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Sciences and Technology of Jammu Sciences and Technology of Jammu
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When the complete data set of the study variable is unknown it produces a possible
stumbling block in attempting various stratification techniques. A technique is proposed
under Neyman allocation when the stratification is done on the two auxiliary variables
having one estimation variable under consideration. Because of complexities made by
minimal equations, approximate optimum strata boundaries are obtained. An empirical
study illustrates the proposed method when the auxiliary variables have standard Cauchy
and power distributions.

Keywords: Stratification points, bi-variate distribution, power distribution, standard
Cauchy distribution

Introduction

A populace might be homogenous or heterogeneous. For the latter, one approach is
to isolate it into sub-populaces, which are known as strata. Limiting change by
stratifying is known as ideal stratification. There are different factors that are
responsible for minimum variance, which include choosing the variable on the basis
of which stratification would be done, total number of strata, the design by which
sample size will be selected from each stratum, and, the most influential factor, the
demarcation of strata.

The use of a single stratification variable may be problematic, and in any case,
using more than one stratification variable increases the level of exactness.
Dalenius (1950) pioneered the work of obtaining optimum strata boundaries by
minimizing the variance. See also Dalenius and Gurney (1951), Mahalanobis
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(1952), Aoyama (1954), Dalenius and Hodges (1959), Durbin (1959), Singh (1975,
1977), and Verma (2008). However, their equations were mostly taken by using an
estimation variable as a stratification variable. Others used a variable highly
correlated to the study variable as stratification variable, such as Taga (1967),
Serfling (1968), Singh and Sukhatme (1969, 1972, 1973), Singh (1971), Singh and
Parkash (1975), Schneeberger and Goller (1979), and Rizvi, Gupta, and Singh
(2002). Iterative procedures were also proposed by Rivest (2002) for obtaining
stratification points, and Gunning and Horgan (2004) proposed a new algorithm for
the skewed population.

The motivation behind the present examination is to consider a solitary report
variable and two factors exceedingly connected with it. The stratification will be
conducted based on auxiliary variables. For numerical illustration of the proposed
method, two different distributions will be considered for the auxiliary variables.

Stratification Points

Let a population of size N units be divided into T x U strata, and let Nys denote the
number of units in the (r, s)" stratum. Suppose a sample size n is to be taken from
the whole population, and let nrs denote the sample size allocated to the (r, s)*"
stratum and zrsi the values of the population units in the (r, s)",i=1, 2, 3,... Let the
variable Z be the study variable defined by

=z

U Ny
>3,

s=1 i

N
M—c

_‘

LN
N

LN

The unbiased estimate of population mean is

T U
Iy= ZZWI’SZI’S

r=1 s=1

where W is the weight for the (r, s)™ stratum.

For obtaining strata boundaries, assume that a finite population consists of N
units. The stratification points [zrs] for the case of optimum allocation can be
obtained by the following equations:
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(Ursz +( lursz ) ) 2Urzsz er:ursz (G +( /uljz ) ) 2O-ij?z yrs/uijz

O-rzsz - O-ij?Z
wherei=h+1,h+2,..., T-1,andj=k+1,k+2,...,U-1, and urs denotes the
mean of the population for Z in (r, s)™ stratum.

The minimal equations given above were obtained by Dalenius (1950) when
the stratification variable is same as the estimation variable. When the density
functions of the auxiliary variables Y and X are known, then the distribution of Z is
not known due to the auxiliary variables used to obtain optimum points. Assume
the regression line of Z on Y and X is linear, given as

Z=n(Y,X)+e (L)

where A(Y, X) is a function of Y and Z and e denotes the error term such that

E[%}zo and V{%}=¢(y’ X) =

defined in (a, b). Let f(z, y, x) denote the density function of the population (Z, Y, X)
and let f(y, x) denote the joint marginal density function of Y and X. Also, let f(y)
and f(x) be the marginal density functions of Y and X, respectively. According to
the model defined in (1),

Yr X

Hhg = Mg, = j Ay X) 0y ox 2)

rs Yro1 Xs1

which denotes the mean of the (r, s)" stratum, where

I

Y, X,
= I '[f(y,x)ayax (3)

Yo Xsa

denotes the weight of the (r, s)" stratum and the variance of the stratum is given by

2 2
Or; = O + /urs¢ (4)
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2
1 Yro X l Ve %
2 _ = 2 =
o = J Ix (¥-X) (v, ) dyox [W,s j ijlqzs(y,x)f(y,x)ayax] 5)
where (Yr-1, Yr, Xs-1, Xs) denotes the boundaries and urs4 is the expected value of the
function ¢(y, x) of the (r, s)'" stratum.

Optimum Variance Equation

Let (g, h) and (k, L) be the defined intervals for the variables Y and X which are
needed to estimate the stratification point (yr, Xs) S0 the variance of the estimate is
minimum. The stratification points so obtained would be the result of taking partial
derivatives of (4) with respect to the stratification points. In order to obtain the
stratification points of the (r, s)!" stratum, find the partial derivatives. Differentiate
(3) with respect to yr and Xs:

=

o= sf(yr,x)(’)x (6)

X5

and

Yr

a= [ f(y.x)dy ()

Yra

where « and g are the first partial derivatives of (3) with respect to yr and xs,
respectively.
Also by differentiating

= | T o008 (0290

rs Yra X

with respect to yr and Xs,
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(8)

)

where A1 = @(yr, X) — ursg, A2 = ¢y, Xs) — uursg, and y and o denote the first partial

derivatives of ursg With respect to yr and xs, respectively.

Similarly, while finding the first partial derivatives of (2) with respect to yr

and Xs, respectively,

T A,0x

where

A :f(y”x)[k(yr,x)—um] and A, :%[k(y,xs)—ym]

rs rs

Again, partially differentiate (5) with respect to yr and Xs:

Wifo_,ax

IS X1

where

(10)

(11)

(12)

(13)

AS :f(yr’x)[x(yrﬂx)_lursk:l_arzsk andA,) =f(yﬂxs)|:7“(yﬁxs)_lursx]2 _O-rzsx
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Similarly, for the (r + 1, s + 1)™ stratum, while taking the partial derivatives
with respect to yr and xs, we get

Xs

W, = Xs_lf(yr, )ox (14)
W = yyrf;f(y,xs)ay (15)
Hirsajss = —I A OX (16)
Ty IAaay (17)
Max (18)
Mo jAm (19)

Flr1p I{ Y X) { (¥rs%)

r+1)s X1

2 (20)
}‘( Y X) f ( Y X) Oyox | — 0(2r+1)sx ox

1 Yra Xs

W

(r+)s ¥r %y
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, 1 Ys
O-r(s+l)7\ == j {f (y’ X5)|:)\’(y’ XS)

Wr(s+l) Ve
. 2 (21)
1 r s+l
W xJ MR, x)ayéx} Gf(m)x}@y
where
(%) _Fly.x)
A7 - W(H_l)s |:¢( yr ) X) - :u(r+1)s¢:|’ AS - Wr(s+l) |:¢( y’ Xs ) - lur(s+1)¢:|1
f(y,, x f(y, %
A9 = ( )[}\’(yr’x)_ﬂ(rﬂ)sx]’ Aio = ( )[}\’(y’xs)_ﬂr(sﬂ)k]
W(r+1)s r(s+1)
Under the Neyman allotment, the fluctuation of the example mean is
T u 2
WFSO-I’SZ
V(fst) _ |:Zr=12k=l j| (22)

n

However, if the finite population correction is ignored, minimizing (22) is
equivalent to minimizing

Wi, \ Jrzsx + K, (23)

By differentiating (23) with respect to yr and then equating to zero,

<
o
T
M—c
Mc
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0 0
Wrs ar (\/O-rzsx + Hisg ) + \/O-rzsx + Hisy awrs

e (24)
+W(r+l (\/O- r+l)s +/,l r+l s¢) \/6 r+l)s +,Ll r+l1)s¢ ay (r+1)s
Using equations (14)-(19),
6 Xg
8y O-rsl + /Urs¢ +¢ Y ) /Ursx}ax (25)

Xg

()|

r

{ (Ve X) = M OX (26)

where

= |:)\‘( Yeo X) _/ursx:lz - O-rzsx and |2 - |: (yr’ ) (r+l)sx:|2 - U(Zm-l)sk

The minimal equations can be obtained by substituting the values obtained in (25)
and (26):

J.X)::{I3 +'urs¢}ax _ J.x)::{l“ +’u(r+1)3¢}ax

2 2
\/O-rsx + /ul’s¢ \/O-(Hl)sx + /u(r+1)s¢

(27)

where

I3 :f(yr'x)[)‘(yrax)_ﬂrsgﬁjz +O—rzsx+¢(yrax)

2
(yr’X)_/u(r+1)s¢:| +O—(r+1sx ¢(yr’ )

—
I
—r
—~
=<
X
~
1
>

By differentiating (23) with respect to xs and equating to zero, the minimal
equations are
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J'y):rl{f(y’xs)[}\'(y’xs)_lurw:lz + |5}6y
\lo-l'zsx+ﬂrs¢
_ JAy):rl{f(y'X5)|:}\'(y’xs)_lur(s+l)¢:|2 + IG}ay

2
\/ar(s+l)k + lur(s+l)¢

(28)

where
I5 = O_rzsx + ¢( Yi X ) + Hrsy and |6 - O-fz(SJr1)7L + ¢( Y% ) * ur(HW

Equations (27) and (28) result in strata boundaries (yr, Xs) corresponding to
the minimum of V(zst) of the function

y(30) =1 (o) L2

[1:]2

eA,Vye[g,h],Xe[k,L]

where 17 = ¢(y, x).
Assuming that the regression model defined in (1) is linear of the form
z=a+hy+cx+e,
Grzsz = bzofSy + Czo'fSX + 0'92 (29)
where the expected value and variance of the error term e are 0 and o2, respectively,

and assume that the auxiliary variables are independent of each other. Equation (23)
can be written as

Mc

>

r=1s

Jm @

+0¢ + 4., - From the above,

||
=

where h=b*c?% +c%c?

rsy rsx

L Mo -3 K 2K 2
iimzzm k_l§0rs(;’;;ﬂs 1 Ko\ DD, (31)
r=1 s=1

10
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where K1 = [yr — Yr-1], K2 = [Xs — Xs-1], and ¢r, @s represent unchanged values of the
marginal density functions of Y and X in (r, s)"" stratum, respectively.

Lemma 1. If the function lij(y, X) is defined as
(y:%) Ll j (t=y) (L -%) F(t.t,)ate,, ¥ <y, % <X

where f(ty, t2) is a function of two variables, then
ki+lkj+l ki+2kj+l ki+lkj+2
I (y,x)= 1 ™2 ) f 1 ™2 f
i (9:%) (+0(i+0)  (+2)(i+D) " [+ (j+2) " o
o o o 32
1 k1|+3k21+1 f kl|+2k21+2 kl|+lk21+3 . O(ki+j+5)

Y2l i+9) (i) " i) (+2) " i=D(ia)

Proof. If (t1, t2) is near (y1, x1) and derivatives of f are continuous, then
expand f(t1, t2) with the help of Taylor’s theorem. Define t1 =y1 + (t1 —y1) and
to =Xy + (t2—x1). Then f(ty, ) = f(t1 = y1 + (t1 — y1), t2 = X1 + (t2 — x1)). Using the
Taylor series formula for a function of two variables, the expansion of f(ty, t2) is
given by

of of
f(tl,t2)=f(yl,xz)+(t1—yl)g+(t2—xi)§
L) 8 (X)) o°F
21 o 2! ot

which yields

:J‘ijfyiz(H—yl)i(tz_xi)if(yl,xz)+(tl—yl)2tl—f
Lon) of (b-x) o f
21 ot 21 ot

of
+(t2—x1)at—

2

11
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ki+lk j+l k|+2k j+l 8f k1i+lk j+2 6f

L (y,X)=—2 "2 ___f(y. L B S B S

=G ) e e (i) o
+l k1i+3k2j+l aZf +l k1i+1k2j+3 aZf +l kl|+2k2j+2 aZf +O(ki+j+5)

21(i+3)(j+1) a2 21(i+1)(j+3) a2 2!(i+2)(j+2) o,

at ty = y1, where ki = y2 —y1 and k2 = x2 — x1. Denote

2 2 2
f(yl’xl) fg:fy'Efo'a 2f =fyyl8 I =fxxa ot =fyx
aT'l atZ 8tl atz atlatz

Then Iij(y, X) can be written as

ki+lkj+1 ki+2kj+l ki+1kj+2
B _ 1 M2 1 o 1 M2 f
i (%) (+0)(i+)  (+2)(i+0) " (+1)(i+2) " o
33
i+3, j+1 i+1p, j+3 i+2], j+2
+l . kl k2_ f + . kl kz fxx+ 2|(1 kz f +O(ki+j+5)
211 (i+3)(j+1) 7 (i+1)(j+3) (i+2)(j+2)
where k indicates ki or ka.
Fori=j=0,
2 2
Ioo(y,x):klsz+k(lzk)2 f,+ lzlz()f
(34)

203 (3 )0

3 3 2
LKk Rk 2k2K f} o(K)

Lemma 2. Let un(y, X) denote the conditional expectation of the function
n(t, t2) so that

()

[0 ota,

w, (,X)

Then the series expansion of (Y, X) at point (tz, t2) is given by

12
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)+ —4k13k21+23k12k22 (n"f+ n'f,+ n'fx)

k4k 14 14 kskz 14 n [/ /rl'f
+%(n f,,+2n fy) 162 [n f,+n"f,+1n fX+Tyy

21,3 4
2

; (n f,+n fx+2n"fy+2n"fx)+ klgl (n’fxx+n"fx)+o(k6)}

2 2 2 3
N klk2f+k1k2f ks g 1(Kk, o, 2Kk ' Ay
2 2 ol T3 Ty 3

(35)

Proof. From the definition of

u, (y,x)j: jyy:f(tl,tz)atlat2 =j '[yizn(tl,tz)f(tl,tz)atlatz
=1, (¥:X) oo (¥, %)
=] [ttt )aa,

Using the Taylor series expansion, defined for two variables, of n(ty, t2) about the
point (tz, t2) = (y, X),

2 2
(tl - y) nll+ (tZ - X) n"

n(tt) =+ (L=y)n'+ (G =)'+ = 1

3 3 2
Z(tl - y)(tZ - X) n/r + (tl - y) nm + (tZ - X) nm + (tl B y) (t2 B X) T.IW

+
2! 3! 3! 3!
2
+(t1 - y)é:Z _X) 1,lm_i_“.

Thus,

13
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C -y, (=%,
”n( Lo y’ lej'n T]+'[— (t _X)n+(12!)ﬂ+(22!)n

+ 2(tl - yz)l(tZ B X) nﬂ +

= Ioo(ya X)n+1m(y, X)n'ﬂm(y, X)n’+120 (y, X)n”""loz (y, X)n"
+I11(y,x)n”+o(k5)

f(ti’tZ )&latZ

Neglecting the higher-order terms, it can be written as

i, (Y,X)
—n+ I (y, X)n'+ I01(ya X)n"" L ( Y, X)Tl”+ Ly, (y, X)ﬂ"+ Ill(y’ X)n” (36)
Ioo(y’ X)

By substituting values of loo(y, X), l10(y, X), loa(y, X), l20(y, X), lo2(y, X), and l1a(y, X)
from (33) in (36), we get

nf/ , o\ Akk, +3k7kZ , ,

Mn (y,x) =N+ T(kl kz +k1k2 )+T(n f+n fy+n fx)

4

k k 14 ” k3k2 " 14 n,f
+%(n f,,+2n fy) 162 (n f,+n"f,+1n fX+TWJ

kf k3

5 (n £+ fx+2n”fy+2n”fx)

4
1

kk ,
g (n'fo+n"f )}

2 2 2 3
+ klk2f+—k1k2f Kik; 2 f g kike g, 2k, 2f, LS 2f, [+0(K®)
2 2 il T3 Ty 3

Continuing in a similar manner and utilizing Taylor's theorem at the point z, the
expansion for pn(y, X) is obtained as

14
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't 4k’k, +3kk2
w, (Y,%) :n{ﬂ?(ksz —klkj)+%(

n"f+n'fy+n'fx)
k4k /4 " k3k2 " /4 ” n’f
—1T2(n £, +2n fy)—%(n f,+n"f,+n fx+—2yy
o 3 (37)
+ 12
12

4
(n'fyx+n'fxx+ 2n"f,+ 2n"fx)+ klgl (n’fxx+n"fx)+o(k6)}

= kk f_@f _kl_kzzf 21 klgsz +2k12k22f _klkgf
| 2 Y 2 a3 Y 4 Y 3 X

Lemma 3. Hcﬁ(%x)dammsmecmeMWﬂvwhmmofmeﬂmGMnnaLu)
in the interval (y, x) such that

o2 (y,x) =12 (y.%)~ (1, (¥.%))

then

41,2 31,3
)+ W[nn'ffy+nn'ffx

oZ(y,x)= {nn’fz (kK3 +k7k3

+f2 (n'2+nn')}—%f(kl“k§ +k2Kk! + kfkg)} (38)
4

21,4 31,3
+{kfk22f+ f2 Kk gz e klz"z fyfx}

4

Proof. This result can be established by using the expression forms of
us (y,x), replacing the function n(ts, t) by (s, to):

15
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aKk3K, + 3k (

s (¥, %) =7’ +{nn’f(ksz +kiky)+ ' £+ £ (')

4 3

+k%4k2(nn’fyy+2fy(n'2+nn”)) 1;( [nn £+ £, (02 +mn")+ £, (0% +mn’)

4 21,3
+%j+ k16k2 (nn £+ fo+2f, (n'2 +m1”)+2fX (n'2 +rm'))

4

+%(nn'fxx+2fX (n’z +nn'))+0(k6)}

2 2 3 3 2
{klsz RPN [klsz S | 2K ﬂ

22 2 E) e TR

where f and n are functions and their derivations are evaluated at the point

(t1, t2) = (v, %).
Similarly to equation (33),

2 n'zfz 41,2 21,4 31,3
W (K'k3 +k7k; +2k7K3)

o (3:)= k.. KK .. KK +0(K')
RE T4 I KT+ 2 e f 4t

where f and n are functions and their derivations are evaluated at the point

(t1, t2) = (¥, X).
After simplification,

41,2 31,3
e (y,x)= {nfz(kkzjtkk) %[

£+’ £+ £ (0 ') |
—”Tf(ksz2 + K2k +2kfk23)}

2 4 3
+{kfk§f kff +k 2 g2 kK2 fF,+ kfo}

16
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Lemma 4.
n(y)nOxm (KK —kiky)
X)) = +0l(k 39
4 (¥:%) KT 2K, (') (39)
Proof. To prove the lemma, use the relation obtained in equations (35) and

(36). On multiplying and taking square roots on both sides, obtain

T‘;(ksz kk;)

kkf+kkf+kkf

#, (¥ x)=n(y)n(x) +O(K')

N |-

LI'f(kzk -k k2)

o (12 7P .

X AT +O(k )
klsz—klzk2 fy—ilé X

Continuing the simplification,

n(y)n (' (k'k; —k’k; )

AKE F— 213K, f,

#, (¥, x) =

+O(k7)

Hence the lemma is proven.

Lemma 5.
X2 Yo X2 Yo

[ [f(tt)ate, =—” (tt)"F (4,5, ) otat, [ 1+ O(k*) | (40)

X N1 X N1

Proof. Consider a function
X5 Yo X3 Y

=—H (tt)otot, - [ [f(tt,)

XN N
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so that

Because there are the initial coefficients of ki or k. and k; or kZ in the Taylor
series expansion of A(X) about n, find

H(2)-0(K)
where K is either ki or ka.
Xfyff(tl,tz) =—Xfyf tt,) f(t,t,)atot, +O(k*)
" "
.-.ij%jf(g,tz)atlatz_ jij (tt,) o, [1+0(k°) |

Lemma 6.

[1+o )] (41)

kkz)lX” f(t,t,) {”/ (t.t, ),

XN

Proof. To prove the above lemma, expand the term

[

XN

in powers of ki and k. Using Taylor’s theorem and expanding ¢/f (t,,t,) about the
point (tz, t2) = (y, x), obtain

18
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A
X3 Yp

{jyj/ t,t,) &at} = H[/ (t,t,) tlflil)fy+(t;f_l_xg)fx+0(k2)j6t16t2

X Y L*X %

k2k? k2k? g
= Kk, 4fF (t,1,) + ——2 f + —2f +O(K®
o (L) 4 4 ( )}

:(klkz)lf(tlitz)[l 42;(2 (f ~f )+O(k3)}

= (I ) [ [ F(tut,) ot [1+0(Kk?) |

XN

This may be rewritten as

(k) [ [ 1ttt {j (o nioa

X V1 X Y1

[1+o )]

Using Lemmas 1-6,

T U
zzwriofsy = h(y, X)o*il”3s’l 42)
r=1 s=1
where
3
X
h(y,x):g (y)zg( )Gl
O-X
1 o0 o0
GFEI _[fz(y, )7 (y)f 7 (x)oyox
Similarly,
T U
D> Wioh =h(xy)oirss™ (43)
r=1 s=1

Again using the approximation method discussed above,
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ZL:ZWZ g9(x,z rs)fliigofs(klkz)z (44)

k=1 r=1 s=1

where g(y, X) = g(y)a(x)(rs) ‘Gz,

From equations (42), (43), (44), and (30),

o, =Jrsn { [ a(y.x)o; +c*g(x,y)o ]+azg(y,x)}2 (45)

Every pair (y, X) is made of factors that are stochastic. Thus the linear relationship
between them can be obtained, from which the coefficient of regression will be a
result.

Numerical lllustration

The proposed strategy is appropriate when the likelihood thickness elements of the
stratification factors are known. For example, let the auxiliary variable Y follow the
standard Cauchy distribution with density function

1

f = ,~0<Yy<w 46
(y) H(1+ yz) y (46)
and the other auxiliary variable X have the density function
5)(5—1
f(x): o 0<x<4@ (47)
0, otherwise

where ¢ >0 and 6 > 0. In order to find the stratification points, find the value of (3)
and (5),
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o _[LL]
76’
I log (1+(vr + yH)Z) |

4(v, = 1) 1213 — 7u 6* Loy

476° (1,1,)°

and

ol = ”—g[vr ((uS +x,) " —(xs_l)‘m)( 1,1,)

(5 +2)(1,1,)

2

—75 (5 + 2)|:(US X )(M _(XS‘1)5+1} }

(48)

(49)

(50)

where 11 = tan™Y(vy — yr1) — tan~Y(yr1) and 12 = (Us + Xs-1)° — (Xs-1)°. By substituting
values obtained in equations (48), (49), and (50) in (45), the optimum strata

boundaries can be obtained.

1.0000

0.7824

0.3942

0.2452

0.0000 0.2147 0.4765 0.6785 1.0000

Figure 1. OSB for bi-variate auxiliary variables
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Table 1. Strata boundaries and total variance

OSB(yr, Xs)  Total Variance
(0.2147, 0.2452)
(0.4765, 0.2452)
(0.6785, 0.2452)
(1.0000, 0.2452)
(0.2147, 0.3942)
(0.4765, 0.3942)
(0.6785, 0.3942)
(1.0000, 0.3942)
(0.2147, 0.7824)
(0.4765, 0.7824)
(0.6785, 0.7824)
(1.0000, 0.7824)
(0.2147, 1.0000)
(0.4765, 1.0000)
(0.6785, 1.0000)
(1.0000, 1.0000)

0.05461

Consider a population of size 2,000, which is to be sub-isolated into 16 strata
with T =4 and U = 4, and an example of size 500 is to be taken from the population.
Apply equations (48), (49), and (50) in condition (44) by using the underlying
estimation of Y =0 and X =0 and by the maximum value of Y =1 and X =1 and
6 =1, 0 = 3, respectively. Thus the total width of Y and X is 1 and 1, respectively.

The OSB so obtained can be displayed as above with corresponding total
fluctuation in Table 1.

Conclusion

Most of the time the complete set of data related to the study variable is unknown,
which becomes a stumbling block to obtaining stratification points. However, in
such situations using auxiliary variables has an increasing trend of precision. A
strategy was proposed under the Neyman allocation when there is one investigation
variable and two auxiliary variables based on the auxiliary variables. A numerical
example demonstrated the diminishing pattern of the fluctuation when the quantity
of strata is to be expanded. Along these lines, it can be concluded that this strategy
for discovering stratification points can be recommended instead of existing
techniques.
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