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The most important ingredient in Bayesian analysis is prior or prior distribution. A new 
prior determination method was developed under the framework of parametric empirical 
Bayes using bootstrap technique. By way of example, Bayesian estimations of the 
parameters of a normal distribution with unknown mean and unknown variance conditions 

were considered, as well as its application in comparing the means of two independent 
normal samples with several scenarios. A Monte Carlo study was conducted to illustrate 
the proposed procedure in estimation and hypothesis testing. Results from Monte Carlo 
studies showed that the bootstrap prior proposed is more efficient than the existing method 
for determining priors and also better than the frequentist methods reviewed. 
 
Keywords: Prior, conjugacy, bootstrapping, hypothesis testing, Monte Carlo studies 

 

Introduction 

Bayesian statistics have several advantages over the traditional classical 

(frequentist) statistics ranging from proffering solution to problems related to 

estimation, testing hypotheses, or estimating confidence regions for unknown 

parameters. The reason is by use of Bayes’ theorem probability density functions 

are obtained for the unknown parameters. These density functions allow for the 

estimation of unknown parameters, the testing of hypotheses, and the computation 

of confidence regions often referred to as the credible interval. Therefore, 

application of Bayesian statistics has been spreading (Koch, 2007). The process of 

inductive learning via Bayes’ rule is referred to as Bayesian inference (Hoff, 2009). 

The Bayesian inference utilizes the posterior distribution p(θ | y) which 

describes our belief that θ is the true value, having observed dataset y. The posterior 

https://doi.org/10.22237/jmasm/1509496440
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distribution is obtained from the prior distribution and sampling model via Bayes’ 

rule: 

 

  
   

   

p y | p
p | y

p y | p d


 


  



  (1) 

 

The expression given by (1) above is the general Bayes theorem for inference and 

is the basis for making inferences from a Bayesian perspective in terms of 

estimation, hypothesis testing, and obtaining credible intervals, as well as making 

direct probability statements about the quantities in which we are interested 

(Spiegelhalter, Abrams, & Myles, 2004). 

The Bayes theorem is commonly written in its proportional form as 

p(θ | y) ∝ p(y | θ)p(θ). Bayesian inference is based on the posterior distribution, 

which is the conditional distribution of the parameters or unobserved covariates 

given the observed data. The posterior distribution summarizes all the information 

about the parameters and covariates. For example, the mean, median, or mode of 

the posterior distribution could be used as point estimators. Bayesian inference for 

θ is then based on the posterior distribution p(y | θ). For example, a Bayesian 

estimator of θ is the posterior mean 

 

    ˆ E | y p | y d


         

 

A Bayesian analogue to a confidence interval is the credible interval, which 

is a region with probability 1 – α under the posterior distribution. Choices of prior 

distributions are important. In fact, much of the controversy regarding Bayesian 

methods revolves around the prior distributions (Wu, 2010). 

Priors and Prior Distributions 

Priors are carriers of information that is coherently incorporated via Bayes’ theorem 

to the inference. At the same time, parameters are unobservable, and prior 

specification is subjective in nature. There are two different schools of thought to 

be considered when choosing priors in Bayesian analysis (Rouder, Speckman, Sun, 

& Morey, 2009). The first is the subjective Bayes school, which believe that priors 

should reflect the analyst’s a priori beliefs about parameters. Usually, these beliefs 

are informed by the theoretical and experimental context. The second is the 

objective Bayes school, in which the priors are meant to reflect as few assumptions 
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as possible. Bayes himself proposes a class of uniform prior for the parameter p of 

a binomial distribution communicated to the Royal Statistical Society by Price in 

1763 (Bayes & Price, 1763). 

Laplace in the early 1770s extended this prior belief in his principle of 

insufficient reason and termed it as flat prior. Efron (2012) claimed that the 

Bayesian/frequentist controversy centers on the use of Bayes’ rule in the absence 

of genuine prior experience. Due to the parameter invariant problem involved when 

using the uniform prior, Jeffreys (1949) proposed another class of prior that is 

invariant to parameter transformation (Lesaffre & Lawson, 2013). Both the uniform 

flat prior and Jeffrey prior are usually referred to as objective or non-informative 

prior.  

In the search of genuine or informative prior, Raifa and Schlaifer proposed 

the conjugate prior in 1961 (as reported in Bolstad, 2004). The conjugate prior 

ensures that the posterior distribution class is the same as the prior distribution. 

Conjugacy is mathematically convenient in that the posterior distribution follows a 

known parametric form (Gelman et al., 2013). If information is available that 

contradicts a conjugate parametric family, then it may be necessary to use a more 

realistic but often inconvenient prior distribution. A conjugate prior can be made 

informative or non-informative depending on the parameter value assumed. Yahya, 

Olaniran, and Ige (2014) claimed that the conjugate prior approach needs to be 

updated when the genuine prior parameter is not available. Using a conjugate prior 

does not necessarily guarantee an adequate posterior unless the parameter of the 

prior distribution is correctly specified. The adverse effect of incorrect prior 

specification is when the prior information did not agree with the data information 

which might lead to incorrect estimation or inference about the unknown parameter. 

Solving this problem led to the proposition of empirical Bayes in the early 1950s 

by Robbins as reported in Robbins (1956), Martiz (1970), Efron and Morris (1973, 

1975, 1976), Morris (1983), Casella (1985), Bishop (2005), and recently in Efron 

(2012, 2013, 2014), Lee (2012), and Lesaffre and Lawson (2013). 

Empirical Bayes methods are procedures for statistical inference in which the 

prior distribution is estimated from the data (Lee, 2012). This method is often 

perceived in two forms: the parametric (known functional form) and non-

parametric (unknown functional form). Parametric empirical Bayes usually involve 

the use of conjugate prior with the prior parameters estimated from the data using 

the maximum likelihood estimation (MLE) method or method of moment (MM) 

(Lee, 2012). Efron (2014) reported the use of empirical Bayes methods is increasing, 

although still suffers from an uncertain theoretical basis, enjoying neither the safe 

haven of Bayes’ theorem nor the steady support of frequentist optimality. Their 
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rationale is often reduced to inserting more or less obvious estimates into familiar 

Bayesian formulas. This conceals the essential empirical Bayes task: learning an 

appropriate prior distribution from ongoing statistical experience, rather than 

knowing it by assumption. 

Efficient learning requires both Bayesian and frequentist modeling strategies. 

Bayesian statistics with well-known distributions are often smooth and easy with 

the use of conjugate priors with adequate prior parameter specification using 

subjective or empirical Bayes method. However, in most real life situations, it is 

often difficult to describe using existing or known functional form. Posterior 

distributions under this situation are often estimated using Monte Carlo integration 

or methods popularly referred to as Markov chain Monte Carlo (MCMC) methods. 

MCMC methods ranges from the Gibbs sampler (Casella & George, 1992), 

expectation maximization (EM) algorithm, to the Metropolis-Hasting (MH) 

algorithm (Lee, 2012). 

Currently, the focus is on updating the parametric empirical Bayes procedure 

using bootstrapping resampling procedures. The bootstrap is a method for 

estimating the distribution of an estimator or test statistic by resampling one's data 

(Efron & Tibshirani, 1993). It amounts to treating the data as if they were the 

population for the purpose of evaluating the distribution of interest. Under mild 

regularity conditions, the bootstrap yields an approximation to the distribution of 

an estimator or test statistic that is at least as accurate as the approximation obtained 

from first-order asymptotic theory. Thus, the bootstrap provides a way to substitute 

computation for mathematical analysis if calculating the asymptotic distribution of 

an estimator or statistic is difficult. 

Therefore, the aim of this study is to develop efficient alternative methods for 

determining the priors within the Bayesian framework using bootstrapping 

techniques. The usefulness of the proposed method in classical hypothesis testing 

is demonstrated for comparing two population means from two independent 

samples. The efficiencies of the proposed methods shall be determined and 

compared with some of the existing frequentists and Bayesian test methods under 

different parameters combinations. 

Methodology 

Consider random sample y1, y2,…, yn from N(μ, σ2). The density function of y is 

given as 
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    
22

22

1 1
p | , exp

22π
y y  



 
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 
  (2) 

 

The problem is how to effectively estimate the location and scale parameters μ and 

σ2, respectively. The Bayes estimation procedures for μ and σ2 require estimation 

of the posterior distribution of μ and σ2 given y. The posterior density following 

Bayes’ theorem is 

 

  
   
   2

2 2

2

2 2 2
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p , |
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   
 

     


 
  (3) 

 

Bolstad (2004), Murphy, (2007), and Lesaffre and Lawson (2013), among others, 

used the Normal-Gamma NG(μ0, n0, α0, β0) natural conjugate prior for μ and λ = σ-2, 

given as 
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To characterize the information from the data D = y1, y2,…, yn, define the likelihood 

function L(D | μ, σ2): 
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The posterior distribution is of the form 
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Murphy (2007) gave the solution of the posterior density which is also Normal-

Gamma, i.e. NG(μn, nn, αn, βn) where 

 

 0 0
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n ny

n n
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  (4) 
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and 
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n

ii
y

y
n



  

 

Thus, the Bayes estimate of μ is 

 

 ˆ
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and, from (4), 
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Let 
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n
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Then 

 

 
 
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Similarly, the Bayes estimate of σ2 is determined by 
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and from (6) and (7) 
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The empirical Bayes version of the above estimate involves estimating the prior 

parameters π = (μ0, n0, α0, β0) from the data. Thus the empirical Bayes estimate of 

μ and σ2 are 
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The proposed bootstrap Bayesian version of the estimate of μ and σ2 involves the 

following steps: 

 

1. Generation of bootstrap samples from the original data a desired 

number of times B, 
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2. Estimating the hyperparameters (prior parameters) each time the 

samples are generated using the maximum likelihood (ML) method, 

3. Updating the posterior estimates using the hyperparameters in step 2 

above using (8) and (9), and 

4. Then obtaining the proposed bootstrap empirical Bayesian estimates 

BT̂  and 2

BT̂  using 
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The BT̂  proposed here has good statistical properties in terms of bias and mean 

square error (MSE). 

To evaluate bias, 
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ˆ
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ˆ

j bjy  , where y̅bj is the jth ML estimate based on the jth yb 

bootstrap sample drawn, i.e. 
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then 
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Because y̅ and y̅bj are known unbiased estimates of μ, 
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Therefore, BT̂  is unbiased for estimating μ. 

Also, the MSE is the combination of square of bias and variance of the 

estimate, then following from the above derivation the MSE is just the variance of 

the estimate. Thus 
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Hence, it can be show that the limiting form of 
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is 0 by applying L’Hôpital’s rule (Weisstein, 2003): 
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The above derivation implies that at a fixed sample size n, the 
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This affirms that the experimenter can control the stability of the estimator by 

increasing the number of bootstrap sample B. In addition, 
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which implies that the proposed estimator is more efficient than the frequentist ML 

estimator. This comparison is reasonable because they are both unbiased. Also 

within the Bayesian realm, it could be observe that the proposed estimator is also 

more efficient since it minimizes the MSE in terms of bias and variance reduction. 

The traditional Bayesian estimator minimizes the MSE by reducing the variance 

alone. 

Application to Two-Sample Hypothesis Testing 

Consider the situation in which we have independent samples from two normal 

distributions 

 

 
 

 
1

2

2

1 2 1 1

2

1 2 2 2

, , , ~ N ,

, , , ~ N ,

n

n

x x x

y y y

 

 
  

 

which are independent of each other, and the quantity of interest really is the 

posterior distribution of 

 

 1 2      

 

The hypothesis of interest under this scenario might be of the form 

 

 0 1 2 1 1 2H :  against H :       (12) 

 

or similarly in terms of δ 

 

 0 1H : 0 against H : 0     (13) 
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Testing the above hypotheses in (12) and (13) using the Bayesian method requires 

computing p(δ | D) defined as the posterior distribution of δ given data D (Lee, 

2012). The posterior probability of the null hypothesis H0 can then be estimated 

using 

 

    
0

0p H : 0 | D p | D d  


     (14) 

 

If this probability is less than the chosen α, reject the null hypothesis and conclude 

that H1 holds. But (14) will fail if the null hypothesis is simple as in the case of (12) 

and (13) above (because the probability of a specific point on a continuous interval 

is 0). Bolstad (2004) and Lee (2012) suggested the use of credible interval under 

this condition. The credible interval for a specified significance level α for 

parameter δ is 

 

    p | D p | D 1
b

a
a b d          

 

On construction of the credible interval [a, b] using a specified significance level α, 

δ is said to be credible if it lies within the interval [a, b], and thus H0 holds; 

otherwise, H1 holds. The bootstrap Bayesian estimates can be used here to 

determine the posterior density or posterior samples of δ by using the formulae 

above. The bootstrap Bayesian estimate of parameter δ is BT 1BT 2BT
ˆ ˆ ˆ    . The 

posterior density of δ using the bootstrap Bayesian approach will likely approach 

the Gaussian distribution if one is to follow the central limit theorem (since the 

bootstrap prior distribution used is the sampling distribution of means which is 

Gaussian). Thus the posterior density of δ under this assumption is 

    1BT 2BT 1BT 2BT
ˆ ˆ ˆ ˆN ,var var     . This then implies we can construct a 

frequentist-like test-statistic for the unknown parameter δ as 

 

 
   

 BT
BT 0

1BT 2BT

ˆ
~ N 0,1 | H

ˆ ˆvar var
Z

 

 





  (15) 

 

In another parlance, Lee (2012) claimed that to correct for small sample bias and 

unequal variance bias, the Student’s t-distribution with v degree of freedom would 

provide a better approximation than the Gaussian distribution. Thus a modification 

to (15) above is 
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   

BT
BT 0

1BT 2BT

ˆ
~ | H

ˆ ˆvar var
vt t

 

 





  (16) 

 

The parameter v of the Student’s t-distribution used here indicates the effective 

sample size to be used for the hypothesis testing. Hence, using v = min(n1, n2) is 

proposed here. 

It is pertinent to note that the above equations (15) and (16) are approximate 

distributions of BT̂ . The hypothesis can be tested directly by computing p(δBT | D) 

using the difference of the posteriors (generated using bootstrap priors) for the 

parameters μ1 and μ2. In this regard, the posterior probability of the null hypothesis 

H0 can then be estimated using 

 

       0

0 BT BT
0

p H : 0 | D 2 min p | D , p | Dd d    




  
      (17) 

 

In the same parlance, posterior probability of the null hypothesis H0 for (15) and 

(16) are, respectively, 

 

       0p H : 0 | D 2 min ,1z z         (18) 

 

and 

 

       0p H : 0| D 2 min ψ ,1 ψv vz z        (19) 

 

where Φ(z) is the cumulative distribution of the standard normal variate z and ψv is 

the cumulative distribution of the Student’s t-distribution with mean 0, variance 1, 

and degrees of freedom v. 

The above procedures in (15), (16), and (17) will be evaluated to ascertain 

which to recommend under specific situation. Consideration of the Bayesian 

MCMC approach to estimation and testing of equality in means for two groups 

proposed by Kruschke (2011, 2013) and Kruschke, Aguinis, and Joo (2012) was 

also achieved. This approach is already implemented in the R statistical package 

via the package BEST (Kruschke & Meredith, 2014). As a standard check, two 

frequentist procedures were also considered. The frequentist procedures considered 

are the pooled variance t-test and unequal variance Welch test (Montgomery & 

Runger, 2003). 
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Simulation 

To illustrate the proposed bootstrap empirical Bayesian procedures in estimation 

and hypothesis testing, two Monte Carlo samples were generated from univariate 

normal distributions with the following mean structures: μ1 = 10 and μ2 = μ1 + δ, 

where δ = 0, 1, 2. The cases of equal and unequal variances were considered with 

equal variance case define as 
2 2

1 2 4    and unequal variance case define as 

2

1 4   and 
2

2 16  . Under equal sample condition, five sample size, n1 = n2 = 5, 

10, 20, 30, and 50, were used representing sample ranges of extreme low to large 

sample. Similarly for unequal sample condition, three sample structures were 

considered, namely n1 = 5, n2 = 10; n1 = 10, n2 = 30; and n1 = 20, n2 = 80. The 

bootstrap size (B) and number of iterations used were fixed at 1000. 

Results 

The empirical type-I error rate (false positive rate) and power (true positive rate) 

were computed using the frequentist and Bayesian procedures discussed. The role 

of sample size cannot be overemphasized in estimation and hypothesis testing, 

therefore more emphasis will be laid on the sample size regarding the results 

obtained from various procedures used here. 

The validity of test procedures can be assessed using the empirical type-I error 

rate which is the probability that a test function wrongly rejects the null hypothesis 

when it is true. A test procedure yielding a false positive that is close to the nominal 

level is often regarded as having been valid. In light of this, the first situation, or 

Case I in Table 1, considered the common assumptions (equal sample and 

homoscedasticity) involved while comparing two normal samples. The frequentist 

traditional pooled t-test produced on average (over all sample sizes) false positive 

rates that are relatively close to the nominal (0.05) level. 

However, this result was not the best if the comparison is made over all the 

test procedures employed in this paper. For instance, within the Bayesian test 

procedures, the proposed tBT test procedures produced false positive rates that are 

closer to the nominal (0.05) level at all the sample sizes considered. Therefore, it 

can be re-affirmed that the traditional pooled t-test is valid but the proposed tBT is 

more valid as it yielded an overall average of the empirical type-I error (0.051) that 

is relatively closer to the nominal 5% level set for the test than the overall average 

of 0.046 provided by the pooled t-test. The performances of all the tests considered 
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as described above are clearly depicted in the various graphical plots provided in 

Figure 1 for better understanding. 
 
 
Table 1. Proportion of empirical type-I error (false positive) rate based on 1000 

simulations at varying sample sizes (n1, n2) and δ = 0 for the various methods under 
equal and unequal variance conditions 
 

    Bayesian 

 Frequentist  Existing  Proposed 

Sample sizes Welch Pooled   MCMC   BT ZBT tBT 

Case I: Equal sample sizes and equal variance 

n1 = n2 = 5 0.040 0.051  0.007 
 

0.145 0.119 0.051 

n1 = n2 = 10 0.050 0.052  0.032 
 

0.106 0.080 0.050 

n1 = n2 = 20 0.040 0.042  0.036  0.077 0.062 0.048 

n1 = n2 = 30 0.045 0.046  0.045 
 

0.080 0.066 0.051 

n1 = n2 = 50 0.041 0.041  0.039  0.069 0.067 0.057 

Average 0.043 0.046   0.032   0.095 0.079 0.051 

         

Case II: Equal sample sizes and unequal variance 

n1 = n2 = 5 0.046 0.054  0.013  0.156 0.137 0.056 

n1 = n2 = 10 0.057 0.059  0.045 
 

0.105 0.098 0.058 

n1 = n2 = 20 0.032 0.035  0.028  0.065 0.057 0.039 

n1 = n2 = 30 0.050 0.052  0.046 
 

0.067 0.063 0.055 

n1 = n2 = 50 0.040 0.040  0.041 
 

0.066 0.058 0.051 

Average 0.045 0.048   0.035   0.092 0.083 0.052 

         

Case III: Unequal sample sizes and equal variance 

n1 = 5, n2 = 10 0.041 0.044  0.011  0.109 0.106 0.034 

n1 = 10, n2 = 30 0.062 0.053  0.041 
 

0.093 0.088 0.058 

n1 = 20, n2 = 80 0.051 0.056  0.051 
 

0.069 0.069 0.055 

Average 0.051 0.051   0.034   0.090 0.088 0.049 

         

Case IV: Unequal sample sizes and unequal variance with large variance in large sample direction 

n1 = 5, n2 = 10 0.040 0.019  0.018  0.095 0.084 0.029 

n1 = 10, n2 = 30 0.049 0.006  0.034  0.075 0.069 0.040 

n1 = 20, n2 = 80 0.048 0.005  0.045 
 

0.064 0.062 0.053 

Average 0.046 0.010   0.032   0.078 0.072 0.041 

         

Case V: Unequal sample sizes and unequal variance with large variance in small sample direction 

n1 = 5, n2 = 10 0.066 0.120  0.024 
 

0.136 0.128 0.073 

n1 = 10, n2 = 30 0.042 0.163  0.037  0.097 0.094 0.050 

n1 = 20, n2 = 80 0.044 0.159  0.040 
 

0.062 0.063 0.052 

Average 0.051 0.147   0.034   0.098 0.095 0.058 
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Table 2. Proportion of power (true positive rate) based on 1000 simulations at varying 

sample sizes (n1, n2) and δ = 1 for the various methods under equal and unequal 
variance conditions 
 

    Bayesian 

 Frequentist  Existing  Proposed 

Sample sizes Welch Pooled   MCMC   BT ZBT tBT 

Case I: Equal sample sizes and equal variance 

n1 = n2 = 5 0.087 0.094  0.020  0.245 0.202 0.093 

n1 = n2 = 10 0.171 0.176  0.126 
 

0.262 0.257 0.178 

n1 = n2 = 20 0.327 0.328  0.296  0.389 0.374 0.339 

n1 = n2 = 30 0.485 0.485  0.458 
 

0.531 0.532 0.504 

n1 = n2 = 50 0.690 0.691  0.691  0.740 0.741 0.730 

Average 0.352 0.355   0.318   0.433 0.421 0.369 

         

Case II: Equal sample sizes and unequal variance 

n1 = n2 = 5 0.075 0.084  0.015  0.196 0.167 0.085 

n1 = n2 = 10 0.100 0.105  0.076 
 

0.157 0.144 0.106 

n1 = n2 = 20 0.162 0.168  0.145 
 

0.200 0.202 0.175 

n1 = n2 = 30 0.225 0.232  0.215  0.265 0.255 0.238 

n1 = n2 = 50 0.353 0.358  0.348 
 

0.416 0.414 0.396 

Average 0.183 0.189   0.160   0.247 0.236 0.200 

         

Case III: Unequal sample sizes and equal variance 

n1 = 5, n2 = 10 0.114 0.133  0.043 
 

0.227 0.221 0.102 

n1 = 10, n2 = 30 0.253 0.262  0.205  0.333 0.338 0.256 

n1 = 20, n2 = 80 0.505 0.496  0.480 
 

0.570 0.569 0.521 

Average 0.291 0.297   0.243   0.377 0.376 0.293 

         

Case IV: Unequal sample sizes and unequal variance with large variance in large sample direction 

n1 = 5, n2 = 10 0.074 0.034  0.028 
 

0.147 0.137 0.050 

n1 = 10, n2 = 30 0.166 0.040  0.132  0.211 0.219 0.145 

n1 = 20, n2 = 80 0.355 0.093  0.331 
 

0.409 0.411 0.366 

Average 0.198 0.056   0.164   0.256 0.256 0.187 

         

Case V: Unequal sample sizes and unequal variance with large variance in small sample direction 

n1 = 5, n2 = 10 0.065 0.159  0.036 
 

0.174 0.165 0.082 

n1 = 10, n2 = 30 0.117 0.260  0.098  0.176 0.172 0.133 

n1 = 20, n2 = 80 0.177 0.399  0.170 
 

0.218 0.218 0.192 

Average 0.120 0.273   0.101   0.189 0.185 0.136 

 
 

The second scenario, Case II in Table 1, is the case where the frequentist 

Welch t-test has been established to be better. Here the equal sample sizes, but with 

heteroscedastic situation, was considered. As expected, the Welch t-test yielded 
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false positive rates that are relatively closer to the nominal (0.05) level. The result 

of the proposed Bayesian tBT test is not worst-off here as it equally produced false 

positive rates that are quite close to the 5% nominal level and competes favorably 

with the results of the Welch test. 

Moving to unequal sample sizes and heteroscedastic situations (Cases IV and 

V), similar results as observed with equal sample and unequal variance situations 

were observed. To assess the usability of the test procedures, the true positive 

(power) as assessment criteria was employed. The most powerful test procedures 

under the varying scenarios is the BT method which is the Bayesian method using 

the direct bootstrap distribution as can be observed from the various results in 

Tables 2 and 3 under various parameters combinations. The powers of this test 

method appreciated better as the values of the effect size, δ increases. 
 
 

 
 
Figure 1. Plots of false positive rate and power (true positive rate) for various scenarios 

and sample sizes 
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Table 3. Proportion of power (true positive rate) based on 1000 simulations at varying 

sample sizes (n1, n2) and δ = 2 for the various methods under equal and unequal 
variance conditions 
 

    Bayesian 

 Frequentist  Existing  Proposed 

Sample sizes Welch Pooled   MCMC   BT ZBT tBT 

Case I: Equal sample sizes and equal variance 

n1 = n2 = 5 0.254 0.279  0.078  0.485 0.468 0.282 

n1 = n2 = 10 0.557 0.564  0.447 
 

0.651 0.657 0.569 

n1 = n2 = 20 0.869 0.871  0.846  0.889 0.891 0.874 

n1 = n2 = 30 0.962 0.962  0.957 
 

0.975 0.980 0.969 

n1 = n2 = 50 0.999 0.999  0.997  0.999 0.999 0.999 

Average 0.728 0.735   0.665   0.800 0.799 0.739 

         

Case II: Equal sample sizes and unequal variance 

n1 = n2 = 5 0.135 0.154  0.049  0.297 0.274 0.152 

n1 = n2 = 10 0.255 0.267  0.193 
 

0.365 0.359 0.269 

n1 = n2 = 20 0.480 0.488  0.433 
 

0.560 0.540 0.494 

n1 = n2 = 30 0.662 0.670  0.648  0.718 0.714 0.689 

n1 = n2 = 50 0.880 0.882  0.872 
 

0.907 0.908 0.900 

Average 0.482 0.492   0.439   0.569 0.559 0.501 

         

Case III: Unequal sample sizes and equal variance 

n1 = 5, n2 = 10 0.368 0.423  0.172 
 

0.557 0.547 0.355 

n1 = 10, n2 = 30 0.718 0.769  0.663  0.813 0.810 0.727 

n1 = 20, n2 = 80 0.969 0.976  0.963 
 

0.983 0.984 0.975 

Average 0.685 0.723   0.599   0.784 0.780 0.686 

         

Case IV: Unequal sample sizes and unequal variance with large variance in large sample direction 

n1 = 5, n2 = 10 0.205 0.101  0.094 
 

0.332 0.352 0.161 

n1 = 10, n2 = 30 0.506 0.250  0.444  0.576 0.572 0.475 

n1 = 20, n2 = 80 0.869 0.598  0.849 
 

0.903 0.897 0.879 

Average 0.527 0.316   0.462   0.604 0.607 0.505 

         

Case V: Unequal sample sizes and unequal variance with large variance in small sample direction 

n1 = 5, n2 = 10 0.131 0.276  0.061 
 

0.290 0.279 0.157 

n1 = 10, n2 = 30 0.280 0.530  0.248  0.410 0.402 0.316 

n1 = 20, n2 = 80 0.536 0.812  0.521 
 

0.611 0.613 0.573 

Average 0.316 0.539   0.277   0.437 0.431 0.349 

Conclusion 

Efficient Bayesian methods were developed for testing equality of two population 

means from two independent samples. Among all the tests methods considered, it 
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can be concluded that the most suitable test method is the proposed Bayesian tBT 

method giving its high level of validity as demonstrated by various results obtained. 
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