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Robustness and Power Comparison of the
Mood-Westenberg and Siegel-Tukey Tests

Linda C. Lowenstein Shlomo S. Sawilowsky
Washington University in St. Louis Wayne State University
St. Louis, MO Detroit, Ml

The Mood-Westenberg and Siegel-Tukey tests were examined to determine their
robustness with respect to Type-l error for detecting variance changes when their
assumptions of equal means were slightly violated, a condition that approaches the
Behrens-Fisher problem. Monte Carlo methods were used via 34,606 variations of
sample sizes, a levels, distributions/data sets, treatments modeled as a change in scale,
and treatments modeled as a shift in means. The Siegel-Tukey was the more robust, and
was able to handle a more diverse set of conditions.

Keywords: Behrens-Fisher, Mood-Westenberg, Siegel-Tukey

Introduction

“Heteroscedasticity, refers to situations where two or more of the variances are
unequal” (Wilcox, 1996, p. 174). The applied statistical literature is vast on how
poorly the t and F tests perform under this condition. For instance, it has been
demonstrated that small sample sizes, unequal sample sizes, and one-tailed tests
can be problematic for the t-test with respect to heteroscedasticity and non-normal
data (Sawilowsky & Blair, 1992; Wilcox, 1996; Sawilowsky, 2002). With respect
to the Analysis of Variance (ANOVA) F test, the problem is even worse (Brown
& Forsythe, 1974; Rogan & Keselman, 1977; Tomarken & Serlin, 1986). Wilcox
(1996) stated “our hope is that any problem associated with unequal variances
might diminish when there are more than two groups, but the reverse seems to be
true” (p. 180). Referring to the ratio (R) of standard deviation between groups in a
survey of educational studies, Wilcox (1996) “found that that estimates of R are
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often higher than 4” (p. 180; see Wilcox, 1989), noting R’s as large as 11 were
observed in real world data applications.

Keppel and Wickens (2004) noted “the actual significance level could
appreciably exceed the nominal o level when the group variances were unequal.
Under these circumstances, we need a way to adjust or modify our analysis” (p.
152). Hence, inflated Type-I errors lead to pronouncements of the statistical
significance of nonsense treatments.

Under the truth of the null hypothesis, the counter-argument is having equal
means with unequal variance is unrealistic (see, e.g., Sawilowsky, 2002). “That is,
this situation will never arise in practice because if the variances are unequal,
surely the means are unequal, in which case a Type-I error is not an issue”
(Wilcox, 1996, p. 180). The condition of unequal variances between groups is
known as the Behrens-Fisher problem, named after the work of W. V. Behrens
(1929) and Sir Ronald A. Fisher (1935, 1939) who developed the first expression
and approximate solution. Sawilowsky (2002) noted the Behrens-Fisher problem
“arises in testing the difference between two means with a t test when the ratio of
variances of the two populations from which the data were sampled is not equal to
one” (p. 461), and of course expands to layouts with more than two groups.

When the null hypothesis is false, another problem with heteroscedasticity is
the t, F, and other parametric tests’ concomitant lack of comparative statistical
power. Wilcox (1996) mentioned “there is evidence that problems with Type-I
errors with unequal variances reflect undesirable power properties even under
normality (Wilcox, Charlin, & Thompson, 1986; Wilcox, 1995)” (p. 180), noting
“the power curve might be unusually flat in a region near the null hypothesis
(Wilcox, 1995)” especially when the data are skewed (Wilcox, 1996, p. 181).
There are situations where the null hypothesis is false, yet the probability of
rejecting the null hypothesis is less than «. In this case, small but possibly
important treatment effects might be missed.

Sawilowsky and Fahoome (2003) noted non-homogeneity renders most
rank-based non-parametric tests even more so ineffective. For example, the
Wilcoxon Rank Sum test (Wilcoxon, 1945), which is three to four times more
powerful than the t test under common conditions of non-normality due to skew,
fares even worse when the treatment impacts scale. Similarly, Sawilowsky (2002)
noted “for the case of K> 2, Feir-Walsh and Toothaker (1974) and Keselman,
Rogan, and Feir-Walsh (1977) found the Kruskal-Wallis test (Kruskal & Wallis,
1952) and expected normal scores test (McSweeney & Penfield, 1969) to be
‘substantially affected by inhomogeneity of variance’” (p. 463).
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Change in Scale

There are no exact solutions to the Behrens-Fisher problem. According to Wilcox
(1996) and Sawilowsky (2002), the non-parametric Yuen solution (Yuen, 1974),
with various modifications, is considered as one of the best approximate solutions.
Moreover, methods designed for the purpose of detecting scale or variance
changes between sample groups with regard to the level of heteroscedasticity
necessary to invoke the Behrens-Fisher problem have been generally overlooked
in the applied statistical literature. With respect to the often-cited classical
Hartley’s (1950) F-statistic for determining dispersion (variance) differences as a
preliminary test, for example, Sawilowsky (2002) noted the deleterious nature of
sequential testing that increases the Type-I error rate. Keppel and Wickens (2004)
noted the additional problem of non-normality can greatly impact that F-statistic
for variance difference detection:

Unfortunately, in spite of its simplicity and of the fact that it is
provided by many packaged computer programs, the F max statistic is
unsatisfactory. Its sampling distribution, as reflected in the Pearson-
Hartley tables, is extremely sensitive to the assumption that the scores
have a normal distribution. (p. 150)

According to Neave and Worthington (1988), there were no satisfactory
nonparametric tests that could determine the potential of unequal variances
irrespective of whether there was also a shift in location. They noted the Mood-
Westenberg dispersion test (Westenberg, 1948; Mood, 1950), a non-parametric
test based on quartile location and Fisher exact probabilities, determined
differences in variances under the assumption that the means of two samples are
equal, but stopped short of recommending it as a preliminary test for detecting the
Behrens-Fisher condition.

Similarly, Neave and Worthington (1988) noted the Siegel-Tukey test
(Siegel & Tukey, 1960), another ordinal non-parametric test based on rankings
and Mann-Whitney-U probabilities, assumes roughly equal means/medians for
detecting variance differences between groups. They bemoaned the absence of
detection methods for this condition:

Several attempts have been made to solve the problem, but all
resulting tests suffer from being rather un-powerful or not truly
distribution-free or both....It is particularly unfortunate that there
appears to be no good distribution-free solution to this problem since
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several researchers have shown that non-normality can upset the
behavior of the F-statistic to a very considerable extent. (p.135)

The question arises, therefore, if there are no tests that can detect the
occurrence of different variances irrespective of means, then how can it be known
if heteroscedasticity or the Behrens-Fisher problem arises so as to be alerted to the
need to subsequently apply any of the myriad approximate solutions?

Purpose of the Study

There are no early warning or detection systems indicating the Behrens-Fisher
condition exists. The Mood-Westenberg and Siegel-Tukey tests appear promising
to fill that need in the statistical repertoire in applied data analysis. In the two
group layout, both tests assume equal means (or medians) and W1 = H2 (or 61 = 62).
The null hypothesis (Ho) is the variances are equal. The alternative hypothesis
(Ha) is that the variances are not equal. The purpose of this study, therefore, is to
examine via Monte Carlo methods their Type-l error rates and comparative
statistical power properties as the treatment condition approaches the Behrens-
Fisher problem, in order to determine if either test can be used as an early warning.

Methodology

Monte Carlo Methods

An Absoft Pro Fortran (version 14.0.4) program with the IMSL Fortran
Numerical Library (version 7.0) was coded to randomly select and assign values
to simulated control and treatment groups through sampling with replacement.
Rangen 2.0 subroutine (Fahoome, 2002), a 90/95 update to the Fortran 77 version
(Blair, 1987), was used to generate pseudo-random numbers from the normal and
theoretical distributions. Realpops subroutine 2.0 (Sawilowsky, Blair, & Micceri,
1990) was used to generate pseudo-random samples obtained from real education
and psychology populations.

For the Mood-Westenberg code, duplicates found in the control (A) and
treatment groups (B) were coded to layout the groups as ABABABAB until all
duplicates were accounted for; this method was selected as reasonable because
this pattern appears to be unbiased for both groups (the pattern could favor either
A or B in the extreme quarters depending upon the random variates sampled).
Algorithm AS 62 (Dinneen & Blakesley, 1973) was used to calculate the Mann-
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Whitney exact probabilities for the Siegel-Tukey test.! When sorting was required,
the Recursive Fortran 95 quicksort routine that sorts real numbers into ascending
numerical order was used.?

There were 34,606 combinations of study parameter conditions employed,
based on 11 sample sizes, two a levels (0.05, 0.01) (four levels, including 0.025
and 0.005 were calculated and reviewed in preliminary testing), 11 mathematical
distributions and real world data sets, 11 variance changes and 13 small means
shifts. Independent sample sizes included (ni, n2) =(5,5); (5,15); (10, 10);
(10, 30); (15, 45); (20, 20); (30, 30); (30, 90); (45, 45); (65, 65); (90, 90). They
were generated from three theoretical distributions (normal, exponential, uniform),
and eight real world education and psychology data sets identified by Micceri
(1986, 1989). The data sets were described as smooth symmetric, extreme
asymmetric (growth), extreme asymmetric (decline), extreme bimodality,
multimodality and lumpy, discrete mass at zero, discrete mass at zero with gap,
and digit preference (see Sawilowsky & Blair, 1992). The use of real data sets in
addition to data generated from mathematical models was deemed important in
rigorous systematic studies by Bradley (1978) and many others.

Next, the means and variances were modified, beginning with no treatment
effect via equal means to establish baseline results. Then, treatment effects of
location shifts were gradually increased in small magnitudes, thus increasingly
violating the statistical assumption of both tests. Type-I (identifying a variance
change when none occurred) and Type-Il (not finding a true variance change)
error rates under the violations were compared to the counterfactual conditions of
equal means.

Type-l and -l Errors

In order to determine robustness measures with respect to Type-I and -II errors,
the long-run average rejection rates were calculated after executing 100,000
iterations for each study condition. A counter was incremented for statistically
significant iterations. The counter totals were reported as rejection percentages
(counter total/100,000). Thus, the long-run averages for the p rejection rate, S
rejection rate, and power levels (1 — ) were determined.

! Additional code was provided by Miller, retrieved from http://lib.stat.cmu.edu/apstat/62
2 Quicksort routine algorithm provided by Rew with additions from Brainard, retrieved from
http://www.fortran.com/gsort_c.f95
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Robustness Results

A robust test maintains Type-I and -1l error rates in light of assumption violations.
Bradley’s (1978) liberal limits for Type-I errors of 0.5a < Type-I error < 1.5a was
adopted.

Asymptotic and exact probabilities were invoked for each test during
preliminary testing. For the Mood-Westenberg test, the Chi-squared (asymptotic)
and Fisher exact probabilities were selected. For the Siegel-Tukey test, Z-scores
(asymptotic) and Mann-Whitney (exact) probabilities were selected. Based on the
results for the primary testing, only the asymptotic probabilities were reported
because the two probabilities for each statistic were found to track closely to each
other. Two a levels, 0.05 and 0.01, were reported during the primary testing (four
levels, including 0.025 and 0.005, were calculated and reviewed in preliminary
testing).

Simulating Location Shifts and Scale Changes

A treatment was modeled as a shift in location, by multiplying a constant
¢ =0.01-0.12 (0.01) by the distribution’s . For example, the standard deviation of
the smooth symmetric data set was 4.91. Therefore, a treatment effect of
0.10 = 0.491 was added to the treatment variates. Cohen (1988) suggested 0.2(o)
represents a small treatment effect, 0.5(¢) a moderate treatment effect, and 0.8(o)
a large treatment effect. On the basis of personal communications with Cohen,
Sawilowsky (2009) updated Cohen’s de facto standards to also define
d(0.01) = very small, d(1.2) = very large, and d(2.0) = huge. The focus of this
study, based on Sawilowsky’s (2009) standard, was to review only small shifts
(c << 0.2), and therefore the effect sizes of shift in location selected were O-
0.120 (0.01), d = 0 representing the baseline.

A treatment was modeled as a change in scale by multiplying a constant
scale shift of K=1-3.5(0.25) by the random variates of the treatment group
after they were centered around zero for both groups by subtracting the
distribution mean from the variates; this sets the standard deviation of the control
group, over the long run, to approach a normal curve having a variance of 1.
Heteroscedasticity is simulated when R, representing the variance ratio difference
between the treatment group and the control group, is not equal to 1. K?, the new
simulated variance of the treatment group, is the ratio difference, R, between the
post-test treatment and control groups.

It was expected that with ratio variance differences from 1.56 (K =1.25) to
12.25 (K = 3.5) (with K increments of 0.25 for K), the alternative hypothesis (H1)
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would be accepted. When the ratio of the variances between the treatment and
control groups was equal to 1 (K = 1), the condition of equal variances, then the
null hypothesis (Ho) was expected to be retained (i.e., fail to reject). These
variance ratio differences are consistent with Brown and Forsythe (1974), who
reported standard deviation ratio differences of 3 and found concomitant
unacceptably high Type-l error rates, and Wilcox (1989), who surveyed the
literature and found estimates of standard deviation ratio differences are often
higher than 4, and sometimes even as large as 11.

Results

Simulating No Research Treatment Effects with Equal Means
Assumption in Place

Demonstration of Adequacy of Algorithms used in this Simulation: Type-I error
for Normal Distribution, Means and Variances are Equal

To demonstrate the adequacy of the algorithms used in this simulation,
preliminary testing with data sampled from the Gaussian distribution, with equal
mean and variances, was performed for all of sample sizes (Table 1). The
minimum and maximum asymptotic upper tail rejection rates for a set at 0.05,
0.025, 0.01, and 0.005 for Mood-Westenberg (Chi-squared) were 0.022-0.080,
0.008-0.033, 0.004-0.033, and 0.000-0.016 respectively. For the Siegel-Tukey (Z-
scores) they were 0.044-0.058, 0.016-0.027, 0.004-0.010, and 0.000-0.005,
respectively. The exact rates tracked close to the associated asymptotic
probabilities for both statistics. Exact rates for Mood-Westenberg (Fisher exact)
were 0.016-0.072; 0.008-0.033; 0.000-0.020; and 0.000-0.008, and for Siegel-
Tukey (Mann-Whitney-U) were 0.044-0.050; 0.016-0.025; 0.008-0.010; and
0.004-0.005. The rejection range was larger for Mood-Westenberg. Additional
testing for all equal sample sizes (n1, n2) = (5, 5) to (200, 200) yielded robust rates
for both statistics (Table 2).

For all sample sizes and o levels, Siegel-Tukey’s rejection rates for
asymptotic and exact probabilities tracked closer to nominal a as compared with
the performance of the Mood-Westenberg Chi-squared and Fisher exact
probabilities. It appeared that the latter test’s Type-I error rates were dependent on
the sample size, and it tracked in an unusual and repeating saw-tooth-like pattern
as equal sample sizes were increased by 1 from (5, 5) to (200, 200) at 10,000
iterations (Figures 1 and 2).
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The Mood-Westenberg Type-l Fisher exact error rates were occasionally
nearly as high as 10% when nominal « was 5%, and 2.4% when nominal o was
1%. Thus, the Mood-Westenberg was observed as an inconsistent test because it
did not fit the expected pattern for the Type-I rejection rates to approach nominal
a level and remain steadfast as the sample size increased. Instead, it moved in and
out of threshold defining robustness as the sample sizes increased. This may be
due to the instability of the sampling distribution of the median. See Figures 3 and
4 for Siegel-Tukey results.

Type-1 Error: All Distributions/Data Sets, Means and Variances are Equal

At large and equal sample sizes ((45,45) and above), both statistical tests
generally demonstrated robust Type-I rates for the distributions and data sets.
Conservative non-robust rate exceptions were noted for discrete mass zero with
gap, extreme asymmetric decay, and extreme bimodal data sets (Table 3).
However, these conservative non-robust rates suggested unlikely pronouncements
of false positives when determining variance change in research settings; hence, at
this initial stage, each statistic remained viable candidates to provide robust and
powerful heteroscedasticity detection with large and equal sample sizes.

With respect to smaller and unequal sample sizes, Mood-Westenberg
demonstrated both liberal and conservative non-robust rates for the
distributions/data sets while Siegel-Tukey maintained the same robust rates (and
conservatively non-robust for the three data sets mentioned above in Table 3) at
all sample sizes except for the smallest sample size of (5, 5) where a few more
non-robust conservative rates surfaced for other distributions/data sets at o below
5%. At this point, Siegel-Tukey appeared a more consistent statistic for small and
unequal sample sizes with respect to Type-I rates.

Type-11 Error: All Distributions/Data Sets, Means are Equal and Variances
Change (Classical Behrens-Fisher)

For this phase of testing, in order to provide more stability for Mood-Westenberg,
the testing occurred only with the large sample size (90, 90) to observe effects of
variance changes simulated with the constant K = 1.25-3.5 (0.25). Both statistics
were powerful (73-100%) for data sampled from the conservatively non-robust
data sets discrete mass zero/gap, extreme asymptotic decay, and extreme bimodal,
starting with the smallest variance change when K= 1.25 (Table 4; grey shaded
area = 100% power). As to be expected, each statistic demonstrated increases in
power as the « levels and variance ratio increased. Strong power for these data
sets, with conservative Type-I rates, continued to affirm both statistics as potential
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detection tools; these statistics did not lack for power with these data sets. Siegel -
Tukey demonstrated consistent power for these data sets at or above 99% while
Mood-Westenberg recorded the same and lower power rates for extreme bimodal
(73-90%) when K = 1.25.

For the other data sets and distribution at sample size (90, 90) (previously all
shown to demonstrate robust Type-I error rates), power was lower as compared to
the conservatively non-robust data sets mentioned above, yet still good, for both
test statistics, particularly for K= 1.5 and above. For Mood-Westenberg, power
increased dramatically and quickly, doubling or tripling as variance changed from
K =1.25-1.5 (Table 5) for these other data sets/distributions. For Siegel-Tukey,
the power also increased quickly, but not as dramatically as Mood-Westenberg
because the Siegel-Tukey power rates started off higher at lower K constants.

In general, both statistics demonstrated power approaching 40% or higher
early on (K =1.25-1.5, larger ). Siegel-Tukey demonstrated power levels equal
to or greater than Mood-Westenberg, sometimes 20-40% higher than Mood-
Westenberg with smaller variance changes, as demonstrated in Table 4. For
instance, at the smallest change of K= 1.25, a = 0.05, Siegel-Tukey’s power rate
for smooth symmetric asymptotic was 0.550 compared to Mood-Westenberg
at .165. When a equaled 0.01, Siegel-Tukey’s rate was 0.288 as compared to
Mood-Westenberg’s rate at 0.061. When the variance change level was K =1.5
(Table 5), most «a levels yielded power of 40-100%, generally, for all distributions
and data sets, for both statistics.

The Siegel Tukey asymptotic and exact probabilities (at a = 0.05, 0.025,
0.01, and 0.005) consistently demonstrated equal or greater power rates than the
Mood-Westenberg probabilities at every comparison point (o and K’s) with all
distributions/data sets. Both probability measures for Siegel-Tukey quickly
approached 100% power, generally arriving with K =2-2.25 (Table 6); Mood-
Westenberg arrived at near 100% with K = 2.75-3.0. Siegel-Tukey reached power
of nearly 90% and above at all o levels at K= 1.75, whereas Mood-Westenberg
did not reach these levels until K=2.25 (Table 6). As to be expected, power
increased for both statistics as variance change and o levels increased, and
therefore these preliminary tests demonstrated that each statistic is robust and
powerful, in general, when their mutual assumptions of equal means/medians in
place. However, Siegel-Tukey generally appeared more powerful than Mood-
Westenberg after this testing phase.

203



MOOD-WESTENBERG AND SIEGEL-TUKEY TESTS

Simulating Research Treatment Effects by Violating the Assumption
of Equal Means

At this point, attention was turned to the primary focus of the study: would the
Mood-Westenberg and the Siegel-Tukey tests remain robust with respect to Type-
| and Type-II rejection rates under conditions of simulated treatment effects (i.e.,
the means began to shift slightly, violating the statistical assumptions).
Preliminary testing results of 10,000 means shifts from 0.00001 to 0.1 (0.00001)
suggested an appropriate mean shift range, useful for testing, would be 0.01-
0.12 (0.01).

To determine the properties for each statistic after sampling from the
thousands of combination of populations, sample sizes, means shifts, variance
change, and « levels, it would be necessary to review all output, particularly with
respect to the smaller and unequal sample sizes. However, general conclusions are
made and presented here for both statistics, with respect to whether the
mathematical distributions and real-world data sets could be characterized as a
normal type distribution (e.g., unimodal shape, asymptotic light tails, symmetric
about the means) or not. Normal type distributions are discussed as a group and
include: normal, digit preference, discrete mass zero, smooth symmetric, and
uniform. Non-normal type distributions, discussed as a group, include: extreme
asymmetric growth, extreme asymmetric decay, extreme bimodal, and discrete
mass zero with gap. Having demonstrated unique outcomes, exponential and
multi-modal lumpy are discussed separately.

With minor exceptions for the exponential and multi-modal lumpy, general
conclusions for the distributions and data sets were not greatly affected by the
range of the tested means shift levels 0.01-0.12 (0.01); therefore, conclusions for
particular distributions and data sets will generally hold for all of the tested means
shift levels, especially for larger sample sizes and o levels of 0.05. When
robustness was present, larger « levels (0.05), larger and equal sample sizes and
larger variance change levels rendered testing measurements more robust and
powerful for each distribution and data set.

Type-1 Rejection Rates: For All Distributions/Data Sets, Variances are Equal

The statistics were first tested with slight means shifts, 0.01(c)-0.12(s) (0.01),
when simulating post-test equal variance outcomes. Typical results are noted in
Table 7 for sample size (90, 90) and mean shift at ¢ = 0.06. The expectation was
that nominal « rejection rates would hold when the means began to shift. Mood-
Westenberg, for most normal type distributions (e.g., digit preference, normal,
smooth symmetric, uni), particularly for large sample sizes (i.e., (20, 20);
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(30, 30); (30,90)), maintained generally robust (and conservative non-robust)
rejection rates at all of the tested means shifts with some slightly liberal rate
exceptions at some small and small/unequal sample sizes or sometimes at 1% a.
As noted with sample size (90, 90), in Table 7, the normal type discrete mass zero,
sometimes demonstrated small liberal, non-robust rates but robust rejection rates
were noted for many other sample sizes, particularly when nominal a was 5%.
However, analyzing non-normal distributions (asymmetric growth, discrete mass
zero with gap, extreme asymmetric decay, extreme bimodal), Mood-Westenberg,
for both asymptotic and exact probabilities at the large sample size (90, 90),
calculated many extremely liberally non-robust rejection rates even at the smallest
incremental level of 0.01. The test results from data sampled from multi-modal
lumpy demonstrated liberal non-robust rejection rates generally at and above
means shift ¢ = 0.09 for some sample sizes, such as (90, 90), and was robust for
many other sample sizes. Results from data sampled from the exponential
distribution demonstrated robust rates up to means shifts of 0.06 when, for
instance, for sample size (65, 65) or (90, 90) (Table 7), for nominal a below 2.5%,
the rejection rates started to trend above nominal « levels in the liberal direction,
increasing in slight liberalness with each increase in means shift. Starting with
mean shift ¢=0.07 and above, under Mood-Westenberg, the test results
demonstrated that the exponential distribution was liberally non-robust at all «
levels for sample size (90, 90). Other sample sizes for exponential also reflected
this pattern. Generally, the non-robust Mood-Westenberg results for the
exponential distribution were in the liberal direction.

With respect to the Siegel-Tukey statistic, at sample size (90, 90) and mean
shift ¢ = 0.06, (Table 7), for both asymptotic and exact probability measures and
for all other means shifts, testing revealed robust rates for the data sampled from
all of the normal type distributions (digit preference, discrete mass zero, normal,
smooth symmetric, and uniform). This robust rejection rate pattern was also
demonstrated at most small and small/unequal sample sizes, unlike Mood-
Westenberg. Similar to the Mood-Westenberg, as the means shifted, non-robust
results were detected for the data sampled from most non-normal type
distributions (including asymmetric growth, discrete mass zero with gap, extreme
asymmetric decay); however, unlike Mood-Westenberg, all indicators of these
non-robust measures were in the conservative direction except the liberal rates
found with the test results from asymmetric growth.

A particularly strong and unique outcome for Siegel-Tukey was noted for
the non-normal extreme bimodal data set. At sample size (90, 90), Siegel-Tukey,
unlike Mood-Westenberg, demonstrated robust measures at virtually all means
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shifts for extreme bimodal (slight liberal exceptions were noted at 0.5% a level
when means shift was at ¢ =0.02, 0.03, and 0.1). This strong robust rejection
pattern for all means shifts was also noted in the data sampled from the extreme
bimodal data for all equal sample sizes and for unequal sample sizes when a was
0.05.

Results demonstrated that the data sampled from the multi-modal lumpy
data set was robust at lower means shifts but began to show conservative non-
robust measures at means shifts generally at and above 0.09 for sample size
(90, 90). However, many other sample sizes were robust at all means shifts.
Results for data sampled from the exponential distribution became conservatively
non-robust at means shift of ¢ = 0.03 at sample size (90, 90). This was a general
pattern for other large and equal sample sizes, although some smaller and unequal
sample sizes maintained robust rates at higher mean shifts.

Siegel-Tukey’s conservative non-robust rate exceptions, for non-normal
distributions, multi-modal lumpy, and exponential, were deemed positive
outcomes because this condition would obviate large pronouncements of
nonsense variance changes. It did not demonstrate sample size instability that
seemed pervasive throughout the study for Mood-Westenberg. At this point, after
demonstrating large liberal rejection rates as the means shifted slightly with the
non-normal type distributions, the Mood-Westenberg necessarily dropped out of
consideration as a method to detect variance changes with respect to these
distributions/data sets (though it maintained viability for exponential distributions
and multi-modal lumpy data sets at lower means shift levels); however with the
exception of the asymmetric growth data set, which measured liberal rejection
rates, Siegel-Tukey demonstrated robust and conservatively robust rejection rates
and thus continued as a viable instrument to detect heteroscedasticity for all other
distributions/data sets provided power could be demonstrated next as the variance
began to change.

Type-11 Rejection Rates: For All Distributions/Data Sets, Variances are
Unequal
During the final phase of the primary study, as assumptions were violated and
variance changes simulated, the investigation focused upon reporting Mood-
Westenberg and Siegel-Tukey asymptotic probabilities (Chi-squared and Z-scores,
respectively) with nominal o of 0.05 and 0.01. The expectation was that power
levels of at least 40% would be generally demonstrated.

With respect to the normal type distributions, both statistics generally
demonstrated at least 40% power for all means shifts and variance changes for
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large samples sizes (i.e., (30, 30) and (30, 90)), especially for o = 0.05. Power (at
sample size (30, 30) and above) approached 40% generally around variance
change with K=1.75-2 for o 0.05 and 0.01. For these normal type distributions,
Siegel-Tukey typically demonstrated 40% power starting at smaller sample sizes
(sample size (20, 20); Table 8) and often at lower levels of K changes (K = 1.5;
Table 9) as compared to Mood-Westenberg (see also sample size (20, 20),
uniform, for Siegel-Tukey’s superior power; Table 10). Power for each statistic
was shown to increase as a, variance, and sample size increased as demonstrated
when the uniform sample size increased from (20, 20) (Table 10) to (45, 45)
(Table 11) to (65, 65) (Table 12). While there were power improvements for both
statistics as these parameters increased, Siegel-Tukey always demonstrated
greater (or equal) power as compared to Mood-Westenberg at each point of
comparison, sometimes yielding 20-40% more power at lower variance change
levels.

For data sampled from non-normal distributions, both statistics reported
much larger rejection rates as compared to the normal types when the variance
changed and means shifted. This high rejection rate, starting from the smallest
constant K =1.25-3.5 (0.25), is reported for the representative data set, discrete
mass zero with gap at sample sizes (45, 45) (Table 13). However, these large
power rate results for the data sampled from non-normal distributions under
Mood-Westenberg were meaningless due to the large liberal rejection rates noted
for these when the variances were equal at K=1 (see also large rate rejections
0.991-1 for discrete mass zero with gap and asymmetric decay in Table 7, at
sample size (90, 90) when variances were equal).

However, given the conservative Type-l rejection rates (0.000)
demonstrated when variances were equal for Siegel-Tukey, the large power it
reported as variances changed is meaningful and impressive. For both small (e.g.,
(10, 10); Table 14) and large (e.g., (45, 45); Table 13) sample sizes, the Siegel-
Tukey results for non-normal distributions, with the exception of asymmetric
growth with many liberal Type-l rejection rates, had significant power that
quickly approaching 99% at even the lowest levels of variance change (see also
extreme bimodal; Table 15). For these non-normal power rates, a desired more
gradual increase in power for Siegel-Tukey might have been demonstrated at
lower levels of variance change between K =1 and 1.25, but these levels were not
tested. An impressive power finding was noted for the extreme bimodal data set
under the Siegel-Tukey statistic, wherein the Type-I rejection rates were generally
robust (instead of conservatively non-robust as Siegel-Tukey demonstrated with
other non-normal distributions), particularly when sample sizes were equal (Table
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7) and for unequal samples sizes when o = 0.05. These robust findings, together
with the high power noted in Table 15, renders the Siegel-Tukey test particularly
useful in research settings where extreme bimodal data sets are common.

Finally, the results for both statistics with the data sampled from multi-
modal lumpy and exponential demonstrated at least 40% power with large sample
sizes (generally (30, 30), and above, including (30, 90)), especially when « = 0.05.
For Mood-Westenberg these results were attained typically at K = 1.5; for Siegel-
Tukey at the lower K= 1.25. For the multi-modal lumpy data set with « =0.05
and the smallest variance change K=1.25, 40% power was generally attained
when sample size was (65, 65) for Mood-Westenberg and (30, 30) for Siegel-
Tukey (Table 16, 17). For the exponential distribution (Table 18, 19), when
a = 0.05, 40% power was generally attained when K = 1.5 at sample size (30, 30)
and (20, 20), respectively. Once again, Siegel-Tukey demonstrated greater or
equal power at all comparison points than Mood-Westenberg for both of these
distributions/data sets. For Mood-Westenberg, stable power was generally best
when means shifts were below ¢ = 0.09 for multi-modal lumpy and ¢ = 0.06 for
exponential due to some liberal non-robust Type-l rates at larger means shift
levels. Siegel-Tukey was most powerful for these with lower means shifts
(c =0.01-0.08 for multi-modal lumpy and c = 0.01-0.03 for exponential) due to
some conservative non-robust null rejections at larger mean shift levels.

Conclusion

Methods for Behrens-Fisher detection have been overlooked in statistical
literature and, up to now, there have been no early warning or detective systems
indicating the Behrens-Fisher condition exists. Siegel-Tukey appears promising as
a method that might fill this void. Invoking the Siegel-Tukey statistic for the
purpose of detecting variance changes could provide an effective precursor to the
discovery of small yet important treatment effects in many research settings
approaching Behrens-Fisher.

The Mood-Westenberg statistic also identified variance changes
accompanied by slight mean shifts for normal type distributions, particularly with
large sample sizes at or above n = 30, 30 (and at some smaller mean shifts for the
multi-modal lumpy data set and the exponential distribution). However, Mood-
Westenberg could not approach the levels of superior power demonstrated by
Siegel-Tukey with these data sets/distributions and could not consistently
demonstrate Siegel-Tukey’s robust Type-I rejection rates at small sample sizes,
especially when « was at 0.01.
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Another significant comparative advantage demonstrated by the Siegel-
Tukey statistic was its robust (or conservatively non-robust) and powerful results
for non-normal distributions while Mood-Westenberg could not withstand the
same means shift assumption violations for these types, demonstrating large
liberal Type-l rejection rates. Therefore, as a detection tool for determining
outcomes approaching Behrens-Fisher, the Mood-Westenberg statistic would be
limited to research settings utilizing only normal type data distributions (best with
larger sample sizes), the multi-modal lumpy data set, and the exponential
distribution. Additionally, it is believed that the inability to stabilize Type-I
rejection rates to approach nominal a level as sample sizes increased would
render the Mood-Westenberg statistic generally less reliable in research settings.

Therefore, the Siegel-Tukey statistic might reasonably be promoted as the
current statistic of choice in many scientific, educational and psychological
research environments to detect heteroscedasticity whenever conditions
approaching Behrens-Fisher arise with the concomitant problem of determining
the existence of small means shift around zero. Siegel-Tukey demonstrated
particularly strong measures for the extreme bimodal data set, often found within
educational settings, when samples sizes were equal (or unequal at « = 0.05).
Siegel-Tukey’s robust and powerful measures in detecting variance changes with
all but one (asymmetric growth) of the 11 tested distributions/data sets
demonstrated that it could be an important new instrument in the researcher’s
repertoire for data analysis. It has the potential to operate within a broad range of
testing conditions to alert the researcher to the necessity of choosing an
appropriate test statistic which could ultimately lead to the discovery of small
treatments that might otherwise go unnoticed. The Siegel-Tukey statistic
demonstrated its ability to be an effective precursor that would make known the
need to replace testing statistics dependent on the equal variance assumptions,
such as Student’s-t, and to choose instead to apply any of the myriad of
approximate Behrens-Fisher solutions, such as the Yuen’s solution.
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Appendix A: Figures
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Figure 1. Mood-Westenberg Type-| error rate, comparisons between Chi Squared (blue)
and Fisher Exact (red) for all equal sample sizes from (5, 5) to (200, 200), for Normal
distribution, 0.05 a, 10,000 repetitions

Figure 2. Mood-Westenberg Type-I error rate, comparisons between Chi Squared (blue)
and Fisher Exact (red) for all equal sample sizes from (5, 5) to (200, 200), for Normal
distribution, 0.01 a, 10,000 repetitions
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Figure 3. Siegel-Tukey Type-I error rate, comparisons between Z Scores (blue) and
Mann-Whitney (red) for all equal sample sizes from (5, 5) to (200, 200), for Normal
distribution, 0.05 a, 10,000 repetitions
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Figure 4. Siegel-Tukey Type-I error rate, comparisons between Z Scores (blue) and
Mann-Whitney (red) for all equal sample sizes from (5, 5) to (200, 200), for Normal
distribution, 0.01 a, 10,000 repetitions
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Appendix B: Tables

Table 1. Type-I error rates for Mood-Westenberg and Siegel-Tukey, one-tailed directional
rest, for various sample sizes and a levels when sampling is from the normal distribution,
100,000 repetitions, variances are equal and means are equal

Mood-Westenberg
a
0.050 0.025 0.010 0.005
Sample Size A E A E A E A E
5,5 0.080 0.016 0.016 0.016 0.016 0.000 0.016 0.000
5,15 0.033 0.033 0.033 0.033 0.033 0.000 0.000 0.000
10,10 0.022 0.022 0.022 0.022 0.022 0.001 0.001 0.001
10,30 0.066 0.066 0.008 0.008 0.008 0.008 0.008 0.008
15,45 0.072 0.072 0.016 0.016 0.016 0.016 0.002 0.002
20,20 0.026 0.026 0.026 0.026 0.004 0.004 0.004 0.004
30,30 0.068 0.068 0.019 0.019 0.019 0.019 0.004 0.004
30,90 0.056 0.056 0.020 0.020 0.006 | 0.020 0.006 0.006
45,45 0.043 0.070 0.025 0.025 0.007 0.014 0.004 0.004
65,65 0.041 0.063 0.026 0.026 0.010 0.010 0.006 0.006
90,90 0.052 0.052 0.025 0.025 0.011 0.011 0.004 0.004

Siegel-Tukey

55 0.047 0.047 0.016 0.016 0.004 0.008 0.000 0.004
5,15 0.058 0.048 0.025 0.021 0.010 0.010 0.004 0.004
10,10 0.044 0.044 0.021 0.021 0.007 0.009 0.003 0.004
10,30 0.051 0.047 0.024 0.024 0.010 0.010 0.004 0.004
15,45 0.051 0.050 0.027 0.025 0.010 0.010 0.005 0.005
20,20 0.048 0.048 0.025 0.025 0.010 0.010 0.004 0.005
30,30 0.050 0.050 0.023 0.024 0.009 0.010 0.005 0.005
30,90 0.050 0.049 0.025 0.024 0.009 0.010 0.005 0.005
45,45 0.049 0.049 0.024 0.024 0.010 0.010 0.005 0.005
65,65 0.049 0.049 0.024 0.024 0.010 0.010 0.005 0.005
90,90 0.050 0.050 0.025 0.025 0.010 0.010 0.005 0.005

Note: For Mood-Westenberg, A = asymptotic Chi-squared probability, E = Fisher exact probability; for Siegel-
Tukey, A = asymptotic Z-score probability, E = Mann-Whitney-U exact probability

Table 2. Type-I error rate averages for all sample sizes (5, 5) to (200, 200) for 10,000
repetitions, Normal distribution

Mood-Westenberg

a
0.050 0.025 0.010 0.005
A E A E A E A E
0.048 0.067 0.024 0.031 0.009 0.012 0.005 0.005
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Table 2, continued.

Siegel-Tukey
a
0.050 0.025 0.010 0.005
A E A E A E A E
0.049 0.049 0.024 0.025 0.010 0.010 0.005 0.005

Note: For Mood-Westenberg, A = asymptotic Chi-squared probability, E = Fisher exact probability; for Siegel-
Tukey, A = asymptotic Z-score probability, E = Mann-Whitney-U exact probability

Table 3. Type-I error rates for Mood-Westenberg and Siegel-Tukey, one-tailed directional
test, for sample size (45, 45) and a levels when sampling is from all distributions/data
sets, 100,000 repetitions, variances are equal, and means are equal

Mood-Westenberg

a

0.050 0.025 0.010 0.005
Distribution A E A E A E A E
Asym Growth  0.040 0.067 0.024 0.024 0.007 0.013 0.003  0.003
Digit pref  0.042  0.069 0.024 0.024 0.007 0.014 0.004 0.004
Disc mass zero  0.040 0.066 0.023  0.023 0.007 0.012 0.003 0.003
Disc mass zero gap =~ 0.004 0.008 0.002 0.002 0.000 0.001 0.000 0.000
Exponential 0.043  0.071 0.025 0.025 0.007 0.014 0.004 0.004
Extrm asym decay = 0.021  0.039 0.011 0.011 0.002 0.005 0.001 0.001
Extrm bimodal = 0.022 0.041 0.011 0.011 0.002 0.005 0.001 0.001
Multi-modal lumpy  0.042  0.069 0.024 0.024 0.007 0.014 0.004 0.004
Normal  0.043 0.070 0.025 0.025 0.007 0.014 0.004 0.004
Smoothsym  0.040 0.066 0.023  0.023 0.007 0.013 0.003 0.003
Uni 0.043 0.070 0.025 0.025 0.008 0.015 0.004 0.004

Siegel-Tukey

Asym Growth ~ 0.046  0.047 0.022 0.022 0.008 0.009 0.004 0.004
Digit pref  0.049  0.050 0.024 0.025 0.009 0.010 0.005 0.005
Disc mass zero  0.047  0.048 0.023 0.024 0.009 0.009 0.004 0.005
Disc mass zerogap 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000
Exponential  0.050 0.050 0.026  0.026 0.010 0.010 0.005 0.005
Extrm asym decay = 0.011 0.011 0.003 0.003 0.001 0.001 0.000 0.000
Extrm bimodal =~ 0.023 0.024 0.009 0.009 0.003 0.003 0.001 0.001
Multi-modal lumpy  0.049  0.050 0.024 0.025 0.009 0.010 0.005 0.005
Normal 0.049 0.049 0.024 0.024 0.010 0.010 0.005 0.005
Smoothsym  0.048 0.048 0.023 0.024 0.009 0.009 0.004 0.004
Uni 0.049 0.049 0.025 0.025 0.009 0.009 0.005 0.005

Note: For Mood-Westenberg, A = asymptotic Chi-squared probability, E = Fisher exact probability; for Siegel-
Tukey, A = asymptotic Z-score probability, E = Mann-Whitney-U exact probability
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Table 4. Type-ll errors/power rates for Mood-Westenberg and Siegel-Tukey, one-tailed
directional test, for various a levels and sample size of (90, 90) when sampling is from alll
distributions/data sets, 100,000 repetitions, means are equal, and variance change is
1.25

Mood-Westenberg

a
0.050 0.025 0.010 0.005
Distribution A E A E A E A E
Asym Growth  0.457  0.457 0.369 0.369 0.289 0.289 0.219 0.219
Digitpref  0.265 0.265 0.179 0.179 0.114 0.114 0.068 0.068
Disc mass zero 0197  0.197 0.128 0.128 0.078 0.078 0.044 0.044
Disc mass zero gap 0.999 0.999 0.996  0.996 0.991 0.991
Exponential  0.478 0.478 0.360 0.360 0.256  0.256 0.170  0.170
Extrm asym decay 0.999 0.999 0.999 0.999
Extrm bimodal  0.897 0.897 0.852 0.852 0.795 0.795 0.726 0.726
Multi-modal lumpy  0.668 0.668 0.559 0.559 0.446  0.446 0.334 0.334
Normal 0257 0.257 0.169 0.169 0.102  0.102 0.058 0.058
Smoothsym 0,165 0.165 0.104 0.104 0.061 0.061 0.034 0.034
Uni  0.330 0.330 0.230 0.230 0.150 0.150 0.090 0.090
Siegel-Tukey
Asym Growth  0.886  0.886 0.815 0.816 0.703  0.706 0.614 0.616
Digitpref 0512 0513 0.389 0.389 0.258 0.261 0.184 0.186
Disc mass zero 0568  0.569 0.446  0.447 0.308 0.310 0.225 0.227
Disc mass zero gap
Exponential  0.830  0.830 0.735 0.735 0.603  0.605 0.502 0.504
Extrm asym decay 0.999 0.999 0.999 0.999
Extrm bimodal 0.999 0.999
Multi-modal lumpy  0.846  0.846 0.758 0.758 0.630 0.632 0.531 0.533
Normal  0.495 0.495 0.370 0.370 0.240 0.242 0.169 0.170
Smoothsym 0550 0.550 0.425 0.426 0.288  0.290 0.210 0.212
Uni 0750 0.750 0.639 0.639 0.494  0.496 0.394 0.397

Note: For Mood-Westenberg, A = asymptotic Chi-squared probability, E = Fisher exact probability; for Siegel-
Tukey, A = asymptotic Z-score probability, E = Mann-Whitney-U exact probability
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Table 5. Type-Il errors/power rates for Mood-Westenberg and Siegel-Tukey, one-tailed
directional test, for various a levels and sample size of (90, 90) when sampling is from alll
distributions/data sets, 100,000 repetitions, means are equal, and variance change is 1.5

Mood-Westenberg

a
0.050 0.025 0.010 0.005

Distribution A E A E A E A E
Asym Growth ~ 0.888  0.888 0.827 0.827 0.746  0.746 0.651  0.651
Digitpref 0570 0.570 0.458 0.458 0.349 0.349 0.250 0.250
Disc mass zero  0.615 0.615 0.515 0.515 0.416  0.416 0.322 0.322
Disc mass zero gap 0.999 0.999 0.997 0.997 0.991 0.991
Exponential  0.916 0.916 0.861 0.861 0.787 0.787 0.692 0.692

Extrm asym decay
Extrm bimodal  0.897  0.897 0.851 0.851 0.794  0.794 0.726  0.726
Multi-modal lumpy  0.971  0.971 0.946 0.946 0.906  0.906 0.849 0.849
Normal  0.643 0.643 0.527 0.527 0.407  0.407 0.293 0.293
Smoothsym  0.651 0.651 0.543 0.543 0.433  0.433 0.328 0.328
Uni 0776 0.776 0.678 0.678 0.567 0567 0.449 0.449

Siegel-Tukey

Asym Growth  0.997 (0.997 0.994 0.994 0.983 0.983 0.969 0.970
Digitpref  0.896  0.896 0.829 0.830 0.720 0.722 0.630 0.633
Disc mass zero  0.894 0.894 0.826 0.826 0.715  0.717 0.625 0.628

Disc mass zero gap
Exponential 0,995  0.995 0.988 0.988 0.970 0.970 0.948 0.949

Extrm asym decay
Extrm bimodal 0.999 0.999
Multi-modal lumpy 0,998  0.998 0.996 0.996 0.987 0.988 0.977 0.978
Normal  0.899 0.899 0.831 0.831 0.721  0.722 0.629 0.631
Smoothsym 0,902  0.902 0.835 0.836 0729 0.732 0.641 0.644
Uni 0988 0.988 0.974 0.974 0.942 0.943 0.907 0.908

Note: For Mood-Westenberg, A = asymptotic Chi-squared probability, E = Fisher exact probability; for Siegel-
Tukey, A = asymptotic Z-score probability, E = Mann-Whitney-U exact probability
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Table 6. Type-ll errors/power rates for Mood-Westenberg and Siegel-Tukey, one-tailed
directional test, for various a levels and sample size of (90, 90) when sampling is from alll
distributions/data sets, 100,000 repetitions, means are equal, and variance change is
2.25

Mood-Westenberg

a
0.050 0.025 0.010 0.005

Distribution A E A E A E A E
Asym Growth

Digit pref  0.985  0.985 0.971 0.971 0.948 0.948 0.913 0.913

Disc mass zero  0.990  0.990 0.981 0.981 0.965 0.965 0.940 0.940

Disc mass zero gap 0.999 0.999 0.996 0.996 0.990 0.990

Exponential 0.999 0.999
Extrm asym decay
Extrm bimodal
Multi-modal lumpy

Normal 0995 0.995 0.988 0.988 0.976 0.976 0.953 0.953

Smoothsym 0985 0.985 0.970 0.970 0.946  0.946 0.909 0.909

Uni  0.999 0.999 0.998 0.998 0.996 0.996 0.990 0.990

Siegel-Tukey

Asym Growth

Digit pref 0.999 0.999 0.997  0.997

Disc mass zero 0.999 0.999 0.999 0.999
Disc mass zero gap
Exponential
Extrm asym decay
Extrm bimodal
Multi-modal lumpy

Normal 0.999 0.999 0.999 0.999

Smooth sym 0.999 0.999
Uni

Note: For Mood-Westenberg, A = asymptotic Chi-squared probability, E = Fisher exact probability; for Siegel-
Tukey, A = asymptotic Z-score probability, E = Mann-Whitney-U exact probability
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Table 7. Type-Il errors/power rates for Mood-Westenberg and Siegel-Tukey, one-tailed
directional test, for various a levels and sample size of (90, 90) when sampling is from alll
distributions/data sets, 100,000 repetitions, variances are equal, and means shift is 0.06

Mood-Westenberg

a

0.050 0.025 0.010 0.005
Distribution A E A E A E A E
Asym Growth =~ 0.240 0.240 0.163 0.163 0.105 0.105 0.063 0.063
Digit pref  0.063  0.063 0.031 0.031 0.014 0.014 0.006 0.006
Disc mass zero  0.073  0.073 0.039 0.039 0.019 0.019 0.009 0.009
Disc mass zero gap 0.999 0.999 0.996 0.996 0.991 0.991
Exponential  0.071  0.071 0.037  0.037 0.018 0.018 0.008 0.008
Extrm asym decay 0.999 0.999 0.998 0.998 0.997 0.997
Extrm bimodal = 0.537 0.537 0.459 0.459 0.383 0.383 0.310 0.310
Multi-modal lumpy  0.060  0.060 0.030 0.030 0.014 0.014 0.006 0.006
Normal  0.053 0.053 0.025 0.025 0.011 0.011 0.005 0.005
Smoothsym  0.065 0.065 0.033 0.033 0.015 0.015 0.007 0.007
Uni 0.052 0.052 0.025 0.025 0.010 0.010 0.004 0.004

Siegel-Tukey

Asym Growth =~ 0.298  0.298 0.198 0.198 0.111 0.112 0.071 0.072
Digit pref  0.050 0.050 0.025 0.026 0.010 0.011 0.005 0.005
Disc mass zero  0.040  0.040 0.020 0.020 0.008 0.008 0.004 0.004
Disc mass zero gap ~ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Exponential = 0.011  0.011 0.005 0.005 0.001 0.001 0.001 0.001
Extrm asym decay = 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Extrm bimodal 0.056 0.056 0.031 0.031 0.014 0.014 0.007  0.007
Multi-modal lumpy  0.038  0.038 0.018 0.018 0.007  0.007 0.003 0.003
Normal  0.050 0.050 0.025 0.025 0.010 0.010 0.005 0.005
Smoothsym  0.050 0.050 0.025 0.025 0.010 0.010 0.005 0.005
Uni 0.048 0.048 0.024 0.024 0.010 0.010 0.005 0.005

Note: For Mood-Westenberg, A = asymptotic Chi-squared probability, E = Fisher exact probability; for Siegel-
Tukey, A = asymptotic Z-score probability, E = Mann-Whitney-U exact probability
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Table 8. Power rates for one-tailed directional test for digit preference data set, various

means shifts and variance changes for sample size (20, 20), 100,000 repetitions,

a=0.05
Mood-Westenberg Chi-squared
Means Variance change
shift 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50
0.00 0.024 0.053 0.119 0.195 0.307 0416 0495 0578 0.676 0.728 0.768
0.01 0.028 0.054 0.117 0.205 0.307 0.414 0495 0579 0.675 0.727 0.766
0.02 0.027 0.049 0.119 0203 0305 0413 0499 0578 0676 0.731 0.766
0.03 0.027 0.051 0.113 0.205 0.307 0415 0501 0570 0675 0.732 0.768
0.04 0.026 0.051 0.114 0.202 0.307 0.408 0504 0569 0.676 0.727 0.769
0.05 0.027 0.055 0.112 0.201 0.306 0.408 0.505 0.568 0.675 0.728 0.769
0.06 0.027 0.055 0.112 0.199 0.302 0409 0503 0.620 0.676 0.722 0.766
0.07 0.026 0.055 0.112 0.200 0.301 0.402 0.501 0.620 0.674 0.726 0.773
0.08 0.027 0.057 0.113 0.196 0.302 0.401 0.499 0.620 0.674 0.724 0.773
0.09 0.027 0.057 0.115 0.197 0.301 0.404 0.499 0.621 0.674 0.720 0.771
0.10 0.027 0.057 0.117 0.198 0.301 0.427 0500 0.622 0.675 0.723 0.771
0.11 0.027 0.058 0.119 0.200 0.302 0.429 0.498 0.623 0.678 0.721 0.774
0.12 0.026 0.057 0.119 0.199 0.303 0.429 0498 0.622 0.679 0.717 0.773
Siegel-Tukey Z-score
0.00 0.048 0.177 0.366 0535 0.687 0789 0.849 0.897 0933 0.954 0.963
0.01 0.050 0.179 0362 0543 0.687 0.788 0.849 0.897 0.932 0.953 0.963
0.02 0.050 0.168 0.363 0540 0.686 0.788 0.853 0.896 0933 0.948 0.963
0.03 0.050 0.168 0.354 0543 0.688 0.789 0.853 0.897 0933 0.949 0.964
0.04 0.049 0.169 0355 0524 0.690 0.794 0.853 0.897 0.934 0.947 0.964
0.05 0.049 0179 0352 0527 0685 0792 0.855 0.897 0932 0947 0.964
0.06 0.049 0.177 0352 0525 0673 0793 0.855 0.906 0933 0947 0.964
0.07 0.049 0.178 0351 0521 0.671 0.774 0.855 0.904 0.932 0.949 0.966
0.08 0.050 0.185 0.354 0525 0669 0774 0.843 0.907 0932 0.948 0.965
0.09 0.050 0.186 0.356 0526 0.672 0.773 0.842 0.906 0931 0.954 0.965
0.10 0.050 0.185 0.357 0.528 0.670 0.779 0.843 0.895 0.933 0.954 0.964
0.11 0.050 0.186 0.361 0535 0.671 0780 0.844 0.893 0929 0954 0.965
0.12 0.050 0.184 0.362 0534 0670 0.782 0.841 0.896 0931 0.948 0.965
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Table 9. Power rates for one-tailed directional test for digit preference data set, various

means shifts and variance changes for sample size (30, 30), 100,000 repetitions,

a=0.05
Mood-Westenberg Chi-squared
Means Variance change
shift 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50
0.00 0.065 0.145 0.292 0441 0613 0.743 0817 0.874 0930 0951 0.965
0.01 0.07v3 0142 0.291 0457 0.611 0.744 0.813 0.873 0.930 0.951 0.965
0.02 0.073 0135 0.291 0458 0615 0.742 0.821 0.875 0930 0.952 0.964
0.03 0.073 0.134 0.279 0456 0.612 0.743 0.820 0.867 0931 0.953 0.965
0.04 0.072 0133 0.281 0454 0612 0.730 0.821 0.866 0.929 0.953 0.965
0.05 0.072 0.141 0.276 0452 0614 0730 0.820 0.866 0.927 0.954 0.965
0.06 0.073 0.143 0.278 0451 0611 0.730 0.821 0.904 0931 0949 0.964
0.07 0.073 0.142 0.278 0454 0.607 0.727 0.819 0.905 0.930 0.950 0.966
0.08 0.073 0.151 0.281 0445 0611 0.727 0.818 0.902 0930 0.949 0.967
0.09 0.075 0.150 0.280 0.444 0613 0.727 0.819 0.903 0931 0.948 0.967
0.10 0.074 0.150 0.292 0.443 0.610 0.761 0.819 0.908 0.930 0.948 0.967
0.11 0.073 0.148 0.292 0447 0611 0.760 0.818 0.907 0.933 0.948 0.967
0.12 0.07v3 0.153 0.292 0443 0.610 0.762 0.818 0.908 0.932 0.948 0.967
Siegel-Tukey Z-score
0.00 0.047 0.237 0.498 0.706 0.849 0922 0.957 0.977 0989 0.994 0.996
0.01 0.051 0.234 0498 0.711 0.849 0922 0957 0.978 0.989 0.994 0.996
0.02 0.051 0.219 0498 0714 0.849 0922 0958 0.976 0988 0.992 0.996
0.03 0.053 0.217 0482 0710 0.849 0922 0960 0.978 0989 0.993 0.996
0.04 0.051 0.218 0482 0690 0.849 0926 0959 0.976 0.989 0.992 0.996
0.05 0.051 0.230 0479 0690 0.849 0925 0.958 0.977 0988 0.993 0.996
0.06 0.050 0.229 0482 0692 0835 0926 0.959 0.980 0989 0.993 0.996
0.07 0.052 0.232 0479 0691 0.832 0913 0959 0.980 0.988 0.992 0.997
0.08 0.052 0.247 0483 0694 0.834 0912 0952 0.980 0.988 0.992 0.996
0.09 0.051 0244 0481 0695 0.835 0912 0.952 0.980 0.988 0.994 0.997
0.10 0.052 0.246 0489 0691 0.835 0915 0951 0.975 0.989 0.994 0.996
0.11 0.053 0.245 0488 0.703 0.834 0915 0.951 0.975 0989 0.994 0.997
0.12 0.051 0242 0490 0699 0.833 0915 0.951 0.976 0988 0.992 0.996
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Table 10. Power rates for one-tailed directional test for uniform distribution, various
means shifts and variance changes for sample size (20, 20), 100,000 repetitions,
a=0.05

Mood-Westenberg Chi-squared

Means Variance change

shift 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50

0.00 0.026 0.067 0.179 0331 0480 0610 0.714 0.791 0846 0.885 0.914
0.01 0.024 0.068 0.182 0.330 0.484 0610 0.715 0.790 0.845 0.887 0.915
0.02 0.025 0.069 0.180 0.333 0484 0610 0.712 0.789 0.846 0.884 0.914
0.03 0.025 0.067 0.181 0.330 0485 0.613 0.714 0.790 0.845 0.884 0.913
0.04 0.026 0.068 0.180 0.331 0484 0612 0.715 0.791 0.846 0.885 0.913
0.05 0.026 0.068 0.180 0.331 0481 0609 0.712 0.791 0.845 0.885 0.915
0.06 0.026 0.067 0.182 0.330 0482 0613 0.712 0.791 0.843 0.886 0.914
0.07 0.025 0.069 0.179 0331 0481 0612 0.717 0.791 0845 0.885 0.914
0.08 0.026 0.068 0.182 0.330 0483 0.611 0.714 0.790 0.846 0.886 0.914
0.09 0.026 0.069 0.179 0329 0482 0611 0.713 0.790 0.844 0.883 0.914
0.10 0.026 0.069 0.178 0.332 0482 0612 0.711 0.789 0.844 0885 0.914
0.11 0.026 0.068 0.182 0.332 0484 0.613 0.714 0.789 0.844 0.887 0.914
0.12 0025 0.068 0.179 0332 0481 0611 0.715 0.788 0.844 0.884 0.916

Siegel-Tukey Z-score

0.00 0.048 0.272 0548 0.745 0.859 0922 0.955 0.973 0984 0.989 0.994
0.01 0.046 0.272 0.548 0.744 0860 0922 0.955 0973 0984 0.990 0.994
0.02 0.048 0.273 0548 0.746 0.861 0921 0.955 0.974 0984 0989 0.993
0.03 0.047 0269 0549 0.745 0.861 0922 0955 0974 0985 0.990 0.993
0.04 0.048 0.272 0547 0.746 0860 0921 0956 0974 0984 0.990 0.993
0.05 0.048 0.272 0549 0.745 0.859 0922 0955 0.973 0984 0990 0.994
0.06 0.049 0.270 0547 0.743 0.858 0922 0956 0.974 0984 0990 0.993
0.07 0.048 0.269 0.545 0.745 0.860 0923 0.955 0974 0985 0.990 0.993
0.08 0.047 0.273 0547 0.745 0.859 0920 0.955 0.974 0983 0.990 0.993
0.09 0.048 0.271 0546 0.743 0.859 0921 0.955 0.973 0983 0.990 0.994
0.10 0.046 0.269 0.545 0.745 0.859 0922 0.954 0973 0.983 0.990 0.993
0.11 0.047 0.266 0545 0.743 0.859 0922 0956 0.974 0984 0990 0.993
0.12 0.047 0.267 0545 0.744 0.857 0923 0.955 0.973 0983 0.990 0.994
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Table 11. Power rates for one-tailed directional test for uniform distribution, various
means shifts and variance changes for sample size (45, 45), 100,000 repetitions,
a=0.05

Mood-Westenberg Chi-squared

Means Variance change

shift 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50

0.00 0.043 0.174 0468 0.730 0.882 0952 0.982 0.993 0.997 0.999
0.01 0.044 0.176 0468 0.730 0.882 0953 0.983 0.993 0.997 0.999 0.999
0.02 0.044 0175 0468 0.731 0.884 0952 0981 0.993 0997 0.999 0.999
0.03 0.044 0.174 0465 0.731 0.883 0953 0.981 0.993 0.997 0.999
0.04 0.043 0.174 0470 0.733 0.881 0952 0.981 0.993 0.997 0.999 0.999
0.05 0.044 0172 0469 0.731 0.882 0952 0981 0.993 0997 0.999 0.999
0.06 0.044 0.173 0468 0.731 0.883 0953 0.981 0.993 0.997 0.999
0.07 0.043 0.175 0465 0.731 0.883 0.953 0.981 0.993 0.997 0.999
0.08 0.044 0.176 0467 0.732 0.883 0953 0.982 0.993 0.997 0.999
0.09 0.042 0.174 0469 0.730 0.883 0952 0.981 0.992 0.997 0.999
0.10 0.044 0.174 0467 0.732 0.883 0952 0.981 0993 0.997 0.999 0.999
0.11 0.044 0.175 0468 0.730 0.882 0953 0.981 0.993 0.997 0.999 0.999
0.12 0045 0.171 0466 0.729 0881 0953 0.982 0.993 0.997 0.999

Siegel-Tukey Z-score

0.00 0.049 0.493 0.865 0972 0.995 0.999
0.01 0.050 0.493 0.863 0973 0.995 0.999
0.02 0.050 0.492 0.865 0972 0.995 0.999
0.03 0.050 0.492 0.862 0973 0.995 0.999
0.04 0.050 0.493 0.864 0973 0.994 0.999
0.05 0.050 0.491 0.866 0972 0.995 0.999
0.06 0.050 0.491 0.862 0972 0.995 0.999
0.07 0.049 0491 0.862 0972 0.994 0.999
0.08 0.050 0.491 0.863 0972 0.995 0.999
0.09 0.048 0489 0.863 0973 0.995 0.999
0.10 0.050 0.488 0.862 0971 0.995 0.999
0.11 0.049 0491 0.862 0973 0.995 0.999
0.12 0.049 0486 0.861 0972 0.995 0.999
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means shifts and variance changes for sample size (65, 65), 100,000 repetitions,
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a=0.05
Mood-Westenberg Chi-squared
Means Variance change
shift 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50
0.00 0.043 0.230 0.609 0.867 0964 0.992 0.998
0.01 0.042 0.229 0611 0.868 0.964 0.991 0.998 0.999
0.02 0.043 0.230 0.612 0865 0.964 0991 0.998 0.999
0.03 0.044 0232 0.610 0.867 0963 0991 0.998 0.999
0.04 0.042 0.230 0612 0.869 0.964 0.991 0.998
0.05 0.043 0.232 0.611 0867 0.965 0.991 0.998
0.06 0.042 0.232 0.610 0.867 0.964 0991 0.998
0.07 0.041 0.229 0611 0.867 0.965 0.992 0.998 0.999
0.08 0.043 0.229 0.613 0.868 0.965 0.991 0.998
0.09 0.043 0.230 0.613 0.867 0.965 0.991 0.998
0.10 0.042 0.232 0.613 0.866 0.964 0.992 0.998
0.11 0.043 0.228 0.612 0.867 0.964 0.991 0.998
0.12 0.041 0.229 0611 0.867 0965 0.992 0.998 0.999
Siegel-Tukey Z-score
0.00 0.050 0.623 0.951 0.996
0.01 0.048 0.623 0.952 0.996
0.02 0.050 0.626 0.952 0.996
0.03 0.050 0.627 0.951 0.996
0.04 0.049 0.626 0.953 0.996
0.05 0.049 0.625 0.952 0.996
0.06 0.050 0.623 0.951 0.996
0.07 0.048 0.622 0.951 0.996
0.08 0.049 0.625 0.951 0.996
0.09 0.049 0.623 0.952 0.996
0.10 0.049 0.623 0.951 0.996
0.11 0.049 0.620 0.951 0.996
0.12 0.050 0.620 0.950 0.996
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Table 13. Power rates for one-tailed directional test for discrete mass zero with gap data
set, various means shifts and variance changes for sample size (45, 45), 100,000
repetitions, a = 0.05

Mood-Westenberg Chi-squared

Means Variance change

shift 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50

0.00 0.004 0959 0960 0960 0961 0957 0.957 0.956 0955 0955 0.957
0.01 = 0960 0960 0961 0.960 0.961 0956 0.956 0.957 0.956 0.956 0.957
0.02 0961 0960 0961 0959 0961 0961 0956 0.956 0957 0.957 0.955
0.03 0961 0961 0960 0961 0960 0960 0.957 0.956 0957 0.957 0.956
0.04 0960 0961 0960 0960 0959 0960 0.957 0.955 0955 0956 0.957
0.05 0961 0960 0960 0961 0960 0959 0.956 0.957 0956 0956 0.957
0.06 0960 0960 0961 0961 0961 0960 0.956 0.956 0.957 0.955 0.956
0.07 0960 0960 0960 0961 0961 0960 0.956 0.956 0956 0.956 0.956
0.08 0961 0961 0960 0960 0961 0959 0.961 0.955 0.957 0955 0.956
0.09 0960 0961 0960 0959 0960 0961 0961 0.956 0.955 0.957 0.956
0.10 0961 0960 0960 0961 0961 0961 0.960 0.956 0955 0.956 0.956
0.11 0960 0.961 0960 0960 0960 0960 0.961 0.955 0.957 0.957 0.956
0.12 0961 0961 0961 0960 0961 0960 0.960 0.957 0.957 0.957 0.956

Siegel-Tukey Z-score

0.00 0.001 0.997 0996 0996 0997 0996 0.996 0.996 0996 0.996 0.996
0.01 0.000 0.997 0.997 0997 0.997 0996 0.996 0.996 0.996 0.996 0.996
0.02 0.000 0.997 0996 0.996 0997 0997 0.996 0.996 0996 0.996 0.996
0.03 0.000 0.997 0996 0997 0996 0996 0.996 0.996 0996 0.996 0.996
0.04 0.000 0.997 0.997 0997 0997 0996 0.996 0.996 0.996 0.996 0.996
0.05 0.000 0.997 0.997 0997 0997 099 0.996 0.996 0996 0.996 0.996
0.06 0.000 0.997 0.997 0997 0997 0997 0996 0.996 0997 0.996 0.996
0.07 0.000 0.996 0.997 0.997 0.997 0997 0.996 0.996 0996 0.996 0.996
0.08 0.000 0.997 0.997 0997 0997 0997 0996 0.996 0996 0.996 0.996
0.09 0.000 0.996 0.997 0996 0.997 0997 0.997 0.996 0996 0.996 0.996
0.10 0.000 0.996 0.997 0.997 0.997 0996 0.997 0.996 0.996 0.996 0.996
0.11 0.000 0.997 0.996 0.997 0.997 0996 0.997 0.996 0996 0.996 0.996
0.12 0.000 0.997 0.997 0997 0.997 0996 0.996 0.996 0996 0.996 0.996
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Table 14. Power rates for one-tailed directional test for discrete mass zero with gap data

set, various means shifts and variance changes for sample size (10, 10), 100,000

repetitions, a = 0.05

Mood-Westenberg Chi-squared

Variance change

Means
shift 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50
0.00 0.005 0.310 0.316 0.314 0315 0.308 0.307 0.309 0.308 0.307 0.308
0.01 = 0248 0.308 0.314 0315 0.314 0310 0.309 0.308 0.308 0.310 0.305
0.02 ' 0247 0310 0.316 0.318 0.314 0.313 0.307 0.308 0.308 0.308 0.309
0.03 ' 0249 0309 0313 0315 0316 0315 0309 0311 0311 0311 0.310
0.04 0.246 0.310 0.316 0316 0315 0316 0.309 0.309 0.309 0311 0.310
0.05 0246 0310 0.317 0312 0.314 0315 0.308 0.310 0.308 0.309 0.307
0.06 = 0248 0311 0315 0.317 0312 0.316 0310 0.308 0.306 0.306 0.309
0.07 0.246 0.313 0.316 0317 0315 0313 0.308 0.309 0.305 0.309 0.309
0.08 ' 0245 0.311 0.314 0314 0317 0314 0315 0309 0.306 0.306 0.308
0.09 0249 0312 0315 0.314 0315 0.312 0315 0308 0309 0309 0.311
0.10 0.244 0.313 0316 0315 0316 0315 0.315 0.310 0.308 0.311 0.309
0.11 ' 0247 0311 0315 0.314 0314 0317 0313 0307 0311 0310 0.311
0.12 ' 0.247 0.308 0.314 0315 0.314 0315 0314 0310 0.312 0.310 0.308
Siegel-Tukey Z-score
0.00 0.000 0.619 0.620 0619 0619 0612 0.610 0.611 0612 0.610 0.611
0.01 0.000 0.617 0.620 0.624 0.621 0.614 0.612 0.613 0.611 0.612 0.609
0.02 0.000 0.617 0.623 0.622 0.621 0.623 0.612 0.610 0611 0.610 0.611
0.03 0.000 0.619 0.621 0624 0623 0620 0.612 0.613 0613 0.615 0.615
0.04 0.000 0619 0.623 0621 0.620 0.622 0.613 0.613 0.611 0.611 0.610
0.05 0.000 0.619 0.623 0621 0619 0620 0.610 0.612 0612 0.613 0.612
0.06 0.000 0.621 0.622 0623 0.621 0624 0.613 0.611 0612 0.610 0.611
0.07 0.000 0.622 0.622 0.623 0.620 0.620 0.613 0.612 0.609 0.610 0.612
0.08 0.000 0.619 0.623 0.622 0622 0620 0.620 0.613 0.612 0.610 0.609
0.09 0.000 0.620 0.620 0.622 0.619 0.621 0.623 0.612 0615 0.613 0.614
0.10 0.000 0.623 0.621 0621 0.622 0.624 0.623 0.612 0.613 0.614 0.612
0.11 0.000 0.621 0.622 0621 0.622 0.621 0.618 0.608 0.614 0.615 0.613
0.12 0.000 0.618 0.622 0620 0.621 0.621 0.622 0.613 0.614 0.614 0.613
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Table 15. Power rates for one-tailed directional test for discrete mass zero with gap data
set, various means shifts and variance changes for sample size (10, 10), 100,000
repetitions, a = 0.05

Mood-Westenberg Chi-squared

Means
shift

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.11
0.12

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.11
0.12

Variance change

1.00

0.055
0.054
0.055
0.054
0.054
0.055
0.054
0.054
0.054
0.053
0.053
0.052

1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25
0.701 0.705 0.700
0.699 0.701 0.701
0.699 0.702 0.701
0.703 0.701 0.704
0.701 0.701 0.699
0.700 0.701 0.701
0.700 0.701 0.702
0.701 0.703 0.703
0.700 0.703 0.701
0.702 0.702 0.700
0.699 0.701 0.702
0.702 0.702 0.702
0.702 0.702 0.702

Siegel-Tukey Z-score
0.991 0.991 0.992
0.991 0.991 0.992
0.991 0.992 0.992
0.991 0.992 0.992
0.991 0.991 0.992
0.991 0.991 0.992
0.991 0.991 0.992
0.991 0.991 0.992
0.991 0.991 0.992
0.992 0.991 0.992
0.992 0.991 0.992
0.991 0.991 0.992
0.992 0.991 0.992
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Table 16. Power rates for one-tailed directional test for multi-modal lumpy data set,
various means shifts and variance changes for sample size (30, 30), 100,000 repetitions,
a=0.05

Mood-Westenberg Chi-squared

Means Variance change

shift 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50

0.00 0.068 0.303 0.652 0846 0936 0971 0.988 0.995 0998 0.999 0.999
0.01 0.074 0.272 0.624 0840 0935 0971 0.988 0.995 0.998 0.999

0.02 0.072 0273 0623 0841 0924 0969 0988 0.995 0998 0.999 0.999
0.03 0.072 0.266 0.623 0840 0923 0970 0.988 0.995 0998 0.999 0.999
0.04 0.073 0.266 0.625 0.823 0.922 0969 0.988 0.995 0.998 0.999 0.999
0.05 0.073 0.261 0590 0823 0925 0968 0.988 0.994 0998 0.999 0.999
0.06 0074 0263 0591 0817 0923 0967 0987 0.994 0998 0.999 0.999
0.07 0.071 0.258 0590 0.818 0.925 0968 0.985 0.994 0.997 0.999 0.999
0.08 0.074 0.258 0590 0817 0924 0968 0.985 0.994 0997 0.998 0.999
0.09 0.080 0.247 0592 0814 0923 0968 0.985 0.994 0998 0.999 0.999
0.10 0.078 0.249 0587 0805 0914 0966 0.985 0.994 0998 0.999 0.999
0.11 0.079 0.221 0589 0804 0915 0966 0.984 0.993 0997 0.999 0.999
0.12 0.077 0.221 0586 0.798 0914 0965 0.984 0.994 0997 0.999 0.999

Siegel-Tukey Z-score

0.00 0.049 0444 0831 0961 0.992 0.998 0.999
0.01 0.043 0430 0.812 0956 0.992 0.998

0.02 0.043 0431 0.811 0958 0989 0.998 0.999
0.03 0.043 0418 0.812 0957 0989 0.998 0.999
0.04 0.043 0417 0.814 0952 0989 0.997 0.999
0.05 0.044 0399 0.788 0.953 0.989 0.997 0.999
0.06 0.043 0.399 0.790 0.948 0989 0.997 0.999
0.07 0.042 0388 0.789 0.949 0989 0.997 0.999
0.08 0.044 0.388 0.788 0.945 0989 0.997 0.999
0.09 0031 0376 0.792 0943 0989 0.997 0.999
0.10 0.032 0378 0.773 0939 0985 0.997 0.999
0.11 0.032 0357 0.774 0940 0985 0.997 0.999
0.12 0.032 0357 0.772 0940 0985 0.997 0.999
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Table 17. Power rates for one-tailed directional test for multi-modal lumpy data set,
various means shifts and variance changes for sample size (65, 65), 100,000 repetitions,

a=0.05
Mood-Westenberg Chi-squared

Means Variance change
shift 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25
0.00 0.041 0486 0.894 0.985 0.998

0.01 0.047 0408 0.866 0.985 0.998

0.02 0.047 0406 0.866 0.983 0.997

0.03 0.047 0389 0.865 0.983 0.997

0.04 0.047 0392 0.868 0.975 0.997

0.05 0.047 0.404 0.839 0.975 0.997

0.06 0.047 0.404 0.838 0.975 0.997

0.07 0.048 0409 0.839 0.975 0.997

0.08 0.046 0.413 0.839 0.976 0.997

0.09 0.058 0376 0.836 0.977 0.997

0.10 0.057 0375 0.833 0.971 0.996

0.11 0.057 0302 0.833 0.971 0.996

0.12 0.058 0.302 0.831 0.966 0.996

Siegel-Tukey Z-score

0.00 0.050 0.727 0.988

0.01 0.039 0.712 0.984

0.02 0.039 0.711 0.984

0.03 0.039 0.698 0.984

0.04 0.040 0.695 0.983

0.05 0.040 0.663 0.979

0.06 0.040 0.664 0.978

0.07 0.040 0.649 0.978

0.08 0.038 0.651 0.978

0.09 0.634 0.978

0.10 0.634 0.973

0.11 0.025 0.602 0.974

0.12 - 0.600 0.973
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Table 18. Power rates for one-tailed directional test for exponential distribution, various

means shifts and variance changes for sample size (20, 20), 100,000 repetitions,

a=0.05
Mood-Westenberg Chi-squared
Means Variance change
shift 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50
0.00 0.026 0.094 0.273 0464 0617 0725 0.794 0.845 0.879 0.899 0.916
0.01 0.026 0.092 0.264 0458 0.609 0.721 0.794 0.844 0.879 0.899 0.916
0.02 0.026 0.085 0.258 0.448 0.606 0.716 0.793 0.843 0.875 0901 0.914
0.03 0.027 0.081 0.248 0439 0602 0.713 0.791 0.841 0.875 0.902 0.915
0.04 0.025 0.077 0240 0435 0596 0.720 0.789 0.840 0.876 0.899 0.916
0.05 0.028 0.072 0.234 0426 0592 0.707 0.786 0.842 0.874 0901 0.917
0.06 0.029 0.069 0.226 0421 0584 0.704 0.783 0.839 0.873 0.899 0.916
0.07 0.029 0.066 0.220 0411 0578 0.698 0.781 0.835 0.874 0.900 0.918
0.08 0.030 0.063 0.212 0404 0569 0693 0.779 0.835 0.873 0.899 0.915
0.09 0.032 0.059 0.204 0400 0565 0693 0.778 0.835 0.873 0.897 0.917
0.10 0.034 0.055 0.197 0.392 0562 0.685 0.774 0.831 0.871 0.899 0.915
0.11 0.035 0.053 0.191 0382 0555 0683 0.771 0.830 0.869 0.897 0.914
0.12 0.037 0.051 0.186 0375 0550 0.677 0.769 0.828 0.869 0.900 0.915
Siegel-Tukey Z-score
0.00 0.049 0.312 0.601 0.777 0.875 0929 0956 0.974 0983 0.988 0.991
0.01 0.042 0305 0591 0.774 0.872 0925 0957 0.973 0.983 0.988 0.991
0.02 0.040 0.294 0581 0768 0.872 0927 0955 0.972 0982 0.987 0.991
0.03 0.035 0.283 0573 0763 0.871 0924 0957 0.972 0981 0.988 0.991
0.04 0.030 0.270 0568 0.761 0.866 0.924 0956 0.972 0.982 0.988 0.991
0.05 0.029 0.257 0559 0754 0.868 0923 0955 0.973 0982 0.988 0.991
0.06 0.025 0.249 0549 0749 0863 0922 0953 0971 0981 0987 0.991
0.07 0.022 0.238 0542 0.746 0.860 0.921 0.953 0.972 0.983 0.987 0.991
0.08 0.020 0.226 0531 0741 0855 0921 0953 0.971 0981 0.987 0.991
0.09 0.018 0.217 0520 0.735 0.853 0919 0.952 0.971 0980 0.987 0.991
0.10 0.016 0.207 0512 0.730 0.853 0915 0.951 0.970 0.982 0.988 0.991
0.11 0.014 0.198 0.504 0.727 0.847 0914 0.950 0.969 0981 0.987 0.991
0.12 0.013 0.189 0.494 0.718 0.847 0913 0.949 0.969 0981 0.987 0.991
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Table 19. Power rates for one-tailed directional test for exponential distribution, various

means shifts and variance changes for sample size (30, 30), 100,000 repetitions,

a=0.05
Mood-Westenberg Chi-squared

Means Variance change

shift 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50
0.00 0.069 0.241 0553 0782 0.899 0951 0976 0.988 0.994 0.996 0.997
0.01 0.069 0232 0543 0.772 0.896 0.951 0.975 0.988 0.993 0.996 0.997
0.02 0.071 0.222 0532 0765 0.890 0949 0975 0.987 0993 0.996 0.997
0.03 0.071 0.212 0,518 0.760 0.887 0947 0.974 0.987 0993 0.996 0.997
0.04 0.073 0.204 0506 0.752 0.885 0.944 0973 0.986 0.993 0.996 0.997
0.05 0.075 0.195 0496 0.745 0879 0944 0972 0.986 0992 0.996 0.997
0.06 0.078 0.183 0484 0.736 0.876 0941 0.972 0.986 0992 0.996 0.997
0.07 = 0.081 0.176 0475 0.729 0.872 0.938 0.970 0.985 0.992 0.996 0.997
0.08 = 0.084 0.166 0459 0.720 0.866 0.938 0.969 0.984 0.992 0.996 0.997
0.09 = 0.087 0.158 0451 0.713 0.865 0935 0.969 0.984 0.991 0.995 0.997
0.10 @ 0.092 0.150 0440 0.705 0.858 0.932 0.967 0.985 0.991 0.995 0.997
0.11 = 0.097 0.143 0428 0.697 0.852 0933 0.968 0.983 0.991 0.995 0.997
0.12 = 0.102 0.137 0417 0.687 0.850 0.929 0.965 0.983 0.991 0.995 0.997

Siegel-Tukey Z-score

0.00 0.049 0428 0.768 0917 0970 0989 0.995 0.998 0.999 0.999

0.01 0.043 0415 0.761 0914 0970 0.988 0.995 0.998 0.999

0.02 0.038 0.398 0.755 0910 0.968 0.988 0.995 0.998 0.999

0.03 0.032 0.382 0.743 0909 0968 0988 0.995 0.998 0.999

0.04 0.029 0369 0.734 0904 0966 0.987 0.995 0.998 0.999 0.999

0.05 0.024 0.356 0.724 0902 0.964 0.988 0.994 0.998 0.999

0.06 0.021 0.336 0.720 0.897 0963 0986 0.995 0.997 0.999 0.999

0.07 0.018 0.324 0.710 0.893 0963 0.986 0.995 0.998 0.999

0.08 0.016 0.306 0.700 0.891 0961 0.986 0.995 0.998 0.999

0.09 0.014 0.291 0.690 0.887 0961 0985 0.994 0.998 0.999 0.999

0.10 0.012 0.275 0678 0.882 0958 0.985 0.994 0.998 0.999 0.999

0.11 0.011 0.262 0.667 0879 0956 0.985 0.994 0.997 0.999

0.12 0.009 0.249 0.658 0875 0955 0984 0.994 0.998 0.999 0.999
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