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Which of Two Independent Variables Is 
Most Important When There Is Curvature 
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Consider three random variables Y, X1 and X2, where the typical value of Y, given X1 and 

X2, is given by some unknown function m(X1, X2). A goal is to determine which of the 

two independent variables is most important when both variables are included in the 

model. Let τ1 denote the strength of the association associated with Y and X1, when X2 is 

included in the model, and let τ2 be defined in an analogous manner. If it is assumed that 

m(X1, X2) is given by Y = β0 + β1X1 + β2X2 for some unknown parameters β0, β1 and β2, a 

robust method for testing H0 : τ1 = τ2 is now available. However, the usual linear model 

might not provide an adequate approximation of the regression surface. Many smoothers 

(nonparametric regression estimators) were proposed for estimating the regression 

surface in a more flexible manner. A robust method is proposed for assessing the strength 

of the empirical evidence that a decision can be made about which independent variable 

is most important when using a smoother. The focus is on LOESS, but it is readily 

extended to any nonparametric regression estimator of interest. 

 

Keywords: Smoothers, measures of association, explanatory power, bootstrap 

methods 

 

Introduction 

A common goal when dealing with regression is determining which of two 

explanatory variables is the most important. For three random variables, say Y, X1 

and X2, let m(X1, X2) denote some unknown function that reflects the typical value 
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of Y, based on some measure of location, given X1 and X2. A way of judging the 

relative importance X1 and X2 is to assume  

 

 m(X1, X2) = β0 + β1X1 + β2X2 (1) 

 

where β0, β1 and β2 are unknown parameters. Based on (1), many methods have 

been proposed for making a decision about which of the two independent 

variables is more important that are known to be unsatisfactory (e.g., Wilcox, 

2017, section 11.10). The list of unsatisfactory methods includes stepwise 

regression, methods based on R2 (the squared multiple correlation), a 

homoscedastic approach based on Mallows’s (1973) Cp criterion, and ridge 

regression. There are several alternative methods that provide an estimate of 

which independent variable is most important. They include cross-validation, the 

0.632 bootstrap method (Efron & Tibshirani, 1993), and the nonnegative garrote 

technique derived by Breiman (1995). Other possibilites are the lasso (Tibshirani, 

1996) and least angle regression (see Efron et al., 2004). For a review of the 

literature dealing with least angle regression, see Zhang and Zamar (2014). But a 

limitation of all of these methods is that they do not provide an indication of the 

strength of the empirical evidence that a decision can be made about which 

independent variable is most important. Inferential methods based on the lasso 

and least angle regression have been derived (Tibshirani et al., 2016; Lee et al., 

2016), but they are not robust: they assume normality and homoscedasticity. 

Let ω1 be some measure of association (e.g., Pearson's correlation or 

Spearman's rho) between Y and X1, ignoring X2, and let ω2 be defined in an 

analogous manner. Another approach is to test H0 : ω1 = ω2. But a fundamental 

and well-known concern regarding this approach is that the strength of the 

association between Y and X1 can depend on whether X2 is included in the model. 

Another broad approach is to let τj be some measure of association between 

Y and Xj (j = 1,2) when both independent variables are included in the model, and 

then test  

 

 H0 : τ1 = τ2. (2) 

 

The goal is to determine whether there is reasonably strong evidence regarding 

which of the independent variables has the stronger association.  A robust method 

for accomplishing this goal, still assuming that (1) is true, is described in Wilcox 

(2018). Also see method IBS in Wilcox (2017, section 11.10.6). 
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There is, however, a practical concern. The linear model given by (1) might 

not provide an adequate approximation of the regression surface. A more flexible 

approach is to include additional parameters in the model. For example, include a 

quadratic term. But it is known that even this approach can be unsatisfactory, 

which has led to the development of nonparametric regression estimators, 

generally called smoothers (e.g., Efromovich, 1999; Eubank, 1999; Fox, 2000; 

Green & Silverman, 1993; Gyöfri et al., 2002; Härdle, 1990; Hastie & Tibshirani, 

1990). 

There are numerous examples that smoothers can provide a deeper 

understanding regarding the association between Y and two independent variables 

compared to the usual linear model (e.g., Wilcox, 2017). 

The goal is a method for testing hypotheses about the relative importance of 

X1 and X2 based on some smoother that provides a flexible approach to curvature. 

The focus is on the smoother derived by Cleveland and Devlin (1988), but the 

basic idea is readily extended to any smoother of interest. It is certainly not being 

suggested that the Cleveland-Devlin estimator dominates other estimators that 

might be used. Clearly this is not the case. (For comparisons of the Cleveland-

Devlin estimator to other smoothers, in terms of mean squared error and bias, see 

Wilcox, 2005.) When using a smoother, however, rather than the usual linear 

model given by (1), a refinement of the null hypothesis given by (2) might be 

needed. Data from the Well Elderly 2 study (Clark et al., 2012) are used to 

illustrate why. 

Generally, the Well Elderly 2 study was designed to assess the effectiveness 

of an intervention program aimed at improving the physical and emotional 

wellbeing of older adults. A portion of the study was aimed at understanding the 

association between a measure of perceived health and wellbeing (SF36) and two 

independent variables: a measure of depressive symptoms (CESD) and the 

cortisol awakening response (CAR), which is the difference between cortisol 

measured upon awakening and again about 30-45 minutes later. The CAR is 

associated with various measures of stress. Both enhanced and reduced CARs are 

associated with various psychosocial factors including depression and anxiety 

disorders (e.g., Bhattacharyya et al., 2008; Pruessner et al., 2003). Here the focus 

is on measures taken after intervention.  

Shown in Figure 1 is the estimated regression surface. It is suggested from 

the plot the strength of the association between the CAR and SF36 depends on 

CESD. When CESD is relatively low, for example 7, there appears to be a much 

stronger association between the CAR and SF36 compared to when CESD is 

relatively high. The relative importance of CESD, compared to CAR, can depend 
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on both the value of CESD as well as the magnitude of the CAR.  More broadly, 

what is needed is a method that assesses the relative importance of X1 and X2, 

given that X1 = x1 and X2 = x2, where x1 and x2 are specified values, keeping in 

mind that the relative importance of X1 and X2 can depend on the values of x1 and 

x2. Let τ1(x2) denote some conditional measure of the strength the association 

between Y and X1 given that X2 = x2. In a similar manner, let τ2(x1) denote some 

conditional measure of the strength the association between Y and X2 given that 

X1 = x1. A natural approach is to test 

 

 H0 : τ1(x2) = τ2(x1) (3) 

 

and if this hypothesis is rejected, make a decision about which independent 

variable has the stronger (conditional) association with Y given that X1 = x1 and 

X2 = x2. Of course, estimates of τ1(x2) and τ2(x1) help provide perspective 

regarding the extent one of the independent variables is more important than the 

other. 
 
 

 
Figure 1. Regression surface predicting the typical SF36 scores as a function of the CAR 
and CESD. 
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Another possibility is to focus on τ1(x2) for J > 1 values associated with the 

second independent variable, say X21, ⋯, X2J. Of course the same can be done for 

τ2(x1). Let 
1  = Στ1(x2j)/J and let 

2  = Στ2(x1j)/J. One approach might be to test the 

global hypothesis that the strengths do not differ by testing 

 

 H0 : ( ) ( )1 2 2 1x x =   (4) 

 

Another approach is to test 

 

 H0 : τ1(x2j) = τ2(x1k) (5) 

 

for each j and k in conjunction with an adjustment that controls the  probability of 

one or more Type I errors among the J2 tests that are performed. The focus here is 

on J = 3, where the three values for x1k and x2j are estimates of the lower, middle 

and upper quartiles associated with X1 and X2, respectively. 

Preliminaries 

The immediate goal is to review the Cleveland-Devlin estimator, which is 

generally known as LOESS. As previously stressed, this is not to suggest that 

alternative estimators have no practical value. But considering all reasonable 

choices is extremely difficult, particularly in light of some computational issues 

described below. A second preliminary issue is choosing some reasonably robust 

measure that reflects the strength of the association.  

Consider the case of a single independent variable, X. Based on the random 

sample (X1, Y1), ⋯, (Xn, Yn), the smoother derived by Cleveland (1979) is applied 

as follows. Given X, the method looks for a pre-specified number of points among 

the Xi values that are close to X. It then scales these distances yielding values in 

the half open interval [0, 1), and then these scaled values are transformed via the 

tricube function yielding weights, which in turn yield a weighted mean of the Y 

values which estimates the mean of Y, given X. 

More precisely, let δi = |Xi − X| (i = 1, ⋯, n) and let δ(1) ≤ ⋯ ≤ δ(n) be the δi 

values written in ascending order. Choose some constant κ, 0 ≤ κ < 1, and let K be 

the value of κn rounded to the nearest integer. Set Qi = |X − Xi| / δ(K) and if 

0 ≤ Qi < 1, set wi = (1 − Q
i
3)3, otherwise wi = 0. Finally, use weighted least squares 

regression to estimate m(Xi) using wi as weights. 

Consider the more general case dealing with p ≥ 1 independent variables. 

Cleveland and Devlin (1988) proceeded as follows. Let η(X,Xi) be the Euclidean 
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distance between X and Xi = (Xi1, ⋯, Xip). Let W(u) = (1 − u3)3, 0 ≤ u < 1; 

otherwise W(u) = 0. Let d be the distance of the Kth-nearest Xi to X. Now 

wi = W(η(X,Xi)/d) are used as weights in weighted least squares to compute m(X). 

The R function loess performs the computations. Here the span is taken to be 

κ = 2/3. 

There remains the issue of measuring the strength of the association. Here, τ 

is taken to be a robust version of explanatory power. Let ξ2(Y) denote some 

measure of variation associated with the random variable Y. Let Ŷ  denote the 

predicted values of Y, which here are based on LOESS. Then a robust version of 

explanatory power (e.g., Wilcox, 2017) is 

 

τ2 = ξ2(Ŷ ) / ξ2(Y). 

 

If Ŷ  is based on the ordinary least squares estimator, ξ2 is taken to be the 

usual variance, and if there is a single independent random variable, then τ2 = ρ2, 

where ρ is Pearson's correlation. 

There are many robust measures of variation (e.g., Lax, 1985). For a 

summary of their relative merits, see Wilcox (2017). Here, the 20% Winsorized 

variance is used with the understanding that arguments for considering some other 

measure of variation can be made. Let g = [0.2n], where [0.2n] is the greatest 

integer less than or equal to 0.2n. The Xi (i = 1, ⋯, n) values written in ascending 

order are denoted by X(1) ≤ ⋯ ≤ X(n). The 20% Winsorized values based on Xi 

(i = 1, ⋯, n) are  

 

 Wi = X(g + 1), if Xi ≤ X(g + 1)  

 Wi = Xi, if X(g + 1) < Xi <  X(n − g) 

 Wi = X(n − g), if X ≥ X(n − g). 

 

The Winsorized sample mean is the mean based on the Winsorized values, and 

the Winsorized variance is the usual sample variance, again based on the 

Winsorized values. 

Description of the Method 

As noted in the previous section, the focus is on the 20% Winsorized variance. 

For the case of a single independent random variable, τ2 is readily estimated based 

on the random sample (Xi,Yi), i = 1, ⋯, n. Simply compute ˆ
iY  based on LOESS, in 

which case the numerator of τ2 is estimated with the Winsorized variance based 
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on the ˆ
iY  values. And the denominator is estimated via the Winsorized variance of 

Y1, ⋯, Yn. 

Consider the case where two explanatory variables are included in the model. 

Let ξ
1
2(x2) denote the population Winsorized variance of Ŷ , given that Xi2 = x2 and 

note that ξ
1
2(x2) can be estimated based on the random sample (Xi1, Xi2, Yi), 

i = 1, ⋯, n. Let iY  be the estimate of Y when Xi = (Xi1,x2), in which case the 

Winsorized variance based on 1, , nY Y , say ̂
1
2(x2), estimates ξ

1
2(x2). In a similar 

manner, ̂
2
2(x1) estimates ξ

2
2(x1).  

Determining whether X1 is more important than X2, rather than testing (3), it 

suffices to test 

 

 H0 : ξ1
2(x2) = ξ

2
2(x1). (6) 

 

That is, attention can be focused on the numerator of τ2, which is the approach 

taken here henceforth. This distinction was found to make a difference in 

simulations described in the next section. 

The next goal is to describe the bootstrap method that was considered for 

testing (6). This is followed by an adjustment that was dictated by preliminary 

simulations. 

A basic percentile bootstrap method for testing (6) is applied as follows: 

 

1. Generate a bootstrap sample by resampling with replacement n 

points from (Xi1, Xi2, Yi), i = 1, ⋯, n, yielding say 

(X
11

*, X
12

*, Y
1
*), ⋯, (X

n1
*, X

n2
*, Y

n
*). 

 

2. Compute an estimate of ξ
1
2(x2) and ξ

2
2(x1) based on this bootstrap 

sample yielding ξ
1
*(x2) and ξ

2
*(x1), respectively, and let 

d* = ξ
1
*(x2) − ξ

2
*(x1). 

 

3. Repeat steps 1 through 2 B times and let d
b
* (b = 1, ⋯, B) denote the 

resulting d* values.  

 

4. Put the d
b
* values in ascending order and label the results 

d*
(1) ≤ ⋯ ≤ d*

(B). 
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5. Let  = αB/2, rounded to the nearest integer and u = B − . Then a 

1 − α confidence interval for ξ
1
2(x2) − ξ

2
2(x1) is (d*

( +1), d
*
(u)). 

 

From Liu and Singh (1997), a (generalized) p-value is p = 2min( p̂ ,1 − p̂ ), 

where p̂  = A/B and A is the number of  d* values less than zero. The hypothesis 

given by (4) can be tested in a similar manner.  

Here, B = 500 was used, which has been found to perform reasonably well, 

in terms of controlling the Type I error probability, when dealing with other 

robust estimators (e.g., Wilcox, 2017). However, a larger value for B might 

increase power (Racine & MacKinnon, 2007; cf. Davidson & MacKinnon, 2000).  

This will be called method L. 

Preliminary simulations based on 2,000 replications indicated that method L 

performs poorly: the actual probability of a Type I error can be substantially 

smaller than the nominal level. 

This is particularly true when there is no association. The strategy is to 

assume Y = β1X1 + β2X2 + ϵ, where the error term ϵ has a standard normal 

distribution. The idea is to find an adjusted p-value, say pc, and reject the 

hypothesis of interest if p ≤ pc. Then, simulations are used to investigate the 

impact of non-normality and curvature.  

When β1 = β2 = 0, the estimate of pc generally exceeds 0.2, depending on the 

sample size. An estimate substantially larger than 0.05 was expected based on 

results in Wilcox (2018). When using a regression estimator based on the usual 

linear model Y = β1X1 + β2X2 + ϵ, rather than a smoother, a similar phenomenon 

was observed. When there is no association, explanatory power makes no 

distinction between an estimate indicating a slightly positive association and one 

indicating a slightly negative association.  This suggests among the bootstrap 

samples, if there is no association, the expectation is that P(d* < 0) will be greater 

than 0.05, which was found to be the case for the situation at hand. 

For convenience, when β1 = β2, let βc denote this common value. As 

indicated, when βc = 0, estimates of pc generally exceed 0.2. As β_c increases, the 

estimate of pc decreases up to a point. For βc = 0.5, 1 and 2, the estimates were 

very similar. The initial strategy was to estimate pc for βc = 1 and sample sizes 

ranging from 50 to 1,000. Then, the impact of non-normality and curvature is 

investigated via simulations. The idea is that if there is little or no association, it is 

relatively unimportant which independent variable is more important. However, if 

one or both have an association with the dependent variable, the goal is to control 

the probability of erroneously rejecting. 
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Estimates of pc are reported in Table 1. Again, 2,000 replications were used 

due to the high execution time. With n = 50, estimates required approximately 

two hours, and n = 500 required about ten hours. Reported in column two are 

results when testing (4) and when using three values for both x1 and x2, namely, 

estimates of the lower quartile (Q1), the median, and the upper quartile (Q2). The 

lower and upper quantiles are estimated with a single order statistic (see, for 

example, Wilcox, 2017, p. 61) and the population median is estimated with the 

usual sample median. Column three reports the estimates of pc when testing (3) 

and where both x1 and x2 are based on the usual sample median. Compiled in 

column four are results when the median is replaced by an estimate of the lower 

(or upper) quartile. Finally, in column five, estimates are presented of pc when 

testing (5) with J = 3 and the values for x1 and x2 are again the lower quartile, the 

median and the upper quartile. Note pc was determined to control the probability 

of one or more Type I errors among the nine tests that are performed. Initially the 

estimates decrease as the sample size increases, but for n ≥ 200 the estimates 

change very little.  
 
 
Table 1. Estimates of the critical p-value, pc. C1 = testing (4), C2 = testing (3) using the 
median, C3 = testing (3) using the lower quartile, and C4 = testing (5) 
 

n C1 C2 C3 C4 

50 0.082 0.114 0.142 0.042 

100 0.076 0.080 0.095 0.021 

200 0.067 0.065 0.082 0.024 

400 0.057 0.062 0.079 0.026 

600 0.064 0.060 0.079 0.026 

1000 0.062 0.071 0.072 0.025 

 

Simulation Study 

Four types of distributions are considered for the error term: normal, symmetric 

and heavy-tailed (roughly meaning that outliers tend to be common), asymmetric 

and relatively light-tailed, and asymmetric and relatively heavy-tailed. Data are 

generated from g-and-h distributions (Hoaglin, 1985), which is formed as follows. 

If Z has a standard normal distribution, then by definition 
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( )
( )

( )

2

2

exp 1
exp / 2 ,  if 0

exp / 2 , if 0

gZ
V hZ g

g

V Z hZ g

−
= 

= =

  

 

has a g-and-h distribution where g and h are parameters that determine the first 

four moments. The four distributions used here were the standard normal 

(g = h = 0), a symmetric heavy-tailed distribution (h = 0.2, g = 0.0), an 

asymmetric distribution with relatively light tails (h = 0.0, g = 0.2), and an 

asymmetric distribution with heavy tails (g = h = 0.2). Compiled in Table 2 are 

skewness (κ1) and kurtosis (κ2) for each distribution. Hoaglin (1985) summarized 

additional properties of the g-and-h distributions. The independent variables were 

generated from a bivariate normal distribution with correlation zero or 0.6.  
 
 
Table 2. Some properties of the g-and-h distribution.  
 

g h K1 K2 

0.00 0.00 0.00 3.00 

0.00 0.20 0.00 21.46 

0.20 0.00 0.61 3.68 

0.20 0.20 2.81 155.98 

 
 

For the first set of simulations, data were generated from 

 

 Y = X1 + X2 + ϵ (7) 

 

to check on the ability of the method to control the Type I error probability when 

the usual linear model holds and where the error term does not have a normal 

distribution. The second set of simulations were based on the model 

 

 Y = X
1
2 + X

2
2 + ϵ (8) 

 

to check on how well the methods perform when dealing with a situation where 

the regression surface is not a plane.  
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Results 

The column headed by G1 in Table 3 contains the estimated probability of a Type 

I error when testing at the 0.05 level, n = 50, Pearson's correlation between the 

two independent variables is ρ = 0, and the goal is to test (4).  The column headed 

by G2 describes results when testing (3) and when both x1j and x2j are the sample 

medians. The column headed by G3 pertains to when both x1j and x2j are estimates 

of the lower quartiles and G4 are the results when using the upper quartiles. G5 

corresponds to testing (5); the entries are the estimates of the probability of one or 

more Type I errors. 
 
 
Table 3. Estimated Type I error probabilities, n = 50, α = 0.05 and data generated 
according to (7) 
 

g h G1 G2 G3 G4 G5 

0.000 0.000 0.050 0.050 0.050 0.050 0.050 

0.000 0.200 0.066 0.061 0.029 0.032 0.045 

0.200 0.000 0.073 0.073 0.038 0.040 0.046 

0.200 0.200 0.064 0.059 0.032 0.026 0.041 

 
 

Although the seriousness of a Type I error can depend on the situation, 

Bradley (1978) suggested as a general guide when testing at the 0.05 level the 

actual level should be between 0.025 and 0.075. As indicated in Table 3, all of the 

estimated Type I error probabilities fall in this range. Using a span equal to 0.75 

lowered the estimates slightly. Increasing the correlation between the two 

independent variables to ρ = 0.6, all of the estimates decrease. Most remain above 

0.025. But the lowest estimate in Table 3, which occurs for G4 and g = h = 0.2, 

drops from 0.026 to 0.009.  

Reported in Table 4 are the estimated Type I error probabilities when 

generating data based on (8). Pearson’s correlation between the two independent 

variables is ρ = 0.  The estimates range between 0.045 and 0.076, with only one 

instance where the estimates did not satisfy Bradley’s criterion. Increasing the 

correlation to ρ = 0.6 resulted in lower estimates. In some situations the estimates 

were slightly lower. For G5 and g = h = 0, the estimate dropped from 0.03 to 0.01. 

Increasing the span to 0.75 did not give improved results.  
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Table 4. Estimated Type I error probabilities, n = 50, α = 0.05 and data generated 
according to (8) 
 

g h G1 G2 G3 G4 G5 

0.000 0.000 0.075 0.064 0.069 0.068 0.049 

0.000 0.200 0.060 0.045 0.052 0.047 0.034 

0.200 0.000 0.076 0.062 0.065 0.059 0.042 

0.200 0.200 0.060 0.065 0.057 0.045 0.030 

 

Illustrations 

The methods are illustrated using data from two studies. In the first study 

(conducted by Shelley & Schwartz, n.d.), the dependent variable labeled 

TOTAGG Score is a sum of peer nomination items that were based on an 

inventory that included descriptors focusing on adolescents’ behaviors and social 

standing. The peer nomination items were obtained by giving children a roster 

sheet and asking them to nominate a certain amount of peers who fit particular 

behavioral descriptors. The independent variables were grade point average 

(GPA) and a measure of academic engagement (Engage). The sample size was 

n = 336. 

Shown in Figure 2 is an estimate of the regression surface with leverage 

points removed, which reduced the sample size to 323. (Leverage points refer to 

points for which the independent variables, taken together, are flagged as outliers. 

Points were flagged as outliers with a projection-type method that takes in 

account the overall structure of data; see, for example, Wilcox, 2017, section 

6.4.9.) Least angle regression indicated GPA is more important than Engage. 

There appeared to be curvature, particularly for the lower GPA scores. A test of 

the hypothesis that the regression surface is a plane is significant, p < 0.001. 

The results based on testing (5) are shown in Table 5. The column headed 

by str.x1.given.x2 is the estimate of τ1(x2). 

Consider, for example, the first row of results in Table 5. The estimate of 

τ1(x2) is 0.986. This estimate might seem unusually high but it can be explained as 

follows. The Winsorized standard deviation of the predicted values of TOTAGG 

given that Engage is 3.43, is 0.2473; the Winsorized standard deviation of the 

TOTAGG scores is 0.2508, so the estimate of the strength of the association, τ1 

(3.43), is 0.2473/0.2508 = 0.986. With no Winsorizing (the standard deviation is 

used), the estimate is 0.3747/1.0154 = 0.369. The standard deviation of the 

TOTAGG scores is about four times as large as the Winsorized standard deviation 
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roughly because the bulk of the points are tightly clustered together. (Also, the 

distribution of the TOTAGG scores is highly skewed.)  
 
 

 
 
Figure 2. Regression surface predicting the typical TOTAGG score as a function of GPA 
and a measure of academic engagement. 
 

 
 
Table 5. Results when testing (5) based on the data used in Figure 2. 
 

GPA Engage p-value str.x1.given.x2 str.x2.given.x1 

2.500 3.430 0.028 0.986 0.376 

2.500 3.860 0.392 0.649 0.376 

2.500 4.140 0.992 0.332 0.376 

3.000 3.430 0.020 0.986 0.090 

3.000 3.860 0.152 0.649 0.090 

3.000 4.140 0.336 0.332 0.090 

3.330 3.430 0.024 0.986 0.229 

3.330 3.860 0.244 0.649 0.229 

3.330 4.140 0.596 0.332 0.229 

 
 

Indicated in Table 5, GPA always has a stronger association with TOTAGG 

except when GPA = 2.5 and Engage = 4.14. Controlling the probability of one 

more Type I errors among the nine tests that were performed, the strongest 

(significant) evidence that this is the case occurs for two situations. The first is 
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GPA = 3 and Engage = 3.43, and the second occurs when GPA = 3.33 and again 

Engage = 3.43. For GPA = 2.50 and Engage = 3.43, the p-value = 0.028. 

Generally, there is evidence GPA is more important than Engage when Engage 

scores are relatively low. Otherwise, there is no strong indication that this is the 

case. If the apparent curvature is ignored and the method in Wilcox (2018) is used, 

GPA is estimated to be more important, but p = 0.077. Testing (4), p = 0.076. 

The next illustration is based on the Well Elderly 2 study data (Clark, 2013). 

The focus is on measures taken prior to intervention. A portion of the study was 

aimed at understanding the association between a measure of life satisfaction 

(LSIZ) and two independent variables: a measure of meaningful activities 

(MAPA) and a measure of interpersonal support (PEOP). An estimate of the 

regression surface is shown in Figure 3.  
 
 

 
 
Figure 3. Regression surface predicting life satisfaction (LSIZ), prior to intervention, 
based on measures of meaningful activities (MAPA) and personal support (PEOP). 
 

 
 

If the usual linear model is assumed, least angle regression indicates that 

PEOP is more important than MAPA. Using the robust method in Wilcox (2018), 

now MAPA is found to be more important, p = 0.032. But both of these methods 
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are suspect due to the apparent curvature. Testing the hypothesis that the 

regression surface is a plane, p < 0.001. Testing (4), p = 0.068. 

The results based on testing (5) are shown in Table 6. The strength of the 

association between MAPA and LSIZ, given PEOP is equal to 9, is 0.591. The 

association between PEOP and LSIZ, given MAPA = 28, is 0.330. PEOP is more 

important, the strongest evidence occurring when the strength of PEOP given that 

MAPA = 28, is compared to the strength of MAPA given that PEOP = 13. 
 
 
Table 6. Results when testing (5) based on the data used in Figure 3. 
 

PEOP MAPA p-value str.x1.given.x2 str.x2.given.x1 

9.000 28.000 0.036 0.330 0.591 

9.000 32.000 0.248 0.310 0.591 

9.000 36.000 0.688 0.221 0.591 

11.000 28.000 0.044 0.330 0.524 

11.000 32.000 0.176 0.310 0.524 

11.000 36.000 0.480 0.221 0.524 

13.000 28.000 0.028 0.330 0.446 

13.000 32.000 0.032 0.310 0.446 

13.000 36.000 0.108 0.221 0.446 

 
 

The results for the data in Figure 1 are shown in Table 7. CESD is the more 

important independent variable. The evidence is particularly strong when focusing 

on the median value of CESD. The same is true when both CAR and CESD are 

taken to be the lower quartiles as well as when both are taken to be upper quartiles. 

Testing (4), the p = 0.006. 
 
 
Table 7. Results when testing (5) based on the data used in Figure 1. 
 

CAR CESD p-value str.x1.given.x2 str.x2.given.x1 

−0.174 4.000 0.024 0.127 0.462 

−0.174 9.000 0.004 0.169 0.462 

−0.174 16.000 0.044 0.153 0.462 

−0.029 4.000 0.080 0.127 0.586 

−0.029 9.000 0.024 0.169 0.586 

−0.029 16.000 0.056 0.153 0.586 

0.072 4.000 0.088 0.127 0.502 

0.072 9.000 0.004 0.169 0.502 

0.072 16.000 0.004 0.153 0.502 
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Conclusion 

In the illustrations, the hypothesis that the regression surface is a plane was 

rejected. It is not being suggested, however, that if this test fails to reject, it would 

now be reasonable to use the usual linear model. It is unclear when such a test has 

enough power to detect situations where curvature is a practical concern. All 

indications are that the proposed methods avoid Type I errors well above the 

nominal level. There is room for improvement, however, because as the 

correlation among the independent variables increases, situations are found where 

the actual level is well below the nominal level. The R function lplotcomBCI tests 

the hypotheses given by (3) and (4), and lplotcomBCI9 tests the hypotheses 

indicated by (5). Both of these functions are being added to the R package WRS. 
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