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Regressions Regularized by Correlations 

Stan Lipovetsky 
GfK North America 

Minneapolis, MN 

 

 
The regularization of multiple regression by proportionality to correlations of predictors 

with dependent variable is applied to the least squares objective and normal equations to 

relax the exact equalities and to get a robust solution. This technique produces models not 

prone to multicollinearity and is very useful in practical applications. 

 

Keywords: Multiple regression, multicollinearity, regularizations, robust solutions 

 

Introduction 

Regression modeling is widely used in statistical analysis of data. Ordinary least 

squares (OLS) models are efficient for prediction but often demonstrate poor results 

in the analysis of individual predictors because of the multicollinearity effects. 

Multicollinearity makes the parameter estimates fluctuate wildly with a negligible 

change in the sample, causes reduction in statistical power, and leads to wider 

confidence intervals for the coefficients so they could be incorrectly identified as 

being insignificant (Grapentine, 1997; Mason & Perreault, 1991). To overcome 

these deficiencies, the ridge regression (RR) and its modifications have been 

developed with a quadratic L2-metric regularization imposed on the parameters 

(Hoerl & Kennard, 1970, 2000; Golub, Heath, & Wahba, 1979; Hawkins & Yin, 

2002; Liu & Gao, 2011; Hansen, 2016). Regularization based on the linear absolute 

L1-metric in the lasso regression and the linear and quadratic metrics combined in 

the elastic net or sparse analysis are also known (Tibshirani, 1996; Hastie, 

Tibshirani, & Friedman, 2001; Efron, Hastie, Johnstone, & Tibshirani, 2004). 

Various other penalizing and constraining methods have been developed as well 

(for instance, Lipovetsky & Conklin, 2005, 2015; Lipovetsky, 2010, 2013; and the 

references within). 

mailto:stan.lipovetsky@gfk.com
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The purpose of this study is to propose a new regularization approach based 

on the criterion of regression coefficients proportionality to the pair correlations of 

predictors with dependent variable. Such a penalizing condition can be added to the 

OLS objective for building regression, so it may be called the regularized OLS 

(ROLS). Otherwise, it can be applied to the system of normal equations (NE) for 

parameters estimation in order to relax the exact equalities and to get a solution 

aligned by the correlation structure; we can call it the regularized normal equations 

(RNE). In contrast to ridge, lasso, and elastic net models, which depend on the 

profiling parameter, the ROLS and RNE solutions are uniquely defined only by the 

correlations among the variables so they do not require additional estimation of the 

penalizing parameter. 

For numerical comparison with stable non-prone to multicollinearity results, 

the Shapley value regression (SVR) is used as a benchmark model. Shapley value 

is a construct from cooperative game theory used to evaluate the worth of 

participants over all possible combinations of them, and it can be employed for 

building regression models in a nonlinear estimation (Shapley, 1953; Roth, 1988; 

Lipovetsky & Conklin, 2001). 

Ordinary Least Squares and Ridge Regressions 

Consider briefly some OLS relations needed for further analysis. For the 

standardized variables, a multiple linear regression yi = β1xi1 + β2xi2 +…+ βnxin + ε 

can be written in matrix form 

 

 = +y Xβ ε   (1) 

 

where X is an m by n matrix with elements xij of i-th observations (i = 1,…, m) by 

j-th independent variables (j = 1,…, n), y is the vector of observations for the 

dependent variable, β is the n-th order vector of beta-coefficients for the 

standardized regression, and ε is a vector of deviations from the theoretical model. 

OLS objective minimizes the sum of squared deviations: 

 

 

( ) ( )
22

2

1 2 min

S = − = − −

    = − +

 = − + →

y Xβ y Xβ y Xβ

y y β X y β XXβ

β r β Cβ

  (2) 
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where prime denotes transposition, variance of the standardized y equals one, and 

C and r denote correlation matrix of regressors of x and vector of correlations of y 

with them, respectively: 

 

 1, ,  = = =y y C X X r X y   (3) 

 

The first order condition dS2 / dβ = 0 of the objective (2) minimized by the vector 

β yields the so called system of normal equations (NE) 

 

 =Cβ r   (4) 

 

The solution of NE produces a vector of standardized beta-coefficients of 

regression (1): 

 

 1−=β C r   (5) 

 

The quality of the model is estimated by the residual sum of squares (2), or by the 

coefficient of multiple determination defined from (2) as 

 

 2 21 2R S  = − = −β r β Cβ   (6) 

 

The minimum value S2 (2) corresponds to the maximum value of R2 (6), so with (4) 

and (5) the coefficient of multiple determination for the OLS solution can be 

presented in the equivalent forms: 

 

 2 1R −  = = =β r β Cβ r C r   (7) 

 

If predictors are highly correlated or multicollinear, the matrix C becomes ill-

conditioned (its determinant is close to zero) and its inverted matrix in (5) produces 

a solution with highly inflated coefficients, with values which can have signs 

opposite to the signs of pair correlations of xs with y, and presumably important 

variables become statistically insignificant. The model can be applied for prediction, 

but it becomes practically useless for the analysis and interpretation of the 

predictors’ role in the model. 

A well-known tool for overcoming difficulties of multicollinearity is 

suggested by ridge regression (RR). Adding to the OLS objective (2) a penalizing 
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function of the squared norm of regression coefficients for preventing their inflation 

leads to the conditional objective: 

 

 
2 22

RR RR RR RR RR RR RR1 2 minS k k  = − + = − + + →y Xβ β β r β Cβ β β   (8) 

 

where βRR denotes a vector of ridge estimates for the coefficients in the model (1) 

and k is a positive parameter. Minimizing (8) subject to the vector βRR yields the 

system of equations 

 

 ( ) RRk+ =C I β r   (9) 

 

where I is the n-th order identity matrix. The solution of this system is 

 

 ( )
1

RR k
−

= +β C I r   (10) 

 

It is the vector of RR parameters, and it exists even for a singular matrix C. Using 

the general expression (6) with the solution (10) produces the coefficient of 

multiple determination for RR: 

 

 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

1 1 12

RR RR RR RR

1 1 1

1 2

RR RR RR

2 2

2

R k k k

k k k k k

k k k k

− − −

− − −

− −

   = − = + − + +

 = + − + + − +  

   = + +  + = +

β r β Cβ r C I r r C I C C I r

r C I r r C I C I I C I r

r C I r r C I r β r β β

  (11) 

 

With k reaching zero, the RR solution (9)-(11) reduces to OLS regression (4)-(7). 

A value for the ridge parameter k can be estimated using cross-validation (Golub et 

al., 1979), but it could depend on the aim of the modeling. For instance, the ridge 

solution can be profiled by k in order to choose a vector with the parameters of the 

same signs as the pair correlations of xs with y, which can be required by the content 

of a problem and facilitate interpretability of the individual predictors (Lipovetsky, 

2010). 
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Regularization of OLS by Proportionality to Pair 
Correlations 

Suppose we are interested in building a model with parameters proportional to the 

pair correlations r of the dependent variable with predictors (those are also the 

coefficients of paired regressions of y by each x separately). Then in place of 

parameters constraint against inflation in RR technique (8), let us consider such 

regularization for regression: 

 

 

2 22

ROLS ROLS

2

ROLS ROLS ROLS ROLS ROLS ROLS1 2 2 min

S k

k k

= − + −

    = − + + − + →

y Xβ β r

β r β Cβ β β β r r r
  (12) 

 

where the vector βROLS denotes the regularized OLS estimation ROLS of 

coefficients in the model (1). Taking derivatives by the vector ROLS
β  and by 

parameter k and setting them equal to zero yields the system for minimization of 

the objective (12): 

 

 ROLS ROLS ROLS0, 0k k  − + − = − =Cβ r β r r r β r   (13) 

 

From the second equation in (13) we get the parameter ROLSk  = β r r r  and 

substitute it into the first equation in (13), producing the following matrix equation: 

 

 ROLS

1 
+ − = 

 
C I rr β r

r r
  (14) 

 

where I is the identity matrix, rr' is the matrix of the outer product of the vector of 

correlations by itself, and r'r is the scalar product. Inverting the matrix in (14) yields 

the solution: 

 

 

1

ROLS

1
−

 
= + − 

 
β C I rr r

r r
  (15) 

 

This ROLS solution does not depend on the parameter k but is uniquely defined by 

the correlation matrix C and vector r. 

The solution (15) can be simplified as follows: Using notations 
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1

,= + =


A C I ρ r
r r

  (16) 

 

and applying the known Sherman-Morrison formula for matrix inversion 

 

 ( )
1 1

1 1

11

− −
− −

−


− = +

−

A ρρA
A ρρ A

ρA ρ
  (17) 

 

we can transform (15) to the form 

 

 

( )
( )

1 1 1
1 1 1

ROLS 1 1

1 1

1 1

1

1

1 1

1

1

− − −
− − −

− −

− −

− −

−

−

 
 = + = +

 − −


= =

  − −


= +

  − +
 

A ρ ρ A r ρ A ρ
β A r A ρ r r A ρ r r

ρ A ρ ρ A ρ

r r
A ρ r r A r

ρ A ρ r r r A r

r r
C I r

r I C I r

  (18) 

 

Also, applying the transformation 

 

 ( ) ( ) ( ) ( )
1 1 1− − −

+ = + − + = − +  C C I C I I C I I C I   (19) 

 

the expression (18) can be represented as follows: 

 

 
( )

( )
1

ROLS 1

−

−


= +

 +

r r
β C I r

r C C I r
  (20) 

 

The result (20) means that the ROLS solution is proportional to the RR regression 

(10) for k = 1 with the quotient of two quadratic forms r'r and r'C(C + I)-1r. The 

ROLS criterion (12) can be combined with the RR criterion (8) in one conditional 

objective 

 

 
2 22

RR.ROLS 1 RR.ROLS 2 minS k k= − + − →y Xβ β r   (21) 
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It is easy to show that its solution is reduced to a problem similar to (9), namely 

(C + k1I)βRR.ROLS = k3r with the parameter k3 = 1 + k1k2. This problem defines the 

two-parameter ridge regression model considered in Lipovetsky and Conklin 

(2005). 

Regularization of Normal Equations 

Penalizing by the proportionality of model coefficients to the pair correlation 

structure (12) can be applied to the normal equations (4) as well. Indeed, any change 

of OLS coefficients corresponds to deviations from the exact relations (4) from 

which these coefficients were estimated. Search for parameters aligned by structure 

of pair correlations of xs with y can only mean that the relations (4) could be 

fulfilled approximately. Thus, instead of exact equations, the relations (4) can be 

considered in their squared norm minimization, subject to the proportionality 

regularization as follows: 

 

 

2 22

RNE RNE

2 2

RNE RNE RNE RNE RNE RNE2 2 min

S k

k k

= − + − 

     = − + + − + →

r Cβ β r

r r β Cr β C β β β β r r r
  (22) 

 

where the vector βRNE denotes the regularized normal equations estimator RNE for 

coefficients in the model (1). 

Similarly to minimization in (12), from derivatives of the objective (22) by 

the vector RNE
β  and by parameter k, we obtain the system of equations 

 

 2

RNE RNE RNE0, 0k  − + − = − =C β Cr β r kr r β r   (23) 

 

In the same way as we obtained (14) from (13), the second equation (23) gives 

RNEk  = β r r r , and substituting it into the first equation (23) yields the matrix 

equation 

 

 2

RNE

1 
+ − = 

 
C I rr β Cr

r r
  (24) 

 

Thus, the solution for regularized normal equations is 
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 2

RNE

1 
= + − 

 
β C I rr Cr

r r
  (25) 

 

These RNE coefficients also do not depend on the parameter k and are directly 

defined by the correlation matrix C and vector r. 

It is interesting to note that in minimization of deviations r – CβRNE in (22), 

the vector r and matrix C can be seen as analogues of the vector of dependent 

variable and matrix of predictors in the objectives (2) and (12). Instead of matrix 

C = X'X and vector r = X'y (3), now C2 = C'C and Cr, respectively. With such a 

replacement, the ROLS solution (14)-(15) can be transformed into the RNE results 

(24)-(25). Applying (16)-(17) with a new matrix A = C2 + I to the formula (25) 

gives 

 

 
( )

( )
( )

1
2

1
2

RNE 1
2 2

−

−

−

  +
 = + +
  +
 

r C C I r
β C I C I r

r C C I r
  (26) 

 

which is more complicated than the solution (20). With the general expression (6) 

we can construct the coefficient of multiple determination for RNE (26) as well. 

Additional Linear Adjustment 

Any regularized OLS solution can be proportionally adjusted for improving the 

total quality of the model fit. Denoting by b a vector of ridge coefficients βRR (10), 

regularized OLS solution βROLS (20), or regularized normal equations solution βRNE 

(26), consider such an additional adjustment to a new vector badj with the unknown 

term q: 

 

 adj q=b b   (27) 

 

Using the expression (6) for quality of fit with adjusted solution (27) yields a 

quadratic function in q: 

 

 
2 2

adj 2R q q = −b r b Cb   (28) 

 

The value q for which this concave function reaches its maximum is 
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 q


=


b r

b Cb
  (29) 

 

and the maximum of coefficient of multiple determination for adjusted solution 

equals 

 

 
( )

2

2

adjR


=


b r

b Cb
  (30) 

 

If b = β in OLS solution (5), q = 1 and 
2

adjR  (30) coincides with the R2 in OLS (7). 

But for any other solution b in (10), (20), or (26), the adjustment (27) changes the 

solution by the term (29): 

 

 adj


=



b r
b b

b Cb
  (31) 

 

For example, in the ridge model b = β of solution (10) the adjustment term (29) is 

 

 
( )

( )

1

RR 2

k
q

k

−

−

 +
=

 +

r C I r

r C C I r
  (32) 

 

Then the ridge solution (10) adjusted by the term (32) becomes 

 

 
( )

( )
( )

1

1

RR.adj 2

k

k

−

−

−

 +
= +

 +

r C I r
β C I r

r C C I r
  (33) 

 

and the corresponding quality of the fit (30) equals 

 

 
( )

( )

2
1

2

RR.adj 2

k
R

k

−

−

  +
 

=
 +

r C I r

r C C I r
  (34) 

 

The ROLS solution (20) is proportional to the ridge model (10) with k = 1, so the 

ROLS adjusted solution is 
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( )

( )
( )

1

1

ROLS.adj 2

−

−

−

 +
= +

 +

r C I r
β C I r

r C C I r
  (35) 

 

and the corresponding quality of the fit equals 

 

 
( )

( )

2
1

2

ROLS.adj 2
R

−

−

  +
 

=
 +

r C I r

r C C I r
  (36) 

 

The relations (33)-(34) for k = 1 reduce to (35)-(36). Similarly, the adjustment can 

be performed for RNE solution (26) as well. Analytical formulae can be bulky, but 

there is no problem in numerical adjustment estimation (27)-(30). 

The adjusted solutions have an important feature which makes them similar 

to the OLS solution in the following aspect: As we see in (7), there is equality 

β'r = β'Cβ for the OLS solution, but it does not hold for other solutions, b'r ≠ b'Cb. 

However, for adjusted solutions this equality is true. Indeed, using (31) find the 

scaler product 

 

 
( )

2

2

adj adjR


 = = =
 

b rb r
b r b r

b Cb b Cb
  (37) 

 

and the quadratic form 

 

 
( )

22

2

adj adj adjR
 

 = = = 
  

b rb r
b Cb b Cb

b Cb b Cb
  (38) 

 

Both expressions (37)-(38) reduce to the same one in (30), so 

 

 adj adj adj
 =b r b Cb   (39) 

 

which means that, for an adjusted solution, the term q (29) would be equal to one 

or an adjusted solution cannot be further improved. 

Using the relations (3), rewrite (39) as adj adj adj
   =b X y b X Xb , and let adj=y Xb  

denote the theoretical values of the dependent variable predicted by the model; then 
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(39) can be represented as  =y y y y . This equality is known for the OLS model, 

but it also holds for the considered adjusted solutions. This equality also shows 

 

 ( ) adj 0   − = = =y y y y ε b Xε   (40) 

 

so the theoretical vector adj=y Xb , being a linear combination of columns xk in the 

design matrix X, is not correlated with the vector of errors in (1). More detail on 

the adjustment with any solution, including estimation of bias, efficiency, cross-

validation of the estimated parameters, in and out-of-sample forecasts, and other 

characteristics of model quality, are given in Lipovetsky and Conklin (2005, 2015) 

and Lipovetsky (2010, 2013). 

Numerical Results 

Consider an example from a real marketing research project for a pharmaceutical 

company on a cold sore healthcare product. The purchase interest as the dependent 

variable and 35 attributes as predictors were measures in a 10-point Likert scale, 

and data were gathered from 1023 respondents – more details are given in 

Lipovetsky and Conklin (2015). The aim of modeling was to measure the input of 

the predictors in their influence on the dependent variable, and to compare the 

results of SVR and ridge models with the newly suggested techniques of ROLS and 

RNE. Table 1 presents in columns the vector of pair correlations r and beta-

coefficients of several regression models: OLS (5), SVR and its adjustment by (31), 

RR (10) for k = 1 and its adjustment (33), ROLS (20) with its adjustment (35), and 

RNE (26) with its adjustment too. The bottom lines contain the coefficients of 

multiple determination R2 and the adjustment parameter q (29). 

All correlations in Table 1 are positive, but because of multicollinearity more 

than a third of the predictors (13 out of 35) receive negative signs in the OLS 

regression. However, the regularized models have all positive parameters as it is 

expected by the predictors meaning and good R2. The parameter q is very close to 

one for SVR and two new regularized models, so they practically coincide with 

their adjusted versions, but q is higher for the ridge regression so solution RRadj 

differs from RR and its quality improves with adjustment. 
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Table 1. Correlations of xs with y and comparison of several regression models 

 
Variables r OLS SVR SVRadj RR RRadj ROLS ROLSadj RNE RNEadj 

x1 0.698 0.079 0.038 0.038 0.043 0.045 0.045 0.045 0.040 0.040 

x2 0.584 -0.038 0.024 0.024 0.010 0.010 0.010 0.010 0.018 0.019 

x3 0.689 0.017 0.032 0.032 0.032 0.034 0.034 0.034 0.037 0.037 

x4 0.698 -0.004 0.034 0.034 0.033 0.035 0.034 0.035 0.041 0.041 

x5 0.716 0.076 0.040 0.040 0.051 0.054 0.053 0.054 0.049 0.050 

x6 0.675 -0.039 0.031 0.031 0.020 0.021 0.021 0.021 0.032 0.033 

x7 0.674 0.055 0.029 0.029 0.036 0.038 0.038 0.038 0.037 0.037 

x8 0.720 0.084 0.040 0.040 0.050 0.053 0.053 0.053 0.049 0.049 

x9 0.715 0.068 0.036 0.036 0.041 0.043 0.043 0.043 0.040 0.040 

x10 0.650 -0.027 0.030 0.030 0.018 0.019 0.019 0.019 0.030 0.030 

x11 0.611 0.030 0.029 0.029 0.029 0.031 0.030 0.031 0.032 0.032 

x12 0.734 0.147 0.044 0.044 0.058 0.061 0.060 0.061 0.048 0.048 

x13 0.569 0.039 0.025 0.025 0.027 0.029 0.029 0.029 0.026 0.026 

x14 0.613 0.004 0.027 0.027 0.018 0.019 0.019 0.019 0.020 0.021 

x15 0.634 0.105 0.034 0.034 0.041 0.043 0.043 0.043 0.030 0.031 

x16 0.673 -0.029 0.029 0.029 0.017 0.018 0.018 0.018 0.029 0.029 

x17 0.423 -0.017 0.014 0.014 0.003 0.003 0.003 0.003 0.002 0.003 

x18 0.570 0.022 0.022 0.022 0.020 0.021 0.021 0.021 0.021 0.021 

x19 0.542 0.041 0.023 0.023 0.018 0.020 0.019 0.020 0.014 0.014 

x20 0.701 -0.013 0.036 0.036 0.033 0.035 0.035 0.035 0.041 0.042 

x21 0.486 -0.046 0.019 0.019 0.005 0.005 0.005 0.005 0.012 0.012 

x22 0.525 -0.010 0.019 0.019 0.013 0.013 0.013 0.013 0.016 0.016 

x23 0.570 0.027 0.024 0.024 0.022 0.023 0.023 0.023 0.021 0.021 

x24 0.626 -0.024 0.027 0.027 0.021 0.022 0.022 0.022 0.032 0.032 

x25 0.565 0.042 0.026 0.026 0.027 0.029 0.028 0.029 0.022 0.022 

x26 0.543 0.009 0.021 0.021 0.012 0.013 0.013 0.013 0.012 0.012 

x27 0.535 -0.018 0.021 0.021 0.006 0.007 0.007 0.007 0.009 0.009 

x28 0.644 0.081 0.034 0.035 0.045 0.047 0.047 0.047 0.040 0.041 

x29 0.600 -0.032 0.022 0.023 0.007 0.008 0.008 0.008 0.014 0.014 

x30 0.682 0.155 0.046 0.046 0.063 0.066 0.066 0.066 0.049 0.049 

x31 0.744 0.164 0.046 0.046 0.058 0.062 0.061 0.062 0.049 0.049 

x32 0.371 0.016 0.012 0.012 0.008 0.008 0.008 0.008 0.004 0.004 

x33 0.366 0.030 0.014 0.014 0.018 0.019 0.019 0.019 0.014 0.014 

x34 0.553 0.035 0.022 0.022 0.023 0.025 0.025 0.025 0.022 0.022 

x35 0.628 -0.066 0.025 0.025 0.008 0.008 0.008 0.008 0.021 0.021 

R2 0.000 0.663 0.633 0.633 0.642 0.644 0.644 0.644 0.638 0.638 

q    1.002  1.060  1.011  1.008 
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Table 2. Matrix of correlations between regression solutions 
 

 r OLS SVR RR ROLS RNE 

r 1.000 0.396 0.909 0.718 0.718 0.890 

OLS 0.396 1.000 0.676 0.884 0.884 0.622 

SVR 0.909 0.676 1.000 0.911 0.911 0.955 

RR 0.718 0.884 0.911 1.000 1.000 0.911 

ROLS 0.718 0.884 0.911 1.000 1.000 0.911 

RNE 0.890 0.622 0.955 0.911 0.911 1.000 

 
 

Presented in Table 2 are the correlations between vectors of the main solutions 

from Table 1 (without the adjusted solutions proportional to the main solutions). 

All solutions, except OLS distorted by multicollinearity, are highly correlated with 

the vector r, with SVR beta-coefficients closest to the r structure and RNE next. 

OLS is close to ROLS and RR, while both are proportional so their correlation 

equals one. SVR has the highest relation with RNE, and both regularized solutions 

ROLS and RNE are highly connected too. The last two columns in Table 2 show 

that judging by the closeness to the vectors of r and SVR, the solution RNE 

outperforms the ROLS. It means that when the OLS is distorted by multicollineary 

impact, the regularization of normal equations RNE could be better than the 

regularization applied to the OLS criterion. However, the ROLS outperforms the 

RNE by the quality of fit R2, as seen in Table 1. 

Summary 

Two new regression solutions non-prone to multicollinearity are considered by 

applying regularization of proportionality of the model coefficients to the pair 

correlations of the predictors with dependent variable. In one approach, this 

regularization is applied directly to the ordinary least squares objective (12), which 

leads to the system (14) with the solution (20). In another approach, such 

regularization is added to the relaxed system of normal equations (22), which yields 

the system (24) with solution (26). Comparison with ridge regression and Shapley 

value regressions, with an additional adjustment of the solutions to reach the best 

data fit, are considered as well. The developed techniques are presented in 

analytical form, and in contrast to ridge regressions they do not contain a free ridge 

parameter which in its turn could need an additional estimation. Both systems (14) 

and (24) correspond to robust non-prone to multicollinearity solutions for 

regression; they are simple and do not need any extensive iterative calculation. That 

is very important, especially for working with big data sets. Analytical and 
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numerical results are very promising, and they show that the suggested methods 

can serve numerous practical needs of regression analysis. 
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