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Many nonparametric regression estimators (smoothers) have been proposed that provide 
a more flexible method for estimating the true regression line compared to using some of 
the more obvious parametric models. A basic goal when using any smoother is 
computing a confidence band for the true regression line. Let M(Y|X) be some conditional 
measure of location associated with the random variable Y, given X and let x be some 
specific value of the covariate. When using the LOWESS estimator, an extant method 
that assumes homoscedasticity can be used to compute a confidence interval for 

M(Y|X = x). A trivial way of computing a confidence band is to compute confidence 
intervals for K covariate values, each having probability coverage 1 − α. But an obvious 
concern is that the simultaneous probability coverage can be substantially smaller than 
1 − α. A method is suggested for dealing with this issue that allows heteroscedasticity and 
simultaneously performs better than the Bonferroni method or the Studentized maximum 
modulus distribution. 
 
Keywords: nonparametric regression, confidence band, heteroscedasticity 

 

Introduction 

Let M(Y|X) be some conditional measure of location associated with the random 

variable Y, given X. Nonparametric regression estimators provide an approach to 

estimating M(Y|X) that deal with  curvature in a flexible manner beyond the more 

obvious parametric models that might be used. Numerous nonparametric 

regression estimators have been derived and their practical importance is well 

https://doi.org/10.22237/jmasm/1509494580
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established (e.g., Hastie & Tibshirani, 1990; Efromovich, 1999; Eubank, 1999; 

Fan & Gijbels, 1996; Fox, 2000; Green & Silverman, 1993; Györfi et al., 2002; 

Härdle, 1990; Wilcox, 2017). 

The goal in this paper is to examine methods for computing a confidence 

interval for M(Y|X) based on the smoother derived by Cleveland (1979), generally 

known as LOWESS, in manner that allows heteroscedasticity and provides 

simultaneous probability coverage 1 − α for K values of the independent variable, 

where K is relatively large. From a robustness point of view, LOWESS is 

important because it includes a method that down-weights outliers among the 

dependent variable Y.  

Let x be some specific value for the independent variable X. Assuming 

homoscedasticity, a method for computing a confidence interval for M(Y|X = x) 

has been derived (Cleveland et al., 1992), which has been implemented via the R 

function lowess. So it is a trivial matter to compute a 1 − α confidence interval for 

a collection of values for the covariate, say x1, …, xK. It is evident, however, that 

the simultaneous probability coverage will, in general, be substantially smaller 

than 1 − α. And there is the added concern that when in fact there is 

heteroscedasticity, an incorrect estimate of the standard error is being used. 

Here, heteroscedasticity is addressed with a bootstrap estimate of the 

standard error of ˆ
k , where ˆ

k  is the estimate of M(Y|X = xk) (k = 1, …, K) based 

on LOWESS. 

A simple way of achieving simultaneous probability coverage greater than 

or equal to 1 − α is to compute a 1 − α/K confidence interval for each of K 

covariate values of interest. That is, use the Bonferroni method. Another strategy 

is to use the Studentized maximum modulus distribution. But both of these 

strategies are too conservative meaning that the actual probability coverage will 

be substantially larger than the nominal level, in which case the widths of the 

confidence intervals will be larger than necessary. The strategy here is to find an 

adjustment for the confidence intervals that achieves simultaneous probability 

coverage under normality and homoscedasticity, and then study how well the 

method performs when dealing with non-normality and heteroscedasticity. The 

method for adjusting the confidence intervals has certain similarities to using a 

Studentized maximum modulus distribution, but it differs in ways that will be 

fairly evident. 
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LOWESS 

Consider the basic strategy used by LOWESS. Not all of the many computational 

details are provided here, which are summarized by Cleveland et al. (1992). The 

main goal is to provide some sense of how the span is used and determined. The 

choice for the span turns out to play an important role given the goal of 

computing confidence intervals having simultaneous probability coverage 1 − α.  

Given the goal of estimating M(Y|X = xk), let (X1,Y1), …, (Xn,Yn) be a random 

sample and let δi = |Xi − xk|. Next, sort the δi values and retain the pn pairs of 

points that have the smallest δi values, where p is a number between 0 and 1. The 

value of p represents the proportion of points used to predict Y and is generally 

referred to as the span. Let δm be the maximum value of the δi values that are 

retained. Set 

 

 i
i

m

Q



   

 

If 0 ≤ Qi < 1, set wi = (1 – Qi
3)3, otherwise set Wi = 0. Finally, use weighted 

least squares to predict Y using w1, …, wn as weights. Because the weights change 

with X, generally a different regression estimate of Y is used when the value of X 

is altered.  

There are refinements beyond the computational steps just described, but for 

the brevity the many details are omitted. As previously noted, the method includes 

the ability of down weighting outliers among the independent variable Y. The 

main point here is that the choice for the span, p, will be found to play a crucial 

role. 

Description of the Proposed Method 

Let (X1
*, Y1

*), …,  (Xn
*, Xn

*) be a bootstrap sample, which is obtained by resampling 

with replacement n points from (X1,Y1), …, (Xn,Yn). Let *ˆ
k  be the estimate of 

M(Y|X = xk) based on this bootstrap sample. Repeat this process B times yielding 
*ˆ
kb (b = 1,  …, B). From basic principles (e.g., Efron & Tibshirani, 1993), an 

estimate of the squared standard error of ˆ
k  is 
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where *ˆ / .k kb B  . 

Here, two strategies for choosing x1, …, xK were considered. The first used 

K = n values based on all of the observed values of the independent variable X. 

The adjusted confidence intervals, based on the basic strategy described 

momentarily, performed well in simulations for some situations, but not others, so 

this approach was abandoned. 

To describe the second strategy, let M be the usual sample median based on 

X1, …, Xn, let L = M − 1.5 MADN and U = M − 1.5 MAD, where MAD is the 

median of 

 

|X1 – M|, …, |Xn – M| 

 

and MADN is MAD divided by 0.6745. To add perspective, it is noted that under 

normality, MADN estimates the standard deviation. Then x1, …, xK are taken to be 

K values evenly spaced between L and U, inclusive. Here the focus is on K = 25.  

Now focus on a single value of the independent variable, xk, and note that 

for some specified constant θ0, 

 

 
0 0: kH     (1) 

 

can be tested using the test statistic 

 

 0
ˆ

,k
k

k

T
s

 
   (2) 

 

where the null distribution is taken to be a Student's T distribution with degrees of 

freedom as indicated by Cleveland et al. (1992), which is computed by the R 

function loess. Let pk be the resulting p-value, let 

 

pm = min(p1, …, pK) 

 

and let pα be the α quantile of the distribution of pm. As is evident, if the null 

hypothesis given by (1) is rejected if and only if pk ≤ pα, the probability of one or 
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more Type I errors is α. In terms of confidence intervals, if a 1 − pα confidence 

interval is computed for each θk, the simultaneous probability coverage is 1 − α.  

Simulations are used to estimate pα when dealing with independent standard 

normal distributions. More precisely, generate n pairs of points from a bivariate 

normal distribution having correlation zero, perform the K tests as just described, 

and determine pm, the minimum p-value among these K tests. This process is 

repeated N times yielding say pm1, …, pmN, in which case pα can be estimated with 

some quantile estimator. Here, the Harrell and Davis (1982) estimator is used with 

N = 4,000. For convenience, this method for computing confidence intervals will 

be called method C henceforth. 

Shown in Table 1 are some estimates of pα when α = 0.05 and the sample 

size n ranges between 50 and 2,000. Note that based on the Bonferroni method 

with K = 25, each of the K tests would be performed at the 0.002 level. If, for 

example, the Studentized maximum modulus distribution is used with fifty 

degrees of freedom, in effect pα is taken to be 0.0022. Generally, using the 

method described here will result in shorter confidence intervals. Roughly, the 

reason is that the Tk values are highly correlated, which is taken into account 

when computing pα. Also note that as n increases, initially the estimates of pα 

decrease and then they increase. The reason for this is unclear. 
 
 
Table 1. Estimates of pα based on 4,000 replications 
 

n pα 

30 0.00360 

50 0.00266 

70 0.00240 

100 0.00288 

150 0.00300 

200 0.00354 

300 0.00387 

500 0.00440 

1000 0.00408 

2000 0.00451 

  

Simulation Results 

Simulations were used to study the small-sample properties of method C. Data 

were generated based on the model 
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Y = Xa + λ(X)ϵ 

 

for a = 0, 1 and 2. Both X and ϵ were generated from one of four types of 

distributions: normal, symmetric and heavy-tailed, asymmetric and light-tailed, 

and asymmetric and heavy-tailed. More precisely, both the error term and the 

distribution of the independent variable were taken to be one of four g-and-h 

distributions (Hoaglin, 1985) that contain the standard normal distribution as a 

special case. If Z has a standard normal distribution and g > 0, then 

 

 
 

 2
exp 1

exp / 2
gZ

W hZ
g


   

 

has a g-and-h distribution where g and h are parameters that determine the first 

four moments. If g = 0, this last equation is taken to be    

 

W = Z exp (hZ2/2). 

 

The four distributions used here were the standard normal (g = h = 0.0), an 

asymmetric heavy-tailed distribution (h = 0.2, g = 0.0), an asymmetric distribution 

with relatively light tails (h = 0.0, g = 0.2), and an asymmetric distribution with 

heavy tails (g = h = 0.2). Table 2 shows the skewness (κ1) and kurtosis (κ2) for 

each distribution. Additional properties of the g-and-h distribution are 

summarized by Hoaglin (1985).  
 
 
Table 2.  Some properties of the g-and-h distribution 

 

g h κ1 κ2 

0.00 0.00 0.00 3.00 

0.00 0.20 0.00 21.46 

0.20 0.00 0.61 3.68 

0.20 0.20 2.81 155.98 

 
 

Table 3 summarizes the simulation results for method C based on a = 0, 

sample sizes 50 and 100, and when the default value for the span is used, namely 

p = 2/3. Shown are estimates of α when the goal is to achieve simultaneous 

probability coverage 1 – α = 0.95. Similar results were obtained with a = 1 and 

a = 2. Bradley (1978) has suggested that as a general guide, when computing a 



RAND WILCOX 

35 

0.95 confidence interval, at a minimum the actual probability coverage should be 

between 0.925 and 0.975. All of the estimates satisfy this basic criterion. 
 
 
Table 3. Estimates of α when the goal is to achieve simultaneous probability  

coverage 1 – α = 0.95. 
 

g h n VP1 VP2 VP3 

0.0 0.0 50 0.050 0.061 0.047 

0.0 0.0 100 0.050 0.051 0.043 

0.0 0.2 50 0.032 0.035 0.026 

0.0 0.2 100 0.029 0.034 0.026 

0.2 0.0 50 0.061 0.056 0.049 

0.2 0.0 100 0.053 0.067 0.045 

0.2 0.2 50 0.055 0.050 0.037 

0.2 0.2 100 0.033 0.065 0.046 

 
 

Method C continues to perform well with n = 200 and n = 300. But with 

n = 500 and when sampling from a skewed distribution, it can be unsatisfactory 

when there is heteroscedasticity. That is, the estimates of α exceed 0.075. 

Increasing the number of bootstrap samples to 400 improved matters in some 

cases. But what was more effective was reducing the span. For n = 500, reducing 

the span to p = 0.5 yielded estimates less than 0.05 for all situations considered. 

But under normality and homoscedasticity, the estimate was 0.016. 

Illustration 

Method C is illustrated using data from the Well Elderly 2 study (Clark et al., 

2012) that dealt with an intervention program aimed at improving the physical 

and emotional wellbeing of older adults. A portion of the study focused on the 

association between the cortisol awakening response (CAR) and a measure of 

depressive symptoms based on the Center for Epidemiologic Studies Depressive 

Scale (CESD). CAR refers to the change in cortisol concentration that occurs 30-

60 minutes after waking from sleep. A CESD score greater than 15 is regarded as 

an indication of mild depression. A score greater than 21 indicates the possibility 

of major depression. 

Figure 1 shows the estimate of the regression line as well as a collection of 

confidence intervals having simultaneous probability coverage approximately 

equal to 0.95. (Leverage points were removed.) The horizontal dotted line in 

Figure 1 corresponds to CESD = 15. So Figure 1 indicates that for CAR values 

between −0.2 and 1.5, after intervention, a reasonable decision is that the typical 
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participant does not have any indication of mild depression. Outside this interval, 

it is unclear the extent to which this is the case. 
 
 

 
 
Figure 1. Confidence intervals for the typical CESD score using the CAR as the 

independent variable. The horizontal dotted line corresponds to CESD = 15. (CESD 
values greater than 15 are considered an indication of mild depression.) 

 

Conclusion 

Method C offers a more satisfactory way of computing confidence intervals 

compared to the simple approach of computing 1 − α confidence intervals for 

each value of the independent variable of interest. The method performed well in 

simulations, in terms of achieving estimates of α less than 0.075 for n ≤ 500, 

provided the span is chosen appropriately. However, there is room for 

improvement because as the sample size increases, the actual probability coverage 

becomes increasingly unstable in terms of how the data are generated. Avoiding 

estimates of α greater than 0.075 can be achieved by choosing the span to be 

sufficiently small, but at the expense of estimates less than 0.025 when there is 

normality and homoscedasticity.  
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A broader issue is whether some variation of method C can be used in 

conjunction with other smoothers. One of the many smoothers of interest is the 

running interval smoother (e.g., Wilcox, 2017) because it provides a simple and 

effective method for dealing with situations where M(Y|X) is any robust measure 

of location of interest. Preliminary results indicate that an adjustment of the 

confidence intervals, similar to what was used here, is not straightforward. The 

details of how best to proceed are under investigation.  

Finally, the R function lplotCI applies method C and has been added to the 

library of R functions stored at Dornsife.usc.edu/cf/labs/wilcox/wilcox-faculty-

display.cfm in the file Rallfun-v32. 
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