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The Mood-Westenberg and Siegel-Tukey tests were examined to determine their 
robustness with respect to Type-I error for detecting variance changes when their 
assumptions of equal means were slightly violated, a condition that approaches the 
Behrens-Fisher problem. Monte Carlo methods were used via 34,606 variations of 

sample sizes, α levels, distributions/data sets, treatments modeled as a change in scale, 
and treatments modeled as a shift in means. The Siegel-Tukey was the more robust, and 
was able to handle a more diverse set of conditions. 
 
Keywords: Behrens-Fisher, Mood-Westenberg, Siegel-Tukey 

 

Introduction 

“Heteroscedasticity, refers to situations where two or more of the variances are 

unequal” (Wilcox, 1996, p. 174). The applied statistical literature is vast on how 

poorly the t and F tests perform under this condition. For instance, it has been 

demonstrated that small sample sizes, unequal sample sizes, and one-tailed tests 

can be problematic for the t-test with respect to heteroscedasticity and non-normal 

data (Sawilowsky & Blair, 1992; Wilcox, 1996; Sawilowsky, 2002). With respect 

to the Analysis of Variance (ANOVA) F test, the problem is even worse (Brown 

& Forsythe, 1974; Rogan & Keselman, 1977; Tomarken & Serlin, 1986). Wilcox 

(1996) stated “our hope is that any problem associated with unequal variances 

might diminish when there are more than two groups, but the reverse seems to be 

true” (p. 180). Referring to the ratio (R) of standard deviation between groups in a 

survey of educational studies, Wilcox (1996) “found that that estimates of R are 

https://doi.org/10.22237/jmasm/1493597460
mailto:lclowenstein@gmail.com
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often higher than 4” (p. 180; see Wilcox, 1989), noting R’s as large as 11 were 

observed in real world data applications. 

Keppel and Wickens (2004) noted “the actual significance level could 

appreciably exceed the nominal α level when the group variances were unequal. 

Under these circumstances, we need a way to adjust or modify our analysis” (p. 

152). Hence, inflated Type-I errors lead to pronouncements of the statistical 

significance of nonsense treatments. 

Under the truth of the null hypothesis, the counter-argument is having equal 

means with unequal variance is unrealistic (see, e.g., Sawilowsky, 2002). “That is, 

this situation will never arise in practice because if the variances are unequal, 

surely the means are unequal, in which case a Type-I error is not an issue” 

(Wilcox, 1996, p. 180). The condition of unequal variances between groups is 

known as the Behrens-Fisher problem, named after the work of W. V. Behrens 

(1929) and Sir Ronald A. Fisher (1935, 1939) who developed the first expression 

and approximate solution. Sawilowsky (2002) noted the Behrens-Fisher problem 

“arises in testing the difference between two means with a t test when the ratio of 

variances of the two populations from which the data were sampled is not equal to 

one” (p. 461), and of course expands to layouts with more than two groups. 

When the null hypothesis is false, another problem with heteroscedasticity is 

the t, F, and other parametric tests’ concomitant lack of comparative statistical 

power. Wilcox (1996) mentioned “there is evidence that problems with Type-I 

errors with unequal variances reflect undesirable power properties even under 

normality (Wilcox, Charlin, & Thompson, 1986; Wilcox, 1995)” (p. 180), noting 

“the power curve might be unusually flat in a region near the null hypothesis 

(Wilcox, 1995)” especially when the data are skewed (Wilcox, 1996, p. 181). 

There are situations where the null hypothesis is false, yet the probability of 

rejecting the null hypothesis is less than α. In this case, small but possibly 

important treatment effects might be missed. 

Sawilowsky and Fahoome (2003) noted non-homogeneity renders most 

rank-based non-parametric tests even more so ineffective. For example, the 

Wilcoxon Rank Sum test (Wilcoxon, 1945), which is three to four times more 

powerful than the t test under common conditions of non-normality due to skew, 

fares even worse when the treatment impacts scale. Similarly, Sawilowsky (2002) 

noted “for the case of K ˃ 2, Feir-Walsh and Toothaker (1974) and Keselman, 

Rogan, and Feir-Walsh (1977) found the Kruskal-Wallis test (Kruskal & Wallis, 

1952) and expected normal scores test (McSweeney & Penfield, 1969) to be 

‘substantially affected by inhomogeneity of variance’” (p. 463). 
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Change in Scale 

There are no exact solutions to the Behrens-Fisher problem. According to Wilcox 

(1996) and Sawilowsky (2002), the non-parametric Yuen solution (Yuen, 1974), 

with various modifications, is considered as one of the best approximate solutions. 

Moreover, methods designed for the purpose of detecting scale or variance 

changes between sample groups with regard to the level of heteroscedasticity 

necessary to invoke the Behrens-Fisher problem have been generally overlooked 

in the applied statistical literature. With respect to the often-cited classical 

Hartley’s (1950) F-statistic for determining dispersion (variance) differences as a 

preliminary test, for example, Sawilowsky (2002) noted the deleterious nature of 

sequential testing that increases the Type-I error rate. Keppel and Wickens (2004) 

noted the additional problem of non-normality can greatly impact that F-statistic 

for variance difference detection: 

 

Unfortunately, in spite of its simplicity and of the fact that it is 

provided by many packaged computer programs, the F max statistic is 

unsatisfactory. Its sampling distribution, as reflected in the Pearson-

Hartley tables, is extremely sensitive to the assumption that the scores 

have a normal distribution. (p. 150) 

 

According to Neave and Worthington (1988), there were no satisfactory 

nonparametric tests that could determine the potential of unequal variances 

irrespective of whether there was also a shift in location. They noted the Mood-

Westenberg dispersion test (Westenberg, 1948; Mood, 1950), a non-parametric 

test based on quartile location and Fisher exact probabilities, determined 

differences in variances under the assumption that the means of two samples are 

equal, but stopped short of recommending it as a preliminary test for detecting the 

Behrens-Fisher condition. 

Similarly, Neave and Worthington (1988) noted the Siegel-Tukey test 

(Siegel & Tukey, 1960), another ordinal non-parametric test based on rankings 

and Mann-Whitney-U probabilities, assumes roughly equal means/medians for 

detecting variance differences between groups. They bemoaned the absence of 

detection methods for this condition: 

 

Several attempts have been made to solve the problem, but all 

resulting tests suffer from being rather un-powerful or not truly 

distribution-free or both….It is particularly unfortunate that there 

appears to be no good distribution-free solution to this problem since 
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several researchers have shown that non-normality can upset the 

behavior of the F-statistic to a very considerable extent. (p.135) 

 

The question arises, therefore, if there are no tests that can detect the 

occurrence of different variances irrespective of means, then how can it be known 

if heteroscedasticity or the Behrens-Fisher problem arises so as to be alerted to the 

need to subsequently apply any of the myriad approximate solutions? 

Purpose of the Study 

There are no early warning or detection systems indicating the Behrens-Fisher 

condition exists. The Mood-Westenberg and Siegel-Tukey tests appear promising 

to fill that need in the statistical repertoire in applied data analysis. In the two 

group layout, both tests assume equal means (or medians) and µ1 = µ2 (or θ1 = θ2). 

The null hypothesis (H0) is the variances are equal. The alternative hypothesis 

(HA) is that the variances are not equal. The purpose of this study, therefore, is to 

examine via Monte Carlo methods their Type-I error rates and comparative 

statistical power properties as the treatment condition approaches the Behrens-

Fisher problem, in order to determine if either test can be used as an early warning.  

Methodology 

Monte Carlo Methods 

An Absoft Pro Fortran (version 14.0.4) program with the IMSL Fortran 

Numerical Library (version 7.0) was coded to randomly select and assign values 

to simulated control and treatment groups through sampling with replacement. 

Rangen 2.0 subroutine (Fahoome, 2002), a 90/95 update to the Fortran 77 version 

(Blair, 1987), was used to generate pseudo-random numbers from the normal and 

theoretical distributions. Realpops subroutine 2.0 (Sawilowsky, Blair, & Micceri, 

1990) was used to generate pseudo-random samples obtained from real education 

and psychology populations. 

For the Mood-Westenberg code, duplicates found in the control (A) and 

treatment groups (B) were coded to layout the groups as ABABABAB until all 

duplicates were accounted for; this method was selected as reasonable because 

this pattern appears to be unbiased for both groups (the pattern could favor either 

A or B in the extreme quarters depending upon the random variates sampled). 

Algorithm AS 62 (Dinneen & Blakesley, 1973) was used to calculate the Mann-
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Whitney exact probabilities for the Siegel-Tukey test.1 When sorting was required, 

the Recursive Fortran 95 quicksort routine that sorts real numbers into ascending 

numerical order was used.2 

There were 34,606 combinations of study parameter conditions employed, 

based on 11 sample sizes, two α levels (0.05, 0.01) (four levels, including 0.025 

and 0.005 were calculated and reviewed in preliminary testing), 11 mathematical 

distributions and real world data sets, 11 variance changes and 13 small means 

shifts. Independent sample sizes included (n1, n2) = (5, 5); (5, 15); (10, 10); 

(10, 30); (15, 45); (20, 20); (30, 30); (30, 90); (45, 45); (65, 65); (90, 90). They 

were generated from three theoretical distributions (normal, exponential, uniform), 

and eight real world education and psychology data sets identified by Micceri 

(1986, 1989). The data sets were described as smooth symmetric, extreme 

asymmetric (growth), extreme asymmetric (decline), extreme bimodality, 

multimodality and lumpy, discrete mass at zero, discrete mass at zero with gap, 

and digit preference (see Sawilowsky & Blair, 1992). The use of real data sets in 

addition to data generated from mathematical models was deemed important in 

rigorous systematic studies by Bradley (1978) and many others. 

Next, the means and variances were modified, beginning with no treatment 

effect via equal means to establish baseline results. Then, treatment effects of 

location shifts were gradually increased in small magnitudes, thus increasingly 

violating the statistical assumption of both tests. Type-I (identifying a variance 

change when none occurred) and Type-II (not finding a true variance change) 

error rates under the violations were compared to the counterfactual conditions of 

equal means. 

Type-I and -II Errors 

In order to determine robustness measures with respect to Type-I and -II errors, 

the long-run average rejection rates were calculated after executing 100,000 

iterations for each study condition. A counter was incremented for statistically 

significant iterations. The counter totals were reported as rejection percentages 

(counter total/100,000). Thus, the long-run averages for the p rejection rate, β 

rejection rate, and power levels (1 – β) were determined. 

                                                           
1 Additional code was provided by Miller, retrieved from http://lib.stat.cmu.edu/apstat/62 
2 Quicksort routine algorithm provided by Rew with additions from Brainard, retrieved from 

http://www.fortran.com/qsort_c.f95 

http://lib.stat.cmu.edu/apstat/62
http://www.fortran.com/qsort_c.f95
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Robustness Results 

A robust test maintains Type-I and -II error rates in light of assumption violations. 

Bradley’s (1978) liberal limits for Type-I errors of 0.5α ≤ Type-I error ≤ 1.5α was 

adopted. 

Asymptotic and exact probabilities were invoked for each test during 

preliminary testing. For the Mood-Westenberg test, the Chi-squared (asymptotic) 

and Fisher exact probabilities were selected. For the Siegel-Tukey test, Z-scores 

(asymptotic) and Mann-Whitney (exact) probabilities were selected. Based on the 

results for the primary testing, only the asymptotic probabilities were reported 

because the two probabilities for each statistic were found to track closely to each 

other. Two α levels, 0.05 and 0.01, were reported during the primary testing (four 

levels, including 0.025 and 0.005, were calculated and reviewed in preliminary 

testing). 

Simulating Location Shifts and Scale Changes 

A treatment was modeled as a shift in location, by multiplying a constant 

c = 0.01-0.12 (0.01) by the distribution’s σ. For example, the standard deviation of 

the smooth symmetric data set was 4.91. Therefore, a treatment effect of 

0.1σ = 0.491 was added to the treatment variates. Cohen (1988) suggested 0.2(σ) 

represents a small treatment effect, 0.5(σ) a moderate treatment effect, and 0.8(σ) 

a large treatment effect. On the basis of personal communications with Cohen, 

Sawilowsky (2009) updated Cohen’s de facto standards to also define 

d(0.01) = very small, d(1.2) = very large, and d(2.0) = huge. The focus of this 

study, based on Sawilowsky’s (2009) standard, was to review only small shifts 

(c << 0.2), and therefore the effect sizes of shift in location selected were 0-

0.12σ (0.01), d = 0 representing the baseline. 

A treatment was modeled as a change in scale by multiplying a constant 

scale shift of K = 1 – 3.5 (0.25) by the random variates of the treatment group 

after they were centered around zero for both groups by subtracting the 

distribution mean from the variates; this sets the standard deviation of the control 

group, over the long run, to approach a normal curve having a variance of 1. 

Heteroscedasticity is simulated when R, representing the variance ratio difference 

between the treatment group and the control group, is not equal to 1. K2, the new 

simulated variance of the treatment group, is the ratio difference, R, between the 

post-test treatment and control groups. 

It was expected that with ratio variance differences from 1.56 (K = 1.25) to 

12.25 (K = 3.5) (with K increments of 0.25 for K), the alternative hypothesis (H1) 
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would be accepted. When the ratio of the variances between the treatment and 

control groups was equal to 1 (K = 1), the condition of equal variances, then the 

null hypothesis (H0) was expected to be retained (i.e., fail to reject). These 

variance ratio differences are consistent with Brown and Forsythe (1974), who 

reported standard deviation ratio differences of 3 and found concomitant 

unacceptably high Type-I error rates, and Wilcox (1989), who surveyed the 

literature and found estimates of standard deviation ratio differences are often 

higher than 4, and sometimes even as large as 11. 

Results 

Simulating No Research Treatment Effects with Equal Means 

Assumption in Place 

Demonstration of Adequacy of Algorithms used in this Simulation: Type-I error 

for Normal Distribution, Means and Variances are Equal 

To demonstrate the adequacy of the algorithms used in this simulation, 

preliminary testing with data sampled from the Gaussian distribution, with equal 

mean and variances, was performed for all of sample sizes (Table 1). The 

minimum and maximum asymptotic upper tail rejection rates for α set at 0.05, 

0.025, 0.01, and 0.005 for Mood-Westenberg (Chi-squared) were 0.022-0.080, 

0.008-0.033, 0.004-0.033, and 0.000-0.016 respectively. For the Siegel-Tukey (Z-

scores) they were 0.044-0.058, 0.016-0.027, 0.004-0.010, and 0.000-0.005, 

respectively. The exact rates tracked close to the associated asymptotic 

probabilities for both statistics. Exact rates for Mood-Westenberg (Fisher exact) 

were 0.016-0.072; 0.008-0.033; 0.000-0.020; and 0.000-0.008, and for Siegel-

Tukey (Mann-Whitney-U) were 0.044-0.050; 0.016-0.025; 0.008-0.010; and 

0.004-0.005. The rejection range was larger for Mood-Westenberg. Additional 

testing for all equal sample sizes (n1, n2) = (5, 5) to (200, 200) yielded robust rates 

for both statistics (Table 2). 

For all sample sizes and α levels, Siegel-Tukey’s rejection rates for 

asymptotic and exact probabilities tracked closer to nominal α as compared with 

the performance of the Mood-Westenberg Chi-squared and Fisher exact 

probabilities. It appeared that the latter test’s Type-I error rates were dependent on 

the sample size, and it tracked in an unusual and repeating saw-tooth-like pattern 

as equal sample sizes were increased by 1 from (5, 5) to (200, 200) at 10,000 

iterations (Figures 1 and 2). 
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The Mood-Westenberg Type-I Fisher exact error rates were occasionally 

nearly as high as 10% when nominal α was 5%, and 2.4% when nominal α was 

1%. Thus, the Mood-Westenberg was observed as an inconsistent test because it 

did not fit the expected pattern for the Type-I rejection rates to approach nominal 

α level and remain steadfast as the sample size increased. Instead, it moved in and 

out of threshold defining robustness as the sample sizes increased. This may be 

due to the instability of the sampling distribution of the median. See Figures 3 and 

4 for Siegel-Tukey results. 

 

Type-I Error: All Distributions/Data Sets, Means and Variances are Equal 

At large and equal sample sizes ((45, 45) and above), both statistical tests 

generally demonstrated robust Type-I rates for the distributions and data sets. 

Conservative non-robust rate exceptions were noted for discrete mass zero with 

gap, extreme asymmetric decay, and extreme bimodal data sets (Table 3). 

However, these conservative non-robust rates suggested unlikely pronouncements 

of false positives when determining variance change in research settings; hence, at 

this initial stage, each statistic remained viable candidates to provide robust and 

powerful heteroscedasticity detection with large and equal sample sizes. 

With respect to smaller and unequal sample sizes, Mood-Westenberg 

demonstrated both liberal and conservative non-robust rates for the 

distributions/data sets while Siegel-Tukey maintained the same robust rates (and 

conservatively non-robust for the three data sets mentioned above in Table 3) at 

all sample sizes except for the smallest sample size of (5, 5) where a few more 

non-robust conservative rates surfaced for other distributions/data sets at α below 

5%. At this point, Siegel-Tukey appeared a more consistent statistic for small and 

unequal sample sizes with respect to Type-I rates. 

 

Type-II Error: All Distributions/Data Sets, Means are Equal and Variances 

Change (Classical Behrens-Fisher) 

For this phase of testing, in order to provide more stability for Mood-Westenberg, 

the testing occurred only with the large sample size (90, 90) to observe effects of 

variance changes simulated with the constant K = 1.25-3.5 (0.25). Both statistics 

were powerful (73-100%) for data sampled from the conservatively non-robust 

data sets discrete mass zero/gap, extreme asymptotic decay, and extreme bimodal, 

starting with the smallest variance change when K = 1.25 (Table 4; grey shaded 

area = 100% power). As to be expected, each statistic demonstrated increases in 

power as the α levels and variance ratio increased. Strong power for these data 

sets, with conservative Type-I rates, continued to affirm both statistics as potential 
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detection tools; these statistics did not lack for power with these data sets. Siegel-

Tukey demonstrated consistent power for these data sets at or above 99% while 

Mood-Westenberg recorded the same and lower power rates for extreme bimodal 

(73-90%) when K = 1.25. 

For the other data sets and distribution at sample size (90, 90) (previously all 

shown to demonstrate robust Type-I error rates), power was lower as compared to 

the conservatively non-robust data sets mentioned above, yet still good, for both 

test statistics, particularly for K = 1.5 and above. For Mood-Westenberg, power 

increased dramatically and quickly, doubling or tripling as variance changed from 

K = 1.25-1.5 (Table 5) for these other data sets/distributions. For Siegel-Tukey, 

the power also increased quickly, but not as dramatically as Mood-Westenberg 

because the Siegel-Tukey power rates started off higher at lower K constants. 

In general, both statistics demonstrated power approaching 40% or higher 

early on (K = 1.25-1.5, larger α). Siegel-Tukey demonstrated power levels equal 

to or greater than Mood-Westenberg, sometimes 20-40% higher than Mood-

Westenberg with smaller variance changes, as demonstrated in Table 4. For 

instance, at the smallest change of K = 1.25, α = 0.05, Siegel-Tukey’s power rate 

for smooth symmetric asymptotic was 0.550 compared to Mood-Westenberg 

at .165. When α equaled 0.01, Siegel-Tukey’s rate was 0.288 as compared to 

Mood-Westenberg’s rate at 0.061. When the variance change level was K = 1.5 

(Table 5), most α levels yielded power of 40-100%, generally, for all distributions 

and data sets, for both statistics. 

The Siegel Tukey asymptotic and exact probabilities (at α = 0.05, 0.025, 

0.01, and 0.005) consistently demonstrated equal or greater power rates than the 

Mood-Westenberg probabilities at every comparison point (α and K’s) with all 

distributions/data sets. Both probability measures for Siegel-Tukey quickly 

approached 100% power, generally arriving with K = 2-2.25 (Table 6); Mood-

Westenberg arrived at near 100% with K = 2.75-3.0. Siegel-Tukey reached power 

of nearly 90% and above at all α levels at K = 1.75, whereas Mood-Westenberg 

did not reach these levels until K = 2.25 (Table 6). As to be expected, power 

increased for both statistics as variance change and α levels increased, and 

therefore these preliminary tests demonstrated that each statistic is robust and 

powerful, in general, when their mutual assumptions of equal means/medians in 

place. However, Siegel-Tukey generally appeared more powerful than Mood-

Westenberg after this testing phase. 
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Simulating Research Treatment Effects by Violating the Assumption 

of Equal Means 

At this point, attention was turned to the primary focus of the study: would the 

Mood-Westenberg and the Siegel-Tukey tests remain robust with respect to Type-

I and Type-II rejection rates under conditions of simulated treatment effects (i.e., 

the means began to shift slightly, violating the statistical assumptions). 

Preliminary testing results of 10,000 means shifts from 0.00001 to 0.1 (0.00001) 

suggested an appropriate mean shift range, useful for testing, would be 0.01-

0.12 (0.01). 

To determine the properties for each statistic after sampling from the 

thousands of combination of populations, sample sizes, means shifts, variance 

change, and α levels, it would be necessary to review all output, particularly with 

respect to the smaller and unequal sample sizes. However, general conclusions are 

made and presented here for both statistics, with respect to whether the 

mathematical distributions and real-world data sets could be characterized as a 

normal type distribution (e.g., unimodal shape, asymptotic light tails, symmetric 

about the means) or not. Normal type distributions are discussed as a group and 

include: normal, digit preference, discrete mass zero, smooth symmetric, and 

uniform. Non-normal type distributions, discussed as a group, include: extreme 

asymmetric growth, extreme asymmetric decay, extreme bimodal, and discrete 

mass zero with gap. Having demonstrated unique outcomes, exponential and 

multi-modal lumpy are discussed separately. 

With minor exceptions for the exponential and multi-modal lumpy, general 

conclusions for the distributions and data sets were not greatly affected by the 

range of the tested means shift levels 0.01-0.12 (0.01); therefore, conclusions for 

particular distributions and data sets will generally hold for all of the tested means 

shift levels, especially for larger sample sizes and α levels of 0.05. When 

robustness was present, larger α levels (0.05), larger and equal sample sizes and 

larger variance change levels rendered testing measurements more robust and 

powerful for each distribution and data set. 

 

Type-I Rejection Rates: For All Distributions/Data Sets, Variances are Equal 

The statistics were first tested with slight means shifts, 0.01(σ)-0.12(σ) (0.01), 

when simulating post-test equal variance outcomes. Typical results are noted in 

Table 7 for sample size (90, 90) and mean shift at c = 0.06. The expectation was 

that nominal α rejection rates would hold when the means began to shift. Mood-

Westenberg, for most normal type distributions (e.g., digit preference, normal, 

smooth symmetric, uni), particularly for large sample sizes (i.e., (20, 20); 
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(30, 30); (30, 90)), maintained generally robust (and conservative non-robust) 

rejection rates at all of the tested means shifts with some slightly liberal rate 

exceptions at some small and small/unequal sample sizes or sometimes at 1% α. 

As noted with sample size (90, 90), in Table 7, the normal type discrete mass zero, 

sometimes demonstrated small liberal, non-robust rates but robust rejection rates 

were noted for many other sample sizes, particularly when nominal α was 5%. 

However, analyzing non-normal distributions (asymmetric growth, discrete mass 

zero with gap, extreme asymmetric decay, extreme bimodal), Mood-Westenberg, 

for both asymptotic and exact probabilities at the large sample size (90, 90), 

calculated many extremely liberally non-robust rejection rates even at the smallest 

incremental level of 0.01. The test results from data sampled from multi-modal 

lumpy demonstrated liberal non-robust rejection rates generally at and above 

means shift c = 0.09 for some sample sizes, such as (90, 90), and was robust for 

many other sample sizes. Results from data sampled from the exponential 

distribution demonstrated robust rates up to means shifts of 0.06 when, for 

instance, for sample size (65, 65) or (90, 90) (Table 7), for nominal α below 2.5%, 

the rejection rates started to trend above nominal α levels in the liberal direction, 

increasing in slight liberalness with each increase in means shift. Starting with 

mean shift c = 0.07 and above, under Mood-Westenberg, the test results 

demonstrated that the exponential distribution was liberally non-robust at all α 

levels for sample size (90, 90). Other sample sizes for exponential also reflected 

this pattern. Generally, the non-robust Mood-Westenberg results for the 

exponential distribution were in the liberal direction. 

With respect to the Siegel-Tukey statistic, at sample size (90, 90) and mean 

shift c = 0.06, (Table 7), for both asymptotic and exact probability measures and 

for all other means shifts, testing revealed robust rates for the data sampled from 

all of the normal type distributions (digit preference, discrete mass zero, normal, 

smooth symmetric, and uniform). This robust rejection rate pattern was also 

demonstrated at most small and small/unequal sample sizes, unlike Mood-

Westenberg. Similar to the Mood-Westenberg, as the means shifted, non-robust 

results were detected for the data sampled from most non-normal type 

distributions (including asymmetric growth, discrete mass zero with gap, extreme 

asymmetric decay); however, unlike Mood-Westenberg, all indicators of these 

non-robust measures were in the conservative direction except the liberal rates 

found with the test results from asymmetric growth. 

A particularly strong and unique outcome for Siegel-Tukey was noted for 

the non-normal extreme bimodal data set. At sample size (90, 90), Siegel-Tukey, 

unlike Mood-Westenberg, demonstrated robust measures at virtually all means 
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shifts for extreme bimodal (slight liberal exceptions were noted at 0.5% α level 

when means shift was at c = 0.02, 0.03, and 0.1). This strong robust rejection 

pattern for all means shifts was also noted in the data sampled from the extreme 

bimodal data for all equal sample sizes and for unequal sample sizes when α was 

0.05. 

Results demonstrated that the data sampled from the multi-modal lumpy 

data set was robust at lower means shifts but began to show conservative non-

robust measures at means shifts generally at and above 0.09 for sample size 

(90, 90). However, many other sample sizes were robust at all means shifts. 

Results for data sampled from the exponential distribution became conservatively 

non-robust at means shift of c = 0.03 at sample size (90, 90). This was a general 

pattern for other large and equal sample sizes, although some smaller and unequal 

sample sizes maintained robust rates at higher mean shifts. 

Siegel-Tukey’s conservative non-robust rate exceptions, for non-normal 

distributions, multi-modal lumpy, and exponential, were deemed positive 

outcomes because this condition would obviate large pronouncements of 

nonsense variance changes. It did not demonstrate sample size instability that 

seemed pervasive throughout the study for Mood-Westenberg. At this point, after 

demonstrating large liberal rejection rates as the means shifted slightly with the 

non-normal type distributions, the Mood-Westenberg necessarily dropped out of 

consideration as a method to detect variance changes with respect to these 

distributions/data sets (though it maintained viability for exponential distributions 

and multi-modal lumpy data sets at lower means shift levels); however with the 

exception of the asymmetric growth data set, which measured liberal rejection 

rates, Siegel-Tukey demonstrated robust and conservatively robust rejection rates 

and thus continued as a viable instrument to detect heteroscedasticity for all other 

distributions/data sets provided power could be demonstrated next as the variance 

began to change. 

 

Type-II Rejection Rates: For All Distributions/Data Sets, Variances are 

Unequal 

During the final phase of the primary study, as assumptions were violated and 

variance changes simulated, the investigation focused upon reporting Mood-

Westenberg and Siegel-Tukey asymptotic probabilities (Chi-squared and Z-scores, 

respectively) with nominal α of 0.05 and 0.01. The expectation was that power 

levels of at least 40% would be generally demonstrated. 

With respect to the normal type distributions, both statistics generally 

demonstrated at least 40% power for all means shifts and variance changes for 



LOWENSTEIN & SAWILOWSKY 

207 

large samples sizes (i.e., (30, 30) and (30, 90)), especially for α = 0.05. Power (at 

sample size (30, 30) and above) approached 40% generally around variance 

change with K = 1.75-2 for α 0.05 and 0.01. For these normal type distributions, 

Siegel-Tukey typically demonstrated 40% power starting at smaller sample sizes 

(sample size (20, 20); Table 8) and often at lower levels of K changes (K = 1.5; 

Table 9) as compared to Mood-Westenberg (see also sample size (20, 20), 

uniform, for Siegel-Tukey’s superior power; Table 10). Power for each statistic 

was shown to increase as α, variance, and sample size increased as demonstrated 

when the uniform sample size increased from (20, 20) (Table 10) to (45, 45) 

(Table 11) to (65, 65) (Table 12). While there were power improvements for both 

statistics as these parameters increased, Siegel-Tukey always demonstrated 

greater (or equal) power as compared to Mood-Westenberg at each point of 

comparison, sometimes yielding 20-40% more power at lower variance change 

levels. 

For data sampled from non-normal distributions, both statistics reported 

much larger rejection rates as compared to the normal types when the variance 

changed and means shifted. This high rejection rate, starting from the smallest 

constant K = 1.25-3.5 (0.25), is reported for the representative data set, discrete 

mass zero with gap at sample sizes (45, 45) (Table 13). However, these large 

power rate results for the data sampled from non-normal distributions under 

Mood-Westenberg were meaningless due to the large liberal rejection rates noted 

for these when the variances were equal at K = 1 (see also large rate rejections 

0.991-1 for discrete mass zero with gap and asymmetric decay in Table 7, at 

sample size (90, 90) when variances were equal). 

However, given the conservative Type-I rejection rates (0.000) 

demonstrated when variances were equal for Siegel-Tukey, the large power it 

reported as variances changed is meaningful and impressive. For both small (e.g., 

(10, 10); Table 14) and large (e.g., (45, 45); Table 13) sample sizes, the Siegel-

Tukey results for non-normal distributions, with the exception of asymmetric 

growth with many liberal Type-I rejection rates, had significant power that 

quickly approaching 99% at even the lowest levels of variance change (see also 

extreme bimodal; Table 15). For these non-normal power rates, a desired more 

gradual increase in power for Siegel-Tukey might have been demonstrated at 

lower levels of variance change between K = 1 and 1.25, but these levels were not 

tested. An impressive power finding was noted for the extreme bimodal data set 

under the Siegel-Tukey statistic, wherein the Type-I rejection rates were generally 

robust (instead of conservatively non-robust as Siegel-Tukey demonstrated with 

other non-normal distributions), particularly when sample sizes were equal (Table 
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7) and for unequal samples sizes when α = 0.05. These robust findings, together 

with the high power noted in Table 15, renders the Siegel-Tukey test particularly 

useful in research settings where extreme bimodal data sets are common. 

Finally, the results for both statistics with the data sampled from multi-

modal lumpy and exponential demonstrated at least 40% power with large sample 

sizes (generally (30, 30), and above, including (30, 90)), especially when α = 0.05. 

For Mood-Westenberg these results were attained typically at K = 1.5; for Siegel-

Tukey at the lower K = 1.25. For the multi-modal lumpy data set with α = 0.05 

and the smallest variance change K = 1.25, 40% power was generally attained 

when sample size was (65, 65) for Mood-Westenberg and (30, 30) for Siegel-

Tukey (Table 16, 17). For the exponential distribution (Table 18, 19), when 

α = 0.05, 40% power was generally attained when K = 1.5 at sample size (30, 30) 

and (20, 20), respectively. Once again, Siegel-Tukey demonstrated greater or 

equal power at all comparison points than Mood-Westenberg for both of these 

distributions/data sets. For Mood-Westenberg, stable power was generally best 

when means shifts were below c = 0.09 for multi-modal lumpy and c = 0.06 for 

exponential due to some liberal non-robust Type-I rates at larger means shift 

levels. Siegel-Tukey was most powerful for these with lower means shifts 

(c = 0.01-0.08 for multi-modal lumpy and c = 0.01-0.03 for exponential) due to 

some conservative non-robust null rejections at larger mean shift levels. 

Conclusion 

Methods for Behrens-Fisher detection have been overlooked in statistical 

literature and, up to now, there have been no early warning or detective systems 

indicating the Behrens-Fisher condition exists. Siegel-Tukey appears promising as 

a method that might fill this void. Invoking the Siegel-Tukey statistic for the 

purpose of detecting variance changes could provide an effective precursor to the 

discovery of small yet important treatment effects in many research settings 

approaching Behrens-Fisher. 

The Mood-Westenberg statistic also identified variance changes 

accompanied by slight mean shifts for normal type distributions, particularly with 

large sample sizes at or above n = 30, 30 (and at some smaller mean shifts for the 

multi-modal lumpy data set and the exponential distribution). However, Mood-

Westenberg could not approach the levels of superior power demonstrated by 

Siegel-Tukey with these data sets/distributions and could not consistently 

demonstrate Siegel-Tukey’s robust Type-I rejection rates at small sample sizes, 

especially when α was at 0.01. 
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Another significant comparative advantage demonstrated by the Siegel-

Tukey statistic was its robust (or conservatively non-robust) and powerful results 

for non-normal distributions while Mood-Westenberg could not withstand the 

same means shift assumption violations for these types, demonstrating large 

liberal Type-I rejection rates. Therefore, as a detection tool for determining 

outcomes approaching Behrens-Fisher, the Mood-Westenberg statistic would be 

limited to research settings utilizing only normal type data distributions (best with 

larger sample sizes), the multi-modal lumpy data set, and the exponential 

distribution. Additionally, it is believed that the inability to stabilize Type-I 

rejection rates to approach nominal α level as sample sizes increased would 

render the Mood-Westenberg statistic generally less reliable in research settings. 

Therefore, the Siegel-Tukey statistic might reasonably be promoted as the 

current statistic of choice in many scientific, educational and psychological 

research environments to detect heteroscedasticity whenever conditions 

approaching Behrens-Fisher arise with the concomitant problem of determining 

the existence of small means shift around zero. Siegel-Tukey demonstrated 

particularly strong measures for the extreme bimodal data set, often found within 

educational settings, when samples sizes were equal (or unequal at α = 0.05). 

Siegel-Tukey’s robust and powerful measures in detecting variance changes with 

all but one (asymmetric growth) of the 11 tested distributions/data sets 

demonstrated that it could be an important new instrument in the researcher’s 

repertoire for data analysis. It has the potential to operate within a broad range of 

testing conditions to alert the researcher to the necessity of choosing an 

appropriate test statistic which could ultimately lead to the discovery of small 

treatments that might otherwise go unnoticed. The Siegel-Tukey statistic 

demonstrated its ability to be an effective precursor that would make known the 

need to replace testing statistics dependent on the equal variance assumptions, 

such as Student’s-t, and to choose instead to apply any of the myriad of 

approximate Behrens-Fisher solutions, such as the Yuen’s solution. 
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Appendix A: Figures 

 
 
Figure 1. Mood-Westenberg Type-I error rate, comparisons between Chi Squared (blue) 

and Fisher Exact (red) for all equal sample sizes from (5, 5) to (200, 200), for Normal 
distribution, 0.05 α, 10,000 repetitions 

 

 
 

 
 
Figure 2. Mood-Westenberg Type-I error rate, comparisons between Chi Squared (blue) 

and Fisher Exact (red) for all equal sample sizes from (5, 5) to (200, 200), for Normal 
distribution, 0.01 α, 10,000 repetitions 

 

 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
  5

,  
5

 1
3

, 1
3

 2
1

, 2
1

 2
9

, 2
9

 3
7

, 3
7

 4
5

, 4
5

 5
3

, 5
3

 6
1

, 6
1

 6
9

, 6
9

 7
7

, 7
7

 8
5

, 8
5

 9
3

, 9
3

1
0

1
,1

0
1

1
0

9
,1

0
9

1
1

7
,1

1
7

1
2

5
,1

2
5

1
3

3
,1

3
3

1
4

1
,1

4
1

1
4

9
,1

4
9

1
5

7
,1

5
7

1
6

5
,1

6
5

1
7

3
,1

7
3

1
8

1
,1

8
1

1
8

9
,1

8
9

1
9

7
,1

9
7

Chi Squared Fisher Exact

0

0.005

0.01

0.015

0.02

0.025

0.03

  5
,  

5
 1

3
, 1

3
 2

1
, 2

1
 2

9
, 2

9
 3

7
, 3

7
 4

5
, 4

5
 5

3
, 5

3
 6

1
, 6

1
 6

9
, 6

9
 7

7
, 7

7
 8

5
, 8

5
 9

3
, 9

3
1

0
1

,1
0

1
1

0
9

,1
0

9
1

1
7

,1
1

7
1

2
5

,1
2

5
1

3
3

,1
3

3
1

4
1

,1
4

1
1

4
9

,1
4

9
1

5
7

,1
5

7
1

6
5

,1
6

5
1

7
3

,1
7

3
1

8
1

,1
8

1
1

8
9

,1
8

9
1

9
7

,1
9

7

Chi Squared Fisher Exact



MOOD-WESTENBERG AND SIEGEL-TUKEY TESTS 

214 

 
 
Figure 3. Siegel-Tukey Type-I error rate, comparisons between Z Scores (blue) and 

Mann-Whitney (red) for all equal sample sizes from (5, 5) to (200, 200), for Normal 
distribution, 0.05 α, 10,000 repetitions 

 

 
 

 
 
Figure 4. Siegel-Tukey Type-I error rate, comparisons between Z Scores (blue) and 

Mann-Whitney (red) for all equal sample sizes from (5, 5) to (200, 200), for Normal 
distribution, 0.01 α, 10,000 repetitions 
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Appendix B: Tables 

Table 1. Type-I error rates for Mood-Westenberg and Siegel-Tukey, one-tailed directional 

rest, for various sample sizes and α levels when sampling is from the normal distribution, 
100,000 repetitions, variances are equal and means are equal 
 

Mood-Westenberg 

 α 

 
0.050 

 
0.025 

 
0.010 

 
0.005 

Sample Size A E   A E   A E   A E 

5, 5 0.080 0.016 
 

0.016 0.016 
 

0.016 0.000 
 

0.016 0.000 

5, 15 0.033 0.033 
 

0.033 0.033 
 

0.033 0.000 
 

0.000 0.000 

10, 10 0.022 0.022 
 

0.022 0.022 
 

0.022 0.001 
 

0.001 0.001 

10, 30 0.066 0.066 
 

0.008 0.008 
 

0.008 0.008 
 

0.008 0.008 

15, 45 0.072 0.072 
 

0.016 0.016 
 

0.016 0.016 
 

0.002 0.002 

20, 20 0.026 0.026 
 

0.026 0.026 
 

0.004 0.004 
 

0.004 0.004 

30, 30 0.068 0.068 
 

0.019 0.019 
 

0.019 0.019 
 

0.004 0.004 

30, 90 0.056 0.056 
 

0.020 0.020 
 

0.006 0.020 
 

0.006 0.006 

45, 45 0.043 0.070 
 

0.025 0.025 
 

0.007 0.014 
 

0.004 0.004 

65, 65 0.041 0.063 
 

0.026 0.026 
 

0.010 0.010 
 

0.006 0.006 

90, 90 0.052 0.052   0.025 0.025   0.011 0.011   0.004 0.004 

            

Siegel-Tukey 

5, 5 0.047 0.047 
 

0.016 0.016 
 

0.004 0.008 
 

0.000 0.004 

5, 15 0.058 0.048 
 

0.025 0.021 
 

0.010 0.010 
 

0.004 0.004 

10, 10 0.044 0.044 
 

0.021 0.021 
 

0.007 0.009 
 

0.003 0.004 

10, 30 0.051 0.047 
 

0.024 0.024 
 

0.010 0.010 
 

0.004 0.004 

15, 45 0.051 0.050 
 

0.027 0.025 
 

0.010 0.010 
 

0.005 0.005 

20, 20 0.048 0.048 
 

0.025 0.025 
 

0.010 0.010 
 

0.004 0.005 

30, 30 0.050 0.050 
 

0.023 0.024 
 

0.009 0.010 
 

0.005 0.005 

30, 90 0.050 0.049 
 

0.025 0.024 
 

0.009 0.010 
 

0.005 0.005 

45, 45 0.049 0.049 
 

0.024 0.024 
 

0.010 0.010 
 

0.005 0.005 

65, 65 0.049 0.049 
 

0.024 0.024 
 

0.010 0.010 
 

0.005 0.005 

90, 90 0.050 0.050   0.025 0.025   0.010 0.010   0.005 0.005 
 

Note: For Mood-Westenberg, A = asymptotic Chi-squared probability, E = Fisher exact probability; for Siegel-
Tukey, A = asymptotic Z-score probability, E = Mann-Whitney-U exact probability 

 
 
Table 2. Type-I error rate averages for all sample sizes (5, 5) to (200, 200) for 10,000 

repetitions, Normal distribution 
 

Mood-Westenberg 

α 

0.050 
 

0.025 
 

0.010 
 

0.005 

A E   A E   A E   A E 

0.048 0.067   0.024 0.031   0.009 0.012   0.005 0.005 

 



MOOD-WESTENBERG AND SIEGEL-TUKEY TESTS 

216 

Table 2, continued. 

 

Siegel-Tukey 

α 

0.050 
 

0.025 
 

0.010 
 

0.005 

A E   A E   A E   A E 

0.049 0.049   0.024 0.025   0.010 0.010   0.005 0.005 
 

Note: For Mood-Westenberg, A = asymptotic Chi-squared probability, E = Fisher exact probability; for Siegel-
Tukey, A = asymptotic Z-score probability, E = Mann-Whitney-U exact probability 

 
 
Table 3. Type-I error rates for Mood-Westenberg and Siegel-Tukey, one-tailed directional 

test, for sample size (45, 45) and α levels when sampling is from all distributions/data 
sets, 100,000 repetitions, variances are equal, and means are equal 
 

Mood-Westenberg 

 α 

 
0.050 

 
0.025 

 
0.010 

 
0.005 

Distribution A E   A E   A E   A E 

Asym Growth 0.040 0.067 
 

0.024 0.024 
 

0.007 0.013   0.003 0.003 

Digit pref 0.042 0.069 
 

0.024 0.024 
 

0.007 0.014 
 

0.004 0.004 

Disc mass zero 0.040 0.066 
 

0.023 0.023 
 

0.007 0.012 
 

0.003 0.003 

Disc mass zero gap 0.004 0.008 
 

0.002 0.002 
 

0.000 0.001 
 

0.000 0.000 

Exponential 0.043 0.071 
 

0.025 0.025 
 

0.007 0.014 
 

0.004 0.004 

Extrm asym decay 0.021 0.039 
 

0.011 0.011 
 

0.002 0.005 
 

0.001 0.001 

Extrm bimodal 0.022 0.041 
 

0.011 0.011 
 

0.002 0.005 
 

0.001 0.001 

Multi-modal lumpy 0.042 0.069 
 

0.024 0.024 
 

0.007 0.014 
 

0.004 0.004 

Normal 0.043 0.070 
 

0.025 0.025 
 

0.007 0.014 
 

0.004 0.004 

Smooth sym 0.040 0.066 
 

0.023 0.023 
 

0.007 0.013 
 

0.003 0.003 

Uni 0.043 0.070   0.025 0.025   0.008 0.015   0.004 0.004 

            

Siegel-Tukey 

Asym Growth 0.046 0.047 
 

0.022 0.022 
 

0.008 0.009   0.004 0.004 

Digit pref 0.049 0.050 
 

0.024 0.025 
 

0.009 0.010 
 

0.005 0.005 

Disc mass zero 0.047 0.048 
 

0.023 0.024 
 

0.009 0.009 
 

0.004 0.005 

Disc mass zero gap 0.001 0.001 
 

0.000 0.000 
 

0.000 0.000 
 

0.000 0.000 

Exponential 0.050 0.050 
 

0.026 0.026 
 

0.010 0.010 
 

0.005 0.005 

Extrm asym decay 0.011 0.011 
 

0.003 0.003 
 

0.001 0.001 
 

0.000 0.000 

Extrm bimodal 0.023 0.024 
 

0.009 0.009 
 

0.003 0.003 
 

0.001 0.001 

Multi-modal lumpy 0.049 0.050 
 

0.024 0.025 
 

0.009 0.010 
 

0.005 0.005 

Normal 0.049 0.049 
 

0.024 0.024 
 

0.010 0.010 
 

0.005 0.005 

Smooth sym 0.048 0.048 
 

0.023 0.024 
 

0.009 0.009 
 

0.004 0.004 

Uni 0.049 0.049   0.025 0.025   0.009 0.009   0.005 0.005 

 

Note: For Mood-Westenberg, A = asymptotic Chi-squared probability, E = Fisher exact probability; for Siegel-
Tukey, A = asymptotic Z-score probability, E = Mann-Whitney-U exact probability 
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Table 4. Type-II errors/power rates for Mood-Westenberg and Siegel-Tukey, one-tailed 

directional test, for various α levels and sample size of (90, 90) when sampling is from all 
distributions/data sets, 100,000 repetitions, means are equal, and variance change is 
1.25 
 

Mood-Westenberg 

 α 

 
0.050 

 
0.025 

 
0.010 

 
0.005 

Distribution A E   A E   A E   A E 

Asym Growth 0.457 0.457 

 

0.369 0.369 

 

0.289 0.289   0.219 0.219 

Digit pref 0.265 0.265 

 

0.179 0.179 

 

0.114 0.114 

 

0.068 0.068 

Disc mass zero 0.197 0.197 
 

0.128 0.128 
 

0.078 0.078 
 

0.044 0.044 

Disc mass zero gap     

 

0.999 0.999 

 

0.996 0.996 

 

0.991 0.991 

Exponential 0.478 0.478 

 

0.360 0.360 

 

0.256 0.256 

 

0.170 0.170 

Extrm asym decay     
 

    
 

0.999 0.999 
 

0.999 0.999 

Extrm bimodal 0.897 0.897 

 

0.852 0.852 

 

0.795 0.795 

 

0.726 0.726 

Multi-modal lumpy 0.668 0.668 

 

0.559 0.559 

 

0.446 0.446 

 

0.334 0.334 

Normal 0.257 0.257 
 

0.169 0.169 
 

0.102 0.102 
 

0.058 0.058 

Smooth sym 0.165 0.165 

 

0.104 0.104 

 

0.061 0.061 

 

0.034 0.034 

Uni 0.330 0.330   0.230 0.230   0.150 0.150   0.090 0.090 

            

Siegel-Tukey 

Asym Growth 0.886 0.886 

 

0.815 0.816 

 

0.703 0.706   0.614 0.616 

Digit pref 0.512 0.513 
 

0.389 0.389 
 

0.258 0.261 
 

0.184 0.186 

Disc mass zero 0.568 0.569 
 

0.446 0.447 
 

0.308 0.310 
 

0.225 0.227 

Disc mass zero gap     

 

    

 

    

 

  

Exponential 0.830 0.830 
 

0.735 0.735 
 

0.603 0.605 
 

0.502 0.504 

Extrm asym decay     
 

    
 

0.999 0.999 
 

0.999 0.999 

Extrm bimodal     

 

    

 

    

 

0.999 0.999 

Multi-modal lumpy 0.846 0.846 
 

0.758 0.758 
 

0.630 0.632 
 

0.531 0.533 

Normal 0.495 0.495 
 

0.370 0.370 
 

0.240 0.242 
 

0.169 0.170 

Smooth sym 0.550 0.550 

 

0.425 0.426 

 

0.288 0.290 

 

0.210 0.212 

Uni 0.750 0.750   0.639 0.639   0.494 0.496   0.394 0.397 
 

Note: For Mood-Westenberg, A = asymptotic Chi-squared probability, E = Fisher exact probability; for Siegel-
Tukey, A = asymptotic Z-score probability, E = Mann-Whitney-U exact probability 

 
 



MOOD-WESTENBERG AND SIEGEL-TUKEY TESTS 

218 

Table 5. Type-II errors/power rates for Mood-Westenberg and Siegel-Tukey, one-tailed 

directional test, for various α levels and sample size of (90, 90) when sampling is from all 
distributions/data sets, 100,000 repetitions, means are equal, and variance change is 1.5 
 

Mood-Westenberg 

 α 

 
0.050 

 
0.025 

 
0.010 

 
0.005 

Distribution A E   A E   A E   A E 

Asym Growth 0.888 0.888 

 

0.827 0.827 

 

0.746 0.746   0.651 0.651 

Digit pref 0.570 0.570 

 

0.458 0.458 

 

0.349 0.349 

 

0.250 0.250 

Disc mass zero 0.615 0.615 
 

0.515 0.515 
 

0.416 0.416 
 

0.322 0.322 

Disc mass zero gap     

 

0.999 0.999 

 

0.997 0.997 

 

0.991 0.991 

Exponential 0.916 0.916 

 

0.861 0.861 

 

0.787 0.787 

 

0.692 0.692 

Extrm asym decay     
 

    
 

    
 

    

Extrm bimodal 0.897 0.897 

 

0.851 0.851 

 

0.794 0.794 

 

0.726 0.726 

Multi-modal lumpy 0.971 0.971 

 

0.946 0.946 

 

0.906 0.906 

 

0.849 0.849 

Normal 0.643 0.643 
 

0.527 0.527 
 

0.407 0.407 
 

0.293 0.293 

Smooth sym 0.651 0.651 

 

0.543 0.543 

 

0.433 0.433 

 

0.328 0.328 

Uni 0.776 0.776   0.678 0.678   0.567 0.567   0.449 0.449 

            

Siegel-Tukey 

Asym Growth 0.997 0.997 

 

0.994 0.994 

 

0.983 0.983   0.969 0.970 

Digit pref 0.896 0.896 
 

0.829 0.830 
 

0.720 0.722 
 

0.630 0.633 

Disc mass zero 0.894 0.894 
 

0.826 0.826 
 

0.715 0.717 
 

0.625 0.628 

Disc mass zero gap     

 

    

 

    

 

    

Exponential 0.995 0.995 
 

0.988 0.988 
 

0.970 0.970 
 

0.948 0.949 

Extrm asym decay     
 

    
 

    
 

    

Extrm bimodal     

 

    

 

    

 

0.999 0.999 

Multi-modal lumpy 0.998 0.998 
 

0.996 0.996 
 

0.987 0.988 
 

0.977 0.978 

Normal 0.899 0.899 
 

0.831 0.831 
 

0.721 0.722 
 

0.629 0.631 

Smooth sym 0.902 0.902 

 

0.835 0.836 

 

0.729 0.732 

 

0.641 0.644 

Uni 0.988 0.988   0.974 0.974   0.942 0.943   0.907 0.908 
 

Note: For Mood-Westenberg, A = asymptotic Chi-squared probability, E = Fisher exact probability; for Siegel-
Tukey, A = asymptotic Z-score probability, E = Mann-Whitney-U exact probability 
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Table 6. Type-II errors/power rates for Mood-Westenberg and Siegel-Tukey, one-tailed 

directional test, for various α levels and sample size of (90, 90) when sampling is from all 
distributions/data sets, 100,000 repetitions, means are equal, and variance change is 
2.25 
 

Mood-Westenberg 

 α 

 
0.050 

 
0.025 

 
0.010 

 
0.005 

Distribution A E   A E   A E   A E 

Asym Growth     

 

    

 

          

Digit pref 0.985 0.985 

 

0.971 0.971 

 

0.948 0.948 

 

0.913 0.913 

Disc mass zero 0.990 0.990 
 

0.981 0.981 
 

0.965 0.965 
 

0.940 0.940 

Disc mass zero gap     

 

0.999 0.999 

 

0.996 0.996 

 

0.990 0.990 

Exponential     

 

    

 

    

 

0.999 0.999 

Extrm asym decay     
 

    
 

    
 

    

Extrm bimodal     

 

    

 

    

 

    

Multi-modal lumpy     

 

    

 

    

 

    

Normal 0.995 0.995 
 

0.988 0.988 
 

0.976 0.976 
 

0.953 0.953 

Smooth sym 0.985 0.985 

 

0.970 0.970 

 

0.946 0.946 

 

0.909 0.909 

Uni 0.999 0.999   0.998 0.998   0.996 0.996   0.990 0.990 

            

Siegel-Tukey 

Asym Growth     

 

    

 

          

Digit pref     
 

    
 

0.999 0.999 
 

0.997 0.997 

Disc mass zero     
 

    
 

0.999 0.999 
 

0.999 0.999 

Disc mass zero gap     

 

    

 

    

 

    

Exponential     
 

    
 

    
 

    

Extrm asym decay     
 

    
 

    
 

    

Extrm bimodal     

 

    

 

    

 

    

Multi-modal lumpy     
 

    
 

    
 

    

Normal     
 

    
 

0.999 0.999 
 

0.999 0.999 

Smooth sym     

 

    

 

    

 

0.999 0.999 

Uni                       
 

Note: For Mood-Westenberg, A = asymptotic Chi-squared probability, E = Fisher exact probability; for Siegel-
Tukey, A = asymptotic Z-score probability, E = Mann-Whitney-U exact probability 
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Table 7. Type-II errors/power rates for Mood-Westenberg and Siegel-Tukey, one-tailed 

directional test, for various α levels and sample size of (90, 90) when sampling is from all 
distributions/data sets, 100,000 repetitions, variances are equal, and means shift is 0.06 
 

Mood-Westenberg 

 α 

 
0.050 

 
0.025 

 
0.010 

 
0.005 

Distribution A E   A E   A E   A E 

Asym Growth 0.240 0.240 

 

0.163 0.163 

 

0.105 0.105   0.063 0.063 

Digit pref 0.063 0.063 

 

0.031 0.031 

 

0.014 0.014 

 

0.006 0.006 

Disc mass zero 0.073 0.073 

 

0.039 0.039 

 

0.019 0.019 

 

0.009 0.009 

Disc mass zero gap     

 

0.999 0.999 

 

0.996 0.996 

 

0.991 0.991 

Exponential 0.071 0.071 

 

0.037 0.037 

 

0.018 0.018 

 

0.008 0.008 

Extrm asym decay     

 

0.999 0.999 

 

0.998 0.998 

 

0.997 0.997 

Extrm bimodal 0.537 0.537 

 

0.459 0.459 

 

0.383 0.383 

 

0.310 0.310 

Multi-modal lumpy 0.060 0.060 

 

0.030 0.030 

 

0.014 0.014 

 

0.006 0.006 

Normal 0.053 0.053 

 

0.025 0.025 

 

0.011 0.011 

 

0.005 0.005 

Smooth sym 0.065 0.065 

 

0.033 0.033 

 

0.015 0.015 

 

0.007 0.007 

Uni 0.052 0.052   0.025 0.025   0.010 0.010   0.004 0.004 

            

Siegel-Tukey 

Asym Growth 0.298 0.298 

 

0.198 0.198 

 

0.111 0.112   0.071 0.072 

Digit pref 0.050 0.050 

 

0.025 0.026 

 

0.010 0.011 

 

0.005 0.005 

Disc mass zero 0.040 0.040 

 

0.020 0.020 

 

0.008 0.008 

 

0.004 0.004 

Disc mass zero gap 0.000 0.000 

 

0.000 0.000 

 

0.000 0.000 

 

0.000 0.000 

Exponential 0.011 0.011 

 

0.005 0.005 

 

0.001 0.001 

 

0.001 0.001 

Extrm asym decay 0.000 0.000 

 

0.000 0.000 

 

0.000 0.000 

 

0.000 0.000 

Extrm bimodal 0.056 0.056 

 

0.031 0.031 

 

0.014 0.014 

 

0.007 0.007 

Multi-modal lumpy 0.038 0.038 

 

0.018 0.018 

 

0.007 0.007 

 

0.003 0.003 

Normal 0.050 0.050 

 

0.025 0.025 

 

0.010 0.010 

 

0.005 0.005 

Smooth sym 0.050 0.050 

 

0.025 0.025 

 

0.010 0.010 

 

0.005 0.005 

Uni 0.048 0.048   0.024 0.024   0.010 0.010   0.005 0.005 

 

Note: For Mood-Westenberg, A = asymptotic Chi-squared probability, E = Fisher exact probability; for Siegel-
Tukey, A = asymptotic Z-score probability, E = Mann-Whitney-U exact probability 
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Table 8. Power rates for one-tailed directional test for digit preference data set, various 

means shifts and variance changes for sample size (20, 20), 100,000 repetitions, 
α = 0.05 
 

Mood-Westenberg Chi-squared 

Means 

shift 

Variance change 

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 

0.00 0.024 0.053 0.119 0.195 0.307 0.416 0.495 0.578 0.676 0.728 0.768 

0.01 0.028 0.054 0.117 0.205 0.307 0.414 0.495 0.579 0.675 0.727 0.766 

0.02 0.027 0.049 0.119 0.203 0.305 0.413 0.499 0.578 0.676 0.731 0.766 

0.03 0.027 0.051 0.113 0.205 0.307 0.415 0.501 0.570 0.675 0.732 0.768 

0.04 0.026 0.051 0.114 0.202 0.307 0.408 0.504 0.569 0.676 0.727 0.769 

0.05 0.027 0.055 0.112 0.201 0.306 0.408 0.505 0.568 0.675 0.728 0.769 

0.06 0.027 0.055 0.112 0.199 0.302 0.409 0.503 0.620 0.676 0.722 0.766 

0.07 0.026 0.055 0.112 0.200 0.301 0.402 0.501 0.620 0.674 0.726 0.773 

0.08 0.027 0.057 0.113 0.196 0.302 0.401 0.499 0.620 0.674 0.724 0.773 

0.09 0.027 0.057 0.115 0.197 0.301 0.404 0.499 0.621 0.674 0.720 0.771 

0.10 0.027 0.057 0.117 0.198 0.301 0.427 0.500 0.622 0.675 0.723 0.771 

0.11 0.027 0.058 0.119 0.200 0.302 0.429 0.498 0.623 0.678 0.721 0.774 

0.12 0.026 0.057 0.119 0.199 0.303 0.429 0.498 0.622 0.679 0.717 0.773 

            Siegel-Tukey Z-score 

0.00 0.048 0.177 0.366 0.535 0.687 0.789 0.849 0.897 0.933 0.954 0.963 

0.01 0.050 0.179 0.362 0.543 0.687 0.788 0.849 0.897 0.932 0.953 0.963 

0.02 0.050 0.168 0.363 0.540 0.686 0.788 0.853 0.896 0.933 0.948 0.963 

0.03 0.050 0.168 0.354 0.543 0.688 0.789 0.853 0.897 0.933 0.949 0.964 

0.04 0.049 0.169 0.355 0.524 0.690 0.794 0.853 0.897 0.934 0.947 0.964 

0.05 0.049 0.179 0.352 0.527 0.685 0.792 0.855 0.897 0.932 0.947 0.964 

0.06 0.049 0.177 0.352 0.525 0.673 0.793 0.855 0.906 0.933 0.947 0.964 

0.07 0.049 0.178 0.351 0.521 0.671 0.774 0.855 0.904 0.932 0.949 0.966 

0.08 0.050 0.185 0.354 0.525 0.669 0.774 0.843 0.907 0.932 0.948 0.965 

0.09 0.050 0.186 0.356 0.526 0.672 0.773 0.842 0.906 0.931 0.954 0.965 

0.10 0.050 0.185 0.357 0.528 0.670 0.779 0.843 0.895 0.933 0.954 0.964 

0.11 0.050 0.186 0.361 0.535 0.671 0.780 0.844 0.893 0.929 0.954 0.965 

0.12 0.050 0.184 0.362 0.534 0.670 0.782 0.841 0.896 0.931 0.948 0.965 
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Table 9. Power rates for one-tailed directional test for digit preference data set, various 

means shifts and variance changes for sample size (30, 30), 100,000 repetitions, 
α = 0.05 
 

Mood-Westenberg Chi-squared 

Means 

shift 

Variance change 

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 

0.00 0.065 0.145 0.292 0.441 0.613 0.743 0.817 0.874 0.930 0.951 0.965 

0.01 0.073 0.142 0.291 0.457 0.611 0.744 0.813 0.873 0.930 0.951 0.965 

0.02 0.073 0.135 0.291 0.458 0.615 0.742 0.821 0.875 0.930 0.952 0.964 

0.03 0.073 0.134 0.279 0.456 0.612 0.743 0.820 0.867 0.931 0.953 0.965 

0.04 0.072 0.133 0.281 0.454 0.612 0.730 0.821 0.866 0.929 0.953 0.965 

0.05 0.072 0.141 0.276 0.452 0.614 0.730 0.820 0.866 0.927 0.954 0.965 

0.06 0.073 0.143 0.278 0.451 0.611 0.730 0.821 0.904 0.931 0.949 0.964 

0.07 0.073 0.142 0.278 0.454 0.607 0.727 0.819 0.905 0.930 0.950 0.966 

0.08 0.073 0.151 0.281 0.445 0.611 0.727 0.818 0.902 0.930 0.949 0.967 

0.09 0.075 0.150 0.280 0.444 0.613 0.727 0.819 0.903 0.931 0.948 0.967 

0.10 0.074 0.150 0.292 0.443 0.610 0.761 0.819 0.908 0.930 0.948 0.967 

0.11 0.073 0.148 0.292 0.447 0.611 0.760 0.818 0.907 0.933 0.948 0.967 

0.12 0.073 0.153 0.292 0.443 0.610 0.762 0.818 0.908 0.932 0.948 0.967 

            Siegel-Tukey Z-score 

0.00 0.047 0.237 0.498 0.706 0.849 0.922 0.957 0.977 0.989 0.994 0.996 

0.01 0.051 0.234 0.498 0.711 0.849 0.922 0.957 0.978 0.989 0.994 0.996 

0.02 0.051 0.219 0.498 0.714 0.849 0.922 0.958 0.976 0.988 0.992 0.996 

0.03 0.053 0.217 0.482 0.710 0.849 0.922 0.960 0.978 0.989 0.993 0.996 

0.04 0.051 0.218 0.482 0.690 0.849 0.926 0.959 0.976 0.989 0.992 0.996 

0.05 0.051 0.230 0.479 0.690 0.849 0.925 0.958 0.977 0.988 0.993 0.996 

0.06 0.050 0.229 0.482 0.692 0.835 0.926 0.959 0.980 0.989 0.993 0.996 

0.07 0.052 0.232 0.479 0.691 0.832 0.913 0.959 0.980 0.988 0.992 0.997 

0.08 0.052 0.247 0.483 0.694 0.834 0.912 0.952 0.980 0.988 0.992 0.996 

0.09 0.051 0.244 0.481 0.695 0.835 0.912 0.952 0.980 0.988 0.994 0.997 

0.10 0.052 0.246 0.489 0.691 0.835 0.915 0.951 0.975 0.989 0.994 0.996 

0.11 0.053 0.245 0.488 0.703 0.834 0.915 0.951 0.975 0.989 0.994 0.997 

0.12 0.051 0.242 0.490 0.699 0.833 0.915 0.951 0.976 0.988 0.992 0.996 
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Table 10. Power rates for one-tailed directional test for uniform distribution, various 

means shifts and variance changes for sample size (20, 20), 100,000 repetitions, 
α = 0.05 
 

Mood-Westenberg Chi-squared 

Means 

shift 

Variance change 

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 

0.00 0.026 0.067 0.179 0.331 0.480 0.610 0.714 0.791 0.846 0.885 0.914 

0.01 0.024 0.068 0.182 0.330 0.484 0.610 0.715 0.790 0.845 0.887 0.915 

0.02 0.025 0.069 0.180 0.333 0.484 0.610 0.712 0.789 0.846 0.884 0.914 

0.03 0.025 0.067 0.181 0.330 0.485 0.613 0.714 0.790 0.845 0.884 0.913 

0.04 0.026 0.068 0.180 0.331 0.484 0.612 0.715 0.791 0.846 0.885 0.913 

0.05 0.026 0.068 0.180 0.331 0.481 0.609 0.712 0.791 0.845 0.885 0.915 

0.06 0.026 0.067 0.182 0.330 0.482 0.613 0.712 0.791 0.843 0.886 0.914 

0.07 0.025 0.069 0.179 0.331 0.481 0.612 0.717 0.791 0.845 0.885 0.914 

0.08 0.026 0.068 0.182 0.330 0.483 0.611 0.714 0.790 0.846 0.886 0.914 

0.09 0.026 0.069 0.179 0.329 0.482 0.611 0.713 0.790 0.844 0.883 0.914 

0.10 0.026 0.069 0.178 0.332 0.482 0.612 0.711 0.789 0.844 0.885 0.914 

0.11 0.026 0.068 0.182 0.332 0.484 0.613 0.714 0.789 0.844 0.887 0.914 

0.12 0.025 0.068 0.179 0.332 0.481 0.611 0.715 0.788 0.844 0.884 0.916 

            Siegel-Tukey Z-score 

0.00 0.048 0.272 0.548 0.745 0.859 0.922 0.955 0.973 0.984 0.989 0.994 

0.01 0.046 0.272 0.548 0.744 0.860 0.922 0.955 0.973 0.984 0.990 0.994 

0.02 0.048 0.273 0.548 0.746 0.861 0.921 0.955 0.974 0.984 0.989 0.993 

0.03 0.047 0.269 0.549 0.745 0.861 0.922 0.955 0.974 0.985 0.990 0.993 

0.04 0.048 0.272 0.547 0.746 0.860 0.921 0.956 0.974 0.984 0.990 0.993 

0.05 0.048 0.272 0.549 0.745 0.859 0.922 0.955 0.973 0.984 0.990 0.994 

0.06 0.049 0.270 0.547 0.743 0.858 0.922 0.956 0.974 0.984 0.990 0.993 

0.07 0.048 0.269 0.545 0.745 0.860 0.923 0.955 0.974 0.985 0.990 0.993 

0.08 0.047 0.273 0.547 0.745 0.859 0.920 0.955 0.974 0.983 0.990 0.993 

0.09 0.048 0.271 0.546 0.743 0.859 0.921 0.955 0.973 0.983 0.990 0.994 

0.10 0.046 0.269 0.545 0.745 0.859 0.922 0.954 0.973 0.983 0.990 0.993 

0.11 0.047 0.266 0.545 0.743 0.859 0.922 0.956 0.974 0.984 0.990 0.993 

0.12 0.047 0.267 0.545 0.744 0.857 0.923 0.955 0.973 0.983 0.990 0.994 
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Table 11. Power rates for one-tailed directional test for uniform distribution, various 

means shifts and variance changes for sample size (45, 45), 100,000 repetitions, 
α = 0.05 
 

Mood-Westenberg Chi-squared 

Means 

shift 

Variance change 

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 

0.00 0.043 0.174 0.468 0.730 0.882 0.952 0.982 0.993 0.997 0.999  

0.01 0.044 0.176 0.468 0.730 0.882 0.953 0.983 0.993 0.997 0.999 0.999 

0.02 0.044 0.175 0.468 0.731 0.884 0.952 0.981 0.993 0.997 0.999 0.999 

0.03 0.044 0.174 0.465 0.731 0.883 0.953 0.981 0.993 0.997 0.999  

0.04 0.043 0.174 0.470 0.733 0.881 0.952 0.981 0.993 0.997 0.999 0.999 

0.05 0.044 0.172 0.469 0.731 0.882 0.952 0.981 0.993 0.997 0.999 0.999 

0.06 0.044 0.173 0.468 0.731 0.883 0.953 0.981 0.993 0.997 0.999  

0.07 0.043 0.175 0.465 0.731 0.883 0.953 0.981 0.993 0.997 0.999  

0.08 0.044 0.176 0.467 0.732 0.883 0.953 0.982 0.993 0.997 0.999  

0.09 0.042 0.174 0.469 0.730 0.883 0.952 0.981 0.992 0.997 0.999  

0.10 0.044 0.174 0.467 0.732 0.883 0.952 0.981 0.993 0.997 0.999 0.999 

0.11 0.044 0.175 0.468 0.730 0.882 0.953 0.981 0.993 0.997 0.999 0.999 

0.12 0.045 0.171 0.466 0.729 0.881 0.953 0.982 0.993 0.997 0.999  

            Siegel-Tukey Z-score 

0.00 0.049 0.493 0.865 0.972 0.995 0.999      

0.01 0.050 0.493 0.863 0.973 0.995 0.999      

0.02 0.050 0.492 0.865 0.972 0.995 0.999      

0.03 0.050 0.492 0.862 0.973 0.995 0.999      

0.04 0.050 0.493 0.864 0.973 0.994 0.999      

0.05 0.050 0.491 0.866 0.972 0.995 0.999      

0.06 0.050 0.491 0.862 0.972 0.995 0.999      

0.07 0.049 0.491 0.862 0.972 0.994 0.999      

0.08 0.050 0.491 0.863 0.972 0.995 0.999      

0.09 0.048 0.489 0.863 0.973 0.995 0.999      

0.10 0.050 0.488 0.862 0.971 0.995 0.999      

0.11 0.049 0.491 0.862 0.973 0.995 0.999      

0.12 0.049 0.486 0.861 0.972 0.995 0.999      
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Table 12. Power rates for one-tailed directional test for uniform distribution, various 

means shifts and variance changes for sample size (65, 65), 100,000 repetitions, 
α = 0.05 
 

Mood-Westenberg Chi-squared 

Means 

shift 

Variance change 

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 

0.00 0.043 0.230 0.609 0.867 0.964 0.992 0.998     

0.01 0.042 0.229 0.611 0.868 0.964 0.991 0.998 0.999    

0.02 0.043 0.230 0.612 0.865 0.964 0.991 0.998 0.999    

0.03 0.044 0.232 0.610 0.867 0.963 0.991 0.998 0.999    

0.04 0.042 0.230 0.612 0.869 0.964 0.991 0.998     

0.05 0.043 0.232 0.611 0.867 0.965 0.991 0.998     

0.06 0.042 0.232 0.610 0.867 0.964 0.991 0.998     

0.07 0.041 0.229 0.611 0.867 0.965 0.992 0.998 0.999    

0.08 0.043 0.229 0.613 0.868 0.965 0.991 0.998     

0.09 0.043 0.230 0.613 0.867 0.965 0.991 0.998     

0.10 0.042 0.232 0.613 0.866 0.964 0.992 0.998     

0.11 0.043 0.228 0.612 0.867 0.964 0.991 0.998     

0.12 0.041 0.229 0.611 0.867 0.965 0.992 0.998 0.999    

            Siegel-Tukey Z-score 

0.00 0.050 0.623 0.951 0.996        

0.01 0.048 0.623 0.952 0.996        

0.02 0.050 0.626 0.952 0.996        

0.03 0.050 0.627 0.951 0.996        

0.04 0.049 0.626 0.953 0.996        

0.05 0.049 0.625 0.952 0.996        

0.06 0.050 0.623 0.951 0.996        

0.07 0.048 0.622 0.951 0.996        

0.08 0.049 0.625 0.951 0.996        

0.09 0.049 0.623 0.952 0.996        

0.10 0.049 0.623 0.951 0.996        

0.11 0.049 0.620 0.951 0.996        

0.12 0.050 0.620 0.950 0.996        
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Table 13. Power rates for one-tailed directional test for discrete mass zero with gap data 

set, various means shifts and variance changes for sample size (45, 45), 100,000 
repetitions, α = 0.05 
 

Mood-Westenberg Chi-squared 

Means 

shift 

Variance change 

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 

0.00 0.004 0.959 0.960 0.960 0.961 0.957 0.957 0.956 0.955 0.955 0.957 

0.01 0.960 0.960 0.961 0.960 0.961 0.956 0.956 0.957 0.956 0.956 0.957 

0.02 0.961 0.960 0.961 0.959 0.961 0.961 0.956 0.956 0.957 0.957 0.955 

0.03 0.961 0.961 0.960 0.961 0.960 0.960 0.957 0.956 0.957 0.957 0.956 

0.04 0.960 0.961 0.960 0.960 0.959 0.960 0.957 0.955 0.955 0.956 0.957 

0.05 0.961 0.960 0.960 0.961 0.960 0.959 0.956 0.957 0.956 0.956 0.957 

0.06 0.960 0.960 0.961 0.961 0.961 0.960 0.956 0.956 0.957 0.955 0.956 

0.07 0.960 0.960 0.960 0.961 0.961 0.960 0.956 0.956 0.956 0.956 0.956 

0.08 0.961 0.961 0.960 0.960 0.961 0.959 0.961 0.955 0.957 0.955 0.956 

0.09 0.960 0.961 0.960 0.959 0.960 0.961 0.961 0.956 0.955 0.957 0.956 

0.10 0.961 0.960 0.960 0.961 0.961 0.961 0.960 0.956 0.955 0.956 0.956 

0.11 0.960 0.961 0.960 0.960 0.960 0.960 0.961 0.955 0.957 0.957 0.956 

0.12 0.961 0.961 0.961 0.960 0.961 0.960 0.960 0.957 0.957 0.957 0.956 

            Siegel-Tukey Z-score 

0.00 0.001 0.997 0.996 0.996 0.997 0.996 0.996 0.996 0.996 0.996 0.996 

0.01 0.000 0.997 0.997 0.997 0.997 0.996 0.996 0.996 0.996 0.996 0.996 

0.02 0.000 0.997 0.996 0.996 0.997 0.997 0.996 0.996 0.996 0.996 0.996 

0.03 0.000 0.997 0.996 0.997 0.996 0.996 0.996 0.996 0.996 0.996 0.996 

0.04 0.000 0.997 0.997 0.997 0.997 0.996 0.996 0.996 0.996 0.996 0.996 

0.05 0.000 0.997 0.997 0.997 0.997 0.996 0.996 0.996 0.996 0.996 0.996 

0.06 0.000 0.997 0.997 0.997 0.997 0.997 0.996 0.996 0.997 0.996 0.996 

0.07 0.000 0.996 0.997 0.997 0.997 0.997 0.996 0.996 0.996 0.996 0.996 

0.08 0.000 0.997 0.997 0.997 0.997 0.997 0.996 0.996 0.996 0.996 0.996 

0.09 0.000 0.996 0.997 0.996 0.997 0.997 0.997 0.996 0.996 0.996 0.996 

0.10 0.000 0.996 0.997 0.997 0.997 0.996 0.997 0.996 0.996 0.996 0.996 

0.11 0.000 0.997 0.996 0.997 0.997 0.996 0.997 0.996 0.996 0.996 0.996 

0.12 0.000 0.997 0.997 0.997 0.997 0.996 0.996 0.996 0.996 0.996 0.996 
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Table 14. Power rates for one-tailed directional test for discrete mass zero with gap data 

set, various means shifts and variance changes for sample size (10, 10), 100,000 
repetitions, α = 0.05 
 

Mood-Westenberg Chi-squared 

Means 

shift 

Variance change 

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 

0.00 0.005 0.310 0.316 0.314 0.315 0.308 0.307 0.309 0.308 0.307 0.308 

0.01 0.248 0.308 0.314 0.315 0.314 0.310 0.309 0.308 0.308 0.310 0.305 

0.02 0.247 0.310 0.316 0.318 0.314 0.313 0.307 0.308 0.308 0.308 0.309 

0.03 0.249 0.309 0.313 0.315 0.316 0.315 0.309 0.311 0.311 0.311 0.310 

0.04 0.246 0.310 0.316 0.316 0.315 0.316 0.309 0.309 0.309 0.311 0.310 

0.05 0.246 0.310 0.317 0.312 0.314 0.315 0.308 0.310 0.308 0.309 0.307 

0.06 0.248 0.311 0.315 0.317 0.312 0.316 0.310 0.308 0.306 0.306 0.309 

0.07 0.246 0.313 0.316 0.317 0.315 0.313 0.308 0.309 0.305 0.309 0.309 

0.08 0.245 0.311 0.314 0.314 0.317 0.314 0.315 0.309 0.306 0.306 0.308 

0.09 0.249 0.312 0.315 0.314 0.315 0.312 0.315 0.308 0.309 0.309 0.311 

0.10 0.244 0.313 0.316 0.315 0.316 0.315 0.315 0.310 0.308 0.311 0.309 

0.11 0.247 0.311 0.315 0.314 0.314 0.317 0.313 0.307 0.311 0.310 0.311 

0.12 0.247 0.308 0.314 0.315 0.314 0.315 0.314 0.310 0.312 0.310 0.308 

            Siegel-Tukey Z-score 

0.00 0.000 0.619 0.620 0.619 0.619 0.612 0.610 0.611 0.612 0.610 0.611 

0.01 0.000 0.617 0.620 0.624 0.621 0.614 0.612 0.613 0.611 0.612 0.609 

0.02 0.000 0.617 0.623 0.622 0.621 0.623 0.612 0.610 0.611 0.610 0.611 

0.03 0.000 0.619 0.621 0.624 0.623 0.620 0.612 0.613 0.613 0.615 0.615 

0.04 0.000 0.619 0.623 0.621 0.620 0.622 0.613 0.613 0.611 0.611 0.610 

0.05 0.000 0.619 0.623 0.621 0.619 0.620 0.610 0.612 0.612 0.613 0.612 

0.06 0.000 0.621 0.622 0.623 0.621 0.624 0.613 0.611 0.612 0.610 0.611 

0.07 0.000 0.622 0.622 0.623 0.620 0.620 0.613 0.612 0.609 0.610 0.612 

0.08 0.000 0.619 0.623 0.622 0.622 0.620 0.620 0.613 0.612 0.610 0.609 

0.09 0.000 0.620 0.620 0.622 0.619 0.621 0.623 0.612 0.615 0.613 0.614 

0.10 0.000 0.623 0.621 0.621 0.622 0.624 0.623 0.612 0.613 0.614 0.612 

0.11 0.000 0.621 0.622 0.621 0.622 0.621 0.618 0.608 0.614 0.615 0.613 

0.12 0.000 0.618 0.622 0.620 0.621 0.621 0.622 0.613 0.614 0.614 0.613 
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Table 15. Power rates for one-tailed directional test for discrete mass zero with gap data 

set, various means shifts and variance changes for sample size (10, 10), 100,000 
repetitions, α = 0.05 
 

Mood-Westenberg Chi-squared 

Means 

shift 

Variance change 

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 

0.00 0.022 0.701 0.705 0.700        

0.01 0.347 0.699 0.701 0.701        

0.02 0.347 0.699 0.702 0.701        

0.03 0.349 0.703 0.701 0.704        

0.04 0.349 0.701 0.701 0.699        

0.05 0.349 0.700 0.701 0.701        

0.06 0.345 0.700 0.701 0.702        

0.07 0.346 0.701 0.703 0.703        

0.08 0.348 0.700 0.703 0.701        

0.09 0.347 0.702 0.702 0.700        

0.10 0.349 0.699 0.701 0.702        

0.11 0.350 0.702 0.702 0.702        

0.12 0.346 0.702 0.702 0.702        

            Siegel-Tukey Z-score 

0.00 0.023 0.991 0.991 0.992        

0.01 0.055 0.991 0.991 0.992        

0.02 0.054 0.991 0.992 0.992        

0.03 0.055 0.991 0.992 0.992        

0.04 0.054 0.991 0.991 0.992        

0.05 0.054 0.991 0.991 0.992        

0.06 0.055 0.991 0.991 0.992        

0.07 0.054 0.991 0.991 0.992        

0.08 0.054 0.991 0.991 0.992        

0.09 0.054 0.992 0.991 0.992        

0.10 0.053 0.992 0.991 0.992        

0.11 0.053 0.991 0.991 0.992        

0.12 0.052 0.992 0.991 0.992        
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Table 16. Power rates for one-tailed directional test for multi-modal lumpy data set, 

various means shifts and variance changes for sample size (30, 30), 100,000 repetitions, 
α = 0.05 
 

Mood-Westenberg Chi-squared 

Means 

shift 

Variance change 

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 

0.00 0.068 0.303 0.652 0.846 0.936 0.971 0.988 0.995 0.998 0.999 0.999 

0.01 0.074 0.272 0.624 0.840 0.935 0.971 0.988 0.995 0.998 0.999  

0.02 0.072 0.273 0.623 0.841 0.924 0.969 0.988 0.995 0.998 0.999 0.999 

0.03 0.072 0.266 0.623 0.840 0.923 0.970 0.988 0.995 0.998 0.999 0.999 

0.04 0.073 0.266 0.625 0.823 0.922 0.969 0.988 0.995 0.998 0.999 0.999 

0.05 0.073 0.261 0.590 0.823 0.925 0.968 0.988 0.994 0.998 0.999 0.999 

0.06 0.074 0.263 0.591 0.817 0.923 0.967 0.987 0.994 0.998 0.999 0.999 

0.07 0.071 0.258 0.590 0.818 0.925 0.968 0.985 0.994 0.997 0.999 0.999 

0.08 0.074 0.258 0.590 0.817 0.924 0.968 0.985 0.994 0.997 0.998 0.999 

0.09 0.080 0.247 0.592 0.814 0.923 0.968 0.985 0.994 0.998 0.999 0.999 

0.10 0.078 0.249 0.587 0.805 0.914 0.966 0.985 0.994 0.998 0.999 0.999 

0.11 0.079 0.221 0.589 0.804 0.915 0.966 0.984 0.993 0.997 0.999 0.999 

0.12 0.077 0.221 0.586 0.798 0.914 0.965 0.984 0.994 0.997 0.999 0.999 

            Siegel-Tukey Z-score 

0.00 0.049 0.444 0.831 0.961 0.992 0.998 0.999     

0.01 0.043 0.430 0.812 0.956 0.992 0.998      

0.02 0.043 0.431 0.811 0.958 0.989 0.998 0.999     

0.03 0.043 0.418 0.812 0.957 0.989 0.998 0.999     

0.04 0.043 0.417 0.814 0.952 0.989 0.997 0.999     

0.05 0.044 0.399 0.788 0.953 0.989 0.997 0.999     

0.06 0.043 0.399 0.790 0.948 0.989 0.997 0.999     

0.07 0.042 0.388 0.789 0.949 0.989 0.997 0.999     

0.08 0.044 0.388 0.788 0.945 0.989 0.997 0.999     

0.09 0.031 0.376 0.792 0.943 0.989 0.997 0.999     

0.10 0.032 0.378 0.773 0.939 0.985 0.997 0.999     

0.11 0.032 0.357 0.774 0.940 0.985 0.997 0.999     

0.12 0.032 0.357 0.772 0.940 0.985 0.997 0.999     
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Table 17. Power rates for one-tailed directional test for multi-modal lumpy data set, 

various means shifts and variance changes for sample size (65, 65), 100,000 repetitions, 
α = 0.05 
 

Mood-Westenberg Chi-squared 

Means 

shift 

Variance change 

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 

0.00 0.041 0.486 0.894 0.985 0.998       

0.01 0.047 0.408 0.866 0.985 0.998       

0.02 0.047 0.406 0.866 0.983 0.997       

0.03 0.047 0.389 0.865 0.983 0.997       

0.04 0.047 0.392 0.868 0.975 0.997       

0.05 0.047 0.404 0.839 0.975 0.997       

0.06 0.047 0.404 0.838 0.975 0.997       

0.07 0.048 0.409 0.839 0.975 0.997 0.999      

0.08 0.046 0.413 0.839 0.976 0.997       

0.09 0.058 0.376 0.836 0.977 0.997       

0.10 0.057 0.375 0.833 0.971 0.996       

0.11 0.057 0.302 0.833 0.971 0.996       

0.12 0.058 0.302 0.831 0.966 0.996       

            Siegel-Tukey Z-score 

0.00 0.050 0.727 0.988         

0.01 0.039 0.712 0.984         

0.02 0.039 0.711 0.984         

0.03 0.039 0.698 0.984         

0.04 0.040 0.695 0.983         

0.05 0.040 0.663 0.979 0.999        

0.06 0.040 0.664 0.978 0.999        

0.07 0.040 0.649 0.978 0.999        

0.08 0.038 0.651 0.978 0.999        

0.09 0.024 0.634 0.978 0.999        

0.10 0.024 0.634 0.973 0.999        

0.11 0.025 0.602 0.974 0.999        

0.12 0.024 0.600 0.973 0.999        

 
 



LOWENSTEIN & SAWILOWSKY 

231 

Table 18. Power rates for one-tailed directional test for exponential distribution, various 

means shifts and variance changes for sample size (20, 20), 100,000 repetitions, 
α = 0.05 
 

Mood-Westenberg Chi-squared 

Means 

shift 

Variance change 

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 

0.00 0.026 0.094 0.273 0.464 0.617 0.725 0.794 0.845 0.879 0.899 0.916 

0.01 0.026 0.092 0.264 0.458 0.609 0.721 0.794 0.844 0.879 0.899 0.916 

0.02 0.026 0.085 0.258 0.448 0.606 0.716 0.793 0.843 0.875 0.901 0.914 

0.03 0.027 0.081 0.248 0.439 0.602 0.713 0.791 0.841 0.875 0.902 0.915 

0.04 0.025 0.077 0.240 0.435 0.596 0.710 0.789 0.840 0.876 0.899 0.916 

0.05 0.028 0.072 0.234 0.426 0.592 0.707 0.786 0.842 0.874 0.901 0.917 

0.06 0.029 0.069 0.226 0.421 0.584 0.704 0.783 0.839 0.873 0.899 0.916 

0.07 0.029 0.066 0.220 0.411 0.578 0.698 0.781 0.835 0.874 0.900 0.918 

0.08 0.030 0.063 0.212 0.404 0.569 0.693 0.779 0.835 0.873 0.899 0.915 

0.09 0.032 0.059 0.204 0.400 0.565 0.693 0.778 0.835 0.873 0.897 0.917 

0.10 0.034 0.055 0.197 0.392 0.562 0.685 0.774 0.831 0.871 0.899 0.915 

0.11 0.035 0.053 0.191 0.382 0.555 0.683 0.771 0.830 0.869 0.897 0.914 

0.12 0.037 0.051 0.186 0.375 0.550 0.677 0.769 0.828 0.869 0.900 0.915 

            Siegel-Tukey Z-score 

0.00 0.049 0.312 0.601 0.777 0.875 0.929 0.956 0.974 0.983 0.988 0.991 

0.01 0.042 0.305 0.591 0.774 0.872 0.925 0.957 0.973 0.983 0.988 0.991 

0.02 0.040 0.294 0.581 0.768 0.872 0.927 0.955 0.972 0.982 0.987 0.991 

0.03 0.035 0.283 0.573 0.763 0.871 0.924 0.957 0.972 0.981 0.988 0.991 

0.04 0.030 0.270 0.568 0.761 0.866 0.924 0.956 0.972 0.982 0.988 0.991 

0.05 0.029 0.257 0.559 0.754 0.868 0.923 0.955 0.973 0.982 0.988 0.991 

0.06 0.025 0.249 0.549 0.749 0.863 0.922 0.953 0.971 0.981 0.987 0.991 

0.07 0.022 0.238 0.542 0.746 0.860 0.921 0.953 0.972 0.983 0.987 0.991 

0.08 0.020 0.226 0.531 0.741 0.855 0.921 0.953 0.971 0.981 0.987 0.991 

0.09 0.018 0.217 0.520 0.735 0.853 0.919 0.952 0.971 0.980 0.987 0.991 

0.10 0.016 0.207 0.512 0.730 0.853 0.915 0.951 0.970 0.982 0.988 0.991 

0.11 0.014 0.198 0.504 0.727 0.847 0.914 0.950 0.969 0.981 0.987 0.991 

0.12 0.013 0.189 0.494 0.718 0.847 0.913 0.949 0.969 0.981 0.987 0.991 
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Table 19. Power rates for one-tailed directional test for exponential distribution, various 

means shifts and variance changes for sample size (30, 30), 100,000 repetitions, 
α = 0.05 
 

Mood-Westenberg Chi-squared 

Means 

shift 

Variance change 

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 

0.00 0.069 0.241 0.553 0.782 0.899 0.951 0.976 0.988 0.994 0.996 0.997 

0.01 0.069 0.232 0.543 0.772 0.896 0.951 0.975 0.988 0.993 0.996 0.997 

0.02 0.071 0.222 0.532 0.765 0.890 0.949 0.975 0.987 0.993 0.996 0.997 

0.03 0.071 0.212 0.518 0.760 0.887 0.947 0.974 0.987 0.993 0.996 0.997 

0.04 0.073 0.204 0.506 0.752 0.885 0.944 0.973 0.986 0.993 0.996 0.997 

0.05 0.075 0.195 0.496 0.745 0.879 0.944 0.972 0.986 0.992 0.996 0.997 

0.06 0.078 0.183 0.484 0.736 0.876 0.941 0.972 0.986 0.992 0.996 0.997 

0.07 0.081 0.176 0.475 0.729 0.872 0.938 0.970 0.985 0.992 0.996 0.997 

0.08 0.084 0.166 0.459 0.720 0.866 0.938 0.969 0.984 0.992 0.996 0.997 

0.09 0.087 0.158 0.451 0.713 0.865 0.935 0.969 0.984 0.991 0.995 0.997 

0.10 0.092 0.150 0.440 0.705 0.858 0.932 0.967 0.985 0.991 0.995 0.997 

0.11 0.097 0.143 0.428 0.697 0.852 0.933 0.968 0.983 0.991 0.995 0.997 

0.12 0.102 0.137 0.417 0.687 0.850 0.929 0.965 0.983 0.991 0.995 0.997 

            Siegel-Tukey Z-score 

0.00 0.049 0.428 0.768 0.917 0.970 0.989 0.995 0.998 0.999 0.999  

0.01 0.043 0.415 0.761 0.914 0.970 0.988 0.995 0.998 0.999   

0.02 0.038 0.398 0.755 0.910 0.968 0.988 0.995 0.998 0.999   

0.03 0.032 0.382 0.743 0.909 0.968 0.988 0.995 0.998 0.999   

0.04 0.029 0.369 0.734 0.904 0.966 0.987 0.995 0.998 0.999 0.999  

0.05 0.024 0.356 0.724 0.902 0.964 0.988 0.994 0.998 0.999   

0.06 0.021 0.336 0.720 0.897 0.963 0.986 0.995 0.997 0.999 0.999  

0.07 0.018 0.324 0.710 0.893 0.963 0.986 0.995 0.998 0.999   

0.08 0.016 0.306 0.700 0.891 0.961 0.986 0.995 0.998 0.999   

0.09 0.014 0.291 0.690 0.887 0.961 0.985 0.994 0.998 0.999 0.999  

0.10 0.012 0.275 0.678 0.882 0.958 0.985 0.994 0.998 0.999 0.999  

0.11 0.011 0.262 0.667 0.879 0.956 0.985 0.994 0.997 0.999   

0.12 0.009 0.249 0.658 0.875 0.955 0.984 0.994 0.998 0.999 0.999  
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