a set of binary 

codes (Begg & Gray, 1984), or by replacing the Bernoulli kernel (incomplete Beta 

function) with a binomial or multinomial kernel in (3). In addition one can extend 

this model to handle multidimensional ability by assigning each person separate 

ability parameters for different subgroups of test items that measures different traits. 
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Appendix: MCMC Algorithm for BBM-IRT Model 

For the BBM-IRT model (3), a 3-step MCMC iterative sampling algorithm is used to estimate the posterior distribution 

(4) (density) of the N ability parameters and the I ICC parameters. A large number of sampling iterations (S) is run until 

the algorithm yields a sample that converges (approximately) to a sample from the posterior distribution (MCMC 

convergence). 

The algorithm is initiated at stage s = 0, with model parameter values 
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Each iteration s ∈ {1,…, S} of the MCMC sampling algorithm runs the following three adaptive Metropolis 

sampling steps, applying the established methodology of Atchadé and Rosenthal (2005): 
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In (A1), a few terms cancel out, including the counts ( )
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In (A2), the Dirichlet proposal p.d.f. constants and the normal proposal p.d.f. cancel out. Then, the proposal variances 

are updated by 
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 
 toward achieving the optimal acceptance rate of 0.234 for 

multidimensional parameters (Roberts & Rosenthal, 2001), for i = 1,…, I. 
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In Step 3, a candidate ( )
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The uniform prior p.d.f. constants and the normal proposal p.d.f. cancel out of the ratio (A3). Then, the proposal variance 

is updated by 
    ( )  ( )13min 10 , 1 0.44
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 
 toward achieving the optimal acceptance rate of roughly 0.44 for 

two-dimensional parameters (Roberts & Rosenthal, 2001). 

As a simple by-product of the three-step MCMC algorithm, it is possible to estimate the marginal posterior average 

and variance of each ability parameter, θc (for c = 1,…, C), and the marginal posterior mean and variance of each ICC, 

Pr(Yi = 1 | θ; ωi, ξ), over a chosen fine grid of θ values. Specifically, at each MCMC iteration s ∈ {1,…, S}, the marginal 

posterior expectation (E) and variance (V) of each θc is updated through Rao-Blackwellization, via the calculations 
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The marginal posterior mean and variance of the ICC, Pr(Yi = 1 | θ; ωi, ξ), at each chosen grid point θc and test item 

i = 1,…, I, are updated by 
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Similar methods compute the updates 
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NI niY m  for each person n = 1,…, N and item i = 1,…, I. The 

updated estimate of the standardized item-response fit residual, per unique item response pattern, is given by 
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