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Bayesian and Semi-Bayesian Estimation
of the Parameters of Generalized Inverse
Weibull Distribution

Kamaljit Kaur Kalpana K. Mahajan Sangeeta Arora
Panjab University Panjab University Panjab University
Chandigarh, India Chandigarh, India Chandigarh, India

Bayesian and semi-Bayesian estimators of parameters of the generalized inverse Weibull
distribution are obtained using Jeffreys’ prior and informative prior under specific
assumptions of loss function. Using simulation, the relative efficiency of the proposed
estimators is obtained under different set-ups. A real life example is also given.
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Introduction

The three-parameter Generalized Inverse Weibull distribution (GIWD), introduced
by de Gusmao, Ortega, and Cordeiro (2011), is a positively skewed distribution
used to model the income data and, because of its ability of possessing decreasing
and unimodal failure rate, is also useful in reliability and biological studies. GIWD
is the generalization of various well-known and useful distributions. Most of the
sub-cases of GIWD are families of inverse distributions, which play an important
role in many applications (Drapella, 1993; Jiang, Murthy, & Ji, 2001; Nelson, 1982;
Khan, Pasha, & Pasha, 2008; Zaharim, Najid, Razali, & Sopian, 2009) and are also
fitted to income-related data. These distributions have two parameters but, in order
to fit better at the tails (Lubrano, 2014; Kakwani, 1980), a distribution with three
parameters (GIWD) is used in the present study.
The cdf of GIWD is

F(x):e_ym . x>0a,8,7>0 1)
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where « is scale parameter and /3, y are shape parameters.
The pdf of GIWD is

f(x)=yBa’ xf(ﬁ“)e_y(%j )
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Figure 1. Plot of pdf of GIWD for various combinations of parameters

L=
@ |
(=]
w
(=)
=
[T
=
(=]
(a,by)
o — (1151)
s 7 — (0.82,1)
2,2,1)
— (1.521)
2 @370
T T T T T T T
0 1 2 3 4 5 6

Figure 2. Plot of cdf of GIWD for various combinations of parameters
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Sub-models:

e Fora =1, it reduces to inverse Weibull (IW) distribution.

e Fory=a=1,itreduces to Fréchet (F) distribution.

e Forf=2,a=1,itreduces to inverse Rayleigh (IR) distribution.
e Fory=/p=1, it reduces to inverse exponential (IE) distribution.

Properties of Generalized Inverse Weibull Distribution

The Mean and variance of GIWD have been obtained by de Gusméo et al. (2011)
and are given by

-

2

750[1“(1_,3’1) and }/Eaz [F(l_zﬂl)_(r(l_'gl))z}

respectively.

De Gusmado et al. (2011) have also obtained the estimators of the parameters
of GIWD using a maximum likelihood method of estimation (non-Bayesian
approach); they are obtained by using the likelihood function given by

L(xlnap)=r"Ba” ([T, %" )exp(a" 3, %) ©)

The MLEs of « and y are

1
~ n /
o= O 8

[7Zilxi J

e

n
B n -8
a Zi:1 %;

To obtain the MLE of £ equation (4) is solved using iterative numerical techniques
(Newton—Raphson algorithm):

%+nlna—zn:lnxi—;/aﬂzn:xiﬁ(lna—ln(z:_lxi))=0 (4)

i=1 i=1
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In the classical setup, MLEs are used to estimate the parameters of GIWD.
However, in the Bayesian context, estimators of these parameters still await
attention of the researchers. In the Bayesian setup, one may use a full-Bayesian
approach or semi-Bayesian approach, referred to as generalized maximum
likelihood estimators. In the present paper, both these approaches are used to
estimate the parameters of GIWD.

For Bayesian estimation, the choice of priors and loss functions are two
important aspects. Both informative and non-informative priors are used for the
study in case of semi-Bayesian and full-Bayesian approach. In full-Bayesian
approach both symmetrical and asymmetrical loss functions are used for the study;
however no loss function is required for estimating the parameters in case of semi-
Bayesian approach.

Prior and Posterior Densities

Informative Prior for the Parameters of Generalized Inverse Weibull
Distribution

The informative prior depends on the elicitation of a prior distribution based on pre-
existing scientific knowledge in the area of investigation. This information may be
available from previous investigations or from non-statistician experts.

Assuming independence among parameters a, S, y of GIWD, priors for a, 3,
y are chosen to be gamma distributions as follows:

y ~ Gamma(a,,b,)
a ~Gamma(a,,b,)
B~ Gamma(a,,b,)

where Gamma(ai, bi) denotes a gamma distribution given by

(yiab)="" y“re():’)(‘ybi)

wherey >0, a >0, bi >0,i=1, 2, 3, and a;j and b; are the hyperparameters.
Prior density functions for a, $, and y are
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d(aa,,h,)ca® exp(—ab,) (5)
9(/8:8,,h,) oc B> exp(—fb;) (6)
9(7;a,,b) oy exp(—yhy) ©)

The joint prior distribution for a, £, and y is
9 (@ B.y) oy a™ " f " exp(—yb, —ab, - pb,) (8
The joint posterior distribution for the parameters a, g, y for GIWD is given by

g (a. B.71x)
L(y.a B)d(r:a.b)9(a;2,,b,)9(B;a,.b,)
IH (7,2, 8)9(7;a.0)9(a;,,b,)g(B;8,,b,) 0adpoy

o 7n+a1—lﬂn+a3—lanﬂ+a2—lH X;(ﬂ+l) exp((_yaﬂzin_l Xi—ﬂ ) _ 7/b1 _ ab2 _ :Bbs)
i=1

9)

Non-Informative Prior (Jeffreys’ Prior) for the Parameters of
Generalized Inverse Weibull Distribution

Jeffreys’ (1946) prior based on Fisher’s information is defined as
7(6) o |[1(0)

where 1(0)=—E| ZInL(6]|x)| is Fisher’s information based on likelihood
06

function L(@ | x).
In the case of GIWD, Jeffreys’ prior is the square root of Fisher’s information
matrix of order 3 x 3, given by
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o*(InL(x)) @*(InL(x)) &*(InL(x))]
oa’ oadp dady

1(0)=—E o*(InL(x)) &*(InL(x)) &*(InL(x))
opoa op? opoy

o*(InL(x)) &*(InL(x)) &*(InL(x))

0yoa 010 oy?

where
OZ(I;]:Z(X)) __r;_g_ﬂ(ﬂ_l)yaﬂ—zizl“xi-ﬁ
0? InL(x) n . 2 y
%=—?—y(lna—ln(zi_lxi)) o Y %
o? (InL(x)) n

oy? B i
Z(inL{x -1 n 0% (InL(x
(GT’E» D3 x| p(ina-mn( ¥ 1)) +1]- %
y(:a—wz—ﬁaﬂl_z:xiﬂz%
0% (InL( p ; _*(InL(x)
(aﬂ_ayh 3% (ma-in (zi_lxi))_%

The expected value of double derivatives is not in a closed form, hence the explicit
expression for the Jeffreys’ prior is not obtained. For simplicity it is assumed that
all the three parameters are independent; therefore joint prior in case of Jeffreys’
prior (Guure, Ibrahimm, & Ahmed, 2012; Singh, Singh, & Kumar, 2011) is written
as

9;(a. By)ex y;ﬁ (10)
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Note that gj(a,ﬂ,y) is a special case of the informative prior by taking the

hyperparameters to be zero (a1 = b1 =ax = b2 =az = bz = 0).
The joint posterior distribution for «, f, y in the case of GIWD is given by

05 (@ .7 1) " p e [ [ PV exp( e X0 %) (D)

i=1

Full-Bayesian Approach

To obtain the Bayesian estimators of «, , and y in the case of GIWD, it may be
noted that the joint posterior distributions of «, f, and y, for both informative and
non-informative priors, is a ratio form that involves an integration in the
denominator and cannot be reduced to a closed form. Hence the evaluation of the
posterior expectation for obtaining the Bayesian estimators of «, 5, y will be tedious.
Among the various methods suggested to approximate the ratio of integrals of the
above form, the simplest one is Lindley’s approximation method (Lindley, 1980),
which approaches the ratio of the integrals as a whole and produces a single
numerical result.

u(@,o,,0,)e" %%ty g g g
'(X)=E[u(91,92,03)}=L%ﬂs) (6.6 (6.6,.6;)
g1 %1kt (g g 0,)

J-(vazﬂs)

where L(61, 62, 65) is the log of likelihood and G(61, 82, 83) is the log of the joint
prior of 1, 62, and 6.
I(x) can also be written as

1(x)=E[u(6,,6,,6,)]

A A A 1
= u(01,62,93)+(u1a1+u2a2 +U,a, +a, +a5)+§[A(ulan+

(12)
u,o,, + U0, ) +B (ulo'21 +U,0,, + U0, ) +C (ula31 +U,0,,
+Uy075 ) |
where él, 672, and 93 are the MLEs of 61, 82, and 63, respectively,
& = 0y + P,00, + POy, 1=1,2,3 (13)



KAUR ET AL

a, =U,07, +U;3075 + Uy Oy (14)

a; = %(una11 +U,,0,5, +Ug0y5) (15)

A=o,L,, +20,L, +20,;L; +20,,L,; +0,,L,,, + 035l (16)
B=o,L,,+20,L,, + 20,5 + 20,1, + 05l + 0sslss, (17)
C=o0,L 3 +20,L 5 +20,L,+20,,L,+ 0,0, + 051, (18)

subscripts 1, 2, 3, on the right-hand sides above refer to 61, 62, and 6, respectively,
p is the logarithm of the joint prior density,

=9 123
y 229G0.0) g,
26,
o*u(a,é,,o ..
uij: (1 2 3)’ I,j=l,2,3
86,06,
o*L(6,6,,0 ..
ij= (1 2 3), |,J=1,2,3
26,06,
o*L(6,0,,6 ..
ijk=—(1 2 3), i,j, k=123
06,06,06,

and gjj is the (i, j)™ element of the inverse of the matrix having elements {—Lij}.

Remark: The expression 1(x) leads to the approximate expression for the
Bayesian estimators.

Lindley’s Approximation for Generalized Inverse Weibull Distribution
in case of Informative Prior

The various terms as listed above are derived below for the three parameters «, S,
and y in the case of GIWD using informative prior.
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The log of the joint prior density (p) in the case of informative prior (8) is

p=log(g(a.p.7))
=(a,—1)logy +(a, —1)log a +(a, —1)log S —by —b,a—b,8

0 a, -1
p=t=2b, (19)
oa a
op a,-1
P> 0B ; 3 (20)
0 -1
p=L=2=b 1)
7 V4

The log-likelihood, using equation (3), is given by

L(O{,ﬂ,]/)= |Og(L(X|y,a,ﬂ))

:nIogy+nIogﬁ+nﬁlog;oz—(,&tl)zn:logxi —yaﬂzn:xi’ﬂ
i=1 i=1

_O'L(aBy) _-nB N B2N B
L, = oa? = o ﬂ(ﬂ 1)7/a ;Xi (22)

|_22:%:—%—y(loga—logziﬂ_lxi)Zaﬁgxiﬁ (23)

L =THEAn (22)
/4 v

_o°L(a,By) n PR n _
o=k Alloga-tog ] x )1 =L (29

*L(a,B.y)

bo = oaoy

——pa" Y X =L, (26)

10
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_OL(@aBy) e 0\
Lzs—W——aﬂgxiﬁ(|090!—|092i_1xi)—Lsz
P L(a, B, 2 PRI
L111: (50;3 7/): ;:ﬁ—;/ﬂ(ﬂ—l)(ﬂ—Z)aﬂ ;Xiﬂ
L, = &° L;;Sﬂﬂ) :_%—y(loga—log Zin:lxi )3 aﬁgxiﬁ
Lyss = il L(aa,slb)J/) =2_2
/4 Y
_PL(@By) i s s
L= aazay = ﬂ(ﬂ 1)05 iZ:l:Xi =L =Ly
O L(a.By)
L112_ 60{26ﬂ
:__r;—]/aﬁ—zzn:xi‘ﬂ[(25—1)+,B(ﬁ—1)(|oga—Iogzi"_lxi)}
o i=1
:L121:L211
_53L(0{,ﬁ,7/)

I‘122_ aaaﬂz
=—;/aﬂ—12n“xi-ﬁ(loga—logZ?lxi)(2+ﬂ((loga—logzi”lxi))2j
:L221:L212

L _PL(a.B7)
2 dadpoy

= —aﬂ_lzn: X’ (1+ﬁ(|oga_ log Zin:lxi )) = Loy = Ly

11

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)
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OL(a,pB.7)

Ligs = 80(57/2

=0="Ly, =Ly

O’L(a,B.y)
223 =W

n 2 n
:—(Ioga—log Zi:lxi) a’ Y % =Ly, =Ly
i=1

63L(a,,3,7/):0:|_3 _L

233 T 6ﬂ67/2

The expression a, = p,o,, + p,0;, + P05, 1 = 1, 2, 3, hence in this case
81 = P00y, +,02(712 +p30'13
3.2 = 0, + 0,0, + P30,

A = P03 + 0,03, + 03033

(35)

(36)

(37)

(38)
(39)

(40)

Using these general expressions of Lindley’s approximation, Bayesian estimators

for a, f3, y for different loss functions are derived below.

Bayesian Estimators of a, B, y for Informative Prior using Lindley’s

Approximation in Case of Squared Error Loss Function (SELF)

The squared error loss function is

12
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where expectation is taken with respect to posterior density. Note the Bayesian
estimator of # using Lindley’s approximation is directly given by the expression
I(x) in equation (12).

Bayesian Estimator of a under Squared Error Loss Function

In this case, u(01, 62, 63) = u(a, S, y) is function of o only and it is given by
Ues = U(a,, B, y) = a, Since parameters a, f3, y are assumed to be independent. Hence,
using equation (12),

1(x)=E[u(ex. 7)) =E ()
the first derivative of u.s with respect to a is

asl = auas :1
oo

all other uij =0 for i, j =1, 2, 3 because it is a function of « only. The expressions
for the aj, i =1, 2, 3 are given in equations (38)-(40), and

aQ, = (u120-12 +U;3075 + U23O'23) =0

1
a, = E(una11 +U,,0,, + g0y, ) =0
Using equation (12), the expression for I(x) is derived as
5 1
I (x) =a+ (Uasla1) +E[A‘711 +Boy, + CUsl]

where

A=o0y Ly, +205, L, + 203515 + 2051, + 0yl + 0yl
B =0y, + 203,15, + 20,5115 + 20,555, + 0y Ly + Ogslssy

C =0y s + 201,55 + 2075155 + 2031055 + O lpps + Og5lss

13
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The detailed expression for the various Lij for i, j, k=1, 2, 3 are obtained in the
above equations (28)-(37). Moreover, gij is the (i, j)™" element of the inverse of the
matrix of Lj, i.e.

o :_—1, ,j=12
L

ij

where the Ljj for i, j = 1, 2 are computed in equations (22)-(27) above. Therefore,
the Bayesian estimator of a under the squared error loss function is

R . (a,-1 -1 -1
aSELFZOH'( -b j (aa—"_bSJO_lZ—'_(ai—A_bljo-B
a p Y

+%[Aall +Bo,, +Coy,]

In the similar way, Bayesian estimators of S (ﬁsm) and y (Fser) under the

squared error loss function are given as

A ~ (a, -1 -1 -1
ﬂSELFzﬂ—'—( 20? 2)021+(a37—b3j022+(a17—b1J023

+

Ac,, +Bo,, + CG32]

[
VseLr = (az = ]0-31 [asrl_stgsz‘F[ai—:l_bljUas
a p Y
[

+

N |-

Ac, +Bo,, + C(733]

N |-

The squared error loss functions for a, £, y are

L(oc):(oz—oAzSELF)2
L(B)= (8 Bre)

I—(7) (7_7;SELF)2

14
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Bayesian Estimators of B and y for Informative Prior using Lindley’s
Approximation in Case of Linear Exponential Loss Function (LINEX)

The LINEX loss function is appropriate in case of shape parameter. So, it is not
appropriate for a, but for  and y we make use of the LINEX loss function and
obtain Bayesian estimators of £ and y under this set-up.

The LINEX loss function is given by

L(é, 9)=ec(é_'9) —c(é—@)—l, c=0
and the Bayes estimator of # under the LINEX loss function is
A 1 e
0, nex =_Eln[E(e 6)] c=0

Using Lindley’s approximation, the Bayesian estimator of & under the LINEX loss
function is given by

A

O nex = —%h’]l:l(X):'

where I(X) is the expression given by equation (12).

Bayesian Estimator of B under LINEX Loss Function

The Bayesian estimator of # under the LINEX loss function is given by
Binex = —=In[E(e)]
c
Therefore
1(x)=E[u(a,B.7)]= E(e‘cﬂ)
In this case, u(a, g, y) is function of g only and is defined as

Uy = u(e, B,7) —e

15
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with the first and second derivatives of u, with respect to  given by

B
iz =Lk =—ce
op
2
Ly
Ugyy, = ——- =C’e
op

As u(a, p, v) is function of ,
8, =Uy,0y, +Uy3075 +Uy0, =0
and

24-Cp
85 = %(uplzzo_zz) = %

Oy

1(x)= u(&,ﬁ,;?)+uﬂ|2a2 +a, Jru”f[Aa12 +B0,,Coy, |

— e—C,B _Ce—Cﬁ {L—az’\_l—szo-ﬂ +(a3—,\_1_b3J0-22 +(a3—,\_1_bljo-23J
& B Y

c’e ce™’
+ > O,y — [

—e/ {1_C((a2:1_b2j0-21+(a3—:1_b3)0-22 +(%—A4-_Qj023j
a p Y

CZ

C
+ ? Oy — E [ Ac,, +Bo,,Co,, ]}

Ao, + BO'22C0'32]

Hence, the Bayesian estimator of S is given by
IBLINEX = _lln E(eicﬂ)
C

Putting the value of I(x) in the above equation,

16
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. ~ 1 a, -1 -1 -1
ﬂLINEX:ﬂ__In{l_C|:( 2 _bz)o'zf"(asﬂ _sto-zz"'(aSA _b1]0'23
c a p 4

c? C
) o, + E[AO'12 + BO'ZZC0'32]

The terms in the estimator are the same as explained earlier.

Bayesian Estimator of y under LINEX Loss Function

R .1 a, -1 -1 -1
Y LINEX :7__|n{1_({( 2 _szo'sﬁ'(agA _b3](732+(a3A _bsjo'zs
c a p 4

C2

C
—?033 + E[AO'13 + BO‘23C0'33]j|}

The LINEX loss functions for  and y are

Vo) (B —B) -1 €0

g"lmex7) _ C(};LINEX - 7/) -1 ¢c=0

L(BLINEX’IB)

I—(J;UNEXJ/)

Bayesian Estimators of a for Informative Prior using Lindley’s
Approximation in Case of General Entropy Loss Function (GELF)

The LINEX loss function is not as appropriate for estimation of scale parameter as
it is for shape parameter (Basu & Ebrahimi, 1991; Parsian, Sanjari, & Nematollahi,
1993). So, for estimation of «, an entropy loss function is used.

The general entropy loss function is defined as

L(6.0) [gjbe ~b, In [g]—l

The Bayes estimator of 6 under general entropy loss is given as

17
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-1

éGELF = [Ee (eibe )]be

Using Lindley’s approximation method, the Bayesian estimator of ¢ under the
general entropy loss function is

éGELF = [I (X)];Tel

Bayesian Estimator of a under General Entropy Loss Function

The Bayesian estimator of o under the general entropy loss function is given by

-1

s =[]
I(x)=E[u(a,B,7)]=E(a™)
is function of a only, and u(a, B, y) is denoted by Uge, i.e.
U, =U(a,By)=a™

The first and second derivatives of u.e with respect to « are given by

— % — _b a_be -1
ael 6(){ e
2
aell = —%Zil =bh, (be +l) o
1 b, (b, +1)a ™
a; = E(uaello-ll) = ( 2) Oy

A 5 A 1
u (Ot, B, 7) F U +85+ E[Auaelo-ll +BU,¢ 0y + Cuaelo_Sl]
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1 ~—b,—2 ~—b,-1
+ b, (b - )a Oy — beaz [Acr11 +Bo,, + C0'31]

_[&be {1_%{{(a2,\1_b2j611+£a3—’\_1_b3j612+(a1—,\1_b1J013
a a p v
b, +1)o 1
_ ( 20}) 1 } +§[A011 +Bo,, + Cagl]]H

The terms in I(x) are same as explained earlier. Therefore, the Bayesian estimator
of a under the general entropy loss function is given by

OgeLr = I:

a, -1 -1 -1
( { —- 2A _szan"'(ag—ﬂ_sto-u+(al—A_b1]O-13
a a o) v

-1

b, +1)o 1 b
_%} + E[Ao'n +Bo,, + CO'Sl]}J

The general entropy loss function for « is

~ b,
L(a,&GELF)OC(%ELFj b, m(%wj i

(04 (04

Bayesian Estimators of a, B, and y using Non-Informative Prior
(Jeffreys’ Prior)

Referring to equation (11), the joint posterior distribution for a, S, y using Jeffreys’
prior, i.e. non-informative prior, is given by
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" e 11_[ lXI (A+1) exp( ;/a'gzl X )
7B TT 6 exp( e 3, adper

9;(a. B, 71x)

The form of posterior distribution is complex, so the evaluation of the Bayesian
estimators of a, 3, y is tedious. Therefore, using Lindley’s approximation method,
the Bayesian estimators of the parameters are obtained in the case of symmetrical
and asymmetrical loss functions for Jeffreys’ prior. The expression for Bayesian
estimators in this case will also depend upon the various loss functions.

(i) Using Lindley’s approximation, Bayesian estimators of o, f, y under
squared error loss function is

Aeer = 1(X)=E[u(a, B.7)|=E(a); u(a, B.7) is afunction of &
IéSELF = I(X): E[u(a,ﬁ,y/)] = E(,B); U(Ol,ﬁ,]/) is a function of g
Ve =V (X)=E[u(a, B,7)]=E(7); u(a, B.7) is a function of y

where

=E[u(aB.7)]
A A A 1
:u(a,ﬂ,y)+(ula1+u2a2+u3a3+a4+a5)+E[A(ulo—11+uzalz+u3013)

+B (ulo'21 +U,0,, + U0, ) +C (ulo'31 +U,0,, +U;0,, )]

The expression of p depends on prior density, therefore p is computed for non-
informative prior and given below.

The log of joint prior density (p) in the case of non-informative prior, referring
to equation (10), is

p=log(g,(a,B.7))=—logy —loga —log B

_op__ 1

Y da a
0 1
pzz_pz__
op B
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(if) The Bayesian estimators of # and y under the LINEX loss function are
given by

fuex == [1(x)] 1(x)=E(e)

Fuee == n[10)].10) =E(e ™)

(iif) The Bayesian estimator of « under the general entropy loss function is
given by

-1

Qoere =[1(X) ], 1(x)=E(a™)
The terms in I(x) are the same as already explained.

Table 1. Bayesian estimators of a, 8, y using Jeffreys’ prior

Param. Estimators of a, B8, y under SELF, LINEX and GELF
“ .~ 0 o
SELF =a- All iZ % [AU +BO’ +C0 ]
a B vy 2
a -1
. .. blo, o b, +1)o,, b,
g = (a g {1+?[?+?+ ( é) } Yoer Ao11 +Bo,, +Co3l]}j
R ~ 0, 0, O, 1
ﬁSELF=ﬁ-7-?-7 ;[Ao +Bo,, +Co,, |
p 1 1
R A o o o c
ﬁLINEX = (B _Eln {1+C|i?+?+$+;022 ';[Aolz +Bo,, +Casz]:l})
o, 0. O 1
VSELF:V_%_¥_% _[AU +BO' +CO’ ]
a y 2
Y

B
N .1 ag ) ag c 1
Y inex :(V-_In {1+C|:%+¥+%+_033 -_[A013 +Boz3 +Cogg]:|}j
c a B y 2 2
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By using these expressions of different loss functions, i.e. the squared error
loss function, LINEX loss function, and general entropy loss function, Bayesian
estimators of «, 3, y are obtained for non-informative prior and presented in Table
1.

Semi-Bayesian Approach

Generalized maximum likelihood estimators are obtained for the parameters of
GIWD using informative and non-informative prior. It is known generalized
maximum likelihood estimators are maximum likelihood estimators of the posterior
distribution.

Generalized Maximum Likelihood Estimators of Parameters (a, B, y) of
Generalized Inverse Weibull Distribution using Informative Prior

Assuming independence among parameters, the posterior distribution using
informative prior is given by

g (. B.71x)

o yn+a1—lﬂn+a3—1anﬂ+az—ll_[ X;(ﬁﬂ) exp((_yaﬂzinl Xi—ﬁ ) _ J/bl _ ab2 _ ﬁbg)

i=1

The log of the posterior distribution is

In(g; (a, B,71x))=(n+a,-1)In(y)+(n+a,-1)In(B)+(nB+a,-1)In(a)

—(ﬂ+1)HIn(xi)—7a'BZn:Xfﬂ —by-b,f-ba

i=1

Taking partial derivatives with respect to «, £, and y gives likelihood equations

aln(g]‘(a,ﬁ,ylx))_nﬂ+a,z—l v
oa ST A0 “
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omn(g; (. f71%))
op
:—n+23 _1+nln(7/)—ln(zinlxi)—J/OtﬁiZl:Xiﬂ(m?/"”(zrlxi))_bs (42)
=0

aln(gf(a,ﬂ,J/IX)): n+a —1
oy 4

—aﬂix;ﬂ—blzo (43)

By solving these three equations simultaneously, the GMLE of «, 8, and y are
obtained. As the expressions are not in explicit form, one may use various
numerical methods to obtain the estimators, e.g. Newton Raphson’s method
(Raphson, 1690) or the Optim function in R (Nash, 1990). In the present study, the
latter approach, i.e. Optim function in R, is used to obtain the estimators of the
parameters (a, £, v) of GIWD.

Note: Generalized maximum likelihood estimators of parameters (a, S, y) of the
GIWD using Jeffreys’ prior are computed in a similar manner by taking the values
of the hyperparameters to be zero (a1 = by = a2 =b> =as3 = bz =0).

Optimization of Hyperparameters

The hyperparameters, the parameters used in the informative prior, also play an
important role in the simulation exercise. So, the choice of hyperparameters is
crucial and important to any simulation study. In literature, there are many
approaches to estimate these hyperparameters, like using their maximum likelihood
estimators, choosing hyperparameters randomly, min/max approach, estimating
from past data, or the method of elicitation using a prior predicative distribution
(Sinha & Howlander, 1980; Ali, Aslam, Abbas, & Kazmi, 2012; Aslam, 2003). In
the previous sections, the min/max approach (Sinha & Howlander, 1980) is used to
check the robustness of hyperparameters. In the present section, a scaled total misfit
technique is used, which leads to the best fitted hyperparameters out of random
choice of some combination of hyperparameters with the parameters of distribution.

A Scaled Total Misfit Measure (Park, 2005)

First define a scaled misfit measure from a quantile estimation method as follows:
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. 2
A:z(xq;xq)
q q

where Xq is the true value for the g-quantile and X, is the estimated g-quantile

q
computed from GIWD. This measure can be viewed as the chi-square goodness-of-
fit criterion for numeric estimates of quantiles.

Now the above misfit measure is extended to various sample sizes. This
measure is computed for N, the number of Monte Carlo samples for different
sample sizes n (denoted by Ny), and then averaged:

N

. A
B, =Y
"EN

n

Here, Ai is measure computed from the i'" Monte Carlo sample.
Define, for a distribution, scaled total misfit measure (STMM) as a function
of a given prior and estimation method:

Q(m.M)=2.Q,(m.M)

0

where 7 is the prior, M is the method of estimation of the parameter ¢, and

Q,(m,M)=>_B,
znzi“_zzq(*“;f“)

N

n

6 is the parameters of the distribution we are using for quantile estimation. Choose
the best prior (1) and M which minimizes Q(n, M) among serval M’s and classes
of priors (7).

Simulation Study

A simulation study is conducted in two parts: firstly, for the selection of the best

hyperparameters as per scaled total misfit measure; and secondly to see the relative
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efficiency of Bayesian, semi-Bayesian (GMLE’s), and non-Bayesian (MLE’s)
approach. The coding and the analysis are performed using the R programming
language.

Random variables from GIWD have been generated using the transformation

-1
~In(u) |#
. { ( q
v
where u has uniform U(0, 1) distribution.

Table 2. Misfit measure for a

a2=b2 a=05 1.0 15 2.0 2.5 3.0 3.5 4.0 sum Q(1r, M)
1 10.48 12.76 8.48 7.67 8.66 8.43 780 955 73.83
2 9.49 9.36 8.16 7.82 7.92 9.14 9.08 10.24 71.21
3 12.00 9.65 10.61 6.95 7.18 8.70 10.33 9.81 75.23
4 9.78 8.65 7.38 8.84 7.04 10.13 8.17 7.38 67.37
6 9.29 8.82 8.96 9.44 1059 6.45 7.22 6.82 67.59
8 8.99 8.49 791 12.01 8.12 9.23 8.13 8.26 71.14

Table 3. Misfit measure for 8

as=bs B=05 1.0 15 2.0 2.5 3.0 3.5 4.0 sum Q(1r, M)
1 64.18 26.44 3.99 2.09 2.27 1.21 0.89 0.72 101.79
2 56.74 21.33 6.60 3.16 2.60 1.44 1.06 0.82 93.75
3 31.36 38.56 7.49 3.65 2.17 1.90 1.26 1.06 87.45
4 40.40 24.98 6.48 2.93 4.44 1.92 1.37 0.86 83.38
6 41.20 37.52 8.72 2.57 1.61 2.05 1.89 1.87 97.43
8 33.47 42.70 9.08 6.09 3.72 3.49 2.01 1.53 102.09

Table 4. Misfit measure for y

ai=bs y=05 1.0 15 2.0 2.5 3.0 3.5 4.0 sum Q(1r, M)

1 6.99 7.39 10.36 8.43 7.59 6.92 7.46 8.64 63.78
2 7.31 8.57 7.39 7.18 8.70 7.28 6.17 6.57 59.17
3 8.91 8.01 8.30 8.35 8.42 6.79 9.04 7.83 65.65
4 8.93 10.38 8.71 8.38 7.88 10.95 6.47 7.54 69.24
6 8.03 7.76 8.17 8.76 6.02 7.73 5.76 6.58 58.81
8 10.61 9.77 7.61 8.13 8.89 8.03 7.91 6.30 67.25
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The different sample sizes n = 10, 20, 40, 80, 100, 150 and quantiles g = 0.1,
0.2,..., 0.9 are used to compute misfit measure, and N, = 1000 for different
combinations of parameters and hyperparameters. The method used in misfit
measure is the generalized maximum likelihood estimator and tables for the three
parameters are given in Tables 2-4.

From Tables 2-4, the hyperparameter having minimum sum are selected for
the further study:

(i) optimum selection of hyperparameters for « is a; = b2 = 4 (from Table

2)

(if) optimum selection of hyperparameters for 5 is as = bz = 4 (from Table
3)

(iii) optimum selection of hyperparameters for y is a; = by = 6 (from Table
4)

Relative Efficiency of Various Approaches

The mean square errors are computed using maximum likelihood, generalized
maximum likelihood, and Bayesian with Jeffreys’ and informative prior for the
parameters which are obtained using squared error loss function, LINEX loss
function, and general entropy loss function. These estimated losses are computed
using 10,000 Monte Carlo simulations for different sample sizes n = 30, 50, 100
with parameter combinations a=p=y=25,4. The combinations of
hyperparameters are

(i) ax=bx=4fora,
(i) az=Dbs=4forp,
(ili) ar=b1=6fory

taken for the simulation study according to misfit measure.

Comparison of Non-Bayesian Approach (MLE’s) and Semi-Bayesian
Approach (GMLE’s)

The mean square errors of estimators using non-Bayesian approach (MLE’s) and
semi-Bayesian approach (GMLE’s) are computed for parameters of GIWD and
presented in Tables 5-7.
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Table 5. Mean square error for a (8 =y = 2.5)

GMLE
n a MLE Jeffreys’ prior Informative prior*
30 25 0.03709354 0.03585720 0.03593395
4.0 0.10401380 0.09482988 0.09537666
50 25 0.02950446 0.02102547 0.02127104
4.0 0.05882332 0.05315694 0.05396281
100 25 0.01965800 0.01012477 0.01024923
4.0 0.02736852 0.02606220 0.02612554
Note: *a, = b, =4
Table 6. Mean square error for 8 (a =y = 2.5)
GMLE
n a MLE Jeffreys’ prior Informative prior*
30 25 0.93413690 0.66481748 0.72403600
4.0 3.26021101 1.71687667 1.88861660
50 25 0.83981996 0.64929604 0.71147050
4.0 2.70095544 1.68945720 1.82528550
100 25 0.76733404 0.63749605 0.69391660
4.0 2.25106582 1.61900318 1.78274770
Note: *az = bz =4
Table 7. Mean square error for y (a=8=2.5)
GMLE
n a MLE Jeffreys’ prior Informative prior*
30 25 0.33456618 0.21560620 0.24933030
4.0 0.98070166 0.55235300 0.63657320
50 25 0.18460151 0.12808220 0.14161840
4.0 0.90368559 0.32289400 0.35839910
100 25 0.07845281 0.06577740 0.06599840
4.0 0.32742309 0.26368640 0.31544770

Note: *a; =b; =6

From Tables 5-7, it is observed that
(1) GMLE’s using Jeffreys’ prior and informative prior have less mean

square error in comparison with MLEs, i.e. semi-Bayesian approaches
(GMLEsS) give better estimators than non-Bayesian approaches (MLES).
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(if)  Inthe case of the semi-Bayesian approach, GMLEs using Jeffreys’ prior
perform better in comparison with informative prior as they have
smaller mean square error for all the parameters.

Table 8. Mean square error for a (8 =y = 2.5)

Informative prior

SELF LINEX
n a Jeffreys’ prior az=bsz=4 c=1 c=-1
30 25 0.00075143 0.00018920 0.00004106 0.00012588
4.0 0.03746346 0.01278650 0.00486047 0.00194826
50 25 0.00045097 0.00012100 2.398339E-05 7.276694E-05
4.0 0.00978687 0.00500640 0.00314538 0.00053285
100 25 7.648816E-05 0.00004520 4.668325E-06 2.468399E-05
4.0 0.00385535 0.00075750 9.676239E-05 5.809497E-05

Table 9. Mean square error for 8 (a =y = 2.5)

Informative prior

SELF LINEX
n a Jeffreys’ prior az=bs=4 c=1 c=-1
30 25 0.01394930 0.00216250 0.00145047 0.00125890
4.0 1.61635760 1.59734500 0.15938417 0.35485000
50 25 0.01186860 0.00061610 1.653527E-04 1.352328E-04
4.0 1.60876570 1.50787870 0.00193841 0.00128650
100 25 4.107887E-03 0.00016530 1.119729E-04 1.092251E-04
4.0 1.57676760 1.46878800 0.00013869 0.00013300

Table 10. Mean square error for y (a =8 = 2.5)
Informative prior

SELF LINEX
n a Jeffreys’ prior as=bs=4 c=1 c=-1
30 25 0.02403470 0.00986600 0.00847382 0.00817383
4.0 0.52561340 0.46056750 0.09273483 0.85273521
50 25 0.01012250 0.00326450 0.00278372 0.00283672
4.0 0.32068780 0.31650770 0.01873292 0.01737367
100 25 0.00492160 0.00100720 0.00097364 0.00098215
4.0 0.11896230 0.10766540 0.00456722 0.00635622
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Full-Bayesian Estimators (Comparison of Symmetrical and
Asymmetrical Loss Functions)

Using the above parameter combinations, mean square errors are computed for
Bayesian estimators of parameters of GIWD under the assumptions of squared error
loss function (symmetrical), LINEX loss function, and general entropy loss
functions (asymmetrical) using Jeffreys’ and informative prior.

It is seen from the Tables 8-10 that

(i) Bayesian estimators with informative prior, along with the choice of
hyperparameter according to misfit procedure, are found to perform
better as compared to Bayesian estimators with Jeffreys’ prior because
these lead to smaller mean square error for all the estimators for small
as well as large sample sizes.

(if) In the case of informative prior, asymmetrical loss functions (LINEX,
entropy loss function) perform better as compared with the symmetrical
loss function (SELF) for all the three parameters.

(iii) When sample size increases, mean square error decreases in all cases.

Real Data Examples

The data of percentage growth of per capita net state domestic product at current
prices 2010-11 is taken from Directorate of Economics & Statistics of respective
State Governments, and All-India, CSO as on August 14, 2012. The data fits well
to GIWD with p-value 0.637 of the Kolmogorov-Smirnov test at 5% level of
significance. The Bayes estimators obtained using semi-Bayesian (GMLE) and full
Bayesian approaches have been compared with the classical approach (MLE) to see
their relative efficiency. The analysis is done using both informative and non-
informative priors and three loss functions, SELF, LINEX loss function, and GELF,
along with the same choices of hyperparameters as taken earlier in the case of
simulation work. The results obtained are given in Tables 11 and 12.

Table 11. Mean square error of a, B, y (SELF)

GMLE
Param. MLE Jeffreys’ prior Informative prior Jeffreys’ prior  Informative prior
a  0.0888790000 0.0804255000 0.8427397000 0.0124469000 0.0058104080
B 1.8778689000 1.8016903500 1.9889200000 0.0358189800 8.78053600E-04
y  0.0187688000 0.0174003300 0.0437355000 0.0095675800 0.0077583277
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Table 12. Mean square error of a, B8, y (LINEX and GELF)

Informative prior
Loss function Parameter Hyperparameter be=2 be =-2
GELF a az=b2=4 0.01034252 0.00151386

Informative prior

Loss function Parameter Hyperparameter c=1 c=-1
LINEX B as=bs=4 0.02345112 0.00043727
y ai=b1=6 0.00093425 0.00086721

It is seen from Tables 11-12 that

(i) Bayesian estimators with informative prior perform better as compared
to Bayesian estimators with Jeffreys’ prior.

(if) In the case of informative prior, asymmetrical loss functions (LINEX,
entropy loss function) perform better as compared with the symmetrical
loss function (SELF) for all three parameters.

As it is obvious the findings from the analysis of real life example are in
accordance with those of simulation study.
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