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Selecting a model for incomplete data is an important issue. Truncated data is an example 

of incomplete data, which sometimes occurs due to inherent limitations. The maximum 

likelihood estimator features and its asymptotic distribution are studied, and a test 

statistic among non-nested competitive model of incomplete data is presented, which can 

select an appropriate model close to the true model. This close-to-true model under the 

null hypothesis of the equivalency of two competitive models against alternative 

hypothesis is selected. 

 

Keywords: Kullback–Leibler information criteria, non-nested competitive model, 

truncated data 

 

Introduction 

To draw an inference from a population, selecting an appropriate model is critical. 

The goal is to identify an optimal model from some competitive models by 

observing the population and testing the related hypotheses. Model selection and 

hypothesis testing for the purpose of complete data has been widely studied (Cox, 

1962; Vuong, 1989). Because complete data is rare, choosing an appropriate and 

therefore optimal model for incomplete data is important. 

Considered as an example of truncated data, incomplete data exists due to 

inherent limitations. This truncation phenomenon in statistical distribution has 

become evident by close observation, and is used extensively in such sciences as 

astronomy, reliability, medicine, and economics. A manufacturing process, for 

example, cannot produce parts having a negative life; in a call center, excessively 
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long conversations are terminated. Therefore, a portion of potential data with a 

wide range of values is not applicable.  

In the course of selecting a true density model, some criteria are referred to 

when the true density model is unknown. For instance, Kullback-Leibler 

information (Kullback & Leibler, 1951) is a model selection criterion based on 

the hazard function. It determines how a model diverges from competitive models. 

It is first divided into two parts, and the second part predicts the true density of 

the data. Akaike (Akaike, 1973) introduced unbiased estimators of Akaike 

information for this risk, and also generalized it. Cavanaugh (1999) obtained 

Akaike's estimator based on the symmetric Kullback-Leibler, and found it 

efficient in a survey of divergence of the true model from competitive models. 

Vuong (1989) proposed a model selection test based on the Kullback-Leibler 

information, used to check the closeness of the competitive models to the true 

model. Cox (Cox, 1961, 1962) offered a method with a generalized likelihood 

ratio test for a non-nested model so that the null hypothesis included the true 

density of the data.  

In the case of censored data, Shimodaira (1994) showed that Kullback-

Leibler criterion based on both the observed and censored data is better than 

studying the observed data alone. In addition, in comparison with the censored 

data, the divergence criterion for the complete data is more sensitive. 

Bhattacharyya (1985) revealed that the maximum likelihood estimator for the 

censored data of type II is convergent to the true value parameter in probability, 

and that it has an asymptotic distribution. Bardley and Vahe (1999) developed 

nonparametric methods for testing and estimating doubly truncated data. 

Lominashivli and Patsatsia (2013) studied the estimation of the parameters of the 

exponential distribution, truncated from two sides based on the maximum 

likelihood method, and offered unique solutions for obtaining it. 

The current study deals with the maximum likelihood estimator for 

truncated data, which is under-explored in the related literature. To select an 

appropriate and optimal model from some competitive models for truncated and 

incomplete data, a statistical test was conducted to determine how close the true 

model was to the non-nested competitive models. In the current study, a truncated 

distribution from both sides is placed at the interval (a, b). 

Theory of Truncated Models and Results 

Consider X1, …, Xn as an independent random sample with the same distribution 

and true unknown density function h(x). Also consider the competitive model 

file:///C:/Users/Public/Documents/JMASM/17.1/02_TYPESET/1973
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( ) ; pf f x R  =   with the unknown parameter θ, which is a member of 

the parameter space Θ and dimension p. A disadvantage of using fθ(x) density 

instead of true density h(x) is defined as 
( )

( )
log

h x

f x

. The expectation of this loss 

function under the true model data is called the Kullback-Liebler information 

criteria and is shown as follows: 

 

 ( )
( )

( )
( ) ( ), log log log ,h h h

h X
KL h f E E h X E f X

f X
 



 
= = −        

 
  (1) 

 

If h(x) = fθ(x) then KL(h, fθ) = 0. Consider the two competitive models fθ and 

( ) : qg g x B R  =    although the parameter of β is a member of the 

parameter space B with the dimension q. If f g  = , then it is called non-

nested. Otherwise, it is nested. There is a need for a parameter to maximize the 

second part of the Kullback-Liebler information criterion (1) and minimize the 

measure of information in order to minimize the measures of Kullback-Liebler 

information criterion, which makes a distinction between the competitive and true 

models and makes it possible to achieve a desirable competitive model. If the 

competitive model is well defined to contain the true model, it means that θ0 

belongs to Θ so that h(x) = fθ0
(x). 

Therefore, the maximum likelihood estimator of ˆ
n  is obtained from the 

derivation of logarithm of the likelihood function for the complete model. As a 

result, ˆ
n  is converged to θ0 which is the true parameter of data, and data is 

generated from it. If the competitive model is mis-specified, it means that it does 

not contain the true model of data, and the maximum quasi-likelihood considered 

by White (1982) will be converged to θ
*
. In both conditions, the measure of 

Kullback-Liebler information criterion is minimal. The existing measures of 

incomplete data are considered because the data is not always complete, as 

mentioned before. Truncated distributions, therefore, are a conditional distribution 

resulting from limitations placed up on the probability distribution range. This 

truncation can be applied from right or left or both sides. 

For the truncation purpose, a double truncated distribution is introduced. 

Consider X1, …, Xn as an independent random variable with the continuous 

density function f and the cumulative distribution function F. The logarithm of 
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quasi-likelihood function for the truncated data from both sides is calculated as 

follows: 

 

 ( ) ( ) ( ) ( ) ( ) ( )( ),
1

log log ,
n

n i ia b
i

Lf f x I x F b F a  
=

= − −   (2) 

 

so that I(x) shows indicator function, and the maximum of the quasi-likelihood 

estimator that holds true in the condition 

 

 ( ) ( )ˆ sup ,n n nLf Lf =   

 

so that the obtained ˆ
n  converges to the pseudo-true value 

 

 
( ) ( )

( ) ( ) ( )( )* arg max log log ,h

H b H a

E f X F b F a    

−

  
= − −   

  

 

 

in probability. This parameter shows the closeness of the competitive model to the 

true model of data. If the competitive model contains the true model of data, the 

quasi-likelihood estimator is the same as the maximum likelihood estimator. 

A Study of the Asymptotic Behavior of Maximum Quasi-
Likelihood Estimator Under Double Truncated 
Observations 

Consider the asymptotic behavior of the maximum quasi-likelihood estimator 

under truncated observations. White’s assumption (White, 1982) and definition 

n0 = Σ
n

i=1I(a,b)(xi) are considered here. Thus,  

 

 ( ) ( ) ( )
( ) ( )

( ),
10

1
log log ,

n P

i i ha b
i H b H a

f x I x E f X
n

 
= −

→     

 

where 
P

→  denotes convergence in probability. According to Slutsky’s theorem 

(Slutsky, 1925), the following convergence relation in this probability holds true: 
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( ) ( ) ( ) ( ) ( )( )

( ) ( )

( ) ( ) ( )( )

,
10

1
log log

log log ,

n P

i ia b
i

h

H b H a

f x I x F b F a
n

E f X F b F a

  

  

=

−

− − →

− −  


  

 

In order to achieve the asymptotic distribution of ˆ
n  by using Taylor’s 

expansion of ( )
1
2

nn Lf 


− 


 about θ

*
: 

 

 

( )

( ) ( ) ( ) ( )

1
2

1 1
2 2

* *

ˆ

2

*

0 |

| | 1 ,

n
n

n n p

n Lf

n Lf n Lf o

 

   




   
  

−

=

− −

= =


=



 = + − +
  

  

 

where op(1) shows the quantity which converges to zero. Also, it can easily be 

calculated  that 

 

 ( ) ( )( )
1
2

* *| 0, ,
L

n ftn Lf N I  


−

=


→


  

 

where 
L

→  denotes the convergence in the distribution, and Ift(θ*
) is defined as 

 

 

( )
( ) ( )

( ) ( )

( ) ( )

( )
( ) ( )

( )

* log log

log log .

ft h

H b H a

h h

H b H a H b H a

I E f X f X

E f X E f X

 

 


 

 

−

− −

  
=    

    
−        

  

 

Also 

 

 ( ) ( )
*

2
1

*| ,
P

n ftn Lf J  
 

−

=


− →

 
  

 

so Jft(θ*
) can be defined as: 
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 ( )
( ) ( )

( ) ( ) ( )( )
2 2

* log log ,ft h

H b H a

J E f X F b F a  
   

−

    
 = − + −           

 

 

where Ift(θ*
) < +∞ and Jft(θ*

) < +∞. Hence, the asymptotic distribution of the 

maximum quasi-likelihood estimator can be obtained as follows: 

 

 ( ) ( ) ( ) ( )( )
1
2

1 1

* * * *
ˆ 0, ,

L

n ft ft ftn N I J I    
− −

− →   

 

so if the competitive model is well-specified, therefore Ift = Jft, and finally 

 

 ( ) ( )( )
1
2 1

0 0
ˆ 0, .

L

n ftn N I  −− →   

 

Note that for complete observations, ( )
1
2

0
ˆ
nn  −  has a normal distribution 

with a zero mean and variance that equals the inverse of the Fisher information. 

Generalizing Vuong’s Examinations of Double Truncated 
Observations 

Hypothesis testing has two classic approaches: the likelihood ratio test and the 

Neyman-Pearson test. When the competitive model contains the true model, these 

tests perform well. However, if the competitive models are not well-specified or 

are non-nested, then different hypothesis tests are required. Cox (1962) and 

Vuong (1989) studied such models. Using the results obtained from Vuong’s test 

for complete observation, test the equivalence or closeness of the two competitive 

models for incomplete double truncated observations. The difference between the 

functions of quasi-likelihood in the two competitive models of fθ and gβ is shown 

as Lnfg(θ,β) so that the following can be obtained: 

 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )
,

1
0 ,

,

1
log .

n n n

n i ia b

i
i ia b

L fg Lf Lg

f x I x F b F a

n g x I x G b G a

  

  

   

=

= −

−
= −

−


  

 

Using the Central Limit Theorem (CLT), it can be shown that 
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 ( )
( ) ( )

( )

( )

( ) ( )

( ) ( )
( )

1 1
2 2 2, log log 0, ,

L

n h

H b H a

f X F b F a
n L fg n E N V

g X G b G a

  

  

 
−

−

   − 
− − →  

−    

 

 

where V2 denotes variance of difference between the functions of quasi-likelihood 

in the two competitive models, and it can be calculated as follows: 

 

 
( ) ( )

( )

( )
*

*

log .h

H b H a

f X
Var

g X



−

 
 
  

 

 

For a large sample n, 2ˆ
nv  is an estimator for V2, defined as: 

 

 
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
* *

* *

2 2

, ,2

1 1
0 0, ,

1 1
ˆ log log .

n ni i i ia b a b

n i i
i i i ia b a b

f x I x f x I x
v

n g x I x n g x I x

 

 
= =

      
= −   

      
   

 

Using Vuong’s assumptions (Vuong, 1989) under the null hypothesis, the two 

competitive models are equivalent or have the same closeness to the true model of 

data, although one of the models is closer than the other. As for the truncated data, 

the divergence of the two competitive models can be introduced as follows: 

 

 
( ) ( )

( )

( )

( ) ( )

( ) ( )
*

*

0 : log 0 log 0h

H b H a

f X F b F a
H E

g X G b G a

  

  −

  −
=  = 

−  

 

 

 
( ) ( )

( )

( )

( ) ( )

( ) ( )
*

*

0 : log 0 log 0h

H b H a

f X F b F a
H E

g X G b G a

  

  −

  −
    

−  

  

 

 
( ) ( )

( )

( )

( ) ( )

( ) ( )
*

*

0 : log 0 log 0h

H b H a

f X F b F a
H E

g X G b G a

  

  −

  −
    

−  

  

 

Therefore, under H0 hypothesis ( ) ( )
1
2 ˆ ˆ ˆ, / 0,1 ,

L

n n n nn L fg v N 
−

→  under H'
0 

hypothesis, ( )
1
2 ˆ ˆ ˆ, / ,n n n nn L fg v 

−
→+  and under H''

0 hypothesis, 
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( )
1
2 ˆ ˆ ˆ, / .n n n nn L fg v 

−
→−  The obtained tests have been run for observation at a 

significance level of α. If the value of the statistic ( )
1
2 ˆ ˆ ˆ, /n n n nn L fg v 

−
 is larger 

than z(1−α), it means that model f is better than model g; if smaller than −z(1−α), 

model g is better than model f; and if ( )
1
2 ˆ ˆ ˆ, /n n n nn L fg v 

−
 is smaller than z(1−α) 

the two competitive models are equivalent. In the defined truncated tests, if 

b = +∞ and a = −∞, it means that data is complete and is equivalent to Vuong’s 

test. Also, by considering b = +∞ and a = −∞, the obtained maximum quasi-

likelihood estimator and related statistical tests for truncated observation from left 

and right, respectively, are developed. 

Simulation Study 

Consider the hypothesis testing process for the obtained statistics under truncation 

from the left side (b = +∞). Independent and identically distributed data is 

simulated from exponential distribution having parameter 3, which is our true 

model. The exponential distribution (f) with parameter λ, and Wiebull distribution 

(g) with parameters α and β, are considered here for the competitive model.  
 
 
Table 1. Selecting between Exponential and Weibull models using obtained statistical 
test 
 

 
a 

n 0.01 0.03 0.05 0.10 0.20 0.30 

10 1.600 3.892 5.971 3.090 6.473 7.065 

100 14.310 32.360 40.710 47.230 44.710 26.800 

1,000 141.220 209.700 416.900 523.230 542.240 498.450 

5,000 442.370 924.290 1,172.940 3,300.520 2,779.760 2,117.980 

10,000 497.230 820.530 966.420 3,028.550 4,086.200 4,189.090 

100,000 1,981.980 6,076.680 10,341.380 32,165.980 45,621.050 48,387.410 

 
 

The parameter estimation is conducted as described here. Then the statistical 

tests are run several times. The results are presented in Table 1, designed for 

sample size 10, 100, 1,000, 5,000, 10,000 and truncation 0.01, 0.03, 0.05, 0.1, 0.2 

and 0.3. Because the obtained test statistics are normal, by enlarging the sample 

size, they converge to +∞ more accurately. These results confirm the closeness of 

the exponential model to the true model of data, preferred over Weibull’s model.  
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Conclusion 

The characteristics of the maximum likelihood estimators of the truncated 

distribution were discussed. Some statistical tests were introduced to determine 

the closeness of the competitive models to the true model for truncated and 

incomplete data. Under the null hypothesis, these tests turned out to be equivalent. 

When the null hypothesis was rejected, one of the competitive models was closer 

to the true model for the data. Results obtained from the current study can be 

extended to other types of truncation distribution. 
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