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Monte Carlo simulations are used to investigate the effect of two factors, the amount of 
variability and an outlier, on the size of the Pearson correlation coefficient. Some 
simulation algorithms are developed, and two theorems for increasing or decreasing the 
amount of variability are suggested. 
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Introduction 

A correlation describes the relationship between two variables. Although there are 

a number of different correlation statistics‚ the one that is used most often is the 

Pearson's correlation (PC) defined in terms of the population correlation rho, as 
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where Cov(X,Y) is the correlation between X and Y, σX,σY are the population 

standard deviations of X and Y respectively. 

The corresponding sample correlation ,x yr  (or ,
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x y ) defined by 
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where, sX and sY are the sample standard deviations of X and Y respectively. The 

term   
1

n

ii
x x y y


   is the sample covariance. In terms of z-scores, 
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where, zX is the z-score of the X variable, calculate using the population μX, and 

standard deviation σX, zY is likewise the z-score of the Y variable, and N is the 

number of pairs of scores. 

Many studies have been conducted to study factors affecting the size of the 

correlation coefficient. Goodwin & Leech (2006) discussed factors that affect the 

size of PC, and Bates et al. (1996) investigated the effects of variability as a 

function of sample size on the PC under assumption of perfect relationship 

between two variables. Osborne & Overbay (2004) used the NELS data set (a 

national longitudinal study of 8th Grade students attending 1,052 high schools 

across the United States) to see the effect of outliers on two different types of 

correlations. In the current study, a Monte Carlo simulation will be used to 

investigate the effects of variability and outliers on the size of PC. In order to 

generate such data some algorithms have been developed, and two theorems are 

suggested to increase (or decrease) the amount of variability. 

Variability  

Variability refers to how spread out a set of data is. The four main measures to 

describe variability in a data set are: range, interquartile range, variance, and 

standard deviation. Conceptually, the Pearson Correlation PC of equation 2, is the 

ratio of the variation shared by X and Y to the variation of X and Y separately. 

That is: 

 

 
,

shared variability of and 

separate variability of and 
x y

X Y
r

X Y
   (4) 

 

When there is a perfect linear relationship, every change in the X variable is 

accompanied by a corresponding change in the Y variable. In this case, all 

variation in X is shared with Y, so rx,y = 1. At the other extreme, when there is no 

linear relationship between X and Y, then the numerator is zero, so rx,y = 0. So, 

equation 4 indicates that definitely variability influence the size of PC. Looking at 
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equation 4 we observe that increase or decrease in variability of single variable X 

or Y increases or decreases the shared variability (numerator) and variability of X 

or Y (part of denominator). Also, increase or decrease in variability of both 

variables X and Y increases or decreases the shared variability (numerator) and 

separate variability of X and Y (denominator). Therefore, the size of PC increases 

if the nominator is greater (or decreases if less) than the denominator, and this 

depends only on the data set, sample size, and the amount of variability in X, Y, or 

both.  

Glass & Hopkins (1996) noted the value of the correlation coefficient PC 

will be greater if there is more variability among the observations than if there is 

less variability. Peers (2006) mentioned a good sample design will minimize the 

amount of variability in observations. The reduction in variability of a variable 

has the effect of reducing the correlation a variable has with other variables. The 

simple correlation is impacted when the variances of two measures are different, 

such as might occur with a restricted range. 

In terms of restriction of range‚ there are procedures available for the 

estimation of the correlation for the entire group from the correlation obtained 

with the selected group (Glass & Hopkins, 1996; Gulliksen, 1950; Nunnally & 

Bernstein‚ 1994; Thorndike, 1982). However‚ the equation used to estimate the 

unrestricted correlation requires knowledge of the standard deviations of X and Y 

for the entire group and also requires several assumptions that are rarely tenable 

in practical situations (Crocker & Algina, 1986). Furthermore‚ the obtained 

estimates are often imprecise unless the sample size n is very large (Gullickson & 

Hopkins, 1976; Linn, 1983). A way to increase or decrease variability is to 

concomitantly incease or decrease the range. The following two theorems were 

developed to reduce the variability in term of variance using the idea of reduction 

range of data set.   

Theorem 1 

Suppose  x1, x2, …, xn are n real positive numbers with mean x  and variance s
X
2 , 

such that  x1, x2, …, xn-1 < xn, if xn substituted by x , let 
*x , s

X
* 2 be mean and 

variance for new data set respectively, then 
* * 2 2(a) (b) X Xx x s s   
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Proof. 

 

Proof of part (a).   First, prove that 
nx x . The mean of original data 

is defined by 

 

 1 2 nx x x
x

n

  
  (*) 

 

According to above formula, 
nx x  if and only if x1 = x2 = … = xn, but 

x1, x2, …, xn-1 < xn, therefore, 
nx x . 

Substituting xn by x  in formula * 

 

 * 1 2x x x
x

n

  
  

 

 since 
nx x , then 

*x x . 

 

Proof of part (b).  The sample variance of the original data is defined 

by 
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Replacing xn by x , obtain 
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Suppose x1, x2, …, xn-1 < x , because 
*x x  then, 
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Let 
1

1
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Adding −1 times equation b2 to equation b1, * nx x
x x

n


  , since n > 1, 

therefore, *

nx x x x    implies  

 

    
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Combining two inequalities of a1 and a2  
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Dividing each side of above inequality by n − 1 to obtain 
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Therefore, * 2 2

X Xs s . 

Corollary 

Suppose  x1, x2, …, xn are n real positive numbers with mean x  and variance s
X
2 , 

such that  x1, x2, …, xn-1 > xn, if xn substituted by x , let 
*x , s

X
* 2 be mean and 

variance for new data set respectively, then 

 
* * 2 2(a) (b) X Xx x s s   

Proof.  Follow the same steps used for the proof of Theorem 1 above. 
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Theorem 2 

Suppose  x1, x2, …, xn are n real positive numbers with mean x  and variance s
X
2 , 

such that  x1, x2, …, xn-2 < xn-1, xn, and xn-1 = xn. If xn was substituted by x , to get 

new data set 1 x1, x2, …, xn-1, x  with mean *x  and variance s
X
* 2 respectively. 

Suppose xn-1 in a new data set 1 substituted by *x , let **x , s
X
** 2 be mean and 

variance for new data set 2 respectively, then 

 
** * **2 *2(a) (b) X Xx x s s   

Proof. 

 

Proof of part (a).   First, prove that *

1nx x  . The mean of the new 

data set 1 is defined by 

 

 * 1 2 1nx x x x
x

n
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Because x
n-1

 = x
n
 and 

nx x  (Theorem 1) then 
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According to formula **, *
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1 2 2 1, , , ,n nx x x x x  , therefore, *

1nx x  . Because *

1nx x  , then 
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Proof of part (b).  The variances of new data set 1 are defined by 

 

 
         

2 2 2 2 2
* * * * *

1 2 2 1*2

1

n n

X

x x x x x x x x x x
s

n

          



 

Replacing x
n-1

 by 
*x , 
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Therefore  
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Adding −1 times equation d2 to equation d1, 
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           
2 2 2 2 2 22 2* * * ** ** * **

11 1

n n

i n ii i
x x x x x x x x x x x x

 

 
           

 

 

Dividing both sides of above inequality by n − 1 to obtain 
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Outliers  

Outliers can be defined as a data point far outside the norm for a variable or 

population (see, e.g. Jarrell, 1994; Rasmussen, 1988; Stevens, 1984). Hawkins 

(1980) described outlier as an observation that deviates so much from other 

observations as to arouse suspicions that it was generated by a different 

mechanism.  Outliers have also been defined as values that are dubious in the eyes 

of the researcher (Dixon, 1950) and contaminants (Wainer, 1976). Generally, 

outliers can be defined as a score, case, or subject that falls outside the range of 

the rest of the scores, cases, or subjects. 

Outlier can also be defined in terms of distributions rather than numerical 

distance between observations. Therefore, distribution of order statistics from 

independent non-identical random variables are closely related with the outlier 

models. Barnett and Lewis (1994) considered the single-outlier model. 

Balakrishnan (2007) focused on the multiple-outlier model. He presented many 

results on order statistics from multiple-outlier models and illustrated their use in 

robustness studies. 

Balakrishnan (1988) derived recurrence relations among moments of Order 

Statistics from two related Outlier models. Balakrishnan (1994a, 1994b) obtained 

recurrence relations for the single and product moments from non-identical 

exponential distribution and its right truncated. Balakrishnan and Balsubramanian 

(1995) gave recurrence relations for moments from non-identical power function 

distribution. Childs and Balakrishnan (1998) obtained recurrence relations for 

moments from non-identical Pareto and truncated Pareto distribution. Childs 

(2001) gave recurrence relations for the single and product moments from non-

identical right truncated Lomax distribution. Moshref (2000) established 

recurrence relations for moments from non-identical generalized power function. 

Mahmoud et al. (2005) derived order statistics from non-identical generalized 

Pareto random variables. Recurrence relations for moments for Logistic from 

non-identical random variables have obtained by Childs and Balakrishnan (2006).  

Outliers are often caused by human error, such as errors in data collection, 

recording, or entry. Sampling errors is another reason for outliers to be occurred, 

it is possible that a few members of a sample were inadvertently drawn from a 

different population than the rest of the sample (Osborne & Overbay, 2004). 

Outliers can also be caused by research methodology, or by incorrect assumptions 

about the distribution of the data (Iglewicz & Hoaglin, 1993). Barnett and Lewis 

(1994) explained not all outliers are illegitimate contaminants, and not all 

illegitimate scores show up as outliers. Generally, outliers can be classified into 
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two major categories, those due to errors in the data, and those from the inherent 

variability of the data.   

The presence of outlier can result in an increase or decrease in the size of 

PC, depending on the location of the outlier (Glass & Hopkins, 1996). 

Stockburger (2013) demonstrated outlier that falls near where the regression line 

would normally fall would necessarily increase the size of the correlation 

coefficient. An outlier that falls some distance away from the original regression 

line would decrease the size of the correlation coefficient. They also illustrated 

that smaller the sample size, the greater the effect of the outlier, and at some point 

the outlier will have little or no effect on the size of the correlation coefficient. 

There are various methods of outlier detection; one simple way is to 

examine the scatter diagram, another method is to use the rules of thumb (data 

points three or more standard deviations from the mean, or 1.5 IQR criterion). 

Some researchers prefer visual inspection of the data. Lornez (1987) argued 

outlier detection is a special case of the examination of data for influential data 

points. 

If there exists an outlier on the dataset, first check for human error (errors in 

data collection, recording, or entry). If there are no justifications for categorizing 

the datum an outlier, it should not be removed from the analysis.  

Monte Carlo Simulation  

A computer program using R Version 3.3.3 was developed as follows. 

 

Algorithm 1 

 

Step 1.1. Population 1 of size 1,000,000: Generating random variable X 

follows normal distribution with a mean μ
X
 and a standard 

deviation of σ
X
.  

Step 1.2. Population 2 of size 1,000,000: Generating another random 

variable Y follows normal distribution with a mean μ
Y
 and 

standard deviation σ
Y
, correlated with X with a particular 

population ρ. 

Step 1.3. Sample of size n: Selecting sample of size n at randomly from 

each population. Then Algorithm 2 (or 3) is executed.  
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Step 1.4. Replication: Procedures of Step 1.3 were repeated 100,000 times, 

and the overall average of these repetitions is computed.  

To examine the effect of this two factors on the size of PC, some different 

values of ρ were set, that is, 0.002 (weak correlation), 0.5 (moderate correlation) 

and 0.99 (strong correlation). Furthermore, sample of sizes 20, 60, 120, and 360 

have been determined. Equation 1 is used to create the variance covariance matrix 

Σ for the univariate normal distribution of the two variables X and Y, 

 

 
 

 

1 cov ,

cov , 1

X Y

X Y

 
   

 
 where cov(X,Y) = ρ

x,y
= σ

X
σ

Y 

Variability 

To illustrate the relationship between variability and the size of PC, follow the 

two steps of Algorithm 1 by setting μ
X
 = 10, μ

Y
 = 20, σ

X
 = σ

Y
 = 1, for the values of 

ρ we seleted only the high correlation i.e. ρ
x,y

 = 0.99, then developed Algorithm 2. 

 

Algorithm 2 

 

Step 2.1. After generating N pairs of data points (X,Y), with population 

correlation rho, the data were arranged in ascending order on X 

and Y. PCs for new variables were calculated and stored. 

Step 2.2. To conduct the effect of variability on the size of PC, reduce the 

amount of variability using Theorem 2 after some modifications. 

Reduction of variability included 

1. Both variables X and Y gradually by deleting the 

highest 5%, 10%, and 20% values each time. 

2. Single variable Y by deleting the highest 5%, 10%, and 

20% values each time. 

To avoid decrease of the sample size, substitute the deleted values by the 

averages of X and Y for (1) and the average of Y for (2).  

Compiled in Table 1 are the variance of X, variance of Y, and size of PC for 

original samples and samples (new samples) after (1) of Step 2.2 applied, for each 
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sample size. Compiled in Table 2 are the variance of Y, size of PC for original 

samples , and samples (new samples) after (2) of Step 2.2 applied.  

Note that 

 The value between two brackets represents a percentage of 

reduction in variance of X, variance of Y, and size of PC for new 

samples with respect to original samples. 

 Newsample1, Newsample2, and Newsample3 represent sample 

(new samples) after the highest 5%, 10%, and 20% values of 

original sample have been deleted and substituted by the average 

of specific variable respectively. 
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Table 1. Var(X), Var(Y), and size of PC for original and new samples for each sample 

size. 
 

n Data Var(X) Var(Y) PC 

20 

Original sample 0.999802 0.9998876 0.9940756 

Newsample1 
0.7945104 0.7946805 0.9931182 

(20.53323) (20.52302) (0.09631254) 

Newsample2 
0.6647697 0.6650363 0.9923499 

(33.50986) (33.4889) (0.1736026) 

Newsample3 
0.4984001 0.4987495 0.9910805 

(50.1501200) (50.11945) (0.301297) 

60 

Original sample 0.9983744 0.9971149 0.9968837 

Newsample1 
0.7770588 0.7764702 0.996571 

(22.1676) (22.12832) (0.04099317) 

Newsample2 
0.6489883 0.648791 0.9961512 

(34.9955) (34.93318) (0.07347576) 

Newsample3 
0.4879877 0.4878847 0.9955679 

(51.12178) (51.07036) (0.13199) 

120 

Original sample 1.004146 1.003993 0.9981221 

Newsample1 
0.7768069 0.7767548 0.9979473 

(22.64006) (22.63348) (0.01751774) 

Newsample2 
0.6497357 0.6496027 0.9977732 

(35.29471) (35.29811) (0.03496057) 

Newsample3 
0.48919 0.4891632 0.9974267 

(51.283) (51.27825) (0.06967345) 

360 

Original sample 0.9963796 0.9957264 0.9992268 

Newsample1 
0.7699424 0.7690821 0.9992059 

(22.726) (22.7617) (0.002093478) 

Newsample2 
0.6445929 0.644101 0.9991336 

(35.3065) (35.31345) (0.009329307) 

Newsample3 
0.4861082 0.4853523 0.9989874 

(51.21254) (51.25645) (0.0239634) 
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Table 2. Var(Y) and size of PC for original and new samples for each sample size 

 

 
Original Sample Newsample1 

n Var(Y) PC Var(Y) PC 

20 0.9998876 0.9940756 
0.7946805 0.8954083 

(20.52302) (9.925539) 

60 0.9971149 0.9968837 
0.7764702 0.8903554 

(22.12832) (10.68614) 

120 1.003993 0.9981221 
0.7767548 0.8894803 

(22.63348) (10.88462) 

360 0.9957264 0.9992268 
0.7690821 0.8902479 

(22.7617) (10.90632) 

     

 
Newsample2 Newsample3 

n Var(Y) PC Var(Y) PC 

20 
0.6650363 0.8442923 0.4987495 0.8095944 

(33.4889) (15.0676) (50.11945) (18.5581) 

60 
0.648791 0.8403698 0.4878847 0.8077327 

(34.93318) (15.70031) (51.07036) (18.97423) 

120 
0.6496027 0.8404212 0.4891632 0.8082734 

(35.29811) (15.79976) (51.27825) (19.02059) 

360 
0.644101 0.8415755 0.4853523 0.8097937 

(35.31345) (15.7733) (51.25645) (18.95797) 

 
 

For n = 20, a reduction of 20.5%, 33,5%, and 50.1% in the variances of both 

variables X and Y, results in reduction of 0.0963%, 0.1736%, and 0.3013% in the 

size of PC respectively. The same reductions in the variance of Y led to reduction 

of 9.925%, 15.068%, and 18.558% in the size of PC. When n = 60, a reduction of 

22.2%, 34.9%, and 51.1% in the variances of both X and Y yields 0.0409%, 

0.0735%, and 0.1319% reductions in the size of PC respectively. The same 

reductions in the variance of Y results in 10.686%, 15.700%, and 18.974% 

reductions in the size of PC. 

The same reductions as n = 20 and 60 in the variances of both variables, 

yield a reduction of 0.0175%, 0.0349%, and 0.0697% for n = 120, and  0.0021%, 

0.0093%, and 0.02396% for n = 360 in the size of PC respectively. Whereas, 

reductions in Y alone for these two sample sizes follow the same pattern of n = 20 

and 60. 
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Accordingly, the following conclusions are advanced: 

 

1. As the percentage of deleting highest values from original sample 

increases, the percentage of reduction in PC increases for all 

sample sizes. This can be seen also from Figure 1, and it means 

that as the amount of variability increases the size of PC decreases. 

2. As the sample size increases the percentage of reduction in the size 

of PC decreases, also the effect of reduction in variances of two 

variables X and Y on the size of the PC decreases as the sample 

size increases (see Figure 1). 

3. The effect of reduction in variance of Y alone on the size of PC is 

not affected by the sample size. 

4. A reduction in the variance of Y alone has strong effect on the size 

of the PC than a reduction in the variances of two variables X and 

Y. 
 
 

 
 
Figure 1. Percentage of reduction in PC of new samples for each sample size 

 

 

The effect of an Outlier 

To study the impact of an outlier on the size of PC, the two steps of Algorithm 1 

have been followed after setting μ
X
 = 10, μ

Y
 = 10, σ

X
 = 1, and σ

Y
 = 1, and some 

values of ρ have been set, that is, 0.002 (weak correlation), 0.05 (moderate 

correlation) and 0.99 (strong correlation), then Algorithm 3 below has been 

designed. 
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Algorithm 3 

 

Step 3.1. Creating an outlier: Add a single observation out of the 

samples ranges that were selected in Step 1.3; this observation 

represents an outlier. This is done for all samples of each 

variable X and Y separately, and for both variables at the same 

time. Take into account the position of this observation from 

regression line and other observations. Then compute the size 

of PC between X and Y for each case. In Table 3, outliers and 

their outlier distant from other observations of two variables X 

and Y are given. 
 
 
Table 3. The created outliers for each variable X and Y. 

 

 Y μX + 0σX μX + 4σX μX + 6σX μX + 8σX μX + 10σX 
       X 

μY + 4σY ✓ ✓       

μY + 6σY ✓ ✓ ✓   
μY + 8σY ✓ ✓ ✓ ✓  
μY + 10σY ✓ ✓ ✓ ✓ ✓ 

 
 

The check symbol (✓) in Table 3 above indicates this data point (outlier) is 

done; for example, the shaded cell with the check symbol implies that the created 

outlier is μ
X
 + 6σ

X
 for variable X and μ

Y
 +4σ

Y
 for variable Y, where μ

X
, μ

Y
 are the 

averages of two populations, and σ
X
, σ

Y
 are standard deviations. Set μ

X
 = μ

Y
 = 10 

and σ
X
 = σ

Y
 = 1, and therefore, the data point (x,y) corresponding the shaded cell is 

(16,14). 

Complied in Tables 4 - 7 are an outlier and the size of PC for sample sizes 

20, 60, 120 and 360 for each value of ̂ . The value between parentheses 

represents the percentages of increase in the size of PC after the existence of 

outlier. 
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Table 4. An outlier and size of PC for each value of ̂  when n = 20.  

 

̂  Outlier 10 14 16 18 20 

0.000134 

14 
0.0004155 0.4540743       

(207.961) (336402.4) 
   

16 
0.0004376 0.5427325 0.648574 

  
(224.305) (402104.6) (480540) 

  

18 
0.0004526 0.589405 0.704355 0.7649272 

 
(235.482) (436692.4) (521879) (566767) 

 

20 
0.0004652 0.6157849 0.735883 0.7991673 0.834962 

(244.757) (456241.8) (545243) (592141) (618667) 

0.517289 

14 0.3832509 0.7396204 
 

  
(-25.9117) (42.97996) 

   

16 
0.3077681 0.7721365 0.833112 

  
(-40.5037) (49.26581) (61.053) 

  

18 
0.251873 0.7771106 0.855385 0.8886333 

 
(-51.3089) (50.22738) (65.359) (71.7864) 

 

20 
0.2111501 0.7730817 0.862465 0.9028568 0.921919 

(-59.1815) (49.44853) (66.727) (74.5361) (78.2211) 

0.9989 

14 0.7331424 0.999444    
(-26.6086) (0.049636) 

   

16 
0.5864489 0.9799945 0.999646 

  
(-41.2934) (-1.897359) (0.06982) 

  

18 
0.4786875 0.946635 0.991416 0.9997641 

 
(-52.0808) (-5.236816) (-0.75405) (0.08168) 

 

20 
0.4005459 0.9147883 0.976297 0.9959278 0.999835 

(-59.9032) (-8.424848) (-2.2675) (-0.30235) (0.08877) 
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Table 5. An outlier and size of PC for each value of ̂  when n = 60.  

 

̂  Outlier 10 14 16 18 20 

0.0032 

14 
0.002748 0.216529       

(-15.028) (6595.58) 
   

16 
0.002391 0.286851 0.380909 

  
(-26.071) (8770.12) (11678.6) 

  

18 
0.002057 0.335072 0.445228 0.5209696 

 
(-36.378) (10261.2) (13667.5) (16009.6) 

 

20 
0.002057 0.367746 0.488834 0.5721052 0.6286688 

(-45.231) (11271.5) (15015.9) (17590.9) (19339.94) 

0.5278 

14 0.467915 0.629935 
 

  
(-11.345) (19.3529) 

   

16 
0.415922 0.654849 0.708196 

  
(-21.196) (24.0732) (34.1809) 

  

18 
0.365841 0.659175 0.733548 0.7745937 

 
(-30.685) (24.8929) (38.9843) (46.7612) 

 

20 
0.322084 0.653423 0.743026 0.7957244 0.8254869 

(-38.975) (23.8031) (40.7801) (50.7648) (56.4038) 

0.9989 

14 0.884845 0.999202    
(-11.425) (0.02223 

   

16 
0.785982 0.982626 0.999371 

  
(-21.322) (-1.6371) (0.03919) 

  

18 
0.690923 0.947056 0.989356 0.9995146 

 
(-30.837) (-5.1977) (-0.9633) (0.05355) 

 

20 
0.607981 0.906502 0.967956 0.9935535 0.9996243 

(-39.139) (-9.2572) (-3.1055) (-0.54316) (0.064532) 
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Table 6. An outlier and size of PC for each value of ̂  when n = 120.  

 

̂  Outlier 10 14 16 18 20 

0.0067 

14 
0.006246 0.124657       

(-6.7973) (1759.99) 
   

16 
0.005812 0.171539 0.23751 

  
(-13.266) (2459.53) (3443.88) 

  

18 
0.005336 0.208615 0.289602 0.3538695 

 
(-20.380) (3012.74) (4221.14) (5180.07) 

 

20 
0.004866 0.237067 0.329624 0.4030966 0.4596879 

(-27.397) (3437.27) (4818.31) (5914.59) (6758.984) 

0.498478 

14 0.468111 0.558143 
  

 
(-6.0919) (11.9694) 

   

16 
0.437 0.576238 0.615193 

  
(-12.333) (15.5995) (23.4142) 

  

18 
0.402374 0.581287 0.637398 0.6739801 

 
(-19.279) (16.6123) (27.8688) (35.2075) 

 

20 
0.368035 0.577984 0.647793 0.6959424 0.7274151 

(-26.168) (15.9497) (29.9542) (39.6134) (45.92715) 

0.999 

14 0.937906 0.999124    
(-6.1159) (0.01188) 

   

16 
0.875407 0.987769 0.999237 

  
(-12.372) (-1.1246) (0.02323) 

  

18 
0.805878 0.960065 0.990903 0.9993538 

 
(-19.332) (-3.8979) (-0.8110) (0.03492) 

 

20 
0.736952 0.924295 0.971021 0.9934752 0.9994598 

(-26.231) (-7.4784) (-2.8012) (-0.55351) (0.045533) 
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Table 7. An outlier and size of PC for each value of ̂  when n = 360.  

 

̂  Outlier 10 14 16 18 20 

0.000459 

14 
0.000409 0.042961       

(-10.815) (9255.71) 
   

16 
0.000379 0.062564 0.091253 

  
(-17.301) (13524.7) (19772.4) 

  

18 
0.000348 0.080469 0.117436 0.1511931 

 
(-24.137) (17424.1) (25474.3) (32825.8) 

 

20 
0.000316 0.096466 0.140828 0.1813409 0.2175222 

(-31.062) (20907.6) (30568.6) (39391.1) (47270.46) 

0.499015 

14 0.488268 0.520538    
(-2.1537) (4.31308) 

   

16 
0.475749 0.528039 0.544929 

  
(-4.6623) (5.81613) (9.20103) 

  

18 
0.459742 0.530407 0.556016 0.5751654 

 
(-7.8701) (6.29067) (11.4226) (15.2601) 

 

20 
0.441361 0.52852 0.562015 0.588533 0.608581 

(-11.554) (5.91259) (12.6249) (17.9389) (21.95636) 

0.999 

14 0.977556 0.999048    
(-2.1471) (0.00424) 

   

16 
0.952604 0.994232 0.999096 

  
(-4.6448) (-0.4778) (0.00906) 

  

18 
0.92069 0.980909 0.994835 0.9991558 

 
(-7.8393) (-1.8115) (-0.4174) (0.01504) 

 

20 
0.884029 0.96103 0.983257 0.9954962 0.9992218 

(-11.509) (-3.8013) (-1.5764) (-0.35134) (0.021644) 

 
 

At data points (14,14), (16,16), (18,18), and (20,20), the size of PC 

increases for all sample sizes and all values of ̂ . Also, at this data points, the 

percentage of increase in the size of PC goes up as data points distant away from 

X and Y coordinates, that is, the percentage of increase at (20,20) greater than 

percentage of increase at the other data points. This can be seen in Figures 2a, 2b, 

and 2c. The reason is these data points follow the same pattern of the remainder of 

the data, in other words, some data points fall near the regression line and other 

fall in the same direction of the regression line if it is extended (see Figures 3a, 3b, 

and 3c). 

At data points (x,10) where x = 14, 16, 18, 20, the size of PC decreases 

when n = 60, 120, and 360 for all values of ̂ , and when n = 20 for 

̂  = 0.000134, whereas PC increases when n = 20 for ̂  = 0.517,0.998, because 

these data points lie at the bottom of the regression line top of the x coordinate 
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Figure 2a. Percentage of increase in PC for each sample size at ̂  close to 0. 

 

 
 

Figure 2b. Percentage of increase in PC for each sample size at ̂  close to 0.5. 

 

 
 

Figure 2c. Percentage of increase in PC for each sample size at ̂  close to 1. 
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Figure 3a. The outliers on scatter diagram when ρ close to 0. 

 
 

 
 
Figure 3b. The outliers on scatter diagram when ρ close to 0.5. 

 
 

 
 
Figure 3c. The outliers on scatter diagram when ρ close to 1. 
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when n = 60, 120, 360, and top of the regression line when n = 20 for ̂  = 0.517, 

0.998, and in the same direction of regression line at n = 20 for ̂  = 0.000134 

(Figures 3a, 3b, and 3c). Moreover, the percentage of decrease in the size of PC at 

this data points goes down as the sample size increases (n ≠ 20).    

At data points (x,y) where x ≠ y, the size of PC decreases for all sample sizes 

and ̂  close to 1, whereas, for other two values of ̂  the size of PC increases. 

This happens because the data points distant away from the rest of observations at 

the bottom of the regression line when ̂  close to 1 (Figure 3c), and locates close 

to the rest of observations or in the same direction of the regression line when ̂  

close to zero and 0.5 (see Figures 3a and 3b). 

The conclusions that may now be drawn are: 

 

1. The existence of an outlier on data set might increase or decrease 

the size of PC, according to the position of this outlier from the 

rest of observations and the regression line. 

2. The effect of an outlier on the size of PC decreases as the sample 

size increases. 

3. Location of an outlier rather than its magnitude, determine the 

amount of its effect on the size of PC. 

4. The effect of an outlier in the size of PC becomes more sensitive 

as the value of PC close to 1. 

Conclusion 

Several conclusions can be drawn from present study; the most important of them 

are: (a) As the amount of variability increases the size of PC decreases, (b) The 

effect of increase or decrease in the amount of variability in both variables on the 

size of PC decreases as the sample size increases, whereas the effect of increase 

or decrease in the amount of variability in single variable on the size of PC is not 

affected by the sample size, (c) a reduction in the variance of Y alone has a 

stronger effect on the size of the PC than a reduction in the variances of both 

variables X and Y, (d) everything else being equal, as the sample size increases the 

effect of an outlier on the size of PC decreases, and (e) the amount of effect of an 

outlier on the size of PC depends on factors including the amount of an outlier, 
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location of an outlier from the regression line or from the rest of observations, the 

size of PC itself, and the sample size. 
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