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A mixture model was adopted from the maximum pseudo-likelihood approach under 

complex sampling designs to estimate the mean of zero-inflated population. To overcome 

the complexity and assumptions of asymptotic distribution, the maximum pseudo-

likelihood function was used, but a bootstrapping procedure was proposed as an alternative. 

Bootstrap confidence intervals consistently capture the true means of zero-inflated 

populations of the simulation studies. 

 

Keywords: Zero-inflation, mixture model, maximum pseudo-likelihood, 

bootstrapping 

 

Introduction 

An underlying population that contains many zeros is very common. It has a large 

spike of zero-values with a proportion of non-zero values and is thus a zero-inflated 

population (ZIP). The name comes from a spike of zero values in a frequency 

distribution, and ZIP has a highly skewed distribution. In auditing, for example, 

most taxpayers may receive the correct refund (zero false refund is recorded), 

although others may request excessive refunds (non-zero false refunds are 

recorded). Similarly, zero-inflation is a common issue in modeling the abundance 

of rare species in ecological studies. Another example is modeling defect counts in 

a well-established manufacturing process. The process aims to make a lot of items 

with no defects (a zero-defect is recorded), but also has a distribution of defects that 

accompany the non-defects (Lambert, 1992). The importance of such applications 

is widespread, and developing meaningful and interpretable methods for estimation 

in ZIPs is important. 

https://doi.org/10.22237/jmasm/1525133460
https://doi.org/10.22237/jmasm/1525133460
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In the construction of confidence intervals for the mean of a zero-inflated 

population, many techniques have been developed to overcome the issue of zero-

inflation. Kvanli, Shen, and Deng (1998) proposed a two-component mixture 

model, a proportion of zeros mixed with a non-zero component that follows a 

known probability distribution. Zhou and Tu (2000) applied the method of 

likelihood ratio statistics and bootstrap techniques, though the likelihood ratio 

statistics rely on parametric assumptions. As a generalized approach of constructing 

confidence intervals for the zero-inflated population mean, Tian (2005) combined 

generalized P-value and a generalized confidence interval developed by 

Weerahandi (1993). That approach overcomes some issues of computational 

complexity, but failed under many data conditions. Other approaches constructing 

confidence intervals can be seen in J. Chen and Sitter (1999) and Taylor, Kupper, 

Rappaport, and Lyles (2001). Many of the existing methods for estimating the mean 

of ZIPs fail to account for data obtained through complex probability sampling 

designs in stratification and clustering. H. Chen, Chen, and Chen (2010) proposed 

a maximum pseudo-likelihood approach under complex probability sampling 

designs for the interval estimation. 

Many of the cited approaches and techniques for the estimation of ZIP mean 

are expanded to construct regression models. Lambert (1992) introduced a method 

of zero-inflated Poisson regression to account for the over-dispersion of zeros in 

count data when the non-zeros follow a Poisson distribution. Cui and Yang (2009) 

expanded the modeling technique of zero-inflated Poisson regression with a zero-

inflated generalized Poisson regression mixture model to account for the zero 

inflation and Poisson dispersion. Welsh, Cunningham, Donnelly, and Lindenmayer 

(1996) suggested the use of a mixture of Bernoulli and Poisson or negative binomial 

distributions to construct a zero-inflated regression model. Other extensions of 

zero-inflated regression techniques are presented in Ahmad et al. (2015), Purhadi, 

Dewi and Amaliana (2015), Fletcher, MacKenzie, and Villouta (2005), He, Tang, 

Wang, and Crits-Christoph (2014), and Loeys, Moerkerke, De Smet, and Buysse 

(2012). 

Confidence intervals developed under the pseudo-likelihood approach have 

better coverage than existing methods when applied to data obtained through 

complex sampling designs (H. Chen et al., 2010). However, methods to produce 

confidence intervals under the pseudo-likelihood approach are mathematically and 

computationally complex. The pseudo-likelihood approach was extended into 

regression analysis in modeling ZIPs in Paneru and Chen (2014a) and applied to 

real data. Then, in Paneru and Chen (2014b), the methodology was further 

explained as a technical supplement. 
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The purpose of this study is to adopt the pseudo-likelihood function defined 

in H. Chen et al. (2010) and then propose a bootstrap procedure for constructing 

the confidence intervals of the mean that is mathematically, computationally, and 

intuitively simpler than existing methods. The aim is not to make comparisons to 

the existing complex methods; instead it is to present a simpler way of getting 

consistent results through bootstrapping techniques. 

Methodology 

Consider the concept of the two-component parametric mixture model from Kvanli 

et al. (1998) and the maximum pseudo-likelihood approach under complex 

sampling designs from H. Chen et al. (2010). In ZIPs, two components exist; one 

consisting solely of a proportion of zero values and a second component of non-

zero values that adheres to some probability distribution. The two-component 

mixture model for zero-inflated population is defined by 

 

 ( ) ( ) ( ) ( ) ( )0 0
h ; , , f ; , I 1 I

y y
y y      

 =
= + −   (1) 

 

where α is the proportion of non-zeros, μ is the mean and σ the nuisance parameter 

of non-zero components, and I is the indicator function with value 1 if true and 0 if 

false. The parameter of interest is the mean of the mixture distribution h, i.e. 

 
  =   

 

Consider a random subset s of n sampling units with values y1, y2,…, yn obtained 

from a surveyed population with N units. These N units with values y1, y2,…, yN are 

considered to be independently generated from the super population defined in the 

model (1). Let m be the number of zero values in n observed units. For the rest of 

the reading, assume that m < n and arrange the samples as 

 

 
0 for 1,2, ,

  0 for 1, 2, ,

iy i n m

i n m n m n

 =  −

= = − + − + 
  

 

If all N sampling units of the survey population are sampled, the log-likelihood 

function would be 
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1
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=

=   

 

As explained in H. Chen et al. (2010), consider the probability sampling design, 

where the random subset s of n sampling units is obtained from the surveyed 

population with the probability of inclusion πi and sampling weight 1

i iw  −= , i = 1, 

2,…, n. Under this complex sampling design, the estimate of l(α, μ, σ), called the 

pseudo-likelihood function, is defined by 

 

 ( ) ( )hˆ , , log ; , ,i i

i s

l w y     


=   

 

where the sampling weights wi, i = 1, 2,…, n are chosen such that ( )ˆE l l= . 

 
 

 
 
Figure 1. Histogram of a zero-inflated population as a mixture of zeros and normal 
population with μ = 6 and σ = 1 
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Application in Normal Model 

For the mixture model (1), consider that the non-zero component (y ≠ 0) follows 

normal distribution with mean μ and variance σ2. So the probability density function 

f(y; μ, σ)I(y≠0) is given by 

 

 ( )
( )

2

2

1

2
1

f ; , e
2

iy

y


 
 

− −

=   

 

For instance, a histogram of 1000 randomly generated samples presented in Figure 

1 gives a visual idea of a zero-inflated normal mixture model. The histogram 

contains 70% zero values and 30% non-zero values, where non-zero values follow 

a normal distribution with mean 6 and standard deviation 1. Note that the histogram 

is highly skewed to the right, owing to the large proportion of zeros, though the 

non-zero component is normal. However, in a real-life situation, the non-zero 

component may also be highly skewed, which brings extra skewness into the ZIP. 

Maximum Pseudo-likelihood function and pseudo-likelihood estimates for 

the zero-inflated normal model are derived as follows: 
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 ( )
1

0
2

1 1 1

, l 2, og
n m n n m

i i i

i i n m i

w w w w C w 
− −

−+

= = − + =

= = =     

 



PANERU ET AL 

7 

As derived in H. Chen et al. (2010), taking first order derivatives with respect 

to α, μ, and σ2, and setting 

 

 
2

0, 0 0
ˆ ˆ

,
ˆl l l

  

  
= = =

  
  

 

the maximum pseudo-likelihood estimates of the zero-inflated normal model are 
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1
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w
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−

+
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Thus, the pseudo-likelihood estimate of the mean of the zero-inflated normal model 

is given by 

 

 ˆ ˆ ˆ =   (5) 

Bootstrap Confidence Intervals of θ: Mean of Zero-Inflated 
Population 

The bootstrap technique for making statistical inferences was introduced by Efron 

(1979). “The basic ideas of statistics haven’t changed, but their implementation has. 

The modern computer lets us apply these ideas flexibly, quickly and easily with a 

minimum mathematical assumptions” (p. 2). The idea of the bootstrap technique is 

to simplify the complexity of calculation of traditional statistical theories by using 

the computing power of computer-based methods (Efron & Tibshirani, 1993). 

Further developments on bootstrap techniques can be found in Efron (1981a, 1981b, 

1982). 

Bootstrap methods can be either parametric or nonparametric. Parametric 

bootstrap methods involve sampling from a known probability distribution; in 

nonparametric bootstrap, the distribution is not specified. This paper uses the idea 
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of parametric methods where the non-zero component in mixture model (1) has a 

specified probability distribution. As an application in normal models, we assume 

that the non-zero component follows a normal distribution with mean μ and 

standard deviation σ, and use maximum pseudo-likelihood estimates accordingly 

as given in equations (2), (3), (4), and (5). 

Under bootstrap methods, there are different approaches to obtain an 

approximate confidence interval of the parameter of interest. Commonly used 

bootstrap confidence intervals are standard normal bootstrap confidence interval, 

basic bootstrap confidence interval, percentile bootstrap confidence interval, 

bootstrap t confidence interval, and better bootstrap confidence interval. More 

detail and statistical computing of these different types of bootstrap confidence 

intervals can be found in Rizzo (2007). 

Simulation Results 

R is used for statistical computing of bootstrap estimates. 10,000 bootstrap 

replicates of ̂  are computed under both parametric and nonparametric methods. 

Bootstrap replicates were computed at different values of α, proportion of non-zero 

component. For example, as presented in tables and figures below, α = 0.10 means 

that the sample contains 10% observations with non-zero values and 90% 

observations with zero values. 

For the simulations studies of the zero-inflated normal model, finite 

populations of size 10,000 (N = 10,000) are randomly generated and divided into 

four (k = 4) strata, each of size 2500. For a random sample of size n = 135, the 

inclusion probability for each stratum is set to π1 = 25/2500, π2 = 30/2500, 

π3 = 35/2500, and π4 = 45/2500. The corresponding weights for each stratum are 

set to w1 = 2500/25, w2 = 2500/30, w3 = 2500/35, and w4 = 2500/45, respectively. 

A random sample of size nj = npj, j = 1,…, 4, is drawn from each stratum using 

simple random sampling without replacement. The strata sample sizes are: n1 = 25, 

n2 = 30, n3 = 35, and n4 = 45, respectively. 

The simulation results are valid for a wide class of normal distributions. 

Results are presented from three different normal populations where the means and 

standard deviations differ significantly for the non-zero component. Results in 

Table 1 and Figure 2 assumed the non-zero component follows N(μ = 100, σ = 10), 

results in Table 2 and Figure 3 assume that the non-zero component follows 

N(μ = 50, σ = 2), and results in Table 3 and Figure 4 assumed the non-zero 

component follows N(μ = 20, σ = 1). 
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Table 1. Bootstrap confidence intervals of θ for given μ = 100 and σ = 10 at α = 0.05, 
0.10, 0.20, and 0.50 
 

Non-zero 
proportion α 

 Nonparametric  Parametric 

True value θ LL0.025 UL0.975 θ̂   LL0.025 UL0.975 θ̂  

0.05 5 3.487 9.956 6.263  2.900 8.691 5.561 

0.10 10 5.740 15.347 10.095  5.523 12.719 9.014 

0.20 20 13.446 27.267 20.149  16.693 25.068 20.820 

0.50 50 40.702 58.164 49.465  49.202 57.878 53.503 

 
 

 
 

Figure 2. Bootstrap distribution of θ̂  for given μ = 100 and σ = 10 at α = 0.05, 0.10, 0.20, 

and 0.50 
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Table 2. Bootstrap confidence intervals of θ for given μ = 50 and σ = 2 at α = 0.05, 0.10, 
0.20, and 0.50 
 

Non-zero 
proportion α 

 Nonparametric  Parametric 

True value θ LL0.025 UL0.975 θ̂   LL0.025 UL0.975 θ̂  

0.05 2.5 1.810 5.059 3.161  1.545 4.639 2.959 

0.10 5 2.930 7.820 5.127  2.976 6.853 4.850 

0.20 10 6.657 13.425 9.907  7.536 11.366 9.455 

0.50 25 20.500 29.089 24.795   23.121 27.197 25.134 

 
 

 
 

Figure 3. Bootstrap distribution of θ̂  for given μ = 50 and σ = 2 at α = 0.05, 0.10, 0.20, 

and 0.50 
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Table 3. Bootstrap confidence intervals of θ for given μ = 20 and σ = 1 at α = 0.05, 0.10, 
0.20, and 0.50 
 

Non-zero 
proportion α 

 Nonparametric  Parametric 

True value θ LL0.025 UL0.975 θ̂   LL0.025 UL0.975 θ̂  

0.05 1 0.733 2.035 1.279  0.626 1.877 1.203 

0.10 2 1.172 3.112 2.059  1.140 2.631 1.859 

0.20 4 2.697 5.468 4.024  3.289 4.946 4.106 

0.50 10 8.194 11.615 9.897   9.525 11.232 10.380 

 
 

 
 

Figure 4. Bootstrap distribution of θ̂  for given μ = 20 and σ = 1 at α = 0.05, 0.10, 0.20, 

and 0.50 
 

Conclusion 

The asymptotic distribution of the pseudo-likelihood ratio statistic developed in H. 

Chen et al. (2010) has assumptions, and computing confidence intervals of the 

mean of a zero-inflated population are mathematically and computationally 

complex. The complexity arises as the method uses the complex probability 
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sampling designs in the two-component model. As an alternative to the maximum 

pseudo-likelihood ratio statistic and asymptotic distribution, we propose bootstrap 

methods to compute confidence intervals of a zero-inflated population mean. Using 

bootstrapping bypasses many of the assumptions of the asymptotic distribution and 

construction of confidence intervals is computationally simpler. 

Use of the pseudo-likelihood function assumes a known probability 

distribution for the non-zero component, so the parametric bootstrap method is an 

appropriate approach. However, the non-parametric bootstrap method is employed 

to make a comparison. Confidence intervals based on the quantiles of the bootstrap 

distribution of ̂  under both the parametric and non-parametric bootstrap method 

have been shown to consistently capture the true value of θ, the mean of the zero-

inflated population. Under the assumption of a normally distributed non-zero 

component, the parametric bootstrap method gives narrower confidence intervals 

than the nonparametric bootstrap method. 
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